WO2016067903A1 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
WO2016067903A1
WO2016067903A1 PCT/JP2015/078783 JP2015078783W WO2016067903A1 WO 2016067903 A1 WO2016067903 A1 WO 2016067903A1 JP 2015078783 W JP2015078783 W JP 2015078783W WO 2016067903 A1 WO2016067903 A1 WO 2016067903A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
yoke
outer yoke
actuator
magnet
Prior art date
Application number
PCT/JP2015/078783
Other languages
French (fr)
Japanese (ja)
Inventor
茂 川瀬
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015017262A external-priority patent/JP6289396B2/en
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Priority to CN201580069282.3A priority Critical patent/CN107112883B/en
Priority to US15/522,674 priority patent/US20180115232A1/en
Publication of WO2016067903A1 publication Critical patent/WO2016067903A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to an actuator, and more particularly to a linear actuator attached to a robot for assembling parts.
  • One of the direct drive actuators is a voice coil motor (VCM) in which only a coil reciprocates in a strong magnetic field created by a permanent magnet such as a neodymium magnet.
  • VCM voice coil motor
  • the voice coil motor can be designed to have a small movable part, it has a problem of low output per volume because it is a direct drive motor.
  • Patent Document 1 and Patent Document 2 disclose linear motors in which a plurality of voice coil linear motor units are arranged in parallel. With this structure, the linear motors of Patent Document 1 and Patent Document 2 achieve high output while suppressing an increase in volume.
  • JP 2004-282833 A Japanese Patent No. 3683199
  • the linear motor of Patent Document 1 will be described with reference to FIGS.
  • the linear motor of Patent Document 1 has two inner yokes 20a and 20b arranged side by side.
  • the first yokes 22a and 22b and the second coils 23a and 23b are wound around the inner yokes 20a and 20b with gaps 21a and 21b provided therebetween.
  • the inner yokes 20a and 20b are inserted through first outer yokes 30a and 30b facing the first coils 22a and 22b.
  • First magnets 31a and 31b are provided on the inner peripheral portions of the first outer yokes 30a and 30b.
  • the two first outer yokes 30a and 30b are fixed in a state of being magnetically coupled to each other.
  • the inner yokes 20a and 20b are inserted into second outer yokes 32a and 32b facing the second coils 23a and 23b.
  • Second magnets 33a and 33b are provided on the inner peripheral portions of the second outer yokes 32a and 32b.
  • the two second outer yokes 32a and 32b are fixed in a state of being magnetically coupled to each other.
  • the first outer yokes 30 a and 30 b and the second outer yokes 32 a and 32 b are connected by four connecting portions 34.
  • the magnetic poles of the first magnet 31a and the second magnet 33b and the magnetic poles of the first magnet 31b and the second magnet 33a are opposite to each other. Further, the current flowing through the first coil 22a and the second coil 23b and the current flowing through the first coil 22b and the second coil 23a are opposite to each other.
  • the movable range of the movable part including the first outer yokes 30a and 30b and the second outer yokes 32a and 32b is limited, and the inner yokes 20a and 20b are increased in size.
  • the main magnetic paths ⁇ 1 and ⁇ 2 are formed by the two adjacent first outer yokes 30a and 30b and the two adjacent second outer yokes 32a and 32b.
  • return yoke folding back
  • the width is smaller than that of a linear motor using one inner yoke.
  • the linear motor cannot be sufficiently reduced in size.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a more compact and highly efficient actuator.
  • the actuator of the present invention includes a single rod-shaped inner yoke inserted through one cylindrical outer yoke, a support member that supports the outer yoke so as to move linearly along the axial direction of the inner yoke, A first coil and a second coil that are wound around the inner yoke with a gap therebetween and in which currents flowing in opposite directions flow, and a first magnet that is provided on the inner peripheral portion of the outer yoke so as to face the first coil And a second magnet provided on the inner peripheral portion of the outer yoke so as to face the second coil and having a magnetic pole opposite to the first magnet.
  • FIG. 3 is an exploded perspective view of the actuator according to the first embodiment of the present invention. It is a perspective view of the actuator of Embodiment 1 of this invention.
  • FIG. 3 is a cross-sectional view taken along the plane ABCD of the actuator shown in FIG. It is a perspective view of the fixing
  • FIG. 6A is a characteristic diagram showing the magnitude of the magnetic flux density with respect to the coordinate in the axial direction of the actuator according to the first embodiment of the present invention.
  • FIG. 6B is an explanatory diagram showing the magnetic flux density distribution of the actuator according to the first embodiment of the present invention.
  • FIG. 6A is a characteristic diagram showing the magnitude of the magnetic flux density with respect to the coordinate in the axial direction of the actuator according to the first embodiment of the present invention.
  • FIG. 6B is an explanatory diagram showing the magnetic flux density distribution of the actuator according to the first embodiment of
  • FIG. 7A is an explanatory diagram showing a movable range of the actuator according to the first embodiment of the present invention.
  • FIG. 7B is an explanatory diagram showing a movable range of the actuator to be compared that does not have the third coil. It is a perspective view of the linear motor of patent document 2.
  • FIG. It is explanatory drawing which shows distribution of the magnetic flux density of the linear motor of patent document 2.
  • FIG. It is a disassembled perspective view of the actuator of Embodiment 2 of this invention. It is a perspective view of the actuator of Embodiment 2 of this invention.
  • Embodiment 1 FIG.
  • the actuator according to the first embodiment of the present invention will be described with reference to FIGS.
  • reference numeral 1 denotes a center yoke (inner yoke).
  • the center yoke 1 is made of a substantially rod-shaped magnetic body.
  • the first coil 2 and the second coil 3 are wound around the center yoke 1 with a gap therebetween.
  • the first coil 2 and the second coil 3 are connected in series or parallel to a current source (not shown) so that currents in opposite directions flow.
  • the third coil 4 is wound.
  • the third coil 4 is connected to a current source via a switching control unit (not shown), and the direction of the flowing current can be switched independently of the first coil 2 and the second coil 3.
  • a hollow bearing portion 5 is formed along the axis of the center yoke 1. Bearing members 6 a and 6 b are inserted through both ends of the bearing portion 5. A shaft 7 that is longer than the center yoke 1 is inserted through the hollow portions of the bearing members 6a and 6b. The shaft 7 is supported so as to be linearly movable in the axial direction with respect to the center yoke 1 and so as to be rotatable or not rotatable about the shaft.
  • the bearing members 6a and 6b are constituted by ball bushes or the like when they are rotatable, and are constituted by spline nuts or the like so as not to rotate.
  • the center yoke 1 and the shaft 7 are thermally separated by the bearings of the bearing members 6a and 6b.
  • a top bridge (first bridge portion) 8 is fitted and fixed to one end portion of the shaft 7.
  • a bottom bridge (second bridge portion) 9 is fitted and fixed to the other end portion of the shaft 7.
  • the top bridge 8 and the bottom bridge 9 have four arm portions 82 and 92 extending from the front end portions of the substantially cross-shaped main body portions 81 and 91 in the opposing direction.
  • the shaft 7, the top bridge 8 and the bottom bridge 9 constitute a so-called “medium bearing structure” support member.
  • the outer yoke (outer yoke) 10 is fixed between the distal end portion of the arm portion 82 of the top bridge 8 and the distal end portion of the arm portion 92 of the bottom bridge 9. That is, the outer yoke 10 is supported so as to be linearly movable with respect to the center yoke 1 and to be rotatable or not rotated.
  • the outer yoke 10 is made of a substantially cylindrical magnetic body.
  • the shape of the main body portions 81 and 91 is not limited to a cross shape, and the number of arm portions 82 and 92 is not limited to four.
  • the top bridge 8 and the bottom bridge 9 support the outer yoke 10 so as to be at least linearly movable, those having an arbitrary shape may be used.
  • a first magnet array (first magnet) 11 is provided on the inner circumference of one end of the outer yoke 10 over the entire circumference.
  • the first magnet array 11 is composed of a plurality of permanent magnets.
  • the first magnet array 11 is opposed to the first coil 2 with a gap.
  • the first magnet array 11 is also opposed to the third coil 4 in accordance with the linear movement position of the outer yoke 10.
  • a second magnet array (second magnet) 12 is provided over the entire circumference of the inner circumference of the other end of the outer yoke 10.
  • the second magnet array 12 is composed of a plurality of permanent magnets.
  • the second magnet array 12 is opposed to the second coil 3 with a gap.
  • the second magnet array 12 is also opposed to the third coil 4 in accordance with the linear movement position of the outer yoke 10.
  • the first magnet array 11 and the second magnet array 12 have opposite magnetic poles.
  • the first magnet array 11 has an N pole on the contact surface side with the outer yoke 10 and an S pole on the surface facing the first coil 2 and the third coil 4.
  • the second magnet array 12 has an S pole on the contact surface side with the outer yoke 10 and an N pole on the facing surface side with the second coil 3 and the third coil 4.
  • a bowl-shaped bottom plate 13 is fixed to one end of the center yoke 1.
  • the bottom plate 13 is provided with four through holes 131, and each of the arm portions 92 of the bottom bridge 9 is slidably inserted.
  • a bottomed cylindrical mounting jig 14 is fixed to the bottom plate 13 so as to cover the bottom bridge 9.
  • the bottom 141 of the mounting jig 14 is formed so as to be freely attachable to an external device such as a tip of a part assembly robot.
  • the center yoke 1, the first coil 2, the second coil 3, the third coil 4, the bearing members 6a and 6b, the bottom plate 13, and the mounting jig 14 constitute a fixed portion 200.
  • the shaft 7, the top bridge 8, the bottom bridge 9, the outer yoke 10, the first magnet array 11, and the second magnet array 12 constitute a movable part 201.
  • the fixed portion 200 and the movable portion 201 constitute an actuator 202.
  • FIG. 6A is a characteristic diagram showing the magnitude of the magnetic flux density by the first magnet array 11 and the second magnet array 12 with respect to the position coordinates in the axial direction of the movable portion 201.
  • FIG. 6B shows the magnetic flux ⁇ formed by the first magnet array 11 and the second magnet array 12 in the section of the actuator 202 along the ABCD plane of FIG.
  • the magnetic flux ⁇ formed by the first magnet array 11 and the second magnet array 12 becomes a loop-shaped magnetic flux passing through the entire circumference of the outer yoke 10 and the inside of the center yoke 1.
  • a general voice coil motor is provided with a return yoke for folding the magnetic flux separately from the center yoke 1 and the outer yoke 10 in order to form a loop-shaped magnetic flux.
  • the actuator 202 according to the first embodiment has a structure in which two motors are connected in series, the magnetic flux is folded back by the center yoke 1 and the outer yoke 10, so that a return yoke can be eliminated. With this structure, the actuator 202 can be reduced in size.
  • the entire circumference of the outer yoke 10 can be used for a magnetic circuit, and the magnetic resistance is low. Become. For this reason, the thickness of the outer yoke 10 can be reduced, and the actuator 202 can be reduced in weight.
  • the central portion of the center yoke 1 has a low magnetic flux density, the ratio contributing to the formation of the magnetic circuit is small. Therefore, even if the hollow bearing portion 5 is provided at the center of the center yoke 1, the efficiency of the actuator 202 does not decrease so much. For this reason, by adopting the middle bearing structure with the shaft 7, the top bridge 8 and the bottom bridge 9, it is smaller than the conventional linear motor which has adopted the outer bearing structure with the fixed base and the slider without reducing the efficiency. can do.
  • the position coordinates in the axial direction are in the range of about ⁇ 10 to ⁇ 6 millimeters (mm) and in the range of about +6 to +10 mm due to the magnetic flux leaking from the side of the first magnet array 11.
  • the magnitude of the magnetic flux density is increased to about 0.05 to 0.5 Tesla (T).
  • T 0.5 Tesla
  • the magnitude of the magnetic flux density in the range of about +18 to +22 mm in the axial direction and in the range of about +34 to +38 mm is 0.05 to 0.5 T. It is getting bigger.
  • FIG. 7B shows a movable range of the actuator not having the third coil 4 shown in FIGS. 1 to 5 as a comparison object.
  • the first coil 2 and the second coil 3 are connected in series or in parallel to the same current source, and the direction of the flowing current cannot be controlled independently of each other. For this reason, the thrust linearity of the actuator deteriorates due to the repulsive force, particularly at the position where the first magnet array 11 approaches the second coil 3 and the position where the second magnet array approaches the first coil 2. .
  • the actuator 202 according to the first embodiment is provided with the third coil 4 between the first coil 2 and the second coil 3.
  • the distance along the axial direction between the first magnet array 11 and the second magnet array 12 is represented by L, and a repulsive force is generated by the magnetic flux leaking from one side of the first magnet array 11 and the second magnet array 12.
  • the width along the axial direction of the third coil 4 is set to L-2P, where P is the width along the axial direction of the region to be processed.
  • the switching control unit (not shown) directs the direction of the current flowing through the third coil 4. Is switched to the same direction as the direction of the current flowing through the first coil 2. Thereby, the outer yoke 10 can move to a region where the first magnet array 11 faces the third coil 4 while suppressing the repulsive force between the first magnet array 11 and the second coil 3.
  • a switching control unit causes a current flowing through the third coil 4. Is switched to the same direction as the direction of the current flowing through the second coil 3. Thereby, the outer yoke 10 can move to a region where the second magnet array 12 faces the third coil 4 while suppressing the repulsive force between the second magnet array 12 and the first coil 2.
  • the movable range of the outer yoke 10 in the linear motion direction can be expanded.
  • the movable range X2 of the actuator 202 of the first embodiment shown in FIG. 7A is wider by the difference ⁇ X than the movable range X1 of the actuator to be compared shown in FIG. 7B.
  • the actuator 202 includes one rod-shaped center yoke 1 inserted through one cylindrical outer yoke 10 and the outer yoke 10 along the axial direction of the center yoke 1.
  • a support member that is supported in a linearly movable manner, a first coil 2 and a second coil 3 that are wound around the center yoke 1 with a gap between them, and in which currents in opposite directions flow, and an outer yoke 10
  • the first magnet array 11 provided on the peripheral portion so as to face the first coil 2, and provided on the inner peripheral portion of the outer yoke 10 so as to face the second coil 3, and opposite to the first magnet array 11.
  • a second magnet array 12 having a plurality of magnetic poles.
  • the first magnet array 11 is provided over the entire inner circumference of one end of the outer yoke 10, and the second magnet array 12 is formed on the entire inner circumference of the other end of the outer yoke 10. It is provided over the circumference. With this structure, the entire circumference of the outer yoke 10 is used for the magnetic circuit, so that the magnetic resistance can be lowered.
  • the actuator 202 has a hollow bearing portion 5 along the axis of the center yoke 1.
  • the support member is inserted into the bearing portion 5 and supported by the shaft 7 so as to be capable of direct movement with respect to the center yoke.
  • the top bridge is fitted to one end portion of the shaft 7 and is in contact with one end portion of the outer yoke 10. 8 and a bottom bridge 9 fitted to the other end of the shaft 7 and abutted against the other end of the outer yoke 10.
  • the actuator 202 switches the direction of the current flowing through the third coil 4 according to the axial position of the third coil 4 wound between the first coil 2 and the second coil 3 and the outer yoke 10.
  • the switching control unit switches the direction of the current of the third coil 4 to the same direction as the first coil 2 when the distance between the first magnet array 11 and the third coil 4 becomes a predetermined value or less, and the second magnet array 12.
  • the direction of the current of the third coil 4 is switched to the same direction as the second coil 3.
  • the movable range of the outer yoke 10 in the linear motion direction can be widened. Further, the thrust linearity of the actuator 202 can be improved.
  • the support member supports the outer yoke 10 so as to be rotatable or not rotatable with respect to the axis of the center yoke 1.
  • the actuator 202 having a small size and two degrees of freedom can be obtained.
  • the cross-sectional shapes of the center yoke 1 and the outer yoke 10 are not limited to circular shapes.
  • the cross-sectional shape may be a square shape or a triangular shape.
  • FIG. 10 and 11 an actuator that is not only small and highly efficient as in the first embodiment but also has improved structural strength will be described. 10 and 11, the same components as those of the actuator according to the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and description thereof is omitted.
  • Two cylindrical bearings 132a and 132b facing each other are rotatably attached to the through hole 131 of the bottom plate 13.
  • the arm portion 92 of the bottom bridge 9 is formed in a substantially cylindrical shape, and is inserted between the bearings 132a and 132b.
  • the arm portion 92 of the bottom bridge 9 fulfills the function of a shaft that supports the movable portion 201 so as to be movable linearly with respect to the fixed portion 200.
  • the movable portion 201 is supported by two shafts, that is, the shaft 7 inserted into the center yoke 1 and the arm portion 92 inserted between the bearings 132a and 132b, so that the actuator 202 is more effective than a structure using only one shaft 7.
  • the structural strength can be improved.
  • the width between the two bearings 132a and 132b is set slightly larger (for example, about 20 ⁇ m) than the diameter of the arm portion 92.
  • the strength against the torsional load of the actuator 202 (hereinafter referred to as “torsion resistance strength”) is determined by the limit values of the shaft 7 and the bearing members 6a and 6b. Therefore, in the first embodiment, for example, it is conceivable to reduce the volume of the center yoke 1 by making the shaft 7 thinner, so that the actuator 202 can be made smaller and more efficient. There is a problem that the limit value is lowered and the torsional strength of the actuator 202 is lowered.
  • the actuator 202 of the second embodiment regulates the rotation of the movable portion 201 by the arm portion 92 coming into contact with the bearings 132a and 132b, and the shaft with respect to the bearing members 6a and 6b.
  • the rotation angle of 7 is kept within an allowable range. That is, the width between the two bearings 132a and 132b is such that the rotation angle of the shaft 7 is kept within an allowable range by the arm portion 92 coming into contact with the bearings 132a and 132b according to the rotation of the outer yoke 10.
  • the width is set. Thereby, the torsion-proof strength of the actuator 202 can be increased, and the problem in the case where the shaft 7 is thinned as described above can be solved.
  • the actuator 202 includes the bottom plate 13 provided at the other end of the center yoke 1 and the bearings 132 a and 132 b disposed to face the through holes 131 of the bottom plate 13.
  • the bottom bridge 9 has a main body 91 fitted to the other end of the shaft 7 and an arm 92 that extends from the main body 91 and contacts the other end of the outer yoke 10. Is inserted between the bearings 132a and 132b. Since the arm portion 92 fulfills the function of a shaft, the strength of the actuator 202 can be improved as compared with the configuration using only one shaft 7.
  • a gap is formed between the arm portion 92 and the bearings 132a and 132b.
  • the width between the bearings 132 a and 132 b is set to a width that keeps the rotation angle of the shaft 7 within an allowable range by the arm portion 92 coming into contact with the bearings 132 a and 132 b according to the rotation of the outer yoke 10.
  • the torsional strength of the actuator 202 can be increased while the volume of the center yoke 1 is suppressed by making the shaft 7 thinner.
  • the arm portion of the bridge that functions as the shaft is not limited to any one of the four arm portions 92 of the bottom bridge 9.
  • Bearings 132a and 132b are respectively attached to a plurality of through holes 131 of the four through holes 131 provided in the bottom plate 13, and a plurality of arm portions of the four arm portions 92 of the bottom bridge 9 are provided. It may function as a shaft.
  • a bottom plate may be provided at the end of the center yoke 1 on the top bridge 8 side, and a through hole and a bearing may be provided in the bottom plate so that the arm portion of the top bridge 8 functions as a shaft.
  • the member that functions as the shaft is not limited to the arm portion of the bridge. Any member that can regulate the rotation of the movable portion 201 when a torsional load is applied to the actuator 202 may be used.
  • a bearing is attached to a hole provided in any member of the fixed portion 200, and any member of the movable portion 201 is inserted. It may be what you did.
  • the mechanism for supporting the arm portion functioning as the shaft is not limited to the two bearings 132a and 132b shown in FIGS. Any mechanism may be adopted as long as the arm is supported at two points.
  • the actuator of the present invention can be used by being attached to a part assembly robot or the like.

