WO2016067780A1 - 水素ステーション - Google Patents

水素ステーション Download PDF

Info

Publication number
WO2016067780A1
WO2016067780A1 PCT/JP2015/076324 JP2015076324W WO2016067780A1 WO 2016067780 A1 WO2016067780 A1 WO 2016067780A1 JP 2015076324 W JP2015076324 W JP 2015076324W WO 2016067780 A1 WO2016067780 A1 WO 2016067780A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
compressor
gas
hydrogen station
cooler
Prior art date
Application number
PCT/JP2015/076324
Other languages
English (en)
French (fr)
Inventor
孝史 大久野
高木 一
見治 名倉
大祐 和田
拓郎 姥
彰利 藤澤
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015080057A external-priority patent/JP6473033B2/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP15856051.6A priority Critical patent/EP3217064A4/en
Priority to CA2965772A priority patent/CA2965772C/en
Priority to US15/520,379 priority patent/US10317011B2/en
Priority to CN201580059302.9A priority patent/CN107110430B/zh
Priority to KR1020177012396A priority patent/KR101970904B1/ko
Publication of WO2016067780A1 publication Critical patent/WO2016067780A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a hydrogen station.
  • Patent Document 1 discloses a mobile hydrogen station that includes a hydrogen production apparatus and a truck that can move in a state where the hydrogen production apparatus is loaded.
  • the hydrogen station includes a compressor that compresses hydrogen gas, a pressure accumulator that stores hydrogen gas discharged from the compressor, a dispenser that fills the vehicle with hydrogen gas supplied from the pressure accumulator, and the like. Since the hydrogen station described in Patent Document 1 can be moved by truck, even if it is difficult to secure a site for installing the hydrogen station, the vehicle can be filled with hydrogen gas.
  • An object of the present invention is to provide a hydrogen station capable of improving the degree of freedom of installation in a site.
  • a hydrogen station includes a filling facility that fills a tank mounting device with a gas, and a gas supply system that supplies the gas to the filling facility, and the gas supply system compresses the gas.
  • a compressor housing for housing the compressor, and a refrigerator for cooling the gas that has flowed into the filling facility or the gas that has just flowed in, and includes an evaporation section, an expansion section, and a compression section
  • a cooler housing that houses the evaporating portion, the expansion portion, and the compression portion, and the compressor housing and the cooler housing are detachable from each other.
  • FIG. 1 It is a figure which shows the hydrogen station which has the gas supply system which concerns on one Embodiment of this invention. It is a figure which shows a gas cooling part. It is a figure which shows a refrigerator. It is a side view of the hydrogen station shown in FIG. It is a top view which shows a hydrogen station. It is a top view which shows the other shape of a hydrogen station. It is a side view of the modification of the hydrogen station shown in FIG. It is a top view of the apparatus shown by the code
  • FIG. 1 is a diagram showing an outline of the configuration of a hydrogen station 10 according to an embodiment of the present invention.
  • the hydrogen station 10 includes a gas supply system 2 and a dispenser 11 that is a filling facility.
  • the gas supply system 2 supplies hydrogen gas to the dispenser 11.
  • the gas supply system 2 includes a gas flow path 20, a compressor unit 21, a pressure accumulator unit 23, a cooler unit 24, a receiving unit 28, and a control unit 29.
  • a receiving unit 28, a compressor unit 21 and a pressure accumulator unit 23 are disposed on the gas flow path 20.
  • Hydrogen gas flows in the gas flow path 20 toward the dispenser 11.
  • the control unit 29 includes a control unit main body and a control unit frame that houses the control unit main body, as will be described later.
  • the control unit main body controls the compressor unit 21, the accumulator unit 23, and the cooler unit 24.
  • the compressor unit 21, the pressure accumulator unit 23, the cooler unit 24, the receiving unit 28, the dispenser 11, and the control unit 29 are collectively referred to as “main devices”.
  • the term “unit” is used as a term meaning a functional block.
  • the compressor unit 21 includes a reciprocating compressor 210, a later-described compressor housing that houses the compressor 210, and a gas cooling unit 22.
  • the term “container” is used to mean a box-shaped structure that accommodates devices.
  • the compressor 210 includes a drive unit 211 and a compression unit 212.
  • the compression unit 212 includes a piston and a cylinder, and the piston is driven by the power of the drive unit 211 so that hydrogen gas is compressed in the cylinder.
  • the number of compression units 212 is five.
  • FIG. 2 is a diagram showing the configuration of the gas cooling unit 22.
  • the gas cooling unit 22 includes a cooling water passage 220 filled with cooling water as a cooling fluid, a cooling water pump 221, a gas cooler 222 connected to the compression unit 212, and a heat exhausting unit 223.
  • the gas cooler 222 is a microchannel heat exchanger.
  • the gas flow path 20 shown in FIGS. 1 and 2 is connected to the gas cooler 222.
  • the exhaust heat unit 223 includes a heat exchanger 223a and a fan 223b. In the cooling water flow path 220, a cooling water pump 221, a gas cooler 222, and a heat exchanger 223a of the exhaust heat unit 223 are arranged.
  • the hydrogen gas in the gas flow path 20 is cooled by heat exchange between the hydrogen gas discharged from the discharge unit of the compression unit 212 and the cooling water in the gas cooler 222.
  • the cooling water that has absorbed heat in the gas cooler 222 flows into the heat exchanger 223a of the exhaust heat unit 223 and is cooled by the air flow generated in the fan 223b.
  • the cooling water cooled in the heat exchanger 223a is sent again to the gas cooler 222 by the cooling water pump 221.
  • the pressure accumulator unit 23 includes a plurality of (three in this embodiment) pressure accumulators 231, valve members 232 a and 232 b, valve members 232 a and 232 b, and a pressure accumulator 231 described later.
  • the accumulator 231 has a capsule shape.
  • the accumulator 231 stores hydrogen gas discharged from the compressor unit 21. Further, hydrogen gas is sent from the pressure accumulator 231 toward the dispenser 11.
  • the accumulators 231 are each designed to have the same design pressure (for example, 82 MPa).
  • valve members 232a and 232b are provided on the inlet side and the outlet side of the pressure accumulator 231, and the control unit 29 controls the opening and closing of the valve members 232a and 232b, whereby hydrogen gas in the pressure accumulator 231 is obtained. Inflow and outflow are controlled.
  • the gas supply system 2 further includes a return flow path 233, a reservoir tank 234, and valve members 235a and 235b.
  • the return flow path 233 is a flow path for returning the hydrogen gas discharged from the compressor 210 to the upstream side of the compressor 210 in the gas flow path 20.
  • the reservoir tank 234 stores hydrogen gas discharged from the compressor 210.
  • the valve member 235a is provided in a part of the return channel 233 on the upstream side of the reservoir tank 234, and the valve member 235b is provided in a part of the return channel 233 on the downstream side of the reservoir tank 234. Yes. Storage of hydrogen gas in the reservoir tank 234, that is, opening / closing of the valve member 235a is controlled by the control unit 29.
  • the control unit 29 closes the valve members 235a and 235b and opens the valve member 232a. And if the pressure of each pressure accumulator 231 becomes more than predetermined value (for example, 80 MPa), control part 29 will open valve member 235a. Then, a part of the hydrogen gas discharged from the compressor 210 is supplied to the reservoir tank 234, so that the flow rate of the hydrogen gas supplied to each pressure accumulator 231 decreases. Therefore, it is possible to suppress an overload from acting on the pressure accumulator 231 due to the excessive supply of hydrogen gas to the pressure accumulator 231 after the pressure of each pressure accumulator 231 becomes a predetermined value or more. Even if the valve member 235a is opened, the processing amount (hydrogen gas discharge amount) of the compressor 210 is sufficiently large, so that hydrogen gas does not flow into the reservoir tank 234 from each pressure accumulator 231.
  • predetermined value for example 80 MPa
  • the control unit 29 stops the compressor 210 and closes the valve member 235a.
  • the pressure in the reservoir tank 234 is detected by a pressure sensor provided in a portion of the return channel 233 upstream of the reservoir tank 234.
  • the control unit 29 compresses the hydrogen gas in the reservoir tank 234 before the pressure in the reservoir tank 234 reaches a specified value, for example, when the pressure in the reservoir tank 234 reaches a reference value lower than the specified value.
  • the valve member 235a may be closed and the valve member 235b may be opened.
  • the throughput of the compressor 210 is secured.
  • the reservoir tank 234 is removed from the return flow path 233, and the reservoir tank 234 is transported to another facility (such as a hydrogen station) by a trailer or the like. Hydrogen gas in the tank 234 may be used.
  • the downstream portion of the return flow path 233 from the reservoir tank 234 and the valve member 235b may be omitted.
  • the cooler unit 24 includes a refrigerator 26, a brine circuit 5, and a cooler container described later.
  • the brine circuit 5 includes a brine flow path 240, a brine pump 241, and a precool heat exchanger 242 that is a microchannel heat exchanger.
  • the precool heat exchanger 242 is built in the dispenser 11.
  • the brine circuit 5 may be provided with an unillustrated brine tank for storing brine.
  • the brine channel 240 is filled with brine, and the brine pump 241, the precool heat exchanger 242, and the evaporator 31 of the refrigerator 26 are disposed.
  • the hydrogen gas flowing into the dispenser 11 is cooled by heat exchange between the hydrogen gas and the brine in the precool heat exchanger 242.
  • the brine that has absorbed heat in the precool heat exchanger 242 flows into the refrigerator 26 and is cooled.
  • the brine cooled by the refrigerator 26 is sent again to the precool heat exchanger 242 by the brine pump 241.
  • FIG. 3 is a diagram showing the configuration of the refrigerator 26.
  • the refrigerator 26 includes a refrigerant flow path 30, an evaporation unit 31, a compression unit 32, a condensing unit 33, and an expansion unit 34.
  • the refrigerant flow path 30 is filled with the refrigerant, and an evaporation unit 31, a compression unit 32, a condensation unit 33, and an expansion unit 34 are arranged.
  • the evaporation part 31 is connected to the brine flow path 240 shown in FIGS. In the evaporation unit 31, the brine and the refrigerant exchange heat, thereby cooling the brine and evaporating the refrigerant.
  • the compressor 32 shown in FIG. 3 compresses the refrigerant that has flowed out of the evaporator 31.
  • the condensing unit 33 includes a heat exchanger 331 through which a refrigerant flows and a fan 332.
  • the refrigerant flowing into the heat exchanger 331 from the compression unit 32 is radiated and condensed by the air flow generated by the fan 332.
  • the expansion unit 34 expands the refrigerant that has flowed out of the condensation unit 33, and the expanded refrigerant flows into the evaporation unit 31.
  • the refrigerator 26 can cool the hydrogen gas indirectly flowing into the dispenser 11 by cooling the brine by a so-called heat pump cycle.
  • the receiving unit 28 shown in FIG. 1 includes a pressure reducing valve (not shown) and various instrumentation, and receives hydrogen gas supplied from the outside.
