WO2016067955A1 - Lubricating oil supply mechanism for turbocharger - Google Patents

Lubricating oil supply mechanism for turbocharger Download PDF

Info

Publication number
WO2016067955A1
WO2016067955A1 PCT/JP2015/079445 JP2015079445W WO2016067955A1 WO 2016067955 A1 WO2016067955 A1 WO 2016067955A1 JP 2015079445 W JP2015079445 W JP 2015079445W WO 2016067955 A1 WO2016067955 A1 WO 2016067955A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil
oil passage
control valve
turbocharger
Prior art date
Application number
PCT/JP2015/079445
Other languages
French (fr)
Japanese (ja)
Inventor
正明 小柳
Original Assignee
大豊工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大豊工業株式会社 filed Critical 大豊工業株式会社
Publication of WO2016067955A1 publication Critical patent/WO2016067955A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/06Lubricating systems characterised by the provision therein of crankshafts or connecting rods with lubricant passageways, e.g. bores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/14Lubrication of pumps; Safety measures therefor

Definitions

  • the present invention relates to a technology of a lubricating oil supply mechanism of a turbocharger that supplies lubricating oil to a bearing portion of a turbocharger provided in an engine.
  • Patent Document 1 discloses a lubricating oil supply oil passage (turbocharger oil supply passage) for supplying lubricating oil pumped by an oil pump to a bearing portion, and a lubricating oil discharge for discharging lubricating oil from the bearing portion.
  • the oil path return pipe line
  • the drain oil path drain path
  • a lubricating oil supply mechanism comprising a regulating valve is described.
  • Patent Document 2 a flow control valve is provided in the middle of the lubricating oil supply oil passage, and the flow of the lubricating oil supply oil passage is restricted by the flow control valve, whereby the lubricating oil supplied to the bearing portion is provided.
  • a technique for adjusting the flow rate of the liquid has been proposed. Specifically, the flow rate of the lubricating oil flowing through the lubricating oil supply oil passage is adjusted by a flow control valve.
  • the lubricating oil is supplied to the bearing portion and lubricates the bearing portion.
  • the lubricating oil that has lubricated the bearing portion is discharged through the lubricating oil discharge oil passage.
  • the flow rate control valve throttles the flow path of the lubricating oil supply oil passage in accordance with an increase in the discharge pressure of the oil pump (that is, an increase in the engine speed). Can do. Therefore, even when the engine is rotating at a high rotational speed, the amount of lubricating oil flowing through the lubricating oil supply oil passage can be limited to a substantially constant value. Accordingly, it is possible to reduce the work of the oil pump while preventing excessive lubricating oil from being supplied to the bearing portion.
  • JP-A-8-93490 Japanese Patent Application No. 2013-49707
  • the present invention has been made in view of the above situation, and a problem to be solved is to provide a lubricating oil supply mechanism for a turbocharger that can suppress a temperature rise of a flow control valve. .
  • the turbocharger lubricating oil supply mechanism of the present invention is a turbocharger lubricating oil supply mechanism that supplies lubricating oil to a turbocharger bearing provided in the engine, and the lubricating oil is supplied to the bearing.
  • a flow rate control valve that adjusts the flow rate of the lubricating oil by restricting the flow path of the lubricating oil that flows through the lubricating oil supply oil passage.
  • the flow control valve is provided in the engine.
  • the temperature rise of the flow control valve can be suppressed.
  • FIG. 3 is a sectional view taken along line AA in FIG. 2.
  • Front sectional drawing which showed the flow control valve which concerns on 1st embodiment.
  • the lubricating oil supply mechanism 1 is for supplying lubricating oil to a turbocharger 6 (more specifically, a bearing portion 41 of the turbocharger 6) provided in the engine E.
  • the lubricating oil supply mechanism 1 mainly includes an oil pan 2, a pressure oil passage 3, an oil pump 4, an oil filter 5, a flow control valve 100, and a turbocharger 6 (more specifically, lubricating oil circulates in the turbocharger 6. And a return oil passage 7.
  • Oil pan 2 stores lubricating oil.
  • the pressure oil passage 3 guides the lubricating oil stored in the oil pan 2 to the turbocharger 6.
  • One end of the pressure oil passage 3 is connected to the oil pan 2.
  • An oil strainer 3 a is provided at one end of the pressure feed oil passage 3.
  • the other end of the pressure oil passage 3 is connected to the turbocharger 6 (more specifically, a supply oil passage 42 of the bearing housing 40 described later).
  • the oil pump 4 pumps lubricating oil.
  • the oil pump 4 is provided in the middle of the pressure oil passage 3.
  • the oil pump 4 is driven according to the rotation of the engine E.
  • the amount of lubricating oil discharged from the oil pump 4 (discharge amount) increases / decreases in accordance with the increase / decrease in the rotational speed of the engine E.
  • the oil filter 5 removes foreign matters in the lubricating oil.
  • the oil filter 5 is provided in a midway portion (downstream side of the oil pump 4) of the pressure feed oil passage 3.
  • the flow rate control valve 100 adjusts the flow rate of the flowing lubricating oil.
  • the flow control valve 100 is provided in a midway part (downstream side of the oil filter 5) of the pressure feed oil passage 3. A specific configuration of the flow control valve 100 will be described later.
  • the turbocharger 6 sends compressed air into the cylinder of the engine E.
  • the compressor wheel 20 and the turbine wheel 30 are connected by the shaft 10.
  • the shaft 10 is rotatably supported by a bearing portion 41 of the bearing housing 40.
  • a supply oil passage 42 and a discharge oil passage 43 are formed in the bearing housing 40.
  • One end (outer end portion) of the supply oil passage 42 is connected to the other end of the pressure feed oil passage 3 as described above, and the other end (inner end portion) of the supply oil passage 42 is connected to the bearing portion 41.
  • One end (inner end portion) of the drain oil passage 43 is connected to the bearing portion 41, and the other end (outer end portion) of the drain oil passage 43 is connected to one end of the return oil passage 7 described later.
  • a specific configuration of the turbocharger 6 will be described later.
  • the return oil path 7 guides the lubricating oil discharged from the turbocharger 6 to the oil pan 2.
  • One end of the return oil passage 7 is connected to the turbocharger 6 (more specifically, the discharge oil passage 43 of the bearing housing 40).
  • the other end of the return oil passage 7 is connected to the oil pan 2.
  • the return oil passage 7 is formed so as not to overlap with the flow control valve 100. In other words, the return oil passage 7 is formed so as to be separated from the flow control valve 100. Thereby, the lubricating oil guided by the return oil passage 7 does not pass through the flow control valve 100. Further, this eliminates the need to form an oil passage (for example, a through hole) for guiding the lubricating oil discharged through the return oil passage 7 in the flow control valve 100.
  • the engine E includes the oil pan 2, the oil pump 4, the oil filter 5, and the flow control valve 100.
  • the engine E includes a cylinder block, a cylinder head, a crankcase 8 (see FIG. 4), a head cover, a piston, a connecting rod, a crankshaft, a camshaft, an intake valve, an exhaust valve, and the like.
  • the turbocharger 6 is attached to the outside of the engine E.
  • the lubricating oil in the oil pan 2 is driven by the oil pump 4 through the pressure oil passage 3 through the turbocharger 6. Pumped to The lubricating oil is guided to the turbocharger 6 while the flow rate is appropriately adjusted by the flow rate control valve 100. Further, the lubricating oil is guided to the bearing portion 41 of the bearing housing 40 through the supply oil passage 42. The lubricating oil that has lubricated the bearing portion 41 is returned to the oil pan 2 through the discharge oil passage 43 and the return oil passage 7.
  • the lubricating oil pumped by the oil pump 4 is also supplied to each part (other lubricating part) of the engine E through other oil passages (not shown). Lubricate each part of E as appropriate.
  • the turbocharger 6 is for sending compressed air into the cylinder of the engine E.
  • the turbocharger 6 mainly includes a shaft 10, a compressor wheel 20, a turbine wheel 30, a bearing housing 40, a slide bearing 60, a thrust collar 70 and a thrust bearing 90.
  • the shaft 10 connects a compressor wheel 20 and a turbine wheel 30 described later.
  • the shaft 10 is disposed with its longitudinal direction (axial direction) directed in the front-rear direction.
  • the compressor wheel 20 has a plurality of blades, and compresses air by being driven to rotate.
  • the compressor wheel 20 is fixed to the rear end portion of the shaft 10.
  • the turbine wheel 30 has a plurality of blades, and generates driving force by rotating by receiving exhaust from the engine E.
  • the turbine wheel 30 is formed integrally with the front end portion of the shaft 10.
  • the bearing housing 40 is a substantially box-shaped member that supports the shaft 10 so as to be indirectly rotatable.
  • the bottom surface of the bearing housing 40 is formed flat (planar).
  • An oil pipe assembly 40 a is provided at the lower part of the bearing housing 40.
  • the oil pipe assembly 40a is a member composed of a substantially plate-like member and a pipe.
  • the upper surface (flange portion) of the oil pipe assembly 40a is formed flat (flat).
  • the oil pipe assembly 40a is fixed to the bearing housing 40 with bolts or the like with its upper surface in contact with the bottom surface of the bearing housing 40 via a gasket.
  • the oil pipe assembly 40a forms part of the pressure oil passage 3 and the return oil passage 7.
  • a bearing portion 41 In the bearing housing 40, a bearing portion 41, a supply oil passage 42, and a discharge oil passage 43 are formed.
  • the bearing portion 41 is a portion that supports the shaft 10 so as to be indirectly rotatable.
  • the bearing portion 41 has a circular cross section and is formed so as to penetrate the bearing housing 40 in the front-rear direction.
  • the supply oil passage 42 is for guiding the lubricating oil supplied via the pressure feed oil passage 3 to the bearing portion 41. That is, an oil passage for guiding the lubricating oil pumped from the oil pump 4 to the bearing portion 41 is formed by the pumping oil passage 3 and the supply oil passage 42.
  • the supply oil passage 42 is formed upward from the lower surface of the bearing housing 40. One end (lower end) of the supply oil passage 42 is connected to the other end of the pressure feed oil passage 3. The other end (upper end) of the supply oil passage 42 is branched back and forth and connected to the front end portion and the rear end portion of the bearing portion 41, respectively.
  • the discharge oil passage 43 is for discharging the lubricating oil from the bearing portion 41.
  • the drain oil passage 43 is formed upward from the lower surface of the bearing housing 40 on the left side of the supply oil passage 42.
  • One end (upper end) of the drain oil passage 43 is appropriately branched and connected to the front end portion, the rear end portion, and the front and rear intermediate portions of the bearing portion 41, respectively.
  • the other end (lower end) of the drain oil passage 43 is connected to one end of the return oil passage 7.
  • the pressure in the discharge oil passage 43 is opened to be atmospheric pressure.
  • the sliding bearing 60 is a substantially cylindrical bearing that rotatably supports the shaft 10.
  • the slide bearings 60 are respectively arranged at the front end portion and the rear end portion (portion facing the supply oil passage 42) of the bearing portion 41 of the bearing housing 40.
  • the shaft 10 is inserted through the slide bearing 60.
  • the thrust collar 70 is formed in a substantially cylindrical shape and is arranged in the front-rear direction.
  • the shaft 10 is inserted through the thrust collar 70.
  • the thrust collar 70 is fixed so as not to rotate relative to the shaft 10.
  • a thrust bearing 90 is fitted on the middle portion of the thrust collar 70 before and after.
  • the thrust bearing 90 is disposed in contact with the bearing housing 40 at the rear of the bearing portion 41. In this way, the thrust bearing 90 receives an axial load applied to the shaft 10.
  • the flow control valve 100 adjusts the flow rate of the lubricating oil by changing the flow passage area (flow passage area) of the lubricating oil based on the pressure of the lubricating oil flowing through the pressure feed oil passage 3.
  • the flow control valve 100 is disposed with its longitudinal direction (axial direction) directed in the left-right direction.
  • the flow control valve 100 mainly includes a valve body 110, a spool 120, a pressure regulating member 130, and a spring 140.
  • the valve body 110 is a member through which lubricating oil can flow.
  • the valve body 110 is formed in a substantially cylindrical shape.
  • the valve body 110 is arranged with its longitudinal direction facing the left-right direction.
  • the valve body 110 is attached in a state of being inserted through the crankcase 8 of the engine E.
  • the left end of the valve body 110 is disposed so as to face the internal space of the crankcase 8 (the space on the left side of the crankcase 8 in FIG. 4).
  • the right end portion of the valve body 110 is disposed so as to face the external space of the crankcase 8 (the space on the right side of the crankcase 8 in FIG. 4).
  • the valve body 110 is formed with a sliding portion 111, a first port 112, a second port 113, a communication oil passage 114, and a female screw portion 115.
  • the sliding portion 111 is a hole formed so as to penetrate the inside of the valve body 110 in the longitudinal direction.
  • the sliding part 111 is formed to have a circular cross section.
  • One end portion (right end portion) of the sliding portion 111 is appropriately closed by a closing member.
  • the first port 112 is a hole formed so as to communicate the sliding portion 111 and the outside of the valve body 110.
  • the first port 112 is formed at a position facing the upstream oil passage (pressure feed oil passage 3) of the flow control valve 100 and communicates with the upstream oil passage. More specifically, the first port 112 is formed at a position facing the main oil hole 8 a formed in the crankcase 8.