Abstract

 An actuator (202) has: a rod-shaped inner yoke (1) inserted through a cylindrical outer yoke (10); a support member for supporting the outer yoke (10) so as to be capable of moving straight along the axial direction of the inner yoke (1); a first coil (2) and a second coil (3) wound around the inner yoke (1) so that a gap is present between the first coil (2) and the second coil (3), the first coil (2) and the second coil (3) passing currents in mutually opposite directions; a first magnet array (11) provided on the inner peripheral part of the outer yoke (10) so as to face the first coil (2); and a second magnet array (12) provided on the inner peripheral part of the outer yoke (10) so as to face the second coil (3), the magnetic poles of the second magnet array (12) being oriented in the opposite direction to those of the first magnet array (11).

Description

アクチュエータActuator
 本発明は、アクチュエータに関するものであり、特に部品組み立て用のロボットなどに取り付けられるリニアアクチュエータに関する。 The present invention relates to an actuator, and more particularly to a linear actuator attached to a robot for assembling parts.
 従来より、ロボットの先端部に、エンドエフェクタを取付けて部品組み立てなどの各種作業が行われているが、エンドエフェクタを駆動するアクチュエータとして固定部に対して可動部が直動自在なリニアアクチュエータが用いられる場合もある。
 このリニアアクチュエータには、減速器を持たずに可動部を直接駆動する、いわゆる「ダイレクトドライブアクチュエータ」が用いられている。
 ダイレクトドライブアクチュエータは、高速かつ高精度な動作制御が可能であり、ロボットと連動することにより作業範囲を拡大することができる反面、小型化や高出力化が難しい課題がある。また、ロボットの先端部に取り付けることができる重量は限られているため、小型かつ高出力なアクチュエータが求められている。
Conventionally, various operations such as assembly of parts by attaching an end effector to the tip of a robot have been performed, but a linear actuator whose movable part can move directly with respect to a fixed part is used as an actuator to drive the end effector. Sometimes.
As this linear actuator, a so-called “direct drive actuator” that directly drives a movable part without having a speed reducer is used.
The direct drive actuator can perform high-speed and high-precision operation control and can expand the work range by interlocking with the robot. However, there is a problem that miniaturization and high output are difficult. Further, since the weight that can be attached to the tip of the robot is limited, a small and high output actuator is required.
 ダイレクトドライブアクチュエータの1つに、ネオジム磁石などの永久磁石が作る強力な磁界の中をコイルのみが往復運動するボイスコイルモータ(Voice Coil Motor,VCM)がある。ボイスコイルモータは、可動部を小型に設計できる反面、ダイレクトドライブモータであるため体積当たりの出力が低い課題がある。 One of the direct drive actuators is a voice coil motor (VCM) in which only a coil reciprocates in a strong magnetic field created by a permanent magnet such as a neodymium magnet. Although the voice coil motor can be designed to have a small movable part, it has a problem of low output per volume because it is a direct drive motor.
 これに対し、特許文献1及び特許文献2には、複数のボイスコイル型リニアモータユニットを並設したリニアモータが開示されている。この構造により、特許文献1及び特許文献2のリニアモータは、体積増加を抑えつつ高出力化を図っている。 In contrast, Patent Document 1 and Patent Document 2 disclose linear motors in which a plurality of voice coil linear motor units are arranged in parallel. With this structure, the linear motors of Patent Document 1 and Patent Document 2 achieve high output while suppressing an increase in volume.
特開2004-282833号公報JP 2004-282833 A 特許第3683199号公報Japanese Patent No. 3683199
 図8及び図9を参照して、特許文献1のリニアモータについて説明する。特許文献1のリニアモータは、2本の内ヨーク20a,20bを並設している。内ヨーク20a,20bには、互いの間に間隙21a,21bを設けて第1コイル22a,22b及び第2コイル23a,23bが巻回されている。 The linear motor of Patent Document 1 will be described with reference to FIGS. The linear motor of Patent Document 1 has two inner yokes 20a and 20b arranged side by side. The first yokes 22a and 22b and the second coils 23a and 23b are wound around the inner yokes 20a and 20b with gaps 21a and 21b provided therebetween.
 内ヨーク20a,20bは、第1コイル22a,22bと対向する第1外ヨーク30a,30bに挿通されている。第1外ヨーク30a,30bの内周部には、第1マグネット31a,31bが設けられている。2つの第1外ヨーク30a,30bは、互いに磁気連結される状態で固定されている。 The inner yokes 20a and 20b are inserted through first outer yokes 30a and 30b facing the first coils 22a and 22b. First magnets 31a and 31b are provided on the inner peripheral portions of the first outer yokes 30a and 30b. The two first outer yokes 30a and 30b are fixed in a state of being magnetically coupled to each other.
 内ヨーク20a,20bは、第2コイル23a,23bと対向する第2外ヨーク32a,32bに挿通されている。第2外ヨーク32a,32bの内周部には、第2マグネット33a,33bが設けられている。2つの第2外ヨーク32a,32bは、互いに磁気連結される状態で固定されている。 The inner yokes 20a and 20b are inserted into second outer yokes 32a and 32b facing the second coils 23a and 23b. Second magnets 33a and 33b are provided on the inner peripheral portions of the second outer yokes 32a and 32b. The two second outer yokes 32a and 32b are fixed in a state of being magnetically coupled to each other.
 第1外ヨーク30a,30bと第2外ヨーク32a,32bとは、4個の連結部34により連結されている。 The first outer yokes 30 a and 30 b and the second outer yokes 32 a and 32 b are connected by four connecting portions 34.
 ここで、第1マグネット31a及び第2マグネット33bの磁極と、第1マグネット31b及び第2マグネット33aの磁極とを互いに逆向きにしている。また、第1コイル22a及び第2コイル23bに流れる電流と、第1コイル22b及び第2コイル23aに流れる電流とを互いに逆向きにしている。 Here, the magnetic poles of the first magnet 31a and the second magnet 33b and the magnetic poles of the first magnet 31b and the second magnet 33a are opposite to each other. Further, the current flowing through the first coil 22a and the second coil 23b and the current flowing through the first coil 22b and the second coil 23a are opposite to each other.
 特許文献1のリニアモータは、マグネット側面からの漏れ磁束の影響により第1マグネット31a,31bが第2コイル23a,23bに近づくと反発力が生じ、かつ第2マグネット33a,33bが第1コイル22a,22bに近づくと反発力が生じる。この反発力により、入力電流又は軸方向の可動部位置に対する発生推力特性の直線性(以下「推力リニアリティ」という)が悪くなる課題があった。 In the linear motor of Patent Document 1, a repulsive force is generated when the first magnets 31a and 31b approach the second coils 23a and 23b due to the influence of magnetic flux leakage from the side surfaces of the magnets, and the second magnets 33a and 33b are moved to the first coil 22a. , 22b, a repulsive force is generated. This repulsive force has a problem that the linearity of the generated thrust characteristic with respect to the input current or the movable portion position in the axial direction (hereinafter referred to as “thrust linearity”) is deteriorated.
 また、反発力の影響を抑えるためには、第1コイル22a,22bと第2コイル23a,23b間の間隙21a,21bを広くする必要がある。このため、第1外ヨーク30a,30b及び第2外ヨーク32a,32bを含む可動部の可動範囲が制限されたり、内ヨーク20a,20bが大型になったりする課題があった。 In order to suppress the influence of the repulsive force, it is necessary to widen the gaps 21a and 21b between the first coils 22a and 22b and the second coils 23a and 23b. For this reason, the movable range of the movable part including the first outer yokes 30a and 30b and the second outer yokes 32a and 32b is limited, and the inner yokes 20a and 20b are increased in size.
 さらに、特許文献1のリニアモータは、隣接する2つの第1外ヨーク30a,30bと、隣接する2つの第2外ヨーク32a,32bとで主磁路φ1,φ2を形成しているため、磁束を折返すためのヨーク(いわゆる「リターンヨーク」)を別途設ける必要がなく一般的なリニアモータと比較して小型化が可能であるが、1本の内ヨークを用いたリニアモータに対して幅が2倍になり、リニアモータを十分に小型化できない課題があった。 Further, in the linear motor of Patent Document 1, the main magnetic paths φ1 and φ2 are formed by the two adjacent first outer yokes 30a and 30b and the two adjacent second outer yokes 32a and 32b. There is no need to separately provide a yoke for folding back (so-called “return yoke”), and the size can be reduced as compared with a general linear motor. However, the width is smaller than that of a linear motor using one inner yoke. However, there is a problem that the linear motor cannot be sufficiently reduced in size.
 また、特許文献1及び特許文献2のように、2本の内ヨークを有底箱状の固定台に収容し、固定台の開口部に設けたスライダによって外ヨークを直動自在に支持する構造(いわゆる「外軸受構造」)を採用した場合、リニアモータがさらに大型になる課題があった。 Further, as in Patent Document 1 and Patent Document 2, two inner yokes are accommodated in a bottomed box-shaped fixed base, and the outer yoke is supported by a slider provided in an opening of the fixed base so as to be movable freely. When employing (so-called “outer bearing structure”), there is a problem that the linear motor becomes larger.
 本発明は、上記のような課題を解決するためになされたものであり、より小型かつ高効率なアクチュエータを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a more compact and highly efficient actuator.
