WO2016068294A1 - タンパク質合成阻害タンパク質毒素を含むポリペプチドの製造方法 - Google Patents

タンパク質合成阻害タンパク質毒素を含むポリペプチドの製造方法 Download PDF

Info

Publication number
WO2016068294A1
WO2016068294A1 PCT/JP2015/080758 JP2015080758W WO2016068294A1 WO 2016068294 A1 WO2016068294 A1 WO 2016068294A1 JP 2015080758 W JP2015080758 W JP 2015080758W WO 2016068294 A1 WO2016068294 A1 WO 2016068294A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein synthesis
tag
cell
amino acid
factor
Prior art date
Application number
PCT/JP2015/080758
Other languages
English (en)
French (fr)
Inventor
恵太 井口
健一郎 森尾
崇 金森
令奈 松本
美紀子 中村
Original Assignee
株式会社カネカ
ジーンフロンティア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, ジーンフロンティア株式会社 filed Critical 株式会社カネカ
Publication of WO2016068294A1 publication Critical patent/WO2016068294A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/25Shigella (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/38Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Aspergillus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a method for producing a polypeptide containing a protein synthesis-inhibiting protein toxin.
  • Proteinaceous cytotoxins that cause cytotoxicity by inhibiting protein synthesis, such as ricin and Pseudomonas aeruginosa exotoxin A, can be active ingredients such as cancer therapeutics Is known (for example, Patent Document 1).
  • a general technique is to introduce a nucleic acid encoding the amino acid sequence of the target protein into an appropriate host organism, and to produce the target protein by culturing the host organism into which the nucleic acid has been introduced.
  • the cell-free protein synthesis system is a protein synthesis system that uses a reaction solution containing factors necessary for protein synthesis, such as a cell extract, without using living cells.
  • Cell-free protein synthesis systems consisted of cell-free protein synthesis systems using cell extracts themselves such as E. coli, wheat germ, rabbit reticulocytes, and cultured cells, and factors composed of independently purified factors.
  • a reconstituted cell-free protein synthesis system is included. Examples of the reconstituted cell-free protein synthesis system include a PURE system (Patent Document 2, Patent Document 3, Non-Patent Document 1, Patent Document 4, and Non-Patent Document 2).
  • Patent Document 5 in order to improve the stability of the cell-free protein synthesis system, it is necessary to exclude a system involved in the inhibition of its own protein synthesis reaction (for example, a ribosome inactivating protein) from the cell-free protein synthesis system. It is described as useful.
  • a system involved in the inhibition of its own protein synthesis reaction for example, a ribosome inactivating protein
  • Protein synthesis inhibiting protein toxins are required to be produced in large quantities because they can be used as anticancer agents and the like.
  • protein synthesis-inhibiting protein toxins are toxic to host cells, it has been difficult to utilize conventional protein production techniques using living cells as hosts for the production of protein synthesis-inhibiting protein toxins. For this reason, conventionally, protein synthesis-inhibiting protein toxins have been produced by separating them from natural organisms that produce the toxins. However, efficient mass production has been difficult with this method.
  • Patent Document 5 since proteins involved in the inhibition of their own protein synthesis system inhibit protein synthesis even in a cell-free protein synthesis system, proteins using a cell-free protein synthesis system have been conventionally used. No attempt has been made to produce synthetic inhibitory protein toxins.
  • an object of the present invention is to provide a technique for producing a protein synthesis-inhibiting protein toxin.
  • the following inventions are disclosed as means for solving the above problems.
  • a method for producing a polypeptide comprising the step of synthesizing the polypeptide from a nucleic acid.
  • composition comprising a polypeptide comprising at least an amino acid sequence of an initiation factor, elongation factor, aminoacyl tRNA synthetase, ribosome, amino acid, nucleoside triphosphate, tRNA, and protein synthesis inhibiting protein toxin.
  • composition (2) above can be used as a toxic composition for various uses and measurements.
  • the polypeptide can be used as a pharmaceutical.
  • At least the ribosome is preferably derived from a prokaryote.
  • At least the ribosome is preferably derived from a eukaryote.
  • the protein synthesis inhibiting protein toxin is ricin, Pseudomonas aeruginosa exotoxin A, Shiga toxin, gelonin, saporin, bouganin, pokeweed antiviral protein, diphtheria toxin, It is preferably at least one selected from the group consisting of alfasarcin, bryodin, momordine, and ristoctocin, Pseudomonas aeruginosa exotoxin A is more preferably in the form of PE38, and bouganin is in the form of De bouganin. More preferably.
  • the nucleic acid preferably includes a region encoding the amino acid sequence of the antibody upstream or downstream of the region encoding the amino acid sequence of the protein synthesis inhibiting protein toxin.
  • the polypeptide includes an amino acid sequence of an antibody upstream or downstream of the amino acid sequence of a protein synthesis inhibiting protein toxin.
  • the antibody is more preferably a partial antibody.
  • the nucleic acid preferably contains a region encoding the amino acid sequence of the purification tag.
  • the polypeptide preferably has a purification tag.
  • the purification tag is at least one selected from the group of His tag, GST tag, FLAG tag, MBP tag, Myc tag, HA tag, Strep tag, PA tag, TARGET tag and SUMO tag. More preferred.
  • the nucleic acid preferably includes a region encoding a protease recognition sequence.
  • the polypeptide preferably has a purification tag.
  • the protease recognition sequence is at least one selected from the group consisting of a thrombin recognition sequence, a factor Xa (Factor Xa) recognition sequence, a TEV protease sequence, a SUMO tag sequence, and a precision protease (PreScission Protease) recognition sequence. More preferably.
  • the method (1) preferably includes a step of purifying the polypeptide using a carrier that interacts with the polypeptide.
  • At least one of an initiation factor, an elongation factor, an aminoacyl tRNA synthetase and a ribosome included in the cell-free protein synthesis system has a purification tag.
  • the cell-free protein synthesis system or the composition (2) used in the method (1) preferably contains a reducing agent.
  • the reducing agent is preferably at least one selected from the group of dithiothreitol, 2-mercaptoethanol, and reduced glutathione.
  • the cell-free protein synthesis system or the composition (2) used in the method (1) preferably contains the dithiothreitol at a concentration of at least 1 mM.
  • the cell-free protein synthesis system used in the method (1) or the composition (2) preferably contains at least one selected from oxidized glutathione, disulfide bond isomerase and molecular chaperone.
  • the cell-free protein synthesis system used in the method of (1) or the composition of (2) further contains a reducing agent, and more preferably contains the oxidized glutathione at a concentration equal to or higher than the concentration of the reducing agent. preferable.
  • the molecular chaperone is at least one selected from the group of hsp60 family, hsp70 family and ribosome-binding molecular chaperones.
  • the molecular chaperone is more preferably at least one selected from the group of GroEL, GroES, DnaK, DnaJ, GrpE and TF.
  • FIG. 1 shows the results of electrophoresis of translation products obtained by synthesizing various protein synthesis-inhibiting protein toxins using a cell-free protein synthesis system.
  • FIG. 2 shows the results of Western blotting of translation products obtained by synthesizing various protein synthesis-inhibiting protein toxins using a cell-free protein synthesis system.
  • FIG. 3 shows the test results for confirming the inhibitory activity of green fluorescent protein synthesis by the PE38 synthesis reaction solution synthesized in the examples.
  • the polypeptide produced in the present invention is a polypeptide comprising the amino acid sequence of a protein synthesis inhibiting protein toxin.
  • the polypeptide only needs to contain at least a part of the amino acid sequence of the protein synthesis-inhibiting protein toxin, and the whole amino acid sequence may consist of the amino acid sequence of the protein synthesis-inhibiting protein toxin.
  • another amino acid sequence may be further added upstream (N-terminal side) and / or downstream (C-terminal side) of the amino acid sequence.
  • Protein synthesis-inhibiting protein toxins include both natural and non-natural artificially-produced protein toxins that have an activity of inhibiting protein synthesis in cells. Protein synthesis inhibition The mechanism by which protein toxins inhibit protein synthesis is not particularly limited, but typical toxins include ADP ribosyltransferase activity (EC 2.4.2.36), which causes ADP ribosylation of peptide chain elongation factors and protein produced by ribosomes.
  • ADP ribosyltransferase activity EC 2.4.2.36
  • Toxin that inhibits production toxin that inactivates ribosome by rRNA N-glycosidase activity (EC3.2.2.22) and inhibits protein production (toxin called “ribosome inactivating protein (RIP)”), rRNA degradation Examples include toxins that inactivate ribosomes by activity (EC.3.1.27.10 and EC.3.1.27) to inhibit protein production.
  • Examples of protein synthesis inhibiting protein toxins having ADP ribosyltransferase activity include Pseudomonas aeruginosa exotoxin A and diphtheria toxin.
  • Natural Pseudomonas aeruginosa exotoxin A is registered in the UniProt database (http://www.uniprot.org/) as UniProt number: P11439, and the specific amino acid sequence is as shown in SEQ ID NO: 9.
  • Natural diphtheria toxin is registered as UniProt number: P00588, and the specific amino acid sequence is as shown in SEQ ID NO: 10.
  • ribosome inactivating protein examples include ricin, Shiga toxin, gelonin, saporin, bouganin, pokeweed antiviral protein, briodin, momordine and the like.
  • Natural lysine is registered as UniProt number: P02879, and the specific amino acid sequence is as shown in SEQ ID NO: 11.
  • Natural Shiga toxin is registered as UniProt number: P09385, and the specific amino acid sequence is as shown in SEQ ID NO: 12.
  • Natural gelonin is registered as UniProt number: P33186, and the specific amino acid sequence is as shown in SEQ ID NO: 13.
  • Natural saporin is registered as UniProt number: P20656, and the specific amino acid sequence is as shown in SEQ ID NO: 14.
  • Natural bouganin is registered as UniProt number: Q8W4U4, and the specific amino acid sequence is as shown in SEQ ID NO: 15.
  • Natural pokeweed antiviral protein is registered as UniProt number: P10297, and the specific amino acid sequence is as shown in SEQ ID NO: 16.
  • Natural bryodin is registered as UniProt number: P33185, and the specific amino acid sequence is as shown in SEQ ID NO: 17.
  • Natural momordein is registered as UniProt number: P16094, and the specific amino acid sequence is as shown in SEQ ID NO: 18.
  • protein synthesis-inhibiting protein toxins having rRNA degrading activity examples include alpha-sarcin, ristorticin and the like.
  • Natural alpha-sarcin is registered as UniProt number: P00655, and the specific amino acid sequence is as shown in SEQ ID NO: 19.
  • Natural restrictocin is registered as UniProt number: P67876, and the specific amino acid sequence is as shown in SEQ ID NO: 20.
  • Each of the toxins exemplified above is not limited to the natural form, and may be a toxic mutant.
  • Such mutants include toxic mutants (for example, active fragments comprising a partial amino acid sequence of a natural toxin) and toxic mutants having altered immunogenicity (for example, a partial amino acid sequence of a natural toxin). Active fragment).
  • Pseudomonas aeruginosa exotoxin A is an immunogenicity-reducing mutant PE38 (disclosed in US Pat. No. 5,608,039) (the amino acid sequence of PE38 is represented by SEQ ID NO: 21).
  • the immunogenicity-reducing mutant Dis bouganin (disclosed in Journal of Immunotherapy 32 (6): 574-584) (de bouganin amino acid sequence) In the form of SEQ ID NO: 8).
  • the polypeptide produced in the present invention has another amino acid sequence added upstream (N-terminal side) and / or downstream (C-terminal side) of the amino acid sequence. It may be.
  • other amino acid sequences include antibody amino acid sequences, purification tag amino acid sequences, protease recognition sequences, and the like.
  • An appropriate number of amino acids (for example, 1 to 50) between the amino acid sequence of the protein synthesis inhibiting protein toxin and the other amino acid sequence or when there are a plurality of the other amino acid sequences.
  • the linker which consists of may intervene.
  • the protease recognition sequence is between the amino acid sequence of the protein synthesis-inhibiting protein toxin and the amino acid sequence of the antibody or purification tag, or when a plurality of amino acid sequences of the antibody or purification tag are included. Between them.
  • the polypeptide of the present invention contains an antibody
  • it can be used as an immunotoxin as disclosed in Patent Application Publication No. 2007-536905.
  • the toxin when the antibody binds to the antigen expressed in the target cell, the toxin is translocated to stop protein synthesis, induce apoptosis and kill the cell (Brinkmann, U., Mol. Med. Today , 2: 439-446 (1996)), a high healing effect can be expected.
  • the antibody can preferably be a partial antibody.
  • Partial antibodies include Fab 2 , Fab, F (ab ′) 2 , Fab 3 , scFv, Bis-scFv, Diabody, Minibody, Triabody, Tetrabody and antibodies And at least one selected from the group of like-like functional molecules.
  • the base sequence encoding the polypeptide chain is expressed as follows: Protein synthesis is performed using a nucleic acid linked upstream and / or downstream of a base sequence encoding a protein synthesis inhibiting protein toxin to obtain a fusion polypeptide of the protein synthesis inhibiting protein toxin and the antibody.
  • the antibody (including the partial antibody) is an antibody composed of a complex in which a plurality of polypeptide chains are linked by an interaction such as a disulfide bond, it encodes one polypeptide chain constituting the complex.
  • Protein synthesis is performed using a nucleic acid having a base sequence linked upstream and / or downstream of a base sequence encoding a protein synthesis inhibiting protein toxin to obtain a fusion polypeptide of the protein synthesis inhibiting protein toxin and the antibody polypeptide chain.
  • a fusion polypeptide of a protein synthesis inhibiting protein toxin and an antibody can be constructed.
  • Such a fusion polypeptide of a protein toxin and an antibody polypeptide chain is also included in the scope of the polypeptide containing an antibody produced in the present invention.
  • Other polypeptide chains of the complex may be prepared using the cell-free protein synthesis system of the present invention or may be prepared by other means.
  • the polypeptide of the present invention contains a purification tag
  • the polypeptide captured on the carrier It is possible to recover the target protein synthesis-inhibiting protein toxin by acting a protease that cleaves the recognition sequence.
  • the purification tag examples include at least one selected from the group of His tag, GST tag, FLAG tag, MBP tag, Myc tag, HA tag, Strep tag, PA tag, TARGET tag, and SUMO tag.
  • His tags usually consist of about 4-8 consecutive histidine residues and are generally purified by Ni columns.
  • the GST tag consists of GST protein (Protein Expr. Purif. 79 (1): described in 16-24.) And is generally purified by a column using glutathione.
  • the FLAG tag consists of an amino acid sequence called DYKDDDDK and is generally purified by a column using an anti-FLAG antibody.
  • the MBP tag is composed of maltose-binding protein (Guan, C. et al. (1987). Gene.
  • the Myc tag consists of a c-Myc sequence (EQKLISEEDL, etc.) and is generally purified by a column using an anti-Myc antibody.
  • the HA tag consists of a partial sequence of influenza virus hemagglutinin (YPYDVPDYA) and is purified by a column using an anti-HA antibody.
  • the Strep tag has an amino acid sequence called WSHPQFEK and is generally purified by a column using streptavidin or the like.
  • PA tag consists of protein A or its domain (such as those described in Boyle MDP, Ed. (1990) Bacterial Immunoglobulin Bindings Proteins.
  • the TARGET tag has an amino acid sequence described in J. Proteomics, 2010 Aug 5; 73 (9): 1777-85, and is generally purified by a column using an anti-TARGET tag antibody.
  • the SUMO tag has an amino acid sequence described in J. Structure Funct Genomics. 2004; 5 (1-2): 75-86, and is generally purified by a column using an anti-SUMO tag antibody.
  • protease recognition sequence examples include at least one selected from the group consisting of a Thrombin recognition sequence, a Factor Xa recognition sequence, a TEV protease sequence, a SUMO tag, and a PreScission Protease recognition sequence.
  • Thrombin recognition sequence is (1) P4-P3-Pro- (Arg or Lys) -P1'-P2 '(P3, P4: hydrophobic amino acids, P1', P2 ': non-acidic amino acids) or (2) Gly- It consists of (Ard or Lys) -X (X: non-acidic amino acid) or Y- (Ard or Lys) -Gly (Y: any amino acid) and is cleaved by Thrombin.
  • the Factor Xa recognition sequence consists of the amino acid sequence of IEGR and is cleaved by Factor Xa.
  • the TEV protease recognition sequence is Glu-Asn-Leu-Tyr-Phe-Gln- (Gly / Ser) and is cleaved by TEV protease.
  • the SUMO tag sequence is cleaved by a protease that recognizes the three-dimensional structure of SUMO.
  • the PreScission Protease recognition sequence consists of the amino acid sequence of LEVLFQGP and is cleaved by PreScission Protease.
  • the polypeptide is synthesized from the nucleic acid encoding the polypeptide using a cell-free protein synthesis system described in detail below.
  • the “nucleic acid” in the present invention mainly refers to deoxyribonucleotides and ribonucleotide polymers. That is, deoxyribonucleic acid (DNA) or ribonucleic acid (RNA).
  • the nucleic acid in the present invention can also contain a nucleotide derivative having an artificial base.
  • peptide nucleic acid (PNA) can also be included. As long as the desired genetic information is retained, the constituent unit of the nucleic acid can be any of these nucleic acids or a hybrid.
  • the hybrid nucleotide of DNA-RNA is included in the nucleic acid in the present invention.
  • a chimeric nucleic acid in which different nucleic acids such as DNA and RNA are linked in a single strand is also included in the nucleic acid in the present invention.
  • the structure of the nucleic acid in the present invention is not limited as long as the target genetic information can be maintained. Specifically, it can have a single-stranded, double-stranded, or triple-stranded structure. More preferably, the nucleic acid encoding the polypeptide is a single-stranded RNA such as double-stranded DNA or mRNA.
  • the nucleic acid encoding the polypeptide can include a base sequence advantageous for transcription and / or translation by a cell-free protein synthesis system in addition to the base sequence encoding the polypeptide. That is, the nucleic acid used for protein synthesis in the present invention includes a base sequence encoding the target polypeptide in a state where it can be expressed. That is, in the nucleic acid, the base sequence encoding the polypeptide of interest is placed under the control of an expression control region containing elements necessary for gene expression (translation, or translation and / or transcription). Elements for gene expression can be appropriately selected depending on the protein synthesis system employed, and examples include enhancers, promoters, ribosome binding sequences, terminators, and the like.
  • the mRNA when added as a template to a cell-free protein synthesis system to synthesize the polypeptide, the mRNA is added to a sequence encoding the amino acid sequence of the target polypeptide and is advantageous for translation. Additional base sequences can be included.
  • Shine-Dalgarno the ribosome binding sequence
  • Inclusion of the (SD) sequence increases the efficiency of the translation reaction.
  • AGGAGGA is an SD sequence of Escherichia coli.
  • a base sequence encoding the tag sequence can be added to the 5 'end and / or 3' end of the coding region of the target polypeptide.
  • RNA having such a structure can be obtained, for example, by inserting a gene encoding the polypeptide of interest into an expression vector having a 5 ′ UTR sequence including a promoter sequence and an SD sequence, and transcribed with RNA polymerase. Can do.
  • RNA polymerase recognizes a region containing a specific sequence called a promoter, and synthesizes mRNA based on the base sequence of DNA arranged downstream thereof.
  • An example of the promoter sequence is TAATACGACTCACTATA, which is a T7 promoter sequence.
  • a T7 terminator sequence may further be included downstream of the stop codon.
  • a method for constructing a template DNA by PCR is specifically exemplified.
  • the DNA region that encodes the polypeptide of interest is the 5 'end region of the coding region and part of the 5' UTR sequence (including the promoter and SD sequence) And a primer containing the 3 'end region of the coding region.
  • the DNA thus constructed (usually a double-stranded DNA) is further amplified as necessary, and then used as a template to transcribe it with RNA polymerase, whereby an mRNA serving as a template for translation reaction can be obtained.
  • the transcribed mRNA can be recovered by ethanol precipitation after phenol treatment.
  • a commercially available RNA extraction kit such as RNeasy (manufactured by Qiagen) can also be used.
  • RNA transcribed by RNA polymerase can be recovered as necessary and used in the cell-free protein synthesis system of the present invention.
  • RNA polymerase is included in the cell-free protein synthesis system, the above-mentioned DNA in which a nucleotide sequence necessary for transcription and translation is incorporated into a gene can be added to the cell-free protein synthesis system as a template nucleic acid.
  • Cell-free protein synthesis system refers to a protein synthesis system using a reaction solution containing factors necessary for protein synthesis such as a cell extract.