  • the main oil hole 8 a is an oil passage that forms a part of the pressure feed oil passage 3.
  • the second port 113 is a hole formed so as to communicate the sliding portion 111 and the outside of the valve body 110.
  • the second port 113 is formed at a position facing the downstream oil passage (pressure feed oil passage 3) of the flow control valve 100 and communicates with the downstream oil passage.
  • the communication oil passage 114 is formed so as to communicate the vicinity of the right end portion of the sliding portion 111 and the oil passage (pressure feed oil passage 3) on the downstream side of the flow control valve 100.
  • the female thread portion 115 is formed in the vicinity of the other end portion (left end portion) of the valve body 110.
  • the female thread portion 115 is formed by cutting a screw inside a hole on the same axis as the sliding portion 111.
  • the spool 120 is for appropriately restricting the flow path of the lubricating oil flowing through the flow control valve 100.
  • the spool 120 is a substantially columnar member.
  • the spool 120 is disposed inside the sliding portion 111 of the valve main body 110 with its longitudinal direction facing the left-right direction. More specifically, the spool 120 is disposed from the vicinity of the right end of the sliding portion 111 of the valve body 110 to the vicinity of the left end.
  • the spool 120 is formed with a first enlarged diameter portion 121, a second enlarged diameter portion 122, and a protruding portion 123.
  • the first enlarged diameter portion 121 is a portion formed so that its diameter is larger than other portions.
  • the first enlarged diameter portion 121 is formed in the vicinity of the left end portion of the spool 120.
  • the diameter (outer diameter) of the first enlarged diameter portion 121 is formed to be substantially the same as the diameter (inner diameter) of the sliding portion 111 of the valve body 110.
  • the second enlarged diameter portion 122 is a portion formed so that its diameter is larger than other portions.
  • the second enlarged diameter portion 122 is formed in the vicinity of the right end portion of the spool 120 and separated from the first enlarged diameter portion 121 by a predetermined distance.
  • the diameter (outer diameter) of the second enlarged diameter portion 122 is formed to be substantially the same as the diameter (inner diameter) of the sliding portion 111 of the valve body 110.
  • the second enlarged diameter portion 122 is formed at a position facing a part of the first port 112 of the valve body 110. That is, a part of the first port 112 is closed (squeezed) by the second enlarged diameter portion 122.
  • the protruding portion 123 is a portion formed in a substantially cylindrical shape.
  • the protruding portion 123 is formed so as to protrude leftward from the left end surface of the first enlarged diameter portion 121.
  • the diameter of the protruding portion 123 is formed to be smaller than the diameter of the first enlarged diameter portion 121.
  • the first diameter-expanded portion 121 and the second diameter-expanded portion 122 of the spool 120 configured as described above are slidably contacted with the sliding portion 111 of the valve main body 110 in the left-right direction. Inside the sliding part 111 of the main body 110, it arrange
  • the pressure adjusting member 130 supports a spring 140, which will be described later, from the left side and adjusts a biasing force applied to the spool 120 by the spring 140.
  • the pressure adjusting member 130 is disposed on the left side of the spool 120.
  • the pressure adjusting member 130 is formed with a main body portion 131, a protruding portion 132, and a communication hole 133.
  • the main body 131 is a portion formed in a substantially cylindrical shape.
  • the main body 131 is arranged with its longitudinal direction facing the left-right direction.
  • a screw male screw is formed in the main body 131 from the left end portion to the right end portion of the outer peripheral surface thereof.
  • the protruding portion 132 is a portion formed in a substantially cylindrical shape.
  • the protrusion 132 is formed so as to protrude rightward from the right end surface of the main body 131.
  • the diameter of the protrusion 132 is formed to be smaller than the diameter of the main body 131.
  • the diameter of the protrusion 132 is formed to be substantially the same as the diameter of the protrusion 123 of the spool 120.
  • the communication hole 133 penetrates the pressure regulating member 130 to the left and right.
  • the communication hole 133 is formed so as to communicate the left end surface of the main body 131 and the right end surface of the protrusion 132.
  • the pressure regulating member 130 configured in this manner is fixed to the valve main body 110 when the main body 131 is screwed into the female thread 115 of the valve main body 110. Further, by screwing the main body portion 131 to an arbitrary position of the female screw portion 115, the position of the pressure adjusting member 130 in the left-right direction can be arbitrarily adjusted.
  • the spring 140 is a compression coil spring that accumulates elastic energy by being compressed.
  • the spring 140 is disposed between the spool 120 and the pressure adjusting member 130.
  • the left end of the spring 140 is received by the right end surface of the main body 131 of the pressure adjusting member 130.
  • the right end of the spring 140 is received by the left end surface of the first enlarged diameter portion 121 of the spool 120.
  • the spring 140 urges the spool 120 to the right with a predetermined force.
  • the protruding portion 123 of the spool 120 is inserted into the right end portion of the spring 140, and the protruding portion 132 of the pressure adjusting member 130 is inserted into the left end portion of the spring 140.
  • the posture of the spring 140 is held so as not to collapse.
  • a portion surrounded by the first enlarged diameter portion 121, the second enlarged diameter portion 122 of the spool 120 and the sliding portion 111 of the valve body 110 is filled with lubricating oil.
  • One oil chamber R1 is formed.
  • a second oil chamber R ⁇ b> 2 filled with lubricating oil is formed in a portion surrounded by the second enlarged diameter portion 122 of the spool 120 and the sliding portion 111 of the valve body 110.
  • the first oil chamber R1 and the second oil chamber R2 are partitioned by the second enlarged diameter portion 122 of the spool 120, and are connected by the communication oil passage 114 and the second port 113.
  • the lubricating oil pumped by the oil pump 4 (see FIG. 1) is supplied to the flow control valve 100 via the oil filter 5.
  • the lubricating oil is supplied into the first oil chamber R1 through the first port 112 of the valve body 110 (see FIG. 4).
  • the lubricating oil in the first oil chamber R1 is discharged from the second port 113 and supplied to the supply oil passage 42 of the turbocharger 6 (see FIG. 1).
  • the flow rate of the lubricating oil flowing through the flow control valve 100 is adjusted by the flow control valve 100.
  • the lubricating oil supplied to the supply oil passage 42 is guided to the supply oil passage 42 and supplied to the bearing portion 41 of the bearing housing 40 (see FIGS. 2 and 3).
  • the lubricating oil supplied to the bearing portion 41 lubricates the bearing portion 41 (particularly, the sliding bearing 60).
  • the lubricating oil that lubricates the bearing portion 41 becomes high temperature due to heat of the turbocharger 6 and heat generated by friction in the bearing portion 41.
  • Lubricating oil that has become hot due to the lubrication of the bearing portion 41 flows out from the front end portion, the rear end portion, and the front and rear midway portions of the bearing portion 41 to the discharge oil passage 43.
  • the lubricating oil is returned to the oil pan 2 through the discharge oil passage 43 and the return oil passage 7 (see FIG. 1).
  • the flow rate of the lubricating oil flowing through the flow rate control valve 100 (the second port 113 of the flow rate control valve 100) is after the portion (throttle) where the first port 112 is throttled by the second enlarged diameter portion 122 and the turbocharger 6. It changes according to the pressure difference (differential pressure) after the bearing portion 41 (see FIG. 1 etc.) (atmospheric pressure), that is, the differential pressure between the downstream side of the flow control valve 100 and the atmospheric pressure.
  • the flow control valve 100 adjusts the throttle so that the differential pressure becomes substantially constant. This will be specifically described below.
  • engine rotational speed N When the engine E starts and its rotational speed (hereinafter referred to as “engine rotational speed N”) increases, the rotational speed of the oil pump 4 increases and the amount of lubricating oil supplied to the flow control valve 100 also increases. To do.
  • the engine speed N is low, the spool 120 is pushed to the right by the spring 140, and the opening area of the first port 112 is secured widely. For this reason, as the engine speed N increases, the hydraulic pressure on the downstream side of the flow control valve 100 (hereinafter referred to as “downstream hydraulic pressure P”) also increases.
  • downstream hydraulic pressure P is also given to the second oil chamber R2 via the communication oil passage 114. Therefore, when the engine speed N further increases and the downstream hydraulic pressure P (that is, the hydraulic pressure in the second oil chamber R2) increases, the spool 120 slides to the left against the biasing force of the spring 140. Will be. Thereby, the opening area of the first port 112 is reduced.
  • the flow control valve 100 is circulated. Since the flow rate of the lubricating oil is limited, the increase amount of the downstream oil pressure P is significantly reduced (becomes very small). Thereby, the flow rate of the lubricating oil supplied to the downstream side of the flow control valve 100 can be adjusted (restricted). Thereby, it is possible to prevent excessive supply of lubricating oil to the bearing portion 41. By reducing the supply amount of the lubricating oil to the bearing portion 41, the friction loss in the bearing portion 41 can be reduced.
  • the work of the oil pump 4 can be reduced as the amount of lubricating oil supplied to the bearing portion 41 is reduced. As a result, the oil pump 4 can be reduced in size and fuel consumption can be improved.
  • the space on the right side of the pressure adjusting member 130 (the first enlarged diameter portion 121 of the spool 120, the pressure adjusting member 130, and the The portion surrounded by the valve body 110) and the internal space of the crankcase 8 are communicated with each other.
  • the space on the right side of the pressure adjusting member 130 can be opened to the atmospheric pressure through the communication hole 133. Therefore, the sliding of the spool 120 is not hindered by the pressure in the right space of the pressure adjusting member 130.
  • the value (predetermined value P1) of the downstream hydraulic pressure P that restricts the flow rate of the lubricating oil changes the position of the pressure adjusting member 130 or changes the spring 140 to one having different characteristics. It can be set arbitrarily.
  • the lubricating oil supply mechanism 1 of the turbocharger 6 is the lubricating oil supply mechanism 1 of the turbocharger 6 that supplies the lubricating oil to the bearing portion 41 of the turbocharger 6 provided in the engine E. And a lubricating oil supply oil passage (pressure feed oil passage 3 and supply oil passage 42) for guiding the lubricating oil to the bearing portion 41, and a lubricating oil discharge oil passage (discharge) for guiding the lubricating oil discharged from the bearing portion 41.
  • a flow rate control valve 100 that adjusts the flow rate of the lubricating oil by reducing the pressure.
  • the flow control valve 100 Since the flow control valve 100 is arranged so as not to overlap with the lubricating oil discharge oil passage (the discharge oil passage 43 and the return oil passage 7), the lubricating oil discharge oil is provided in the flow control valve 100. There is no need to form an oil passage (for example, a through hole) that guides the lubricating oil discharged through the passage. Thereby, the flow control valve 100 can be made compact.
  • the flow control valve 100 is provided in the engine E. By comprising in this way, the temperature rise of the flow control valve 100 can be suppressed more effectively. That is, the temperature rise of the flow control valve 100 due to the heat of the turbocharger 6 can be suppressed.
  • the pressure feed oil passage 3 and the supply oil passage 42 according to the present embodiment are an embodiment of the lubricating oil supply oil passage according to the present invention.
  • the discharge oil path 43 and the return oil path 7 which concern on this embodiment are one Embodiment of the lubricating oil discharge oil path which concerns on this invention.
  • the flow control valve 100 according to the present embodiment is provided in the engine E, the present invention is not limited to this. That is, the flow control valve according to the present invention may be provided at a position that does not overlap with the lubricating oil discharge oil passage that guides the lubricating oil discharged from the bearing portion.
  • the flow control valve according to the present invention may be provided in the turbocharger 6 (in the middle of the supply oil passage 42). Further, the flow control valve according to the present invention may be provided outside the engine E and the turbocharger 6.
  • the configuration of the flow control valve according to the present invention is not limited to the configuration of the flow control valve 100 according to the present embodiment. That is, the configuration (shape, etc.) of the flow control valve according to the present invention can be arbitrarily determined.
  • the configuration of the turbocharger according to the present invention is not limited to the configuration of the turbocharger 6 according to the present embodiment. That is, the configuration (shape, etc.) of the turbocharger according to the present invention can be arbitrarily determined.
  • the present invention can be applied to a turbocharger lubricating oil supply mechanism that supplies lubricating oil to a bearing portion of a turbocharger provided in the engine.
  • Lubricating oil supply mechanism 1
  • Pumping oil passage (lubricating oil supply oil passage) 6
  • Turbocharger 7 Return oil passage 40
  • Bearing housing 41 Bearing portion 42
  • Supply oil passage 43 Discharge oil passage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)