 本発明のアクチュエータは、1個の筒状の外ヨークに挿通された1本の棒状の内ヨークと、外ヨークを内ヨークの軸方向に沿って直動自在に支持する支持部材と、互いの間に間隙を設けて内ヨークに巻回され、かつ互いに逆向きの電流が流れる第1コイル及び第2コイルと、外ヨークの内周部に第1コイルと対向するように設けた第1磁石と、外ヨークの内周部に第2コイルと対向するように設けられ、かつ第1磁石と逆向きの磁極を有する第2磁石と、を具備するものである。 The actuator of the present invention includes a single rod-shaped inner yoke inserted through one cylindrical outer yoke, a support member that supports the outer yoke so as to move linearly along the axial direction of the inner yoke, A first coil and a second coil that are wound around the inner yoke with a gap therebetween and in which currents flowing in opposite directions flow, and a first magnet that is provided on the inner peripheral portion of the outer yoke so as to face the first coil And a second magnet provided on the inner peripheral portion of the outer yoke so as to face the second coil and having a magnetic pole opposite to the first magnet.
 本発明によれば、より小型かつ高効率なアクチュエータを得ることができる。 According to the present invention, a more compact and highly efficient actuator can be obtained.
本発明の実施の形態1のアクチュエータの分解斜視図である。FIG. 3 is an exploded perspective view of the actuator according to the first embodiment of the present invention. 本発明の実施の形態1のアクチュエータの斜視図である。It is a perspective view of the actuator of Embodiment 1 of this invention. 図2に示すアクチュエータのA-B-C-D面に沿う断面図である。FIG. 3 is a cross-sectional view taken along the plane ABCD of the actuator shown in FIG. 本発明の実施の形態1の固定部の斜視図である。It is a perspective view of the fixing | fixed part of Embodiment 1 of this invention. 本発明の実施の形態1の可動部の斜視図である。It is a perspective view of the movable part of Embodiment 1 of the present invention. 図6(a)は、本発明の実施の形態1のアクチュエータの軸方向の座標に対する磁束密度の大きさを示す特性図である。図6(b)は、本発明の実施の形態1のアクチュエータの磁束密度の分布を示す説明図である。FIG. 6A is a characteristic diagram showing the magnitude of the magnetic flux density with respect to the coordinate in the axial direction of the actuator according to the first embodiment of the present invention. FIG. 6B is an explanatory diagram showing the magnetic flux density distribution of the actuator according to the first embodiment of the present invention. 図7(a)は、本発明の実施の形態1のアクチュエータの可動範囲を示す説明図である。図7(b)は、第3コイルを有しない比較対象のアクチュエータの可動範囲を示す説明図である。FIG. 7A is an explanatory diagram showing a movable range of the actuator according to the first embodiment of the present invention. FIG. 7B is an explanatory diagram showing a movable range of the actuator to be compared that does not have the third coil. 特許文献2のリニアモータの斜視図である。It is a perspective view of the linear motor of patent document 2. FIG. 特許文献2のリニアモータの磁束密度の分布を示す説明図である。It is explanatory drawing which shows distribution of the magnetic flux density of the linear motor of patent document 2. FIG. 本発明の実施の形態2のアクチュエータの分解斜視図である。It is a disassembled perspective view of the actuator of Embodiment 2 of this invention. 本発明の実施の形態2のアクチュエータの斜視図である。It is a perspective view of the actuator of Embodiment 2 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1~図5を参照して、本発明の実施の形態1のアクチュエータについて説明する。
 図中、1はセンターヨーク(内ヨーク)である。センターヨーク1は、略棒状の磁性体により構成されている。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
The actuator according to the first embodiment of the present invention will be described with reference to FIGS.
In the figure, reference numeral 1 denotes a center yoke (inner yoke). The center yoke 1 is made of a substantially rod-shaped magnetic body.
 センターヨーク1には、互いの間に間隙を設けて第1コイル2及び第2コイル3が巻回されている。第1コイル2及び第2コイル3は、図示しない電流源に対して直列又は並列に接続されており、互いに逆向きの電流が流れるようになっている。 The first coil 2 and the second coil 3 are wound around the center yoke 1 with a gap therebetween. The first coil 2 and the second coil 3 are connected in series or parallel to a current source (not shown) so that currents in opposite directions flow.
 第1コイル2と第2コイル3間の間隙には、第3コイル4が巻回されている。第3コイル4は、図示しない切替制御部を介して電流源に接続されており、第1コイル2及び第2コイル3とは独立して、流れる電流の向きを切替自在になっている。 In the gap between the first coil 2 and the second coil 3, the third coil 4 is wound. The third coil 4 is connected to a current source via a switching control unit (not shown), and the direction of the flowing current can be switched independently of the first coil 2 and the second coil 3.
 センターヨーク1の軸心に沿って、中空の軸受部5が形成されている。軸受部5の両端部には、軸受部材6a,6bがそれぞれ挿通されている。軸受部材6a,6bの中空部には、センターヨーク1よりも細長いシャフト7が挿通されている。シャフト7は、センターヨーク1に対して軸方向に直動自在に、かつ軸を中心に回動自在もしくは回動しないように支持されている。 A hollow bearing portion 5 is formed along the axis of the center yoke 1. Bearing members 6 a and 6 b are inserted through both ends of the bearing portion 5. A shaft 7 that is longer than the center yoke 1 is inserted through the hollow portions of the bearing members 6a and 6b. The shaft 7 is supported so as to be linearly movable in the axial direction with respect to the center yoke 1 and so as to be rotatable or not rotatable about the shaft.
 ここで、軸受部材6a,6bは、回動自在とする場合はボールブッシュなどで構成し、回動しないようにするためにはスプラインナットなどで構成する。センターヨーク1とシャフト7間は、軸受部材6a,6bが有するベアリングによって熱的に分離されている。 Here, the bearing members 6a and 6b are constituted by ball bushes or the like when they are rotatable, and are constituted by spline nuts or the like so as not to rotate. The center yoke 1 and the shaft 7 are thermally separated by the bearings of the bearing members 6a and 6b.
 シャフト7の一端部には、トップブリッジ(第1ブリッジ部)8が嵌合され、かつ固定されている。シャフト7の他端部には、ボトムブリッジ(第2ブリッジ部)9が嵌合され、かつ固定されている。トップブリッジ8及びボトムブリッジ9は、略十字状の本体部81,91の先端部から、互いの対向方向に延伸された4本の腕部82,92を有している。シャフト7、トップブリッジ8及びボトムブリッジ9によって、いわゆる「中軸受構造」の支持部材が構成されている。 A top bridge (first bridge portion) 8 is fitted and fixed to one end portion of the shaft 7. A bottom bridge (second bridge portion) 9 is fitted and fixed to the other end portion of the shaft 7. The top bridge 8 and the bottom bridge 9 have four arm portions 82 and 92 extending from the front end portions of the substantially cross-shaped main body portions 81 and 91 in the opposing direction. The shaft 7, the top bridge 8 and the bottom bridge 9 constitute a so-called “medium bearing structure” support member.
 トップブリッジ8の腕部82の先端部とボトムブリッジ9の腕部92の先端部との間に、アウターヨーク(外ヨーク)10が固定されている。すなわち、アウターヨーク10は、センターヨーク1に対して直動自在、かつ回動自在もしくは回動しないように支持されている。アウターヨーク10は、略筒状の磁性体により構成されている。 The outer yoke (outer yoke) 10 is fixed between the distal end portion of the arm portion 82 of the top bridge 8 and the distal end portion of the arm portion 92 of the bottom bridge 9. That is, the outer yoke 10 is supported so as to be linearly movable with respect to the center yoke 1 and to be rotatable or not rotated. The outer yoke 10 is made of a substantially cylindrical magnetic body.
 なお、本体部81,91の形状は十字状に限定されるものではなく、腕部82,92の本数は4本に限定されるものではない。トップブリッジ8及びボトムブリッジ9は、アウターヨーク10を少なくとも直動自在に支持するものであれば、任意の形状のものを用いて良い。 In addition, the shape of the main body portions 81 and 91 is not limited to a cross shape, and the number of arm portions 82 and 92 is not limited to four. As long as the top bridge 8 and the bottom bridge 9 support the outer yoke 10 so as to be at least linearly movable, those having an arbitrary shape may be used.
 アウターヨーク10の一端部の内周部には、全周に亘って第1マグネットアレイ(第1磁石)11が設けられている。第1マグネットアレイ11は、複数個の永久磁石により構成されている。第1マグネットアレイ11は、間隙を設けて第1コイル2と対向している。また、第1マグネットアレイ11は、アウターヨーク10の直動位置に応じて第3コイル4とも対向するようになっている。 A first magnet array (first magnet) 11 is provided on the inner circumference of one end of the outer yoke 10 over the entire circumference. The first magnet array 11 is composed of a plurality of permanent magnets. The first magnet array 11 is opposed to the first coil 2 with a gap. The first magnet array 11 is also opposed to the third coil 4 in accordance with the linear movement position of the outer yoke 10.
 アウターヨーク10の他端部の内周部には、全周に亘って第2マグネットアレイ(第2磁石)12が設けられている。第2マグネットアレイ12は、複数個の永久磁石により構成されている。第2マグネットアレイ12は、間隙を設けて第2コイル3と対向している。また、第2マグネットアレイ12は、アウターヨーク10の直動位置に応じて第3コイル4とも対向するようになっている。 A second magnet array (second magnet) 12 is provided over the entire circumference of the inner circumference of the other end of the outer yoke 10. The second magnet array 12 is composed of a plurality of permanent magnets. The second magnet array 12 is opposed to the second coil 3 with a gap. The second magnet array 12 is also opposed to the third coil 4 in accordance with the linear movement position of the outer yoke 10.
 ここで、第1マグネットアレイ11と第2マグネットアレイ12とは、互いに逆向きの磁極を有している。例えば、第1マグネットアレイ11は、アウターヨーク10との当接面側にN極があり、第1コイル2及び第3コイル4との対向面側にS極がある。一方、第2マグネットアレイ12は、アウターヨーク10との当接面側にS極があり、第2コイル3及び第3コイル4との対向面側にN極がある。 Here, the first magnet array 11 and the second magnet array 12 have opposite magnetic poles. For example, the first magnet array 11 has an N pole on the contact surface side with the outer yoke 10 and an S pole on the surface facing the first coil 2 and the third coil 4. On the other hand, the second magnet array 12 has an S pole on the contact surface side with the outer yoke 10 and an N pole on the facing surface side with the second coil 3 and the third coil 4.