  • the pressure reducing valve depressurizes the hydrogen gas so as to receive the hydrogen gas into the compression section 212 through the gas flow path 20, and is disposed on the suction side of the compression section 212 in the gas flow path 20.
  • the dispenser 11 fills the vehicle 9 which is a tank mounting device with the hydrogen gas sent from the pressure accumulator 231.
  • vehicle 9 is a fuel cell vehicle, for example.
  • the hydrogen gas sent from the receiving unit 28 is compressed by the compressor 210 and stored in each pressure accumulator 231 while being cooled by the gas cooling unit 22.
  • hydrogen gas is sent out from the first pressure accumulator 231 (for example, the upper pressure accumulator 231 in FIG. 1).
  • symbol "231a" is attached
  • the dispenser 11 indirectly measures the pressure in the vehicle 9 and determines that the pressure difference between the vehicle 9 and the pressure accumulator 231a is equal to or less than a predetermined value, the pressure is accumulated in the control unit 29 of the gas supply system 2. An instruction to stop the delivery of hydrogen gas from the vessel 231a is sent.
  • the control unit 29 of the gas supply system 2 opens another pressure accumulator 231 (for example, the second pressure accumulator 231 from the top in FIG. 1), and hydrogen gas is sent to the dispenser 11.
  • another pressure accumulator 231 for example, the second pressure accumulator 231 from the top in FIG. 1
  • hydrogen gas is sent to the dispenser 11.
  • the reference numeral “231b” is attached.
  • the pressure difference between the dispenser 11 (or the pressure accumulator 231b) and the vehicle 9 is recovered, and the flow rate of hydrogen gas charged into the vehicle 9 is ensured.
  • the control unit 29 of the gas supply system 2 receives the pressure from the pressure accumulator 231b. While stopping the delivery of hydrogen gas, another pressure accumulator (accumulator located on the lower side in FIG. 1) is opened to deliver hydrogen gas. Thereby, the pressure difference between the dispenser 11 and the vehicle 9 is ensured, and a sufficient amount of hydrogen gas is filled. When it is determined that the tank pressure in the vehicle 9 has reached the set value, the supply of hydrogen gas from the gas supply system 2 is stopped.
  • one of the three pressure accumulators 231 is used in the low pressure region (for example, 0 MPa to 40 MPa) of the tank of the vehicle 9, and the other one is used in the medium pressure region (40 MPa to 60 MPa). The other one is used in the high pressure region (60 MPa to 70 MPa).
  • the gas supply system 2 switches the pressure accumulator 231 in accordance with the three pressure regions of the vehicle 9, whereby the dispenser 11 can efficiently fill the hydrogen gas according to the filling protocol.
  • FIG. 4 is a side view of the hydrogen station 10 and shows a state in which main devices are integrated.
  • the hydrogen station 10 is shown with a common cover (to be described later) removed.
  • FIG. 5 is a plan view of the hydrogen station 10 and corresponds to FIG. 4 and 5, only the main equipment of the hydrogen station 10 is shown, and the peripheral members are not shown. The same applies to FIG. 6 below.
  • the compressor unit 21 includes a compressor housing 51 having a substantially rectangular parallelepiped shape that houses the compressor 210 and the gas cooler 222 (not shown in FIG. 5) shown in FIGS. 2 and 4. Have.
  • the compressor housing 51 includes a compressor frame 511 that is a framework.
  • the pressure accumulator unit 23 includes a pressure accumulator housing 53 having a substantially rectangular parallelepiped shape for housing the pressure accumulator 231 and the valve members 232a and 232b.
  • the pressure accumulator housing 53 includes a pressure accumulator frame 531.
  • the cooler unit 24 includes a substantially rectangular parallelepiped-shaped cooler housing 56 that houses the evaporation section 31, the compression section 32, the expansion section 34, and the brine pump 241 and the brine tank (not shown) illustrated in FIG. . That is, the cooler accommodating body 56 accommodates devices other than the precool heat exchanger 242 and the condensing unit 33 among the devices included in the cooler unit 24.
  • the evaporation unit 31, the compression unit 32, the expansion unit 34, the brine pump 241, and the brine tank are shown as one rectangle with a reference numeral 300. The same applies to FIGS. 6 to 8 below.
  • the cooler container 56 includes a cooler frame 561.
  • the gas supply system 2 has one common cover 401 that covers the compressor frame 511, the pressure accumulator frame 531, and the entire cooler frame 561.
  • a part covering the compressor frame 511, a part covering the pressure accumulator frame 531 and a part covering the cooler frame 561 are respectively a part of the compressor housing 51 and the pressure accumulating.
  • a part of the container housing 53 and a part of the cooler housing 56 are configured.
  • illustration of the upper part of the shared cover 401 is omitted for the sake of illustration, but actually the upper parts of the respective frames 511, 531, and 561 are also covered with the shared cover 401.
  • the compressor frame 511 includes at least four column portions extending in the direction of gravity and a plurality of connecting portions that connect the column portions to each other.
  • a substantially rectangular parallelepiped space is defined around the compressor 210 by the compressor frame 511.
  • the pressure accumulator frame 531 includes at least four column portions extending in the direction of gravity and a plurality of connecting portions that connect the column portions, similarly to the compressor frame 511. .
  • the accumulator frame 531 defines a substantially rectangular space around the accumulator 231.
  • each of the three pressure accumulators 231 is placed in a posture that is parallel to the horizontal plane, and overlaps the gravitational direction that is the Z direction (in a state of being aligned along the gravitational direction). ing.
  • the X direction of FIGS. 4 and 5, which is the direction in which the pressure accumulator 231 extends is referred to as the “longitudinal direction” of the hydrogen station 10.
  • the exhaust heat unit 223 of the gas cooling unit 22 and the condensing unit 33 of the refrigerator 26 are arranged on the top of the pressure accumulator frame 531.
  • the heat exhausting part 223 and the condensing part 33 may be arranged at other places such as a side part of the pressure accumulator frame 531. 5 and 6, the exhaust heat unit 223 and the condensing unit 33 are not shown.
  • the cooler frame 561 includes at least four column portions extending in the direction of gravity and a plurality of connecting portions that connect the column portions, similarly to the compressor frame 511.
  • the devices denoted by reference numeral 300 in FIG. 5 evaporation unit 31, compression unit 32 and expansion unit 34 shown in FIG. 3, and the brine pump 241 of the brine circuit 5 shown in FIG.
  • a substantially rectangular parallelepiped space is defined around the brine tank).
  • a control unit frame having a substantially rectangular parallelepiped shape in which the control unit main body of the control unit 29 (see FIG. 1) is accommodated is provided.
  • the compressor frame 511 and the cooler frame 561 are arranged along the (+ Y) side 531a in FIG.
  • the compressor frame 511 and the cooler frame 561 are detachably connected to each other by a fixing tool 290 that is a bolt in a state of being positioned by a positioning pin or the like.
  • the sum of the lengths of the compressor frame 511 and the cooler frame 561 in the longitudinal direction, that is, the direction along one side portion 531 a of the pressure accumulator housing 53 is the pressure accumulator frame. It is substantially the same as the length of 531.
  • the compressor frame 511 and the pressure accumulator frame 531 are arranged along the width direction (Y direction in FIGS. 4 and 5) perpendicular to the longitudinal direction in the horizontal plane.
  • the compressor frame 511 and the pressure accumulator frame 531 are detachably connected to each other by a fixture 290 in a positioned state.
  • the cooler frame 561 and the pressure accumulator frame 531 are arranged in the width direction.
  • the cooler frame body 561 and the pressure accumulator frame body 531 are detachably connected to each other by a fixture 290.
  • the sum of the lengths of the cooler frame 561 and the pressure accumulator frame 531 in the width direction, that is, the direction perpendicular to the one side 531a of the pressure accumulator housing 53 in the horizontal plane is the compressor frame. 511 and the sum of the lengths of the pressure accumulator frame 531 are substantially the same.
  • control unit frame provided below the cooler frame 561 is detachably connected to the cooler frame 561, the pressure accumulator frame 531 and the compressor frame 511.
  • the pressure accumulator frame 531 shown in FIG. 4 is located at the height of the compressor frame 511 in FIG. 5 and below the cooler frame 561 and the cooler frame 561. It is substantially the same as the sum of the heights of the control unit frames.
  • the gas supply system 2 has a substantially rectangular shape by integrating the compressor unit 21, the accumulator unit 23, the cooler unit 24, and the control unit 29 (see FIG. 1).
  • the receiving unit 28 is accommodated in a receiving unit accommodating body 58 having a substantially rectangular parallelepiped shape.
  • the receiving unit accommodating body 58 has a side opposite to the side where the cooler unit 24 is disposed with respect to the compressor unit 21 in the longitudinal direction of the compressor unit 21, that is, the (+ X) side. These parts are detachably connected by a fixing member 292.
  • the dispenser 11 has a substantially rectangular parallelepiped shape.
  • the dispenser 11 is detachably connected by a fixing member 294 to a side portion close to the cooler unit 24 among two side portions parallel to the width direction of the pressure accumulator unit 23, that is, a side portion on the ( ⁇ X) side. .
  • the gas flow path 20 has a portion 201 located at the boundary between the compressor frame 511 and the pressure accumulator frame 531, and the boundary between the pressure accumulator unit 23 and the dispenser 11.
  • a pipe having flexibility (hereinafter referred to as “flexible pipe”) is used for the portion 202 positioned and the portion 203 located at the boundary between the receiving unit housing 58 and the compressor unit 21.
  • the positional deviation is absorbed by the flexible pipe being bent. Is done. Further, the thermal stress generated when hydrogen gas flows through the gas flow path 20 is also absorbed by the bent pipe.
  • the compressor unit 21, the accumulator unit 23, the cooler unit 24, the receiving unit 28, the dispenser 11, and the control unit 29 are previously set in the factory. Can be assembled individually. Then, these main devices are shipped by truck or the like, assembled in the hydrogen station 10 site, and brought into a state shown in FIG.
  • the installation area of the hydrogen station 10 can be reduced by integrating the containers for storing the main devices of the hydrogen station 10. Further, the compressor housing 51 and the cooler housing 56 are arranged along one side portion 531 a of the pressure accumulator housing 53. That is, the compressor unit 21 and the cooler unit 24 are connected to the pressure accumulator unit 23 so as not to overlap the pressure accumulator 231 in the longitudinal direction. Thereby, maintenance etc. of the pressure accumulator unit 23 can be easily performed.