Abstract

 Provided is a lubricating oil supply mechanism for a turbocharger, capable of suppressing increases in the temperature of a flow control valve. A lubricating oil supply mechanism (1) of a turbocharger (6) supplies lubricating oil to a bearing (41) provided to an engine (E), the lubricating oil supply mechanism comprising a lubricating oil supply channel (a pressure-feed channel (3) and a supply channel (42)) for guiding lubricating oil to the bearing (41), a lubricating oil discharge channel (a discharge channel (43) and a return channel (7)) for guiding lubricating oil discharged from the bearing (41), and a flow control valve (100) which is provided to the lubricating oil supply channel at a position where the lubricating oil discharge channel is not overlapped, and which regulates the flow of lubricating oil by narrowing the channel through which the lubricating oil flows in the lubricating oil supply channel.

Description

ターボチャージャの潤滑油供給機構Turbocharger lubrication oil supply mechanism
 本発明は、エンジンに設けられたターボチャージャの軸受部へと潤滑油を供給するターボチャージャの潤滑油供給機構の技術に関する。 The present invention relates to a technology of a lubricating oil supply mechanism of a turbocharger that supplies lubricating oil to a bearing portion of a turbocharger provided in an engine.
 従来、エンジンに設けられたターボチャージャの軸受部へと潤滑油を供給するターボチャージャの潤滑油供給機構の技術は公知となっている。例えば、特許文献1に記載の如くである。 Conventionally, the technology of a lubricating oil supply mechanism for a turbocharger that supplies lubricating oil to a bearing portion of a turbocharger provided in an engine has been publicly known. For example, as described in Patent Document 1.
 特許文献1には、オイルポンプにより圧送される潤滑油を軸受部へと供給するための潤滑油供給油路(ターボチャージャ用給油通路)と、軸受部から潤滑油を排出するための潤滑油排出油路(戻り管路)と、軸受部を迂回するように潤滑油供給油路と潤滑油排出油路とを連通するドレン油路(ドレーン通路)と、ドレン油路の中途部に設けられる圧力調整弁と、を具備する潤滑油供給機構が記載されている。 Patent Document 1 discloses a lubricating oil supply oil passage (turbocharger oil supply passage) for supplying lubricating oil pumped by an oil pump to a bearing portion, and a lubricating oil discharge for discharging lubricating oil from the bearing portion. The oil path (return pipe line), the drain oil path (drain path) that connects the lubricating oil supply oil path and the lubricating oil discharge oil path so as to bypass the bearing section, and the pressure provided in the middle of the drain oil path A lubricating oil supply mechanism comprising a regulating valve is described.
 このような構成において、オイルポンプの吐出圧力(ひいては潤滑油供給油路内の圧力)が高くなった場合には、圧力調整弁が開いて潤滑油供給油路内の潤滑油をドレン油路に逃がすことで、潤滑油供給油路内の圧力を所定圧力以下になるように調節している。これによって、潤滑油が軸受部へ過剰に供給されるのを防止することができる。 In such a configuration, when the discharge pressure of the oil pump (and hence the pressure in the lubricating oil supply oil passage) becomes high, the pressure adjustment valve opens and the lubricating oil in the lubricating oil supply oil passage is transferred to the drain oil passage. By letting it escape, the pressure in the lubricating oil supply oil passage is adjusted to be a predetermined pressure or less. Thereby, it is possible to prevent the lubricating oil from being excessively supplied to the bearing portion.
 しかしながら、特許文献1に記載の技術では、オイルポンプは軸受部に供給される潤滑油だけでなく、圧力調整弁を介して逃がされることになる潤滑油も含めた多量の潤滑油を圧送するため、当該オイルポンプの仕事に無駄がある点で不利であった。 However, in the technique described in Patent Document 1, the oil pump pumps not only the lubricating oil supplied to the bearing portion but also a large amount of lubricating oil including the lubricating oil that is to be released through the pressure regulating valve. This is disadvantageous in that there is a waste of work of the oil pump.
 そこで、特許文献2においては、潤滑油供給油路の中途部に流量制御弁を設け、当該流量制御弁によって潤滑油供給油路の流路を絞ることで、軸受部へと供給される潤滑油の流量を調節する技術が提案されている。具体的には、潤滑油供給油路を流通する潤滑油の流量は、流量制御弁によって調節される。当該潤滑油は軸受部へと供給され、当該軸受部を潤滑する。軸受部を潤滑した潤滑油は、潤滑油排出油路を介して排出される。 Therefore, in Patent Document 2, a flow control valve is provided in the middle of the lubricating oil supply oil passage, and the flow of the lubricating oil supply oil passage is restricted by the flow control valve, whereby the lubricating oil supplied to the bearing portion is provided. A technique for adjusting the flow rate of the liquid has been proposed. Specifically, the flow rate of the lubricating oil flowing through the lubricating oil supply oil passage is adjusted by a flow control valve. The lubricating oil is supplied to the bearing portion and lubricates the bearing portion. The lubricating oil that has lubricated the bearing portion is discharged through the lubricating oil discharge oil passage.
 特許文献2に記載の技術によれば、流量制御弁は、オイルポンプの吐出圧力が高くなる(すなわち、エンジンの回転数が高くなる)のに応じて潤滑油供給油路の流路を絞ることができる。従って、エンジンが高回転数で回転している状態であっても、潤滑油供給油路を流通する潤滑油の量を略一定に制限することができる。これによって、過剰な潤滑油が軸受部へ供給されるのを防止しながら、オイルポンプの仕事の低減を図ることが可能となる。 According to the technique described in Patent Document 2, the flow rate control valve throttles the flow path of the lubricating oil supply oil passage in accordance with an increase in the discharge pressure of the oil pump (that is, an increase in the engine speed). Can do. Therefore, even when the engine is rotating at a high rotational speed, the amount of lubricating oil flowing through the lubricating oil supply oil passage can be limited to a substantially constant value. Accordingly, it is possible to reduce the work of the oil pump while preventing excessive lubricating oil from being supplied to the bearing portion.
 しかしながら、特許文献2に記載の技術では、潤滑油排出油路は流量制御弁と重複するように(流量制御弁の本体(ハウジング)に形成された貫通孔を通るように)形成されている。このため、軸受部を潤滑して高温になった潤滑油は、流量制御弁を介して排出されることになる。これによって、流量制御弁の温度が上昇し、オイルコーキングが発生するおそれがある点で不利であった。 However, in the technique described in Patent Document 2, the lubricating oil discharge oil passage is formed so as to overlap with the flow control valve (through the through hole formed in the main body (housing) of the flow control valve). For this reason, the lubricating oil that has become a high temperature by lubricating the bearing portion is discharged through the flow control valve. This is disadvantageous in that the temperature of the flow control valve increases and oil coking may occur.
特開平8-93490号公報JP-A-8-93490 特願2013-49707号Japanese Patent Application No. 2013-49707
 本発明は以上の如き状況に鑑みてなされたものであり、その解決しようとする課題は、流量制御弁の温度上昇を抑制することが可能なターボチャージャの潤滑油供給機構を提供することである。 The present invention has been made in view of the above situation, and a problem to be solved is to provide a lubricating oil supply mechanism for a turbocharger that can suppress a temperature rise of a flow control valve. .
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
 即ち、本発明のターボチャージャの潤滑油供給機構は、エンジンに設けられたターボチャージャの軸受部へと潤滑油を供給するターボチャージャの潤滑油供給機構であって、潤滑油を前記軸受部へと案内する潤滑油供給油路と、前記軸受部から排出される潤滑油を案内する潤滑油排出油路と、前記潤滑油供給油路に設けられると共に、前記潤滑油排出油路と重複しない位置に設けられ、前記潤滑油供給油路を流通する潤滑油の流路を絞ることによって当該潤滑油の流量を調節する流量制御弁と、を具備するものである。 That is, the turbocharger lubricating oil supply mechanism of the present invention is a turbocharger lubricating oil supply mechanism that supplies lubricating oil to a turbocharger bearing provided in the engine, and the lubricating oil is supplied to the bearing. A lubricating oil supply oil path for guiding, a lubricating oil discharge oil path for guiding the lubricating oil discharged from the bearing portion, and a position provided in the lubricating oil supply oil path and not overlapping with the lubricating oil discharge oil path. And a flow rate control valve that adjusts the flow rate of the lubricating oil by restricting the flow path of the lubricating oil that flows through the lubricating oil supply oil passage.
 また、前記流量制御弁は前記エンジンに設けられるものである。 The flow control valve is provided in the engine.
 本発明の効果として、以下に示すような効果を奏する。 As the effects of the present invention, the following effects are obtained.
 本発明のターボチャージャの潤滑油供給機構においては、流量制御弁の温度上昇を抑制することができる。 In the turbocharger lubricating oil supply mechanism of the present invention, the temperature rise of the flow control valve can be suppressed.
本発明の一実施形態に係る潤滑油供給機構の全体的な構成を示した模式図。The schematic diagram which showed the whole structure of the lubricating oil supply mechanism which concerns on one Embodiment of this invention. ターボチャージャの構成を示した側面断面図。Side surface sectional drawing which showed the structure of the turbocharger. 図2におけるA-A断面図。FIG. 3 is a sectional view taken along line AA in FIG. 2. 第一実施形態に係る流量制御弁を示した正面断面図。Front sectional drawing which showed the flow control valve which concerns on 1st embodiment. 流量制御弁によって潤滑油の流量(下流側の油圧)が調節される様子を示した図。The figure which showed a mode that the flow volume (downstream hydraulic pressure) of lubricating oil was adjusted with a flow control valve.
 以下では、図中の矢印U、矢印D、矢印F、矢印B、矢印L及び矢印Rで示した方向を、それぞれ上方向、下方向、前方向、後方向、左方向及び右方向と定義して説明を行う。 In the following, the directions indicated by arrow U, arrow D, arrow F, arrow B, arrow L and arrow R in the figure are defined as upward, downward, forward, backward, leftward and rightward, respectively. To explain.
 まず、図1を用いて、本発明の第一実施形態に係る潤滑油供給機構1全体の構成を説明する。 First, the configuration of the entire lubricating oil supply mechanism 1 according to the first embodiment of the present invention will be described with reference to FIG.
 潤滑油供給機構1は、エンジンEに設けられたターボチャージャ6(より詳細には、当該ターボチャージャ6の軸受部41)へと潤滑油を供給するためのものである。潤滑油供給機構1は、主としてオイルパン2、圧送油路3、オイルポンプ4、オイルフィルタ5、流量制御弁100、ターボチャージャ6(より詳細には、当該ターボチャージャ6のうち潤滑油が流通する経路を成す部分)及び戻り油路7により構成される。 The lubricating oil supply mechanism 1 is for supplying lubricating oil to a turbocharger 6 (more specifically, a bearing portion 41 of the turbocharger 6) provided in the engine E. The lubricating oil supply mechanism 1 mainly includes an oil pan 2, a pressure oil passage 3, an oil pump 4, an oil filter 5, a flow control valve 100, and a turbocharger 6 (more specifically, lubricating oil circulates in the turbocharger 6. And a return oil passage 7.
