WO2016068107A1 - Temperature sensor - Google Patents

Temperature sensor Download PDF

Info

Publication number
WO2016068107A1
WO2016068107A1 PCT/JP2015/080182 JP2015080182W WO2016068107A1 WO 2016068107 A1 WO2016068107 A1 WO 2016068107A1 JP 2015080182 W JP2015080182 W JP 2015080182W WO 2016068107 A1 WO2016068107 A1 WO 2016068107A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
insulating tube
end side
pair
temperature sensor
Prior art date
Application number
PCT/JP2015/080182
Other languages
French (fr)
Japanese (ja)
Inventor
雅紀 廣中
元樹 佐藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112015004970.3T priority Critical patent/DE112015004970B4/en
Publication of WO2016068107A1 publication Critical patent/WO2016068107A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2205/00Application of thermometers in motors, e.g. of a vehicle
    • G01K2205/04Application of thermometers in motors, e.g. of a vehicle for measuring exhaust gas temperature

Definitions

  • the present disclosure relates to a temperature sensor that measures the temperature of a measurement site using a temperature sensitive element.
  • a temperature sensitive element that measures the temperature of exhaust gas or the like flowing through an exhaust pipe of a vehicle.
  • a temperature sensitive element whose electrical characteristics change depending on the temperature is used.
  • a pair of signal wires extending from the temperature sensing element to the rear end side, an insulating tube that holds the pair of signal wires while insulating them, and an outer tube that covers the outer periphery of the insulating tube are provided.
  • the outer periphery of the insulating tube is held on the outer tube directly or via a filler or the like, and the outer periphery of the rear end is held on the outer tube via an elastic body, a metal mesh, a rubber bush, or the like. Has been.
  • Patent Document 1 discloses a temperature sensor in which an insulating tube is attached to a cylindrical member by a holding member.
  • the holding member is configured by an elastic body such as a spring or a metal mesh in which metal thin wires are entangled.
  • the holding member when the environment in which the temperature is measured by the temperature sensor is high, the holding member is thermally deteriorated by heat, and it is difficult to stably hold the insulating tube on the cylindrical member. Furthermore, when vibration due to running of the vehicle is transmitted to the temperature sensor, the holding member is more likely to be thermally deteriorated due to the influence of repeatedly generated stress.
  • the thermal deterioration referred to here is hot relaxation, which means that plastic strain is generated under a low stress within the elastic limit, and the holding member loses holding power.
  • the insulating tube may receive the vibration and break or bend.
  • the present disclosure has been made in view of such a background, and provides a temperature sensor that can improve durability against heat and can stably hold an insulating tube on an outer tube over a long period of time. It is aimed.
  • the temperature sensor is A temperature-sensitive element whose electrical characteristics change with temperature, A pair of signal lines extending from the thermosensitive element to the rear end side; An insulating tube that is inserted through the pair of signal lines and insulated from the pair of signal lines; An outer tube covering the insulating tube and the temperature sensing element; A tip-side holding member that is provided on the outer periphery of the tip of the insulating tube and holds the tip of the insulating tube on the outer tube; A rear end holding member provided on an outer periphery of the rear end portion of the insulating tube, and holding the rear end portion of the insulating tube on the outer tube; With The said front end side holding member is comprised from the nonmetallic inorganic fiber.
  • tip part of an insulating tube to an outer tube is comprised from the nonmetallic inorganic fiber. Even if the environment measured by the temperature sensor is high temperature, this non-metallic inorganic fiber is hardly deteriorated by heat, and the performance of holding the insulating tube on the outer tube hardly decreases. In particular, the tip-side holding member provided on the outer periphery of the tip of the insulating tube is easily heated to a high temperature. For this reason, the insulating tube can be stably held on the outer tube for a long period of time by configuring the tip side holding member from the non-metallic inorganic fiber.
  • the insulating tube by holding the insulating tube on the outer tube by the front end side holding member and the rear end side holding member, it is possible to prevent the insulating tube from being cracked or bent due to vibration or the like. Therefore, according to said structure, durability of the temperature sensor with respect to a heat
  • the insulating tube can be held on the outer tube by each holding member, it is not necessary to fix the insulating tube to the outer tube with a filler. That is, the amount of filler used can be a small amount for fixing the temperature sensitive element to the outer tube, and a cavity can be provided between the filler and the insulating tube. Thereby, the amount of heat transfer from the temperature-sensitive element to the insulating tube via the filler can be suppressed, and the responsiveness and high-temperature vibration resistance of the temperature sensor can be improved.
  • Sectional drawing which shows the temperature sensor concerning embodiment Sectional drawing which shows the front end side part of the temperature sensor concerning embodiment. Sectional drawing which shows the rear-end side part of the temperature sensor concerning embodiment. Explanatory drawing which shows the temperature sensor concerning embodiment attached to the exhaust pipe. Explanatory drawing which shows the state which inserts the insulation pipe
  • the temperature sensor 1 includes a temperature sensitive element 2, a pair of signal wires 21, an insulating tube 3, an outer tube 4, a front end side holding member 5A, and a rear end side holding member 5B. ing.
  • the temperature sensitive element 2 has an electrical characteristic (electrical resistance) that varies depending on the temperature.
  • the pair of signal lines 21 extends from the temperature sensitive element 2 to the rear end side.
  • the insulating tube 3 has a pair of signal lines 21 inserted therethrough and is insulated from the pair of signal lines 21.
  • the insulating tube 3 insulates the pair of signal lines 21 from the outer tube 4.
  • the outer tube 4 is made of metal and is formed in a shape that covers the insulating tube 3 and the temperature sensitive element 2.
  • the distal end side holding member 5 ⁇ / b> A is provided on the outer periphery of the distal end portion 31 of the insulating tube 3, and holds the distal end portion 31 of the insulating tube 3 on the outer tube 4.
  • the rear end side holding member 5 ⁇ / b> B is provided on the outer periphery of the rear end portion 32 of the insulating tube 3, and holds the rear end portion 32 of the insulating tube 3 on the outer tube 4.
  • the front end side holding member 5A and the rear end side holding member 5B are made of non-metallic inorganic fibers.
  • the temperature sensor 1 of the present embodiment is disposed in the exhaust pipe 7 of the vehicle and measures the temperature of the exhaust gas G flowing through the exhaust pipe 7.
  • An insertion hole 71 for inserting the temperature sensor 1 is formed in the exhaust pipe 7.
  • a female screw part 711 is formed on the front side of the insertion hole 71, and a latching part 712 having a diameter smaller than that of the female screw part 711 is formed on the back side of the insertion hole 71.
  • a rib 43 provided on the outer pipe 4 is hooked on the hooking part 712 of the insertion hole 71, and the outer pipe 4 is put on the female thread part 711.
  • a nipple 44 to be attached to the outer periphery of the nipple is tightened. Then, the rib 43 is brought into close contact with the hooking portion 712 to close the gap between the temperature sensor 1 and the insertion hole 71.
  • the temperature sensitive element 2 is constituted by a thermistor.
  • the temperature sensing element 2 can also be constituted by a resistance temperature detector made of a thermocouple, platinum (Pt) or the like instead of the thermistor.
  • the temperature sensitive element 2 is covered with a glass layer 22 for suppressing oxygen reduction deterioration.
  • the temperature sensing element 2 is disposed inside the distal end portion 411 of the outer tube 4 and in a space S formed on the distal end side of the distal end surface 311 of the insulating tube 3.
  • a filler 61 for fixing the temperature-sensitive element 2 to the distal end portion 411 of the outer tube 4 is disposed at the distal end side portion in the space S in a state where a part of the space S is left at the rear end side portion.
  • the filler 61 contains aggregate particles such as ceramic powder, glass components, and the like.
  • the pair of signal lines 21 protrudes from the distal end surface 311 of the insulating tube 3 toward the distal end side and is connected to the temperature sensing element 2, and after being disposed in the insulating tube 3. And an end portion 214.
  • the distance between the front end side portions 213 of the pair of signal lines 21 is bent from the rear end side portion 214, so that the distance between the rear end side portions 214 of the pair of signal lines 21 is narrower.
  • the front end portion 213 of the pair of signal lines 21 and the rear end portion 214 of the pair of signal lines 21 are formed in parallel to each other. Between the front end side portion 213 and the rear end side portion 214 of the pair of signal lines 21, a tapered portion 215 that connects the two is formed.
  • the filler 61 covers the entire temperature sensing element 2 and the entire tip end portion 213 of the pair of signal lines 21.
  • the range of the length L1 filled with the filler 61 is the front end portion of the outer tube 4 It can be made into the range of 0.6L or more from the inner front end surface of 411 to the rear end side.
  • a part of the space S is formed between the rear end position of the filler 61 and the front end surface 311 of the insulating tube 3. To be left behind. Note that if heat transfer from the temperature sensing element 2 to the rear end side of the insulating tube 3 or the like occurs, the responsiveness of the temperature sensor 1 is lowered.
  • the temperature sensing element 2 By covering the entire temperature sensing element 2 with the filler 61, the temperature sensing element 2 can be protected from vibrations and the like. Further, by covering the entire distal end portion 213 of the pair of signal lines 21 with the filler 61, the filler 61 is disposed between the distal end portions 213 of the pair of signal lines 21. Contact between the distal end portions 213 can be reliably prevented. Moreover, in the temperature sensor 1 of this embodiment, the usage amount of the filler 61 can be reduced by holding the insulating tube 3 and the pair of signal lines 21 on the outer tube 4 by the holding members 5A and 5B.
  • the insulating tube 3 is configured by a cylindrical ceramic sintered body having a pair of insertion holes 33 through which the pair of signal lines 21 are inserted.
  • the insulating tube 3 is made of ceramics having high heat resistance such as Al 2 O 3 (alumina), ZrO 2 (zirconia), MgO (magnesia), and the like. Among these ceramics, Al 2 O 3 is preferable because of its high strength and good workability.
  • Each signal line 21 is connected to the temperature sensing element 2 and is inserted into each insertion hole 33.