 センターヨーク1の一端部には、鍔状のボトムプレート13が固定されている。ボトムプレート13には4つの貫通孔131が設けられており、ボトムブリッジ9の腕部92のそれぞれが摺動自在に挿通している。 A bowl-shaped bottom plate 13 is fixed to one end of the center yoke 1. The bottom plate 13 is provided with four through holes 131, and each of the arm portions 92 of the bottom bridge 9 is slidably inserted.
 ボトムプレート13には、ボトムブリッジ9を覆うように、有底筒状の取付冶具14が固定されている。取付冶具14の底部141は、部品組み立て用のロボットの先端部などの外部装置に対して取付自在に形成されている。 A bottomed cylindrical mounting jig 14 is fixed to the bottom plate 13 so as to cover the bottom bridge 9. The bottom 141 of the mounting jig 14 is formed so as to be freely attachable to an external device such as a tip of a part assembly robot.
 センターヨーク1、第1コイル2、第2コイル3、第3コイル4、軸受部材6a,6b、ボトムプレート13及び取付冶具14によって、固定部200が構成されている。シャフト7、トップブリッジ8、ボトムブリッジ9、アウターヨーク10、第1マグネットアレイ11及び第2マグネットアレイ12によって、可動部201が構成されている。固定部200及び可動部201によって、アクチュエータ202が構成されている。 The center yoke 1, the first coil 2, the second coil 3, the third coil 4, the bearing members 6a and 6b, the bottom plate 13, and the mounting jig 14 constitute a fixed portion 200. The shaft 7, the top bridge 8, the bottom bridge 9, the outer yoke 10, the first magnet array 11, and the second magnet array 12 constitute a movable part 201. The fixed portion 200 and the movable portion 201 constitute an actuator 202.
 次に、図6を参照して、アクチュエータ202の磁束密度の分布について説明する。
 図6(a)は、可動部201の軸方向の位置座標に対する、第1マグネットアレイ11及び第2マグネットアレイ12による磁束密度の大きさを示す特性図である。図6(b)は、図2のA-B-C-D面に沿うアクチュエータ202の断面において、第1マグネットアレイ11及び第2マグネットアレイ12が形成する磁束φを示している。
Next, the magnetic flux density distribution of the actuator 202 will be described with reference to FIG.
FIG. 6A is a characteristic diagram showing the magnitude of the magnetic flux density by the first magnet array 11 and the second magnet array 12 with respect to the position coordinates in the axial direction of the movable portion 201. FIG. 6B shows the magnetic flux φ formed by the first magnet array 11 and the second magnet array 12 in the section of the actuator 202 along the ABCD plane of FIG.
 図6(b)に示す如く、第1マグネットアレイ11及び第2マグネットアレイ12が形成する磁束φは、アウターヨーク10の全周と、センターヨーク1の内部とを通るループ状の磁束となる。 As shown in FIG. 6B, the magnetic flux φ formed by the first magnet array 11 and the second magnet array 12 becomes a loop-shaped magnetic flux passing through the entire circumference of the outer yoke 10 and the inside of the center yoke 1.
 一般的なボイスコイルモータは、ループ状の磁束を形成するために、磁束を折返すためのリターンヨークをセンターヨーク1及びアウターヨーク10とは別に設けている。実施の形態1のアクチュエータ202は、2つのモータを直列に接続した構造でありながら、センターヨーク1及びアウターヨーク10で磁束を折返しているためリターンヨークを不要とすることができる。この構造により、アクチュエータ202を小型にすることができる。 A general voice coil motor is provided with a return yoke for folding the magnetic flux separately from the center yoke 1 and the outer yoke 10 in order to form a loop-shaped magnetic flux. Although the actuator 202 according to the first embodiment has a structure in which two motors are connected in series, the magnetic flux is folded back by the center yoke 1 and the outer yoke 10, so that a return yoke can be eliminated. With this structure, the actuator 202 can be reduced in size.
 また、アウターヨーク10の両端部の全周に亘って第1マグネットアレイ11及び第2マグネットアレイ12を設けることで、アウターヨーク10の全周を磁気回路に使用できるようになり、磁気抵抗が低くなる。このため、アウターヨーク10の肉厚を薄くすることができ、アクチュエータ202を軽量にすることができる。 Also, by providing the first magnet array 11 and the second magnet array 12 over the entire circumference of both ends of the outer yoke 10, the entire circumference of the outer yoke 10 can be used for a magnetic circuit, and the magnetic resistance is low. Become. For this reason, the thickness of the outer yoke 10 can be reduced, and the actuator 202 can be reduced in weight.
 さらに、センターヨーク1の中心部は磁束密度が低いため、磁気回路の形成に寄与する割合が少ない。したがって、センターヨーク1の軸心に中空の軸受部5を設けても、アクチュエータ202の効率があまり低下しない。このため、シャフト7、トップブリッジ8及びボトムブリッジ9による中軸受構造を採用することで、固定台及びスライダによる外軸受構造を採用していた従来のリニアモータよりも、効率を落とすことなく小型にすることができる。 Furthermore, since the central portion of the center yoke 1 has a low magnetic flux density, the ratio contributing to the formation of the magnetic circuit is small. Therefore, even if the hollow bearing portion 5 is provided at the center of the center yoke 1, the efficiency of the actuator 202 does not decrease so much. For this reason, by adopting the middle bearing structure with the shaft 7, the top bridge 8 and the bottom bridge 9, it is smaller than the conventional linear motor which has adopted the outer bearing structure with the fixed base and the slider without reducing the efficiency. can do.
 次に、図6及び図7を参照して、アクチュエータ202の直動動作の可動範囲について説明する。
 図6(a)に示す如く、第1マグネットアレイ11の側部から漏れた磁束によって、軸方向の位置座標が約-10~-6ミリメートル(mm)の範囲と、約+6~+10mmの範囲における磁束密度の大きさが0.05~0.5テスラ(T)程度に大きくなっている。同様に、第2マグネットアレイ12の側部から漏れた磁束によって、軸方向の座標が約+18~+22mmの範囲と、約+34~+38mmの範囲における磁束密度の大きさが0.05~0.5T程度に大きくなっている。
Next, the movable range of the linear motion of the actuator 202 will be described with reference to FIGS.
As shown in FIG. 6A, the position coordinates in the axial direction are in the range of about −10 to −6 millimeters (mm) and in the range of about +6 to +10 mm due to the magnetic flux leaking from the side of the first magnet array 11. The magnitude of the magnetic flux density is increased to about 0.05 to 0.5 Tesla (T). Similarly, due to the magnetic flux leaking from the side of the second magnet array 12, the magnitude of the magnetic flux density in the range of about +18 to +22 mm in the axial direction and in the range of about +34 to +38 mm is 0.05 to 0.5 T. It is getting bigger.
 図7(b)は、比較対象として、図1~図5に示す第3コイル4を有しないアクチュエータの可動範囲を示している。アクチュエータの直動動作に応じて第1マグネットアレイ11が第2コイル3に近づくと、第1マグネットアレイ11の側部から漏れた磁束によって、第1マグネットアレイ11と第2コイル3間に軸方向の反発力が生じる。同様に、第2マグネットアレイ12が第1コイル2に近づくと、第2マグネットアレイ12の側部から漏れた磁束によって、第2マグネットアレイ12と第1コイル2間に軸方向の反発力が生じる。 FIG. 7B shows a movable range of the actuator not having the third coil 4 shown in FIGS. 1 to 5 as a comparison object. When the first magnet array 11 approaches the second coil 3 according to the linear motion of the actuator, the magnetic flux leaking from the side of the first magnet array 11 causes the axial direction between the first magnet array 11 and the second coil 3. The repulsive force of is generated. Similarly, when the second magnet array 12 approaches the first coil 2, an axial repulsive force is generated between the second magnet array 12 and the first coil 2 due to the magnetic flux leaking from the side of the second magnet array 12. .
 一般に、第1コイル2と第2コイル3とは同一の電流源に対して直列又は並列に接続されており、流れる電流の向きを互いに独立して制御することができない。このため、特に第1マグネットアレイ11が第2コイル3に近づいた位置、及び第2マグネットアレイが第1コイル2に近づいた位置において、反発力によってアクチュエータの推力リニアリティが悪化する要因となっていた。 Generally, the first coil 2 and the second coil 3 are connected in series or in parallel to the same current source, and the direction of the flowing current cannot be controlled independently of each other. For this reason, the thrust linearity of the actuator deteriorates due to the repulsive force, particularly at the position where the first magnet array 11 approaches the second coil 3 and the position where the second magnet array approaches the first coil 2. .
 また、この反発力の影響を低減するためには、第1コイル2と第2コイル3間の幅を当該影響が実用上問題にならない程度に広くしておく必要がある。このことは、可動部201の可動範囲を制限する要因となったり、固定部200の大型化の要因となったりしていた。 In order to reduce the influence of the repulsive force, it is necessary to widen the width between the first coil 2 and the second coil 3 so that the influence does not cause a problem in practice. This has become a factor that restricts the movable range of the movable portion 201 or a size increase of the fixed portion 200.
 これに対し、図7(a)に示す如く、実施の形態1のアクチュエータ202は第1コイル2と第2コイル3間に第3コイル4を設けている。ここで、第1マグネットアレイ11と第2マグネットアレイ12間の軸方向に沿う間隔をLで表し、第1マグネットアレイ11及び第2マグネットアレイ12の一側部から漏れた磁束によって反発力が発生する領域の軸方向に沿う幅をPで表すと、第3コイル4の軸方向に沿う幅はL-2Pに設定されている。 On the other hand, as shown in FIG. 7A, the actuator 202 according to the first embodiment is provided with the third coil 4 between the first coil 2 and the second coil 3. Here, the distance along the axial direction between the first magnet array 11 and the second magnet array 12 is represented by L, and a repulsive force is generated by the magnetic flux leaking from one side of the first magnet array 11 and the second magnet array 12. The width along the axial direction of the third coil 4 is set to L-2P, where P is the width along the axial direction of the region to be processed.