 オイルパン2は、潤滑油を貯溜するものである。 Oil pan 2 stores lubricating oil.
 圧送油路3は、オイルパン2に貯溜された潤滑油をターボチャージャ6へと案内するものである。圧送油路3の一端は、オイルパン2に接続される。当該圧送油路3の一端には、オイルストレーナ3aが設けられる。圧送油路3の他端は、ターボチャージャ6(より詳細には、後述するベアリングハウジング40の供給油路42)に接続される。 The pressure oil passage 3 guides the lubricating oil stored in the oil pan 2 to the turbocharger 6. One end of the pressure oil passage 3 is connected to the oil pan 2. An oil strainer 3 a is provided at one end of the pressure feed oil passage 3. The other end of the pressure oil passage 3 is connected to the turbocharger 6 (more specifically, a supply oil passage 42 of the bearing housing 40 described later).
 オイルポンプ4は、潤滑油を圧送するものである。オイルポンプ4は、圧送油路3の中途部に設けられる。オイルポンプ4は、エンジンEの回転に応じて駆動される。エンジンEの回転数の増減に応じて、オイルポンプ4から吐出される潤滑油の量(吐出量)が増減する。 The oil pump 4 pumps lubricating oil. The oil pump 4 is provided in the middle of the pressure oil passage 3. The oil pump 4 is driven according to the rotation of the engine E. The amount of lubricating oil discharged from the oil pump 4 (discharge amount) increases / decreases in accordance with the increase / decrease in the rotational speed of the engine E.
 オイルフィルタ5は、潤滑油中の異物を取り除くものである。オイルフィルタ5は、圧送油路3の中途部(オイルポンプ4よりも下流側)に設けられる。 The oil filter 5 removes foreign matters in the lubricating oil. The oil filter 5 is provided in a midway portion (downstream side of the oil pump 4) of the pressure feed oil passage 3.
 流量制御弁100は、流通する潤滑油の流量を調節するものである。流量制御弁100は、圧送油路3の中途部(オイルフィルタ5よりも下流側)に設けられる。
 なお、流量制御弁100の具体的な構成については後述する。
The flow rate control valve 100 adjusts the flow rate of the flowing lubricating oil. The flow control valve 100 is provided in a midway part (downstream side of the oil filter 5) of the pressure feed oil passage 3.
A specific configuration of the flow control valve 100 will be described later.
 ターボチャージャ6は、エンジンEのシリンダに圧縮空気を送り込むものである。ターボチャージャ6においては、コンプレッサホイール20とタービンホイール30とがシャフト10によって連結される。当該シャフト10はベアリングハウジング40の軸受部41において回転可能に支持される。 The turbocharger 6 sends compressed air into the cylinder of the engine E. In the turbocharger 6, the compressor wheel 20 and the turbine wheel 30 are connected by the shaft 10. The shaft 10 is rotatably supported by a bearing portion 41 of the bearing housing 40.
 ベアリングハウジング40には供給油路42及び排出油路43が形成される。供給油路42の一端(外側の端部)は前述の通り圧送油路3の他端に接続され、供給油路42の他端(内側の端部)は軸受部41に接続される。排出油路43の一端(内側の端部)は軸受部41に接続され、排出油路43の他端(外側の端部)は後述する戻り油路7の一端に接続される。
 なお、ターボチャージャ6の具体的な構成については後述する。
A supply oil passage 42 and a discharge oil passage 43 are formed in the bearing housing 40. One end (outer end portion) of the supply oil passage 42 is connected to the other end of the pressure feed oil passage 3 as described above, and the other end (inner end portion) of the supply oil passage 42 is connected to the bearing portion 41. One end (inner end portion) of the drain oil passage 43 is connected to the bearing portion 41, and the other end (outer end portion) of the drain oil passage 43 is connected to one end of the return oil passage 7 described later.
A specific configuration of the turbocharger 6 will be described later.
 戻り油路7は、ターボチャージャ6から排出される潤滑油をオイルパン2へと案内するものである。戻り油路7の一端は、ターボチャージャ6(より詳細には、ベアリングハウジング40の排出油路43)に接続される。戻り油路7の他端は、オイルパン2に接続される。 The return oil path 7 guides the lubricating oil discharged from the turbocharger 6 to the oil pan 2. One end of the return oil passage 7 is connected to the turbocharger 6 (more specifically, the discharge oil passage 43 of the bearing housing 40). The other end of the return oil passage 7 is connected to the oil pan 2.
 戻り油路7は、流量制御弁100と重複しないように形成されている。言い換えれば、戻り油路7は、流量制御弁100と離間するように形成されている。これにより、戻り油路7によって案内される潤滑油が、流量制御弁100内を通過することはない。また、これによって、流量制御弁100に、戻り油路7内を介して排出される潤滑油を案内するための油路(例えば、貫通孔等)を形成する必要がない。 The return oil passage 7 is formed so as not to overlap with the flow control valve 100. In other words, the return oil passage 7 is formed so as to be separated from the flow control valve 100. Thereby, the lubricating oil guided by the return oil passage 7 does not pass through the flow control valve 100. Further, this eliminates the need to form an oil passage (for example, a through hole) for guiding the lubricating oil discharged through the return oil passage 7 in the flow control valve 100.
 ここで、エンジンEは、上記オイルパン2、オイルポンプ4、オイルフィルタ5及び流量制御弁100を具備している。また、エンジンEは、その他に、シリンダブロック、シリンダヘッド、クランクケース8(図4参照)、ヘッドカバー、ピストン、コンロッド、クランクシャフト、カムシャフト、吸気弁、排気弁等を具備している。また、ターボチャージャ6は、エンジンEの外部に取り付けられている。 Here, the engine E includes the oil pan 2, the oil pump 4, the oil filter 5, and the flow control valve 100. In addition, the engine E includes a cylinder block, a cylinder head, a crankcase 8 (see FIG. 4), a head cover, a piston, a connecting rod, a crankshaft, a camshaft, an intake valve, an exhaust valve, and the like. The turbocharger 6 is attached to the outside of the engine E.
 このように構成された潤滑油供給機構1において、エンジンEの回転に応じてオイルポンプ4が駆動すると、当該オイルポンプ4によってオイルパン2内の潤滑油が圧送油路3を介してターボチャージャ6へと圧送される。当該潤滑油は、流量制御弁100によって適宜流量を調節されながらターボチャージャ6へと案内されることになる。さらに当該潤滑油は、供給油路42を介してベアリングハウジング40の軸受部41へと案内される。当該軸受部41を潤滑した潤滑油は、排出油路43及び戻り油路7を介してオイルパン2へと戻される。 In the lubricating oil supply mechanism 1 configured as described above, when the oil pump 4 is driven in accordance with the rotation of the engine E, the lubricating oil in the oil pan 2 is driven by the oil pump 4 through the pressure oil passage 3 through the turbocharger 6. Pumped to The lubricating oil is guided to the turbocharger 6 while the flow rate is appropriately adjusted by the flow rate control valve 100. Further, the lubricating oil is guided to the bearing portion 41 of the bearing housing 40 through the supply oil passage 42. The lubricating oil that has lubricated the bearing portion 41 is returned to the oil pan 2 through the discharge oil passage 43 and the return oil passage 7.
 なお、本実施形態においては特に言及しないが、オイルポンプ4によって圧送された潤滑油は、図示せぬ他の油路を介してエンジンEの各部(その他の潤滑部位)へも供給され、当該エンジンEの各部を適宜潤滑する。 Although not specifically mentioned in the present embodiment, the lubricating oil pumped by the oil pump 4 is also supplied to each part (other lubricating part) of the engine E through other oil passages (not shown). Lubricate each part of E as appropriate.
 次に、図2及び図3を用いて、ターボチャージャ6の構成について説明する。 Next, the configuration of the turbocharger 6 will be described with reference to FIGS.
 ターボチャージャ6は、エンジンEのシリンダに圧縮空気を送り込むためのものである。ターボチャージャ6は、主としてシャフト10、コンプレッサホイール20、タービンホイール30、ベアリングハウジング40、すべり軸受60、スラストカラー70及びスラスト軸受90を具備する。 The turbocharger 6 is for sending compressed air into the cylinder of the engine E. The turbocharger 6 mainly includes a shaft 10, a compressor wheel 20, a turbine wheel 30, a bearing housing 40, a slide bearing 60, a thrust collar 70 and a thrust bearing 90.
 シャフト10は、後述するコンプレッサホイール20とタービンホイール30とを連結するものである。シャフト10は、その長手方向(軸線方向)を前後方向へ向けて配置される。 The shaft 10 connects a compressor wheel 20 and a turbine wheel 30 described later. The shaft 10 is disposed with its longitudinal direction (axial direction) directed in the front-rear direction.
 コンプレッサホイール20は、複数の羽根を有し、回転駆動されることによって空気を圧縮するものである。コンプレッサホイール20は、シャフト10の後端部に固定される。 The compressor wheel 20 has a plurality of blades, and compresses air by being driven to rotate. The compressor wheel 20 is fixed to the rear end portion of the shaft 10.
 タービンホイール30は、複数の羽根を有し、エンジンEからの排気を受けて回転することで駆動力を発生させるものである。タービンホイール30は、シャフト10の前端部に一体的に形成される。 The turbine wheel 30 has a plurality of blades, and generates driving force by rotating by receiving exhaust from the engine E. The turbine wheel 30 is formed integrally with the front end portion of the shaft 10.
 ベアリングハウジング40は、シャフト10を間接的に回転可能に支持する略箱状の部材である。ベアリングハウジング40の底面は平ら(平面状)に形成される。ベアリングハウジング40の下部には、オイルパイプアッシ40aが設けられる。 The bearing housing 40 is a substantially box-shaped member that supports the shaft 10 so as to be indirectly rotatable. The bottom surface of the bearing housing 40 is formed flat (planar). An oil pipe assembly 40 a is provided at the lower part of the bearing housing 40.
 オイルパイプアッシ40aは、略板状の部材とパイプからなる部材である。オイルパイプアッシ40aの上面(フランジ部)は平ら(平板状)に形成される。オイルパイプアッシ40aは、その上面をガスケットを介してベアリングハウジング40の底面と当接させた状態で、ボルト等によってベアリングハウジング40に固定される。当該オイルパイプアッシ40aによって、圧送油路3及び戻り油路7の一部が形成される。 The oil pipe assembly 40a is a member composed of a substantially plate-like member and a pipe. The upper surface (flange portion) of the oil pipe assembly 40a is formed flat (flat). The oil pipe assembly 40a is fixed to the bearing housing 40 with bolts or the like with its upper surface in contact with the bottom surface of the bearing housing 40 via a gasket. The oil pipe assembly 40a forms part of the pressure oil passage 3 and the return oil passage 7.
 また、ベアリングハウジング40には、軸受部41、供給油路42及び排出油路43が形成される。 In the bearing housing 40, a bearing portion 41, a supply oil passage 42, and a discharge oil passage 43 are formed.
 軸受部41は、シャフト10を間接的に回転可能に支持する部分である。軸受部41は円形断面を有し、ベアリングハウジング40を前後方向に貫通するように形成される。 The bearing portion 41 is a portion that supports the shaft 10 so as to be indirectly rotatable. The bearing portion 41 has a circular cross section and is formed so as to penetrate the bearing housing 40 in the front-rear direction.
 供給油路42は、圧送油路3を介して供給される潤滑油を軸受部41へと案内するためのものである。すなわち、圧送油路3及び供給油路42によって、オイルポンプ4から圧送される潤滑油を軸受部41へと案内するための油路が形成される。供給油路42は、ベアリングハウジング40の下面から上方に向かって形成される。供給油路42の一端(下端)は圧送油路3の他端に接続される。供給油路42の他端(上端)は、前後に分岐されて軸受部41の前端部及び後端部にそれぞれ接続される。 The supply oil passage 42 is for guiding the lubricating oil supplied via the pressure feed oil passage 3 to the bearing portion 41. That is, an oil passage for guiding the lubricating oil pumped from the oil pump 4 to the bearing portion 41 is formed by the pumping oil passage 3 and the supply oil passage 42. The supply oil passage 42 is formed upward from the lower surface of the bearing housing 40. One end (lower end) of the supply oil passage 42 is connected to the other end of the pressure feed oil passage 3. The other end (upper end) of the supply oil passage 42 is branched back and forth and connected to the front end portion and the rear end portion of the bearing portion 41, respectively.