  • cell-free protein synthesis system may also refer to a reaction solution composition (ie, a composition for cell-free protein synthesis) itself containing factors necessary for protein synthesis.
  • the cell-free protein synthesis system is characterized in that a living cell is not required for translation from mRNA to polypeptide.
  • the cell-free protein synthesis system in the present invention includes a translation system that performs translation and a translation system that performs transcription and translation. That is, the cell-free protein synthesis system of the present invention includes any of the following.
  • Cell-free protein synthesis system that translates mRNA into polypeptide
  • Cell-free protein synthesis system that transcribes DNA into mRNA and then translates mRNA into polypeptide
  • a cell-free protein synthesis system using the extract or a crudely purified fraction of the cell extract is included.
  • the cell extract include cell extracts such as Escherichia coli, wheat germ, rabbit reticulocyte, yeast, and cultured cells. These cell extracts contain components necessary for protein synthesis, and the protein can be synthesized by adding mRNA or DNA encoding the target protein. However, these cell extracts may contain components that are not necessary for protein synthesis or components that inhibit protein synthesis, and degradation of synthetic products or unknown modifications may occur. Moreover, when an unknown component is contained in a reaction liquid, it may be difficult to adjust a reaction liquid according to the objective.
  • the cell-free protein synthesis system in the present invention also includes a “reconstituted” cell-free protein synthesis system containing a purified factor.
  • Examples of the reconstituted cell-free protein synthesis system include “PURE system” (Non-patent Document 1).
  • the reconstituted cell-free protein synthesis system can more easily prevent contamination with nucleases and proteases than the cell-free protein synthesis system using a cell extract. For this reason, the efficiency of translation from mRNA to polypeptide can be increased. In addition, it is easy to adjust the constituent factors of the reaction system.
  • the amount of lipopolysaccharide contained in the whole composition for cell-free protein synthesis can be reduced by removing lipopolysaccharide mixed in each factor fraction at the stage of purification of the factor. From these points, the reconstituted cell-free protein synthesis system is suitable as the cell-free protein synthesis system in the present invention.
  • the reconstituted cell-free protein synthesis system (or the composition for reconstituted cell-free protein synthesis) that can be used in the present invention preferably contains an independently purified factor, and more preferably is independently purified. It consists of factors.
  • factor refers to a structural unit of a cell-free protein synthesis system that can be independently purified. Factors include proteins that function as monomers and low molecular weight compounds such as substrates and salts. Furthermore, various composites and mixtures that can be isolated from the crude fraction are also included. For example, factors purified as a complex include dimeric proteins, ribosomes, and the like. Examples of the mixture include a tRNA mixture.
  • Independently purified factor refers to a factor purified from other factors by an independent operation.
  • a cell-free protein synthesis system can be constructed by mixing and reconstituting factors necessary for protein synthesis independently purified for each factor, if necessary.
  • Each factor present in the fraction in which a plurality of types of factors are mixed without being isolated from the cell extract is not said to be an independently purified factor.
  • even a complex composed of a plurality of components, when purified as a single factor is an “independently purified factor” in the present invention.
  • a purified ribosome is a complex consisting of several elements, but it is an “independently purified factor” because it is purified as a single factor.
  • purified means that an operation to remove substances other than the target factor as much as possible from the fraction containing the target factor is performed.
  • the purity of the target factor in the “purified factor” is, for example, 20% or more, preferably 50% or more, more preferably 70% or more, more preferably 90% or more, and most preferably 99% or more (for example, 100%).
  • the purity of the target factor in the “purified factor” is, for example, 20% or more, preferably 50% or more, more preferably 70% or more, more preferably 90% or more, and most preferably 99% or more (for example, 100%).
  • the purity of the target factor in the “purified factor” (ratio of the weight of the target factor to the total weight of the protein and nucleic acid) ) Is, for example, 20% or more, preferably 50% or more, more preferably 70% or more, still more preferably 90% or more, and even more preferably 99% or more (for example, 100%).
  • the constituent factor is a single protein, it can be determined that the factor is in a purified state when each factor can be confirmed as an almost single band by electrophoresis.
  • the constituent factor is a complex such as a ribosome, it can be determined that the component is in a purified state when only the constituent factor can be confirmed as a band by electrophoresis.
  • low-molecular factors such as amino acids and nucleoside triphosphates can be incorporated into the reconstituted cell-free protein synthesis system in the state of being independently purified.
  • the purified amino acid only needs to be purified to such an extent that components other than amino acids are substantially not included, and may be purified as a mixture of a plurality of types of amino acids. It may be purified as an amino acid.
  • the nucleoside triphosphate is only required to be purified to such an extent that components other than nucleoside triphosphate are substantially not contained, and is purified as a mixture of a plurality of types of nucleoside triphosphates. It may be present or purified as a single nucleoside triphosphate.
  • a cell-free protein synthesis system derived from a prokaryote (or a subordinate concept thereof) or a cell-free protein synthesis system derived from a eukaryote (or a subordinate concept thereof) an amino acid, a nucleoside triphosphate
  • the low molecular weight factor such as a salt is not necessarily derived from a predetermined organism, and may be separately prepared and purified.
  • Each factor included in the reconstituted cell-free protein synthesis system can be obtained by chemical synthesis, enzymatic reaction, or synthesis after synthesis and purification.
  • Each factor and a method for purifying the factor are known (Japanese Patent Laid-Open No. 2003-102495, Japanese Patent Laid-Open No. 2009-112286, Japanese Patent Laid-Open No. 2008-271903, etc.).
  • Independently purified factors in the reconstituted cell-free protein synthesis system can also be obtained by purification from various cell extracts.
  • Examples of the cell for purifying the factor include prokaryotic cells and eukaryotic cells.
  • Prokaryotic cells can include E. coli cells, hyperthermophilic cells, or Bacillus subtilis cells.
  • Eukaryotic cells can include yeast cells, plant cells, insect cells, or mammalian cells.
  • each factor can be obtained by the following method. (1) A gene encoding each factor (protein) is isolated, introduced into an expression vector, transformed into an appropriate host cell, expressed, and recovered. (2) A gene encoding each factor is isolated, synthesized in a cell-free protein synthesis system, and collected.
  • an expression plasmid is prepared in which the gene of each factor is incorporated into an expression vector including the expression control region so that the target factor is expressed by controlling the region.
  • the expression control region constituting the vector refers to, for example, an enhancer, a promoter, and a terminator.
  • Expression vectors can also include drug resistance markers and the like.
  • host cells are transformed with this expression plasmid to express each factor.
  • E. coli such as JM109, DH5 ⁇ , HB101, XL1-Blue
  • the lacZ promoter Ward et al. (1989) Nature, vol.341, p.544-546, Ward (1992) FASEB J., vol.6, p.2422-2427
  • araB promoter Better et al. (1988) Science, vol.240, p.1041-1043
  • T7 promoter and the like.
  • Examples of such an expression vector having a promoter include pGEX (GE Healthcare Biosciences), pQE (Qiagen), or pET (Novagen).
  • An expression plasmid into which a gene encoding each factor has been introduced can be introduced into E. coli by, for example, the calcium chloride method or the electroporation method.
  • Factors containing proteins (initiator, elongation factor, aminoacyl-tRNA synthetase and ribosome) contained in the cell-free protein synthesis system can be easily purified by labeling them with a purification tag. be able to.
  • a method for labeling a factor containing a protein contained in a cell-free protein synthesis system with a purification tag is, for example, by incorporating a gene encoding a target factor into an expression vector containing a base sequence encoding the purification tag, This can be done by expressing both fusion proteins.
  • a protease recognition sequence may be interposed between the two.
  • the translated target polypeptide and the cell-free protein synthesis system are included from the translated product after the translation reaction.
  • a ligand that interacts with the purification tag examples include those described for the purification tag that can be contained in the polypeptide of interest to be synthesized.
  • the cell-free protein synthesis system used in the present invention contains at least the following factors.
  • Initiation factor IF
  • Elongation Factor EF
  • Aminoacyl-tRNA synthetase AARS
  • Ribosome amino acid, Nucleoside triphosphates, tRNA.
  • initiation factor is also called “translation initiation factor”
  • elongation factor is also called “translation elongation factor”.
  • termination factor is also called “translation termination factor”.
  • At least the ribosome, or at least the initiation factor, elongation factor, aminoacyl tRNA synthetase, ribosome and tRNA may be derived from prokaryotes such as E. coli, or from eukaryotes. There may be.
  • the initiation factor used in the cell-free protein synthesis system of the present invention is essential for the formation of the translation initiation complex, or is a factor that significantly promotes this, and is derived from E. coli as IF1, IF2, and IF3. (O.OClaudio et al. (1990) Biochemistry, vol.29, p.5881-5889).
  • the initiation factor IF3 promotes dissociation of the 70S ribosome into 30S and 50S subunits, a step necessary for initiation of translation, and other than formylmethionyl tRNA during the formation of the translation initiation complex Inhibits the insertion of tRNA into the P site.
  • Initiation factor IF2 binds to formylmethionyl tRNA and carries formylmethionyl tRNA to the P site of the 30S ribosomal subunit to form a translation initiation complex.
  • Initiation factor IF1 promotes the functions of initiation factors IF2 and IF3.
  • Preferable examples of the initiation factor used in the present invention are those derived from E. coli, for example, those obtained from E. coli K12 strain, but those derived from eukaryotic cells can also be used.
  • an initiation factor derived from E. coli it can be used, for example, at 0.005 ⁇ M-300 ⁇ M, preferably 0.02 ⁇ M-100 ⁇ M.
  • the amount of each factor used can be selected from the range exemplified above.
  • EF-Tu, EF-Ts, and EF-G are known as elongation factors used in the cell-free protein synthesis system of the present invention as those derived from E. coli.
  • elongation factor EF-Tu There are two types of elongation factor EF-Tu, GTP type and GDP type.
  • GTP type binds aminoacyl tRNA and carries it to the A site of ribosome. When EF-Tu leaves the ribosome, GTP is hydrolyzed and converted to GDP type (T. Pape et al. (1998) EMBO J, vol.17, p.7490-7497).
  • Elongation factor EF-Ts binds to EF-Tu (GDP type) and promotes conversion to GTP type (YW.
  • the elongation factor EF-G promotes the translocation reaction after the peptide bond formation reaction during the peptide chain elongation process (RK. Agrawal et al. (1999) Nat. Struct. Biol., Vol.6, p 643-647, MW. Rodnina et al. (1999) FEMS Microbiology Reviews, vol.23, p.317-333).
  • Preferable examples of the elongation factor used in the present invention are those derived from E. coli, for example, those obtained from E. coli K12 strain, but those derived from eukaryotic cells can also be used.
  • an elongation factor derived from E. coli When an elongation factor derived from E. coli is used, it can be used, for example, at 0.005 ⁇ M-300 ⁇ M, preferably 0.02 ⁇ M-100 ⁇ M. When all of EF-Tu, EF-Ts, and EF-G are used as the elongation factor, the amount of each factor used can be selected from the range exemplified above.
  • aminoacyl-tRNA synthetase is an enzyme that synthesizes an aminoacyl-tRNA by covalently binding an amino acid and tRNA in the presence of ATP, and there is an aminoacyl-tRNA synthetase corresponding to each amino acid (C. Francklyn et al. ( 1997) RNA, vol.3, p.954-960, protein nucleic acid enzyme (1994) vol.39, p.1215-1225).
  • Preferred examples of the aminoacyl tRNA synthetase used in the present invention are those derived from E. coli, for example, those obtained from E. coli K12 strain, but those derived from eukaryotic cells can also be used.
  • an artificial aminoacyl-tRNA synthetase that recognizes an unnatural amino acid can also be used.
  • an aminoacyl-tRNA synthetase derived from E. coli it can be used, for example, at 1 U / ml-1,000,000 U / ml, preferably 5 U / ml-500,000 U / ml.
  • it can be used at 0.001 ⁇ g / ml-10,000 ⁇ g / ml, preferably 0.01 ⁇ g / ml-1,000 ⁇ g / ml.
  • aminoacyl tRNA synthetase Any amount of aminoacyl tRNA synthetase exemplified here can be applied to aminoacyl tRNA synthetase corresponding to each amino acid.
  • the activity to form 1 ⁇ mol of aminoacyl-tRNA per minute is defined as 1 ⁇ U.
  • Ribosome is a huge complex composed of ribosomal RNA and various ribosomal proteins.
  • ribosome is a place for protein synthesis. Basically, it consists of two large and small subunits, and the composition and size of ribosome components differ between prokaryotes and eukaryotes. Ribosomes and subunits constituting them can be separated from each other by a sucrose density gradient or the like, and the size is represented by a sedimentation coefficient. Specifically, in prokaryotes, the ribosome and the subunits constituting it have the following sizes, respectively.
  • each subunit can be isolated as a complex composed of these components.
  • the ribosome can be isolated as a complex of each subunit.
  • the independently purified ribosome in the present invention is, for example, a prokaryotic ribosome, a complex purified as a 70S ribosome composed of large and small subunits, or purified 50S subunit and 30S respectively.
  • the ribosome and the subunits constituting it have the following sizes, respectively.
  • Ribosome (80S) Large subunit (60S) + Small subunit (40S) Therefore, when the cell-free protein synthesis system in the present invention is composed of eukaryotic ribosomes, ribosomes purified as 80S ribosomes can be used.
  • Ribosomes can be purified from, for example, E. coli cultured by the method disclosed in JP-A-2008-271903. Prokaryotes such as E. coli can be easily cultured in large quantities. Accordingly, prokaryotes such as E. coli are preferred organisms for preparing ribosomes in large quantities. Ribosomes purified by the method disclosed in Japanese Patent Application Laid-Open No. 2008-271903 are preferred because they are substantially free of nucleolytic enzyme activity. As described above, it is desirable to use a cell-free protein synthesis system substantially free of nucleolytic enzyme activity for efficient polypeptide synthesis. Therefore, a ribosome substantially free of nucleolytic enzyme activity is preferably used in the present invention. When E. coli-derived ribosome is used in a cell-free protein synthesis system, it can be used at a concentration of 0.01 ⁇ M-50 ⁇ M, preferably 0.05 ⁇ M-10 ⁇ M, for example.
  • “from organism X” means that the amino acid sequence or nucleic acid sequence of the factor is the amino acid sequence or nucleic acid sequence of the factor that is naturally expressed in organism X. It means having substantially the same amino acid sequence or nucleic acid sequence. “Substantially the same” means that the focused amino acid sequence or nucleic acid sequence is 70% or more (preferably 80% or more, more preferably 90%) with the amino acid sequence or nucleic acid sequence of the factor naturally expressed in the organism X Or more, more preferably 95% or more, most preferably 99% or more), and the function of the factor is maintained.
  • non-natural amino acids can be used in addition to natural amino acids.
  • a necessary amino acid may be used according to the amino acid sequence of the polypeptide to be synthesized. These amino acids are retained in tRNA by the action of aminoacyl tRNA synthetase constituting a cell-free protein synthesis system.
  • amino acids can be charged to tRNA in advance and added to the cell-free protein synthesis system.
  • the charge of an amino acid to a tRNA means that the tRNA retains an amino acid to be used for a translation reaction in a ribosome.
  • introducing unnatural amino acids at specific codon sites in proteins by adding unnatural amino acids in the presence of artificial aminoacyl synthases that recognize unnatural amino acids or using tRNA charged with unnatural amino acids It becomes possible.
  • a natural amino acid for example, 0.001 to 20 mM, preferably 0.01 to 5 mM can be used. This concentration is the concentration for each amino acid.
  • tRNA contained in the cell-free protein synthesis system tRNA purified from prokaryotic organisms such as E. coli and eukaryotic cells such as yeast can be used.
  • tRNA prepared from a DNA encoding tRNA by a transcription reaction using RNA polymerase can also be used.
  • Artificial tRNA in which anticodons and other bases are arbitrarily changed can also be used (Hohsaka, T et al. (1996) J. Am. Chem. Soc., Vol.121, p.34-40, Hirao I et. al (2002) Nat. Biotechnol., vol. 20, p.177-182).
  • RNA having CUA As an anticodon, it is possible to translate a UAG codon that is originally a stop codon into an unnatural amino acid.
  • an artificial aminoacyl-tRNA in which a tRNA having a 4-base codon as an anticodon is charged with an unnatural amino acid a non-naturally occurring 4-base codon can be translated into an unnatural amino acid (Hohsaka et al. (1999) J. Am. Chem. Soc., Vol. 121, p. 12194-12195).
  • a method for producing such an artificial aminoacyl-tRNA a method using RNA can also be used (Special Table 2003-514572).
  • an E. coli tRNA mixed solution for example, it can be used at 0.1 A 260 / ml to 1000 A 260 / ml, preferably 1 A 260 / ml to 300 A 260 / ml.
  • 1 A 260 indicates the absorbance at 260 nm per ml.
  • Nucleoside triphosphates (ATP, GTP, CTP, UTP, etc.) contained in the cell-free protein synthesis system are substrates and / or energy sources for transcription and / or translation reactions.
  • Each nucleoside triphosphate can be used usually in the range of 0.01 to 500 mM, preferably 0.1 to 50 mM.
  • the cell-free protein synthesis system may contain only ATP and GTP.
  • a composition for cell-free protein synthesis can be obtained by adding each factor constituting the cell-free protein synthesis system to a buffered aqueous solution that maintains a pH suitable for transcription and translation.
  • Suitable pH is, for example, pH 6 to pH 9, preferably pH 7 to 8.
  • the pH value refers to a value measured at a temperature of 20 to 30 ° C. (for example, 25 ° C.).
  • the buffer solution used in the present invention include potassium phosphate buffer aqueous solution (pH 7.3), Hepes-KOH (pH 7.6) and the like. When Hepes-KOH (pH 7.6) is used, it can be used, for example, at 0.01 mM to 200 mM, preferably from 0.1 mM to 100 mM.
  • Salts can also be added to the cell-free protein synthesis system for the purpose of protecting factors and maintaining activity.
  • Specific examples include potassium glutamate, potassium acetate, ammonium chloride, magnesium acetate, magnesium chloride, and calcium chloride.
  • Each of these salts is usually used in an amount of 0.01 to 1000 mM, preferably 0.1 to 300 mM.
  • the cell-free protein synthesis system is a system using factors derived from prokaryotic cells such as E. coli, methionyl tRNA transformylase and 10-formyl 5,6,7,8-tetrahydrofolic acid (FD) are further included. It is preferable.
  • Methionyl tRNA transformylase is an enzyme that synthesizes N-formylmethionyl (fMet) initiation tRNA having a formyl group on the amino group of methionine covalently bound to initiation tRNA in protein synthesis in prokaryotes. That is, the methionyl tRNA transformylase transfers the formyl group of FD to the amino group of the methionyl start tRNA corresponding to the start codon to form fMet-start tRNA (Ramesh V et al, (1999) Proc.Natl.Acad Sci. USA, vol.96, p.875-880).
  • MTF does not exist in the protein synthesis system in the eukaryotic cytoplasm, but exists in the protein synthesis system in eukaryotic mitochondria and chloroplasts.
  • a preferred example of the MTF used in the present invention is derived from E. coli, for example, derived from E. coli K12. When MTF derived from E. coli is used, it can be used, for example, at 100 ⁇ U / ml to 1,000,000 ⁇ U / ml, preferably 500 ⁇ U / ml to 400,000 ⁇ U / ml.
  • the activity to form 1 ⁇ pmol of fMet-initiated tRNA per minute is defined as 1 ⁇ U.
  • it can be used at 0.01 ⁇ g / ml to 10,000 ⁇ g / ml, preferably 0.05 ⁇ g / ml to 1,000 ⁇ g / ml.
  • formyl donor (FD) which is a substrate of MTF can be used at, for example, 0.1 ⁇ g / ml to 1000 ⁇ g / ml, preferably 1 ⁇ g / ml to 100 ⁇ g / ml.
  • the cell-free protein synthesis system used in the present invention can include a release factor (R) and / or a ribosome regeneration factor (RRF).
  • the dissociation factor is also called the termination factor.
  • Dissociation factors are involved in the termination of protein synthesis and the dissociation of translated peptide chains.
  • the ribosome regeneration factor is involved in ribosome regeneration to initiate translation of the next mRNA. Therefore, a larger amount of polypeptide can be produced by conducting a protein synthesis reaction using a cell-free protein synthesis system containing a dissociation factor and / or a ribosome regeneration factor.
  • RF1, RF2, and RF3 are known as those derived from E. coli.
  • the dissociation factors RF1 and RF2 enter the A site and promote the dissociation of the peptide chain from the peptidyl tRNA (located in the P site) when the A site of the ribosome reaches the stop codon (UAA, UAG, UGA) on the mRNA.