 第1マグネットアレイ11が第1コイル2側から第3コイル4に近づいていき、第1マグネットアレイ11と第3コイル4間の幅が所定値以下になると(図7(a)の例では、第1マグネットアレイ11と第3コイル4間の距離が第2マグネットアレイ12と第3コイル4間の距離と等距離になると)、図示しない切替制御部が、第3コイル4に流れる電流の向きを第1コイル2に流れる電流の向きと同じ向きに切替える。これにより、第1マグネットアレイ11と第2コイル3間の反発力を抑制しつつ、アウターヨーク10は第1マグネットアレイ11が第3コイル4と対向する領域まで移動することができる。 When the first magnet array 11 approaches the third coil 4 from the first coil 2 side and the width between the first magnet array 11 and the third coil 4 becomes a predetermined value or less (in the example of FIG. 7A, When the distance between the first magnet array 11 and the third coil 4 is equal to the distance between the second magnet array 12 and the third coil 4), the switching control unit (not shown) directs the direction of the current flowing through the third coil 4. Is switched to the same direction as the direction of the current flowing through the first coil 2. Thereby, the outer yoke 10 can move to a region where the first magnet array 11 faces the third coil 4 while suppressing the repulsive force between the first magnet array 11 and the second coil 3.
 一方、第2マグネットアレイ12が第2コイル3側から第3コイル4に近づいていき、第2マグネットアレイ12と第3コイル4間の幅が所定値以下になると(図7(a)の例では、第2マグネットアレイ12と第3コイル4間の距離が第1マグネットアレイ11と第3コイル4間の距離と等距離になると)、図示しない切替制御部が、第3コイル4に流れる電流の向きを第2コイル3に流れる電流の向きと同じ向きに切替える。これにより、第2マグネットアレイ12と第1コイル2間の反発力を抑制しつつ、アウターヨーク10は第2マグネットアレイ12が第3コイル4と対向する領域まで移動することができる。 On the other hand, when the second magnet array 12 approaches the third coil 4 from the second coil 3 side and the width between the second magnet array 12 and the third coil 4 becomes a predetermined value or less (example in FIG. 7A). Then, when the distance between the second magnet array 12 and the third coil 4 is equal to the distance between the first magnet array 11 and the third coil 4), a switching control unit (not shown) causes a current flowing through the third coil 4. Is switched to the same direction as the direction of the current flowing through the second coil 3. Thereby, the outer yoke 10 can move to a region where the second magnet array 12 faces the third coil 4 while suppressing the repulsive force between the second magnet array 12 and the first coil 2.
 このように、アウターヨーク10の軸方向の位置に応じて第3コイル4に流れる電流の向きを切替えることで、アウターヨーク10の直動方向の可動範囲を広げることができる。図7(b)に示す比較対象のアクチュエータの可動範囲X1に対して、図7(a)に示す実施の形態1のアクチュエータ202の可動範囲X2は、差分ΔXだけ広くなっている。 As described above, by switching the direction of the current flowing through the third coil 4 in accordance with the position of the outer yoke 10 in the axial direction, the movable range of the outer yoke 10 in the linear motion direction can be expanded. The movable range X2 of the actuator 202 of the first embodiment shown in FIG. 7A is wider by the difference ΔX than the movable range X1 of the actuator to be compared shown in FIG. 7B.
 以上のように、実施の形態1のアクチュエータ202は、1個の筒状のアウターヨーク10に挿通された1本の棒状のセンターヨーク1と、アウターヨーク10をセンターヨーク1の軸方向に沿って直動自在に支持する支持部材と、互いの間に間隙を設けてセンターヨーク1に巻回され、かつ互いに逆向きの電流が流れる第1コイル2及び第2コイル3と、アウターヨーク10の内周部に第1コイル2と対向するように設けた第1マグネットアレイ11と、アウターヨーク10の内周部に第2コイル3と対向するように設けられ、かつ第1マグネットアレイ11と逆向きの磁極を有する第2マグネットアレイ12とを有している。この構造により、アクチュエータ202の動作効率を高めつつ、リターンヨークを不要としてより小型なアクチュエータ202を得ることができる。 As described above, the actuator 202 according to the first embodiment includes one rod-shaped center yoke 1 inserted through one cylindrical outer yoke 10 and the outer yoke 10 along the axial direction of the center yoke 1. A support member that is supported in a linearly movable manner, a first coil 2 and a second coil 3 that are wound around the center yoke 1 with a gap between them, and in which currents in opposite directions flow, and an outer yoke 10 The first magnet array 11 provided on the peripheral portion so as to face the first coil 2, and provided on the inner peripheral portion of the outer yoke 10 so as to face the second coil 3, and opposite to the first magnet array 11. And a second magnet array 12 having a plurality of magnetic poles. With this structure, the operation efficiency of the actuator 202 can be improved, and a smaller actuator 202 can be obtained without a return yoke.
 また、第1マグネットアレイ11は、アウターヨーク10の一端部の内周部の全周に亘って設けられており、第2マグネットアレイ12は、アウターヨーク10の他端部の内周部の全周に亘って設けられている。この構造により、アウターヨーク10の全周を磁気回路に用いることで、磁気抵抗を低くすることができる。 The first magnet array 11 is provided over the entire inner circumference of one end of the outer yoke 10, and the second magnet array 12 is formed on the entire inner circumference of the other end of the outer yoke 10. It is provided over the circumference. With this structure, the entire circumference of the outer yoke 10 is used for the magnetic circuit, so that the magnetic resistance can be lowered.
 また、アクチュエータ202は、センターヨーク1の軸心に沿う中空の軸受部5を有している。支持部材は、軸受部5に挿通され、センターヨークに対して直動自在に支持されたシャフト7と、シャフト7の一端部に嵌合され、かつアウターヨーク10の一端部に当接したトップブリッジ8と、シャフト7の他端部に嵌合され、かつアウターヨーク10の他端部に当接したボトムブリッジ9とで構成されている。この構造により、動作効率に影響を与えることなく、外軸受構造を採用した従来のリニアモータよりも小型にすることができる。 Further, the actuator 202 has a hollow bearing portion 5 along the axis of the center yoke 1. The support member is inserted into the bearing portion 5 and supported by the shaft 7 so as to be capable of direct movement with respect to the center yoke. The top bridge is fitted to one end portion of the shaft 7 and is in contact with one end portion of the outer yoke 10. 8 and a bottom bridge 9 fitted to the other end of the shaft 7 and abutted against the other end of the outer yoke 10. This structure can be made smaller than a conventional linear motor that employs an outer bearing structure without affecting the operation efficiency.
 また、アクチュエータ202は、第1コイル2と第2コイル3間に巻回された第3コイル4と、アウターヨーク10の軸方向の位置に応じて、第3コイル4に流れる電流の向きを切替える切替制御部とを有している。切替制御部は、第1マグネットアレイ11と第3コイル4間の距離が所定値以下になると第3コイル4の電流の向きを第1コイル2と同じ向きに切替え、かつ、第2マグネットアレイ12と第3コイル4間の距離が所定値以下になると第3コイル4の電流の向きを第2コイル3と同じ向きに切替えるようになっている。これにより、アウターヨーク10の直動方向の可動範囲を広くすることができる。また、アクチュエータ202の推力リニアリティを向上することができる。 The actuator 202 switches the direction of the current flowing through the third coil 4 according to the axial position of the third coil 4 wound between the first coil 2 and the second coil 3 and the outer yoke 10. And a switching control unit. The switching control unit switches the direction of the current of the third coil 4 to the same direction as the first coil 2 when the distance between the first magnet array 11 and the third coil 4 becomes a predetermined value or less, and the second magnet array 12. When the distance between the third coil 4 and the third coil 4 becomes a predetermined value or less, the direction of the current of the third coil 4 is switched to the same direction as the second coil 3. Thereby, the movable range of the outer yoke 10 in the linear motion direction can be widened. Further, the thrust linearity of the actuator 202 can be improved.
 また、支持部材は、アウターヨーク10をセンターヨーク1の軸心に対して回動自在もしくは回動しないように支持している。これにより、小型かつ2自由度のアクチュエータ202を得ることができる。 Further, the support member supports the outer yoke 10 so as to be rotatable or not rotatable with respect to the axis of the center yoke 1. Thereby, the actuator 202 having a small size and two degrees of freedom can be obtained.
 なお、センターヨーク1及びアウターヨーク10の断面の形状は、円形状に限定されるものではない。特にアウターヨーク10を回動しないように支持する場合、断面の形状は四角形状又は三角形状としても良い。 The cross-sectional shapes of the center yoke 1 and the outer yoke 10 are not limited to circular shapes. In particular, when the outer yoke 10 is supported so as not to rotate, the cross-sectional shape may be a square shape or a triangular shape.
実施の形態2.
 図10及び図11を参照して、実施の形態1と同様に小型かつ高効率であるのに加えて、さらに構造上の強度を向上したアクチュエータについて説明する。なお、図10及び図11において、図1~図5に示す実施の形態1のアクチュエータと同様の構成部材には同一符号を付して説明を省略する。
Embodiment 2. FIG.
With reference to FIGS. 10 and 11, an actuator that is not only small and highly efficient as in the first embodiment but also has improved structural strength will be described. 10 and 11, the same components as those of the actuator according to the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and description thereof is omitted.
 ボトムプレート13の貫通孔131に、互いに対向した2個の円筒形状のベアリング132a,132bが回動自在に取り付けられている。ボトムブリッジ9の腕部92は、略円柱状に形成されており、ベアリング132a,132b間に挿通されている。 Two cylindrical bearings 132a and 132b facing each other are rotatably attached to the through hole 131 of the bottom plate 13. The arm portion 92 of the bottom bridge 9 is formed in a substantially cylindrical shape, and is inserted between the bearings 132a and 132b.