  • the space where the hydrogen station 10 can be installed differs depending on the site, and it may be difficult to install the hydrogen station 10 in the site in the state shown in FIG. Therefore, the shape of the hydrogen station 10 can be changed according to the installation space in the site.
  • FIG. 6 is a diagram showing a configuration of the modified hydrogen station 10.
  • the compressor housing 51, the cooler housing 56, and the receiving unit housing 58 are integrated to form a first assembly.
  • a second assembly different from the first assembly is formed.
  • the first assembly and the second assembly are disposed apart from each other.
  • Individual covers 402, 403, and 404 are provided on the compressor frame 511, the accumulator frame 531, and the cooler frame 561, respectively. That is, the compressor housing 51 is formed by the compressor frame 511 and the individual cover 402.
  • An accumulator housing 53 is formed by the accumulator frame 531 and the individual cover 403.
  • the cooler housing 56 is formed by the cooler frame 561 and the individual cover 404.
  • the upper portions of the individual covers 402 to 404 are not shown for the sake of illustration, but the upper portions of the frame bodies 511, 531, and 561 are also covered with the individual covers 402 to 404.
  • a flexible pipe is used for a portion 203 located at the boundary between the compressor unit 21 and the receiving unit 28 and a portion 202 located at the boundary between the dispenser 11 and the pressure accumulator unit 23.
  • the hydrogen station 10 Even if the hydrogen station 10 is divided into a first assembly and a second assembly, it is difficult to install the hydrogen station 10 in a state where all the main devices are integrated. It becomes possible to install the hydrogen station 10. In addition, the number of devices installed around the dispenser 11 where vehicles and people are frequently trafficked can be reduced.
  • the hydrogen station 10 having the gas supply system 2 according to the embodiment of the present invention has been described above.
  • the compressor housing 51, the accumulator housing 53, the cooler housing 56, and the receiving The unit container 58, the dispenser 11, and the controller 29 are detachable from each other.
  • the compressor unit 21, the pressure accumulator unit 23, the cooler unit 24, the receiving unit 28, the dispenser 11, and the control unit 29 can be handled independently of each other. That is, these main devices are unitized based on the role classification of the devices in the process of supplying hydrogen gas to the dispenser 11, and are handled independently of each other. Therefore, the shape of the hydrogen station 10 can be changed variously, and the degree of freedom of installation of the hydrogen station 10 in the site can be ensured.
  • the main equipment is unitized and each unit is housed in a container, so that it can be transported in units of equipment, and the load and cost of transport work compared to when the hydrogen station 10 is transported in a completed state. Is reduced. Furthermore, since the main devices are shipped as a unit in the factory, the assembly cost is reduced as compared with the case where the main devices are assembled on the site. However, when it is known in advance that the main equipment is used in an integrated state as shown in FIG. 5, the assembled hydrogen station 10 may be transported to the site. In this case, the vibration generated in the gas flow path 20 during the transportation of the hydrogen station 10 is absorbed by using the bent pipe.
  • the size of the gas supply system 2 can be suppressed by integrating the receiving unit housing 58 and the compressor housing 51. Moreover, since the dispenser 11 and the pressure accumulator housing 53 are integrated, the size of the hydrogen station 10 can be suppressed. By arranging the plurality of pressure accumulators 231 in the direction of gravity, an increase in installation space in the horizontal direction of the gas supply system 2 can be suppressed.
  • the cooler container 56 may further include a placement portion 562 and a pair of guide portions 563.
  • the mounting unit 562 is a member for mounting the device denoted by reference numeral 300, that is, the evaporation unit 31, the compression unit 32 and the expansion unit 34, and the brine pump 241 and the brine tank.
  • the mounting portion 562 is formed in a plate shape that can support the device from below.
  • the placement portion 562 is disposed at a position spaced upward from the bottom of the cooler frame 561.
  • the mounting portion 562 may be disposed at a position (the position shown in FIG. 4) where the device is supported by the bottom of the cooler frame 561.
  • the pair of guide portions 563 includes an accommodation position (a position indicated by a broken line in FIGS. 7 and 8) where the placement portion 562 is located in the cooler frame body 561, and a placement portion 562 outside the cooler frame body 561.
  • the placement portion 562 may be displaced with respect to the cooler frame 561 along the width direction (Y direction) between the exposure position (the position indicated by the two-dot chain line in FIGS. 7 and 8). It is configured to be able to.
  • each guide portion 563 includes a first guide rail fixed to the cooler frame 561 and a second guide rail fixed to the placement portion 562.
  • the second guide rail is provided at an end portion in the width direction (X direction) of the placement portion 562 and can be displaced along the first guide rail.
  • the brine flow path 240 is configured by an expandable / contractible pipe. Moreover, it is preferable that at least a part between the compression part 32 and the heat exchanger 331 and a part between the heat exchanger 331 and the expansion part 34 in the refrigerant flow path 30 are also configured by the expansion pipe.
  • Each telescopic pipe extends to allow the placement portion 562 to be displaced from the accommodation position to the exposure position. In this way, the mounting portion 562 is positioned at the exposed position without dividing the brine flow path 240 and the refrigerant flow path 30 through the window formed in the cover disposed around the cooler frame 561. be able to.
  • a shutoff valve is provided in the brine flow path 240, and the brine flow path 240 is divided in a state in which the brine flow out from the brine flow path 240 is prevented by closing the shutoff valve, so that the mounting portion 562 is disposed at the exposed position. You may pull out. The same applies to the refrigerant flow path 30 side.
  • the precool heat exchanger 242 may be provided outside the dispenser 11.
  • the precool heat exchanger 242 may be accommodated in the cooler accommodating body 56.
  • the brine pump 241 and the brine tank may be disposed outside the cooler container 56 as long as at least the expansion unit 34, the compression unit 32, and the evaporation unit 31 are stored in the cooler container 56.
  • a housing for housing each device of the brine circuit 5 may be provided. The housing is independent of the cooler housing 56 and includes the compressor unit 21, the accumulator unit 23, and the like. It may be connected to the dispenser 11.
  • the cooler unit 24 may cool the hydrogen gas immediately before flowing into the dispenser 11.
  • the compressor unit 21, the accumulator unit 23, and the cooler unit 24 among the main devices have a particularly large configuration. Therefore, the compressor housing 51, the accumulator housing 53, and the cooler housing 56 are mutually connected. By being detachable, the degree of freedom of installation of the gas supply system 2 in the site can be improved.
  • the number of pressure accumulators may be a number other than three.
  • a cooling fluid other than water may be used as a cooling fluid for cooling the hydrogen gas.
  • the compressor frame body 511, the cooler frame body 561, the pressure accumulator frame body 531 and the control unit frame body may be detachably connected to each other using a fastening member such as a binding member in addition to the fixture 290.
  • the gas supply system 2 may be used for filling hydrogen gas into tank mounting devices other than vehicles.
  • the gas supply system 2 may be used for supplying a gas other than hydrogen gas.
  • cooler unit 24 may be configured with only the refrigerator 26 (that is, without the brine circuit 5).
  • the dispenser 11 may be arranged apart from each unit 21, 23, 24.
  • pressure accumulators 231 may be arranged separately from each other.
  • a hydrogen generator that generates high-pressure hydrogen gas by electrolysis or the like may be used.
  • the hydrogen station of the present embodiment includes a filling facility that fills a tank mounting device with a gas, and a gas supply system that supplies gas to the filling facility, and the gas supply system includes a compressor that compresses gas, A compressor housing that houses the compressor, and a refrigerator that cools the gas that has flowed into the filling facility or the gas just before it flows, and includes an evaporation section, an expansion section, and a compression section, A cooler housing that houses the evaporating unit, the expansion unit, and the compression unit, and the compressor housing and the cooler housing are detachable from each other.
  • the gas supply system stores a gas discharged from the compressor, and stores a plurality of pressure accumulators that send the gas to the filling facility and a pressure accumulator housing that accommodates the plurality of pressure accumulators. It is preferable that the compressor housing, the pressure accumulator housing, and the cooler housing are detachable from each other.
  • the compressor housing, the accumulator housing, and the cooler housing are integrated, and the compressor housing and the cooler housing are arranged on one side of the accumulator housing. It is preferable that they are arranged in line.
  • the installation area of the hydrogen station can be reduced.
  • the gas supply system further includes a receiving unit that receives the gas sucked into the compressor from the outside while reducing the pressure, and a receiving unit housing that houses the receiving unit, and the compression station
  • the machine container and the receiving unit container are preferably detachable from each other.
  • the size of the hydrogen station can be suppressed by integrating the compressor housing and the receiving unit housing.
  • the plurality of pressure accumulators are arranged so as to overlap each other in the direction of gravity.
  • the gas supply system is connected in parallel to each pressure accumulator, a reservoir tank that stores gas discharged from the compressor, each pressure accumulator from the compressor, and the A controller that controls the supply of the gas to the reservoir tank, the controller causing the compressor to supply the gas to the reservoir tank when the pressure of each accumulator is equal to or higher than a predetermined value. Is preferred.
  • each accumulator when the pressure of each accumulator is a predetermined value (for example, a value when the accumulator is almost full of gas), the gas is stored in the reservoir tank. Is stored, that is, it is suppressed that an overload acts on each pressure accumulator.
  • a predetermined value for example, a value when the accumulator is almost full of gas
  • the cooler container is configured to expose the evaporation unit, the expansion unit, and the compression unit to the outside of the cooler container.
  • the filling equipment and the pressure accumulator container are detachable from each other.
  • a first assembly is formed by integrating the compressor housing and the cooler housing, and a second set is formed by integrating the pressure accumulator housing and the filling equipment. It is preferable that a solid body is formed, and the first assembly and the second assembly are arranged in a state of being separated from each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

