WO2016067675A1 - Phase noise compensation receiver - Google Patents

Phase noise compensation receiver Download PDF

Info

Publication number
WO2016067675A1
WO2016067675A1 PCT/JP2015/068614 JP2015068614W WO2016067675A1 WO 2016067675 A1 WO2016067675 A1 WO 2016067675A1 JP 2015068614 W JP2015068614 W JP 2015068614W WO 2016067675 A1 WO2016067675 A1 WO 2016067675A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase noise
noise compensation
signal
compensation coefficient
receiver
Prior art date
Application number
PCT/JP2015/068614
Other languages
French (fr)
Japanese (ja)
Inventor
ザ カン タン
純道 荒木
裕淵 張
光平 松本
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Publication of WO2016067675A1 publication Critical patent/WO2016067675A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes

Definitions

  • the present invention relates to a phase noise compensation receiver that compensates for phase noise caused by a local oscillator in a receiver in a millimeter wave band wireless communication system employing OFDM.
  • IEEE802.11ad is established as a standard for a wireless LAN system using a radio frequency band of 60 GHz, and research on antennas, transmitter / receiver circuits, baseband signal processing, etc. for realizing the wireless LAN system has been conducted all over the world. It is done in
  • the frequency band from 60 GHz to 68 GHz is divided into four channels, and it is considered to use a spatial multiplexing technique called multi-user MIMO (Multiple-Input-Multiple-Output) in each channel.
  • MIMO Multiple-Input-Multiple-Output
  • This spatial multiplexing technology theoretically accommodates 16 users in the entire system and can provide a throughput of 6 Gbps (Gigabit per second) per user.
  • Terahertz waves terahertz electromagnetic waves having a frequency higher than that of millimeter waves
  • IGthz IEEE802.15WPANTM Terahertz Interest Group
  • CMOS circuits that can be mass-produced can handle frequencies in the terahertz band and millimeter wave band, it is possible to manufacture devices at low cost.
  • a local oscillator in a millimeter wave / terahertz wave transmitter / receiver manufactured by Si CMOS integrated circuit technology has a problem that it has a large phase noise. This large phase noise is caused by the frequency fluctuation of the carrier wave (carrier) output from the local oscillator.
  • OFDM orthogonal frequency division multiplexing
  • phase noise compensation technology that reduces the effects of phase noise (inter-subcarrier interference and subcarrier phase rotation caused by phase noise) is required, so studies of OFDM receivers having a phase noise compensation function are actively conducted. Has been done.
  • digital signal processing for performing phase noise compensation is roughly divided into those using linear processing and those using nonlinear processing.
  • the former indicates that the input signal is subjected to linear conversion, while the latter indicates that the input signal is subjected to processing other than linear conversion (for example, processing including reproduction modulation and feedback loop).
  • phase noise compensation techniques are based on nonlinear processing (hereinafter also simply referred to as “nonlinear phase noise compensation techniques”).
  • FIG. 1 shows a configuration example (see Non-Patent Document 1) of an OFDM receiver using a conventional nonlinear phase noise compensation technique.
  • an OFDM receiver using a conventional nonlinear phase noise compensation technique includes an antenna 10, an IQ demodulation circuit 11, an A / D conversion circuit 12, a CP removal circuit 13, and a decision pointing.
  • Type phase noise estimator 14, phase noise compensation circuit 15a, channel estimation circuit 15, FFT circuit 16, decision-oriented channel estimator 17, channel equalizer 18, CP inserter 19, and CPE compensation 20, CPE compensation coefficient estimation circuit 21, QAM demodulator 22, OFDM modulation signal generator 23, deinterleaver 24, interleaver 25, error correction decoder 26, error correction encoder 27, , A switch 28 and a CRC decoder 29 are provided.
  • the portions surrounded by broken lines are related to the conventional nonlinear phase noise compensation technique.
  • the processing procedure in the OFDM receiver using the conventional nonlinear phase noise compensation technique shown in FIG. 1 can be divided into two stages: initial processing and iterative processing.
  • a signal received from the antenna 10 is converted into a digital complex baseband signal through an IQ demodulation circuit 11 and an A / D conversion circuit 12.
  • channel estimation is performed by the channel estimation circuit 15 using only the preamble.
  • a cyclic prefix (CP: Cyclic Prefix) removal is performed by the CP removal circuit 13 on a signal that is not a preamble, that is, a data signal.
  • Initial processing is first performed on the digital complex baseband signal from which the cyclic prefix has been removed.
  • channel equalization by the channel equalizer 18, CPE compensation by the CPE compensator 20, QAM demodulation by the QAM demodulator 22, deinterleaving by the deinterleaver 24, and error correction decoding by the error correction decoder 26 are performed.
  • the output signal of the error correction decoder 26 is input to a CRC decoder (cyclic redundancy check decoder) 29.
  • CRC decoder 29 cyclic redundancy check decoder
  • the error correction encoder 27 performs error correction coding on the output signal of the error correction decoder 26 when an error is detected by the CRC decoder 29, interleaving by the interleaver 25, and OFDM modulation signal generator 23.
  • a plurality of processes are performed, such as OFDM modulation by, and CP insertion by the CP inserter 19, and as a result, a transmission signal replica is generated.
  • the decision-directed phase noise estimator 14 estimates phase noise using the generated transmission signal replica and the received signal converted into the digital complex baseband signal, and the estimation result (estimated phase noise). ) And the phase noise is compensated by the phase noise compensation circuit 15a based on the output estimation result.
  • the decision-oriented channel estimator 17 performs channel estimation using the received signal from which the phase noise has been removed and the transmitted signal replica.
  • the phase noise can be removed by repeating the above series of processing.
  • the conventional nonlinear phase noise compensation technique has a drawback that the calculation amount is enormous as a trade-off while showing good phase noise compensation performance.
  • it is necessary to perform complicated processes such as phase noise processing with low delay in addition to channel estimation and frame processing in the baseband processing in the receiver.
  • phase noise compensation technique In order to efficiently realize millimeter-wave band broadband signal transmission, a phase noise compensation technique with a small amount of calculation and sufficient phase noise compensation performance is indispensable.
  • the present invention has been made under the circumstances described above, and an object of the present invention is to solve the problem that the amount of calculation associated with signal processing, which exists in the conventional nonlinear phase noise compensation technology, is enormous. Therefore, by using linear signal processing in the frequency domain, a phase noise compensation receiver is realized that realizes phase noise compensation technology with a smaller amount of calculation than before, and can realize high-reliability and high-speed signal transmission. There is to do.
  • the present invention relates to a phase noise compensation receiver for receiving an orthogonal frequency division multiplexing (OFDM) signal.
  • the above object of the present invention is to estimate a phase noise compensation coefficient using a known pilot signal and replica signal included in an OFDM symbol.
  • the replica signal includes the phase noise compensation coefficient, a pilot signal after channel equalization which is a frequency domain signal, and a frequency domain signal adjacent to the pilot signal after channel equalization.
  • the phase noise compensation coefficient estimation circuit estimates the phase noise compensation coefficient so that a mean square error between the replica signal and the pilot signal is minimized, or the phase noise compensation coefficient estimation circuit Then, based on the replica signal and the pilot signal, the phase noise compensation coefficient using the MMSE method, the LMS method, or the RLS method By estimating is more effectively achieved.
  • phase noise compensation receiver compensates for phase noise using linear signal processing in the frequency domain (ie, the phase of the subcarrier signal due to local oscillator phase noise in the transmitter and receiver).
  • phase noise compensation technology has been realized with a much smaller amount of computation than before, so calculation of the baseband part of the receiver In addition to reducing the load, it is possible to solve the reception processing delay problem that occurs when the conventional nonlinear phase noise compensation technique is used.
  • the frequency domain signal processing in the baseband part of the receiver uses only linear transformation without using iterative processing, thereby enabling phase noise compensation with a small amount of calculation. As a result, it is possible to realize an OFDM receiver with low power consumption and no reception processing delay.
  • phase noise compensation receiver of the present invention after the equalization of three adjacent channels using the pilot signal included in the OFDM symbol and the phase noise compensation coefficient estimated based on the “replica signal” of the present invention.
  • the received subcarrier signals ie, by summing up the received subcarrier signals after equalization of three adjacent channels after being weighted by the phase noise compensation coefficient. Since the local oscillator phase noise (phase rotation and inter-carrier interference caused by local oscillator phase noise in the transmitter and receiver) is compensated, transmission performed in the receiver by the conventional nonlinear phase noise compensation technique Since it does not perform repetitive signal processing with signal replica generation, the phase is much smaller than conventional nonlinear phase noise compensation technology. It is possible to realize a sound compensation technology.
  • the present invention reduces phase noise using linear signal processing (frequency domain signal processing in the receiver baseband unit) in the frequency domain.
  • the present invention relates to a phase noise compensation receiver that realizes the phase noise compensation technique with a much smaller calculation amount than the conventional nonlinear phase noise compensation technique.
  • phase noise compensation coefficient of the present invention for compensating for phase noise is learned using a known signal sequence called pilot (hereinafter also simply referred to as “pilot signal”), and the learned phase noise compensation coefficient is learned. Is used to compensate for phase noise caused by the local oscillator included in the received signal (hereinafter also simply referred to as “local oscillator phase noise compensation” or “phase noise compensation”).
  • phase noise compensation coefficient In the present invention, in learning of a phase noise compensation coefficient of the present invention (hereinafter also referred to simply as “phase noise compensation coefficient”), which will be described later, the square error between the “replica signal” referred to in the present invention and a known pilot signal. Is used as a norm.
  • the “replica signal” in the present invention refers to the phase noise compensation coefficient of the present invention, the “pilot signal after channel equalization” which is a frequency domain signal, and the “pilot signal after channel equalization”. It means a signal generated based on two adjacent “received signals after channel equalization” which are frequency domain signals.
  • two “received signals after channel equalization” adjacent to “pilot signals after channel equalization” may be either known or unknown.
  • the “replica signal” referred to in the present invention is simply referred to as “replica signal”.
  • the millimeter wave band wireless communication system employing OFDM attention is paid to the feature of the millimeter wave band channel in which the channel transfer functions of adjacent subcarriers are substantially equal, and it is caused by the local oscillator in the millimeter wave band transceiver.
  • the “statistic about phase noise of the millimeter wave band transceiver” referred to in the present invention is expressed by Equation 8 described later. Means.
  • phase noise compensation technique based on linear processing (hereinafter also simply referred to as “linear phase noise compensation technique”) with a small amount of calculation is realized by utilizing such a characteristic unique to the millimeter wave band.
  • the focus of the present invention is that “the channel transfer function of adjacent subcarriers is almost equal in a millimeter wave band channel” and “the statistic regarding the phase noise of the millimeter wave band transceiver is the delay time of the channel. It is almost constant between degrees. "
  • phase noise at the transmitter ie the phase noise due to the local oscillator in the transmitter
  • phase noise at the receiver ie the phase noise due to the local oscillator in the receiver
  • channel impulse response It expresses. However, Represents the number of paths of the channel (propagation path).