 これにより、ボトムブリッジ9の腕部92が、固定部200に対して可動部201を直動自在に支持するシャフトの機能を果たすようになる。センターヨーク1に挿通したシャフト7とベアリング132a,132b間に挿通した腕部92との2本のシャフトによって可動部201を支持することで、1本のシャフト7のみを用いた構造よりもアクチュエータ202の構造上の強度を向上することができる。 Thereby, the arm portion 92 of the bottom bridge 9 fulfills the function of a shaft that supports the movable portion 201 so as to be movable linearly with respect to the fixed portion 200. The movable portion 201 is supported by two shafts, that is, the shaft 7 inserted into the center yoke 1 and the arm portion 92 inserted between the bearings 132a and 132b, so that the actuator 202 is more effective than a structure using only one shaft 7. The structural strength can be improved.
 また、2個のベアリング132a,132b間の幅は、腕部92の直径よりも僅かに(例えば20μm程度)大きく設定されている。これにより、固定部200に対して可動部201をシャフト7回りに回動させる力(以下「ねじり荷重」という)が加えられていない状態では腕部92とベアリング132a,132bとの間に間隙が形成される一方、ねじり荷重が加えられた状態では、腕部92が2個のベアリング132a,132bのいずれか一方に当接することで固定部200に対する可動部201の回動を規制するようになっている。 The width between the two bearings 132a and 132b is set slightly larger (for example, about 20 μm) than the diameter of the arm portion 92. As a result, there is no gap between the arm portion 92 and the bearings 132a and 132b in a state where no force (hereinafter referred to as “torsion load”) for rotating the movable portion 201 around the shaft 7 is applied to the fixed portion 200. On the other hand, in a state where a torsional load is applied, the arm portion 92 comes into contact with one of the two bearings 132a and 132b, thereby restricting the rotation of the movable portion 201 relative to the fixed portion 200. ing.
 実施の形態1において、軸受部材6a,6bにボールスプラインを使用した場合、アクチュエータ202のねじり荷重に対する強度(以下「耐ねじり強度」という)はシャフト7及び軸受部材6a,6bの限界値によって決まる。このため、実施の形態1において、例えば、シャフト7を細くすることで、センターヨーク1の体積の減少を抑制してアクチュエータ202を小型かつ高効率にすることも考えられるが、その場合シャフト7の限界値が低くなりアクチュエータ202の耐ねじり強度が低下する問題が生じる。 In Embodiment 1, when ball splines are used for the bearing members 6a and 6b, the strength against the torsional load of the actuator 202 (hereinafter referred to as “torsion resistance strength”) is determined by the limit values of the shaft 7 and the bearing members 6a and 6b. Therefore, in the first embodiment, for example, it is conceivable to reduce the volume of the center yoke 1 by making the shaft 7 thinner, so that the actuator 202 can be made smaller and more efficient. There is a problem that the limit value is lowered and the torsional strength of the actuator 202 is lowered.
 そこで、実施の形態2のアクチュエータ202は、ねじり荷重を加えられた場合に、腕部92がベアリング132a,132bに当接することで可動部201の回動を規制し、軸受部材6a,6bに対するシャフト7の回動角度を許容範囲内に抑える。すなわち、2個のベアリング132a,132b間の幅は、アウターヨーク10の回動に応じて腕部92がベアリング132a,132bに当接することでシャフト7の回動角度を許容範囲内に抑えるような幅に設定されている。これにより、アクチュエータ202の耐ねじり強度を高めることができ、上述のようにシャフト7を細くする場合の問題も解消することができる。 Therefore, when the torsional load is applied, the actuator 202 of the second embodiment regulates the rotation of the movable portion 201 by the arm portion 92 coming into contact with the bearings 132a and 132b, and the shaft with respect to the bearing members 6a and 6b. The rotation angle of 7 is kept within an allowable range. That is, the width between the two bearings 132a and 132b is such that the rotation angle of the shaft 7 is kept within an allowable range by the arm portion 92 coming into contact with the bearings 132a and 132b according to the rotation of the outer yoke 10. The width is set. Thereby, the torsion-proof strength of the actuator 202 can be increased, and the problem in the case where the shaft 7 is thinned as described above can be solved.
 以上のように、実施の形態2のアクチュエータ202は、センターヨーク1の他端部に設けたボトムプレート13と、ボトムプレート13の貫通孔131に対向配置されたベアリング132a,132bとを備える。ボトムブリッジ9は、シャフト7の他端部に嵌合された本体部91と、本体部91から延伸してアウターヨーク10の他端部に当接した腕部92とを有し、腕部92がベアリング132a,132b間に挿通されている。腕部92がシャフトの機能を果たすことで、1本のシャフト7のみを用いた構成よりもアクチュエータ202の強度を向上することができる。 As described above, the actuator 202 according to the second embodiment includes the bottom plate 13 provided at the other end of the center yoke 1 and the bearings 132 a and 132 b disposed to face the through holes 131 of the bottom plate 13. The bottom bridge 9 has a main body 91 fitted to the other end of the shaft 7 and an arm 92 that extends from the main body 91 and contacts the other end of the outer yoke 10. Is inserted between the bearings 132a and 132b. Since the arm portion 92 fulfills the function of a shaft, the strength of the actuator 202 can be improved as compared with the configuration using only one shaft 7.
 また、腕部92とベアリング132a,132bとの間には間隙が形成されている。ベアリング132a,132b間の幅は、アウターヨーク10の回動に応じて腕部92がベアリング132a,132bに当接することでシャフト7の回動角度を許容範囲内に抑える幅に設定されている。これにより、シャフト7を細くすることでセンターヨーク1の体積を抑制しつつ、アクチュエータ202の耐ねじり強度を高めることができる。 Further, a gap is formed between the arm portion 92 and the bearings 132a and 132b. The width between the bearings 132 a and 132 b is set to a width that keeps the rotation angle of the shaft 7 within an allowable range by the arm portion 92 coming into contact with the bearings 132 a and 132 b according to the rotation of the outer yoke 10. Thereby, the torsional strength of the actuator 202 can be increased while the volume of the center yoke 1 is suppressed by making the shaft 7 thinner.
 なお、シャフトとして機能させるブリッジの腕部は、ボトムブリッジ9が有する4本の腕部92のうちのいずれか1本の腕部に限定されるものではない。ボトムプレート13に設けた4個の貫通孔131のうちの複数個の貫通孔にベアリング132a,132bをそれぞれ取り付けて、ボトムブリッジ9が有する4本の腕部92のうちの複数本の腕部をシャフトとして機能させるものであっても良い。 Note that the arm portion of the bridge that functions as the shaft is not limited to any one of the four arm portions 92 of the bottom bridge 9. Bearings 132a and 132b are respectively attached to a plurality of through holes 131 of the four through holes 131 provided in the bottom plate 13, and a plurality of arm portions of the four arm portions 92 of the bottom bridge 9 are provided. It may function as a shaft.
 また、センターヨーク1のトップブリッジ8側の端部にボトムプレートを設けるとともに、このボトムプレートに貫通孔及びベアリングを設けて、トップブリッジ8の腕部をシャフトとして機能させるものであっても良い。 Further, a bottom plate may be provided at the end of the center yoke 1 on the top bridge 8 side, and a through hole and a bearing may be provided in the bottom plate so that the arm portion of the top bridge 8 functions as a shaft.
 また、シャフトとして機能させる部材は、ブリッジの腕部に限定されるものではない。アクチュエータ202にねじり荷重が加えられたときに可動部201の回動を規制できるものであれば良く、固定部200の如何なる部材に設けた孔部にベアリングを取り付け、可動部201の如何なる部材を挿通したものであっても良い。 Also, the member that functions as the shaft is not limited to the arm portion of the bridge. Any member that can regulate the rotation of the movable portion 201 when a torsional load is applied to the actuator 202 may be used. A bearing is attached to a hole provided in any member of the fixed portion 200, and any member of the movable portion 201 is inserted. It may be what you did.
 また、シャフトとして機能する腕部を支持する機構は、図10及び図11に示す2個のベアリング132a,132bに限定されるものではない。腕部を2点で支持するものであれば、如何なる機構を採用したものであっても良い。 Further, the mechanism for supporting the arm portion functioning as the shaft is not limited to the two bearings 132a and 132b shown in FIGS. Any mechanism may be adopted as long as the arm is supported at two points.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, free combinations of the respective embodiments, modifications of arbitrary components of the respective embodiments, or omission of arbitrary components of the respective embodiments are possible. .
 本発明のアクチュエータは、部品組み立て用のロボットなどに取り付けて用いることができる。 The actuator of the present invention can be used by being attached to a part assembly robot or the like.
1 センターヨーク(内ヨーク)
2 第1コイル
3 第2コイル
4 第3コイル
5 軸受部
6a,6b 軸受部材
7 シャフト
8 トップブリッジ(第1ブリッジ部)
9 ボトムブリッジ(第2ブリッジ部)
10 アウターヨーク(外ヨーク)
11 第1マグネットアレイ(第1磁石)
12 第2マグネットアレイ(第2磁石)
13 ボトムプレート
14 取付冶具
20a,20b 内ヨーク
21a,21b 間隙
22a,22b 第1コイル
23a,23b 第2コイル
30a,30b 第1外ヨーク
31a,31b 第1マグネット
32a,32b 第2外ヨーク
33a,33b 第2マグネット
34 連結部、
81 本体部
82 腕部
91 本体部
92 腕部
131 貫通孔
132a,132b ベアリング
141 底部
200 固定部
201 可動部
202 アクチュエータ
1 Center yoke (inner yoke)
2 1st coil 3 2nd coil 4 3rd coil 5 Bearing part 6a, 6b Bearing member 7 Shaft 8 Top bridge (1st bridge part)
9 Bottom bridge (second bridge)
10 Outer yoke (outer yoke)
11 First magnet array (first magnet)
12 Second magnet array (second magnet)
13 Bottom plate 14 Mounting jig 20a, 20b Inner yoke 21a, 21b Gap 22a, 22b First coil 23a, 23b Second coil 30a, 30b First outer yoke 31a, 31b First magnet 32a, 32b Second outer yoke 33a, 33b Second magnet 34 connecting portion,
81 Body portion 82 Arm portion 91 Body portion 92 Arm portion 131 Through- holes 132a, 132b Bearing 141 Bottom portion 200 Fixed portion 201 Movable portion 202 Actuator