  • RF1 recognizes UAA and UAG among the stop codons
  • RF2 recognizes UAA and UGA.
  • the dissociation factor RF3 promotes the dissociation of RF1 and RF2 from the ribosome after the peptide chain dissociation reaction by RF1 and RF2.
  • the ribosome regeneration factor promotes the detachment of the tRNA remaining at the P site and the regeneration of the ribosome for the next protein synthesis after the synthesized peptide chain is dissociated.
  • the functions of the dissociation factors RF1, RF2, RF3 and RRF are described in Freistroffer DV et al, (1997) EMBO J., vol.16, p.4126-4133, Pavlov MY et al. (1997) EMBO J., vol.16, .p.4134-4141.
  • Preferred examples of the dissociation factor that can be used in the present invention are those derived from E. coli, such as those derived from E.
  • coli K12 strain but those derived from eukaryotic cells can also be used.
  • preferred examples of the ribosome regeneration factor used in the present invention are those derived from E. coli, such as those derived from E. coli K12.
  • a dissociation factor and / or ribosome regeneration factor derived from E. coli is used, for example, 0.005 ⁇ M to 200 ⁇ M, preferably 0.02 ⁇ M to 50 ⁇ M can be used.
  • RF1, RF2, RF3, and RRF are used in combination, the amount of each factor used can be selected from the range exemplified above.
  • the nucleic acid used in the present invention is DNA
  • it can contain RNA polymerase for transcription of DNA into mRNA.
  • RNA polymerase can be used in the present invention. These RNA polymerases are commercially available.
  • T7 RNA polymerase T3 RNA polymerase When SP6 RNA polymerase T7 RNA polymerase is used, for example, 0.01 ⁇ g / ml to 5000 ⁇ g / ml, preferably 0.1 ⁇ g / ml to 1000 ⁇ g / ml can be used.
  • the cell-free protein synthesis system used in the present invention can further contain additional factors in addition to factors for transcription and translation. As an additional factor, the following factors can be shown, for example. Enzymes for regenerating energy in the reaction system: Creatine kinase; Myokinase; and substrate for enzymes to regenerate energy in reaction systems such as nucleoside diphosphate kinase: Enzymes for degradation of inorganic pyrophosphate, such as creatine phosphate, produced by transcription and translation: Inorganic pyrophosphatase and the like
  • the above enzyme can be used at, for example, 0.001 ⁇ g / ml to 2000 ⁇ g / ml, preferably 0.05 ⁇ g / ml to 500 ⁇ g / ml.
  • the substrate can be used usually at 0.01 mM to 1000 mM, preferably 0.1 mM to 200 mM.
  • components may be further added to the cell-free protein synthesis system as an enzyme substrate and / or for the purpose of improving and maintaining the activity of each factor.
  • Specific examples of other components that can be added include reducing agents, oxidizing agents, polyamines, disulfide bond isomerase, molecular chaperones, and the like.
  • the cell-free protein synthesis system preferably contains a reducing agent for the purpose of reproducing the intracellular reduced state.
  • a reducing agent for the purpose of reproducing the intracellular reduced state.
  • the reducing agent include dithiothreitol, 2-mercaptoethanol, and reduced glutathione, but other substances can be used as long as they exhibit a reducing action.
  • a plurality of reducing agents can be used in combination. Dithiothreitol and 2-mercaptoethanol exhibit functions to prevent deterioration of storage stability and translation efficiency (Eur. J Biochem. 270: 4780-4786 (2003)).
  • a preferred concentration range of dithiothreitol is at least 1 mM, preferably 1 mM or more and 1 M or less, more preferably 1 mM or more and 0.5 M or less, further preferably 1 mM or more and 100 mM or less, and particularly preferably 1 mM or more and 10 mM or less.
  • concentration of dithiothreitol is lower than 1 mM, it is not preferable because it may cause deterioration of storage stability and translation efficiency.
  • a preferred concentration range of 2-mercaptoethanol is at least 1 mM, preferably 1 mM or more and 1 M or less, more preferably 1 mM or more and 0.5 M or less, further preferably 1 mM or more and 100 mM or less, and particularly preferably 1 mM or more and 10 mM or less.
  • concentration of 2-mercaptoethanol is lower than 1 mM, it is not preferable because it may cause deterioration of storage stability and translation efficiency.
  • the cell-free protein synthesis system may further contain polyamines such as putrescine and spermidine.
  • the polyamines can be used usually in a range of 0.01 to 1000 mM, preferably 0.1 to 200 mM.
  • Oxidized glutathione can act as an oxidizing agent and promote the formation of disulfide bonds.
  • the preferred concentration range of oxidized glutathione is desirably a concentration that is not less than the concentration of a substantially effective reducing agent.
  • the disulfide bond isomerase include protein disulfide isomerase (PDI) present in eukaryotic ER, DsbA and DsbC present in the periplasm of E. coli.
  • a molecular chaperone can be added to a cell-free protein synthesis system when producing a polypeptide that is difficult to form a higher-order structure.
  • Hsp100 family, Hsp90 family, Hsp70 family, Hsp60 family, Hsp40 family, Hsp10 family, low molecular weight Hsp family and their homologues, and cell-free with ribosome-binding molecular chaperones such as Escherichia coli trigger factor Examples include protein synthesis systems.
  • Molecular chaperones are proteins that are known to help form protein conformations and prevent protein aggregation (Bukau and Horwich, Cell (1998) vol. 92, p.351-366, Young et al. Nat. Rev. Mol.
  • a molecular chaperone present in E. coli at least one selected from the group of GroEL, GroES, DnaK, DnaJ, GrpE and TF can be used.
  • GroEL which belongs to the Hsp60 family
  • DnaK which belongs to the Hsp10 family
  • GrpE GrpE
  • TF a molecular chaperone that functions normally in the presence of GroES, which belongs to the Hsp10 family, and promotes the formation of higher-order protein structures within the complex (Nature 475, 324-332 ( 21 July 2011)).
  • DnaK which belongs to the Hsp70 family, has a function to prevent aggregation of denatured proteins and promotes spontaneous refolding.
  • the cell-free protein synthesis system of the present invention has the following molecular chaperones (1) to (3): (1) Combination of GroEL and GroES (2) Combination of DnaK, DnaJ and GrpE, and (3) TF At least one selected from the group consisting of:
  • the specific composition of the cell-free protein synthesis system is described in Shimizu et al. (Shimizu et al., Nat. Biotechnol. (2001) vol.19, p.751-755, Shimizu et al., Methods (2005) vol.36, p.299-304), or Ying et al. (Ying et al., Biochem. Bios. Res. Comm. (2004) vol. 320, p. 1359-1364). Needless to say, the concentration of the factor can be appropriately increased or decreased according to the specific activity or purpose of the purified factor.
  • Examples of the reconstituted cell-free protein synthesis system include the following compositions. Water can be used as the base solvent.
  • Ribosome 0.12-12 ⁇ M Initiation factors: 0.1-100 ⁇ M IF1, 0.04-10 ⁇ M IF2, 0.1-100 ⁇ M IF3, Elongation factors: 0.026-10 ⁇ M EF-G, 0.092-100 ⁇ M EF-Tu, 0.066-10 ⁇ M EF-Ts, Dissociation factors: 0.025-10 ⁇ M RF1, 0.024-10 ⁇ M RF2, 0.017-10 ⁇ M RF3, Ribosome regeneration factor: 0.05-10 ⁇ M RRF Aminoacyl-tRNA synthetase: 190-19000 U / ml AlaRS, 250-25000 U / ml ArgRS, 2-200 ⁇ g / ml AsnRS, 250-25000 U / ml AspRS, 63-6300 U / ml CysRS, 130-13000
  • Patent Document 3 discloses a cell-free protein synthesis system having the following basic composition with reference to Shimizu et al. (2005) Methods, vol.36, p.299-304.
  • the cell-free protein synthesis system described in Patent Document 3 and Shimizu et al. (2005) Methods, vol. 36, p. 299-304 can also be suitably used in the present invention.
  • Patent Document 3 a reagent added and / or removed from the basic composition can be used depending on the purpose of protein synthesis.
  • ribosomes are Ohashi et al. (2007) BBRC, vol.352, p.270-276, and protein factors are Shimizu et al. (2001) Nat. Biotechnol. , Vol.19, p.751-755, and those whose purity is measured can be used, and commercially available purification reagents can be used for the other components.
  • a commercially available kit can also be used as a reconstituted cell-free protein synthesis system.
  • PUREfrex (R) sold by Gene Frontier and its successor PUREfrex (R) 2.0 can be used.
  • PUREfrex (R) sold by Gene Frontier and its successor PUREfrex (R) 2.0
  • DS supplement for SS binding DnaK Mix and GroE Nix which are molecular chaperones can be used in appropriate combination.
  • Polypeptide production procedure Production of a polypeptide using a cell-free protein synthesis system can be performed, for example, by the following steps.
  • the factor that contains the protein that constitutes the cell-free protein synthesis system is labeled with the purification tag (above), capture it on the solid phase that has a ligand that interacts with the purification tag after the translation reaction is completed. Can be removed from the reaction solution. As a result, the produced polypeptide can be easily recovered from the protein factor constituting the cell-free protein synthesis system.
  • the polypeptide can be purified using a carrier that interacts with the target polypeptide to be produced.
  • the polypeptide is labeled with a purification tag, so that after completion of translation, the target polypeptide can be isolated by capturing with a carrier having a corresponding ligand.
  • the target polypeptide can be appropriately isolated from the reaction mixture using protein purification techniques well known to those skilled in the art (for example, column chromatography and the like). ⁇ 4. Suitable combination of protein synthesis inhibition protein toxin and cell-free protein synthesis system> Some protein toxins that inhibit protein synthesis include disulfide bonds in their conformation (eg, Pseudomonas aeruginosa exotoxin A).
  • the cell-free protein synthesis system for synthesizing a disulfide bond-containing protein is a system containing at least one selected from oxidized glutathione and disulfide bond isomerase. More preferably, it is a system containing oxidized glutathione at a concentration equal to or higher than the concentration of the reducing agent.
  • a polypeptide that easily aggregates is synthesized as a polypeptide containing a protein synthesis-inhibiting protein toxin, it is preferable to use a cell-free protein synthesis system containing a molecular chaperone.
  • the protein synthesis inhibiting protein toxin contained in the polypeptide to be synthesized is a toxin that inhibits protein synthesis in eukaryotic cells
  • at least the ribosome contained in the cell-free protein synthesis system more preferably at least the initiation factor
  • the elongation factor, aminoacyl tRNA synthetase, ribosome and tRNA are preferably derived from prokaryotes, more preferably from E. coli.
  • Toxins exemplified above such as ricin, Pseudomonas aeruginosa exotoxin A, PE38, Shiga toxin, gelonin, saporin, bouganin, De bouganin, pokeweed antiviral protein, diphtheria toxin, alpha-sarcin, bryodin, momordine, ristoctocin Are toxins that inhibit protein synthesis in eukaryotic cells.
  • composition of the present invention comprises a polypeptide comprising at least a part of the amino acid sequences of at least an initiation factor, elongation factor, aminoacyl tRNA synthetase, ribosome, amino acid, nucleoside triphosphate, tRNA, and protein synthesis-inhibiting protein toxin.
  • Specific forms and the like of each component are as already described with respect to the polypeptide and the synthesis method, and the blending amount of each component can be the same as the blending amount included in the synthesis system.
  • the composition of the present invention may further contain other components mentioned as components that can be contained in the cell-free protein synthesis system, and the blending amount thereof is the same as the blending amount contained in the synthesis system. Can do.
  • the composition can be obtained as a reaction mixture after the translation reaction of the polypeptide synthesis reaction using the cell-free protein synthesis system.
  • the composition can be used as a protein synthesis inhibiting protein toxin active composition as it is as a toxin in toxicity evaluation tests and other in vitro tests that require toxins.
  • the composition of the present invention is a reaction mixture after the translation reaction of the polypeptide synthesis reaction using a reconstituted cell-free protein synthesis system as the cell-free protein synthesis system.
  • the composition of the present invention according to this embodiment contains an extremely small amount of impurities as compared with a reaction mixture of a polypeptide synthesis reaction using a protein synthesis system by a general microorganism, and thus does not require further purification and remains as it is. It is suitable for use as a protein synthesis inhibiting protein toxin active composition, and is particularly suitable for use as a toxin in toxicity evaluation tests such as activity measurement and other in vitro tests.
  • composition of the present invention according to this embodiment, it is easy to separate the synthesized polypeptide from the components of the cell-free protein synthesis system by using a purification tag as necessary. Therefore, it is possible to obtain a highly pure polypeptide by a simple operation.
  • the obtained high-purity polypeptide can be used for uses such as pharmaceuticals.
  • the composition of the present invention is usually a liquid composition in which each component is dissolved or dispersed in water, and the concentration of each component is not particularly limited.
  • the composition of the present invention is a reaction mixture after translation reaction of the above polypeptide synthesis reaction using a reconstituted cell-free protein synthesis system as a cell-free protein synthesis system (hereinafter simply referred to as “translation reaction solution composition”). ),
  • the concentration of each component is typically in the following range:
  • the concentration of the initiation factor is, for example, 0.005 ⁇ M-300 ⁇ M, preferably 0.02 ⁇ M-100 ⁇ M. When multiple types of initiation factors are included, each initiation factor is preferably within this concentration range.
  • the concentration of the elongation factor is, for example, 0.005 ⁇ M-300 ⁇ M, preferably 0.02 ⁇ M-100 ⁇ M. When multiple types of elongation factors are included, each elongation factor is preferably within this concentration range.
  • the concentration of aminoacyl tRNA synthetase is, for example, 1 ⁇ U / ml to 1,000,000 ⁇ U / ml, preferably 5 ⁇ U / ml to 500,000 ⁇ U / ml, or, for example, 0.001 ⁇ g / ml to 10,000 ⁇ g. / ml, preferably 0.01 ⁇ g / ml to 1,000 ⁇ g / ml.
  • the enzyme concentration can be within the above range for each aminoacyl tRNA synthetase corresponding to each amino acid.
  • the activity to form 1 ⁇ mol of aminoacyl-tRNA per minute is defined as 1 ⁇ U.
  • the concentration of ribosome is, for example, 0.01 ⁇ M to 50 ⁇ M, preferably 0.05 ⁇ M to 10 ⁇ M.
  • the amino acid concentration is, for example, 0.001 to 20 mM, preferably 0.01 to 5 mM for each amino acid species.
  • the concentration of nucleoside triphosphate is, for example, 0.01 to 500 mM, preferably 0.1 to 50 mM for each nucleoside triphosphate species.
  • the concentration of tRNA is, for example, 0.1A 260 / ml to 1000 A 260 / ml, preferably 1 A 260 / ml to 300 A 260 / ml, as the total amount of tRNA.
  • the concentration thereof is, for example, 0.01 ⁇ g / ml to 5000 ⁇ g / ml, preferably 0.1 ⁇ g / ml to 1000 ⁇ g / ml.
  • the concentration of the polypeptide containing the amino acid sequence of the protein synthesis inhibiting protein toxin in the translation reaction solution composition is, for example, 0.01 ⁇ g / ml to 100 mg / ml, preferably 0.1 ⁇ g / ml to 50 mg / ml, more preferably 0.01. ⁇ g / ml to 10 mg / ml, particularly preferably 0.1 ⁇ g / ml to 5 mg / ml.
  • the translation reaction solution composition may further contain other components mentioned as components that can be included in the cell-free protein synthesis system, and the concentration thereof is described as the concentration of each component in the cell-free protein synthesis system. Can be a concentration.
  • the translation reaction solution composition can be obtained by adding a polypeptide containing the amino acid sequence of a protein synthesis-inhibiting protein toxin to the composition already exemplified as a reconstituted cell-free protein synthesis system.
  • concentration of is, for example, 0.01 ⁇ g / ml to 10 mg / ml, preferably 0.1 ⁇ g / ml to 5 mg / ml
  • De bouganin is an immunogenicity-reducing variant of the protein toxin Bouganin derived from Bougainvillea spectabilis, and has a rRNA N-glycosidase activity (EC 3.2.2.22) It is a kind of (RIP).
  • the amino acid sequence is as shown in SEQ ID NO: 8, which encodes a tagged amino acid sequence to which a FLAG sequence and a histidine tag sequence are added on the N-terminal side of this amino acid sequence. Then, a DNA further added with a T7 promoter sequence and an SD sequence on the 5 ′ end side as a control sequence was chemically synthesized (Genscript) to obtain a template DNA for De bouganin synthesis (SEQ ID NO: 7).
  • the template DNA for De bouganin synthesis is in the form of double-stranded DNA in which the DNA strand consisting of the base sequence shown in SEQ ID NO: 7 is the sense strand and its complementary strand is the antisense strand.
  • Pseudomonas aeruginosa exotoxin A is a protein toxin derived from Pseudomonas aeruginosa.
  • Pseudomonas aeruginosa exotoxin A has ADP ribosyltransferase activity (EC 2.4.2.36), and has the effect of inhibiting protein production by ribosomes by ADP-ribosylating peptide chain elongation factors.
  • the amino acid sequence is as shown in SEQ ID NO: 9.
  • a DNA with a codon optimized in a form suitable for Escherichia coli encoding a tagged amino acid sequence to which a FLAG sequence and a histidine tag sequence were added on the N-terminal side of this amino acid sequence was chemically synthesized (Genscript).
  • a T7 promoter sequence and an SD sequence were further added to the 5 ′ end side as control sequences in the procedure described below to obtain a template DNA for Pseudomonas aeruginosa exotoxin A synthesis.
  • PE38 is an immunogenicity-reducing mutant consisting only of the active site of Pseudomonas aeruginosa exotoxin A.
  • the amino acid sequence is disclosed in International Publication No. WO2005052006, and specifically as shown in SEQ ID No. 21.
  • a DNA with a codon optimized in a form suitable for Escherichia coli encoding a tagged amino acid sequence to which a FLAG sequence and a histidine tag sequence were added on the N-terminal side of this amino acid sequence was chemically synthesized (Genscript).
  • a T7 promoter sequence and an SD sequence were further added to the 5 ′ end side as control sequences in the procedure described later to obtain a template DNA for PE38 synthesis.
  • Gelonin is a protein toxin derived from Gelonium multiflorum and is a kind of ribosome inactivating protein (RIP) having rRNA N-glycosidase activity (EC 3.2.2.22).
  • the amino acid sequence is as shown in SEQ ID NO: 13.
  • a DNA with a codon optimized in a form suitable for Escherichia coli encoding a tagged amino acid sequence to which a FLAG sequence and a histidine tag sequence were added on the N-terminal side of this amino acid sequence was chemically synthesized (Genscript).
  • Genscript Chemically synthesized
  • a T7 promoter sequence and an SD sequence were further added to the 5 ′ end side as control sequences in the procedure described later to obtain a gelonin synthesis template DNA.
  • Saporin is a protein toxin derived from Saponaria officinalis and is a kind of ribosome inactivating protein (RIP) having rRNA N-glycosidase activity (EC 3.2.2.22).
  • the amino acid sequence is as shown in SEQ ID NO: 14.
  • a DNA with a codon optimized in a form suitable for Escherichia coli encoding a tagged amino acid sequence to which a FLAG sequence and a histidine tag sequence were added on the N-terminal side of this amino acid sequence was chemically synthesized (Genscript).
  • Genscript chemically synthesized
  • a T7 promoter sequence and an SD sequence were further added to the 5 ′ end side as control sequences in the procedure described later to obtain a template DNA for saporin synthesis.
  • a DNA in which a T7 promoter sequence, an SD sequence, a FLAG sequence, a histidine tag sequence and a De bouganin coding sequence are arranged in this order was chemically synthesized (Genscript).
  • the entire base sequence of this DNA is shown in SEQ ID NO: 7.
  • 6 to 22 are T7 promoter sequences
  • 72 to 77 are SD sequences
  • 89 to 112 are FLAG sequences
  • 116 to 134 are histidine tag sequences
  • 140 to 889 are De bouganin coding sequences.
  • DNA consisting of the sequence of SEQ ID NO: 7 was used as template DNA for De bouganin synthesis.
  • 5 'UTR-F (SEQ ID NO: 1 GAAATTAATACGACTCACTATAGG) and 3' primer 5 'UTR-R (SEQ ID NO: 2 CTTTGTAGTCCATTGGTATATCTCC) are used to make KOD-Plus-PlusDNA After PCR amplification with Polymerase (TOYOBO) (denaturation: 94 °C, 10 seconds, annealing: 55 °C, 30 seconds, extension: 68 °C, 60 seconds, cycle: 30 times), purified using QIAquick PCR Purification Kit (QIAGEN) (5'UTR fragment).