  • j represents an imaginary unit, that is, the square of j is equal to -1.
  • a cyclic subcarrier signal (frequency domain signal) for each subcarrier is converted into an OFDM modulated signal (time domain signal) obtained by transforming by inverse fast Fourier transform (IFFT).
  • IFFT inverse fast Fourier transform
  • a prefix (CP) is added.
  • the OFDM modulated signal (time domain signal) after CP addition can be expressed by the following formula 2.
  • the OFDM-modulated signal (complex baseband signal) after CP addition represented by Equation 2 is D / A converted by the D / A converter circuit, then modulated by the IQ modulator circuit, and further, a local oscillator in the transmitter Is converted into a millimeter wave signal.
  • the millimeter wave signal is affected by the phase noise caused by the local oscillator in the transmitter and causes phase rotation.
  • the millimeter wave signal affected by the phase noise caused by the local oscillator in the transmitter can be expressed by the following equation (3).
  • the millimeter wave signal transmitted from the transmitter propagates through space and reaches the receiving antenna. At that time, like the transmitter, the received signal is affected by phase noise caused by a local oscillator in the receiver.
  • the received signal affected by the phase noise caused by the local oscillator in the receiver can be expressed by the following equation (4).
  • y (k) represents the received signal (time domain signal) at the k-th sampling time, which is affected by the phase noise caused by the local oscillator in the receiver. Also, Represents the phase noise due to the local oscillator in the receiver at the k th sampling time. Further, n (k) represents noise at the kth sampling time.
  • the received signal (time domain signal) affected by the phase noise caused by the local oscillator in the receiver expressed by the above equation 4 is demodulated by the IQ demodulator circuit, and then the A / D converter circuit.
  • a / D conversion is performed to convert the signal into a digital complex baseband signal, and the cyclic prefix (CP) is deleted.
  • the received signal after CP deletion (digital complex baseband signal after CP deletion) is expressed by the following formula 5.
  • the received signal after CP deletion represented by Equation 5 (hereinafter also simply referred to as “OFDM signal after CP deletion”) is converted into a received subcarrier signal (frequency domain signal) by fast Fourier transform (FFT). .
  • FFT fast Fourier transform
  • the conversion from the OFDM signal after CP deletion to the received subcarrier signal can be expressed by the following equation (6).
  • Y (m) represents the received subcarrier signal of the mth subcarrier and is a frequency domain signal.
  • N (m) represents the Fourier transform of additive white Gaussian noise (AWGN).
  • AWGN additive white Gaussian noise
  • Equation 7 represents the influence of phase noise caused by the local oscillators of the transmitter and the receiver on the OFDM system. That is, the first term on the right side of Equation 7 is the local in the transmitter and the receiver. This represents the phase rotation of the received signal due to the oscillator phase noise, and the second term on the right side of Equation 7 represents the interference from other subcarrier signals.
  • CPE Common Phase Error
  • ICI Inter carrier Interference
  • Received subcarrier signal before channel equalization of This is a complex number representing the degree of interference received from the received subcarrier signal before channel equalization of the subcarrier. The larger the absolute value of, Received subcarrier signal before channel equalization of This indicates that the amount of interference given to the received subcarrier signal before channel equalization of the subcarrier is large. Is 0 Received subcarrier signal before channel equalization of This indicates that no interference is given to the received subcarrier signal before channel equalization of the subcarrier.
  • Equation 9 is a statistic regarding the phase noise of the millimeter wave band transceiver. Is substantially constant for about the delay time of the channel.
  • the term on the right side of Equation 9 is Received subcarrier signal before channel equalization of Is a complex number representing the degree of interference received from the received subcarrier signal before channel equalization of the subcarrier (hereinafter, “complex number representing the degree of interference” is also simply referred to as “interference amount”).
  • equation (9) the term on the left side of equation (9) includes the radio channel delay time d, whereas the term on the right side of equation (9) does not include the radio channel delay time d.
  • Received subcarrier signal before channel equalization of It can be said that the amount of interference received from the received subcarrier signal before channel equalization of the subcarriers (that is, the statistic regarding the phase noise of the millimeter wave band transceiver) is independent of the channel delay time d. Furthermore, based on Equation 9, Received subcarrier signal before channel equalization of It can be said that the amount of interference received from the received subcarrier signal before channel equalization of the subcarriers is independent of the parameters of the radio channel. (2) Explanation of the point of interest The received subcarrier signal after channel equalization in the receiver baseband can be expressed by the following equation (10).
  • the millimeter wave band channel has a relatively small delay wave. Therefore, the frequency dependence of the channel is reduced, and the channel transfer functions of adjacent subcarriers can be regarded as being substantially equal. That is, the following formula 11 is established.
  • H (m ⁇ 1) represents the channel transfer function of the (m ⁇ 1) th subcarrier
  • H (m) represents the channel transfer function of the mth subcarrier
  • H (m + 1) is ( It represents the channel transfer function of the (m + 1) th subcarrier.
  • ICI is dominant between adjacent subcarriers.
  • Equation 12 the “received subcarrier signal after channel equalization of the m-th subcarrier expressed by the above equation 10”.
  • Equation 13 a complex coefficient that does not depend on a certain subcarrier number m And the following Equation 13 is established.
  • complex coefficients Does not depend on the subcarrier number m, the above complex coefficient is learned as the phase noise compensation coefficient of the present invention by utilizing the pilot signal, and the learned phase noise compensation coefficient and the received subcarrier after channel equalization are used.
  • the focus is on the ability to compensate for local oscillator phase noise contained in the received signal based on the signal.
  • the focus of the present invention is (A1) In the millimeter waveband channel, the channel transfer functions of adjacent subcarriers (that is, three adjacent subcarriers) can be regarded as equal.
  • A2 The phase noise can be compensated by synthesizing three adjacent received subcarrier signals after channel equalization in the receiver baseband based on the above Equation 13 (that is, the phase noise in the transmitter and the receiver).
  • phase noise compensation circuit 140 is a diagram for explaining the phase noise compensation circuit 140 and the phase noise compensation coefficient estimation circuit 145 that constitute the principal part of the present invention.
  • the main part of the present invention includes a phase noise compensation circuit 140 and a phase noise compensation coefficient estimation circuit 145, which are indicated by a two-dot chain line in FIG.
  • the phase noise compensation coefficient estimation circuit 145 estimates (learns) the phase noise compensation coefficient using the pilot signal and the replica signal, and outputs the estimated (learned) phase noise compensation coefficient to the phase noise compensation circuit 140. Like to do.
  • phase noise compensation coefficient estimation circuit 145 estimates the phase noise compensation coefficient so that the mean square error between the replica signal and the pilot signal is minimized.
  • phase noise compensation coefficient estimation circuit 145 estimates the phase noise compensation coefficient, for example, the MMSE (Minimum Mean Squared Error) method, the LMS (Least Mean Square) method or the RLS (Recursive Least-Squares) method.
  • MMSE Minimum Mean Squared Error
  • LMS Least Mean Square
  • RLS Recursive Least-Squares
  • Known methods such as the method can be used.
  • the phase noise compensation circuit 140 uses the phase noise compensation coefficient output from the phase noise compensation coefficient estimation circuit 145 and the received subcarrier signal after channel equalization, based on Equation 13 above, By synthesizing the received subcarrier signal after channel equalization, the local oscillator phase noise included in the received signal is compensated, and a compensation result (that is, a received signal subjected to phase noise compensation) is output.
  • the compensation result (received signal subjected to phase noise compensation) output from the phase noise compensation circuit 140 includes three adjacent received subcarrier signals after channel equalization in the receiver baseband, and a phase noise compensation coefficient estimation circuit. This is a signal obtained by synthesizing the phase noise compensation coefficient estimated at 145 based on the above equation (13).
  • phase noise compensation coefficient estimation process for estimating the phase noise compensation coefficient performed by the phase noise compensation coefficient estimation circuit 145 will be described.
  • phase noise compensation coefficient estimation processing when the MMSE method is used when the phase noise compensation coefficient estimation circuit 145 estimates the phase noise compensation coefficient will be described.
  • phase noise compensation coefficient is calculated based on the following equation (14). Is estimated.
  • phase noise compensation coefficient is It is.
  • I a pilot signal included per OFDM symbol. Also, Represents the subcarrier index of the pilot subcarrier.
  • I a matrix whose elements are a pilot signal after channel equalization and a received signal (frequency domain signal) after channel equalization adjacent to the pilot signal after channel equalization. Represents the complex conjugate transpose of.
  • phase noise compensation coefficient estimation circuit 145 uses the MMSE method to estimate the phase noise compensation coefficient
  • a replica signal described later is used. Is not explicitly generated.
  • the phase noise compensation coefficient estimated by the above-described MMSE method that is, based on Equation 14 above
  • Equation 17 below Use the replica signal And replica signal It is mathematically possible that the mean square error of the pilot signal is minimized.
  • the phase noise compensation coefficient is based on the following LMS algorithm.
  • LMS algorithm Represents a replica signal.
  • p i represents the subcarrier number of the pilot signal.
  • I a pilot signal after channel equalization.
  • FIG. 3 is a block diagram showing a configuration example of an OFDM receiver using the phase noise compensation technique of the present invention.
  • the reception operation of the OFDM receiver using the phase noise compensation technique of the present invention shown in FIG. 3 (also simply referred to as “phase noise compensation receiver of the present invention”) will be described below.
  • the OFDM receiver using the phase noise compensation technique of the present invention includes an antenna 100, an IQ demodulation circuit 110, a local oscillator 111, an A / D conversion circuit 115, and a synchronization circuit 117.
  • a CP elimination circuit 120, an FFT circuit 125, a channel equalizer 130, a channel estimation circuit 135, a phase noise compensation circuit 140, a phase noise compensation coefficient estimation circuit 145, a QAM demodulator 150, A leaver 155 and an error correction decoder 160 are provided.
  • the part indicated by the two-dot chain line in FIG. 3, that is, the phase noise compensation circuit 140 and the phase noise compensation coefficient estimation circuit 145 constitute the main part of the present invention.
  • the antenna 100 is adapted to receive a burst OFDM modulated signal that is OFDM modulated on the transmission side.
  • the IQ demodulation circuit 110 refers to the carrier signal input from the local oscillator 111 and analog-complexes a burst OFDM modulated signal (hereinafter also simply referred to as “received OFDM modulated signal”) received via the antenna 100. Convert to baseband signal and output.
  • the analog complex baseband signal output from the IQ demodulation circuit 110 is affected by the phase noise caused by the local oscillator 111 in the OFDM receiver, it is a received signal including the phase noise.
  • the analog complex baseband signal output from the IQ demodulation circuit 110 is also simply referred to as “received signal including phase noise”.
  • the A / D conversion circuit 115 as sample quantization means performs sample quantization on the analog complex baseband signal output from the IQ demodulation circuit 110.