Claims (9)

  1.  1個の筒状の外ヨークに挿通された1本の棒状の内ヨークと、
     前記外ヨークを前記内ヨークの軸方向に沿って直動自在に支持する支持部材と、
     互いの間に間隙を設けて前記内ヨークに巻回され、かつ互いに逆向きの電流が流れる第1コイル及び第2コイルと、
     前記外ヨークの内周部に前記第1コイルと対向するように設けた第1磁石と、
     前記外ヨークの内周部に前記第2コイルと対向するように設けられ、かつ前記第1磁石と逆向きの磁極を有する第2磁石と、
     を具備することを特徴とするアクチュエータ。
    One rod-shaped inner yoke inserted through one cylindrical outer yoke;
    A support member that supports the outer yoke such that it can move linearly along the axial direction of the inner yoke;
    A first coil and a second coil that are wound around the inner yoke with a gap between each other and in which currents flowing in opposite directions flow;
    A first magnet provided on the inner periphery of the outer yoke so as to face the first coil;
    A second magnet provided on an inner peripheral portion of the outer yoke so as to face the second coil, and having a magnetic pole opposite to the first magnet;
    An actuator comprising:
  2.  前記第1磁石は、前記外ヨークの一端部の内周部の全周に亘って設けられており、
     前記第2磁石は、前記外ヨークの他端部の内周部の全周に亘って設けられている
     ことを特徴とする請求項1記載のアクチュエータ。
    The first magnet is provided over the entire circumference of the inner periphery of one end of the outer yoke,
    The actuator according to claim 1, wherein the second magnet is provided over the entire circumference of the inner peripheral portion of the other end of the outer yoke.
  3.  前記内ヨークの軸心に沿う中空の軸受部を具備し、
     前記支持部材は、
     前記軸受部に挿通され、前記内ヨークに対して直動自在に支持されたシャフトと、
     前記シャフトの一端部に嵌合され、かつ前記外ヨークの一端部に当接した第1ブリッジ部と、
     前記シャフトの他端部に嵌合され、かつ前記外ヨークの他端部に当接した第2ブリッジ部と、
     を具備することを特徴とする請求項1記載のアクチュエータ。
    Comprising a hollow bearing portion along the axis of the inner yoke,
    The support member is
    A shaft inserted through the bearing portion and supported so as to be linearly movable with respect to the inner yoke;
    A first bridge portion fitted to one end portion of the shaft and abutted against one end portion of the outer yoke;
    A second bridge portion that is fitted to the other end portion of the shaft and is in contact with the other end portion of the outer yoke;
    The actuator according to claim 1, further comprising:
  4.  前記第1コイルと前記第2コイル間に巻回された第3コイルと、
     前記外ヨークの軸方向の位置に応じて、前記第3コイルに流れる電流の向きを切替える切替制御部と、
     を具備することを特徴とする請求項1記載のアクチュエータ。
    A third coil wound between the first coil and the second coil;
    A switching control unit that switches the direction of the current flowing through the third coil in accordance with the axial position of the outer yoke;
    The actuator according to claim 1, further comprising:
  5.  前記切替制御部は、前記第1磁石と前記第3コイル間の距離が所定値以下になると前記第3コイルの電流の向きを前記第1コイルと同じ向きに切替え、かつ、前記第2磁石と前記第3コイル間の距離が所定値以下になると前記第3コイルの電流の向きを前記第2コイルと同じ向きに切替えることを特徴とする請求項4記載のアクチュエータ。 The switching control unit switches the direction of the current of the third coil to the same direction as the first coil when the distance between the first magnet and the third coil becomes a predetermined value or less, and the second magnet and The actuator according to claim 4, wherein when the distance between the third coils becomes equal to or less than a predetermined value, the direction of the current of the third coil is switched to the same direction as the second coil.
  6.  前記支持部材は、前記外ヨークを前記内ヨークの軸心に対して回動自在に支持することを特徴とする請求項1記載のアクチュエータ。 2. The actuator according to claim 1, wherein the support member supports the outer yoke so as to be rotatable with respect to an axis of the inner yoke.
  7.  前記外ヨークは、断面が円形状、四角形状又は三角形状であり、
     前記内ヨークは、断面が円形状、四角形状又は三角形状である
     ことを特徴とする請求項1記載のアクチュエータ。
    The outer yoke has a circular, square or triangular cross section,
    The actuator according to claim 1, wherein the inner yoke has a circular, square, or triangular cross section.
  8.  前記内ヨークの他端部に設けたボトムプレートと、該ボトムプレートの貫通孔に対向配置されたベアリングと、を備え、
     前記第2ブリッジ部は、前記シャフトの他端部に嵌合された本体部と、該本体部から延伸して前記外ヨークの他端部に当接した腕部とを有し、
     前記腕部が前記ベアリング間に挿通されている
     ことを特徴とする請求項3記載のアクチュエータ。
    A bottom plate provided at the other end of the inner yoke, and a bearing disposed opposite to the through hole of the bottom plate,
    The second bridge portion has a main body portion fitted to the other end portion of the shaft, and an arm portion extending from the main body portion and contacting the other end portion of the outer yoke,
    The actuator according to claim 3, wherein the arm portion is inserted between the bearings.
  9.  前記腕部と前記べアリングとの間に間隙が形成されており、
     前記ベアリング間の幅は、前記外ヨークの回動に応じて前記腕部が前記ベアリングに当接することで前記シャフトの回動角度を許容範囲内に抑える幅に設定されている
     ことを特徴とする請求項8記載のアクチュエータ。
    A gap is formed between the arm and the bearing,
    The width between the bearings is set to a width that keeps the rotation angle of the shaft within an allowable range by the arm portion contacting the bearing according to the rotation of the outer yoke. The actuator according to claim 8.
PCT/JP2015/078783 2014-10-28 2015-10-09 Actuator WO2016067903A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580069282.3A CN107112883B (en) 2014-10-28 2015-10-09 Actuator
US15/522,674 US20180115232A1 (en) 2014-10-28 2015-10-09 Actuator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014219520 2014-10-28
JP2014-219520 2014-10-28
JP2015-017262 2015-01-30
JP2015017262A JP6289396B2 (en) 2014-10-28 2015-01-30 Actuator