 排出油路43は、潤滑油を軸受部41から排出するためのものである。排出油路43は、供給油路42の左方において、ベアリングハウジング40の下面から上方に向かって形成される。排出油路43の一端(上端)は適宜に分岐されて軸受部41の前端部、後端部及び前後中途部にそれぞれ接続される。排出油路43の他端(下端)は戻り油路7の一端に接続される。排出油路43内の圧力は大気圧となるように開放されている。 The discharge oil passage 43 is for discharging the lubricating oil from the bearing portion 41. The drain oil passage 43 is formed upward from the lower surface of the bearing housing 40 on the left side of the supply oil passage 42. One end (upper end) of the drain oil passage 43 is appropriately branched and connected to the front end portion, the rear end portion, and the front and rear intermediate portions of the bearing portion 41, respectively. The other end (lower end) of the drain oil passage 43 is connected to one end of the return oil passage 7. The pressure in the discharge oil passage 43 is opened to be atmospheric pressure.
 すべり軸受60は、シャフト10を回転可能に支持する略円筒状の軸受である。すべり軸受60は、ベアリングハウジング40の軸受部41の前端部及び後端部(供給油路42と対向する部分)にそれぞれ配置される。当該すべり軸受60にはシャフト10が挿通される。 The sliding bearing 60 is a substantially cylindrical bearing that rotatably supports the shaft 10. The slide bearings 60 are respectively arranged at the front end portion and the rear end portion (portion facing the supply oil passage 42) of the bearing portion 41 of the bearing housing 40. The shaft 10 is inserted through the slide bearing 60.
 スラストカラー70は略円筒状に形成され、前後方向に向けて配置される。スラストカラー70にはシャフト10が挿通される。スラストカラー70は、シャフト10に対して相対回転不能となるように固定される。スラストカラー70の前後中途部にはスラスト軸受90が外嵌される。スラスト軸受90は、軸受部41の後方においてベアリングハウジング40と接するように配置される。このようにして、スラスト軸受90はシャフト10に加わる軸線方向の荷重を受けることになる。 The thrust collar 70 is formed in a substantially cylindrical shape and is arranged in the front-rear direction. The shaft 10 is inserted through the thrust collar 70. The thrust collar 70 is fixed so as not to rotate relative to the shaft 10. A thrust bearing 90 is fitted on the middle portion of the thrust collar 70 before and after. The thrust bearing 90 is disposed in contact with the bearing housing 40 at the rear of the bearing portion 41. In this way, the thrust bearing 90 receives an axial load applied to the shaft 10.
 以下では、図4を用いて、流量制御弁100の構成について説明する。 Hereinafter, the configuration of the flow control valve 100 will be described with reference to FIG.
 流量制御弁100は、圧送油路3を流通する潤滑油の圧力に基づいて当該潤滑油の流路の面積(流路面積)を変更することによって当該潤滑油の流量を調節するものである。流量制御弁100は、その長手方向(軸線方向)を左右方向へ向けて配置される。流量制御弁100は、主として弁本体110、スプール120、調圧部材130及びスプリング140を具備する。 The flow control valve 100 adjusts the flow rate of the lubricating oil by changing the flow passage area (flow passage area) of the lubricating oil based on the pressure of the lubricating oil flowing through the pressure feed oil passage 3. The flow control valve 100 is disposed with its longitudinal direction (axial direction) directed in the left-right direction. The flow control valve 100 mainly includes a valve body 110, a spool 120, a pressure regulating member 130, and a spring 140.
 弁本体110は、内部を潤滑油が流通可能な部材である。弁本体110は、略円筒状に形成される。弁本体110は、その長手方向を左右方向に向けて配置される。弁本体110は、エンジンEのクランクケース8に挿通された状態で取り付けられる。弁本体110の左端部は、クランクケース8の内部空間(図4におけるクランクケース8の左側の空間)に面するように配置される。弁本体110の右端部は、クランクケース8の外部空間(図4におけるクランクケース8の右側の空間)に面するように配置される。弁本体110には、摺動部111、第一ポート112、第二ポート113、連通油路114及びめねじ部115が形成される。 The valve body 110 is a member through which lubricating oil can flow. The valve body 110 is formed in a substantially cylindrical shape. The valve body 110 is arranged with its longitudinal direction facing the left-right direction. The valve body 110 is attached in a state of being inserted through the crankcase 8 of the engine E. The left end of the valve body 110 is disposed so as to face the internal space of the crankcase 8 (the space on the left side of the crankcase 8 in FIG. 4). The right end portion of the valve body 110 is disposed so as to face the external space of the crankcase 8 (the space on the right side of the crankcase 8 in FIG. 4). The valve body 110 is formed with a sliding portion 111, a first port 112, a second port 113, a communication oil passage 114, and a female screw portion 115.
 摺動部111は、弁本体110の内部を長手方向に貫通するように形成される孔である。摺動部111は円形断面を有するように形成される。摺動部111の一端部(右端部)は、適宜閉塞部材によって閉塞される。 The sliding portion 111 is a hole formed so as to penetrate the inside of the valve body 110 in the longitudinal direction. The sliding part 111 is formed to have a circular cross section. One end portion (right end portion) of the sliding portion 111 is appropriately closed by a closing member.
 第一ポート112は、摺動部111と弁本体110の外部とを連通するように形成される孔である。第一ポート112は、流量制御弁100の上流側の油路(圧送油路3)と対向する位置に形成され、当該上流側の油路に連通される。より詳細には、第一ポート112は、クランクケース8に形成されたメインオイルホール8aと対向する位置に形成される。当該メインオイルホール8aは、圧送油路3の一部を形成する油路である。 The first port 112 is a hole formed so as to communicate the sliding portion 111 and the outside of the valve body 110. The first port 112 is formed at a position facing the upstream oil passage (pressure feed oil passage 3) of the flow control valve 100 and communicates with the upstream oil passage. More specifically, the first port 112 is formed at a position facing the main oil hole 8 a formed in the crankcase 8. The main oil hole 8 a is an oil passage that forms a part of the pressure feed oil passage 3.
 第二ポート113は、摺動部111と弁本体110の外部とを連通するように形成される孔である。第二ポート113は、流量制御弁100の下流側の油路(圧送油路3)と対向する位置に形成され、当該下流側の油路に連通される。 The second port 113 is a hole formed so as to communicate the sliding portion 111 and the outside of the valve body 110. The second port 113 is formed at a position facing the downstream oil passage (pressure feed oil passage 3) of the flow control valve 100 and communicates with the downstream oil passage.
 連通油路114は、摺動部111の右端部近傍と流量制御弁100の下流側の油路(圧送油路3)とを連通するように形成される。 The communication oil passage 114 is formed so as to communicate the vicinity of the right end portion of the sliding portion 111 and the oil passage (pressure feed oil passage 3) on the downstream side of the flow control valve 100.
 めねじ部115は、弁本体110の他端部(左端部)近傍に形成される。めねじ部115は、摺動部111と同一軸線上の孔の内側にねじを切ることで形成される。 The female thread portion 115 is formed in the vicinity of the other end portion (left end portion) of the valve body 110. The female thread portion 115 is formed by cutting a screw inside a hole on the same axis as the sliding portion 111.
 スプール120は、流量制御弁100を流通する潤滑油の流路を適宜に絞るためのものである。スプール120は略円柱状の部材である。スプール120は、その長手方向を左右方向に向けて、弁本体110の摺動部111の内部に配置される。より詳細には、スプール120は、弁本体110の摺動部111の右端部近傍から左端部近傍に亘って配置される。スプール120には、第一拡径部121、第二拡径部122及び突出部123が形成される。 The spool 120 is for appropriately restricting the flow path of the lubricating oil flowing through the flow control valve 100. The spool 120 is a substantially columnar member. The spool 120 is disposed inside the sliding portion 111 of the valve main body 110 with its longitudinal direction facing the left-right direction. More specifically, the spool 120 is disposed from the vicinity of the right end of the sliding portion 111 of the valve body 110 to the vicinity of the left end. The spool 120 is formed with a first enlarged diameter portion 121, a second enlarged diameter portion 122, and a protruding portion 123.
 第一拡径部121は、その径が他の部分よりも大きくなるように形成される部分である。第一拡径部121は、スプール120の左端部近傍に形成される。第一拡径部121の径(外径)は、弁本体110の摺動部111の径(内径)と略同一となるように形成される。 The first enlarged diameter portion 121 is a portion formed so that its diameter is larger than other portions. The first enlarged diameter portion 121 is formed in the vicinity of the left end portion of the spool 120. The diameter (outer diameter) of the first enlarged diameter portion 121 is formed to be substantially the same as the diameter (inner diameter) of the sliding portion 111 of the valve body 110.
 第二拡径部122は、その径が他の部分よりも大きくなるように形成される部分である。第二拡径部122は、スプール120の右端部近傍に、第一拡径部121と所定距離だけ離間して形成される。第二拡径部122の径(外径)は、弁本体110の摺動部111の径(内径)と略同一となるように形成される。 The second enlarged diameter portion 122 is a portion formed so that its diameter is larger than other portions. The second enlarged diameter portion 122 is formed in the vicinity of the right end portion of the spool 120 and separated from the first enlarged diameter portion 121 by a predetermined distance. The diameter (outer diameter) of the second enlarged diameter portion 122 is formed to be substantially the same as the diameter (inner diameter) of the sliding portion 111 of the valve body 110.
 また、第二拡径部122は、弁本体110の第一ポート112の一部と対向する位置に形成される。すなわち、第一ポート112は、第二拡径部122によってその一部が閉塞された(絞られた)状態になる。 Further, the second enlarged diameter portion 122 is formed at a position facing a part of the first port 112 of the valve body 110. That is, a part of the first port 112 is closed (squeezed) by the second enlarged diameter portion 122.
 突出部123は、略円柱状に形成される部分である。突出部123は、第一拡径部121の左端面から左方に向けて突出するように形成される。突出部123の径は、第一拡径部121の径よりも小さくなるように形成される。 The protruding portion 123 is a portion formed in a substantially cylindrical shape. The protruding portion 123 is formed so as to protrude leftward from the left end surface of the first enlarged diameter portion 121. The diameter of the protruding portion 123 is formed to be smaller than the diameter of the first enlarged diameter portion 121.