  • Each signal line 21 is made of a heat-resistant material such as, for example, INCONEL601, INCONEL600, Pt, Fe—Cr—Al alloy, Pt—Ir alloy.
  • an adhesive for example, a ceramic adhesive such as Aron ceramics
  • Each signal line 21 is fixed to the insulating tube 3 with an adhesive 34.
  • the outer tube 4 is connected to the distal end side tube portion 41 covering the distal end side portion of the insulating tube 3 and the temperature sensing element 2 and the rear end side of the distal end side tube portion 41, and the rear end covering the rear end side portion of the insulating tube 3.
  • Side tube portion 42 Side tube portion 42.
  • the distal end portion 411 of the distal end side tube portion 41 is reduced in diameter in accordance with the size of the temperature sensing element 2 at a position closer to the distal end side than the distal end surface 311 of the insulating tube 3.
  • the distal end side holding member 5 ⁇ / b> A is sandwiched between the outer periphery of the distal end portion 31 of the insulating tube 3 and the inner periphery of the distal end side tube portion 41. It is held by the side tube portion 41.
  • the rear end side holding member 5B is sandwiched between the outer periphery of the rear end portion 32 of the insulating tube 3 and the inner periphery of the rear end side tube portion 42, and the rear end portion 32 of the insulating tube 3 is connected to the rear end side tube. Held in the part 42.
  • a rear end side holding member 5 ⁇ / b> B provided on the outer periphery of the rear end portion 32 of the insulating tube 3, and from the rear end surface of the insulating tube 3 to the rear end side.
  • a pair of lead wires 62 connected to a portion of the pair of signal wires 21 projecting toward and a rubber bush 63 for holding the pair of lead wires 62 in the rear end side pipe portion 42 are disposed. .
  • the distal end portion 31 of the insulating tube 3 is reduced in diameter at the outer periphery of a portion 412 of the distal end side tube portion 41 located on the outer peripheral side of the distal end side holding member 5A, whereby the distal end side tube portion 41 is interposed via the distal end side holding member 5A. It has been cramped.
  • the rear end portion 32 of the insulating tube 3 is reduced in diameter by reducing the outer periphery of a portion 421 of the rear end side tube portion 42 located on the outer peripheral side of the rear end side holding member 5B, thereby allowing the rear end portion 32 to pass through the rear end side holding member 5B. It is caulked to the end side pipe part 42.
  • the pair of lead wires 62 are caulked to the rear end side pipe portion 42 via the bush 63 by reducing the diameter of the outer periphery of a portion 422 of the rear end side pipe portion 42 located on the outer peripheral side of the bush 63.
  • the maximum static frictional force acting on the insulating tube 3 by the holding members 5A and 5B acts on the insulating tube 3 by vibration. It becomes larger than the load.
  • the maximum static frictional force is the repulsive force (surface pressure) acting on the holding members 5A and 5B, the static friction coefficient between the insulating tube 3 and the holding members 5A and 5B, and the holding members 5A and 5B and the outer tube. 4 based on the coefficient of static friction between 4 and 4. Thereby, the insulating tube 3 can be stably held in the outer tube 4.
  • the non-metallic inorganic fibers constituting the holding members 5A and 5B are ceramic fiber molded bodies formed into a cylindrical shape, a mat shape, or a sheet shape.
  • the molded body of ceramic fiber is excellent in heat resistance.
  • the ceramic fiber is composed of alumina fiber, silica fiber, or the like.
  • the molded body of ceramic fibers can be molded into a predetermined shape by mixing ceramic fibers and any other component such as a binder.
  • the ceramic fiber molded body can be formed by collecting ceramic fibers in a cotton shape without using a binder.
  • the nonmetallic inorganic fibers constituting the holding members 5A and 5B can be, for example, glass fibers or rock wool, in addition to the ceramic fibers.
  • the mat-like or sheet-like holding members 5 ⁇ / b> A and 5 ⁇ / b> B made of a ceramic fiber molded body can be wound around the insulating tube 3. Further, when the cylindrical holding members 5A and 5B are used, the insulating tube 3 can be press-fitted into the holding members 5A and 5B. When the temperature sensor 1 is assembled, as shown in FIG. 5, the insulating tube 3 assembled with the holding members 5 ⁇ / b> A and 5 ⁇ / b> B can be inserted into the outer tube 4.
  • the holding members 5 ⁇ / b> A and 5 ⁇ / b> B slide along the inner periphery of the outer tube 4, so that the insulating tube 3 and the outer tube are inserted. 4 can be improved. Thereby, the assembly
  • the coaxiality between the insulating tube 3 and the outer tube 4 can be easily secured, the distal end side tube portion 41 in which the temperature sensing element 2 is reduced in diameter when the insulating tube 3 is inserted into the outer tube 4. Thus, it is possible to prevent the temperature sensitive element 2 from being cracked during assembly.
  • each holding member 5A, 5B can be assembled to the insulating tube 3 via an adhesive (for example, a ceramic adhesive or a nonwoven fabric containing an organic binder).
  • an adhesive for example, a ceramic adhesive or a nonwoven fabric containing an organic binder.
  • the holding members 5A and 5B can be made difficult to be displaced in the axial direction of the insulating tube 3 by the adhesive.
  • the adhesive can be volatilized by heat when the filler 61 in the temperature sensor 1 after assembly is sintered.
  • each holding member 5A, 5B can contain an expansion material such as vermiculite.
  • the inflating material is contained in the gap between the ceramic fibers.
  • the expansion material expands due to heat generated when the filler 61 in the temperature sensor 1 after assembly is sintered.
  • the molded body of the ceramic fiber which comprises each holding member 5A, 5B expand
  • the insulating tube 3 can be connected via the holding members 5A and 5B without reducing the outer circumference of the outer tube 4 and pressing (caulking) the holding members 5A and 5B. It can be fixed to the outer tube 4.
  • the front end side holding member 5A and the rear end side holding member 5B are formed of a ceramic fiber molded body. Even if the environment measured by the temperature sensor 1 is high temperature, the ceramic fiber is hardly thermally deteriorated, and the performance of holding the insulating tube 3 on the outer tube 4 hardly decreases. Therefore, the insulating tube 3 can be stably held on the outer tube 4 over a long period of time by configuring the holding members 5A and 5B from ceramic fibers.
  • the density means the filling density, that is, the density of the holding members 5A and 5B after the temperature sensor 1 is assembled.
  • each holding member 5A, 5B is formed of a ceramic fiber molded body, oxygen can be easily supplied to the temperature sensing element 2 through each holding member 5A, 5B.
  • the insulating tube 3 can be prevented from being broken by vibration or the like. Further, as shown in FIG. 7, the vibration stress acting on the insulating tube 3 is reduced by increasing the axial length of each holding member 5A, 5B and increasing the area of each holding member 5A, 5B assembled to the insulating tube 3. can do. Therefore, according to the temperature sensor 1 of the present embodiment, durability against heat can be improved, and the insulating tube 3 can be stably held on the outer tube 4 over a long period of time.
  • the insulation tube 3 is held on the outer tube 4 by the holding members 5A and 5B to prevent the insulation tube 3 from cracking when the temperature sensor 1 is assembled, and to reduce the amount of filler 61 used. A decrease in responsiveness of the temperature sensor 1 can be prevented.
  • the relationship between the thickness t1 of the holding members 5A and 5B and the clearance t2 between the insulating tube 3 and the outer tube 4 is t1> t2. Is preferred. Thereby, the coaxiality of the insulating tube 3 and the outer tube 4 can be improved, and the insulating tube 3 can be stably held by the outer tube 4.
  • the thickness t1 of the holding members 5A and 5B is too large, the temperature sensor 1 is hindered and the holding force (surface pressure) acting on the holding members 5A and 5B becomes too high, and the holding member 5A. , 5B may cause heat sink. Therefore, the relationship between the thickness t1 and the clearance t2 is more preferably 2 ⁇ t2> t1> t2.
  • the insulating tube 3 cannot be sufficiently held, and the insulating tube 3 may crack when vibration stress is applied to the insulating tube 3. is there.
  • the clearance between the insulating tube 3 and the outer tube 4 is about 1 mm
  • sheet-like holding members 5A and 5B having a thickness of about 1.5 mm can be used. Then, by press-fitting the insulating tube 3 around which the holding members 5A and 5B are wound into the outer tube 4, the coaxiality between the insulating tube 3 and the outer tube 4 is improved, and the assembling property of the temperature sensor 1 is improved. be able to.
  • the insulating tube 3 can be held on the outer tube 4 by holding members 5A, 5B, 5C provided at three locations in the longitudinal direction.
  • the holding member 5 ⁇ / b> C provided at the intermediate position can also be compressed by reducing the outer diameter of the portion 413 of the distal end side tube portion 41.
  • the front end side holding member 5A and the rear end side holding member 5B can be configured by a holding member 5 in which these are integrated.
  • the entire length of the insulating tube 3 can be held by the outer tube 4 by the holding member 5.
  • the insulating tube 3 can be stably held on the outer tube 4 over a long period of time.
  • FIGS. 1 to 9 show the case where the signal line 21 of the temperature sensing element 2 is constituted by a lead wire drawn out from the temperature sensing element 2.
  • the signal line 21 is a laser produced by abutting a lead portion 211 drawn from the temperature sensing element 2 with a lead wire member 212 protruding from the insertion hole 33 of the insulating tube 3. It can also be set as the structure welded.
  • the signal line 21 is laser-welded by superposing a lead portion 211 drawn from the temperature sensing element 2 and a lead wire member 212 protruding from the insertion hole 33 of the insulating tube 3. It can also be configured. In this case, the entire portion of the lead portion 211 that is not overlapped with the lead wire member 212 is covered with the filler 61.
  • the insulating tube 3 may be a sheath pin.
  • the sheath pin is constituted by a metal hollow tube 35 and an insulating filling powder 36 filled in the hollow tube 35 through which the pair of signal wires 21 (lead wire members 212) are inserted.
  • the pair of signal wires 21 (lead wire members 212) and the outer tube 4 can be insulated by the insulating filling powder 36.
  • the same effect as the case where the insulating tube 3 is comprised by the ceramic sintered compact can be acquired.
  • the lead portions 211 constituting the pair of signal lines 21 can be made of, for example, Pt, Pt—Ir alloy, Pt—Rh alloy, etc., and the lead wires constituting the pair of signal lines 21
  • the member 212 can be composed of, for example, INCONEL601, INCONEL600, Fe—Cr—Al alloy, or the like.
  • the filling powder 36 for example, can be constituted by MgO (magnesia powder) and SiO 2 (silica powder).
  • the lead part 211 drawn out from the temperature sensing element 2 and the pair of lead wire members 212 can be overlapped and laser-welded. In this case, the entire welded portion between the lead portion 211 and the lead wire member 212 is covered with the filler 61.