Publications (1)

Publication Number Publication Date
WO2016067903A1 true WO2016067903A1 (en) 2016-05-06

Family

ID=55857244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078783 WO2016067903A1 (en) 2014-10-28 2015-10-09 Actuator

Country Status (1)

Country Link
WO (1) WO2016067903A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122918A (en) * 1991-09-04 1993-05-18 Canon Inc Linear driving apparatus
JP2000116100A (en) * 1998-09-29 2000-04-21 Sanyo Electric Co Ltd Linear motor
JP2002064967A (en) * 2000-08-17 2002-02-28 Mikuni Adec Corp Electromagnetic linear actuator
JP2004153964A (en) * 2002-10-31 2004-05-27 Matsushita Electric Ind Co Ltd Linear motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122918A (en) * 1991-09-04 1993-05-18 Canon Inc Linear driving apparatus
JP2000116100A (en) * 1998-09-29 2000-04-21 Sanyo Electric Co Ltd Linear motor
JP2002064967A (en) * 2000-08-17 2002-02-28 Mikuni Adec Corp Electromagnetic linear actuator
JP2004153964A (en) * 2002-10-31 2004-05-27 Matsushita Electric Ind Co Ltd Linear motor

Similar Documents

Publication Publication Date Title
JP6289396B2 (en) Actuator
KR101475555B1 (en) Actuator
KR101372392B1 (en) 3 axis freedom type sphere motor
JP7469291B2 (en) Magnetic bearing, drive device and pump equipped with same
JPH11341778A (en) Linear actuator
JP2013038944A (en) Motor
JP3470689B2 (en) Linear actuator
JP6314833B2 (en) Actuator and manufacturing method of actuator
JP5488131B2 (en) Electromagnetic actuator
WO2012043525A1 (en) Columnar bond magnet
JP7018064B2 (en) Reluctance actuator
WO2016067903A1 (en) Actuator
JP4821356B2 (en) Magnetic field control method and magnetic field generator
JP2013165599A (en) Stator of slot-less motor, slot-less motor and robot
JPH06284670A (en) Linear actuator
JP6696855B2 (en) Magnetic bearing
JP5445568B2 (en) Linear motion actuator and system
JP6681802B2 (en) Diskless thrust magnetic bearing and 3-axis active control magnetic bearing
JP5447308B2 (en) Linear motor
JP2002218727A (en) Magnet-type actuator
JP4854625B2 (en) Load sensitive switching device
US20180278138A1 (en) Linear actuator
JP2000023442A (en) Linear actuator
JP2012191817A (en) Electromagnetic actuator
JP2004316756A (en) Five-axis control magnetic bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15522674

Country of ref document: US