  • the synchronization circuit 117 performs timing synchronization processing and carrier frequency synchronization processing of the baseband signal sampled and quantized by the A / D conversion circuit 115 (hereinafter also simply referred to as “digital complex baseband signal”).
  • the digital complex baseband signal is output.
  • the synchronization circuit 117 when receiving the “timing / carrier frequency synchronization preamble”, the synchronization circuit 117 receives the digital complex baseband signal after the sample quantization output from the A / D conversion circuit 115, and receives the carrier frequency synchronization and symbol. Timing synchronization is established.
  • the CP removal circuit 120 deletes the CP from the digital complex baseband signal after the synchronization process output from the synchronization circuit 117, and deletes the CP. Also referred to as “digital complex baseband signal after CP removal”).
  • the FFT circuit 125 performs fast Fourier transform (FFT) on the digital complex baseband signal after CP deletion output from the CP removal circuit 120, thereby converting the received OFDM modulation signal into a signal for each subcarrier (hereinafter simply referred to as “reception”). Also referred to as “subcarrier signal”.
  • FFT fast Fourier transform
  • the channel estimation circuit 135 estimates the channel transfer function using the reception subcarrier signal separated for each subcarrier output from the FFT circuit 125 when the “propagation path preamble” is received.
  • the estimated channel transfer function is output.
  • the channel equalizer 130 equalizes the received subcarrier signal output from the FFT circuit 125 using the estimated channel transfer function, and outputs the received subcarrier signal after channel equalization.
  • the phase noise compensation coefficient estimation circuit 145 uses the “received subcarrier signal after channel equalization” and “pilot signal after channel equalization” output from the channel equalizer 130 to generate a phase noise compensation coefficient. And the learned phase noise compensation coefficient is output.
  • the phase noise compensation circuit 140 uses the “phase noise compensation coefficient” output from the phase noise compensation coefficient estimation circuit 145 and the “received subcarrier signal after channel equalization” output from the channel equalizer 130, Compensate the phase noise included in the received signal, and the phase noise compensation result, that is, the received signal with phase noise compensation (hereinafter referred to as “received signal with phase noise compensation”) is simply “received signal after phase noise compensation”. Is also output.).
  • the QAM demodulator 150 demodulates the phase noise compensation result (received signal after phase noise compensation) output from the phase noise compensation circuit 140 for each subcarrier, and the demodulated signal (demodulated phase noise compensation).
  • the later received signal) is output.
  • the deinterleaver 155 deinterleaves the demodulated signal output from the QAM demodulator 150, and outputs a deinterleaved signal (deinterleaved demodulated signal).
  • the error correction decoder 160 performs error correction decoding on the deinterleaved signal output from the deinterleaver 155, and the signal after error correction decoding (the signal after error correction decoded deinterleaving) Is output. This completes the reception operation of the phase noise compensation receiver of the present invention shown in FIG.
  • FIG. 4 is a diagram showing a configuration example of a format of a transmission OFDM modulation signal (time domain signal) in the present invention.
  • the transmission OFDM modulation signal includes “timing / carrier frequency synchronization preamble”, “propagation preamble (also referred to as channel estimation preamble)” and “data”. It is roughly divided into three parts.
  • Timing / carrier frequency synchronization preamble and “propagation path preamble” are information shared by the OFDM transmitter and the OFDM receiver, and are called known signal sequences.
  • the “timing / carrier frequency synchronization preamble” has a function for detecting the start timing of the received OFDM modulated signal (time domain signal) in the OFDM receiver.
  • the “propagation path preamble” provides information for estimating a channel (also referred to as “radio channel” or “propagation path”) in the channel estimation circuit 135 of the OFDM receiver.
  • data is composed of a plurality of OFDM symbols.
  • Each OFDM symbol is composed of a number of signals per subcarrier equal to the number of FFT / IFFT points.
  • some subcarrier signals are known signals in transmission and reception, and are called pilot signals to distinguish them from preambles. As described above, this pilot signal provides information for estimating the phase noise compensation coefficient in the present invention.
  • this pilot signal provides information for estimating the phase noise compensation coefficient in the present invention.
  • FIG. 5 is a graph showing a comparison of the calculation amount between the conventional method and the present invention.
  • the number of multiplications between real numbers is used as the calculation amount.
  • FIG. 6 is a graph showing the result of comparing the bit error rate of the conventional method and the present invention by numerical simulation.
  • FIG. 7 is a graph showing the result of comparing the packet error rate of the conventional method and the present invention by numerical calculation simulation. The conditions for numerical calculation simulation are shown in Table 1 below.
  • the amount of calculation spent for phase noise compensation is 30 minutes of the conventional method. It can be significantly reduced to about 1.
  • the number of multiplications between real numbers related to phase noise compensation was obtained, and the obtained number of multiplications between real numbers was as shown in FIG.
  • the amount of calculation related to the phase noise compensation technique of the present invention the number of multiplications between real numbers in FIG. 5
  • the case where the MMSE method or the LMS method is used in the phase noise compensation coefficient estimation circuit 145 was verified.
  • the number of multiplications between real numbers one multiplication between complex numbers is calculated as four multiplications between real numbers. The larger the value on the vertical axis of the graph of FIG. 5, the greater the amount of calculation and the longer the calculation time. As shown in FIG.
  • the number of multiplications between real numbers related to phase noise compensation is 211968, whereas in the present invention, the phase noise compensation coefficient estimation circuit 145 uses the MMSE method.
  • the number of multiplications between real numbers for phase noise compensation is 7488.
  • the number of multiplications between real numbers related to phase noise compensation is 6624 times.
  • the calculation amount related to the phase noise compensation technique of the present invention (the calculation amount related to the phase noise compensation coefficient estimation circuit 145) is the same as the conventional method. Is about 1/30 of the calculation amount. From this comparison result, it is clear that the amount of calculation spent for phase noise compensation can be greatly reduced by using the phase noise compensation technique of the present invention.
  • FIG. 6 the bit error rate characteristics in the conventional method and the present invention are compared.
  • the horizontal axis in FIG. 6 is the signal-to-noise ratio (SNR), and the vertical axis in FIG. 6 is the bit error rate (BER).
  • SNR signal-to-noise ratio
  • BER bit error rate
  • the smaller the value of BER, the better. From the simulation results in FIG. 6, it can be seen that the present invention requires a received power that is about 2 dB (@ BER 10 ⁇ 4 ) larger than the conventional method using nonlinear processing in order to obtain the same bit error rate.
  • no compensation in FIG. 6 represents a bit error rate characteristic when phase noise compensation is not performed in the receiver.
  • the present invention and the conventional approach show a lower bit error rate at any signal to noise ratio (SNR) than without compensation.
  • SNR signal to noise ratio
  • FIG. 7 compares the packet error rate (PER) characteristics of the conventional method and the present invention.
  • the horizontal axis in FIG. 7 is the signal-to-noise ratio (SNR), and the vertical axis in FIG. 7 is the packet error rate.
  • SNR signal-to-noise ratio
  • no compensation in FIG. 7 represents a packet error rate characteristic when the phase noise compensation is not performed in the receiver.
  • the present invention and the prior art show a lower packet error rate at any signal-to-noise ratio (SNR) than without compensation.
  • SNR signal-to-noise ratio
  • phase noise compensation receiver of the present invention has been described above, but the specific configuration of the phase noise compensation receiver of the present invention is not limited to the above-described embodiment, and the gist of the present invention (the focus of the present invention) Various modifications can be made without departing from the scope of the present invention.

Abstract

[Problem] In order to solve a problem of large amount of signal processing calculation existing in the conventional nonlinear phase noise compensation techniques, provided is a phase noise compensation receiver wherein a linear signal processing is used in the frequency domain, thereby achieving a phase noise compensation technique that uses a smaller calculation amount than the conventional techniques and also achieving a highly reliable high-speed signal transfer. [Solution] A phase noise compensation receiver for receiving orthogonal frequency division multiplexed (OFDM) signals comprises: a phase noise compensation factor estimation circuit that estimates a phase noise compensation factor by use of a known pilot signal included in OFDM symbols and by use of a replica signal; and a phase noise compensation circuit that combines, by use of the phase noise compensation factor outputted from the phase noise compensation factor estimation circuit, received subcarrier signals having been subjected to three-adjacent-channel equalization, thereby compensating for local-oscillator phase noises included in the received signals.

Description

位相雑音補償受信機Phase noise compensation receiver
 本発明は、OFDMを採用するミリ波帯無線通信システムにおける受信機内の局部発振器に起因する位相雑音を補償する位相雑音補償受信機に関する。 The present invention relates to a phase noise compensation receiver that compensates for phase noise caused by a local oscillator in a receiver in a millimeter wave band wireless communication system employing OFDM.
 近年、高精細動画等をはじめとする大容量データの送受信の普及やマイクロ波帯の無線周波数の逼迫を背景として、従来のマイクロ波帯よりも高い周波数を活用した無線通信システムを実現するための様々な取組が活発に行われている。例えば、60GHz帯の無線周波数帯を利用した無線LANシステムの標準規格としてIEEE802.11adが策定され、当該無線LANシステムを実現するためのアンテナや送受信機回路、ベースバンド信号処理等に関する研究が世界中で行われている。 In recent years, with the spread of transmission and reception of large-capacity data such as high-definition moving pictures and the like and the tightness of the radio frequency of the microwave band, in order to realize a radio communication system using a higher frequency than the conventional microwave band Various efforts are actively being made. For example, IEEE802.11ad is established as a standard for a wireless LAN system using a radio frequency band of 60 GHz, and research on antennas, transmitter / receiver circuits, baseband signal processing, etc. for realizing the wireless LAN system has been conducted all over the world. It is done in
 IEEE802.11adにおいては、60GHzから68GHzまでの周波数帯域を4つのチャネルに分割し、それぞれのチャネル内に、マルチユーザMIMO(Multiple-Input Multiple-Output)と呼ばれる空間多重技術を用いることが検討されている。この空間多重技術により、理論上、システム全体で16ユーザを収容し、且つ、1ユーザ当たり6Gbps(ギガビット毎秒)のスループットを提供することが可能となる。 In IEEE802.11ad, the frequency band from 60 GHz to 68 GHz is divided into four channels, and it is considered to use a spatial multiplexing technique called multi-user MIMO (Multiple-Input-Multiple-Output) in each channel. Yes. This spatial multiplexing technology theoretically accommodates 16 users in the entire system and can provide a throughput of 6 Gbps (Gigabit per second) per user.
 また、近年、ミリ波よりも更に周波数の高いテラヘルツ帯の電磁波(以下、「テラヘルツ波」と称する)を活用した無線通信に関する研究も盛んに行われている。テラヘルツ帯無線通信は、現時点では、まだ標準規格策定の段階に及んでいないが、IEEE内部に、IEEE802.15WPANTM Terahertz Interest Group (IGthz)と呼ばれる技術調査のためのグループが既に組織され、そのグループによる、テラヘルツ帯無線通信に関する議論が行われている。 In recent years, research on wireless communication using terahertz electromagnetic waves having a frequency higher than that of millimeter waves (hereinafter referred to as “terahertz waves”) has been actively conducted. Terahertz wireless communication has not yet reached the stage of standard development, but a group for technical research called IEEE802.15WPANTM Terahertz Interest Group (IGthz) has already been organized within IEEE. There are discussions on terahertz wireless communication.