 このように構成されたスプール120の第一拡径部121及び第二拡径部122が弁本体110の摺動部111に対して左右方向に摺動可能に接することにより、当該スプール120が弁本体110の摺動部111の内部において左右方向に摺動可能となるように配置される。また、スプール120が左右方向に摺動することによって、弁本体110の第一ポート112の第二拡径部122による閉塞具合(絞り具合)が変化する。すなわち、当該第一ポート112の開口面積(第一ポート112を流通する潤滑油の流路面積)が変更される。 The first diameter-expanded portion 121 and the second diameter-expanded portion 122 of the spool 120 configured as described above are slidably contacted with the sliding portion 111 of the valve main body 110 in the left-right direction. Inside the sliding part 111 of the main body 110, it arrange | positions so that it can slide to the left-right direction. Further, as the spool 120 slides in the left-right direction, the closing condition (throttle condition) by the second enlarged diameter portion 122 of the first port 112 of the valve body 110 changes. That is, the opening area of the first port 112 (the flow area of the lubricating oil flowing through the first port 112) is changed.
 調圧部材130は、後述するスプリング140を左方から支持すると共に、スプリング140によってスプール120に加えられる付勢力を調節するためのものである。調圧部材130は、スプール120の左方に配置される。調圧部材130には、本体部131、突出部132及び連通孔133が形成される。 The pressure adjusting member 130 supports a spring 140, which will be described later, from the left side and adjusts a biasing force applied to the spool 120 by the spring 140. The pressure adjusting member 130 is disposed on the left side of the spool 120. The pressure adjusting member 130 is formed with a main body portion 131, a protruding portion 132, and a communication hole 133.
 本体部131は、略円柱状に形成される部分である。本体部131は、その長手方向を左右方向に向けて配置される。本体部131には、その外周面の左端部から右端部に亘ってねじ(おねじ)が形成される。 The main body 131 is a portion formed in a substantially cylindrical shape. The main body 131 is arranged with its longitudinal direction facing the left-right direction. A screw (male screw) is formed in the main body 131 from the left end portion to the right end portion of the outer peripheral surface thereof.
 突出部132は、略円柱状に形成される部分である。突出部132は、本体部131の右端面から右方に向けて突出するように形成される。突出部132の径は、本体部131の径よりも小さくなるように形成される。また突出部132の径は、スプール120の突出部123の径と略同一になるように形成される。 The protruding portion 132 is a portion formed in a substantially cylindrical shape. The protrusion 132 is formed so as to protrude rightward from the right end surface of the main body 131. The diameter of the protrusion 132 is formed to be smaller than the diameter of the main body 131. The diameter of the protrusion 132 is formed to be substantially the same as the diameter of the protrusion 123 of the spool 120.
 連通孔133は、調圧部材130を左右に貫通するものである。連通孔133は、本体部131の左端面と、突出部132の右端面と、を連通するように形成される。 The communication hole 133 penetrates the pressure regulating member 130 to the left and right. The communication hole 133 is formed so as to communicate the left end surface of the main body 131 and the right end surface of the protrusion 132.
 このように構成された調圧部材130は、本体部131が弁本体110のめねじ部115にねじ込まれることで、当該弁本体110に固定される。また、本体部131をめねじ部115の任意の位置までねじ込むことで、調圧部材130の左右方向の位置を任意に調節することができる。 The pressure regulating member 130 configured in this manner is fixed to the valve main body 110 when the main body 131 is screwed into the female thread 115 of the valve main body 110. Further, by screwing the main body portion 131 to an arbitrary position of the female screw portion 115, the position of the pressure adjusting member 130 in the left-right direction can be arbitrarily adjusted.
 スプリング140は、圧縮されることで弾性エネルギーを蓄積する圧縮コイルスプリングである。スプリング140は、スプール120と調圧部材130との間に配置される。 The spring 140 is a compression coil spring that accumulates elastic energy by being compressed. The spring 140 is disposed between the spool 120 and the pressure adjusting member 130.
 具体的には、スプリング140の左端は、調圧部材130の本体部131の右端面によって受けられる。スプリング140の右端は、スプール120の第一拡径部121の左端面によって受けられる。このようにして、スプリング140はスプール120を右方に向かって所定の力で付勢する。この際、スプリング140の右端部にはスプール120の突出部123が挿通されると共に、スプリング140の左端部には調圧部材130の突出部132が挿通される。これによって、スプリング140の姿勢が崩れないように保持されている。 Specifically, the left end of the spring 140 is received by the right end surface of the main body 131 of the pressure adjusting member 130. The right end of the spring 140 is received by the left end surface of the first enlarged diameter portion 121 of the spool 120. In this way, the spring 140 urges the spool 120 to the right with a predetermined force. At this time, the protruding portion 123 of the spool 120 is inserted into the right end portion of the spring 140, and the protruding portion 132 of the pressure adjusting member 130 is inserted into the left end portion of the spring 140. Thus, the posture of the spring 140 is held so as not to collapse.
 このように構成された流量制御弁100において、スプール120の第一拡径部121、第二拡径部122及び弁本体110の摺動部111によって囲まれた部分に、潤滑油が満たされる第一油室R1が形成される。また、スプール120の第二拡径部122及び弁本体110の摺動部111によって囲まれた部分に、潤滑油が満たされる第二油室R2が形成される。 In the flow control valve 100 configured as described above, a portion surrounded by the first enlarged diameter portion 121, the second enlarged diameter portion 122 of the spool 120 and the sliding portion 111 of the valve body 110 is filled with lubricating oil. One oil chamber R1 is formed. A second oil chamber R <b> 2 filled with lubricating oil is formed in a portion surrounded by the second enlarged diameter portion 122 of the spool 120 and the sliding portion 111 of the valve body 110.
 第一油室R1と第二油室R2とは、スプール120の第二拡径部122によって区画されると共に、連通油路114及び第二ポート113によって接続されることになる。 The first oil chamber R1 and the second oil chamber R2 are partitioned by the second enlarged diameter portion 122 of the spool 120, and are connected by the communication oil passage 114 and the second port 113.
 次に、図1から図4までを用いて、潤滑油の供給態様(潤滑油が軸受部41に供給された後、排出される様子)について具体的に説明する。 Next, the supply mode of the lubricating oil (the state in which the lubricating oil is discharged after being supplied to the bearing portion 41) will be specifically described with reference to FIGS.
 前述の如く、オイルポンプ4(図1参照)によって圧送された潤滑油は、オイルフィルタ5を介して流量制御弁100へと供給される。当該潤滑油は、弁本体110の第一ポート112を介して第一油室R1内へと供給される(図4参照)。当該第一油室R1内の潤滑油は、第二ポート113から吐出されてターボチャージャ6の供給油路42へと供給される(図1参照)。この際、流量制御弁100を流通する潤滑油の流量は、当該流量制御弁100によって調節される。 As described above, the lubricating oil pumped by the oil pump 4 (see FIG. 1) is supplied to the flow control valve 100 via the oil filter 5. The lubricating oil is supplied into the first oil chamber R1 through the first port 112 of the valve body 110 (see FIG. 4). The lubricating oil in the first oil chamber R1 is discharged from the second port 113 and supplied to the supply oil passage 42 of the turbocharger 6 (see FIG. 1). At this time, the flow rate of the lubricating oil flowing through the flow control valve 100 is adjusted by the flow control valve 100.
 供給油路42へと供給された潤滑油は、当該供給油路42に案内されてベアリングハウジング40の軸受部41へと供給される(図2及び図3参照)。軸受部41へと供給された潤滑油は、当該軸受部41(特に、すべり軸受60)を潤滑する。軸受部41を潤滑する潤滑油は、ターボチャージャ6の熱や、軸受部41における摩擦によって発生する熱によって高温になる。軸受部41を潤滑して高温になった潤滑油は、当該軸受部41の前端部、後端部及び前後中途部から排出油路43へと流出する。当該潤滑油は、排出油路43及び戻り油路7を介してオイルパン2へと戻される(図1参照)。 The lubricating oil supplied to the supply oil passage 42 is guided to the supply oil passage 42 and supplied to the bearing portion 41 of the bearing housing 40 (see FIGS. 2 and 3). The lubricating oil supplied to the bearing portion 41 lubricates the bearing portion 41 (particularly, the sliding bearing 60). The lubricating oil that lubricates the bearing portion 41 becomes high temperature due to heat of the turbocharger 6 and heat generated by friction in the bearing portion 41. Lubricating oil that has become hot due to the lubrication of the bearing portion 41 flows out from the front end portion, the rear end portion, and the front and rear midway portions of the bearing portion 41 to the discharge oil passage 43. The lubricating oil is returned to the oil pan 2 through the discharge oil passage 43 and the return oil passage 7 (see FIG. 1).
 この際、排出油路43及び戻り油路7によって案内される高温の潤滑油は、流量制御弁100を流通することがない。このため、高温になった潤滑油の熱によって、流量制御弁100の温度の上昇が促されることはない。 At this time, the high-temperature lubricating oil guided by the discharge oil passage 43 and the return oil passage 7 does not flow through the flow control valve 100. For this reason, the temperature of the flow control valve 100 is not promoted by the heat of the lubricating oil that has reached a high temperature.
 次に、図4及び図5を用いて、流量制御弁100によって当該流量制御弁100を流通する潤滑油の流量が調節される様子について説明する。 Next, the manner in which the flow rate of the lubricating oil flowing through the flow control valve 100 is adjusted by the flow control valve 100 will be described with reference to FIGS. 4 and 5.
 流量制御弁100(流量制御弁100の第二ポート113)を流通する潤滑油の流量は、第二拡径部122によって第一ポート112が絞られた部分(絞り)の後とターボチャージャ6の軸受部41(図1等参照)の後(大気圧)との圧力の差(差圧)、すなわち、流量制御弁100の下流側と大気圧との差圧に応じて変化する。流量制御弁100は、当該流量制御弁100の下流側の油圧が所定の圧力に達すると、当該差圧が略一定となるように絞りを調節する。以下、具体的に説明する。 The flow rate of the lubricating oil flowing through the flow rate control valve 100 (the second port 113 of the flow rate control valve 100) is after the portion (throttle) where the first port 112 is throttled by the second enlarged diameter portion 122 and the turbocharger 6. It changes according to the pressure difference (differential pressure) after the bearing portion 41 (see FIG. 1 etc.) (atmospheric pressure), that is, the differential pressure between the downstream side of the flow control valve 100 and the atmospheric pressure. When the hydraulic pressure on the downstream side of the flow control valve 100 reaches a predetermined pressure, the flow control valve 100 adjusts the throttle so that the differential pressure becomes substantially constant. This will be specifically described below.
 エンジンEが始動し、その回転数(以下、「エンジン回転数N」と称する)が上昇すると、オイルポンプ4の回転数が上昇し、流量制御弁100へと供給される潤滑油の量も増加する。エンジン回転数Nが低い場合には、スプリング140によってスプール120が右方へと押され、第一ポート112の開口面積は広く確保されている。このため、エンジン回転数Nの増加に伴って流量制御弁100の下流側の油圧(以下、「下流側油圧P」と称する)も上昇する。 When the engine E starts and its rotational speed (hereinafter referred to as “engine rotational speed N”) increases, the rotational speed of the oil pump 4 increases and the amount of lubricating oil supplied to the flow control valve 100 also increases. To do. When the engine speed N is low, the spool 120 is pushed to the right by the spring 140, and the opening area of the first port 112 is secured widely. For this reason, as the engine speed N increases, the hydraulic pressure on the downstream side of the flow control valve 100 (hereinafter referred to as “downstream hydraulic pressure P”) also increases.