【課題】ガス供給システムを容易に搬送することを可能にし、かつガス供給システムを設置する際の自由度を増やすこと。 【解決手段】水素ステーションであって、タンク搭載装置へガスを充填する充填設備と、前記充填設備にガスを供給するガス供給システムと、を備え、前記ガス供給システムは、ガスを圧縮する圧縮機と、前記圧縮機を収容する圧縮機収容体と、前記充填設備に流入したガス、または、流入する直前のガスを冷却するための冷凍機であって蒸発部、膨張部及び圧縮部を含むものと、前記蒸発部、前記膨張部及び前記圧縮部を収容するクーラ収容体と、を含み、前記圧縮機収容体及び前記クーラ収容体は、互いに着脱可能であること。

Description

水素ステーション
 本発明は、水素ステーションに関する。
 近年、燃料電池自動車や水素自動車等の水素ガスを利用する車両(以下、単に「車両」という。)の開発が行われており、これに伴って車両のタンクに水素ガスを充填するための水素ステーションの開発も進められている。例えば、特許文献1には、水素製造装置と、当該水素製造装置を積載した状態で移動可能なトラックと、を備える移動式の水素ステーションが開示されている。この水素ステーションは、水素ガスを圧縮する圧縮機、圧縮機から吐出された水素ガスを貯留する蓄圧器、蓄圧器から供給される水素ガスを車両に充填するためのディスペンサ、等を備えている。特許文献1に記載の水素ステーションは、トラックで移動することができるので、水素ステーションを設置するための敷地の確保が困難な場合であっても、車両へ水素ガスを充填することができる。
 一方、水素ステーションを既存のガスステーション(いわゆるガソリンスタンド)等の用地内に設置することが提案されている。しかし、既存設備が存在する用地では、水素ステーションを設置するための十分な設置スペースを確保することが困難な場合がある。また、用地内の設置スペースに合わせて水素ステーションの各種機器を現地にて組み立てようとすると、搬送コストや組み立てコストが増大してしまう。特許文献1に記載の水素ステーションでは、水素製造装置を用地に固定することが想定されていないので、水素製造装置をトラックから分離することができないか、あるいは、分離することができたとしても、用地のスペースに合わせて各機器を適切な配置(用地内に収まるような配置)にすることが困難である。
特開2004-017701号公報
 本発明の目的は、用地内における設置の自由度の向上が可能な水素ステーションを提供することである。
 本発明の一局面に従う水素ステーションは、タンク搭載装置へガスを充填する充填設備と、前記充填設備にガスを供給するガス供給システムと、を備え、前記ガス供給システムは、ガスを圧縮する圧縮機と、前記圧縮機を収容する圧縮機収容体と、前記充填設備に流入したガス、または、流入する直前のガスを冷却するための冷凍機であって蒸発部、膨張部及び圧縮部を含むものと、前記蒸発部、前記膨張部及び前記圧縮部を収容するクーラ収容体と、を含み、前記圧縮機収容体及び前記クーラ収容体は、互いに着脱可能である。
本発明の一実施形態に係るガス供給システムを有する水素ステーションを示す図である。 ガス冷却部を示す図である。 冷凍機を示す図である。 図1に示す水素ステーションの側面図である。 水素ステーションを示す平面図である。 水素ステーションの他の形状を示す平面図である。 図1に示す水素ステーションの変形例の側面図である。 符号300で示される機器、載置部及び一対のガイド部の平面図である。
 図1は本発明の一実施形態に係る水素ステーション10の構成の概略を示す図である。水素ステーション10は、ガス供給システム2と、充填設備であるディスペンサ11と、を備える。
 ガス供給システム2は、ディスペンサ11に水素ガスを供給する。ガス供給システム2は、ガス流路20と、圧縮機ユニット21と、蓄圧器ユニット23と、クーラユニット24と、受入ユニット28と、制御部29とを備える。受入ユニット28、圧縮機ユニット21及び蓄圧器ユニット23がガス流路20上に配置される。ガス流路20内にはディスペンサ11に向かって水素ガスが流される。制御部29は制御部本体と、後述するように制御部本体を収容する制御部用枠体とを備える。制御部本体は、圧縮機ユニット21、蓄圧器ユニット23およびクーラユニット24を制御する。以下の説明では、圧縮機ユニット21、蓄圧器ユニット23、クーラユニット24、受入ユニット28、ディスペンサ11及び制御部29を纏めて「主要機器」という。なお、「ユニット」という用語は、機能ブロックを意味する用語として用いられる。
 圧縮機ユニット21は、往復動式の圧縮機210と、圧縮機210を収容する後述の圧縮機収容体と、ガス冷却部22とを備える。なお、以下、「収容体」という用語は、機器類を収容する箱状の構造体という意味で用いられる。圧縮機210は、駆動部211と、圧縮部212とを備える。圧縮部212はピストンとシリンダとを有し、駆動部211の動力によりピストンが駆動されてシリンダ内にて水素ガスが圧縮される。本実施形態では、圧縮部212の数は5である。
 図2はガス冷却部22の構成を示す図である。ガス冷却部22は、冷却流体である冷却水が充填された冷却水流路220と、冷却水ポンプ221と、圧縮部212に接続されたガスクーラ222と、排熱部223とを備える。ガスクーラ222はマイクロチャネル式熱交換器である。ガスクーラ222には図1および図2に示すガス流路20が接続される。排熱部223は熱交換器223aとファン223bとを備える。冷却水流路220には、冷却水ポンプ221、ガスクーラ222および排熱部223の熱交換器223aが配置される。ガス冷却部22では、ガスクーラ222において圧縮部212の吐出部から吐出された水素ガスと冷却水とが熱交換することによりガス流路20内の水素ガスが冷却される。ガスクーラ222において熱を吸収した冷却水は、排熱部223の熱交換器223aに流入し、ファン223bにて発生したエアの流れにより冷却される。熱交換器223aにおいて冷却された冷却水は、冷却水ポンプ221により再びガスクーラ222へと送られる。
 図1に示すように、蓄圧器ユニット23は、複数(本実施形態では3つ)の蓄圧器231と、弁部材232a、232bと、弁部材232a、232b及び蓄圧器231を収容する後述の蓄圧器収容体とを備える。蓄圧器231はカプセル形状である。蓄圧器231には圧縮機ユニット21から吐出された水素ガスが貯留される。また、蓄圧器231からディスペンサ11に向かって水素ガスが送出される。蓄圧器231は、それぞれ同じ設計圧力(例えば82MPa)に設計されている。蓄圧器ユニット23では、蓄圧器231の入側及び出側に弁部材232a,232bが設けられており、制御部29が弁部材232a,232bの開閉を制御することにより、蓄圧器231における水素ガスの流出入が制御される。
 また、本ガス供給システム2は、図1に示されるように、戻し流路233と、リザーバタンク234と、弁部材235a、235bと、をさらに備えている。戻し流路233は、圧縮機210から吐出された水素ガスを、ガス流路20のうち圧縮機210の上流側の部位に戻す流路である。リザーバタンク234には、圧縮機210から吐出された水素ガスが貯留される。弁部材235aは、戻し流路233のうちリザーバタンク234よりも上流側の部位に設けられており、弁部材235bは、戻し流路233のうちリザーバタンク234よりも下流側の部位に設けられている。リザーバタンク234への水素ガスの貯留、つまり、弁部材235aの開閉は、制御部29により制御される。
 具体的に、圧縮機210から吐出された水素ガスを各蓄圧器231に供給するときは、制御部29は、弁部材235a、235bを閉じ、弁部材232aを開く。そして、各蓄圧器231の圧力が所定値(例えば80MPa)以上となると、制御部29は、弁部材235aを開く。そうすると、圧縮機210から吐出された水素ガス一部がリザーバタンク234に供給されるため、各蓄圧器231に供給される水素ガスの流量が減少する。よって、各蓄圧器231の圧力が所定値以上となった後にこれら蓄圧器231に水素ガスが過剰に供給され続けることに起因して当該蓄圧器231に過負荷が作用することが抑制される。なお、弁部材235aを開いたとしても、圧縮機210の処理量(水素ガスの吐出量)が十分に大きいので、各蓄圧器231からリザーバタンク234への水素ガスの流入は生じない。