 このように、近年、無線通信システムに用いられる周波数は、より高い方に移行していく傾向がある。このような無線通信システムの高周波数移行を技術的に可能にしたのは、Si CMOS集積回路技術による高周波回路製造技術の向上である。大量生産可能なCMOS回路でテラヘルツ帯やミリ波帯の周波数を扱えるようになったことで、安価にデバイスを製造できる見込みが得られた。 Thus, in recent years, frequencies used in wireless communication systems tend to move higher. It is the improvement of the high-frequency circuit manufacturing technology based on the Si CMOS integrated circuit technology that technically enables such a high-frequency shift of the wireless communication system. Since CMOS circuits that can be mass-produced can handle frequencies in the terahertz band and millimeter wave band, it is possible to manufacture devices at low cost.
 しかし、Si CMOS集積回路技術で製造された、ミリ波・テラヘルツ波の送受信機内の局部発振器は、大きな位相雑音を有するという問題がある。この大きな位相雑音は、局部発振器が出力する搬送波(キャリア)の周波数ゆらぎに起因する。 However, a local oscillator in a millimeter wave / terahertz wave transmitter / receiver manufactured by Si CMOS integrated circuit technology has a problem that it has a large phase noise. This large phase noise is caused by the frequency fluctuation of the carrier wave (carrier) output from the local oscillator.
 ところで、近年、無線通信システムでは、高速な信号伝送を実現する手段として、直交周波数分割多重方式(OFDM:orthogonal frequency-division multiplexing)がよく用いられている。OFDMとは、広帯域信号をサブキャリアと呼ばれる狭帯域信号の重ね合わせに変換して送信する方式である。OFDMは、マルチパスの影響や符号間干渉に対して耐性を持ち、且つ、高い周波数利用効率を実現できるので、LTE(Long Term Evolution)やWiMAX(Worldwide Interoperability for Microwave Access)、無線LAN等に用いられている。 By the way, in recent years, orthogonal frequency division multiplexing (OFDM) is often used as a means for realizing high-speed signal transmission in wireless communication systems. OFDM is a scheme in which a wideband signal is converted into a superposition of narrowband signals called subcarriers and transmitted. OFDM is resistant to multipath effects and intersymbol interference, and can realize high frequency utilization efficiency. Therefore, it is used for LTE (Long Termination Evolution), WiMAX (Worldwide Interoperability for Microwave Access), wireless LAN, etc. It has been.
 しかし、OFDMを採用する無線通信システムでは、上述したような位相雑音がサブキャリア間干渉を引き起こすため、通信品質が劣化してしまうという問題が存在する。そのため、位相雑音の影響(位相雑音に起因するサブキャリア間干渉やサブキャリア位相回転)を低減する位相雑音補償技術が必要となることから、位相雑音補償機能を有するOFDM受信機の検討が盛んに行われている。 However, in a wireless communication system employing OFDM, there is a problem that the communication quality deteriorates because the phase noise as described above causes inter-subcarrier interference. For this reason, phase noise compensation technology that reduces the effects of phase noise (inter-subcarrier interference and subcarrier phase rotation caused by phase noise) is required, so studies of OFDM receivers having a phase noise compensation function are actively conducted. Has been done.
 ところで、位相雑音補償を行うためのディジタル信号処理は、線形処理を活用したものと非線形処理を活用したものに大別される。前者は入力信号に対して線形変換を施すものを指すのに対し、後者は入力信号に対して線形変換以外の処理(例えば、再生変調やフィードバックループを含む処理)を行うものを指す。 By the way, digital signal processing for performing phase noise compensation is roughly divided into those using linear processing and those using nonlinear processing. The former indicates that the input signal is subjected to linear conversion, while the latter indicates that the input signal is subjected to processing other than linear conversion (for example, processing including reproduction modulation and feedback loop).
 従来の位相雑音補償技術の殆どは、非線形処理によるもの(以下、単に「非線形位相雑音補償技術」とも言う。)である。 Most of the conventional phase noise compensation techniques are based on nonlinear processing (hereinafter also simply referred to as “nonlinear phase noise compensation techniques”).
 ここで、従来の非線形位相雑音補償技術を用いたOFDM受信機の構成例(非特許文献1参照)を図1に示す。 Here, FIG. 1 shows a configuration example (see Non-Patent Document 1) of an OFDM receiver using a conventional nonlinear phase noise compensation technique.
 図1に示されたように、従来の非線形位相雑音補償技術を用いたOFDM受信機は、アンテナ10と、IQ復調回路11と、A/D変換回路12と、CP除去回路13と、判定指向型位相雑音推定器14と、位相雑音補償回路15aと、チャネル推定回路15と、FFT回路16と、判定指向型チャネル推定器17と、チャネル等化器18と、CP挿入器19と、CPE補償器20と、CPE補償係数推定回路21と、QAM復調器22と、OFDM変調信号生成器23と、デインターリーバ24と、インターリーバ25と、誤り訂正復号器26と、誤り訂正符号器27と、スイッチ28と、CRC復号器29を備えるようになっている。 As shown in FIG. 1, an OFDM receiver using a conventional nonlinear phase noise compensation technique includes an antenna 10, an IQ demodulation circuit 11, an A / D conversion circuit 12, a CP removal circuit 13, and a decision pointing. Type phase noise estimator 14, phase noise compensation circuit 15a, channel estimation circuit 15, FFT circuit 16, decision-oriented channel estimator 17, channel equalizer 18, CP inserter 19, and CPE compensation 20, CPE compensation coefficient estimation circuit 21, QAM demodulator 22, OFDM modulation signal generator 23, deinterleaver 24, interleaver 25, error correction decoder 26, error correction encoder 27, , A switch 28 and a CRC decoder 29 are provided.
 図1の各ブロックのうち、破線で囲まれた部分(即ち、判定指向型位相雑音推定器14、位相雑音補償回路15a、判定指向型チャネル推定器17、CP挿入器19、CPE補償器20、CPE補償係数推定回路21、OFDM変調信号生成器23、インターリーバ25、誤り訂正符号器27、スイッチ28及びCRC復号器29)が、従来の非線形位相雑音補償技術に係る部分である。以下、図1を参照しながら、従来の非線形位相雑音補償技術を説明する。図1に示された従来の非線形位相雑音補償技術を用いたOFDM受信機における処理手順を、初回処理と繰返し処理の二段階に分けることができる。 Among the blocks in FIG. 1, the portions surrounded by broken lines (that is, the decision-directed phase noise estimator 14, the phase noise compensation circuit 15 a, the decision-directed channel estimator 17, the CP inserter 19, the CPE compensator 20, The CPE compensation coefficient estimation circuit 21, the OFDM modulation signal generator 23, the interleaver 25, the error correction encoder 27, the switch 28, and the CRC decoder 29) are related to the conventional nonlinear phase noise compensation technique. Hereinafter, a conventional nonlinear phase noise compensation technique will be described with reference to FIG. The processing procedure in the OFDM receiver using the conventional nonlinear phase noise compensation technique shown in FIG. 1 can be divided into two stages: initial processing and iterative processing.
 図1に示されたように、まず、アンテナ10から受信された信号は、IQ復調回路11とA/D変換回路12を経て、ディジタル複素ベースバンド信号に変換される。ディジタル複素ベースバンド信号に変換された受信信号のうち、プリアンブルのみを用いてチャネル推定回路15によってチャネル推定が行われる。次に、ディジタル複素ベースバンド信号に変換された受信信号のうち、プリアンブルでない信号、即ち、データ信号に対し、CP除去回路13によって、サイクリック・プレフィックス(CP:Cyclic Prefix)除去が行われる。サイクリック・プレフィックスが除去されたディジタル複素ベースバンド信号に対して、まず初回処理が行われる。 As shown in FIG. 1, first, a signal received from the antenna 10 is converted into a digital complex baseband signal through an IQ demodulation circuit 11 and an A / D conversion circuit 12. Of the received signal converted into the digital complex baseband signal, channel estimation is performed by the channel estimation circuit 15 using only the preamble. Next, of the received signal converted into the digital complex baseband signal, a cyclic prefix (CP: Cyclic Prefix) removal is performed by the CP removal circuit 13 on a signal that is not a preamble, that is, a data signal. Initial processing is first performed on the digital complex baseband signal from which the cyclic prefix has been removed.
 初回処理では、チャネル等化器18によるチャネル等化、CPE補償器20によるCPE補償、QAM復調器22によるQAM復調、デインターリーバ24によるデインターリーブ、及び誤り訂正復号器26による誤り訂正復号が行われ、次に、誤り訂正復号器26の出力信号がCRC復号器(巡回冗長検査復号器)29に入力される。ここで、CRC復号器29に入力された誤り訂正復号器26の出力信号に対し、CRC復号器29により誤りが検出されない場合に、従来の非線形位相雑音補償技術を用いたOFDM受信機における受信処理は終了する。一方、CRC復号器29により誤りが検出された場合に、従来の非線形位相雑音補償技術を用いたOFDM受信機は、繰返し処理に移行する。 In the initial processing, channel equalization by the channel equalizer 18, CPE compensation by the CPE compensator 20, QAM demodulation by the QAM demodulator 22, deinterleaving by the deinterleaver 24, and error correction decoding by the error correction decoder 26 are performed. Next, the output signal of the error correction decoder 26 is input to a CRC decoder (cyclic redundancy check decoder) 29. Here, when no error is detected by the CRC decoder 29 with respect to the output signal of the error correction decoder 26 input to the CRC decoder 29, the reception processing in the OFDM receiver using the conventional nonlinear phase noise compensation technique Ends. On the other hand, when an error is detected by the CRC decoder 29, the OFDM receiver using the conventional nonlinear phase noise compensation technique shifts to an iterative process.