 ここで、下流側油圧Pは、連通油路114を介して第二油室R2にも付与されている。従って、さらにエンジン回転数Nが増加して下流側油圧P(すなわち、第二油室R2内の油圧)が高くなると、スプリング140の付勢力に抗してスプール120が左方へと摺動されることになる。これによって、第一ポート112の開口面積が小さく絞られる。 Here, the downstream hydraulic pressure P is also given to the second oil chamber R2 via the communication oil passage 114. Therefore, when the engine speed N further increases and the downstream hydraulic pressure P (that is, the hydraulic pressure in the second oil chamber R2) increases, the spool 120 slides to the left against the biasing force of the spring 140. Will be. Thereby, the opening area of the first port 112 is reduced.
 このように、エンジン回転数Nが所定の値(図5におけるN1)まで増加して、下流側油圧Pが所定の値(図5におけるP1)に達した後は、当該流量制御弁100を流通する潤滑油の流量が制限されるため、当該下流側油圧Pの増加量が著しく低下する(ごく少量になる)ことになる。これによって、流量制御弁100の下流側へと供給される潤滑油の流量を調節(制限)することができる。これによって、軸受部41への過剰な潤滑油の供給を防止することができる。軸受部41への潤滑油の供給量を削減することで、当該軸受部41における摩擦損失の低減を図ることができる。 As described above, after the engine speed N increases to a predetermined value (N1 in FIG. 5) and the downstream hydraulic pressure P reaches a predetermined value (P1 in FIG. 5), the flow control valve 100 is circulated. Since the flow rate of the lubricating oil is limited, the increase amount of the downstream oil pressure P is significantly reduced (becomes very small). Thereby, the flow rate of the lubricating oil supplied to the downstream side of the flow control valve 100 can be adjusted (restricted). Thereby, it is possible to prevent excessive supply of lubricating oil to the bearing portion 41. By reducing the supply amount of the lubricating oil to the bearing portion 41, the friction loss in the bearing portion 41 can be reduced.
 また、軸受部41への潤滑油の供給量の削減に伴って、オイルポンプ4の仕事の低減を図ることができる。これによって、当該オイルポンプ4の小型化や燃費の向上を図ることができる。 Also, the work of the oil pump 4 can be reduced as the amount of lubricating oil supplied to the bearing portion 41 is reduced. As a result, the oil pump 4 can be reduced in size and fuel consumption can be improved.
 また、本実施形態に係る流量制御弁100においては、調圧部材130の連通孔133によって、当該調圧部材130の右方の空間(スプール120の第一拡径部121、調圧部材130及び弁本体110によって囲まれた部分)と、クランクケース8の内部空間とが連通されている。これによって、調圧部材130の右方の空間内を、連通孔133を介して大気圧に開放することができる。このため、当該調圧部材130の右方の空間内の圧力によってスプール120の摺動が阻害されることがない。 Further, in the flow control valve 100 according to the present embodiment, the space on the right side of the pressure adjusting member 130 (the first enlarged diameter portion 121 of the spool 120, the pressure adjusting member 130, and the The portion surrounded by the valve body 110) and the internal space of the crankcase 8 are communicated with each other. Thus, the space on the right side of the pressure adjusting member 130 can be opened to the atmospheric pressure through the communication hole 133. Therefore, the sliding of the spool 120 is not hindered by the pressure in the right space of the pressure adjusting member 130.
 なお、潤滑油の流量が制限されることになる下流側油圧Pの値(所定の値P1)は、調圧部材130の位置を変更したり、スプリング140を特性の異なるものに変更したりすることで任意に設定することができる。 Note that the value (predetermined value P1) of the downstream hydraulic pressure P that restricts the flow rate of the lubricating oil changes the position of the pressure adjusting member 130 or changes the spring 140 to one having different characteristics. It can be set arbitrarily.
 また、図5には、上述のような潤滑油の流量の制限が行われなかったと想定した場合の下流側油圧Pを、破線で示している。 Further, in FIG. 5, the downstream side hydraulic pressure P when it is assumed that the flow rate of the lubricating oil as described above is not performed is indicated by a broken line.
 以上の如く、本実施形態に係るターボチャージャ6の潤滑油供給機構1は、エンジンEに設けられたターボチャージャ6の軸受部41へと潤滑油を供給するターボチャージャ6の潤滑油供給機構1であって、潤滑油を軸受部41へと案内する潤滑油供給油路(圧送油路3及び供給油路42)と、軸受部41から排出される潤滑油を案内する潤滑油排出油路(排出油路43及び戻り油路7)と、前記潤滑油供給油路に設けられると共に、前記潤滑油排出油路と重複しない位置に設けられ、前記潤滑油供給油路を流通する潤滑油の流路を絞ることによって当該潤滑油の流量を調節する流量制御弁100と、を具備するものである。
 このように構成することにより、流量制御弁100の温度上昇を抑制することができる。具体的には、軸受部41から排出される高温の潤滑油の熱による流量制御弁100の温度上昇を抑制することができる。これによって、当該流量制御弁100におけるオイルコーキングの発生を抑制することができる。
 また、このように、流量制御弁100は前記潤滑油排出油路(排出油路43及び戻り油路7)と重複しないように配置されているため、当該流量制御弁100に、潤滑油排出油路を介して排出される潤滑油を案内する油路(例えば、貫通孔等)を形成する必要がない。これによって、流量制御弁100のコンパクト化を図ることができる。
As described above, the lubricating oil supply mechanism 1 of the turbocharger 6 according to the present embodiment is the lubricating oil supply mechanism 1 of the turbocharger 6 that supplies the lubricating oil to the bearing portion 41 of the turbocharger 6 provided in the engine E. And a lubricating oil supply oil passage (pressure feed oil passage 3 and supply oil passage 42) for guiding the lubricating oil to the bearing portion 41, and a lubricating oil discharge oil passage (discharge) for guiding the lubricating oil discharged from the bearing portion 41. The oil passage 43 and the return oil passage 7), and the lubricating oil flow passage provided in the lubricating oil supply oil passage and at a position not overlapping with the lubricating oil discharge oil passage and flowing through the lubricating oil supply oil passage. And a flow rate control valve 100 that adjusts the flow rate of the lubricating oil by reducing the pressure.
By comprising in this way, the temperature rise of the flow control valve 100 can be suppressed. Specifically, the temperature rise of the flow control valve 100 due to the heat of the high-temperature lubricating oil discharged from the bearing portion 41 can be suppressed. Thereby, generation | occurrence | production of the oil coking in the said flow control valve 100 can be suppressed.
Since the flow control valve 100 is arranged so as not to overlap with the lubricating oil discharge oil passage (the discharge oil passage 43 and the return oil passage 7), the lubricating oil discharge oil is provided in the flow control valve 100. There is no need to form an oil passage (for example, a through hole) that guides the lubricating oil discharged through the passage. Thereby, the flow control valve 100 can be made compact.
 また、流量制御弁100はエンジンEに設けられるものである。
 このように構成することにより、流量制御弁100の温度上昇をより効果的に抑制することができる。すなわち、ターボチャージャ6の熱による流量制御弁100の温度上昇を抑制することができる。
The flow control valve 100 is provided in the engine E.
By comprising in this way, the temperature rise of the flow control valve 100 can be suppressed more effectively. That is, the temperature rise of the flow control valve 100 due to the heat of the turbocharger 6 can be suppressed.
 なお、本実施形態に係る圧送油路3及び供給油路42は、本発明に係る潤滑油供給油路の実施の一形態である。
 また、本実施形態に係る排出油路43及び戻り油路7は、本発明に係る潤滑油排出油路の実施の一形態である。
The pressure feed oil passage 3 and the supply oil passage 42 according to the present embodiment are an embodiment of the lubricating oil supply oil passage according to the present invention.
Moreover, the discharge oil path 43 and the return oil path 7 which concern on this embodiment are one Embodiment of the lubricating oil discharge oil path which concerns on this invention.
 以上、本発明の実施形態を説明したが、本発明は上記構成に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said structure, A various change is possible within the range of the invention described in the claim.
 例えば、本実施形態に係る流量制御弁100は、エンジンEに設けられるものとしたが、本発明はこれに限るものではない。すなわち、本発明に係る流量制御弁は、軸受部から排出される潤滑油を案内する潤滑油排出油路と重複しない位置に設けられていれば良い。本発明に係る流量制御弁は、ターボチャージャ6(供給油路42の中途部)に設ける構成とすることも可能である。また、本発明に係る流量制御弁は、エンジンE及びターボチャージャ6の外部に設ける構成とすることも可能である。本発明に係る流量制御弁を、エンジンEの振動の影響が少ない位置(例えば、エンジンEを具備する自動車本体等)に固定することで、当該振動に基づく流量制御弁の不具合の発生を抑制することもできる。 For example, although the flow control valve 100 according to the present embodiment is provided in the engine E, the present invention is not limited to this. That is, the flow control valve according to the present invention may be provided at a position that does not overlap with the lubricating oil discharge oil passage that guides the lubricating oil discharged from the bearing portion. The flow control valve according to the present invention may be provided in the turbocharger 6 (in the middle of the supply oil passage 42). Further, the flow control valve according to the present invention may be provided outside the engine E and the turbocharger 6. By fixing the flow control valve according to the present invention at a position where the influence of the vibration of the engine E is less (for example, an automobile body equipped with the engine E), the occurrence of the malfunction of the flow control valve based on the vibration is suppressed. You can also.
 また、本発明に係る流量制御弁の構成は、本実施形態に係る流量制御弁100の構成に限るものではない。すなわち、本発明に係る流量制御弁の構成(形状等)は、任意に決定することが可能である。 Further, the configuration of the flow control valve according to the present invention is not limited to the configuration of the flow control valve 100 according to the present embodiment. That is, the configuration (shape, etc.) of the flow control valve according to the present invention can be arbitrarily determined.
 また、本発明に係るターボチャージャの構成は、本実施形態に係るターボチャージャ6の構成に限るものではない。すなわち、本発明に係るターボチャージャの構成(形状等)は、任意に決定することが可能である。 Further, the configuration of the turbocharger according to the present invention is not limited to the configuration of the turbocharger 6 according to the present embodiment. That is, the configuration (shape, etc.) of the turbocharger according to the present invention can be arbitrarily determined.
 本発明は、エンジンに設けられたターボチャージャの軸受部へと潤滑油を供給するターボチャージャの潤滑油供給機構に適用することができる。 The present invention can be applied to a turbocharger lubricating oil supply mechanism that supplies lubricating oil to a bearing portion of a turbocharger provided in the engine.
 1   潤滑油供給機構
 3   圧送油路(潤滑油供給油路)
 6   ターボチャージャ
 7   戻り油路
 40  ベアリングハウジング
 41  軸受部
 42  供給油路
 43  排出油路
 