 その後、リザーバタンク234の圧力が規定値(例えば40MPa)になると、制御部29は、圧縮機210を停止し、弁部材235aを閉じる。なお、リザーバタンク234の圧力は、戻し流路233のうちリザーバタンク234の上流側の部位に設けられた圧力センサで検出される。ただし、制御部29は、リザーバタンク234の圧力が規定値になる前に、例えば、リザーバタンク234の圧力が規定値よりも低い基準値に達したときに、リザーバタンク234内の水素ガスを圧縮機210に戻すために弁部材235aを閉じるとともに弁部材235bを開いてもよい。このようにすれば、圧縮機210での水素ガスの吸込圧が確保されるため、圧縮機210の処理量が確保される。あるいは、リザーバタンク234の圧力が規定値になった後、戻し流路233からリザーバタンク234を取り外し、当該リザーバタンク234をトレーラ等で別の設備(水素ステーション等)に運び、その設備にてリザーバタンク234内の水素ガスを使用してもよい。この場合、戻し流路233のうちリザーバタンク234から下流側の部位及び弁部材235bは、省略されてもよい。
 クーラユニット24は、冷凍機26とブライン回路5と後述のクーラ収容体とを備える。図1では冷凍機26の蒸発部31以外の機器を1つの矩形にて示している。ブライン回路5は、ブライン流路240と、ブラインポンプ241と、マイクロチャネル式熱交換器であるプレクール熱交換器242とを備える。本実施形態では、プレクール熱交換器242はディスペンサ11に内蔵されている。なお、ブライン回路5にはブラインを貯留する図略のブラインタンクが設けられてもよい。ブライン流路240にはブラインが充填されるとともに、ブラインポンプ241、プレクール熱交換器242および冷凍機26の蒸発部31が配置される。
 ブライン回路5では、プレクール熱交換器242において水素ガスとブラインとが熱交換することによりディスペンサ11に流入した水素ガスが冷却される。プレクール熱交換器242において熱を吸収したブラインは冷凍機26に流入して冷却される。冷凍機26で冷却されたブラインはブラインポンプ241により再びプレクール熱交換器242へと送られる。
 図3は冷凍機26の構成を示す図である。冷凍機26は冷媒流路30と、蒸発部31と、圧縮部32と、凝縮部33と、膨張部34とを備える。冷媒流路30には、冷媒が充填されるとともに蒸発部31、圧縮部32、凝縮部33および膨張部34が配置される。蒸発部31は図1および図3に示すブライン流路240に接続される。蒸発部31では、ブラインと冷媒とが熱交換することにより、ブラインが冷却されるとともに冷媒が蒸発する。図3に示す圧縮部32は、蒸発部31から流出した冷媒を圧縮する。凝縮部33は冷媒が流れる熱交換器331と、ファン332とを備える。圧縮部32から熱交換器331へ流入した冷媒は、ファン332にて発生したエアの流れにより放熱されて凝縮される。膨張部34は凝縮部33から流出した冷媒を膨張させ、膨張した冷媒は蒸発部31に流入する。冷凍機26は、いわゆるヒートポンプサイクルによりブラインを冷却することにより、間接的にディスペンサ11に流入した水素ガスを冷却することができる。
 図1に示す受入ユニット28は、図略の減圧弁や各種計装器を備えており、外部から供給される水素ガスを受け入れる。減圧弁は、ガス流路20を通して圧縮部212に水素ガスを受け入れるべく水素ガスを減圧するものであり、ガス流路20における圧縮部212の吸入側に配置される。
 ディスペンサ11は、蓄圧器231から送出された水素ガスをタンク搭載装置である車両9に充填する。車両9は例えば燃料電池車である。
 車両9に水素ガスが充填される際には、受入ユニット28から送られた水素ガスが圧縮機210にて圧縮され、ガス冷却部22にて冷却されつつ各蓄圧器231に貯留される。
 そして、車両9が水素ステーション10に搬入されると、各蓄圧器231からディスペンサ11に水素ガスが供給されるとともに、ディスペンサ11及び制御部29が所定の充填プロトコルに従って車両9へ水素ガスを充填する。
 このとき、蓄圧器ユニット23では、まず1つ目の蓄圧器231(例えば、図1の上側の蓄圧器231)から水素ガスが送出される。以下の説明では、当該蓄圧器を他の蓄圧器と区別する場合には符号「231a」を付す。ディスペンサ11は、車両9内の圧力を間接的に測定し、車両9と蓄圧器231aとの間の圧力差が所定値以下となったと判断すると、ガス供給システム2の制御部29に対して蓄圧器231aからの水素ガスの送出を停止する指示を送る。
 続いて、ガス供給システム2の制御部29が他の蓄圧器231(例えば、図1の上から2番目の蓄圧器231)を開放し、ディスペンサ11に水素ガスが送出される。以下、当該2番目の蓄圧器を他の蓄圧器と区別する場合は符号「231b」を付す。これによりディスペンサ11(あるいは蓄圧器231b)と車両9との間の圧力差が回復し、車両9へ充填される水素ガスの流量が確保される。車両9内のタンクの圧力が上昇し、蓄圧器231bと車両9との間の圧力差が所定値以下となったとディスペンサ11が判断すると、ガス供給システム2の制御部29は蓄圧器231bからの水素ガスの送出を停止するとともに、さらに他の蓄圧器(図1の下側に位置する蓄圧器)を開放して水素ガスが送出される。これにより、ディスペンサ11と車両9との間の圧力差が確保され、十分な量の水素ガスが充填される。車両9内のタンクの圧力が設定値となったと判断されると、ガス供給システム2からの水素ガスの供給が停止される。
 以上のように、蓄圧器ユニット23では、車両9のタンクの低圧領域(例えば0MPa~40MPa)において3つの蓄圧器231のうち1つが使用され、中圧領域(40MPa~60MPa)において他の1つが使用され、高圧領域(60MPa~70MPa)においてさらに他の1つが使用される。ガス供給システム2が車両9の3つの圧力領域に応じて蓄圧器231を切り替えることによりディスペンサ11が充填プロトコルに従って効率よく水素ガスを充填することが可能となる。
 図4は水素ステーション10の側面図であり、各主要機器が一体化された状態を示している。なお、図4では後述する共用カバーを取り外した状態にて水素ステーション10を示している。図5は、水素ステーション10の平面図であり、図4に対応している。なお、図4及び図5では、水素ステーション10の主要機器のみを示し、周辺部材の図示を省略している。以下の図6においても同様である。
 図5に示すように、圧縮機ユニット21は、圧縮機210と、図2及び図4に示されるガスクーラ222(図5では図示省略)と、を収容する略直方体形状の圧縮機収容体51を有している。圧縮機収容体51は、骨組みである圧縮機用枠体511を備える。同様に、蓄圧器ユニット23は、蓄圧器231及び弁部材232a、232bを収容する略直方体形状の蓄圧器収容体53を備える。蓄圧器収容体53は、蓄圧器用枠体531を備える。クーラユニット24は、図3に示される蒸発部31、圧縮部32、膨張部34並びに図1に示されるブラインポンプ241及びブラインタンク(図示省略)を収容する略直方体形状のクーラ収容体56を備える。すなわち、クーラ収容体56は、クーラユニット24に含まれる機器のうちプレクール熱交換器242及び凝縮部33以外の機器を収容する。図4及び図5では、蒸発部31、圧縮部32、膨張部34、並びに、ブラインポンプ241及びブラインタンクを符号300を付した1つの矩形にて示している。以下の図6~図8においても同様である。
 クーラ収容体56はクーラ用枠体561を備える。ガス供給システム2は、圧縮機用枠体511、蓄圧器用枠体531及びクーラ用枠体561全体を覆う1つの共用カバー401を有している。なお、共用カバー401のうち、圧縮機用枠体511を覆う部位、蓄圧器用枠体531を覆う部位、及び、クーラ用枠体561を覆う部位は、それぞれ圧縮機収容体51の一部、蓄圧器収容体53の一部及びクーラ収容体56の一部を構成する。図5では、図示の都合上、共用カバー401の上部の図示を省略しているが、実際には各枠体511、531、561の上部も共用カバー401にて覆われている。
 圧縮機用枠体511は、重力方向に延びる少なくとも4つの柱部と、柱部同士を接続する複数の連結部とを備える。圧縮機用枠体511により圧縮機210の周囲に略直方体形状の空間が画定される。