Abstract

This temperature sensor (1) includes: a temperature-sensitive element (2) that changes electrical characteristics in accordance with the temperature; a pair of signal lines (21) extending from the temperature-sensitive element (2) toward the back-end side; an insulation tube (3) that allows the pair of signal lines (21) to be inserted thereinto, so as to insulate the pair of signal lines (21); an external tube (4) that covers the insulation tube (3) and the temperature-sensitive element (2); a leading-end holding member (5A) which is provided on the outer circumference of a leading end (31) of the insulation tube (3), and which allows the leading end (31) of the insulation tube (3) to be held to the external tube (4); and a back-end holding member (5B) which is provided on the outer circumference of a back end (32) of the insulation tube (3), and which allows the back end (32) of the insulation tube (3) to be held to the external tube (4). The leading-end holding member (5A) is formed of a non-metallic inorganic fiber.

Description

温度センサTemperature sensor 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年10月31日に出願された日本特許出願番号2014-223263と、2015年6月12日に出願された日本特許出願番号2015-119661に基づくものであって、その優先権の利益を主張するものであり、その内容の全てが参照により本出願に組み入れられる。 This application is based on Japanese Patent Application No. 2014-223263 filed on October 31, 2014 and Japanese Patent Application No. 2015-119661 filed on June 12, 2015. The entire contents of which are hereby incorporated by reference into this application.
 本開示は、感温素子によって被測定部位の温度を測定する温度センサに関する。 The present disclosure relates to a temperature sensor that measures the temperature of a measurement site using a temperature sensitive element.
 車両の排気管を流れる排気ガス等の温度を測定する温度センサにおいては、温度によって電気特性が変化する感温素子を用いている。温度センサにおいては、感温素子から後端側に伸びる一対の信号線と、該一対の信号線を絶縁しつつ保持する絶縁管と、該絶縁管の外周を覆う外管とが設けられている。そして、絶縁管は、その先端部の外周が直接又はフィラー等を介して外管に保持され、またその後端部の外周が弾性体、金属メッシュ、ゴム製のブッシュ等を介して外管に保持されている。 In a temperature sensor that measures the temperature of exhaust gas or the like flowing through an exhaust pipe of a vehicle, a temperature sensitive element whose electrical characteristics change depending on the temperature is used. In the temperature sensor, a pair of signal wires extending from the temperature sensing element to the rear end side, an insulating tube that holds the pair of signal wires while insulating them, and an outer tube that covers the outer periphery of the insulating tube are provided. . The outer periphery of the insulating tube is held on the outer tube directly or via a filler or the like, and the outer periphery of the rear end is held on the outer tube via an elastic body, a metal mesh, a rubber bush, or the like. Has been.
 例えば、特許文献1には、絶縁管が保持部材によって筒状部材に取り付けられた温度センサが開示されている。該保持部材は、バネ等の弾性体、又は金属製の細線を絡み合わせた金属メッシュによって構成されている。 For example, Patent Document 1 discloses a temperature sensor in which an insulating tube is attached to a cylindrical member by a holding member. The holding member is configured by an elastic body such as a spring or a metal mesh in which metal thin wires are entangled.
特開2012-93340号公報JP 2012-93340 A
 近年、排気ガス規制や高燃費への需要から温度センサを用いたターボ過給機の制御の改良が求められている。そのため、温度センサには、ターボ過給機を制御するための高応答性と、ターボ過給機を使用する高温、高振動の環境にも耐えられる高温耐振性とが要求される。
 しかしながら、本出願の発明者らは、特許文献1等の背景技術において、絶縁管を筒状部材(外管)に保持する保持部材を、バネ等の弾性体、金属メッシュ等によって構成する場合には、次の問題があることを見出した。すなわち、温度センサによって温度を測定する環境が高温であるときには、熱によって保持部材が熱劣化し、絶縁管を筒状部材に安定して保持することが困難になる。さらに、温度センサに車両の走行による振動が伝わるときには、繰り返し発生する応力の影響を受けて保持部材がさらに熱劣化しやすくなる。なお、ここで言う熱劣化とは、熱へたり(hot relaxation)のことであり、弾性限度内の低い応力下において塑性ひずみが発生し、保持部材が保持力を失うことを言う。この熱へたりが生じた場合には、温度センサに車両の走行による振動が伝わるときに、絶縁管が振動を受けて、割れる又は曲がるおそれがある。
 また、感温素子を筒状部材に固定するフィラーによって、絶縁管も筒状部材に固定する方法が知られている。しかし、フィラーによって絶縁管を筒状部材に固定した場合には、フィラーを介した素子から絶縁管への伝熱量が大きいため、温度センサの応答性が低下してしまう。
In recent years, there has been a demand for improved control of turbochargers using temperature sensors due to demand for exhaust gas regulations and high fuel efficiency. For this reason, the temperature sensor is required to have high responsiveness for controlling the turbocharger and high-temperature vibration resistance that can withstand high-temperature and high-vibration environments using the turbocharger.
However, the inventors of the present application, in the background art such as Patent Document 1, etc., when the holding member that holds the insulating tube on the cylindrical member (outer tube) is configured by an elastic body such as a spring, a metal mesh, or the like. Found the following problems. That is, when the environment in which the temperature is measured by the temperature sensor is high, the holding member is thermally deteriorated by heat, and it is difficult to stably hold the insulating tube on the cylindrical member. Furthermore, when vibration due to running of the vehicle is transmitted to the temperature sensor, the holding member is more likely to be thermally deteriorated due to the influence of repeatedly generated stress. The thermal deterioration referred to here is hot relaxation, which means that plastic strain is generated under a low stress within the elastic limit, and the holding member loses holding power. When this thermal sag occurs, when the vibration due to running of the vehicle is transmitted to the temperature sensor, the insulating tube may receive the vibration and break or bend.
In addition, a method of fixing an insulating tube to a cylindrical member with a filler that fixes the temperature sensitive element to the cylindrical member is known. However, when the insulating tube is fixed to the cylindrical member with the filler, the amount of heat transferred from the element through the filler to the insulating tube is large, and the responsiveness of the temperature sensor is lowered.
 本開示は、かかる背景に鑑みてなされたもので、熱に対する耐久性を向上させることができ、絶縁管を外管に長期に亘って安定して保持することができる温度センサを提供することを目的としている。 The present disclosure has been made in view of such a background, and provides a temperature sensor that can improve durability against heat and can stably hold an insulating tube on an outer tube over a long period of time. It is aimed.
 本開示の一態様において、温度センサは、
 温度によって電気特性が変化する感温素子と、
 該感温素子から後端側に伸びる一対の信号線と、
 該一対の信号線を内部に挿通させ、該一対の信号線と絶縁された絶縁管と、
 該絶縁管及び上記感温素子を覆う外管と、
 上記絶縁管の先端部の外周に設けられ、該絶縁管の先端部を上記外管に保持する先端側保持部材と、
 上記絶縁管の後端部の外周に設けられ、該絶縁管の後端部を上記外管に保持する後端側保持部材と、
 を備えており、
 上記先端側保持部材は、非金属無機繊維から構成されている。
In one aspect of the present disclosure, the temperature sensor is
A temperature-sensitive element whose electrical characteristics change with temperature,
A pair of signal lines extending from the thermosensitive element to the rear end side;
An insulating tube that is inserted through the pair of signal lines and insulated from the pair of signal lines;
An outer tube covering the insulating tube and the temperature sensing element;
A tip-side holding member that is provided on the outer periphery of the tip of the insulating tube and holds the tip of the insulating tube on the outer tube;
A rear end holding member provided on an outer periphery of the rear end portion of the insulating tube, and holding the rear end portion of the insulating tube on the outer tube;
With
The said front end side holding member is comprised from the nonmetallic inorganic fiber.
 上記の構成によれば、絶縁管の先端部を外管に保持する先端側保持部材は、非金属無機繊維から構成されている。
 この非金属無機繊維は、温度センサによって測定する環境が高温であっても、熱劣化しにくく、絶縁管を外管に保持する性能がほとんど低下しない。特に、絶縁管の先端部の外周に設けられる先端側保持部材は高温に加熱されやすい。そのため、先端側保持部材を非金属無機繊維から構成することにより、絶縁管を外管に長期に亘って安定して保持することができる。
According to said structure, the front end side holding member which hold | maintains the front-end | tip part of an insulating tube to an outer tube is comprised from the nonmetallic inorganic fiber.
Even if the environment measured by the temperature sensor is high temperature, this non-metallic inorganic fiber is hardly deteriorated by heat, and the performance of holding the insulating tube on the outer tube hardly decreases. In particular, the tip-side holding member provided on the outer periphery of the tip of the insulating tube is easily heated to a high temperature. For this reason, the insulating tube can be stably held on the outer tube for a long period of time by configuring the tip side holding member from the non-metallic inorganic fiber.
 また、絶縁管を先端側保持部材と後端側保持部材とによって外管に保持することにより、振動等による絶縁管の割れや曲がりの発生を防止することができる。
 それ故、上記の構成によれば、熱に対する温度センサの耐久性を向上させることができ、絶縁管を外管に長期に亘って安定して保持することができる。
Further, by holding the insulating tube on the outer tube by the front end side holding member and the rear end side holding member, it is possible to prevent the insulating tube from being cracked or bent due to vibration or the like.
Therefore, according to said structure, durability of the temperature sensor with respect to a heat | fever can be improved, and an insulating tube can be stably hold | maintained to an outer tube over a long period of time.
 また、各保持部材によって絶縁管を外管に保持することができるため、フィラーによって絶縁管を外管に固定する必要がない。つまり、フィラーの使用量は、感温素子を外管に固定するための少量とすることができ、フィラーと絶縁管との間に空洞を設けることができる。これにより、フィラーを介する感温素子から絶縁管への伝熱量を抑制することができ、温度センサの応答性及び高温耐振性を向上させることができる。 Also, since the insulating tube can be held on the outer tube by each holding member, it is not necessary to fix the insulating tube to the outer tube with a filler. That is, the amount of filler used can be a small amount for fixing the temperature sensitive element to the outer tube, and a cavity can be provided between the filler and the insulating tube. Thereby, the amount of heat transfer from the temperature-sensitive element to the insulating tube via the filler can be suppressed, and the responsiveness and high-temperature vibration resistance of the temperature sensor can be improved.