 繰返し処理では、CRC復号器29により誤りが検出された場合の誤り訂正復号器26の出力信号に対し、誤り訂正符号器27による誤り訂正符号化、インターリーバ25によるインターリーブ、OFDM変調信号生成器23によるOFDM変調、及びCP挿入器19によるCP挿入といった複数の処理が行われ、その結果、送信信号レプリカが生成される。次に、判定指向型位相雑音推定器14では、生成された送信信号レプリカと、ディジタル複素ベースバンド信号に変換された受信信号を用いて、位相雑音が推定され、推定結果(推定された位相雑音)が出力され、更に、出力された推定結果に基づいて、位相雑音補償回路15aによって、位相雑音が補償される。また、判定指向型チャネル推定器17では、位相雑音が除去された受信信号と、送信信号レプリカを用いて、チャネル推定を行う。図1に示された従来の非線形位相雑音補償技術を用いたOFDM受信機では、以上の一連の処理を繰り返し行うことによって、位相雑音を取り除くことができる。 In the iterative processing, the error correction encoder 27 performs error correction coding on the output signal of the error correction decoder 26 when an error is detected by the CRC decoder 29, interleaving by the interleaver 25, and OFDM modulation signal generator 23. A plurality of processes are performed, such as OFDM modulation by, and CP insertion by the CP inserter 19, and as a result, a transmission signal replica is generated. Next, the decision-directed phase noise estimator 14 estimates phase noise using the generated transmission signal replica and the received signal converted into the digital complex baseband signal, and the estimation result (estimated phase noise). ) And the phase noise is compensated by the phase noise compensation circuit 15a based on the output estimation result. Further, the decision-oriented channel estimator 17 performs channel estimation using the received signal from which the phase noise has been removed and the transmitted signal replica. In the OFDM receiver using the conventional nonlinear phase noise compensation technique shown in FIG. 1, the phase noise can be removed by repeating the above series of processing.
 このように、時間領域において位相雑音が補償されるようになっている従来の非線形位相雑音補償技術を用いたOFDM受信機では、位相雑音を取り除くために、繰返し処理を行うようにしているので、計算量が膨大であるという問題点があり、特に、誤り訂正復号後の信号を用いて送信信号レプリカ生成処理において、高速フーリエ変換(FFT:Fast Fourier Transform)や逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)を行うようにしているので、計算量が更に大きくなってしまうという問題点がある。 As described above, in the OFDM receiver using the conventional nonlinear phase noise compensation technique in which the phase noise is compensated in the time domain, in order to remove the phase noise, the iterative process is performed. There is a problem that the amount of calculation is enormous, and in particular, in a transmission signal replica generation process using a signal after error correction decoding, fast Fourier transform (FFT: Inverse Fast transform) or inverse fast Fourier transform (IFFT: Inverse Fast) (Fourier Transform) is performed, and there is a problem that the amount of calculation further increases.
 上で述べたように、従来の非線形位相雑音補償技術は、良好な位相雑音補償性能を示す一方で、トレードオフとして計算量が膨大となる欠点を有する。数Gbps級の高速データ信号処理を行うためには、受信機におけるベースバンド処理において、チャネル推定やフレーム処理等に加えて、位相雑音処理等の複雑な過程を低遅延で行う必要がある。 As described above, the conventional nonlinear phase noise compensation technique has a drawback that the calculation amount is enormous as a trade-off while showing good phase noise compensation performance. In order to perform high-speed data signal processing of several Gbps class, it is necessary to perform complicated processes such as phase noise processing with low delay in addition to channel estimation and frame processing in the baseband processing in the receiver.
 しかしながら、従来の非線形位相雑音補償技術を用いると、受信機のベースバンド部の計算負荷が大きくなり、消費電力増加や受信処理遅延が発生してしまい、実効的な通信速度が低下してしまう問題が存在する。 However, when the conventional nonlinear phase noise compensation technology is used, the calculation load of the baseband part of the receiver increases, resulting in an increase in power consumption and a delay in reception processing, resulting in a decrease in effective communication speed. Exists.
 ミリ波帯の広帯域信号伝送を効率良く実現するためには、計算量が少なく且つ十分な位相雑音補償性能を持つ位相雑音補償技術が必要不可欠である。 In order to efficiently realize millimeter-wave band broadband signal transmission, a phase noise compensation technique with a small amount of calculation and sufficient phase noise compensation performance is indispensable.
 本発明は、上述のような事情よりなされたものであり、本発明の目的は、従来の非線形位相雑音補償技術に存在している、信号処理に伴う計算量が膨大となるという問題点を解決するために、周波数領域において線形信号処理を用いることで、従来よりも少ない計算量で位相雑音補償技術を実現し、高信頼且つ高速な信号伝送を実現できるようにした位相雑音補償受信機を提供することにある。 The present invention has been made under the circumstances described above, and an object of the present invention is to solve the problem that the amount of calculation associated with signal processing, which exists in the conventional nonlinear phase noise compensation technology, is enormous. Therefore, by using linear signal processing in the frequency domain, a phase noise compensation receiver is realized that realizes phase noise compensation technology with a smaller amount of calculation than before, and can realize high-reliability and high-speed signal transmission. There is to do.
 本発明は直交周波数分割多重(OFDM)信号を受信する位相雑音補償受信機に関し、本発明の上記目的は、OFDMシンボルに含まれる既知なパイロット信号とレプリカ信号を用いて、位相雑音補償係数を推定する位相雑音補償係数推定回路と、前記位相雑音補償係数推定回路から出力される前記位相雑音補償係数を用いて、隣接する3つのチャネル等化後の受信サブキャリア信号を合成することにより、受信信号に含まれている局部発振器位相雑音を補償する位相雑音補償回路とを備えることにより達成される。 The present invention relates to a phase noise compensation receiver for receiving an orthogonal frequency division multiplexing (OFDM) signal. The above object of the present invention is to estimate a phase noise compensation coefficient using a known pilot signal and replica signal included in an OFDM symbol. Using the phase noise compensation coefficient estimator circuit and the phase noise compensation coefficient output from the phase noise compensation coefficient estimator circuit to synthesize a reception subcarrier signal after equalization of three adjacent channels, And a phase noise compensation circuit for compensating for the local oscillator phase noise included in the circuit.
 また、本発明の上記目的は、前記レプリカ信号は、前記位相雑音補償係数と、周波数領域信号であるチャネル等化後のパイロット信号と、前記チャネル等化後のパイロット信号に隣接する、周波数領域信号である2つのチャネル等化後の受信信号とに基づいて生成され、前記レプリカ信号を生成する際に、前記周波数領域信号である2つのチャネル等化後の受信信号は既知又は未知であることにより、或いは、前記位相雑音補償係数推定回路では、前記レプリカ信号と前記パイロット信号の平均二乗誤差が最小となるように、前記位相雑音補償係数を推定することにより、或いは、前記位相雑音補償係数推定回路では、前記レプリカ信号と前記パイロット信号に基づいて、MMSE法、LMS法又はRLS法を用いて前記位相雑音補償係数を推定することにより、より効果的に達成される。 Further, the object of the present invention is that the replica signal includes the phase noise compensation coefficient, a pilot signal after channel equalization which is a frequency domain signal, and a frequency domain signal adjacent to the pilot signal after channel equalization. When the replica signal is generated based on two received signals after channel equalization, and the two channel equalized received signals that are the frequency domain signals are known or unknown. Alternatively, the phase noise compensation coefficient estimation circuit estimates the phase noise compensation coefficient so that a mean square error between the replica signal and the pilot signal is minimized, or the phase noise compensation coefficient estimation circuit Then, based on the replica signal and the pilot signal, the phase noise compensation coefficient using the MMSE method, the LMS method, or the RLS method By estimating is more effectively achieved.
 本発明に係る位相雑音補償受信機によれば、周波数領域において線形信号処理を用いて位相雑音を補償することで(即ち、送信機及び受信機における局部発振器位相雑音に起因するサブキャリア信号の位相回転及びサブキャリア間干渉が発生した後の受信信号に対し、位相雑音補償を行うことで)、従来よりも格段に少ない計算量で位相雑音補償技術を実現したため、受信機のベースバンド部の計算負荷を小さくすると共に、従来の非線形位相雑音補償技術を用いた場合に生じる受信処理遅延問題を解消することができる。 The phase noise compensation receiver according to the present invention compensates for phase noise using linear signal processing in the frequency domain (ie, the phase of the subcarrier signal due to local oscillator phase noise in the transmitter and receiver). By performing phase noise compensation on the received signal after rotation and interference between subcarriers), phase noise compensation technology has been realized with a much smaller amount of computation than before, so calculation of the baseband part of the receiver In addition to reducing the load, it is possible to solve the reception processing delay problem that occurs when the conventional nonlinear phase noise compensation technique is used.
 本発明では、局部発振器位相雑音を補償するために、受信機のベースバンド部における周波数領域信号処理において、繰返し処理を用いずに線形変換のみを用いることで、少ない計算量で位相雑音補償を可能にし、その結果、消費電力が少なく、且つ、受信処理遅延の無い、OFDM受信機を実現することができる。 In the present invention, in order to compensate for the local oscillator phase noise, the frequency domain signal processing in the baseband part of the receiver uses only linear transformation without using iterative processing, thereby enabling phase noise compensation with a small amount of calculation. As a result, it is possible to realize an OFDM receiver with low power consumption and no reception processing delay.
 本発明に係る位相雑音補償受信機によれば、OFDMシンボルに含まれるパイロット信号と本発明の「レプリカ信号」に基づいて推定された位相雑音補償係数を用いて、隣接する3つのチャネル等化後の受信サブキャリア信号を合成することにより(即ち、隣接する3つのチャネル等化後の受信サブキャリア信号を位相雑音補償係数で重み付けた上で和をとることにより)、受信信号に含まれている局部発振器位相雑音(送信機及び受信機における局部発振器位相雑音に起因する位相回転及びキャリア間干渉)を補償するようにしているので、従来の非線形位相雑音補償技術による受信機において行われている送信信号レプリカ生成を伴う繰り返し信号処理を行わないので、従来の非線形位相雑音補償技術よりも格段に少ない計算量で位相雑音補償技術を実現することができる。 According to the phase noise compensation receiver of the present invention, after the equalization of three adjacent channels using the pilot signal included in the OFDM symbol and the phase noise compensation coefficient estimated based on the “replica signal” of the present invention. Of the received subcarrier signals (ie, by summing up the received subcarrier signals after equalization of three adjacent channels after being weighted by the phase noise compensation coefficient). Since the local oscillator phase noise (phase rotation and inter-carrier interference caused by local oscillator phase noise in the transmitter and receiver) is compensated, transmission performed in the receiver by the conventional nonlinear phase noise compensation technique Since it does not perform repetitive signal processing with signal replica generation, the phase is much smaller than conventional nonlinear phase noise compensation technology. It is possible to realize a sound compensation technology.
従来の位相雑音補償技術を用いたOFDM受信機の構成例を示すブロック図である。It is a block diagram which shows the structural example of the OFDM receiver using the conventional phase noise compensation technique. 本発明の要部を構成する位相雑音補償回路140及び位相雑音補償係数推定回路145を説明する図である。It is a figure explaining the phase noise compensation circuit 140 and the phase noise compensation coefficient estimation circuit 145 which comprise the principal part of this invention. 本発明の位相雑音補償技術を用いたOFDM受信機の構成例を示すブロック図である。It is a block diagram which shows the structural example of the OFDM receiver using the phase noise compensation technique of this invention. 本発明において、信号フォーマットの構成例を示す図である。In this invention, it is a figure which shows the structural example of a signal format. 従来手法と本発明の実数同士乗算回数の比較を示すグラフである。It is a graph which shows the comparison of the number of multiplications between real numbers of a conventional method and this invention. 従来手法と本発明のビット誤り率の比較を示すグラフである。It is a graph which shows the comparison of the bit error rate of a conventional method and this invention. 従来手法と本発明のパケット誤り率の比較を示すグラフである。It is a graph which shows the comparison of the packet error rate of a conventional method and this invention.