 図4及び図5に示すように蓄圧器用枠体531は、圧縮機用枠体511と同様に、重力方向に延びる少なくとも4つの柱部と、柱部同士を接続する複数の連結部とを備える。蓄圧器用枠体531により蓄圧器231の周囲に略直方体形状の空間が画定される。蓄圧器収容体53内において、3つの蓄圧器231はそれぞれ、水平面に対して平行となる姿勢とされ、かつ、Z方向である重力方向に重なって(重力方向に沿って並ぶ状態で)配置されている。以下、蓄圧器231の伸びる方向である図4及び図5のX方向を水素ステーション10の「長手方向」という。図4に示すように、本実施形態では、ガス冷却部22の排熱部223及び冷凍機26の凝縮部33は蓄圧器用枠体531の上部に配置される。ただし、排熱部223及び凝縮部33は蓄圧器用枠体531の側部など他の場所に配置されてもよい。なお、図5及び図6では、排熱部223及び凝縮部33の図示を省略している。
 図5に示すように、クーラ用枠体561は圧縮機用枠体511と同様に、重力方向に延びる少なくとも4つの柱部と、柱部同士を接続する複数の連結部とを備える。クーラ用枠体561により、図5において符号300で示された機器(図3に示される蒸発部31、圧縮部32及び膨張部34、並びに、図1に示されるブライン回路5のブラインポンプ241及びブラインタンク)の周囲に略直方体形状の空間が画定される。クーラ用枠体561の重力方向下側には、制御部29(図1参照)の制御部本体が収容される略直方体形状の制御部用枠体が設けられている。
 長手方向に平行な蓄圧器ユニット23の2つの側部のうち、図5における(+Y)側の側部531aに沿って、圧縮機用枠体511とクーラ用枠体561とが並ぶ。圧縮機用枠体511及びクーラ用枠体561は、位置決めピン等により位置決めされた状態でボルトである固定具290により互いに着脱可能に接続される。ガス供給システム2では、長手方向、すなわち、蓄圧器収容体53の一の側部531aに沿う方向において、圧縮機用枠体511及びクーラ用枠体561の長さの和が、蓄圧器用枠体531の長さと略同じとされる。
 圧縮機用枠体511と蓄圧器用枠体531とが水平面内において長手方向と直交する幅方向(図4、5のY方向)に沿って並ぶ。圧縮機用枠体511及び蓄圧器用枠体531は、位置決めされた状態で固定具290により互いに着脱可能に接続されている。また、クーラ用枠体561と蓄圧器用枠体531とが幅方向に沿って並ぶ。クーラ用枠体561及び蓄圧器用枠体531は、固定具290により互いに着脱可能に接続されている。
 幅方向、すなわち、水平面内であって蓄圧器収容体53の一の側部531aに垂直な方向において、クーラ用枠体561及び蓄圧器用枠体531の長さの和が、圧縮機用枠体511及び蓄圧器用枠体531の長さの和と略同じとされる。
 また、クーラ用枠体561の下方に設けられた既述の制御部用枠体は、クーラ用枠体561、蓄圧器用枠体531及び圧縮機用枠体511に着脱自在に接続されている。重力方向において、図4に示す蓄圧器用枠体531の高さは、図5の圧縮機用枠体511の高さ、並びに、クーラ用枠体561及びクーラ用枠体561の下側に位置する制御部用枠体の高さの和と略同じとされる。以上のように、ガス供給システム2は、圧縮機ユニット21、蓄圧器ユニット23、クーラユニット24及び制御部29(図1参照)が一体化されることにより略直体形状となる。
 図4及び図5に示すように、受入ユニット28は、略直方体形状の受入ユニット収容体58に収容されている。図5に示すように、受入ユニット収容体58は、圧縮機ユニット21のうち長手方向について当該圧縮機ユニット21を基準としてクーラユニット24が配置された側とは反対側、すなわち、(+X)側の部位に固定部材292により着脱可能に接続されている。
 図4及び図5に示すように、ディスペンサ11は略直方体形状である。ディスペンサ11は、蓄圧器ユニット23の幅方向に平行な2つの側部のうちクーラユニット24に近い側部、すなわち、(-X)側の側部に固定部材294により着脱可能に接続されている。
 図5に示すように、水素ステーション10では、ガス流路20のうち圧縮機用枠体511と蓄圧器用枠体531との境界に位置する部位201、蓄圧器ユニット23とディスペンサ11との境界に位置する部位202及び受入ユニット収容体58と圧縮機ユニット21との境界に位置する部位203に可撓性を有する配管(以下、「撓み配管」という。)が用いられる。ガス流路20では、撓み配管の両側に位置する他の配管が水素ステーション10の各主要機器の位置ずれにより所定位置から変位してしまっても、撓み配管が撓むことにより当該位置ずれが吸収される。また、撓み配管によりガス流路20内を水素ガスが流れる際に生じる熱応力も吸収される。
 水素ステーション10を用地に設置する際には、予め工場内にて圧縮機ユニット21と、蓄圧器ユニット23と、クーラユニット24と、受入ユニット28と、ディスペンサ11と、制御部29と、がそれぞれ個別に組み立てられる。そして、これら主要機器がトラック等にて出荷され、水素ステーション10用地内にて互いに組み立てられ図5に示す状態とされる。
 水素ステーション10の各主要機器を収容する各収容体が一体化されることにより、水素ステーション10の設置面積を小さくすることができる。また、蓄圧器収容体53の一の側部531aに沿って圧縮機収容体51及びクーラ収容体56が並ぶ。すなわち、蓄圧器231と長手方向に重ならないように圧縮機ユニット21及びクーラユニット24が蓄圧器ユニット23に接続される。これにより、蓄圧器ユニット23のメンテナンス等を容易に行うことができる。
 ところで、水素ステーション10を設置可能なスペースは用地毎に異なり、図5に示す状態にて水素ステーション10を用地内に据え付けることが困難な場合がある。そこで、水素ステーション10は用地内の設置スペースに応じて形状が変更可能となっている。
 図6は変形された水素ステーション10の構成を示す図である。圧縮機収容体51と、クーラ収容体56と、受入ユニット収容体58と、が一体化されることにより第1の組立体が形成される。蓄圧器収容体53及びディスペンサ11が一体化されることにより第1の組立体とは別の第2の組立体が形成される。第1の組立体と第2の組立体とは、互いに離間した状態で配置される。圧縮機用枠体511、蓄圧器用枠体531及びクーラ用枠体561にはそれぞれ個別カバー402、403、404が設けられる。すなわち、圧縮機用枠体511及び個別カバー402により圧縮機収容体51が形成される。蓄圧器用枠体531及び個別カバー403により蓄圧器収容体53が形成される。クーラ用枠体561及び個別カバー404によりクーラ収容体56が形成される。図6では、図示の都合上、個別カバー402~404の上部の図示を省略しているが、各枠体511、531、561の上部も個別カバー402~404により覆われている。ガス流路20のうち圧縮機ユニット21と受入ユニット28との境界に位置する部位203、及び、ディスペンサ11と蓄圧器ユニット23との境界に位置する部位202には撓み配管が用いられる。
 水素ステーション10が第1の組立体と第2の組立体とに分けられることにより、全ての主要機器が一体化された状態にて水素ステーション10を設置することが困難な用地であっても、水素ステーション10を設置することが可能となる。また、車両や人の往来が多いディスペンサ11の周囲に設置される機器の数を削減することができる。
 以上、本発明の一実施形態に係るガス供給システム2を有する水素ステーション10について説明したが、水素ステーション10では、圧縮機収容体51と、蓄圧器収容体53と、クーラ収容体56と、受入ユニット収容体58と、ディスペンサ11と、制御部29と、が互いに着脱可能である。これにより、圧縮機ユニット21と、蓄圧器ユニット23と、クーラユニット24と、受入ユニット28、ディスペンサ11と、制御部29と、を互いに独立に取り扱うことが可能になる。すなわち、水素ガスをディスペンサ11に供給する過程における機器の役割区分に基づいてこれら主要機器がユニット化され、互いに独立に取り扱われる。したがって、水素ステーション10の形状を様々に変更することができ、用地内における水素ステーション10の設置の自由度を確保することができる。
 主要機器がユニット化され、且つユニット毎に収容体に収容されることにより機器単位での搬送が可能となり、水素ステーション10が完成された状態で搬送される場合に比べて搬送作業の負荷やコストが低減される。さらに、主要機器が工場内にてユニット化されて出荷されるため、用地内にて各主要機器が組み立てられる場合に比べて組み立てコストが低減される。ただし、図5に示すように主要機器が一体化された状態で使用されることが予め判っている場合には、組み上がった水素ステーション10を用地まで搬送してもよい。この場合、撓み配管が利用されることにより、水素ステーション10の搬送途上にてガス流路20に生じる振動が吸収される。