実施形態にかかる温度センサを示す断面図。Sectional drawing which shows the temperature sensor concerning embodiment. 実施形態にかかる温度センサの先端側部分を示す断面図。Sectional drawing which shows the front end side part of the temperature sensor concerning embodiment. 実施形態にかかる温度センサの後端側部分を示す断面図。Sectional drawing which shows the rear-end side part of the temperature sensor concerning embodiment. 排気管に取り付けられた実施形態にかかる温度センサを示す説明図。Explanatory drawing which shows the temperature sensor concerning embodiment attached to the exhaust pipe. 各保持部材が組み付けられた絶縁管を外管内に挿入する状態を示す説明図。Explanatory drawing which shows the state which inserts the insulation pipe | tube with which each holding member was assembled | attached in an outer pipe | tube. 第1変形例にかかる温度センサを示す断面図。Sectional drawing which shows the temperature sensor concerning a 1st modification. 第2変形例にかかる温度センサを示す断面図。Sectional drawing which shows the temperature sensor concerning a 2nd modification. 第3変形例にかかる温度センサを示す断面図。Sectional drawing which shows the temperature sensor concerning a 3rd modification. 第4変形例にかかる温度センサを示す断面図。Sectional drawing which shows the temperature sensor concerning a 4th modification. 第5変形例にかかる温度センサを示す断面図。Sectional drawing which shows the temperature sensor concerning a 5th modification. 第6変形例にかかる温度センサを示す断面図。Sectional drawing which shows the temperature sensor concerning a 6th modification. 第7変形例にかかる温度センサを示す断面図。Sectional drawing which shows the temperature sensor concerning a 7th modification.
 一実施形態にかかる温度センサ1は、図1に示すように、感温素子2、一対の信号線21、絶縁管3、外管4、先端側保持部材5A及び後端側保持部材5Bを備えている。感温素子2は、温度によって電気特性(電気抵抗)が変化するものである。一対の信号線21は、感温素子2から後端側に伸びる。絶縁管3は、一対の信号線21を内部に挿通させており、一対の信号線21と絶縁されている。また、絶縁管3は、一対の信号線21と外管4との絶縁を行うものである。外管4は、金属製であり、絶縁管3及び感温素子2を覆う形状に形成されている。先端側保持部材5Aは、絶縁管3の先端部31の外周に設けられており、絶縁管3の先端部31を外管4に保持している。後端側保持部材5Bは、絶縁管3の後端部32の外周に設けられており、絶縁管3の後端部32を外管4に保持している。先端側保持部材5A及び後端側保持部材5Bは、非金属無機繊維から構成されている。 As shown in FIG. 1, the temperature sensor 1 according to one embodiment includes a temperature sensitive element 2, a pair of signal wires 21, an insulating tube 3, an outer tube 4, a front end side holding member 5A, and a rear end side holding member 5B. ing. The temperature sensitive element 2 has an electrical characteristic (electrical resistance) that varies depending on the temperature. The pair of signal lines 21 extends from the temperature sensitive element 2 to the rear end side. The insulating tube 3 has a pair of signal lines 21 inserted therethrough and is insulated from the pair of signal lines 21. The insulating tube 3 insulates the pair of signal lines 21 from the outer tube 4. The outer tube 4 is made of metal and is formed in a shape that covers the insulating tube 3 and the temperature sensitive element 2. The distal end side holding member 5 </ b> A is provided on the outer periphery of the distal end portion 31 of the insulating tube 3, and holds the distal end portion 31 of the insulating tube 3 on the outer tube 4. The rear end side holding member 5 </ b> B is provided on the outer periphery of the rear end portion 32 of the insulating tube 3, and holds the rear end portion 32 of the insulating tube 3 on the outer tube 4. The front end side holding member 5A and the rear end side holding member 5B are made of non-metallic inorganic fibers.
 以下に、本実施形態の温度センサ1について、図1~図12を参照して詳説する。
 図4に示すように、本実施形態の温度センサ1は、車両の排気管7に配置されて、排気管7を流れる排気ガスGの温度を測定するものである。
 排気管7には、温度センサ1を挿入するための挿入孔71が形成されている。挿入孔71の手前側には、めねじ部711が形成されており、挿入孔71の奥側には、めねじ部711よりも縮径した掛止部712が形成されている。排気管7に温度センサ1を挿入する際には、挿入孔71の掛止部712に、外管4に設けられたリブ(rib)43を掛止させ、めねじ部711に、外管4の外周に装着するニップル(nipple)44を締め付ける。そして、リブ43を掛止部712に密着させて、温度センサ1と挿入孔71との隙間を閉塞している。
Hereinafter, the temperature sensor 1 of the present embodiment will be described in detail with reference to FIGS.
As shown in FIG. 4, the temperature sensor 1 of the present embodiment is disposed in the exhaust pipe 7 of the vehicle and measures the temperature of the exhaust gas G flowing through the exhaust pipe 7.
An insertion hole 71 for inserting the temperature sensor 1 is formed in the exhaust pipe 7. A female screw part 711 is formed on the front side of the insertion hole 71, and a latching part 712 having a diameter smaller than that of the female screw part 711 is formed on the back side of the insertion hole 71. When the temperature sensor 1 is inserted into the exhaust pipe 7, a rib 43 provided on the outer pipe 4 is hooked on the hooking part 712 of the insertion hole 71, and the outer pipe 4 is put on the female thread part 711. A nipple 44 to be attached to the outer periphery of the nipple is tightened. Then, the rib 43 is brought into close contact with the hooking portion 712 to close the gap between the temperature sensor 1 and the insertion hole 71.
 本実施形態において、感温素子2は、サーミスタによって構成されている。なお、感温素子2は、サーミスタの代わりに、熱電対、白金(Pt)等からなる測温抵抗体によって構成することもできる。図2に示すように、感温素子2は、酸素還元劣化を抑制するためのガラス層22によって覆われている。感温素子2は、外管4における先端部411の内部であって、絶縁管3の先端面311よりも先端側に形成された空間S内に配置されている。空間S内の先端側部分には、空間Sの一部を後端側部分に残す状態で、感温素子2を外管4の先端部411に固定するための充填材61が配置されている。充填材61は、セラミックス粉末等の骨材粒子、ガラス成分等を含んでいる。 In the present embodiment, the temperature sensitive element 2 is constituted by a thermistor. The temperature sensing element 2 can also be constituted by a resistance temperature detector made of a thermocouple, platinum (Pt) or the like instead of the thermistor. As shown in FIG. 2, the temperature sensitive element 2 is covered with a glass layer 22 for suppressing oxygen reduction deterioration. The temperature sensing element 2 is disposed inside the distal end portion 411 of the outer tube 4 and in a space S formed on the distal end side of the distal end surface 311 of the insulating tube 3. A filler 61 for fixing the temperature-sensitive element 2 to the distal end portion 411 of the outer tube 4 is disposed at the distal end side portion in the space S in a state where a part of the space S is left at the rear end side portion. . The filler 61 contains aggregate particles such as ceramic powder, glass components, and the like.
 図2に示すように、一対の信号線21は、絶縁管3の先端面311から先端側に向けて突出して感温素子2に繋がる先端側部分213と、絶縁管3内に配置された後端側部分214とを有している。一対の信号線21の先端側部分213の間隔は、後端側部分214から屈曲されることにより、一対の信号線21の後端側部分214の間隔よりも狭くなっている。一対の信号線21の先端側部分213及び一対の信号線21の後端側部分214は、それぞれ互いに平行な状態で形成されている。一対の信号線21の先端側部分213と後端側部分214との間には、両者を繋ぐテーパ状部分215が形成されている。 As shown in FIG. 2, the pair of signal lines 21 protrudes from the distal end surface 311 of the insulating tube 3 toward the distal end side and is connected to the temperature sensing element 2, and after being disposed in the insulating tube 3. And an end portion 214. The distance between the front end side portions 213 of the pair of signal lines 21 is bent from the rear end side portion 214, so that the distance between the rear end side portions 214 of the pair of signal lines 21 is narrower. The front end portion 213 of the pair of signal lines 21 and the rear end portion 214 of the pair of signal lines 21 are formed in parallel to each other. Between the front end side portion 213 and the rear end side portion 214 of the pair of signal lines 21, a tapered portion 215 that connects the two is formed.
 充填材61は、感温素子2の全体及び一対の信号線21の先端側部分213の全体を覆っている。そして、外管4における先端部411の内側先端面から絶縁管3の先端面311までの長さをLとしたとき、充填材61を充填する長さL1の範囲は、外管4における先端部411の内側先端面から後端側へ0.6L以上範囲とすることができる。ただし、感温素子2から絶縁管3等の後端側への伝熱量を小さくするために、充填材61の後端位置と絶縁管3の先端面311との間に空間Sの一部が残されるようにする。なお、感温素子2から絶縁管3等の後端側への伝熱が生じると、温度センサ1の応答性が低下することになる。 The filler 61 covers the entire temperature sensing element 2 and the entire tip end portion 213 of the pair of signal lines 21. When the length from the inner front end surface of the front end portion 411 of the outer tube 4 to the front end surface 311 of the insulating tube 3 is L, the range of the length L1 filled with the filler 61 is the front end portion of the outer tube 4 It can be made into the range of 0.6L or more from the inner front end surface of 411 to the rear end side. However, in order to reduce the amount of heat transfer from the temperature sensing element 2 to the rear end side of the insulating tube 3 or the like, a part of the space S is formed between the rear end position of the filler 61 and the front end surface 311 of the insulating tube 3. To be left behind. Note that if heat transfer from the temperature sensing element 2 to the rear end side of the insulating tube 3 or the like occurs, the responsiveness of the temperature sensor 1 is lowered.
 充填材61によって感温素子2の全体を覆うことにより、感温素子2を振動等から保護することができる。また、充填材61によって一対の信号線21の先端側部分213の全体を覆うことにより、充填材61が一対の信号線21の先端側部分213同士の間に配置され、一対の信号線21の先端側部分213同士の接触を確実に防止することができる。
 また、本実施形態の温度センサ1においては、各保持部材5A,5Bによって絶縁管3及び一対の信号線21を外管4に保持することにより、充填材61の使用量を減らすことができる。
By covering the entire temperature sensing element 2 with the filler 61, the temperature sensing element 2 can be protected from vibrations and the like. Further, by covering the entire distal end portion 213 of the pair of signal lines 21 with the filler 61, the filler 61 is disposed between the distal end portions 213 of the pair of signal lines 21. Contact between the distal end portions 213 can be reliably prevented.
Moreover, in the temperature sensor 1 of this embodiment, the usage amount of the filler 61 can be reduced by holding the insulating tube 3 and the pair of signal lines 21 on the outer tube 4 by the holding members 5A and 5B.
 図2、図3に示すように、絶縁管3は、一対の信号線21を挿通させる一対の挿通孔33を有する円柱形状のセラミックスの焼結体によって構成されている。絶縁管3は、例えばAl23(アルミナ)、ZrO2(ジルコニア)、MgO(マグネシア)等の耐熱性の高いセラミックスからなる。これらのセラミックスの中では、強度が高いことや、加工性が良好なことから、Al23が好ましい。また、各信号線21は、感温素子2に接続されているとともに、各挿通孔33に挿通されている。各信号線21は、例えばINCONEL601や、INCONEL600、Pt、Fe-Cr-Al合金、Pt-Ir合金等の耐熱材料からなる。 As shown in FIGS. 2 and 3, the insulating tube 3 is configured by a cylindrical ceramic sintered body having a pair of insertion holes 33 through which the pair of signal lines 21 are inserted. The insulating tube 3 is made of ceramics having high heat resistance such as Al 2 O 3 (alumina), ZrO 2 (zirconia), MgO (magnesia), and the like. Among these ceramics, Al 2 O 3 is preferable because of its high strength and good workability. Each signal line 21 is connected to the temperature sensing element 2 and is inserted into each insertion hole 33. Each signal line 21 is made of a heat-resistant material such as, for example, INCONEL601, INCONEL600, Pt, Fe—Cr—Al alloy, Pt—Ir alloy.
 また、各挿通孔33の両端開口部の隙間には、接着剤(例えば、アロンセラミックス等のセラミック接着剤)34が設けられている。そして、各信号線21は、接着剤34によって絶縁管3に固定されている。
 外管4は、絶縁管3の先端側部分及び感温素子2を覆う先端側管部41と、先端側管部41の後端側に繋がり、絶縁管3の後端側部分を覆う後端側管部42とを有している。先端側管部41の先端部411は、絶縁管3の先端面311よりも先端側の位置において、感温素子2の大きさに合わせて縮径している。
Further, an adhesive (for example, a ceramic adhesive such as Aron ceramics) 34 is provided in the gap between the opening portions at both ends of each insertion hole 33. Each signal line 21 is fixed to the insulating tube 3 with an adhesive 34.