  • TOYOBO PCR amplification with Polymerase
  • QIAquick PCR Purification Kit QIAquick PCR Purification Kit
  • DNAs in which a FLAG sequence, a histidine tag sequence, and a protein toxin coding sequence were sequentially synthesized from the 5 ′ end were chemically synthesized.
  • 5′-side primer FLAG f (SEQ ID NO: 3: CTTTAAGAAGGAGATATACC) and each 3′-side primer ETA r (for Pseudomonas aeruginosa exotoxin A and PE38 / SEQ ID NO: 4: tttttttttTTATTTCAGATCTTCAC), Gel r (gelonin / SEQ ID NO: 5: ttttttttttTTATTTCGGGTCTTTATCG), sapr (for saporin / SEQ ID NO: 6: ttttttttttTTATTTCGGTTTACCC), after PCR amplification with KOD-Plus-DNA Polymerase (TOYOBO) (denaturation: 94 ° C, 10 seconds, annealing: 55 ° C., 30 seconds, extension: 68 ° C., 120 seconds, cycle: 30 times), purified using QIAquick PCR Pur
  • reaction solution was added to the reaction solution of PUREfrex® 2.0 (expression system 1) at 0.5-3 ng / ⁇ l per kb and incubated at 37 ° C. for 4 hours to synthesize the target protein synthesis inhibiting protein toxin.
  • the reaction solution (reaction mixture) after the synthesis reaction and before the following purification is a composition containing the translated fusion polypeptide in the commercial cell-free protein synthesis system used.
  • the expressed FLAG-His-tagged protein toxin was diluted to 450 ⁇ l with a binding buffer (50 mM Tris-HCl pH 8, 500 mM NaCl, 20 mM mMimidazole, 7 mM 2-mercaptoethanol).
  • a binding buffer 50 mM Tris-HCl pH 8, 500 mM NaCl, 20 mM mMimidazole, 7 mM 2-mercaptoethanol.
  • the resin was washed 10 times with 500 ⁇ l of a binding buffer containing 0.1% Triton X-114 and 5 times with a binding buffer, and then the elution buffer (50 mM Tris-HCl pH 8, 500 mM NaCl, 400 mM mMimidazole, 7 mM mM2- Mercaptoethanol) was eluted with 200 ⁇ l of FLAG-His-tagged protein toxin.
  • the elution buffer 50 mM Tris-HCl pH 8, 500 mM NaCl, 400 mM mMimidazole, 7 mM mM2- Mercaptoethanol
  • the expression product could be purified by the following simple purification instead of the above procedure. ⁇ 5.
  • Simplified purification of expression product > 20 ⁇ l of the PUREfrex® 2.0 reaction solution containing the expressed FLAG-His-tagged protein toxin was diluted 5-fold with a binding buffer (50 mM Tris-HCl pH 8, 500 mM NaCl, 20 mM MgCl 2 , 20 mM imidazole).
  • a binding buffer 50 mM Tris-HCl pH 8, 500 mM NaCl, 20 mM MgCl 2 , 20 mM imidazole.
  • To the diluted protein solution 20 ⁇ l of a 50% (v / v) Ni-Sepharose FF (GE Healthcare) suspension was added and mixed at 4 ° C. for 1 hour. The resin was precipitated by centrifugation, and the unadsorbed fraction of the supernatant was removed.
  • a reaction solution (GFP solution) containing the synthesized GFP was diluted 50 times with purified water, and the amount of GFP was measured using a microplate reader (TECAN, Infinite 200) under the following conditions. As a result, it was confirmed that the synthesis of GFP was inhibited depending on the concentration, and that PE38 had a synthesis inhibitory activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明は、タンパク質合成阻害タンパク質毒素を生産するための技術を提供することを課題とする。 少なくとも開始因子、伸長因子、アミノアシルtRNA合成酵素、リボソーム、アミノ酸、ヌクレオシド三リン酸及びtRNAを含む無細胞タンパク質合成系を用いて、タンパク質合成阻害タンパク質毒素のアミノ酸配列を含むポリペプチドをコードする核酸から該ポリペプチドを合成する工程を含む、ポリペプチドの製造方法。

Description

タンパク質合成阻害タンパク質毒素を含むポリペプチドの製造方法
 本発明は、タンパク質合成阻害タンパク質毒素を含むポリペプチドの製造方法に関する。
 リシン、緑膿菌外毒素A等の、タンパク質合成を阻害することにより細胞毒性を生じる、タンパク質性の細胞毒素(以下「タンパク質合成阻害タンパク質毒素」という)は癌治療薬等の有効成分となり得ることが知られている(例えば特許文献1)。
 タンパク質を大量生産する場合、適当な宿主生物に目的タンパク質のアミノ酸配列をコードする核酸を導入し、核酸が導入された宿主生物を培養することにより目的タンパク質を生産するという手法が一般的である。
 一方、無細胞タンパク質合成系は、生細胞を用いず、細胞抽出液等の、タンパク質合成に必要な因子を含む反応液を用いたタンパク質合成系である。無細胞タンパク質合成系としては、大腸菌、小麦胚芽、ウサギ網状赤血球、培養細胞などの細胞抽出液自体を用いた無細胞タンパク質合成系や、独立に精製された因子から構成された因子から構成された再構成型の無細胞タンパク質合成系が包含される。再構成型の無細胞タンパク質合成系としては、PUREシステム(特許文献2、特許文献3、非特許文献1、特許文献4、非特許文献2)を挙げることができる。
 また特許文献5では無細胞タンパク質合成系の安定性を向上させるためには、自己のタンパク質合成反応の阻害に関与する系(例えばリボソーム不活性化タンパク質)を無細胞タンパク質合成系から排除することが有用であると記載されている。
特開2013-063066号公報 特許4061043号公報 特開2009-112286号公報 特開2008-271903号公報 特開2000-316594号公報
Y.Shimizu et al., (2001) Nat.Biotechnol., vol.19, p.751-755 E.Osada et al., (2009) J.Biochem., vol.145, p.693-700
 タンパク質合成阻害タンパク質毒素は、抗癌剤等としての利用可能性があることから、大量に生産することが求められている。しかしながらタンパク質合成阻害タンパク質毒素は宿主細胞に対して毒性を有することから、生細胞を宿主として用いる従来のタンパク質生産技術をタンパク質合成阻害タンパク質毒素の生産のために利用することは困難であった。このため従来は、タンパク質合成阻害タンパク質毒素の生産は、該毒素を生産する天然の生物から分離することで行われているが、この方法では効率的な大量生産は困難であった。また、特許文献5で記載されている通り、自己のタンパク質合成系の阻害に関与するタンパク質は、無細胞タンパク質合成系においてもタンパク質合成を阻害するため、従来、無細胞タンパク質合成系を用いてタンパク質合成阻害タンパク質毒素を生産することは全く試みられていなかった。
 そこで本発明は、タンパク質合成阻害タンパク質毒素を生産するための技術を提供することを解決課題とする。
 本発明では、上記課題を解決する手段として以下の発明を開示する。
(1)少なくとも開始因子、伸長因子、アミノアシルtRNA合成酵素、リボソーム、アミノ酸、ヌクレオシド三リン酸及びtRNAを含む無細胞タンパク質合成系を用いて、タンパク質合成阻害タンパク質毒素のアミノ酸配列を含むポリペプチドをコードする核酸から該ポリペプチドを合成する工程を含む、ポリペプチドの製造方法。
(2)少なくとも開始因子、伸長因子、アミノアシルtRNA合成酵素、リボソーム、アミノ酸、ヌクレオシド三リン酸、tRNA及びタンパク質合成阻害タンパク質毒素のアミノ酸配列を含むポリペプチドを含む組成物。
 上記(1)によれば、タンパク質合成阻害タンパク質毒素のアミノ酸配列を含むポリペプチドを生産することが容易である。
 上記(2)の組成物はそれ自体が毒性組成物として各種用途、測定に利用することが出来る。また、精製タグなどを利用することで簡単な操作で上記(2)の組成物からタンパク質合成阻害タンパク質毒素含有ポリペプチドを得ることが可能であり、得られた高純度なタンパク質合成阻害タンパク質毒素含有ポリペプチドは医薬品として使用することができる。
 前記(1)の方法に用いる前記無細胞タンパク質合成系又は前記(2)の組成物の成分のうち少なくともリボソームが原核生物由来であることが好ましい。
 前記(1)の方法に用いる前記無細胞タンパク質合成系又は前記(2)の組成物の成分のうち少なくともリボソームが真核生物由来であることが好ましい。
 前記(1)の方法又は前記(2)の組成物において、前記タンパク質合成阻害タンパク質毒素が、リシン、緑膿菌外毒素A、志賀毒素、ゲロニン、サポリン、ブーガニン、ヤマゴボウ抗ウイルスタンパク質、ジフテリア毒素、アルファーサルシン、ブリオディン、モモルデイン及びリストリクトシンからなる群より選ばれる少なくとも1つであることが好ましく、緑膿菌外毒素AはPE38の形態であることがより好ましく、ブーガニンはDeブーガニンの形態であることがより好ましい。
 前記(1)の方法において、前記核酸が、タンパク質合成阻害タンパク質毒素のアミノ酸配列をコードする領域の上流または下流に抗体のアミノ酸配列をコードする領域を含むことが好ましい。また前記(2)の組成物において、前記ポリペプチドが、タンパク質合成阻害タンパク質毒素のアミノ酸配列の上流または下流に抗体のアミノ酸配列を含むことが好ましい。ここで前記抗体は部分抗体であることがより好ましい。
 前記(1)の方法において、前記核酸が、精製用タグのアミノ酸配列をコードする領域を含むことが好ましい。また前記(2)の組成物において、前記ポリペプチドが、精製用タグを有することが好ましい。ここで前記精製用タグは、Hisタグ、GSTタグ、FLAGタグ、MBPタグ、Mycタグ、HAタグ、Strepタグ、PAタグ、TARGETタグ及びSUMOタグの群より選択される少なくとも1つであることがより好ましい。
 前記(1)の方法において、前記核酸が、プロテアーゼ認識配列をコードする領域を含むことが好ましい。また前記(2)の組成物において、前記ポリペプチドが精製用タグを有することが好ましい。ここで前記プロテアーゼ認識配列は、トロンビン(Thrombin)認識配列、ファクターXa(Factor Xa)認識配列、TEVプロテアーゼ配列、SUMOタグ配列及びプレシジョンプロテアーゼ(PreScission Protease)認識配列の群より選択される少なくとも1つであることがより好ましい。
 前記(1)の方法において、前記ポリペプチドと相互作用する担体を用いてポリペプチドを精製する工程を含むことが好ましい。
 前記(1)の方法又は前記(2)の組成物において、前記無細胞タンパク質合成系に含まれる開始因子、伸長因子、アミノアシルtRNA合成酵素及びリボソームの少なくとも一つが精製用タグを有することが好ましい。
 前記(1)の方法に用いる前記無細胞タンパク質合成系又は前記(2)の組成物が、還元剤を含むことが好ましい。ここで前記還元剤は、ジチオスレイトール、2-メルカプトエタノール及び還元型グルタチオンの群より選択される少なくとも1つであることが好ましい。
 前記(1)の方法に用いる前記無細胞タンパク質合成系又は前記(2)の組成物が、前記ジチオスレイトールを少なくとも1mMの濃度で含むことが好ましい。
 前記(1)の方法に用いる前記無細胞タンパク質合成系又は前記(2)の組成物が、酸化型グルタチオン、ジスルフィド結合異性化酵素及び分子シャペロンから選択される少なくとも1つを含むことが好ましい。ここで、前記(1)の方法に用いる前記無細胞タンパク質合成系又は前記(2)の組成物が還元剤を更に含み、前記酸化型グルタチオンを前記還元剤の濃度以上の濃度で含むことがより好ましい。ここで前記分子シャペロンが、hsp60ファミリー、hsp70ファミリー及びリボソーム結合型分子シャペロンの群より選択される少なくとも1つであることがより好ましい。更に、前記分子シャペロンは、GroEL、GroES、DnaK、DnaJ、GrpE及びTFの群より選択される少なくとも1つであることがより好ましい。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2014-223717号の開示内容を包含する。
 本発明によれば、タンパク質合成阻害タンパク質毒素を生産することが可能である。
実施例において、各種タンパク質合成阻害タンパク質毒素を、無細胞タンパク質合成系を用いて合成した翻訳産物の電気泳動の結果を図1に示す。 実施例において、各種タンパク質合成阻害タンパク質毒素を、無細胞タンパク質合成系を用いて合成した翻訳産物のウエスタンブロットの結果を図2に示す。 実施例において合成されたPE38合成反応液による、緑色蛍光タンパク質の合成の阻害活性を確認した試験結果を図3に示す。
<1.製造されるポリペプチド>
 本発明において製造されるポリペプチドは、タンパク質合成阻害タンパク質毒素のアミノ酸配列を含むポリペプチドである。該ポリペプチドはタンパク質合成阻害タンパク質毒素のアミノ酸配列を少なくとも一部に含んでいればよく、そのアミノ酸配列の全体がタンパク質合成阻害タンパク質毒素のアミノ酸配列からなるものであってもよいし、タンパク質合成阻害タンパク質毒素のアミノ酸配列に加え、該アミノ酸配列の上流(N末端側)及び/又は下流(C末端側)に更に他のアミノ酸配列が付加されたものであってもよい。
 タンパク質合成阻害タンパク質毒素は、細胞におけるタンパク質合成を阻害する活性を有するタンパク質毒素であれば、天然のものも、非天然の人為的に作成されたものも包含される。タンパク質合成阻害タンパク質毒素がタンパク質合成を阻害する機構は特に限定されないが、代表的な毒素としては、ADPリボシルトランスフェラーゼ活性(EC2.4.2.36)により、ペプチド鎖伸長因子をADPリボシル化してリボソームによるタンパク質生成を阻害する毒素や、rRNA N-グリコシダーゼ活性(EC3.2.2.22)によりリボソームを不活化してタンパク質生成を阻害する毒素(「リボソーム不活性化タンパク質(RIP)」と呼ばれる毒素)、rRNA分解活性(EC.3.1.27.10及びEC.3.1.27)によりリボソームを不活化してタンパク質生成を阻害する毒素等が挙げられる。
 ADPリボシルトランスフェラーゼ活性を有するタンパク質合成阻害タンパク質毒素としては、緑膿菌外毒素A、ジフテリア毒素等が挙げられる。天然の緑膿菌外毒素Aは、UniProtデータベース(http://www.uniprot.org/)にUniProt番号:P11439として登録されており、具体的なアミノ酸配列は配列番号9に示す通りである。天然のジフテリア毒素はUniProt番号:P00588として登録されており、具体的なアミノ酸配列は配列番号10に示す通りである。
 リボソーム不活性化タンパク質(RIP)としては、リシン、志賀毒素、ゲロニン、サポリン、ブーガニン、ヤマゴボウ抗ウイルスタンパク質、ブリオディン、モモルデイン等が挙げられる。天然のリシンはUniProt番号:P02879として登録されており、具体的なアミノ酸配列は配列番号11に示す通りである。天然の志賀毒素はUniProt番号:P09385として登録されており、具体的なアミノ酸配列は配列番号12に示す通りである。天然のゲロニンはUniProt番号:P33186として登録されており、具体的なアミノ酸配列は配列番号13に示す通りである。天然のサポリンはUniProt番号:P20656として登録されており、具体的なアミノ酸配列は配列番号14に示す通りである。天然のブーガニンはUniProt番号:Q8W4U4として登録されており、具体的なアミノ酸配列は配列番号15に示す通りである。天然のヤマゴボウ抗ウイルスタンパク質はUniProt番号:P10297として登録されており、具体的なアミノ酸配列は配列番号16に示す通りである。天然のブリオディンはUniProt番号:P33185として登録されており、具体的なアミノ酸配列は配列番号17に示す通りである。天然のモモルデインはUniProt番号:P16094として登録されており、具体的なアミノ酸配列は配列番号18に示す通りである。
 rRNA分解活性を有するタンパク質合成阻害タンパク質毒素としては、アルファーサルシン、リストリクトシン等が挙げられる。天然のアルファーサルシンはUniProt番号:P00655として登録されており、具体的なアミノ酸配列は配列番号19に示す通りである。天然のリストリクトシンはUniProt番号:P67876として登録されており、具体的なアミノ酸配列は配列番号20に示す通りである。
 上記に例示する各毒素は、天然型の形態には限らず、毒性を有する変異体であることもできる。このような変異体としては、毒性を有する変異体(例えば天然毒素の部分アミノ酸配列からなる活性断片)や、免疫原性が改変された毒性を有する変異体(例えば天然毒素の部分アミノ酸配列からなる活性断片)が挙げられる。具体的には、緑膿菌外毒素Aとしては、免疫原性低減変異体であるPE38(米国特許第5,608,039号に開示されているもの)(PE38のアミノ酸配列を配列番号21に示す)の形態であることができ、ブーガニンとしては、免疫原性低減変異体であるDeブーガニン(Journal of Immunotherapy 32(6): 574-584に開示されているもの)(Deブーガニンのアミノ酸配列を配列番号8に示す)の形態であることができる。
 本発明で製造されるポリペプチドは、前記タンパク質合成阻害タンパク質毒素のアミノ酸配列に加え、該アミノ酸配列の上流(N末端側)及び/又は下流(C末端側)に更に他のアミノ酸配列が付加されたものであってもよい。他のアミノ酸配列としては、抗体のアミノ酸配列、精製用タグのアミノ酸配列、プロテアーゼ認識配列等が例示できる。前記タンパク質合成阻害タンパク質毒素のアミノ酸配列と前記他のアミノ酸配列との間、或いは、前記他のアミノ酸配列が複数含まれる場合にそれらの間には、適当な個数(例えば1~50個)のアミノ酸からなるリンカーが介在していてもよい。好ましくは、プロテアーゼ認識配列は、前記タンパク質合成阻害タンパク質毒素のアミノ酸配列と、抗体または精製用タグのアミノ酸配列との間に、或いは、抗体または精製用タグのアミノ酸配列が複数種含まれる場合にはそれらの間に、配置される。