 本発明は、従来の非線形位相雑音補償技術に存在する計算量膨大という問題点を解決するために、周波数領域において線形信号処理(受信機ベースバンド部における周波数領域信号処理)を用いて位相雑音を補償することで、従来の非線形位相雑音補償技術よりも格段に少ない計算量で位相雑音補償技術を実現した位相雑音補償受信機に関するものである。 In order to solve the problem of enormous amount of calculation existing in the conventional nonlinear phase noise compensation technique, the present invention reduces phase noise using linear signal processing (frequency domain signal processing in the receiver baseband unit) in the frequency domain. The present invention relates to a phase noise compensation receiver that realizes the phase noise compensation technique with a much smaller calculation amount than the conventional nonlinear phase noise compensation technique.
 本発明では、パイロットと呼ばれる既知信号列(以下、単に「パイロット信号」とも言う。)を用いて、位相雑音を補償するための本発明の位相雑音補償係数を学習し、学習した位相雑音補償係数を用いて、受信信号に含まれている、局部発振器に起因する位相雑音の補償(以下、単に「局部発振器位相雑音補償」又は「位相雑音補償」とも言う。)を行う。 In the present invention, the phase noise compensation coefficient of the present invention for compensating for phase noise is learned using a known signal sequence called pilot (hereinafter also simply referred to as “pilot signal”), and the learned phase noise compensation coefficient is learned. Is used to compensate for phase noise caused by the local oscillator included in the received signal (hereinafter also simply referred to as “local oscillator phase noise compensation” or “phase noise compensation”).
 また、本発明では、後述する本発明の位相雑音補償係数(以下、単に「位相雑音補償係数」とも言う。)の学習においては、本発明で言う「レプリカ信号」と既知のパイロット信号の二乗誤差を規範として用いる。 In the present invention, in learning of a phase noise compensation coefficient of the present invention (hereinafter also referred to simply as “phase noise compensation coefficient”), which will be described later, the square error between the “replica signal” referred to in the present invention and a known pilot signal. Is used as a norm.
 ここで、本発明で言う「レプリカ信号」とは、本発明の位相雑音補償係数と、周波数領域信号である「チャネル等化後のパイロット信号」と、当該「チャネル等化後のパイロット信号」に隣接する、周波数領域信号である2つの「チャネル等化後の受信信号」とに基づいて生成される信号を意味する。なお、本発明では、「レプリカ信号」を生成する際に、「チャネル等化後のパイロット信号」に隣接する2つの「チャネル等化後の受信信号」は既知又は未知のどちらであっても良い。以下、本発明で言う「レプリカ信号」を単に「レプリカ信号」と言う。 Here, the “replica signal” in the present invention refers to the phase noise compensation coefficient of the present invention, the “pilot signal after channel equalization” which is a frequency domain signal, and the “pilot signal after channel equalization”. It means a signal generated based on two adjacent “received signals after channel equalization” which are frequency domain signals. In the present invention, when generating “replica signals”, two “received signals after channel equalization” adjacent to “pilot signals after channel equalization” may be either known or unknown. . Hereinafter, the “replica signal” referred to in the present invention is simply referred to as “replica signal”.
 本発明では、OFDMを採用するミリ波帯無線通信システムにおいて、隣接するサブキャリアのチャネル伝達関数がほぼ等しいというミリ波帯チャネルの特徴に着目すると共に、ミリ波帯送受信機内の局部発振器に起因する位相雑音(以下、単に「ミリ波帯送受信機の位相雑音」とも言う。)に関する統計量がチャネルの遅延時間程度の間にほぼ一定であるということにも着目した。なお、本発明で言う「ミリ波帯送受信機の位相雑音に関する統計量」とは、後述する数8で表す
Figure JPOXMLDOC01-appb-I000001
を意味する。
In the present invention, in the millimeter wave band wireless communication system employing OFDM, attention is paid to the feature of the millimeter wave band channel in which the channel transfer functions of adjacent subcarriers are substantially equal, and it is caused by the local oscillator in the millimeter wave band transceiver. We also paid attention to the fact that the statistic regarding phase noise (hereinafter, also simply referred to as “millimeter-wave transmitter / receiver phase noise”) is almost constant during the delay time of the channel. In addition, the “statistic about phase noise of the millimeter wave band transceiver” referred to in the present invention is expressed by Equation 8 described later.
Figure JPOXMLDOC01-appb-I000001
Means.
 本発明では、このようなミリ波帯特有の性質を利用することによって、計算量の少ない、線形処理による位相雑音補償技術(以下、単に「線形位相雑音補償技術」とも言う。)を実現した。 In the present invention, a phase noise compensation technique based on linear processing (hereinafter also simply referred to as “linear phase noise compensation technique”) with a small amount of calculation is realized by utilizing such a characteristic unique to the millimeter wave band.
 上述したように、本発明の着眼点は、「ミリ波帯チャネルにおいて、隣接するサブキャリアのチャネル伝達関数はほぼ等しいこと」及び「ミリ波帯送受信機の位相雑音に関する統計量がチャネルの遅延時間程度の間にほぼ一定であること」である。 As described above, the focus of the present invention is that “the channel transfer function of adjacent subcarriers is almost equal in a millimeter wave band channel” and “the statistic regarding the phase noise of the millimeter wave band transceiver is the delay time of the channel. It is almost constant between degrees. "
 以下、数式を参照しながら、本発明の着眼点及び本発明の要部について説明する。本発明の着眼点及び本発明の要部を説明する前に、まず、OFDMシステムにおける信号及びディジタル信号処理に関する数式表現について説明する。ただし、以下の数式は全て等価低域系で表現されている。
 
(1)位相雑音とOFDMシステムの関係
 OFDM送信機における送信サブキャリア信号を
Figure JPOXMLDOC01-appb-I000002
とおく。ただし、
Figure JPOXMLDOC01-appb-I000003
はOFDMのサブキャリア数を表す。また、送信サブキャリア信号がOFDM変調された時間領域での信号(以下、単に「OFDM変調信号」又は「OFDM変調信号(時間領域信号)」とも言う。)を
Figure JPOXMLDOC01-appb-I000004
と表す。
Hereinafter, the focus of the present invention and the main part of the present invention will be described with reference to mathematical expressions. Before explaining the focus of the present invention and the main part of the present invention, first, mathematical expressions relating to signal and digital signal processing in the OFDM system will be described. However, the following mathematical expressions are all expressed in an equivalent low-frequency system.

(1) Relationship between phase noise and OFDM system Transmission subcarrier signal in OFDM transmitter
Figure JPOXMLDOC01-appb-I000002
far. However,
Figure JPOXMLDOC01-appb-I000003
Represents the number of OFDM subcarriers. Further, a signal in the time domain in which the transmission subcarrier signal is OFDM-modulated (hereinafter also simply referred to as “OFDM modulated signal” or “OFDM modulated signal (time domain signal)”).
Figure JPOXMLDOC01-appb-I000004
It expresses.
 また、送信機における位相雑音(即ち、送信機内の局部発振器に起因する位相雑音)を
Figure JPOXMLDOC01-appb-I000005
とおく。ただし、
Figure JPOXMLDOC01-appb-I000006
はサイクリックス・プレフィックス長を表す。
Also, the phase noise at the transmitter (ie the phase noise due to the local oscillator in the transmitter)
Figure JPOXMLDOC01-appb-I000005
far. However,
Figure JPOXMLDOC01-appb-I000006
Represents the cyclic prefix length.
 同様に、受信機における位相雑音(即ち、受信機内の局部発振器に起因する位相雑音)を
Figure JPOXMLDOC01-appb-I000007
とおく。更に、チャネルインパルス応答を
Figure JPOXMLDOC01-appb-I000008
と表す。ただし、
Figure JPOXMLDOC01-appb-I000009
はチャネル(伝搬路)のパス数を表す。
Similarly, the phase noise at the receiver (ie the phase noise due to the local oscillator in the receiver)
Figure JPOXMLDOC01-appb-I000007
far. In addition, the channel impulse response
Figure JPOXMLDOC01-appb-I000008
It expresses. However,
Figure JPOXMLDOC01-appb-I000009
Represents the number of paths of the channel (propagation path).
 送信サブキャリア信号とOFDM変調信号の関係は、下記数1で表すことができる。 The relationship between the transmission subcarrier signal and the OFDM modulation signal can be expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000010
 ただし、
Figure JPOXMLDOC01-appb-I000011
はk番目の標本化時刻におけるOFDM変調信号(時間領域信号)を表す。
Figure JPOXMLDOC01-appb-I000012
はm番目のサブキャリアの送信サブキャリア信号(周波数領域信号)を表す。なお、jは虚数単位を表し、つまり、jの二乗は-1に等しい。
Figure JPOXMLDOC01-appb-M000010
However,
Figure JPOXMLDOC01-appb-I000011
Represents an OFDM modulated signal (time domain signal) at the k-th sampling time.
Figure JPOXMLDOC01-appb-I000012
Represents a transmission subcarrier signal (frequency domain signal) of the mth subcarrier. Note that j represents an imaginary unit, that is, the square of j is equal to -1.
 次に、送信機ベースバンドにおいて、サブキャリア毎の送信サブキャリア信号(周波数領域信号)を逆高速フーリエ変換(IFFT)によって変換して得られたOFDM変調信号(時間領域信号)に、サイクリック・プレフィックス(CP)が付加される。 Next, in the transmitter baseband, a cyclic subcarrier signal (frequency domain signal) for each subcarrier is converted into an OFDM modulated signal (time domain signal) obtained by transforming by inverse fast Fourier transform (IFFT). A prefix (CP) is added.
 CP付加後のOFDM変調信号(時間領域信号)は、下記数2で表すことができる。 The OFDM modulated signal (time domain signal) after CP addition can be expressed by the following formula 2.
Figure JPOXMLDOC01-appb-M000013
 ただし、
Figure JPOXMLDOC01-appb-I000014
はk番目の標本化時刻におけるCP付加後のOFDM変調信号(時間領域信号)を表す。
Figure JPOXMLDOC01-appb-M000013
However,
Figure JPOXMLDOC01-appb-I000014
Represents an OFDM modulated signal (time domain signal) after CP addition at the k-th sampling time.
 上記数2で表しているCP付加後のOFDM変調信号(複素ベースバンド信号)は、D/A変換回路でD/A変換された後に、IQ変調回路で変調され、更に、送信機内の局部発振器によってミリ波信号に変換される。 The OFDM-modulated signal (complex baseband signal) after CP addition represented by Equation 2 is D / A converted by the D / A converter circuit, then modulated by the IQ modulator circuit, and further, a local oscillator in the transmitter Is converted into a millimeter wave signal.