The outer tube 4 is connected to the distal end side tube portion 41 covering the distal end side portion of the insulating tube 3 and the temperature sensing element 2 and the rear end side of the distal end side tube portion 41, and the rear end covering the rear end side portion of the insulating tube 3. Side tube portion 42. The distal end portion 411 of the distal end side tube portion 41 is reduced in diameter in accordance with the size of the temperature sensing element 2 at a position closer to the distal end side than the distal end surface 311 of the insulating tube 3.
 図1に示すように、先端側保持部材5Aは、絶縁管3の先端部31の外周と先端側管部41の内周との間に挟まれており、絶縁管3の先端部31を先端側管部41に保持している。後端側保持部材5Bは、絶縁管3の後端部32の外周と後端側管部42の内周との間に挟まれており、絶縁管3の後端部32を後端側管部42に保持している。 As shown in FIG. 1, the distal end side holding member 5 </ b> A is sandwiched between the outer periphery of the distal end portion 31 of the insulating tube 3 and the inner periphery of the distal end side tube portion 41. It is held by the side tube portion 41. The rear end side holding member 5B is sandwiched between the outer periphery of the rear end portion 32 of the insulating tube 3 and the inner periphery of the rear end side tube portion 42, and the rear end portion 32 of the insulating tube 3 is connected to the rear end side tube. Held in the part 42.
 図3に示すように、後端側管部42内には、絶縁管3の後端部32の外周に設けられた後端側保持部材5Bと、絶縁管3の後端面から後端側に向けて突出する一対の信号線21の部分と接続される一対のリード線62と、一対のリード線62を後端側管部42に保持するためのゴム製のブッシュ63とが配置されている。 As shown in FIG. 3, in the rear end side pipe portion 42, a rear end side holding member 5 </ b> B provided on the outer periphery of the rear end portion 32 of the insulating tube 3, and from the rear end surface of the insulating tube 3 to the rear end side. A pair of lead wires 62 connected to a portion of the pair of signal wires 21 projecting toward and a rubber bush 63 for holding the pair of lead wires 62 in the rear end side pipe portion 42 are disposed. .
 絶縁管3の先端部31は、先端側保持部材5Aの外周側に位置する先端側管部41の一部分412の外周を縮径させることにより、先端側保持部材5Aを介して先端側管部41にかしめられている。絶縁管3の後端部32は、後端側保持部材5Bの外周側に位置する後端側管部42の一部分421の外周を縮径させることにより、後端側保持部材5Bを介して後端側管部42にかしめられている。一対のリード線62は、ブッシュ63の外周側に位置する後端側管部42の一部分422の外周を縮径させることにより、ブッシュ63を介して後端側管部42にかしめられている。 The distal end portion 31 of the insulating tube 3 is reduced in diameter at the outer periphery of a portion 412 of the distal end side tube portion 41 located on the outer peripheral side of the distal end side holding member 5A, whereby the distal end side tube portion 41 is interposed via the distal end side holding member 5A. It has been cramped. The rear end portion 32 of the insulating tube 3 is reduced in diameter by reducing the outer periphery of a portion 421 of the rear end side tube portion 42 located on the outer peripheral side of the rear end side holding member 5B, thereby allowing the rear end portion 32 to pass through the rear end side holding member 5B. It is caulked to the end side pipe part 42. The pair of lead wires 62 are caulked to the rear end side pipe portion 42 via the bush 63 by reducing the diameter of the outer periphery of a portion 422 of the rear end side pipe portion 42 located on the outer peripheral side of the bush 63.
 絶縁管3が、各保持部材5A,5Bを介して外管4にかしめられていることにより、各保持部材5A,5Bによって絶縁管3に働く最大静止摩擦力が、振動によって絶縁管3に働く荷重よりも大きくなる。なお、最大静止摩擦力は、各保持部材5A,5Bに働く反発力(面圧)と、絶縁管3と保持部材5A,5Bとの間の静止摩擦係数、及び保持部材5A,5Bと外管4との間の静止摩擦係数に基づいて求められる。これにより、絶縁管3を外管4内に安定して保持することができる。 Since the insulating tube 3 is caulked to the outer tube 4 via the holding members 5A and 5B, the maximum static frictional force acting on the insulating tube 3 by the holding members 5A and 5B acts on the insulating tube 3 by vibration. It becomes larger than the load. The maximum static frictional force is the repulsive force (surface pressure) acting on the holding members 5A and 5B, the static friction coefficient between the insulating tube 3 and the holding members 5A and 5B, and the holding members 5A and 5B and the outer tube. 4 based on the coefficient of static friction between 4 and 4. Thereby, the insulating tube 3 can be stably held in the outer tube 4.
 各保持部材5A,5Bを構成する非金属無機繊維は、円筒状、マット状又はシート状に成形されたセラミックス繊維の成形体である。セラミックス繊維の成形体は耐熱性に優れている。セラミックス繊維は、アルミナ繊維、シリカ繊維等によって構成されている。セラミックス繊維の成形体は、セラミックス繊維と、バインダー等の任意の他の成分とを混合して所定の形状に成形することができる。また、セラミックス繊維の成形体は、バインダーを用いずにセラミックス繊維を綿状に集めて成形することもできる。
 各保持部材5A,5Bを構成する非金属無機繊維は、セラミックス繊維とする以外にも、例えば、ガラス繊維やロックウールとすることができる。
The non-metallic inorganic fibers constituting the holding members 5A and 5B are ceramic fiber molded bodies formed into a cylindrical shape, a mat shape, or a sheet shape. The molded body of ceramic fiber is excellent in heat resistance. The ceramic fiber is composed of alumina fiber, silica fiber, or the like. The molded body of ceramic fibers can be molded into a predetermined shape by mixing ceramic fibers and any other component such as a binder. Moreover, the ceramic fiber molded body can be formed by collecting ceramic fibers in a cotton shape without using a binder.
The nonmetallic inorganic fibers constituting the holding members 5A and 5B can be, for example, glass fibers or rock wool, in addition to the ceramic fibers.
 セラミックス繊維の成形体によって構成されたマット状又はシート状の各保持部材5A,5Bは、絶縁管3に巻き付けることができる。また、円筒状の各保持部材5A、5Bを用いる場合には、この各保持部材5A、5Bに絶縁管3を圧入することができる。そして、温度センサ1を組み付ける際には、図5に示すように、各保持部材5A,5Bが組み付けられた絶縁管3を外管4内に挿入することができる。 The mat-like or sheet-like holding members 5 </ b> A and 5 </ b> B made of a ceramic fiber molded body can be wound around the insulating tube 3. Further, when the cylindrical holding members 5A and 5B are used, the insulating tube 3 can be press-fitted into the holding members 5A and 5B. When the temperature sensor 1 is assembled, as shown in FIG. 5, the insulating tube 3 assembled with the holding members 5 </ b> A and 5 </ b> B can be inserted into the outer tube 4.
 また、同図に示すように、絶縁管3を外管4内に挿入する際には、各保持部材5A,5Bが外管4の内周を摺動することにより、絶縁管3と外管4との同軸度を向上させることができる。これにより、温度センサ1の組付性を向上させることができる。
 また、絶縁管3と外管4との同軸度を容易に確保できることにより、絶縁管3を外管4内に挿入する際に、感温素子2が、縮径された、先端側管部41の先端部411に干渉しないようにすることができ、組付時における感温素子2の割れを防ぐことができる。
As shown in the figure, when the insulating tube 3 is inserted into the outer tube 4, the holding members 5 </ b> A and 5 </ b> B slide along the inner periphery of the outer tube 4, so that the insulating tube 3 and the outer tube are inserted. 4 can be improved. Thereby, the assembly | attachment property of the temperature sensor 1 can be improved.
In addition, since the coaxiality between the insulating tube 3 and the outer tube 4 can be easily secured, the distal end side tube portion 41 in which the temperature sensing element 2 is reduced in diameter when the insulating tube 3 is inserted into the outer tube 4. Thus, it is possible to prevent the temperature sensitive element 2 from being cracked during assembly.
 また、各保持部材5A,5Bは、接着剤(例えば、セラミック接着剤、又は有機バインダーを含んだ不織布等)を介して絶縁管3に組み付けることができる。この場合には、接着剤によって、各保持部材5A,5Bが、絶縁管3の軸方向に位置ずれしにくくすることができる。また、接着剤は、組付後の温度センサ1における充填材61を焼結する際の熱によって、揮発させることができる。 Further, each holding member 5A, 5B can be assembled to the insulating tube 3 via an adhesive (for example, a ceramic adhesive or a nonwoven fabric containing an organic binder). In this case, the holding members 5A and 5B can be made difficult to be displaced in the axial direction of the insulating tube 3 by the adhesive. Further, the adhesive can be volatilized by heat when the filler 61 in the temperature sensor 1 after assembly is sintered.
 また、各保持部材5A,5Bを構成するセラミックス繊維には、バーミキュライト等の膨張材を含有させることができる。膨張材は、セラミックス繊維同士の隙間に入り込んで含有される。この場合には、組付後の温度センサ1における充填材61を焼結する際の熱によって膨張材が膨張する。そして、膨張材によって各保持部材5A,5Bを構成するセラミックス繊維の成形体が膨張し、各保持部材5A,5Bから絶縁管3と外管4とに圧力を生じさせることができる。これにより、図6に示すように、外管4の外周を縮径させて各保持部材5A,5Bを押圧する(かしめる)ことなく、絶縁管3を、各保持部材5A,5Bを介して外管4に固定することができる。 Further, the ceramic fiber constituting each holding member 5A, 5B can contain an expansion material such as vermiculite. The inflating material is contained in the gap between the ceramic fibers. In this case, the expansion material expands due to heat generated when the filler 61 in the temperature sensor 1 after assembly is sintered. And the molded body of the ceramic fiber which comprises each holding member 5A, 5B expand | swells with an expansion | swelling material, A pressure can be produced in the insulating tube 3 and the outer tube | pipe 4 from each holding member 5A, 5B. As a result, as shown in FIG. 6, the insulating tube 3 can be connected via the holding members 5A and 5B without reducing the outer circumference of the outer tube 4 and pressing (caulking) the holding members 5A and 5B. It can be fixed to the outer tube 4.
 本実施形態の温度センサ1においては、先端側保持部材5A及び後端側保持部材5Bを、セラミックス繊維の成形体から構成している。
 セラミックス繊維は、温度センサ1によって測定する環境が高温であっても、熱劣化しにくく、絶縁管3を外管4に保持する性能がほとんど低下しない。そのため、各保持部材5A,5Bをセラミックス繊維から構成することにより、絶縁管3を外管4に長期に亘って安定して保持することができる。
In the temperature sensor 1 of the present embodiment, the front end side holding member 5A and the rear end side holding member 5B are formed of a ceramic fiber molded body.
Even if the environment measured by the temperature sensor 1 is high temperature, the ceramic fiber is hardly thermally deteriorated, and the performance of holding the insulating tube 3 on the outer tube 4 hardly decreases. Therefore, the insulating tube 3 can be stably held on the outer tube 4 over a long period of time by configuring the holding members 5A and 5B from ceramic fibers.
 車両の排気管においては、エンジンの燃焼サイクルに応じて加熱と冷却が繰り返され、温度センサ1における外管4は、熱の影響を受けて膨張・収縮を繰り返す。金属製の外管4が膨張・収縮する度合いは、絶縁管3及び各保持部材5A,5Bが膨張・収縮する度合いに比べて大きい。そして、外管4が膨張するときには、各保持部材5A,5Bと外管4との間に隙間ができやすい状況が発生する。 In the exhaust pipe of the vehicle, heating and cooling are repeated according to the combustion cycle of the engine, and the outer pipe 4 in the temperature sensor 1 is repeatedly expanded and contracted under the influence of heat. The degree of expansion / contraction of the metal outer tube 4 is larger than the degree of expansion / contraction of the insulating tube 3 and the holding members 5A, 5B. And when the outer tube | pipe 4 expand | swells, the condition where it will be easy to make a clearance gap between each holding member 5A, 5B and the outer tube | pipe 4 will generate | occur | produce.