 本発明のポリペプチドが抗体を含む場合、特許出願公表番号2007-536905号に開示されているように、免疫毒素(イムノトキシン)として利用することが可能である。この状態では、抗体が標的細胞に発現している抗原に結合すると、毒素が内部に移行してタンパク質合成を停止し、アポトーシスを誘導して細胞を殺す(Brinkmann, U., Mol. Med. Today, 2: 439-446 (1996))ことにより高い治癒効果が期待できる。抗体は好ましくは部分抗体であることができる。部分抗体としてはFab2、Fab、F(ab’)2、Fab3、scFv、Bis-scFv、Diabody(ダイアボディ)、Minibody(ミニボディ)、Triabody(トリアボディ)、Tetrabody(テトラボディ)及び抗体様機能分子の群より選択される少なくとも1つが挙げられる。Fab2、Fab、F(ab')2、Fab3、scFv、Bis-scFv、Diabody(ダイアボディ)、Minibody(ミニボディ)、Triabody(トリアボディ)、Tetrabody(テトラボディ)及び抗体様機能分子はTrends Biotechnol. 2010 Jul;28(7):355-62(Fab2、Fab、F(ab')2、Fab3、scFv、ミニボディ、ダイアボディ、トリアボディ、テトラボディ、)、Proc Natl Acad Sci U S A. 1993;90:6444-8(ダイアボディ)、MAbs. 2010 Jan-Feb; 2(1): 77-83.(scFv、Bis-scFv)、Proc Natl Acad Sci U S A. Jul 15, 1993; 90(14): 6444-6448. (ダイアボディ)、Cancer Res. 1996 Jul 1;56(13):3055-61.(scFV, Fab, F(ab')2)、FEBS Lett. 1999 Jun 18;453(1-2):164-8. (ダイアボディ、トリアボディ、テトラボディ)、Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3185-90.(抗体様機能分子:affibody)に開示されている。
 これらの抗体(上記部分抗体を包含する)は、各ドメインが連結した天然又は非天然の一本鎖のポリペプチド鎖により構成される抗体である場合、当該ポリペプチド鎖をコードする塩基配列を、タンパク質合成阻害タンパク質毒素をコードする塩基配列の上流及び/又は下流に連結した核酸を用いてタンパク質合成を行い、タンパク質合成阻害タンパク質毒素と抗体との融合ポリペプチドを得ることができる。
 また、抗体(上記部分抗体を包含する)が、複数のポリペプチド鎖がジスルフィド結合等の相互作用により連結した複合体からなる抗体である場合、複合体を構成する1つのポリペプチド鎖をコードする塩基配列を、タンパク質合成阻害タンパク質毒素をコードする塩基配列の上流及び/又は下流に連結した核酸を用いてタンパク質合成を行い、タンパク質合成阻害タンパク質毒素と抗体ポリペプチド鎖との融合ポリペプチドを得て、該融合ポリペプチドと、同時に又は別途調製された複合体の他のポリペプチド鎖と組み合わせることにより、タンパク質合成阻害タンパク質毒素と抗体との融合ポリペプチドを構成することができる。本発明で製造される抗体を含むポリペプチドの範囲には、このような、タンパク質毒素と抗体ポリペプチド鎖との融合ポリペプチドも包含される。複合体の他のポリペプチド鎖は、本発明の無細胞タンパク質合成系を用いて調製してもよいし、他の手段により調製してもよい。
 本発明のポリペプチドが精製用タグを含む場合、翻訳産物から目的とするポリペプチドを単離することが容易である。すなわち、精製用タグと相互作用するリガンドを備えた担体を翻訳産物と接触させることで担体上に翻訳されたポリペプチドを捕捉することができる。また、ポリペプチドを、前記タンパク質合成阻害タンパク質毒素のアミノ酸配列と、精製用タグのアミノ酸配列との間にプロテアーゼ認識配列が介在するように構成することにより、担体上に捕捉されたポリペプチドに、当該認識配列を切断するプロテアーゼを作用させて、目的とするタンパク質合成阻害タンパク質毒素を回収することが可能である。
 精製用タグとしては、Hisタグ、GSTタグ、FLAGタグ、MBPタグ、Mycタグ、HAタグ、Strepタグ、PAタグ、TARGETタグ及びSUMOタグの群より選択される少なくとも1つを例示することができる。Hisタグは通常4-8個程度の連続したヒスチジン残基によってなり、一般にNiカラムにより精製される。GSTタグはGSTタンパク(Protein Expr. Purif. 79 (1): 16-24.に記載など)によってなり、一般にグルタチオンを利用したカラムなどにより精製される。FLAGタグはDYKDDDDKというアミノ酸配列からなり、一般に抗FLAG抗体を利用したカラムなどによって精製される。MBPタグはマルトース結合タンパク(Guan, C. et al. (1987). Gene. 67, 21-30.に記載など)によってなり、一般にデキストリンなどを利用したカラムなどによって精製される。Mycタグはc-Myc配列(EQKLISEEDLなど)からなり、一般に抗Myc抗体を利用したカラムなどによって精製される。HAタグは、インフルエンザウイルスのへマグルチニンの部分配列(YPYDVPDYA)からなり、抗HA抗体を利用したカラムなどによって精製される。StrepタグはWSHPQFEKというアミノ酸配列からなり、一般にストレプトアビジンなどを利用したカラムなどによって精製される。PAタグはプロテインA又はそのドメイン(Boyle M.D.P., Ed. (1990) Bacterial Immunoglobulin Binding Proteins. Academic Press,Inc., San Diego, CA, USA.に記載のものなど)からなり、一般にIgGを利用したカラムなどによって精製される。TARGETタグはJ.Proteomics,2010 Aug 5;73(9):1777-85に記載のアミノ酸配列からなり、一般に抗TARGETタグ抗体を利用したカラムなどによって精製される。SUMOタグはJ. Struct Funct Genomics. 2004;5(1-2):75-86に記載のアミノ酸配列からなり、一般に抗SUMOタグ抗体を利用したカラムなどによって精製される。
 本発明のポリペプチドに含み得るプロテアーゼ認識配列としてはThrombin認識配列、Factor Xa認識配列、TEVプロテアーゼ配列、SUMOタグ及びPreScission Protease認識配列の群より選択される少なくとも1つを例示することができる。Thrombin認識配列は(1)P4-P3-Pro-(ArgもしくはLys)-P1'-P2'(P3、P4:疎水性アミノ酸、P1'、P2':酸性ではないアミノ酸)あるいは(2) Gly-(ArdもしくはLys)-X(X:酸性ではないアミノ酸) または Y-(ArdもしくはLys)-Gly (Y:任意のアミノ酸)からなり、Thrombinによって切断される。Factor Xa認識配列はIEGRのアミノ酸配列からなり、Factor Xaによって切断される。TEVプロテアーゼ認識配列はGlu-Asn-Leu-Tyr-Phe-Gln-(Gly/Ser)であり、TEVプロテアーゼによって切断される。SUMOタグ配列は、SUMOの立体構造を認識するプロテアーゼによって切断される。PreScission Protease認識配列はLEVLFQGPのアミノ酸配列からなり、PreScission Proteaseによって切断される。
 本発明では、前記ポリペプチドをコードする核酸から、下記で詳述する無細胞タンパク合成系を用いて前記ポリペプチドを合成する。本発明における「核酸」は、主としてデオキシリボヌクレオチド、およびリボヌクレオチドの重合体をいう。すなわち、デオキシリボ核酸(DNA)、または、リボ核酸(RNA)である。更に、本発明における核酸は、人工塩基を有するヌクレオチド誘導体を含むこともできる。また、ペプチド核酸(PNA)を含むこともできる。目的とする遺伝情報が保持される限り、核酸の構成単位は、これらの核酸のいずれか、あるいは混成であることができる。したがって、DNA-RNAのハイブリッドヌクレオチドは本発明における核酸に含まれる。あるいはDNAとRNAのような異なる核酸が1本鎖に連結されたキメラ核酸も本発明における核酸に含まれる。本発明における核酸の構造も、目的とする遺伝情報が維持できる限り限定されない。具体的には、一本鎖、二本鎖、あるいは三本鎖などの構造をとりうる。より好ましくは前記ポリペプチドをコードする核酸は、二本鎖DNA又はmRNA等の一本鎖RNAである。
 前記ポリペプチドをコードする核酸は、前記ポリペプチドをコードする塩基配列に加えて、無細胞タンパク質合成系による転写及び/又は翻訳に有利な塩基配列を含むことができる。すなわち、本発明でタンパク質合成に用いる核酸では、目的ポリペプチドをコードする塩基配列を発現可能な状態で含む。すなわち当該核酸では、目的ポリペプチドをコードする塩基配列は遺伝子発現(翻訳、或いは、翻訳及び/又は転写)に必要なエレメントを含む発現制御領域の制御下に配置されている。遺伝子発現のためのエレメントは採用するタンパク質合成系に応じて適宜選択することができ、例えば、エンハンサー、プロモーター、リボソーム結合配列、ターミネーター等が例示できる。
 例えば前記ポリペプチドをコードするmRNAを、無細胞タンパク質合成系に鋳型として添加して前記ポリペプチドを合成する場合、該mRNAは、目的のポリペプチドのアミノ酸配列をコードする配列に加え、翻訳に有利な塩基配列を付加的に含むことができる。たとえば、無細胞タンパク質合成系として大腸菌由来の翻訳系を利用する場合には、大腸菌を使用したタンパク質発現系と同様、開始コドンの上流(5’末端側)にリボソーム結合配列であるShine-Dalgarno(SD)配列を含むことにより、翻訳反応の効率が上昇する。SD配列としては大腸菌のSD配列であるAGGAGGAが例として挙げられる。さらに、標的ポリペプチドのコード領域の5’端、および/または3’端に、前記タグの配列をコードする塩基配列を付加することもできる。
 このような構造を備えたmRNAは、例えば、プロモーター配列およびSD配列を含む5’UTR配列を備えた発現ベクターに目的のポリペプチドをコードする遺伝子を挿入し、RNAポリメラーゼにより転写することにより得ることができる。一般に、RNAポリメラーゼは、プロモーターと呼ばれる特定の配列を含む領域を認識し、その下流に配置されたDNAの塩基配列に基づいてmRNAを合成する。プロモーター配列としてはT7プロモーター配列であるTAATACGACTCACTATAが例として挙げられる。この場合、終止コドンの下流にT7ターミネーター配列を更に含んでいてもよい。
 発現ベクターを使用せずに、PCRを利用して目的の構造を有する転写用鋳型DNAを構築することもできる(Split-Primer PCR法、Sawasaki et al. (2002) Proc.Natl.Acad.Sci.USA, vol.99, p.14652-14657)。この方法は、目的のDNAにPCRによって5’UTR配列を付加した鋳型DNAを構築する。DNAからmRNAを調製するにあたり、上記のようなベクターにクローニングする必要がない。このため、時間と労力を節約することができる。
 PCRによって、鋳型DNAを構築する方法を具体的に例示する。
(1)ゲノムDNA、cDNA、またはクローン化DNAなどから、目的とするポリペプチドをコードするDNA領域を、コード領域の5’端領域および5’UTR配列(プロモーター及びSD配列を含む)の一部を含むプライマーと、コード領域の3’端領域を含むプライマーを使用したPCRで増幅する。
(2)増幅したDNAを、5’UTR全体を含むプライマーと、コード領域の3’端領域を含むプライマーで再度増幅する。
 このように構築したDNA(通常は二本鎖DNAである)を必要に応じてさらに増幅し、それを鋳型としてRNAポリメラーゼで転写することにより、翻訳反応の鋳型となるmRNAを得ることができる。転写されたmRNAは、フェノール処理後、エタノール沈殿により回収することができる。また、mRNAの回収には、RNeasy(Qiagen製)などの市販のRNA抽出用キットを利用することもできる。
 RNAポリメラーゼによって転写されたmRNAを必要に応じて回収し、本発明における無細胞タンパク質合成系に利用することができる。また、無細胞タンパク質合成系にRNAポリメラーゼを含む場合は、遺伝子に転写および翻訳に必要な塩基配列を組み込んだ上記DNA自体を鋳型核酸として無細胞タンパク質合成系に添加することもできる。
<2.無細胞タンパク質合成系>
 本発明では上記のポリペプチドが、無細胞タンパク質合成系によって合成される。本発明において、「無細胞タンパク質合成系」とは、細胞抽出液等のタンパク質合成に必要な因子を含む反応液を用いたタンパク質合成系のことで、「イン・ビトロタンパク質合成系」、「イン・ビトロ翻訳系」等とも呼ばれる。「無細胞タンパク質合成系」という用語は、タンパク質合成に必要な因子を含む反応液組成物(すなわち、無細胞タンパク質合成用組成物)自体を指す場合もある。無細胞タンパク質合成系は、mRNAからポリペプチドへの翻訳に生細胞を必要としないことを特徴とする。本発明における無細胞タンパク質合成系は、翻訳を行なう翻訳系、並びに、転写および翻訳を行なう翻訳系を含む。すなわち、本発明の無細胞タンパク質合成系は、以下のいずれをも含む。
(1)mRNAからポリペプチドに翻訳する無細胞タンパク質合成系
(2)DNAからmRNAに転写し、更にmRNAからポリペプチドに翻訳する無細胞タンパク質合成系
 本発明における無細胞タンパク質合成系には、細胞抽出液、または細胞抽出液の粗精製画分を利用する無細胞タンパク質合成系を含む。ここで、細胞抽出液としては、大腸菌、小麦胚芽、ウサギ網状赤血球、酵母、培養細胞などの細胞抽出液が挙げられる。これらの細胞抽出液には、タンパク質合成に必要な成分が含まれており、目的のタンパク質をコードするmRNA又はDNAを添加することにより、タンパク質を合成できる。しかし、これらの細胞抽出液には、タンパク質合成には必要ない成分や、タンパク質合成を阻害する成分も含まれることがあり、合成産物の分解や未知の修飾が起こる場合がある。また、反応液に未知成分が含まれる場合は、反応液を目的に合わせて調節することも難しいことがある。
 本発明における無細胞タンパク質合成系は、精製された因子を含む「再構成型」の無細胞タンパク質合成系も含む。再構成型無細胞タンパク質合成系としては、例えば、「PUREシステム」を挙げることができる(非特許文献1)。再構成型無細胞タンパク質合成系は、細胞抽出液を使用する無細胞タンパク質合成系よりもヌクレアーゼやプロテアーゼの混入を容易に防ぐことができる。このため、mRNAからポリペプチドへ翻訳する効率を高めることができる。また、反応系の構成因子の調節が容易である。また、因子を精製する段階で、各因子画分へ混入するリポ多糖を除去することにより、無細胞タンパク質合成用組成物全体に含まれるリポ多糖の混入量を低減することができる。これらの点から、再構成型無細胞タンパク質合成系は、本発明における無細胞タンパク質合成系として好適である。
 本発明に用いることができる再構成型無細胞タンパク質合成系(又は再構成型無細胞タンパク質合成用組成物)は、好ましくは、独立に精製された因子を含み、より好ましくは、独立に精製された因子からなる。本明細書において「因子」とは、独立して精製することができる無細胞タンパク質合成系の構成単位を指す。因子は、単量体で機能するタンパク質や、基質類及び塩類などの低分子化合物を含む。更に、粗分画から単離できる各種の複合体や混合物も含む。例えば、複合体として精製される因子には、2量体のタンパク質、リボソームなどが含まれる。混合物としては、tRNA混合物等が含まれる。「独立に精製された因子」とは、他の因子から、それぞれ独立した操作によって精製された因子をいう。因子ごとに独立に精製されたタンパク質合成に必要な因子類を、必要に応じて混合して再構成することによって無細胞タンパク質合成系を構築することができる。細胞抽出液から単離されずに複数種類の因子が混合した画分中に存在する各因子は、独立に精製された因子とは言わない。一方、複数の成分からなる複合体であっても、単独の因子として精製された場合は、本発明における「独立に精製された因子」である。例えば精製したリボソームは、いくつかの要素からなる複合体であるが、単独の因子として精製されるので「独立に精製された因子」である。
 本発明において「精製された」とは、目的因子を含む画分から、目的因子以外の物質をできるだけ除去する操作がなされていることを意味する。因子がタンパク質からなる場合、「精製された因子」における目的とする因子の純度(全タンパク質重量に対する目的とする因子の重量の割合)は、例えば20%以上、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上、最も好ましくは99%以上(例えば、100%)である。因子が核酸からなる場合、「精製された因子」における目的とする因子の純度(全核酸重量に対する目的とする因子の重量の割合)は、例えば20%以上、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上、最も好ましくは99%以上(例えば、100%)である。因子がタンパク質及び核酸からなる複合体の場合(例えば因子がリボソームである場合)、「精製された因子」における目的とする因子の純度(タンパク質及び核酸の全重量に対する目的とする因子の重量の割合)は、例えば20%以上、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上、更により好ましくは99%以上(例えば、100%)である。構成因子が単一のタンパク質の場合、電気泳動によって各因子がほぼ単一のバンドとして確認できるとき、精製された状態であると判断することができる。また、構成因子がリボソームなどの複合体である場合についても、電気泳動によって構成因子のみがバンドとして確認できるとき、精製された状態であると判断することができる。
 アミノ酸、ヌクレオシド三リン酸等の低分子の因子もまた、それぞれ独立に精製された状態のものを再構成型無細胞タンパク質合成系に配合することができる。精製されたアミノ酸とは、アミノ酸以外の成分が実質的に含まれない程度にまで精製されたものであればよく、複数種のアミノ酸の混合物として精製されたものであってもよいし、単独のアミノ酸として精製されたものであってもよい。同様に、ヌクレオシド三リン酸は、ヌクレオシド三リン酸以外の成分が実質的に含まれない程度にまで精製されたものであればよく、複数種のヌクレオシド三リン酸の混合物として精製されたものであってもよいし、単独のヌクレオシド三リン酸として精製されたものであってもよい。本発明において、原核生物(またはその下位概念)に由来する無細胞タンパク質合成系、或いは、真核生物(またはその下位概念)に由来する無細胞タンパク質合成系といったとき、アミノ酸、ヌクレオシド三リン酸、塩等の低分子の因子は必ずしも所定の生物に由来するものではなく、別途調製され精製されたものであってもよい。
 再構成型無細胞タンパク質合成系に含まれる各因子は、化学合成、酵素反応、もしくは、これらの組み合せにより合成後、精製することによって得ることができる。なお、各因子および因子の精製方法は公知である(特開2003-102495、特開2009-112286、特開2008-271903等)。
 再構成型無細胞タンパク質合成系における独立に精製された因子は、種々の細胞の抽出液から精製することによっても得ることができる。因子を精製するための細胞は、例えば原核細胞、または真核細胞を挙げることができる。原核細胞としては、大腸菌細胞、高度好熱菌細胞、または枯草菌細胞を挙げることができる。真核細胞としては、酵母細胞、植物細胞、昆虫細胞、または哺乳動物細胞を挙げることができる。特に、独立に精製された因子がタンパク質のみからなる場合には、各因子を以下のような方法によって得ることができる。
(1)各因子(タンパク質)をコードする遺伝子を単離し、発現ベクターに導入後、適当な宿主細胞に形質転換して発現させ、回収する。
(2)各因子をコードする遺伝子を単離し、無細胞タンパク質合成系で合成し、回収する。
 (1)では、はじめに発現制御領域を含む発現ベクターに、該領域の制御により目的とする因子が発現されるように各因子の遺伝子を組み込んだ発現プラスミドを作成する。ベクターを構成する発現制御領域とは、例えば、エンハンサー、プロモーター、およびターミネーターなどを指す。発現ベクターは、薬剤耐性マーカーなどを含むこともできる。次に、この発現プラスミドで宿主細胞を形質転換し、各因子を発現させる。
 宿主細胞として、例えばJM109、DH5α、HB101、XL1-Blueなどの大腸菌を使用する場合には、lacZプロモーター(Ward et al. (1989) Nature, vol.341, p.544-546, Ward (1992) FASEB J., vol.6, p.2422-2427)、araBプロモーター(Better et al. (1988) Science, vol.240, p.1041-1043)、及びT7プロモーターなどを例示できる。このようなプロモーターを持つ発現ベクターとしては、pGEX(GE Healthcare Biosciences製)、pQE(Qiagen製)、またはpET(Novagen製)を例示することができる。各因子をコードする遺伝子を導入した発現プラスミドは、例えば、塩化カルシウム法またはエレクトロポレーション法によって大腸菌に導入することができる。
 無細胞タンパク質合成系に含まれるタンパク質を含む因子(開始因子、伸長因子、アミノアシルtRNA合成酵素及びリボソーム)は、精製用タグによりラベルすることで、発現(合成)した目的の因子を容易に精製することができる。無細胞タンパク質合成系に含まれるタンパク質を含む因子を精製用タグによりラベルする方法は、たとえば、精製用タグをコードする塩基配列を含む発現ベクターに、目的とする因子をコードする遺伝子を組み込んで、両者の融合タンパク質を発現させることによって行なうことができる。両者の間にプロテアーゼの認識配列を介在させておくこともできる。融合タンパク質を精製用タグに結合する不溶性担体に捕捉し、更に当該認識配列を切断するプロテアーゼを作用させて、目的とする因子を回収することもできる。このようにして因子を精製する方法は公知である(K. Boon et al. (1992) Eur. J. Biochem., vol.210, p.177-183、K. S. Wilson et al. (1998) Cell, vol.92, p.131-139、Yu-Wen Hwang et al. (1997) Arch. Biochem. Biophy., vol.348, p.157-162)。また、無細胞タンパク質合成系に含まれるタンパク質を含む因子として精製用タグでラベルしたものを用いれば、翻訳反応後の翻訳産物から、翻訳された目的ポリペプチドと、無細胞タンパク質合成系に含まれる因子とを分離する際に、精製用タグと相互作用するリガンドを用いて無細胞タンパク質合成系に含まれる因子を選択的に除去することが可能である。精製用タグおよび対応するリガンドとしては、合成される目的ポリペプチドに含まれ得る精製用タグに関して述べたものと同様のものが挙げられる。
 本発明で用いる無細胞タンパク質合成系は少なくとも以下の因子を含む。
 開始因子(Initiation Factor; IF)、
 伸長因子(Elongation Factor; EF)、