1 Lubricating oil supply mechanism 3 Pumping oil passage (lubricating oil supply oil passage)
6 Turbocharger 7 Return oil passage 40 Bearing housing 41 Bearing portion 42 Supply oil passage 43 Discharge oil passage

Claims (2)

  1.  エンジンに設けられたターボチャージャの軸受部へと潤滑油を供給するターボチャージャの潤滑油供給機構であって、
     潤滑油を前記軸受部へと案内する潤滑油供給油路と、
     前記軸受部から排出される潤滑油を案内する潤滑油排出油路と、
     前記潤滑油供給油路に設けられると共に、前記潤滑油排出油路と重複しない位置に設けられ、前記潤滑油供給油路を流通する潤滑油の流路を絞ることによって当該潤滑油の流量を調節する流量制御弁と、
     を具備するターボチャージャの潤滑油供給機構。
    A turbocharger lubricating oil supply mechanism that supplies lubricating oil to a bearing portion of a turbocharger provided in an engine,
    A lubricating oil supply oil path for guiding the lubricating oil to the bearing portion;
    A lubricating oil discharge oil passage for guiding the lubricating oil discharged from the bearing portion;
    The flow rate of the lubricating oil is adjusted by restricting the flow path of the lubricating oil that is provided in the lubricating oil supply oil passage and not overlapped with the lubricating oil discharge oil passage and flows through the lubricating oil supply oil passage. A flow control valve to
    A turbocharger lubricating oil supply mechanism.
  2.  前記流量制御弁は前記エンジンに設けられる、
     請求項1に記載のターボチャージャの潤滑油供給機構。
     
    The flow control valve is provided in the engine;
    The turbocharger lubricating oil supply mechanism according to claim 1.
PCT/JP2015/079445 2014-10-29 2015-10-19 Lubricating oil supply mechanism for turbocharger WO2016067955A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014220859A JP2016089632A (en) 2014-10-29 2014-10-29 Lubricating oil supply mechanism for turbocharger
JP2014-220859 2014-10-29

Publications (1)

Publication Number Publication Date
WO2016067955A1 true WO2016067955A1 (en) 2016-05-06

Family

ID=55857296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079445 WO2016067955A1 (en) 2014-10-29 2015-10-19 Lubricating oil supply mechanism for turbocharger

Country Status (2)

Country Link
JP (1) JP2016089632A (en)
WO (1) WO2016067955A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110953035A (en) * 2019-12-10 2020-04-03 潍柴动力股份有限公司 Oil inlet pressure control method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022047269A (en) * 2020-09-11 2022-03-24 いすゞ自動車株式会社 Lubrication device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173323A (en) * 1988-12-26 1990-07-04 Hitachi Ltd Lubrication device for supercharger
JP2009133236A (en) * 2007-11-29 2009-06-18 Toyota Motor Corp Lubricating system of internal combustion engine with turbocharger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164526U (en) * 1987-04-16 1988-10-26
JPH06323157A (en) * 1993-05-13 1994-11-22 Ishikawajima Harima Heavy Ind Co Ltd Lubricating oil amount adjusting device for turbocharger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173323A (en) * 1988-12-26 1990-07-04 Hitachi Ltd Lubrication device for supercharger
JP2009133236A (en) * 2007-11-29 2009-06-18 Toyota Motor Corp Lubricating system of internal combustion engine with turbocharger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110953035A (en) * 2019-12-10 2020-04-03 潍柴动力股份有限公司 Oil inlet pressure control method and device

Also Published As

Publication number Publication date
JP2016089632A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
JP6147655B2 (en) Turbocharger lubrication oil supply mechanism
US9188031B2 (en) Engine lubricating oil supply device
US8430645B2 (en) Two stage pressure regulation system for variable displacement hydraulic pumps
WO2016067955A1 (en) Lubricating oil supply mechanism for turbocharger
CN104295782A (en) Relief valve
JP2016089634A (en) Lubrication oil supply mechanism for internal combustion engine
JP6258772B2 (en) Internal combustion engine flow control valve
JP6258773B2 (en) Internal combustion engine flow control valve
JP6165610B2 (en) Turbocharger lubrication oil supply mechanism
JP6225009B2 (en) Turbocharger lubrication oil supply mechanism
JP2015048726A (en) Oil pump
JP6030895B2 (en) Lubrication system
JP2014009669A (en) Lubricant supply device of internal combustion engine
JP6403974B2 (en) Engine lubricant supply mechanism
JP6469155B2 (en) Fluid pressure circuit
JP6317981B2 (en) Engine lubricant supply mechanism
US20140007965A1 (en) Control valve
JP2016089633A (en) Flow control valve
JP2018025162A (en) Lubricant supply mechanism for engine
JP7114204B2 (en) Relief valve
JP6339879B2 (en) Engine lubricant supply mechanism
JP6317982B2 (en) Engine lubricant supply mechanism
JP2017206961A (en) Lubricating oil supply device
JP6376808B2 (en) Engine lubricant supply mechanism
JP2015175338A (en) Oil pressure regulating valve structure of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854924

Country of ref document: EP

Kind code of ref document: A1