 この状況においても、各保持部材5A,5Bを構成するセラミックス繊維の成形体を、絶縁管3と外管4との間に充填する密度を高くしておくことにより、外管4の膨張に伴って各保持部材5A,5Bに復元力を働かせることができる。ここでいう密度とは、充填密度、つまり温度センサ1の組付け後の保持部材5A,5Bの密度のことをいう。これにより、各保持部材5A,5Bによって絶縁管3を保持する状態を、外管4の膨張に追従させることができる。つまり、高温時においても、各保持部材5A,5Bと外管4との間に隙間ができないようにすることができる。これにより、温度変動の大きな環境下においても、絶縁管3を長期に亘って安定して外管4に保持することができる。 Even in this situation, the density of filling the ceramic fiber compacts constituting the holding members 5A and 5B between the insulating tube 3 and the outer tube 4 is increased so that the outer tube 4 expands. Thus, a restoring force can be applied to each holding member 5A, 5B. The density here means the filling density, that is, the density of the holding members 5A and 5B after the temperature sensor 1 is assembled. Thereby, the state in which the insulating tube 3 is held by the holding members 5 </ b> A and 5 </ b> B can follow the expansion of the outer tube 4. That is, it is possible to prevent gaps between the holding members 5A and 5B and the outer tube 4 even at high temperatures. As a result, the insulating tube 3 can be stably held on the outer tube 4 over a long period of time even in an environment with large temperature fluctuations.
 また、サーミスタによって構成された感温素子2には、感温素子2の高温における還元劣化を防止するために、温度センサ1の後端側から感温素子2に向けて酸素を供給する必要がある。この際、各保持部材5A,5Bがセラミックス繊維の成形体によって構成されていることにより、酸素を、各保持部材5A,5Bを通過させて、感温素子2に供給しやすくすることができる。 Further, it is necessary to supply oxygen from the rear end side of the temperature sensor 1 to the temperature sensing element 2 in order to prevent reduction degradation at a high temperature of the temperature sensing element 2 to the temperature sensing element 2 constituted by the thermistor. is there. At this time, since each holding member 5A, 5B is formed of a ceramic fiber molded body, oxygen can be easily supplied to the temperature sensing element 2 through each holding member 5A, 5B.
 また、絶縁管3を先端側保持部材5Aと後端側保持部材5Bとによって外管4に保持することにより、絶縁管3が振動等によって割れることを防止することができる。また、図7に示すように、各保持部材5A、5Bの軸方向長さを長くし、絶縁管3に組み付ける各保持部材5A,5Bの面積を増やすことによって絶縁管3に働く振動ストレスを小さくすることができる。
 それ故、本実施形態の温度センサ1によれば、熱に対する耐久性を向上させることができ、絶縁管3を長期に亘って安定して外管4に保持することができる。
Further, by holding the insulating tube 3 on the outer tube 4 by the front end side holding member 5A and the rear end side holding member 5B, the insulating tube 3 can be prevented from being broken by vibration or the like. Further, as shown in FIG. 7, the vibration stress acting on the insulating tube 3 is reduced by increasing the axial length of each holding member 5A, 5B and increasing the area of each holding member 5A, 5B assembled to the insulating tube 3. can do.
Therefore, according to the temperature sensor 1 of the present embodiment, durability against heat can be improved, and the insulating tube 3 can be stably held on the outer tube 4 over a long period of time.
 また、各保持部材5A,5Bによって絶縁管3を外管4に保持する工夫により、温度センサ1の組付時における絶縁管3の割れを防止し、また、充填材61の使用量を減らして温度センサ1の応答性の低下を防止することができる。 In addition, the insulation tube 3 is held on the outer tube 4 by the holding members 5A and 5B to prevent the insulation tube 3 from cracking when the temperature sensor 1 is assembled, and to reduce the amount of filler 61 used. A decrease in responsiveness of the temperature sensor 1 can be prevented.
 また、保持部材5A,5Bの厚みt1と、絶縁管3と外管4(先端側管部41、後端側管部42)との間のクリアランスt2との関係は、t1>t2とすることが好ましい。これにより、絶縁管3と外管4の同軸度を向上させることができ、絶縁管3を安定して外管4に保持することができる。ただし、保持部材5A,5Bの厚みt1が大き過ぎると、温度センサ1の組付けに支障を来たし、また、保持部材5A,5Bに働く保持力(面圧)が高くなり過ぎて、保持部材5A,5Bに熱へたりを生じるおそれがある。そのため、厚みt1とクリアランスt2との関係は、2×t2>t1>t2とすることがより好ましい。 Further, the relationship between the thickness t1 of the holding members 5A and 5B and the clearance t2 between the insulating tube 3 and the outer tube 4 (front end side tube portion 41, rear end side tube portion 42) is t1> t2. Is preferred. Thereby, the coaxiality of the insulating tube 3 and the outer tube 4 can be improved, and the insulating tube 3 can be stably held by the outer tube 4. However, if the thickness t1 of the holding members 5A and 5B is too large, the temperature sensor 1 is hindered and the holding force (surface pressure) acting on the holding members 5A and 5B becomes too high, and the holding member 5A. , 5B may cause heat sink. Therefore, the relationship between the thickness t1 and the clearance t2 is more preferably 2 × t2> t1> t2.
 なお、保持部材5A,5Bの厚みt1がクリアランスt2よりも小さいと、絶縁管3を十分に保持することができず、絶縁管3に振動ストレスが加わったときに、絶縁管3が割れるおそれがある。
 例えば、絶縁管3と外管4との間のクリアランスが約1mmのときには、厚みが約1.5mmのシート状の保持部材5A,5Bを用いることができる。そして、この保持部材5A,5Bが巻き付けられた絶縁管3を外管4に圧入することにより、絶縁管3と外管4との同軸度が向上し、温度センサ1の組付性を向上させることができる。
If the thickness t1 of the holding members 5A and 5B is smaller than the clearance t2, the insulating tube 3 cannot be sufficiently held, and the insulating tube 3 may crack when vibration stress is applied to the insulating tube 3. is there.
For example, when the clearance between the insulating tube 3 and the outer tube 4 is about 1 mm, sheet- like holding members 5A and 5B having a thickness of about 1.5 mm can be used. Then, by press-fitting the insulating tube 3 around which the holding members 5A and 5B are wound into the outer tube 4, the coaxiality between the insulating tube 3 and the outer tube 4 is improved, and the assembling property of the temperature sensor 1 is improved. be able to.
 また、図8に示すように、絶縁管3は、その長手方向の3箇所に設けられた保持部材5A,5B,5Cによって外管4に保持することができる。この場合、中間位置に設けられた保持部材5Cについても、先端側管部41の一部分413の外周を縮径させて圧縮することができる。絶縁管3を保持部材5A,5B,5Cによって保持する箇所を増やすことにより、振動によって絶縁管3に生じる変位を小さくすることができ、絶縁管3に働く振動ストレスを小さくすることができる。 Further, as shown in FIG. 8, the insulating tube 3 can be held on the outer tube 4 by holding members 5A, 5B, 5C provided at three locations in the longitudinal direction. In this case, the holding member 5 </ b> C provided at the intermediate position can also be compressed by reducing the outer diameter of the portion 413 of the distal end side tube portion 41. By increasing the number of places where the insulating tube 3 is held by the holding members 5A, 5B, and 5C, displacement generated in the insulating tube 3 due to vibration can be reduced, and vibration stress acting on the insulating tube 3 can be reduced.
 また、図9に示すように、先端側保持部材5Aと後端側保持部材5Bとは、これらを一体化した保持部材5によって構成することもできる。この場合には、保持部材5によって絶縁管3の全長を外管4に保持することができる。また、この場合、絶縁管3の全体を保持部材5によって支えることができるため、絶縁管3を長期に亘って安定して外管4に保持することができる。 Moreover, as shown in FIG. 9, the front end side holding member 5A and the rear end side holding member 5B can be configured by a holding member 5 in which these are integrated. In this case, the entire length of the insulating tube 3 can be held by the outer tube 4 by the holding member 5. In this case, since the entire insulating tube 3 can be supported by the holding member 5, the insulating tube 3 can be stably held on the outer tube 4 over a long period of time.
 図1~図9においては、感温素子2の信号線21が、感温素子2から引き出されたリード線によって構成された場合について示した。
 これ以外にも、信号線21は、図10に示すように、感温素子2から引き出されたリード部211と、絶縁管3の挿通孔33内から突出するリード線部材212とを突き合わせてレーザー溶接する構成とすることもできる。また、信号線21は、図11に示すように、感温素子2から引き出されたリード部211と、絶縁管3の挿通孔33内から突出するリード線部材212とを重ね合わせてレーザー溶接する構成とすることもできる。この場合には、リード部211における、リード線部材212と重ね合わされていない部分の全体が充填材61によって覆われるようにする。
FIGS. 1 to 9 show the case where the signal line 21 of the temperature sensing element 2 is constituted by a lead wire drawn out from the temperature sensing element 2.
In addition to this, as shown in FIG. 10, the signal line 21 is a laser produced by abutting a lead portion 211 drawn from the temperature sensing element 2 with a lead wire member 212 protruding from the insertion hole 33 of the insulating tube 3. It can also be set as the structure welded. As shown in FIG. 11, the signal line 21 is laser-welded by superposing a lead portion 211 drawn from the temperature sensing element 2 and a lead wire member 212 protruding from the insertion hole 33 of the insulating tube 3. It can also be configured. In this case, the entire portion of the lead portion 211 that is not overlapped with the lead wire member 212 is covered with the filler 61.
 また、図12に示すように、絶縁管3は、シースピンとすることもできる。この場合、シースピンは、金属製の中空管35と、一対の信号線21(リード線部材212)が挿通された中空管35内に充填された絶縁性の充填粉末36とによって構成される。この場合には、絶縁性の充填粉末36によって、一対の信号線21(リード線部材212)と外管4との絶縁を行うことができる。この場合にも、絶縁管3をセラミックスの焼結体によって構成した場合と同様の作用効果を得ることができる。 Further, as shown in FIG. 12, the insulating tube 3 may be a sheath pin. In this case, the sheath pin is constituted by a metal hollow tube 35 and an insulating filling powder 36 filled in the hollow tube 35 through which the pair of signal wires 21 (lead wire members 212) are inserted. . In this case, the pair of signal wires 21 (lead wire members 212) and the outer tube 4 can be insulated by the insulating filling powder 36. Also in this case, the same effect as the case where the insulating tube 3 is comprised by the ceramic sintered compact can be acquired.
 また、この場合において、一対の信号線21を構成するリード部211は、例えば、Pt、Pt-Ir合金、Pt-Rh合金等によって構成することができ、一対の信号線21を構成するリード線部材212は、例えば、INCONEL601、INCONEL600、Fe-Cr-Al合金等によって構成することができる。また、充填粉末36は、例えば、MgO(マグネシア粉末)やSiO2(シリカ粉末)によって構成することができる。また、図12の温度センサ1においても、感温素子2から引き出されたリード部211と、一対のリード線部材212とを重ね合わせて、レーザー溶接することができる。この場合には、リード部211とリード線部材212との溶接部の全体が充填材61によって覆われるようにする。 In this case, the lead portions 211 constituting the pair of signal lines 21 can be made of, for example, Pt, Pt—Ir alloy, Pt—Rh alloy, etc., and the lead wires constituting the pair of signal lines 21 The member 212 can be composed of, for example, INCONEL601, INCONEL600, Fe—Cr—Al alloy, or the like. The filling powder 36, for example, can be constituted by MgO (magnesia powder) and SiO 2 (silica powder). Also in the temperature sensor 1 of FIG. 12, the lead part 211 drawn out from the temperature sensing element 2 and the pair of lead wire members 212 can be overlapped and laser-welded. In this case, the entire welded portion between the lead portion 211 and the lead wire member 212 is covered with the filler 61.
 なお、本開示は上述した実施形態や変形例に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々の変更を施すことが可能であることはいうまでもない。 Note that the present disclosure is not limited to the above-described embodiments and modifications, and it is needless to say that various modifications can be made without departing from the gist of the present disclosure.