 受入ユニット収容体58と、圧縮機収容体51と、が一体化されることによりガス供給システム2の大きさを抑えることができる。また、ディスペンサ11と蓄圧器収容体53とが一体化されることにより、水素ステーション10の大きさを抑えることができる。複数の蓄圧器231が重力方向に重なって配置されることにより、ガス供給システム2の水平方向における設置スペースの増大を抑制することができる。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、様々な変更が可能である。
 例えば、図7及び図8に示されるように、クーラ収容体56は、載置部562と、一対のガイド部563と、をさらに備えてもよい。載置部562は、符号300で示される機器、つまり、蒸発部31、圧縮部32及び膨張部34、並びに、ブラインポンプ241及びブラインタンクを載置するための部材である。載置部562は、前記機器を下方から支持可能な板状に形成されている。載置部562は、クーラ用枠体561の底部から上方に離間した位置に配置されている。ただし、載置部562は、前記機器をクーラ用枠体561の底部で支持する位置(図4に示される位置)に配置されてもよい。一対のガイド部563は、載置部562がクーラ用枠体561内に位置する収容位置(図7及び図8において破線で示される位置)と、載置部562がクーラ用枠体561外に位置する露出位置(図7及び図8において二点鎖線で示される位置)と、の間で載置部562が幅方向(Y方向)に沿ってクーラ用枠体561に対して変位することができるように構成されている。例えば、各ガイド部563は、クーラ用枠体561に固定された第1ガイドレールと、載置部562に固定された第2ガイドレールと、を有する。第2ガイドレールは、載置部562の幅方向(X方向)の端部に設けられており、第1ガイドレールに沿って変位可能である。この場合、ブライン流路240は、伸縮可能な伸縮配管で構成されることが好ましい。また、冷媒流路30のうち少なくとも圧縮部32と熱交換器331との間の部位及び熱交換器331と膨張部34との間の部位も、前記伸縮配管で構成されることが好ましい。各伸縮配管は、載置部562が前記収容位置から前記露出位置に変位するのを許容するように伸びる。このようにすれば、クーラ用枠体561の周囲に配置されたカバーに形成された窓を通じて、ブライン流路240及び冷媒流路30を分断することなく載置部562を前記露出位置に位置させることができる。ただし、ブライン流路240に遮断弁を設け、この遮断弁を閉じることによってブライン流路240からのブラインの流出を防止した状態で当該ブライン流路240を分断して載置部562を前記露出位置まで引き出してもよい。このことは、冷媒流路30側についても同様である。
 また、プレクール熱交換器242はディスペンサ11の外側に設けられてもよい。この場合、プレクール熱交換器242はクーラ収容体56内に収容されてもよい。クーラユニット24では、少なくとも膨張部34、圧縮部32及び蒸発部31がクーラ収容体56に収容されるのであれば、ブラインポンプ241及びブラインタンクがクーラ収容体56の外側に配置されてもよい。また、クーラ収容体56とは別にブライン回路5の各機器を収容する収容体が設けられてもよく、当該収容体がクーラ収容体56とは独立して圧縮機ユニット21、蓄圧器ユニット23及びディスペンサ11に接続されてもよい。クーラユニット24は、ディスペンサ11に流入する直前の水素ガスを冷却してもよい。
 上記実施形態では、主要機器のうち圧縮機ユニット21、蓄圧器ユニット23及びクーラユニット24が特に大掛かりな構成となることから、圧縮機収容体51、蓄圧器収容体53及びクーラ収容体56が互いに着脱可能であることにより、用地内におけるガス供給システム2の設置の自由度を向上することができる。
 上記実施形態では、蓄圧器の数が3以外の数とされてもよい。ガス冷却部22では、水素ガスを冷却する冷却流体として水以外のものが用いられてよい。固定具290以外に結束部材などの締結部材を用いて圧縮機用枠体511、クーラ用枠体561、蓄圧器用枠体531及び制御部用枠体が互いに着脱可能に接続されてもよい。
 ガス供給システム2は車両以外のタンク搭載装置への水素ガスの充填に利用されてよい。ガス供給システム2は水素ガス以外のガスの供給に用いられてもよい。
 また、クーラユニット24は、冷凍機26のみ(すなわち、ブライン回路5なし)で構成されてもよい。
 また、ディスペンサ11は、各ユニット21,23,24から離間して配置されてもよい。
 また、各蓄圧器231は、互いに分離して配置されてもよい。
 また、圧縮機210に代えて、電気分解等により高圧の水素ガスを発生させる水素発生装置が用いられてもよい。
 ここで、上記実施形態について概説する。
 本実施形態の水素ステーションは、タンク搭載装置へガスを充填する充填設備と、前記充填設備にガスを供給するガス供給システムと、を備え、前記ガス供給システムは、ガスを圧縮する圧縮機と、前記圧縮機を収容する圧縮機収容体と、前記充填設備に流入したガス、または、流入する直前のガスを冷却するための冷凍機であって蒸発部、膨張部及び圧縮部を含むものと、前記蒸発部、前記膨張部及び前記圧縮部を収容するクーラ収容体と、を含み、前記圧縮機収容体及び前記クーラ収容体は、互いに着脱可能である。
 本水素ステーションによれば、用地内における当該ガス供給システムの設置の自由度が向上する。
 この場合において、前記ガス供給システムは、それぞれが前記圧縮機から吐出されたガスを貯留するとともに、前記充填設備にガスを送出する複数の蓄圧器と、前記複数の蓄圧器を収容する蓄圧器収容体と、をさらに備え、前記圧縮機収容体、前記蓄圧器収容体及び前記クーラ収容体は、互いに着脱可能であることが好ましい。
 このようにすれば、蓄圧器収容体を含む水素ステーションの設置の自由度が向上する。
 具体的に、前記圧縮機収容体、前記蓄圧器収容体及び前記クーラ収容体が一体化されており、前記圧縮機収容体及び前記クーラ収容体は、前記蓄圧器収容体の一の側部に沿って並ぶように配置されていることが好ましい。
 この態様では、水素ステーションの設置面積を小さくすることができる。
 また、本水素ステーションにおいて、前記ガス供給システムは、前記圧縮機に吸入されるガスを減圧しつつ外部から受け入れる受入ユニットと、前記受入ユニットを収容する受入ユニット収容体と、をさらに備え、前記圧縮機収容体及び前記受入ユニット収容体は、互いに着脱可能であることが好ましい。
 このようにすれば、圧縮機収容体と受入ユニット収容体とが一体化されることにより、水素ステーションの大きさを抑えることができる。
 また、本水素ステーションにおいて、前記複数の蓄圧器は、互いに重力方向に重なるように配置されていることが好ましい。
 このようにすれば、水平方向の設置スペースの大型化が防止される。
 また、本水素ステーションにおいて、前記ガス供給システムは、各蓄圧器に対して並列に接続されており、前記圧縮機から吐出されたガスを貯留するリザーバタンクと、前記圧縮機から各蓄圧器及び前記リザーバタンクへの前記ガスの供給を制御する制御部と、をさらに備え、前記制御部は、各蓄圧器の圧力が所定値以上のときに前記圧縮機から前記リザーバタンクへ前記ガスを供給させることが好ましい。
 この態様では、各蓄圧器の圧力が所定値(例えば蓄圧器にガスがほぼ満充填されたときの値)であるときに、リザーバタンクにガスが貯留されるので、各蓄圧器に過剰にガスが貯留されること、すなわち、各蓄圧器に過負荷が作用することが抑制される。
 また、本水素ステーションにおいて、前記クーラ収容体は、前記蒸発部、前記膨張部及び前記圧縮部を当該クーラ収容体の外部に露出させることが可能に構成されていることが好ましい。
 このようにすれば、蒸発部、膨張部及び圧縮部のメンテナンスが容易になる。
 また、本水素ステーションにおいて、前記充填設備及び前記蓄圧器収容体は、互いに着脱可能であることが好ましい。
 このようにすれば、水素ステーションの大きさを抑えることができる。
 この場合において、前記圧縮機収容体及び前記クーラ収容体が一体化することにより第1の組立体が形成されており、前記蓄圧器収容体及び前記充填設備が一体化することにより第2の組立体が形成されており、前記第1の組立体及び前記第2の組立体は、互いに離間した状態で配置されていることが好ましい。
 充填設備にガスを直接送出する蓄圧器収容体のみを充填設備に接続し、他の機器を充填設備とは別体とすることにより、タンク搭載装置や人が往来する充填設備の周りの領域に設置される機器の数を削減することができる。
 