 アミノアシルtRNA合成酵素(Aminoacyl-tRNA synthetase; AARS)、
 リボソーム、
 アミノ酸、
 ヌクレオシド三リン酸、
 tRNA。
 本発明において「開始因子」は「翻訳開始因子」とも呼ばれ、「伸長因子」は「翻訳伸長因子」とも呼ばれる。同様に、後述する「終結因子」は「翻訳終結因子」とも呼ばれる。
 これらの因子のうち、少なくともリボソーム、或いは、少なくとも開始因子、伸長因子、アミノアシルtRNA合成酵素、リボソーム及びtRNAは、大腸菌等の原核生物由来のものであってもよいし、真核生物由来のものであってもよい。
 本発明の無細胞タンパク質合成系で使用される開始因子は、翻訳開始複合体の形成に必須であるか、又は、これを著しく促進する因子であり、大腸菌由来のものとして、IF1、IF2及びIF3が知られている(O. Claudio et al. (1990) Biochemistry, vol.29, p.5881-5889)。開始因子IF3は、翻訳の開始に必要な段階である、70Sリボソームの30Sサブユニットと50Sサブユニットへの解離を促進し、また、翻訳開始複合体の形成の際に、フォルミルメチオニルtRNA以外のtRNAのP部位への挿入を阻害する。開始因子IF2は、フォルミルメチオニルtRNAと結合し、30SリボソームサブユニットのP部位へフォルミルメチオニルtRNAを運び、翻訳開始複合体を形成する。開始因子IF1は開始因子IF2,IF3の機能を促進する。本発明において用いられる開始因子の好ましい例は、大腸菌由来のものであり、例えば大腸菌K12株から得られるものを挙げることができるが、真核細胞由来のものも使用できる。大腸菌由来の開始因子を使用した場合、例えば、0.005 μM-300 μM、好ましくは、0.02 μM-100μMで使用できる。開始因子としてIF1、IF2、及びIF3の全てを用いる場合には、各因子の使用量は、いずれも、先に例示した範囲から選択することができる。
 本発明の無細胞タンパク質合成系で使用される伸長因子は、大腸菌由来のものとして、EF-Tu、EF-Ts及びEF-Gが知られている。伸長因子EF-Tuは、GTP型とGDP型の2種類があり、GTP型はアミノアシルtRNAと結合してこれをリボソームのA部位へ運ぶ。EF-Tuがリボソームから離れる際にGTPが加水分解され、GDP型へ転換する(T. Pape et al. (1998) EMBO J, vol.17, p.7490-7497)。伸長因子EF-Tsは、EF-Tu(GDP型)に結合し、GTP型への転換を促進する(YW. Hwang et al. (1997) Arch. Biochem. Biophys., vol.348, p.157-162)。伸長因子EF-Gは、ペプチド鎖伸長過程において、ペプチド結合形成反応の後の転位(translocation)反応を促進する(RK. Agrawal et al. (1999) Nat. Struct. Biol., vol.6, p.643-647, MW. Rodnina et al. (1999) FEMS Microbiology Reviews, vol.23, p.317-333)。本発明において用いられる伸長因子の好ましい例は、大腸菌由来のものであり、例えば大腸菌K12株から得られるものを挙げることができるが、真核細胞由来のものも使用できる。大腸菌由来の伸長因子を使用した場合、例えば、0.005 μM-300μM、好ましくは、0.02 μM-100μMで使用できる。伸長因子としてEF-Tu、EF-Ts、及びEF-Gの全てを用いる場合には、各因子の使用量は、いずれも、先に例示した範囲から選択することができる。
 アミノアシルtRNA合成酵素は、ATPの存在下でアミノ酸とtRNAを共有結合させ、アミノアシルtRNAを合成する酵素であり、各アミノ酸に対応したアミノアシルtRNA合成酵素が存在している(C. Francklyn et al. (1997) RNA, vol.3, p.954-960, タンパク質核酸酵素 (1994) vol.39, p.1215-1225)。本発明において用いられるアミノアシルtRNA合成酵素の好ましい例は、大腸菌由来のものであり、例えば大腸菌K12株から得られるものを挙げることができるが、真核細胞由来のものも使用できる。また、非天然アミノ酸を認識する人工アミノアシルtRNA合成酵素(特許第3896460号など)を用いることもできる。大腸菌由来のアミノアシルtRNA合成酵素を使用した場合、例えば、1 U/ml-1,000,000 U/ml、好ましくは、5 U/ml-500,000 U/mlで使用できる。もしくは、0.001μg/ml-10,000μg/ml、好ましくは、0.01μg/ml-1,000μg/mlで使用できる。ここに例示したアミノアシルtRNA合成酵素の使用量は、いずれも、各アミノ酸に対応したアミノアシルtRNA合成酵素に適用することができる。ここで、1分間に1 pmolのアミノアシルtRNAを形成する活性を1 Uとする。
 リボソームは、リボソームRNAと種々のリボソームタンパク質とで構成される巨大な複合体である。細胞内においては、リボソームがタンパク質合成の場となっている。基本的には大小2つのサブユニットからなり、原核生物と真核生物とでは、リボソームの成分の構成や大きさが相違している。リボソームやそれを構成するサブユニットは、ショ糖密度勾配などによって相互に分離することができ、その大きさは、沈降係数によって表される。具体的には、原核生物においては、リボソームとそれを構成するサブユニットは、それぞれ次のような大きさを有する。
リボソーム(70S)(分子量:約2.5x106)=大サブユニット(50S)(分子量: 約1.6x106)+小サブユニット(30S)(分子量: 約0.9x106
 更に細かく見ると、50Sサブユニットと30Sサブユニットは、それぞれ次のような成分で構成されていることが明らかにされている。
50Sサブユニット;
 L1~L34の34種類のタンパク質(リボソームタンパク質)
 23S RNA(約3200ヌクレオチド)
 5S RNA(約120ヌクレオチド)
30Sサブユニット;
 S1~S21の21種類のタンパク質(リボソームタンパク質)
 16S RNA(約1540ヌクレオチド)
 つまり各サブユニットは、これらの成分からなる複合体として単離され得る。更にリボソームは、各サブユニットの複合体として単離されうる。従って、本発明における独立して精製されたリボソームとは、例えば原核生物由来のリボソームにおいては、大小のサブユニットからなる70Sリボソームとして精製された複合体、又は、それぞれ精製された50Sサブユニットと30Sサブユニットを混合してできた複合体を指す。
  一方、真核細胞においては、リボソームとそれを構成するサブユニットは、それぞれ次のような大きさを有する。
 リボソーム(80S)=大サブユニット(60S)+小サブユニット(40S)
 従って本発明における無細胞タンパク質合成系を真核細胞由来のリボソームで構成する場合には、80Sリボソームとして精製されたリボソームを利用することができる。
 リボソームは例えば、特開2008-271903に開示された方法で培養した大腸菌から精製することができる。大腸菌などの原核生物は容易に大量培養することができる。従って、大腸菌などの原核生物は、リボソームを大量に調製するうえで、好ましい生物である。特開2008-271903に開示された方法で精製されたリボソームは、核酸分解酵素活性を実質的に含まないため好ましい。上述のように、効率的なポリペプチドの合成には、核酸分解酵素活性を実質的に含まない無細胞タンパク質合成系を用いることが望ましい。そのため、核酸分解酵素活性を実質的に含まないリボソームが本発明において好適に用いられる。無細胞タンパク質合成系において大腸菌由来のリボソームを使用した場合、例えば、0.01μM-50μM、好ましくは0.05μM-10μMの濃度で使用できる。
 尚、無細胞タンパク質合成系に用いられる各因子について、「生物X由来」とは、該因子のアミノ酸配列又は核酸配列が、生物Xにおいて天然に発現している該因子のアミノ酸配列又は核酸配列と実質的に同一のアミノ酸配列又は核酸配列を有することを意味する。「実質的に同一」とは、着目したアミノ酸配列又は核酸配列が、生物Xにおいて天然に発現している因子のアミノ酸配列又は核酸配列と70%以上(好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上、最も好ましくは99%以上)の同一性を有しており、且つ当該因子の機能が維持されていることを意味する。
 無細胞タンパク質合成系に含まれるアミノ酸としては、天然型アミノ酸に加え、非天然型アミノ酸も用いることができる。合成しようとするポリペプチドのアミノ酸配列に応じて必要なアミノ酸を用いればよい。これらのアミノ酸は、無細胞タンパク質合成系を構成するアミノアシルtRNA合成酵素の作用によってtRNAに保持される。あるいは、予めアミノ酸をtRNAにチャージして無細胞タンパク質合成系に加えることができる。本発明において、tRNAへのアミノ酸のチャージとは、tRNAにアミノ酸を保持させ、リボソームにおける翻訳反応に利用される状態にすることを言う。非天然アミノ酸を認識する人工アミノアシル合成酵素存在下で非天然アミノ酸を添加したり、非天然アミノ酸でチャージされたtRNAを用いたりすることで、タンパク質の特定のコドンの部位に非天然アミノ酸を導入することが可能となる。天然のアミノ酸を使用した場合、例えば、0.001 mM-20 mM、好ましくは、0.01 mM-5 mMで使用できる。この濃度は各アミノ酸についての濃度である。
 無細胞タンパク質合成系に含まれるtRNAとしては、大腸菌等の原核生物、酵母等の真核生物の細胞から精製したtRNAを用いることができる。また、tRNAをコードするDNAから、RNAポリメラーゼを用いた転写反応により調製したtRNAも用いることができる。またアンチコドンやその他の塩基を任意に変更した人工tRNAも用いることができる(Hohsaka, T et al. (1996) J. Am. Chem. Soc., vol.121, p.34-40, Hirao I et al (2002) Nat. Biotechnol., vol.20, p.177-182)。例えば、CUAをアンチコドンとして持つtRNAに非天然のアミノ酸をチャージすることで、本来終止コドンであるUAGコドンを非天然アミノ酸に翻訳することが可能である。また、4塩基コドンをアンチコドンとして持つtRNAに非天然アミノ酸をチャージした人工アミノアシルtRNAを用いることにより、天然には存在しない4塩基コドンを非天然アミノ酸に翻訳することが可能である(Hohsaka et al. (1999) J.Am.Chem.Soc., vol.121, p.12194-12195)。このような人工アミノアシルtRNAを作製する方法としては、RNAを用いる方法も使用できる(特表2003-514572)。これらの方法により部位特異的に非天然アミノ酸を導入したタンパク質を合成することができる。大腸菌tRNA混合液を使用した場合、例えば、0.1A260/ml~1000 A260/ml、好ましくは、1 A260/ml~300 A260/mlで使用できる。ここで1 A260とは、1mlあたりの260nmにおける吸光度を示している。
 無細胞タンパク質合成系に含まれるヌクレオシド三リン酸(ATP, GTP, CTP, UTPなど)は、転写及び/又は翻訳反応の基質及び/又はエネルギー源である。各ヌクレオシド三リン酸は、通常、0.01 mM~500 mM、好ましくは、0.1 mM~50 mMで使用できる。無細胞タンパク質合成系が翻訳反応のみからなる場合は、ATP及びGTPのみを含んでもよい。
 上記の無細胞タンパク質合成系を構成する各因子を、転写や翻訳に好適なpHを維持する緩衝水溶液に加えることによって無細胞タンパク質合成用組成物とすることができる。好適なpHとしては、例えばpH6~pH9、好ましくは、pH7~8である。本発明においてpH値は特に限定の無い限り20~30℃(例えば25℃)の温度で測定された値を指す。本発明に用いられる緩衝液としては、リン酸カリウム緩衝水溶液(pH 7.3)、Hepes-KOH(pH 7.6)などをあげることができる。Hepes-KOH(pH 7.6)を使用した場合、例えば、0.01 mM~200 mM、好ましくは、0.1 mM~100 mMで使用できる。
 無細胞タンパク質合成系には、因子の保護や活性の維持を目的として塩類を加えることもできる。具体的には、グルタミン酸カリウム、酢酸カリウム、塩化アンモニウム、酢酸マグネシウム、塩化マグネシウム、塩化カルシウムなどが挙げられる。これらの塩類はそれぞれ、通常、0.01 mM~1000 mM、好ましくは、0.1 mM~300 mMで使用される。
 無細胞タンパク質合成系が、大腸菌等の原核細胞由来の因子を用いた系である場合は、更にメチオニルtRNAトランスフォルミラーゼ及び、10-フォルミル5,6,7,8-テトラヒドロ葉酸(FD)を含むことが好ましい。
 メチオニルtRNAトランスフォルミラーゼ(MTF)は、原核生物におけるタンパク質合成において開始tRNAに共有結合したメチオニンのアミノ基にフォルミル基がついたN-フォルミルメチオニル(fMet)開始tRNAを合成する酵素である。即ち、メチオニルtRNAトランスフォルミラーゼは、FDのフォルミル基を、開始コドンに対応するメチオニル開始tRNAのアミノ基に転移させ、fMet-開始tRNAにする(Ramesh V et al, (1999) Proc.Natl.Acad.Sci.USA, vol.96, p.875-880)。付加されたフォルミル基は開始因子IF2により認識され、タンパク質合成の開始シグナルとして作用する。真核生物の細胞質におけるタンパク質合成系にはMTFが存在していないが、真核生物のミトコンドリア及び葉緑体におけるタンパク質合成系には存在する。本発明において用いられるMTFの好ましい例は、大腸菌由来のものであり、例えば大腸菌K12株由来のものである。大腸菌由来のMTFを使用した場合、例えば、100 U/ml~1,000,000 U/ml、好ましくは、500 U/ml~400,000 U/mlで使用できる。ここで、1分間に1 pmolのfMet-開始tRNAを形成する活性を1 Uとする。もしくは、0.01μg/ml~10,000μg/ml、好ましくは、0.05μg/ml~1,000μg/mlで使用できる。また、MTFの基質であるフォルミルドナー(FD)は、例えば、0.1μg/ml~1000μg/ml、好ましくは、1μg/ml~100μg/mlで使用できる。
 本発明で用いる無細胞タンパク質合成系は、一実施形態においては、解離因子 (Release Factor; RF)及び/又はリボソーム再生因子(RRF)を含むことができる。解離因子は、終結因子とも呼ばれる。解離因子は、タンパク質合成の終結、翻訳されたペプチド鎖の解離に関与する。また、リボソーム再生因子は、次のmRNAの翻訳開始へのリボソームの再生に関与する。従って、解離因子及び/又はリボソーム再生因子を含む無細胞タンパク質合成系により、タンパク質合成反応を行うことにより、より多量のポリペプチドを製造することができる。本発明で使用することができる解離因子としては、大腸菌由来のものとして、RF1、RF2及びRF3が知られている。解離因子RF1及びRF2は、リボソームのA部位がmRNA上の終止コドン(UAA,UAG,UGA)に達した時、A部位に入ってペプチジルtRNA(P部位にある)からのペプチド鎖の解離を促進する。RF1は終止コドンのうちUAA及びUAGを認識し、RF2はUAA及びUGAを認識する。解離因子RF3は、RF1、RF2によるペプチド鎖の解離反応後の、RF1、RF2のリボソームからの解離を促進する。また、リボソーム再生因子は、合成されたペプチド鎖の解離後、P部位に残っているtRNAの脱離と、次のタンパク質合成へのリボソームの再生を促進する。なお、解離因子RF1、RF2、RF3及びRRFの機能については、Freistroffer DV et al, (1997) EMBO J., vol.16, p.4126-4133、Pavlov MY et al. (1997) EMBO J., vol.16, p.4134-4141に解説されている。本発明において用いることができる解離因子の好ましい例は、大腸菌由来のものであり、例えば大腸菌K12株由来のものを挙げることができるが、真核細胞由来のものも使用できる。また、本発明において用いられるリボソーム再生因子の好ましい例は、大腸菌由来のものであり、例えば大腸菌K12株由来のものを挙げることができる。大腸菌由来の解離因子及び/又はリボソーム再生因子を使用した場合、例えば、0.005μM~200μM、好ましくは、0.02μM~50μMで使用できる。RF1、RF2、RF3、及びRRFを組み合わせて用いる場合には、各因子の使用量は、いずれも、先に例示した範囲から選択することができる。
 本発明で用いられる核酸がDNAの場合には、DNAをmRNAに転写するためのRNAポリメラーゼを含むことができる。具体的には、次のようなRNAポリメラーゼを本発明に利用することができる。これらのRNAポリメラーゼは市販されている。
T7 RNAポリメラーゼ
T3 RNAポリメラーゼ
SP6 RNAポリメラーゼ
 T7 RNAポリメラーゼを使用した場合、例えば、0.01μg/ml~5000μg/ml、好ましくは、0.1μg/ml~1000μg/mlで使用できる。
 本発明に用いる無細胞タンパク質合成系は、転写や翻訳のための因子に加え、更に付加的な因子を含むことができる。付加的な因子として、例えば、次のような因子を示すことができる。
反応系においてエネルギーを再生するための酵素:
クレアチンキナーゼ;
ミヨキナーゼ;及び
ヌクレオシドジホスフェートキナーゼなど
反応系においてエネルギーを再生するための酵素の基質:
クレアチンリン酸など
転写・翻訳で生じる無機ピロリン酸の分解のための酵素:
無機ピロホスファターゼなど
 上記酵素は、例えば、0.001μg/ml~2000μg/ml、好ましくは、0.05μg/ml~500μg/mlで使用できる。また、上記基質は、通常、0.01 mM~1000 mM、好ましくは、0.1 mM~200 mMで使用できる。
 無細胞タンパク質合成系には、酵素の基質として、及び/又は、各因子の活性の向上、維持を目的として、その他の成分を更に添加してもよい。その他の添加可能な成分として、具体的には還元剤、酸化剤、ポリアミン類、ジスルフィド結合異性化酵素、分子シャペロンなどが挙げられる。
 無細胞タンパク質合成系には、細胞内の還元状態を再現することを目的として、還元剤を含めることが好ましい。還元剤としては、ジチオスレイトール、2-メルカプトエタノール、還元型グルタチオンなどをあげることができるが、還元作用を示す物質であればその他の物質も使用することができる。また、複数の還元剤を組み合わせて使用することもできる。ジチオスレイトールおよび2-メルカプトエタノールは、保存性の悪化や翻訳効率の低下を防ぐ機能を示す(Eur.J Biochem.270:4780-4786(2003))。ジチオスレイトールの好ましい濃度範囲は、少なくとも1mMであり、好ましくは1mM以上1M以下、より好ましくは1mM以上0.5M以下、さらに好ましくは1mM以上100mM以下、特に好ましくは1mM以上10mM以下である。ジチオスレイトールの濃度が1mMより低い場合、保存性の悪化や翻訳効率の低下を起こすことがあり好ましくない。2-メルカプトエタノールの好ましい濃度範囲は、少なくとも1mMであり、好ましくは1mM以上1M以下、より好ましくは1mM以上0.5M以下、さらに好ましくは1mM以上100mM以下、特に好ましくは1mM以上10mM以下である。2-メルカプトエタノールの濃度が1mMより低い場合、保存性の悪化や翻訳効率の低下を起こすことがあり好ましくない。
 無細胞タンパク質合成系には、更に、プトレシン(putrescine)、スペルミジン(spermidine)などのポリアミン類を含んでいてもよい。ポリアミン類は、通常、0.01 mM-1000 mM、好ましくは、0.1 mM-200 mMで使用できる。
 無細胞タンパク質合成系によりジルスルフィド結合を有するポリペプチドを合成する場合、酸化剤、および/またはジスルフィド結合異性化酵素を無細胞タンパク質合成系に含めることが好ましい。酸化型グルタチオンは酸化剤として作用しジスルフィド結合の形成を促進することができる。酸化型グルタチオンの好ましい濃度範囲は、実質的に効果のある還元剤の濃度以上の濃度が望ましい。例えば、2mMのジチオスレイトールが添加されている場合、少なくとも2mMの酸化型グルタチオンの添加が望ましい。また、ジスルフィド結合異性化酵素としては、真核細胞のERに存在するプロテインジスルフィドイソメラーゼ(PDI)や、大腸菌のペリプラズムに存在するDsbA、DsbC等が挙げられる。
 分子シャペロンは、高次構造を形成しにくいポリペプチドを製造する場合に、無細胞タンパク質合成系に添加することができる。具体的には、Hsp100ファミリー、Hsp90ファミリー、Hsp70ファミリー、Hsp60ファミリー、Hsp40ファミリー、Hsp10ファミリー、低分子量Hspファミリー及び、それらのホモログ、さらに大腸菌のトリガーファクターなどリボソーム結合型の分子シャペロンを添加した無細胞タンパク質合成系が挙げられる。分子シャペロンは、タンパク質の高次構造形成を助け、タンパク質の凝集を防ぐことが知られているタンパク質である(Bukau and Horwich, Cell (1998) vol.92, p.351-366、Young et al., Nat. Rev. Mol. Cell Biol (2004) vol.5, p.781)。例えば、大腸菌に存在する分子シャペロンを使用する場合、GroEL、GroES、DnaK、DnaJ、GrpE及びTFの群より選択される少なくとも1つを用いることができる。Hsp60ファミリーに属するGroELは、Hsp10ファミリーに属するGroESの共存下で正常に機能する分子シャペロンで、その複合体内部でタンパク質の高次構造形成を促進させる分子シャペロンである(Nature 475, 324-332 (21 July 2011))。Hsp70ファミリーに属するDnaKは変性したタンパク質の凝集を防ぎ、自発的なリフォールディングを促す機能があり、この機能はDnaJ(Hsp40ファミリーに属する)、GrpE(Hsp70の機能を促進するタンパク質の一種)により促進される(蛋白質 核酸 酵素 Vol.47 No.9 (2002) 1189-1195)。TFはリボソームから出てきた変性状態のペプチドが凝集することを防ぐ機能を有する(Nature 400,693-696(12 August 1999))。このため、本発明の無細胞タンパク質合成系は、分子シャペロンとしては下記の(1)~(3):