Claims (7)

  1.  温度によって電気特性が変化する感温素子(2)と、
     該感温素子(2)から後端側に伸びる一対の信号線(21)と、
     該一対の信号線(21)を内部に挿通させ、該一対の信号線(21)と絶縁された絶縁管(3)と、
     該絶縁管(3)及び上記感温素子(2)を覆う外管(4)と、
     上記絶縁管(3)の先端部(31)の外周に設けられ、該絶縁管(3)の先端部(31)を上記外管(4)に保持する先端側保持部材(5A)と、
     上記絶縁管(3)の後端部(32)の外周に設けられ、該絶縁管(3)の後端部(32)を上記外管(4)に保持する後端側保持部材(5B)と、を備え、
     上記先端側保持部材(5A)は、非金属無機繊維から構成されている温度センサ(1)。
    A temperature sensitive element (2) whose electrical characteristics change with temperature,
    A pair of signal lines (21) extending from the temperature sensing element (2) to the rear end side;
    An insulating tube (3) that is inserted through the pair of signal lines (21) and insulated from the pair of signal lines (21);
    An outer tube (4) covering the insulating tube (3) and the temperature sensing element (2);
    A distal-side holding member (5A) provided on the outer periphery of the distal end portion (31) of the insulating tube (3) and retaining the distal end portion (31) of the insulating tube (3) on the outer tube (4);
    A rear end side holding member (5B) provided on the outer periphery of the rear end portion (32) of the insulating tube (3) and holding the rear end portion (32) of the insulating tube (3) to the outer tube (4). And comprising
    The said front end side holding member (5A) is a temperature sensor (1) comprised from the nonmetallic inorganic fiber.
  2.  上記後端側保持部材(5B)は、非金属無機繊維から構成されている請求項1に記載の温度センサ(1)。 The temperature sensor (1) according to claim 1, wherein the rear end side holding member (5B) is made of a non-metallic inorganic fiber.
  3.  上記非金属無機繊維は、マット状又はシート状に成形されたセラミックス繊維の成形体である請求項1又は2に記載の温度センサ(1)。 3. The temperature sensor (1) according to claim 1 or 2, wherein the non-metallic inorganic fiber is a ceramic fiber molded body formed into a mat or sheet.
  4.  上記絶縁管(3)は、上記一対の信号線(21)を挿通させる一対の挿通孔(33)を有するセラミックスの焼結体によって構成されている請求項1~3のいずれか一項に記載の温度センサ(1)。 The insulating tube (3) is formed of a ceramic sintered body having a pair of insertion holes (33) through which the pair of signal lines (21) are inserted. Temperature sensor (1).
  5.  上記絶縁管(3)は、金属製の中空管(35)と、上記一対の信号線(21)が挿通された上記中空管(35)内に充填された絶縁性の充填粉末(36)とによって構成されている請求項1~3のいずれか一項に記載の温度センサ(1)。 The insulating tube (3) includes a metal hollow tube (35) and an insulating filling powder (36) filled in the hollow tube (35) through which the pair of signal wires (21) are inserted. The temperature sensor (1) according to any one of claims 1 to 3, comprising:
  6.  上記感温素子(2)は、上記外管(4)における先端部(411)の内部であって、上記絶縁管(3)の先端面(311)よりも先端側に形成された空間(S)内に配置されており、
     該空間(S)内の先端側部分には、該空間(S)の一部を後端側部分に残す状態で、上記感温素子(2)を上記先端部(411)に固定する充填材(61)が配置されている請求項1~5のいずれか一項に記載の温度センサ(1)。
    The temperature sensing element (2) is a space (S) formed in the distal end side (311) of the insulating tube (3) inside the distal end portion (411) of the outer tube (4). )
    A filler for fixing the temperature sensing element (2) to the tip end portion (411) in a state where a part of the space (S) is left in the rear end side portion in the tip end side portion in the space (S). The temperature sensor (1) according to any one of claims 1 to 5, wherein (61) is arranged.
  7.  上記感温素子(2)に繋がる上記一対の信号線(21)の先端側部分(213)間の間隔は、上記絶縁管(3)内に配置された上記一対の信号線(21)の後端側部分(214)間の間隔よりも狭くなっており、
     上記充填材(61)は、上記感温素子(2)の全体及び上記一対の信号線(21)の先端側部分(213)の全体を覆っている請求項6に記載の温度センサ(1)。
    The distance between the tip side portions (213) of the pair of signal lines (21) connected to the temperature sensing element (2) is the rear of the pair of signal lines (21) disposed in the insulating tube (3). It is narrower than the distance between the end portions (214),
    The temperature sensor (1) according to claim 6, wherein the filler (61) covers the entirety of the temperature sensitive element (2) and the entire distal end portion (213) of the pair of signal lines (21). .
PCT/JP2015/080182 2014-10-31 2015-10-27 Temperature sensor WO2016068107A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015004970.3T DE112015004970B4 (en) 2014-10-31 2015-10-27 Temperature sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-223263 2014-10-31
JP2014223263 2014-10-31
JP2015119661A JP6350400B2 (en) 2014-10-31 2015-06-12 Temperature sensor
JP2015-119661 2015-06-12