 その際、ミリ波信号は、送信機内の局部発振器に起因する位相雑音の影響を受け、位相回転を生じる。送信機内の局部発振器に起因する位相雑音の影響を受けたミリ波信号は、下記数3で表すことができる。 At that time, the millimeter wave signal is affected by the phase noise caused by the local oscillator in the transmitter and causes phase rotation. The millimeter wave signal affected by the phase noise caused by the local oscillator in the transmitter can be expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000015
 ただし、
Figure JPOXMLDOC01-appb-I000016
は送信機内の局部発振器に起因する位相雑音の影響を受けた、k番目の標本化時刻におけるミリ波信号を表す。また、
Figure JPOXMLDOC01-appb-I000017
はk番目の標本化時刻における送信機内の局部発振器に起因する位相雑音を表す。
Figure JPOXMLDOC01-appb-M000015
However,
Figure JPOXMLDOC01-appb-I000016
Represents the millimeter wave signal at the kth sampling time, which is affected by the phase noise caused by the local oscillator in the transmitter. Also,
Figure JPOXMLDOC01-appb-I000017
Represents the phase noise due to the local oscillator in the transmitter at the k th sampling time.
 送信機から送信されたミリ波信号は、空間を伝搬して受信アンテナに到達する。その際、送信機と同様に、受信信号は受信機内の局部発振器に起因する位相雑音の影響を受ける。受信機内の局部発振器に起因する位相雑音の影響を受けた受信信号は、下記数4で表すことができる。 The millimeter wave signal transmitted from the transmitter propagates through space and reaches the receiving antenna. At that time, like the transmitter, the received signal is affected by phase noise caused by a local oscillator in the receiver. The received signal affected by the phase noise caused by the local oscillator in the receiver can be expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000018
 ただし、y(k)は受信機内の局部発振器に起因する位相雑音の影響を受けた、k番目の標本化時刻における受信信号(時間領域信号)を表す。また、
Figure JPOXMLDOC01-appb-I000019
はk番目の標本化時刻における受信機内の局部発振器に起因する位相雑音を表す。更に、n(k)はk番目の標本化時刻における雑音を表す。
Figure JPOXMLDOC01-appb-M000018
However, y (k) represents the received signal (time domain signal) at the k-th sampling time, which is affected by the phase noise caused by the local oscillator in the receiver. Also,
Figure JPOXMLDOC01-appb-I000019
Represents the phase noise due to the local oscillator in the receiver at the k th sampling time. Further, n (k) represents noise at the kth sampling time.
 次に、上記数4で表している、受信機内の局部発振器に起因する位相雑音の影響を受けた受信信号(時間領域信号)は、IQ復調回路で復調された後に、A/D変換回路でA/D変換され、ディジタル複素ベースバンド信号に変換され、サイクリック・プレフィクス(CP)が削除される。CP削除後の受信信号(CP削除後のディジタル複素ベースバンド信号)は、下記数5で表す。 Next, the received signal (time domain signal) affected by the phase noise caused by the local oscillator in the receiver expressed by the above equation 4 is demodulated by the IQ demodulator circuit, and then the A / D converter circuit. A / D conversion is performed to convert the signal into a digital complex baseband signal, and the cyclic prefix (CP) is deleted. The received signal after CP deletion (digital complex baseband signal after CP deletion) is expressed by the following formula 5.
Figure JPOXMLDOC01-appb-M000020
 ただし、
Figure JPOXMLDOC01-appb-I000021
はk番目のサブキャリアのCP削除後の受信信号(ディジタル複素ベースバンド信号)を表しており、時間領域信号である。
Figure JPOXMLDOC01-appb-M000020
However,
Figure JPOXMLDOC01-appb-I000021
Represents a received signal (digital complex baseband signal) after CP deletion of the k-th subcarrier, and is a time domain signal.
 上記数5で表すCP削除後の受信信号(以下、単に、「CP削除後のOFDM信号」とも言う。)は、高速フーリエ変換(FFT)によって受信サブキャリア信号(周波数領域信号)に変換される。CP削除後のOFDM信号から受信サブキャリア信号への変換は、下記数6で表すことができる。 The received signal after CP deletion represented by Equation 5 (hereinafter also simply referred to as “OFDM signal after CP deletion”) is converted into a received subcarrier signal (frequency domain signal) by fast Fourier transform (FFT). . The conversion from the OFDM signal after CP deletion to the received subcarrier signal can be expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000022
 ただし、Y(m)はm番目のサブキャリアの受信サブキャリア信号を表しており、周波数領域信号である。
Figure JPOXMLDOC01-appb-M000022
However, Y (m) represents the received subcarrier signal of the mth subcarrier and is a frequency domain signal.
 上記数1~上記数5を上記数6に代入すると、下記数7で示されるような、受信サブキャリア信号と送信サブキャリア信号の関係式が得られる。 Substituting the above formula 1 to the above formula 5 into the above formula 6 gives the relational expression between the received subcarrier signal and the transmitted subcarrier signal as shown in the following formula 7.
Figure JPOXMLDOC01-appb-M000023
 ただし、
Figure JPOXMLDOC01-appb-I000024
はm番目のサブキャリアのチャネル伝達関数を表す。
Figure JPOXMLDOC01-appb-I000025
のサブキャリアのチャネル伝達関数を表す。また、
Figure JPOXMLDOC01-appb-I000026
のサブキャリアの送信サブキャリア信号を表す。そして、N(m)は加法性白色ガウス雑音(AWGN:Additive White Gaussian Noise)のフーリエ変換を表す。また、
Figure JPOXMLDOC01-appb-I000027
は後述する数8で表す
Figure JPOXMLDOC01-appb-I000028
において、
Figure JPOXMLDOC01-appb-I000029
を0に置き換えて得たものであり、m番目のサブキャリアの送信サブキャリア信号の送信機及び受信機の局部発振器位相雑音に起因する位相回転量を表す。送信機及び受信機の局部発振器に起因する位相雑音が存在しない場合に、位相回転は発生しないことから、
Figure JPOXMLDOC01-appb-I000030
が成立する。このことは
Figure JPOXMLDOC01-appb-I000031
を下記数8に代入することで、確認することができる。
Figure JPOXMLDOC01-appb-M000023
However,
Figure JPOXMLDOC01-appb-I000024
Represents the channel transfer function of the m-th subcarrier.
Figure JPOXMLDOC01-appb-I000025
Represents the channel transfer function of the subcarriers. Also,
Figure JPOXMLDOC01-appb-I000026
Represents a transmission subcarrier signal of the subcarriers. N (m) represents the Fourier transform of additive white Gaussian noise (AWGN). Also,
Figure JPOXMLDOC01-appb-I000027
Is expressed by Equation 8 below.
Figure JPOXMLDOC01-appb-I000028
In
Figure JPOXMLDOC01-appb-I000029
Is obtained by replacing 0 with 0, and represents the amount of phase rotation caused by the local oscillator phase noise of the transmitter and receiver of the transmission subcarrier signal of the mth subcarrier. In the absence of phase noise due to the transmitter and receiver local oscillators, no phase rotation occurs,
Figure JPOXMLDOC01-appb-I000030
Is established. This is
Figure JPOXMLDOC01-appb-I000031
It can be confirmed by substituting
 上記数7で表す近似式は、送信機及び受信機の局部発振器に起因する位相雑音がOFDMシステムに与える影響を表しており、即ち、数7の右辺第1項は送信機及び受信機における局部発振器位相雑音に起因する受信信号の位相回転を表し、数7の右辺第2項は他のサブキャリア信号からの干渉を表している。ちなみに、数7の右辺第1項はCPE(Common Phase Error;共通位相誤差)と呼ばれ、また、数7の右辺第2項はICI(Inter carrier Interference;キャリア間干渉)と呼ばれる。 The approximate expression expressed by Equation 7 represents the influence of phase noise caused by the local oscillators of the transmitter and the receiver on the OFDM system. That is, the first term on the right side of Equation 7 is the local in the transmitter and the receiver. This represents the phase rotation of the received signal due to the oscillator phase noise, and the second term on the right side of Equation 7 represents the interference from other subcarrier signals. Incidentally, the first term on the right side of Equation 7 is called CPE (Common Phase Error), and the second term on the right side of Equation 7 is called ICI (Inter carrier Interference).
 また、下記数8が成立する。 Also, the following formula 8 holds.
Figure JPOXMLDOC01-appb-M000032
 ただし、
Figure JPOXMLDOC01-appb-I000033
のサブキャリアのチャネル等化前の受信サブキャリア信号が
Figure JPOXMLDOC01-appb-I000034
のサブキャリアのチャネル等化前の受信サブキャリア信号から受ける干渉の程度を表す複素数である。
Figure JPOXMLDOC01-appb-I000035
の絶対値が大きいほど、
Figure JPOXMLDOC01-appb-I000036
のサブキャリアのチャネル等化前の受信サブキャリア信号が
Figure JPOXMLDOC01-appb-I000037
のサブキャリアのチャネル等化前の受信サブキャリア信号に与える干渉量が大きいことを表している。
Figure JPOXMLDOC01-appb-I000038
が0であることは、
Figure JPOXMLDOC01-appb-I000039
のサブキャリアのチャネル等化前の受信サブキャリア信号が
Figure JPOXMLDOC01-appb-I000040
のサブキャリアのチャネル等化前の受信サブキャリア信号に干渉を与えないことを表している。
Figure JPOXMLDOC01-appb-M000032
However,
Figure JPOXMLDOC01-appb-I000033
Received subcarrier signal before channel equalization of
Figure JPOXMLDOC01-appb-I000034
This is a complex number representing the degree of interference received from the received subcarrier signal before channel equalization of the subcarrier.
Figure JPOXMLDOC01-appb-I000035
The larger the absolute value of,
Figure JPOXMLDOC01-appb-I000036
Received subcarrier signal before channel equalization of
Figure JPOXMLDOC01-appb-I000037
This indicates that the amount of interference given to the received subcarrier signal before channel equalization of the subcarrier is large.
Figure JPOXMLDOC01-appb-I000038
Is 0
Figure JPOXMLDOC01-appb-I000039
Received subcarrier signal before channel equalization of
Figure JPOXMLDOC01-appb-I000040
This indicates that no interference is given to the received subcarrier signal before channel equalization of the subcarrier.
 更に、上記数8で表す
Figure JPOXMLDOC01-appb-I000041
を求める際に、下記数9で表す近似式を利用する。
Furthermore, it represents with the said Formula 8.
Figure JPOXMLDOC01-appb-I000041
Is used, an approximate expression represented by the following formula 9 is used.