Claims (9)

  1.  水素ステーションであって、
     タンク搭載装置へガスを充填する充填設備と、
     前記充填設備にガスを供給するガス供給システムと、
    を備え、
     前記ガス供給システムは、
     ガスを圧縮する圧縮機と、
     前記圧縮機を収容する圧縮機収容体と、
     前記充填設備に流入したガス、または、流入する直前のガスを冷却するための冷凍機であって蒸発部、膨張部及び圧縮部を含むものと、
     前記蒸発部、前記膨張部及び前記圧縮部を収容するクーラ収容体と、
    を含み、
     前記圧縮機収容体及び前記クーラ収容体は、互いに着脱可能である、水素ステーション。
  2.  請求項1に記載の水素ステーションにおいて、
     前記ガス供給システムは、
     それぞれが前記圧縮機から吐出されたガスを貯留するとともに、前記充填設備にガスを送出する複数の蓄圧器と、
     前記複数の蓄圧器を収容する蓄圧器収容体と、
    をさらに備え、
     前記圧縮機収容体、前記蓄圧器収容体及び前記クーラ収容体は、互いに着脱可能である、水素ステーション。
  3.  請求項2に記載の水素ステーションにおいて、
     前記圧縮機収容体、前記蓄圧器収容体及び前記クーラ収容体が一体化されており、
     前記圧縮機収容体及び前記クーラ収容体は、前記蓄圧器収容体の一の側部に沿って並ぶように配置されている、水素ステーション。
  4.  請求項1に記載の水素ステーションにおいて、
     前記ガス供給システムは、
     前記圧縮機に吸入されるガスを減圧しつつ外部から受け入れる受入ユニットと、
     前記受入ユニットを収容する受入ユニット収容体と、
    をさらに備え、
     前記圧縮機収容体及び前記受入ユニット収容体は、互いに着脱可能である、水素ステーション。
  5.  請求項2に記載の水素ステーションにおいて、
     前記複数の蓄圧器は、互いに重力方向に重なるように配置されている、水素ステーション。
  6.  請求項2に記載の水素ステーションにおいて、
     前記ガス供給システムは、
     各蓄圧器に対して並列に接続されており、前記圧縮機から吐出されたガスを貯留するリザーバタンクと、
     前記圧縮機から各蓄圧器及び前記リザーバタンクへの前記ガスの供給を制御する制御部と、
    をさらに備え、
     前記制御部は、各蓄圧器の圧力が所定値以上のときに前記圧縮機から前記リザーバタンクへ前記ガスを供給させる、水素ステーション。
  7.  請求項1に記載の水素ステーションにおいて、
     前記クーラ収容体は、前記蒸発部、前記膨張部及び前記圧縮部を当該クーラ収容体の外部に露出させることが可能に構成されている、水素ステーション。
  8.  請求項1に記載の水素ステーションにおいて、
     前記充填設備及び前記蓄圧器収容体は、互いに着脱可能である、水素ステーション。
  9.  請求項8に記載の水素ステーションにおいて、
     前記圧縮機収容体及び前記クーラ収容体が一体化することにより第1の組立体が形成されており、
     前記蓄圧器収容体及び前記充填設備が一体化することにより第2の組立体が形成されており、
     前記第1の組立体及び前記第2の組立体は、互いに離間した状態で配置されている、水素ステーション。
     
PCT/JP2015/076324 2014-10-31 2015-09-16 水素ステーション WO2016067780A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15856051.6A EP3217064A4 (en) 2014-10-31 2015-09-16 Hydrogen station
CA2965772A CA2965772C (en) 2014-10-31 2015-09-16 Hydrogen station
US15/520,379 US10317011B2 (en) 2014-10-31 2015-09-16 Hydrogen station
CN201580059302.9A CN107110430B (zh) 2014-10-31 2015-09-16 加氢站
KR1020177012396A KR101970904B1 (ko) 2014-10-31 2015-09-16 수소 스테이션

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014222414 2014-10-31
JP2014-222414 2014-10-31
JP2015-080057 2015-04-09
JP2015080057A JP6473033B2 (ja) 2014-10-31 2015-04-09 ガス供給システムおよび水素ステーション

Publications (1)

Publication Number Publication Date
WO2016067780A1 true WO2016067780A1 (ja) 2016-05-06

Family

ID=55857126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076324 WO2016067780A1 (ja) 2014-10-31 2015-09-16 水素ステーション

Country Status (1)

Country Link
WO (1) WO2016067780A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018104983A1 (en) 2016-12-06 2018-06-14 Air Liquide Japan Ltd. Hydrogen refueling system
WO2018104982A1 (en) 2016-12-06 2018-06-14 Air Liquide Japan Ltd. Hydrogen refueling system
EP3480459A1 (en) * 2017-11-02 2019-05-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Gas supplying apparatus
EP3851316A1 (de) * 2020-01-17 2021-07-21 H2 Energy AG System zum auftanken von fahrzeugen mit wasserstoff-elektrischem antrieb und zum aufladen von fahrzeugen mit batterie-elektrischem antrieb

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024061A (ja) * 2003-07-02 2005-01-27 Air Water Inc 移動式水素ステーションおよびその運転方法
JP2009236270A (ja) * 2008-03-28 2009-10-15 Sinanen Co Ltd 水素供給ステーションおよび水素供給方法
JP2013024287A (ja) * 2011-07-19 2013-02-04 Taiyo Nippon Sanso Corp 水素ガス充填装置
JP2013167288A (ja) * 2012-02-15 2013-08-29 Taiyo Nippon Sanso Corp 水素ステーション
JP2015158213A (ja) * 2014-02-21 2015-09-03 株式会社神戸製鋼所 ガス供給システムおよび水素ステーション

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024061A (ja) * 2003-07-02 2005-01-27 Air Water Inc 移動式水素ステーションおよびその運転方法
JP2009236270A (ja) * 2008-03-28 2009-10-15 Sinanen Co Ltd 水素供給ステーションおよび水素供給方法
JP2013024287A (ja) * 2011-07-19 2013-02-04 Taiyo Nippon Sanso Corp 水素ガス充填装置
JP2013167288A (ja) * 2012-02-15 2013-08-29 Taiyo Nippon Sanso Corp 水素ステーション
JP2015158213A (ja) * 2014-02-21 2015-09-03 株式会社神戸製鋼所 ガス供給システムおよび水素ステーション

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3217064A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079067B2 (en) 2016-12-06 2021-08-03 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Hydrogen refueling system
WO2018104982A1 (en) 2016-12-06 2018-06-14 Air Liquide Japan Ltd. Hydrogen refueling system
CN109964074B (zh) * 2016-12-06 2021-10-26 乔治洛德方法研究和开发液化空气有限公司 氢气加注系统
WO2018104983A1 (en) 2016-12-06 2018-06-14 Air Liquide Japan Ltd. Hydrogen refueling system
CN109964074A (zh) * 2016-12-06 2019-07-02 乔治洛德方法研究和开发液化空气有限公司 氢气加注系统
CN110036231A (zh) * 2016-12-06 2019-07-19 乔治洛德方法研究和开发液化空气有限公司 加氢系统
JP2019535981A (ja) * 2016-12-06 2019-12-12 日本エア・リキード株式会社 水素燃料補給システム
JP2020514629A (ja) * 2016-12-06 2020-05-21 日本エア・リキード合同会社 水素燃料補給システム
US11079069B2 (en) 2016-12-06 2021-08-03 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Hydrogen refueling system
KR20190050281A (ko) * 2017-11-02 2019-05-10 가부시키가이샤 고베 세이코쇼 가스 공급 장치
KR102130606B1 (ko) 2017-11-02 2020-07-06 가부시키가이샤 고베 세이코쇼 가스 공급 장치
EP3480459A1 (en) * 2017-11-02 2019-05-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Gas supplying apparatus
EP3851316A1 (de) * 2020-01-17 2021-07-21 H2 Energy AG System zum auftanken von fahrzeugen mit wasserstoff-elektrischem antrieb und zum aufladen von fahrzeugen mit batterie-elektrischem antrieb

Similar Documents

Publication Publication Date Title
JP6473033B2 (ja) ガス供給システムおよび水素ステーション
US10801671B2 (en) Gas supply system and hydrogen station
WO2016067780A1 (ja) 水素ステーション
JP6276060B2 (ja) ガス供給システムおよび水素ステーション
JP6276160B2 (ja) ガス供給システムおよび水素ステーション
WO2015125585A1 (ja) ガス供給システムおよび水素ステーション
KR102130606B1 (ko) 가스 공급 장치
US10704284B2 (en) Combustible gas supply unit and barrier
JP2013167288A (ja) 水素ステーション
JP6518291B2 (ja) ガス供給システムおよび水素ステーション
JP7121519B2 (ja) 水素ステーションパッケージユニットと簡易型水素ステーション
TWI568638B (zh) Installation of refrigerators for foodstuffs on ships and installation of refrigerators for food depots on ships
CN109307149B (zh) 可燃性气体供给组件以及加氢站
JP7121871B2 (ja) 水素ステーションパッケージユニットと簡易型水素ステーション
JP2019090501A (ja) ガス供給装置
JP2001027485A (ja) 冷却水の熱交換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856051

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15520379

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2965772

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015856051

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177012396

Country of ref document: KR

Kind code of ref document: A