Publications (1)

Publication Number Publication Date
WO2016068107A1 true WO2016068107A1 (en) 2016-05-06

Family

ID=56019556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080182 WO2016068107A1 (en) 2014-10-31 2015-10-27 Temperature sensor

Country Status (3)

Country Link
JP (1) JP6350400B2 (en)
DE (1) DE112015004970B4 (en)
WO (1) WO2016068107A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022544658A (en) * 2020-06-17 2022-10-20 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6888439B2 (en) * 2017-06-28 2021-06-16 株式会社デンソー Temperature sensor
US20220252465A1 (en) * 2021-02-05 2022-08-11 Sensata Technologies, Inc. System and method for improving temperature detectors using expansion/contraction devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156286A (en) * 2000-11-16 2002-05-31 Isuzu Ceramics Res Inst Co Ltd Thermocouple
JP2002168701A (en) * 2000-11-30 2002-06-14 Denso Corp Temperature sensor
JP2012093340A (en) * 2010-09-27 2012-05-17 Denso Corp Temperature sensor
JP2012242334A (en) * 2011-05-23 2012-12-10 Ngk Spark Plug Co Ltd Temperature sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022A (en) 1984-06-20 1990-01-05 Tomio Konno Method and apparatus for electronic communication with vacuum fiber
JP2711841B2 (en) 1987-08-28 1998-02-10 ヤマハ発動機株式会社 Rear fender mounting structure for motorcycle
US4840460A (en) 1987-11-13 1989-06-20 Honeywell Inc. Apparatus and method for providing a gray scale capability in a liquid crystal display unit
JPH093340A (en) 1995-06-22 1997-01-07 Iitec:Kk Binder composition for particulate material
US6305841B1 (en) 1998-09-29 2001-10-23 Denso Corporation Temperature sensor with thermistor housed in blocked space having ventilation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156286A (en) * 2000-11-16 2002-05-31 Isuzu Ceramics Res Inst Co Ltd Thermocouple
JP2002168701A (en) * 2000-11-30 2002-06-14 Denso Corp Temperature sensor
JP2012093340A (en) * 2010-09-27 2012-05-17 Denso Corp Temperature sensor
JP2012242334A (en) * 2011-05-23 2012-12-10 Ngk Spark Plug Co Ltd Temperature sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022544658A (en) * 2020-06-17 2022-10-20 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト sensor
JP7307268B2 (en) 2020-06-17 2023-07-11 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト sensor

Also Published As

Publication number Publication date
JP2016090563A (en) 2016-05-23
JP6350400B2 (en) 2018-07-04
DE112015004970T5 (en) 2017-07-20
DE112015004970B4 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
CN106323495B (en) The method of temperature sensor and manufacture temperature sensor
US8328419B2 (en) Turbocharger protection device
JP5229355B2 (en) Temperature sensor
WO2010128573A1 (en) Temperature sensor and temperature sensor system
JP2007507681A (en) Sheath-type glow plug with elastically supported glow tube
WO2016068107A1 (en) Temperature sensor
JP2010520443A5 (en)
KR20080008996A (en) Temperature sensor for a resistance thermometer, in particular for use in the exhaust gas system of combustion engines
KR20090117658A (en) Temperature sensor
US8177427B2 (en) Temperature sensor and method of producing the same
JP5198934B2 (en) Temperature sensor
KR20110095243A (en) Glow plug with metallic heater probe
US9683742B2 (en) Pressure sensor integrated glow plug
JP5141791B2 (en) Temperature sensor
JP2008541075A (en) Sheath type glow plug with combustion chamber pressure sensor
EP2075557B1 (en) Temperature sensor and method of producing the same
EP3339825B1 (en) High-temperature exhaust sensor
JP2018036188A (en) Temperature sensor
US9739487B2 (en) Glow plug
JP6018230B2 (en) Glow plug with integrated pressure sensor and manufacturing method thereof
CN109000814B (en) Floating conductor package
JP2009041944A5 (en)
JP7032954B2 (en) heater
JP6130265B2 (en) Glow plug with pressure sensor
JP2017015504A (en) Temperature sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855870

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015004970

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855870

Country of ref document: EP

Kind code of ref document: A1