(1) GroELとGroESとの組み合わせ、
(2) DnaKとDnaJとGrpEとの組み合わせ、及び、
(3)TF
からなる群から選択される少なくとも1つを含むことができる。
 また複数の分子シャペロンの好ましい組み合わせは、目的とするタンパク質毒素により異なるため、予備検討で好ましい組み合わせを見出すことができる。
 無細胞タンパク質合成系の具体的な組成は、Shimizuら(Shimizu et al., Nat. Biotechnol. (2001) vol.19, p.751-755、Shimizu et al., Methods (2005) vol.36, p.299-304)、あるいはYingら(Ying et al., Biochem. Biophys. Res. Commun. (2004) vol.320, p.1359-1364)の記載を基に調製することができるが、前述のとおり、因子の濃度は、精製した因子の比活性や目的などに応じて適宜増減できることは言うまでもない。
 再構成型無細胞タンパク質合成系としては例えば以下の組成のものを挙げることができる。ベースとなる溶媒としては水が使用できる。
リボソーム:0.12-12 μM
開始因子:0.1-100 μM IF1、0.04-10 μM IF2、0.1-100μM IF3、
伸長因子:0.026-10 μM EF-G、0.092-100 μM EF-Tu、0.066-10 μM EF-Ts、
解離因子:0.025-10 μM RF1、0.024-10 μM RF2、0.017-10 μM RF3、
リボソーム再生因子:0.05-10 μM RRF
アミノアシルtRNA合成酵素:190-19000 U/ml AlaRS、250-25000 U/ml ArgRS、2-200 μg/ml AsnRS、250-25000 U/ml AspRS、63-6300 U/ml CysRS、130-13000 U/ml GlnRS、190-19000 U/ml GluRS、500-50000 U/ml GlyRS、63-6300 U/ml HisRS、250-25000 U/ml IleRS、380-38000 U/ml LeuRS、380-38000 U/ml LysRS、630-63000 U/ml MetRS、130-13000 U/ml PheRS、130-13000 U/ml ProRS、190-19000 U/ml SerRS、130-13000 U/ml ThrRS、63-6300 U/ml TrpRS、63-6300 U/ml TyrRS、310-31000 U/ml ValRS
他の酵素:450-45000 U/ml MTF(メチオニルtRNAトランスフォルミラーゼ)、0.4-40 μg/ml クレアチンキナーゼ(creatine kinase)、0.3-30 μg/ml ミオキナーゼ(myokinase)、0.11-11 μg/ml ヌクレオチドジフォスフェートキナーゼ(nucleoside-diphosphate kinase)、0.2-20 units/ml ピロフォスファターゼ(pyrophosphatase)、1-100 μg/ml T7 RNA ポリメラーゼ(T7 RNA polymerase)
エネルギー源:0.2-20 mM ATP, GTP、0.1-10 mM CTP, UTP、2-200 mM クレアチンリン酸(creatine phosphate)
バッファー成分:pH 7~8(25℃で測定した場合)に調整された1-100mM Hepes緩衝液(好ましくは1-100 mM Hepes-KOH, pH 7.6)、10-1000 mM グルタミン酸カリウム(potassium glutamate)、1.3-50 mM 酢酸マグネシウム(magnesium acetate)、0.2-20 mM スペルミジン(spermidine)、0.1-10 mM ジチオスレイトール(DTT)
他の成分:0.03-3 mM 20アミノ酸(amino acids)(=通常のコドンに指定される20種の天然アミノ酸)、1-10 μg/ml 10-フォルミル-5,6,7,8-テトラヒドロ葉酸(10-formyl-5,6,7,8-tetrahydrofolic acid)、5.6-100 A260/ml大腸菌tRNA混合液(例えばtRNA from E. coli MRE600(Roche), tRNAmix (Roche))
 特許文献3には、Shimizu et al. (2005) Methods, vol.36, p.299-304を引用して以下の基本組成の無細胞タンパク質合成系を開示している。この、特許文献3及びShimizu et al. (2005) Methods, vol.36, p.299-304に記載の無細胞タンパク質合成系もまた本発明に好適に使用することができる。
  50 mM HEPES-KOH pH7.6、
  2 mM ATP、2 mM GTP、
  1 mM CTP、1 mM UTP、
  20 mM クレアチンリン酸(Creatine phosphate)、
  56 A260 units/ml 大腸菌tRNA混合液、
  0.01 μg/μl 10-フォルミル-5,6,7,8-テトラヒドロ葉酸、
  0.3 mM 各アミノ酸、
  13 mM 酢酸マグネシウム、
  100 mM グルタミン酸カリウム、
  2 mM スペルミジン(Spermidine)、
  1 mM ジチオスレイトール(DTT)、
  1.2 μM大腸菌リボソーム、
  0.02 μg/μl(=2.4 μM) IF1、
  0.04 μg/μl(=0.41 μM) IF2、
  0.015 μg/μl(=0.73 μM) IF3、
  0.02 μg/μl(=0.26 μM) EF-G、
  0.04 μg/μl(=0.92 μM) EF-Tu、
  0.02 μg/μl(=0.66 μM) EF-Ts、
  0.01 μg/μl(=0.25 μM) RF1、
  0.01 μg/μl(=0.24 μM) RF2、
  0.01 μg/μl(=0.17 μM) RF3、
  0.01 μg/μl(=0.48 μM) RRF、
  0.6-6 units/μl各アミノアシルtRNA合成酵素(AARS)及びメチオニルtRNAトランスフォルミラーゼ(MTF)、
  0.004 μg/μl クレアチンキナーゼ(CK; creatine kinase)、
  0.003 μg/μlミオキナーゼ(MK; myokinase)、
  0.001 μg/μl ヌクレオチドジフォスフェートキナーゼ(NDK; nucleoside diphosphate kinase)、
  0.0356 units/μl ピロフォスファターゼ(PPiase; Pyrophosphatase)及び
  0.01 μg/μl T7 RNAポリメラーゼ。
 特許文献3によれば、タンパク質合成の目的に応じて、上記基本組成に追加および、もしくは除去した試薬を使用することができる。特許文献3によれば、上記組成のうち、リボソームは、Ohashi et al. (2007) BBRC, vol.352, p.270-276、及びタンパク質因子は、Shimizu et al. (2001) Nat. Biotechnol., vol.19, p.751-755に従って調製され、純度が測定されたものを使用することができ、その他の成分は市販の精製試薬を使用することができる。
 また、再構成型無細胞タンパク質合成系として、市販のキットも使用することができる。例えば、大腸菌由来の再構成型無細胞タンパク質合成系として、ジーンフロンティア社から発売されているPUREfrex(R)及びその後継品であるPUREfrex(R) 2.0を用いることができる。タンパク質毒素によっては、SS結合用のDS supplement、さらに分子シャペロンであるDnaK Mix及びGroE Nixを適宜組み合わせて使用することが出来る。
<3.ポリペプチド製造の手順>
 無細胞タンパク質合成系を用いたポリペプチドの製造は、例えば以下の工程によって実施することができる。
(1)無細胞タンパク質合成系に鋳型となる核酸(DNA又はmRNA)を加えてインキュベートすることにより、mRNAからポリペプチドへの翻訳反応、或いはDNAからmRNAへの転写反応及びmRNAからポリペプチドへの翻訳反応を行うこと; 
(2)氷冷した緩衝液を加えて翻訳反応を停止すること;及び
(3)反応混合物から翻訳されたポリペプチドを回収すること。
 無細胞タンパク質合成系を構成するタンパク質を含む因子が、精製用タグ(上記)でラベルされている場合には、翻訳反応終了後に、精製用タグと相互作用するリガンドを有する固相に捕捉することによって反応液から除去することができる。その結果、製造されたポリペプチドを、無細胞タンパク質合成系を構成するタンパク質因子から容易に回収することができる。また、無細胞タンパク質合成系を構成するタンパク質因子が、精製用タグでラベルされていない場合には、製造する目的のポリペプチドと相互作用する担体を用いてポリペプチドを精製することもでき、その場合は好ましくはポリペプチドを精製用タグでラベルしておくことにより、翻訳終了後に、対応するリガンドを有する担体で捕捉して目的とするポリペプチドを単離することができる。その他、当業者に周知のタンパク質精製技術(例えば、カラムクロマトグラフィー等)を用いて、反応混合物から適宜目的とするポリペプチドを単離することができる。
<4.タンパク質合成阻害タンパク質毒素と、無細胞タンパク質合成系との好適な組み合わせ>
 タンパク質合成阻害タンパク質毒素にはジスルフィド結合がその高次構造に含まれるものがある(例えば緑膿菌外毒素A)。そこで本発明においてジスルフィド結合を含むタンパク質合成阻害タンパク質毒素を含むポリペプチドを合成する際には、ジスルフィド結合含有タンパク質合成用の無細胞タンパク質合成系を使用することが好ましい。より好ましくは、ジスルフィド結合含有タンパク質合成用の無細胞タンパク質合成系は、酸化型グルタチオン、ジスルフィド結合異性化酵素から選択される少なくとも1つを含む系であることが望ましい。さらに好ましくは、酸化型グルタチオンを還元剤の濃度以上の濃度で含む系であることが望ましい。
 タンパク質合成阻害タンパク質毒素を含むポリペプチドとして、凝集し易いポリペプチドを合成する場合には、分子シャペロンを含む無細胞タンパク質合成系を用いることが好ましい。
 合成されるポリペプチドに含まれるタンパク質合成阻害タンパク質毒素が、真核生物細胞におけるタンパク質合成を阻害する毒素である場合には、無細胞タンパク質合成系に含まれる少なくともリボソーム、より好ましくは、少なくとも開始因子、伸長因子、アミノアシルtRNA合成酵素、リボソーム及びtRNAは、原核生物由来であることが好ましく、大腸菌由来であることがより好ましい。リシン、緑膿菌外毒素A、PE38、志賀毒素、ゲロニン、サポリン、ブーガニン、Deブーガニン、ヤマゴボウ抗ウイルスタンパク質、ジフテリア毒素、アルファーサルシン、ブリオディン、モモルデイン、リストリクトシン等の、上記で例示した毒素はいずれも真核生物細胞におけるタンパク質合成を阻害する毒素である。
 また、再構成型の無細胞タンパク質合成系を使用することで、合成されたポリペプチドの活性測定や精製が容易になる。
<5.本発明の組成物>
 本発明の組成物は、少なくとも開始因子、伸長因子、アミノアシルtRNA合成酵素、リボソーム、アミノ酸、ヌクレオシド三リン酸、tRNA及びタンパク質合成阻害タンパク質毒素のアミノ酸配列を少なくとも一部に含むポリペプチドを含む。各成分の具体な形態等ついては、ポリペプチド及び合成方法に関して既に説明した通りであり、また各成分の配合量は合成系に含まれる配合量と同じであることができる。本発明の組成物はまた、無細胞タンパク質合成系に含まれ得る成分として言及した他の成分を更に含んでよく、その配合量等については、合成系に含まれる配合量等と同じであることができる。当該組成物は、上記の無細胞タンパク質合成系を用いた上記ポリペプチドの合成反応の、翻訳反応後の反応混合物として得ることができる。当該組成物は、そのまま、タンパク質合成阻害タンパク質毒素活性組成物として、毒性の評価試験や、毒素を必要とする他のイン・ビトロ試験において毒素として利用することができる。
 本発明の組成物は、好ましい実施形態において、無細胞タンパク質合成系として再構成型無細胞タンパク質合成系を用いた上記ポリペプチドの合成反応の、翻訳反応後の反応混合物である。この実施形態に係る本発明の組成物は、一般的な微生物によるタンパク質合成系を用いたポリペプチド合成反応の反応混合物と比べて極めて少量しか不純物を含まないため、更なる精製を必要とせずそのままタンパク質合成阻害タンパク質毒素活性組成物として利用するのに適しており、活性測定等の毒性の評価試験や、その他のイン・ビトロ試験において毒素として利用するのに特に適している。更に、この実施形態に係る本発明の組成物からは、精製用タグ等を必要に応じて利用することにより、合成されたポリペプチドを無細胞タンパク質合成系の構成因子から分離することが容易であるため、簡単な操作で高純度なポリペプチドを得ることが可能である。得られた高純度のポリペプチドは医薬品等の用途に使用することができる。
 本発明の組成物は通常は各成分が水中に溶解又は分散した状態の液状組成物であり、各成分の濃度等は特に限定されない。本発明の組成物が、無細胞タンパク質合成系として再構成型無細胞タンパク質合成系を用いた上記ポリペプチドの合成反応の、翻訳反応後の反応混合物(以下単に「翻訳反応液組成物」と呼ぶ)である場合、各成分の濃度は典型的には以下の範囲である:
 翻訳反応液組成物中、開始因子の濃度は例えば0.005 μM-300 μM、好ましくは、0.02 μM-100μMである。複数種の開始因子が含まれる場合は、それぞれの開始因子がこの濃度範囲であることが好ましい。
 翻訳反応液組成物中、伸長因子の濃度は例えば0.005 μM-300μM、好ましくは、0.02 μM-100μMである。複数種の伸長因子が含まれる場合は、それぞれの伸長因子がこの濃度範囲であることが好ましい。
 翻訳反応液組成物中、アミノアシルtRNA合成酵素の濃度は、例えば1 U/ml~1,000,000 U/ml、好ましくは5 U/ml~500,000 U/mlであり、或いは、例えば0.001μg/ml~10,000μg/ml、好ましくは、0.01μg/ml~1,000μg/mlである。酵素の濃度は、いずれも、各アミノ酸に対応したアミノアシルtRNA合成酵素毎に上記の範囲とすることができる。ここで、1分間に1 pmolのアミノアシルtRNAを形成する活性を1 Uとする。
 翻訳反応液組成物中、リボソームの濃度は、例えば0.01μM~50μM、好ましくは0.05μM~10μMである。
 翻訳反応液組成物中、アミノ酸の濃度は、アミノ酸の種毎にそれぞれ、例えば0.001 mM~20 mM、好ましくは、0.01 mM~5 mMである。
 翻訳反応液組成物中、ヌクレオシド三リン酸の濃度は、ヌクレオシド三リン酸の種毎にそれぞれ、例えば0.01 mM~500 mM、好ましくは、0.1 mM~50 mMである。
 翻訳反応液組成物中、tRNAの濃度は、tRNAの総量として例えば0.1A260/ml~1000 A260/ml、好ましくは1 A260/ml~300 A260/mlである。
 翻訳反応液組成物中に更にRNAポリメラーゼが含まれる場合、その濃度は例えば0.01μg/ml~5000μg/ml、好ましくは0.1μg/ml~1000μg/mlである。
 翻訳反応液組成物中、タンパク質合成阻害タンパク質毒素のアミノ酸配列を含むポリペプチドの濃度は、例えば0.01μg/ml~100mg/ml、好ましくは0.1μg/ml~50mg/mlであり、より好ましくは0.01μg/ml~10mg/mlであり、特に好ましくは0.1μg/ml~5mg/mlである。
 翻訳反応液組成物中には更に、無細胞タンパク質合成系に含まれ得る成分として言及した他の成分を更に含んでいてよく、その濃度は、各成分の無細胞タンパク質合成系における濃度として説明した濃度であることができる。
 翻訳反応液組成物は、再構成型無細胞タンパク質合成系として既に例示した組成物に、更に、タンパク質合成阻害タンパク質毒素のアミノ酸配列を含むポリペプチドが加わったものであることができ、該ポリペプチドの濃度は例えば0.01μg/ml~10mg/ml、好ましくは0.1μg/ml~5mg/mlである
<1. 使用した無細胞タンパク質発現系>
 本試験では各因子が独立に精製された大腸菌由来の再構成型の無細胞タンパク質発現系としてジーンフロンティア社から発売されているPUREfrex(R)及びその後継品であるPUREfrex(R) 2.0を用いた。この発現系を「発現系1」とした。タンパク質毒素によっては、SS結合用のDS supplement、さらに分子シャペロンであるDnaK Mix及びGroE Nixを適宜組み合わせて使用することが出来る。
 今回の実験で使用したジーンフロンティア社から発売されているPUREfrex(R)及びPUREfrex(R) 2.0は、本明細書において既述の、特許文献3及びShimizu et al. (2005) Methods, vol.36, p.299-304に開示の無細胞タンパク質合成系の基本組成に若干の改変を加えたものである。
<2. 使用したタンパク質毒素>
 Deブーガニン:Deブーガニン(DeBouganin)は、Bougainvillea spectabilisに由来するタンパク質毒素ブーガニン(Bouganin)の免疫原性低減変異体であり、rRNA N-グリコシダーゼ活性(EC3.2.2.22)を有するリボソーム不活性化タンパク質(RIP)の一種である。アミノ酸配列は配列番号8で示す通りであり、このアミノ酸配列のN末端側にFLAG配列、ヒスチジンタグ配列を付与したタグ付きアミノ酸配列をコードする、大腸菌に適した形にコドンを最適化したDNAに、制御配列として5'末端側にT7プロモーター配列及びSD配列を更に付加したDNAを化学合成して(Genscript)、Deブーガニン合成用鋳型DNA(配列番号7)とした。Deブーガニン合成用鋳型DNAは、配列番号7で示される塩基配列からなるDNA鎖をセンス鎖とし、その相補鎖をアンチセンス鎖とする二本鎖DNAの形態である。
 緑膿菌外毒素A:緑膿菌外毒素Aは、緑膿菌(Pseudomonas aeruginosa)に由来するタンパク質毒素である。緑膿菌外毒素AはADPリボシルトランスフェラーゼ活性(EC2.4.2.36)を有し、ペプチド鎖伸長因子をADPリボシル化することにより、リボソームによるタンパク質生成を阻害する作用を有する。アミノ酸配列は配列番号9に示す通りである。このアミノ酸配列のN末端側にFLAG配列、ヒスチジンタグ配列を付与したタグ付きアミノ酸配列をコードする、大腸菌に適した形にコドンを最適化したDNAを化学合成した(Genscript)。このDNAに後述する手順で制御配列として5'末端側にT7プロモーター配列及びSD配列を更に付加して緑膿菌外毒素A合成用鋳型DNAを得た。
 PE38:PE38は緑膿菌外毒素Aの活性部位のみからなる免疫原性低減変異体である。アミノ酸配列は国際公開番号WO2005052006号に開示されており、具体的には配列番号21に示す通りである。このアミノ酸配列のN末端側にFLAG配列、ヒスチジンタグ配列を付与したタグ付きアミノ酸配列をコードする、大腸菌に適した形にコドンを最適化したDNAを化学合成した(Genscript)。このDNAに後述する手順で制御配列として5'末端側にT7プロモーター配列及びSD配列を更に付加してPE38合成用鋳型DNAを得た。
 ゲロニン:ゲロニン(Gelonin)はGelonium multiflorumに由来するタンパク質毒素であり、rRNA N-グリコシダーゼ活性(EC3.2.2.22)を有するリボソーム不活性化タンパク質(RIP)の一種である。アミノ酸配列は配列番号13に示す通りである。このアミノ酸配列のN末端側にFLAG配列、ヒスチジンタグ配列を付与したタグ付きアミノ酸配列をコードする、大腸菌に適した形にコドンを最適化したDNAを化学合成した(Genscript)。このDNAに後述する手順で制御配列として5'末端側にT7プロモーター配列及びSD配列を更に付加してゲロニン合成用鋳型DNAを得た。
 サポリン:サポリン(Saporin)はSaponaria officinalisに由来するタンパク質毒素であり、rRNA N-グリコシダーゼ活性(EC3.2.2.22)を有するリボソーム不活性化タンパク質(RIP)の一種である。アミノ酸配列は配列番号14に示す通りである。このアミノ酸配列のN末端側にFLAG配列、ヒスチジンタグ配列を付与したタグ付きアミノ酸配列をコードする、大腸菌に適した形にコドンを最適化したDNAを化学合成した(Genscript)。このDNAに後述する手順で制御配列として5'末端側にT7プロモーター配列及びSD配列を更に付加してサポリン合成用鋳型DNAを得た。
 これらの鋳型DNAは二本鎖DNAであり、そのセンス鎖DNAは毒素のコード領域を除き、配列番号7の塩基配列と同一の塩基配列からなる。
<3. コンストラクトの構造と作成>
 各タンパク質毒素のN末端側にFLAGタグとヒスチジンタグとが付加された融合タンパク質を得るために以下の手順で遺伝子コンストラクトを作製した。
 5’末端からT7プロモーター配列、SD配列、FLAG配列、ヒスチジンタグ配列及びDeブーガニンコード配列の順に並べたDNAを化学合成した(Genscript)。このDNAの全塩基配列を配列番号7に示す。配列番号7において6~22がT7プロモーター配列、72~77がSD配列、89~112がFLAG配列、116~134がヒスチジンタグ配列、140~889がDeブーガニンコード配列である。配列番号7の配列からなるDNAをDeブーガニン合成用鋳型DNAとして用いた。更に、このDNAを鋳型として、5’側プライマー 5’UTR-F(配列番号1:GAAATTAATACGACTCACTATAGG)と3’側プライマー 5’UTR-R(配列番号2:CTTTGTAGTCCATTGGTATATCTCC)を使用してKOD-Plus- DNA Polymerase (TOYOBO)によるPCR増幅後(変性: 94℃, 10秒、アニーリング: 55℃, 30秒、伸張: 68℃,60秒、サイクル: 30回)、QIAquick PCR Purification Kit (QIAGEN)を用いて精製した(5’UTR断片)。
 また、5’末端からFLAG配列、ヒスチジンタグ配列、タンパク質毒素コード配列(緑膿菌外毒素A、PE38、ゲロニン又はサポリンをコードする配列)が順に連結されたDNAをそれぞれ化学合成した。そして各DNAを鋳型として、5’側プライマー FLAG f(配列番号3:CTTTAAGAAGGAGATATACC)と各3’側プライマー ETA r(緑膿菌外毒素A及びPE38用/配列番号4:ttttttttttTTATTTCAGATCTTCAC)、Gel r(ゲロニン用/配列番号5:ttttttttttTTATTTCGGGTCTTTATCG)、sap r(サポリン用/配列番号6:ttttttttttTTATTTCGGTTTACCC)、を使用してKOD-Plus- DNA Polymerase (TOYOBO)によるPCR増幅後(変性: 94℃, 10秒、アニーリング: 55℃, 30秒、伸張: 68℃,120秒、サイクル: 30回)、QIAquick PCR Purification Kit (QIAGEN)を用いて精製した(FLAG-各タンパク毒素断片)。最後に、5’UTR断片とFLAG-His-各タンパク質毒素断片とをそれぞれ3pmolずつ、5’UTR-F(配列番号1)と各3’側プライマー(配列番号3~6)を使用してKOD-Plus- DNA Polymerase (TOYOBO)によるPCR増幅後(変性: 94℃, 10秒、アニーリング: 55℃, 30秒、伸張: 68℃,120秒、サイクル: 30回)、1%アガロースゲルを用いた電気泳動によって、すべての断片がつながった産物のバンドを確認後、目的のバンドを切り出し、MinElute Gel Extraction Kit (QIAGEN)で精製し、タンパク質毒素(緑膿菌外毒素A、PE38、ゲロニン又はサポリン)合成用鋳型DNAとした。
<4.タンパク質合成阻害タンパク質毒素の発現>
 PUREfrex(R) 2.0(発現系1)を用いて、N末端側にFLAGタグとヒスチジンタグとが付加された各タンパク質毒素の融合タンパク質を発現させた。
 PUREfrex(R) 2.0(発現系1)の反応液に鋳型DNAを1kbあたり0.5-3ng/μlになるように添加し、37℃で4時間インキュベートし、目的のタンパク質合成阻害タンパク質毒素を合成した。合成反応後の、下記精製を行う前の反応液(反応混合物)は、使用した前記の市販無細胞タンパク質合成系に、翻訳された融合ポリペプチドが含まれた組成物である。
 発現したFLAG-Hisタグ付きタンパク質毒素は結合バッファー(50 mM Tris-HCl pH8, 500 mM NaCl, 20 mM imidazole, 7 mM 2-mercaptoethanol)で450 μlに希釈した。希釈したタンパク質溶液に、50% (v/v) Ni-Sepharose FF(GE Healthcare)懸濁液 100 μlを加え、4℃で1時間混合した後、混合液をマイクロバイオスピンカラム(Bio-Rad)に添加した。樹脂を、0.1% TritonX-114を加えた結合バッファー500 μlで10回、結合バッファーで5回洗浄した後、溶出バッファー(50 mM Tris-HCl pH8, 500 mM NaCl, 400 mM imidazole, 7 mM 2-mercaptoethanol)200 μlでFLAG-Hisタグ付きタンパク質毒素を溶出した。
 発現産物は、上記手順に代えて、以下の簡易精製によっても精製することができた。
<5.発現産物の簡易精製>
 発現したFLAG-Hisタグ付きタンパク質毒素を含むPUREfrex(R) 2.0反応液20μlを結合バッファー(50 mM Tris-HCl pH8, 500 mM NaCl, 20 mM MgCl2, 20 mM imidazole)で5倍に希釈した。希釈したタンパク質溶液に、50% (v/v) Ni-Sepharose FF(GE Healthcare)懸濁液 20 μlを加え、4℃で1時間混合した。遠心により樹脂を沈殿させ、上清の未吸着画分を除去した。樹脂を結合バッファー50 μlで5回洗浄した後、imidazole濃度を増加した溶出バッファー(50 mM Tris-HCl pH8, 500 mM NaCl, 100-400 mM imidazole)50 μlでFLAG-Hisタグ付きタンパク質毒素を溶出した。
<6.分析>
 図1のSDS-PAGEの分析手順と結果:上記工程4で発現したタンパク毒素を等量の×2 SDS-PAGEサンプルバッファー(0.5MTris-HCl(pH6.8):1.25ml、グリセロール:1.0ml、10%SDS:2.0ml、2-メルカプトエタノール:0.5ml、0.1%BPB:0.25ml)と混合し、95℃で5分間加熱した。加熱後、1μlずつ10-20% SuperSep Ace ゲル(Wako Pure chemical)の各レーンにアプライし、 35 mAで50分間泳動し、Oriole Fluorescent Gel Stain(BIO-rad)で1時間染色後、精製水で洗浄した。結果、全てのタンパク質毒素でバンドを確認した。
 図2のウエスタンブロットの分析手順と結果:前項のSDS-PAGEと同様の手順で反応液を0.05μl分ずつ各レーンにアプライし、電気泳動を行った。次にiBlot(登録商標) Transfer Stack, nitorcellulose(Novex)を使用し、ニトロセルロース膜に転写した。その後、5%スキムミルク含有PBS-T (Phsophate Buffered Saline with Tween 20)(0.1% Tween-20) により室温で1時間ブロッキングを行い、PBS-Tで2回、5分間の洗浄を行った。検出用の抗体としてM2抗体(抗FLAG抗体)HRPコンジュゲート(Sigma)をPBS-Tで500倍希釈したものを使用し、1時間反応した。反応後、PBS-Tで6回、5分間の洗浄を行い、ECL prime western blotting detection reagent(GEヘルスケア)により発色させて、image analyzer(LAS,GEヘルスケア)で検出した。結果、全てのタンパク質毒素でバンドを確認した。
 図3の活性測定の分析手順と結果:上記工程4で発現したPE38を含む合成反応後の反応液(PE38溶液)を使用して、タンパク質合成阻害活性を確認した。阻害試験の対象とするタンパク質合成系として、1-Step Human Coupled IVT Kit - DNA(Thermo scientific)によるGFP (緑色蛍光タンパク質)の合成系を使用した。具体的には、該キットを使用し、キットのプロトコルに従い反応液を調製した。反応液に、反応液の最終容量の1/20量のPE38溶液または対照として水を添加し、30℃、1.5時間でGFPの合成を行った。PE38溶液は精製水で段階希釈してそれぞれ用いた。合成したGFPを含む反応液(GFP溶液)を精製水で50倍希釈し、マイクロプレートリーダー(TECAN、Infinite 200)を用いて以下の条件でGFP量の測定を行った。この結果、濃度に応じてGFPの合成が阻害され、PE38が合成阻害活性を持つことを確認した。
 測定条件:
Figure JPOXMLDOC01-appb-T000001
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (38)

  1.  少なくとも開始因子、伸長因子、アミノアシルtRNA合成酵素、リボソーム、アミノ酸、ヌクレオシド三リン酸及びtRNAを含む無細胞タンパク質合成系を用いて、タンパク質合成阻害タンパク質毒素のアミノ酸配列を含むポリペプチドをコードする核酸から該ポリペプチドを合成する工程を含む、ポリペプチドの製造方法。
  2.  前記無細胞タンパク質合成系のうち少なくともリボソームが原核生物由来である請求項1に記載の製造方法。
  3.  前記無細胞タンパク質合成系のうち少なくともリボソームが真核生物由来である請求項1に記載の製造方法。
  4.  前記タンパク質合成阻害タンパク質毒素が、リシン、緑膿菌外毒素A、志賀毒素、ゲロニン、サポリン、ブーガニン、ヤマゴボウ抗ウイルスタンパク質、ジフテリア毒素、アルファーサルシン、ブリオディン、モモルデイン及びリストリクトシンからなる群より選ばれる少なくとも1つである請求項1~3のいずれか1項に記載の製造方法。
  5.  緑膿菌外毒素AがPE38の形態であり、ブーガニンがDeブーガニンの形態である、請求項4に記載の製造方法。
  6.  前記核酸が、タンパク質合成阻害タンパク質毒素のアミノ酸配列をコードする領域の上流または下流に抗体のアミノ酸配列をコードする領域を含む請求項1~5のいずれか1項に記載の製造方法。
  7.  前記抗体が部分抗体である請求項6に記載の製造方法。
  8.  前記核酸が、精製用タグのアミノ酸配列をコードする領域を含む請求項1~7のいずれか1項に記載の製造方法。
  9.  前記精製用タグが、Hisタグ、GSTタグ、FLAGタグ、MBPタグ、Mycタグ、HAタグ、Strepタグ、PAタグ、TARGETタグ及びSUMOタグの群より選択される少なくとも1つである請求項8に記載の製造方法。
  10.  前記核酸が、プロテアーゼ認識配列をコードする領域を含む請求項1~9のいずれか1項に記載の製造方法。
  11.  前記プロテアーゼ認識配列が、トロンビン(Thrombin)認識配列、ファクターXa(Factor Xa)認識配列、TEVプロテアーゼ配列、SUMOタグ配列及びプレシジョンプロテアーゼ(PreScission Protease)認識配列の群より選択される少なくとも1つである請求項10に記載の製造方法。
  12.  前記ポリペプチドと相互作用する担体を用いてポリペプチドを精製する工程を含む請求項1~11のいずれか1項に記載の製造方法。
  13.  前記無細胞タンパク質合成系に含まれる開始因子、伸長因子、アミノアシルtRNA合成酵素及びリボソームの少なくとも一つが精製用タグを有する請求項1~12のいずれか1項に記載の製造方法。
  14.  前記無細胞タンパク質合成系が、還元剤を含む請求項1~13のいずれか1項に記載の製造方法。
  15.  前記還元剤が、ジチオスレイトール、2-メルカプトエタノール及び還元型グルタチオンの群より選択される少なくとも1つである請求項14に記載の製造方法。
  16.  前記無細胞タンパク質合成系が、前記ジチオスレイトールを少なくとも1mMの濃度で含む、請求項15に記載の製造方法。
  17.  前記無細胞タンパク質合成系が、酸化型グルタチオン、ジスルフィド結合異性化酵素及び分子シャペロンから選択される少なくとも1つを含む請求項1~16のいずれか1項に記載の製造方法。
  18.  前記無細胞タンパク質合成系が還元剤を更に含み、前記無細胞タンパク質合成系が前記酸化型グルタチオンを前記還元剤の濃度以上の濃度で含む、請求項17に記載の製造方法。
  19.  前記分子シャペロンが、hsp60ファミリー、hsp70ファミリー及びリボソーム結合型分子シャペロンの群より選択される少なくとも1つである、請求項17又は18に記載の製造方法。
  20.  前記分子シャペロンが、GroEL、GroES、DnaK、DnaJ、GrpE及びTFの群より選択される少なくとも1つである請求項19に記載の製造方法。
  21.  少なくとも開始因子、伸長因子、アミノアシルtRNA合成酵素、リボソーム、アミノ酸、ヌクレオシド三リン酸、tRNA及びタンパク質合成阻害タンパク質毒素のアミノ酸配列を含むポリペプチドを含む組成物。
  22.  前記ポリペプチドが、タンパク質合成阻害タンパク質毒素のアミノ酸配列の上流または下流に抗体のアミノ酸配列を含む請求項21に記載の組成物。
  23.  前記抗体が、部分抗体である請求項22に記載の組成物。
  24.  前記組成物が、還元剤を含む請求項21~23のいずれか1項に記載の組成物。
  25.  前記還元剤が、ジチオスレイトール、2-メルカプトエタノール及び還元型グルタチオンの群より選択される少なくとも1つである請求項24に記載の組成物。
  26.  前記無細胞タンパク質合成系が、前記ジチオスレイトールを少なくとも1mMの濃度で含む、請求項25に記載の組成物。
  27.  前記組成物が、酸化型グルタチオン、ジスルフィド結合異性化酵素及び分子シャペロンから選択される少なくとも1つを含む請求項21~26のいずれか1項に記載の組成物。
  28.  前記組成物が還元剤を更に含み、前記組成物が前記酸化型グルタチオンを前記還元剤の濃度以上の濃度で含む請求項27に記載の組成物。
  29.  前記分子シャペロンが、hsp60ファミリー、hsp70ファミリー及びリボソーム結合型分子シャペロンの群より選択される少なくとも1つである、請求項27または28に記載の組成物。
  30.  前記分子シャペロンがGroEL、GroES、DnaK、DnaJ、GrpE及びTFの群より選択される少なくとも1つである請求項29に記載の組成物。
  31.  前記ポリペプチドが精製用タグを有する請求項21~30のいずれか1項に記載の組成物。
  32.  前記精製用タグが、Hisタグ、GSTタグ、FLAGタグ、MBPタグ、Mycタグ、HAタグ、Strepタグ、PAタグ、TARGETタグ及びSUMOタグの群より選択される少なくとも1つである請求項31に記載の組成物。
  33.  前記ポリペプチドがプロテアーゼ認識配列を有する請求項21~32のいずれか1項に記載の組成物。
  34.  前記プロテアーゼ認識配列が、トロンビン(Thrombin)認識配列、ファクターXa(Factor Xa)認識配列、TEVプロテアーゼ認識配列、SUMOタグ配列及びプレシジョンプロテアーゼ(PreScission Protease)認識配列の群より選択される少なくとも1つである請求項33に記載の組成物。
  35.  前記リボソームが原核生物由来である請求項21~34のいずれか1項に記載の組成物。
  36.  前記リボソームが真核生物由来である請求項21~34のいずれか1項に記載の組成物。
  37.  前記タンパク質合成阻害タンパク質毒素が、リシン、緑膿菌外毒素A、志賀毒素、ゲロニン、サポリン、ブーガニン、ヤマゴボウ抗ウイルスタンパク質、ジフテリア毒素、アルファーサルシン、ブリオディン、モモルデイン及びリストリクトシンからなる群より選ばれる少なくとも1つである請求項21~36のいずれか1項に記載の組成物。
  38.  緑膿菌外毒素AがPE38の形態であり、ブーガニンがDeブーガニンの形態である、請求項37に記載の組成物。
PCT/JP2015/080758 2014-10-31 2015-10-30 タンパク質合成阻害タンパク質毒素を含むポリペプチドの製造方法 WO2016068294A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014223717 2014-10-31
JP2014-223717 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016068294A1 true WO2016068294A1 (ja) 2016-05-06

Family

ID=55857627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080758 WO2016068294A1 (ja) 2014-10-31 2015-10-30 タンパク質合成阻害タンパク質毒素を含むポリペプチドの製造方法

Country Status (1)

Country Link
WO (1) WO2016068294A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131718A1 (ja) * 2017-01-16 2018-07-19 ジーンフロンティア株式会社 Dna特異的adp-リボシル化活性を有するポリペプチドの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536905A (ja) * 2003-11-25 2007-12-20 アメリカ合衆国 突然変異型抗cd22抗体および免疫複合体
JP2008500830A (ja) * 2004-06-01 2008-01-17 ドマンティス リミテッド 増加した血清半減期を有する二重特異性融合抗体
JP2008508903A (ja) * 2004-06-10 2008-03-27 ヴィヴェンティア バイオテック インコーポレーティッド 腫瘍特異的抗体
JP2008528633A (ja) * 2005-02-01 2008-07-31 リサーチ ディベロップメント ファウンデーション Blysレセプターを標的化するためのblys融合タンパク質およびb細胞増殖性疾患の処置方法
JP2012187049A (ja) * 2011-03-10 2012-10-04 Genefrontier Corp リポ多糖混入量を低減した蛋白質合成用組成物、該組成物を用いた蛋白質製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536905A (ja) * 2003-11-25 2007-12-20 アメリカ合衆国 突然変異型抗cd22抗体および免疫複合体
JP2008500830A (ja) * 2004-06-01 2008-01-17 ドマンティス リミテッド 増加した血清半減期を有する二重特異性融合抗体
JP2008508903A (ja) * 2004-06-10 2008-03-27 ヴィヴェンティア バイオテック インコーポレーティッド 腫瘍特異的抗体
JP2008528633A (ja) * 2005-02-01 2008-07-31 リサーチ ディベロップメント ファウンデーション Blysレセプターを標的化するためのblys融合タンパク質およびb細胞増殖性疾患の処置方法
JP2012187049A (ja) * 2011-03-10 2012-10-04 Genefrontier Corp リポ多糖混入量を低減した蛋白質合成用組成物、該組成物を用いた蛋白質製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJII S. ET AL.: "In vitro evolution of alpha- hemolysin using a liposome display.", PROC NATL ACAD SCI USA, vol. 110, no. 42, 2013, pages 16796 - 16801 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131718A1 (ja) * 2017-01-16 2018-07-19 ジーンフロンティア株式会社 Dna特異的adp-リボシル化活性を有するポリペプチドの製造方法

Similar Documents

Publication Publication Date Title
US11970694B2 (en) Rapid display method in translational synthesis of peptide
JP6463732B2 (ja) 上昇したレベルの外因性シャペロンを有する細胞抽出物を用いる細菌無細胞合成系における生物活性のあるタンパク質の発現
KR102018863B1 (ko) 개선된 발현을 위해 박테리아 추출물 중 선택 단백질의 단백질분해 불활성화
US9617533B2 (en) Composition for synthesizing protein with reduced lipopolysaccharide contamination, method for producing protein using said composition
US10301618B2 (en) Efficient method for displaying protein multimer
EP2952582A1 (en) Flexible display method
Cui et al. Semisynthetic tRNA complement mediates in vitro protein synthesis
JPWO2012074029A1 (ja) 無細胞翻訳系でFabを提示しうるポリヌクレオチド構築物ならびにそれを用いたFabの製造方法およびスクリーニング方法
US20200332280A1 (en) Use of lambda-gam protein in ribosomal display technology
JP2009112286A (ja) 標的ポリペプチドに結合するポリペプチドを選択する方法
WO2016068294A1 (ja) タンパク質合成阻害タンパク質毒素を含むポリペプチドの製造方法
Liu et al. Cell-free biosynthesis and engineering of ribosomally synthesized lanthipeptides
Garbe et al. Protein trans‐splicing on an M13 bacteriophage: towards directed evolution of a semisynthetic split intein by phage display
JP2023544254A (ja) 無細胞タンパク質合成系を用いた抗体の大規模産生方法
JP2006340694A (ja) 分子シャペロンを用いたinvitro転写・翻訳系によるタンパク質合成方法
JP2017216961A (ja) 非天然アミノ酸含有ペプチドライブラリ
WO2018131718A1 (ja) Dna特異的adp-リボシル化活性を有するポリペプチドの製造方法
Chance et al. Eukaryotic ribosome display for antibody discovery: A review
KR20220113729A (ko) 비천연 아미노산을 포함하는 펩타이드의 제조 방법
JP5709098B2 (ja) タンパク質の可逆的デュアルラベリング法
Ueda The Constructive Approach for Cell‐Free Translation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15855643

Country of ref document: EP

Kind code of ref document: A1