Figure JPOXMLDOC01-appb-M000042
 ここで、上記数9で表す近似式は、ミリ波帯送受信機の位相雑音に関する統計量
Figure JPOXMLDOC01-appb-I000043
がチャネルの遅延時間程度の間においてほぼ一定であることを表している。ただし、数9の右辺の項は
Figure JPOXMLDOC01-appb-I000044
のサブキャリアのチャネル等化前の受信サブキャリア信号が
Figure JPOXMLDOC01-appb-I000045
のサブキャリアのチャネル等化前の受信サブキャリア信号から受ける干渉の程度を表す複素数(以下、「干渉の程度を表す複素数」を単に「干渉量」とも言う。)である。また、dは無線チャネルの遅延時間を表している。つまり、d=0は第一到達波に対応しており、また、d=D-1は最終到達波に対応している。
Figure JPOXMLDOC01-appb-M000042
Here, the approximate expression represented by Equation 9 is a statistic regarding the phase noise of the millimeter wave band transceiver.
Figure JPOXMLDOC01-appb-I000043
Is substantially constant for about the delay time of the channel. However, the term on the right side of Equation 9 is
Figure JPOXMLDOC01-appb-I000044
Received subcarrier signal before channel equalization of
Figure JPOXMLDOC01-appb-I000045
Is a complex number representing the degree of interference received from the received subcarrier signal before channel equalization of the subcarrier (hereinafter, “complex number representing the degree of interference” is also simply referred to as “interference amount”). D represents the delay time of the radio channel. That is, d = 0 corresponds to the first arrival wave, and d = D−1 corresponds to the final arrival wave.
 上記数9から分かるように、数9の左辺の項に無線チャネルの遅延時間dが含まれているのに対し、数9の右辺の項に無線チャネルの遅延時間dが含まれていない。 As can be seen from equation (9) above, the term on the left side of equation (9) includes the radio channel delay time d, whereas the term on the right side of equation (9) does not include the radio channel delay time d.
 よって、数9に基づいて、
Figure JPOXMLDOC01-appb-I000046
のサブキャリアのチャネル等化前の受信サブキャリア信号が
Figure JPOXMLDOC01-appb-I000047
のサブキャリアのチャネル等化前の受信サブキャリア信号から受ける干渉量(即ち、ミリ波帯送受信機の位相雑音に関する統計量)は、チャネルの遅延時間dと無関係であることは言える。更に、数9に基づいて、
Figure JPOXMLDOC01-appb-I000048
のサブキャリアのチャネル等化前の受信サブキャリア信号が
Figure JPOXMLDOC01-appb-I000049
のサブキャリアのチャネル等化前の受信サブキャリア信号から受ける干渉量は、無線チャネルのパラメータと無関係であることは言える。
 
(2)着眼点の説明
 受信機ベースバンドにおけるチャネル等化後の受信サブキャリア信号は、下記数10で表すことができる。
Therefore, based on Equation 9,
Figure JPOXMLDOC01-appb-I000046
Received subcarrier signal before channel equalization of
Figure JPOXMLDOC01-appb-I000047
It can be said that the amount of interference received from the received subcarrier signal before channel equalization of the subcarriers (that is, the statistic regarding the phase noise of the millimeter wave band transceiver) is independent of the channel delay time d. Furthermore, based on Equation 9,
Figure JPOXMLDOC01-appb-I000048
Received subcarrier signal before channel equalization of
Figure JPOXMLDOC01-appb-I000049
It can be said that the amount of interference received from the received subcarrier signal before channel equalization of the subcarriers is independent of the parameters of the radio channel.

(2) Explanation of the point of interest The received subcarrier signal after channel equalization in the receiver baseband can be expressed by the following equation (10).
Figure JPOXMLDOC01-appb-M000050
 ただし、
Figure JPOXMLDOC01-appb-I000051
はm番目のサブキャリアのチャネル等化後の受信サブキャリア信号を表す。
Figure JPOXMLDOC01-appb-M000050
However,
Figure JPOXMLDOC01-appb-I000051
Represents a received subcarrier signal after channel equalization of the mth subcarrier.
 ミリ波帯チャネルは、遅延波の程度が比較的小さい。よって、チャネルの周波数依存性は小さくなり、隣接するサブキャリアのチャネル伝達関数は、ほぼ等しいとみなすことができる。即ち、下記数11が成立する。 The millimeter wave band channel has a relatively small delay wave. Therefore, the frequency dependence of the channel is reduced, and the channel transfer functions of adjacent subcarriers can be regarded as being substantially equal. That is, the following formula 11 is established.
Figure JPOXMLDOC01-appb-M000052
 ただし、H(m-1)は(m-1)番目のサブキャリアのチャネル伝達関数を表し、H(m)はm番目のサブキャリアのチャネル伝達関数を表し、そして、H(m+1)は(m+1)番目のサブキャリアのチャネル伝達関数を表す。
Figure JPOXMLDOC01-appb-M000052
Where H (m−1) represents the channel transfer function of the (m−1) th subcarrier, H (m) represents the channel transfer function of the mth subcarrier, and H (m + 1) is ( It represents the channel transfer function of the (m + 1) th subcarrier.
 また、ICIは隣接するサブキャリア間によるものが支配的である。 Also, ICI is dominant between adjacent subcarriers.
 これらのことから、上記数10で表している「m番目のサブキャリアのチャネル等化後の受信サブキャリア信号
Figure JPOXMLDOC01-appb-I000053
を下記数12で表すことができる。
From these facts, the “received subcarrier signal after channel equalization of the m-th subcarrier expressed by the above equation 10”.
Figure JPOXMLDOC01-appb-I000053
Can be expressed by Equation 12 below.
Figure JPOXMLDOC01-appb-M000054
 ただし、
Figure JPOXMLDOC01-appb-I000055
はm番目のサブキャリアの送信サブキャリア信号(周波数領域信号)を表し、
Figure JPOXMLDOC01-appb-I000056
は(m-1)番目のサブキャリアの送信サブキャリア信号(周波数領域信号)を表し、
Figure JPOXMLDOC01-appb-I000057
は(m+1)番目のサブキャリアの送信サブキャリア信号(周波数領域信号)を表す。また、
Figure JPOXMLDOC01-appb-I000058
は上記数8で表す
Figure JPOXMLDOC01-appb-I000059
において、
Figure JPOXMLDOC01-appb-I000060
をそれぞれ0,1,-1に置き換えて得たものであり、m番目のサブキャリアの送信サブキャリア信号の送信機及び受信機における位相雑音に起因する位相回転量、(m-1)番目のサブキャリアの送信サブキャリア信号がm番目のサブキャリアの送信サブキャリア信号に与える干渉の程度を表す量、(m+1)番目のサブキャリアの送信サブキャリア信号がm番目のサブキャリアの送信サブキャリア信号に与える干渉の程度を表す量をそれぞれ表している。
Figure JPOXMLDOC01-appb-M000054
However,
Figure JPOXMLDOC01-appb-I000055
Represents the transmission subcarrier signal (frequency domain signal) of the mth subcarrier,
Figure JPOXMLDOC01-appb-I000056
Represents the transmission subcarrier signal (frequency domain signal) of the (m−1) th subcarrier,
Figure JPOXMLDOC01-appb-I000057
Represents a transmission subcarrier signal (frequency domain signal) of the (m + 1) th subcarrier. Also,
Figure JPOXMLDOC01-appb-I000058
Is expressed by Equation 8 above.
Figure JPOXMLDOC01-appb-I000059
In
Figure JPOXMLDOC01-appb-I000060
Are respectively replaced by 0, 1, and −1, and the amount of phase rotation due to phase noise in the transmitter and receiver of the transmission subcarrier signal of the mth subcarrier, (m−1) th An amount representing the degree of interference that the transmission subcarrier signal of the subcarrier gives to the transmission subcarrier signal of the mth subcarrier, and the transmission subcarrier signal of the (m + 1) th subcarrier is the transmission subcarrier signal of the mth subcarrier Represents the amount of interference given to.
 上記数12で表す関係式を利用すると、以下のことが明らかになる。 Using the relational expression expressed by the above formula 12, the following becomes clear.
 即ち、あるサブキャリア番号mに依存しない複素係数
Figure JPOXMLDOC01-appb-I000061
が存在し、下記数13が成立する。
That is, a complex coefficient that does not depend on a certain subcarrier number m
Figure JPOXMLDOC01-appb-I000061
And the following Equation 13 is established.
Figure JPOXMLDOC01-appb-M000062
 ただし、
Figure JPOXMLDOC01-appb-I000063
は(m-1)番目のサブキャリアのチャネル等化後の受信サブキャリア信号を表し、
Figure JPOXMLDOC01-appb-I000064
は(m+1)番目のサブキャリアのチャネル等化後の受信サブキャリア信号を表す。
Figure JPOXMLDOC01-appb-M000062
However,
Figure JPOXMLDOC01-appb-I000063
Represents the received subcarrier signal after channel equalization of the (m−1) th subcarrier,
Figure JPOXMLDOC01-appb-I000064
Represents a received subcarrier signal after channel equalization of the (m + 1) th subcarrier.
 本発明では、複素係数
Figure JPOXMLDOC01-appb-I000065
がサブキャリア番号mに依存しないことから、パイロット信号を活用することで、上記複素係数を本発明の位相雑音補償係数として学習し、学習した位相雑音補償係数と、チャネル等化後の受信サブキャリア信号に基づいて、受信信号に含まれている局部発振器位相雑音を補償できることを着眼点としている。
In the present invention, complex coefficients
Figure JPOXMLDOC01-appb-I000065
Does not depend on the subcarrier number m, the above complex coefficient is learned as the phase noise compensation coefficient of the present invention by utilizing the pilot signal, and the learned phase noise compensation coefficient and the received subcarrier after channel equalization are used. The focus is on the ability to compensate for local oscillator phase noise contained in the received signal based on the signal.
 つまり、本発明の着眼点は、
(A1)ミリ波帯チャネルにおいて、隣接するサブキャリア(即ち、隣接する3つのサブキャリア)のチャネル伝達関数は等しいとみなせること、
(A2)受信機ベースバンドにおける、チャネル等化後の隣接する3つの受信サブキャリア信号を上記数13に基づいて合成することで、位相雑音を補償できること(即ち、送信機及び受信機における位相雑音に起因する位相回転とサブキャリア間干渉を除去できること)、及び、
(A3)隣接する3つのチャネル等化後の受信サブキャリア信号を合成する際の係数(即ち、上記数13における位相雑音補償係数
Figure JPOXMLDOC01-appb-I000066
は、サブキャリア番号に依存しないので、サブキャリアを用いて、位相雑音補償係数を学習することができることである。
 
(3)本発明の要部の説明
 図2は、本発明の要部を構成する位相雑音補償回路140及び位相雑音補償係数推定回路145を説明する図である。本発明の要部は、位相雑音補償回路140及び位相雑音補償係数推定回路145で構成されており、図2では2点鎖線で示されている。
In other words, the focus of the present invention is
(A1) In the millimeter waveband channel, the channel transfer functions of adjacent subcarriers (that is, three adjacent subcarriers) can be regarded as equal.
(A2) The phase noise can be compensated by synthesizing three adjacent received subcarrier signals after channel equalization in the receiver baseband based on the above Equation 13 (that is, the phase noise in the transmitter and the receiver). The phase rotation and inter-subcarrier interference caused by
(A3) Coefficient for combining received subcarrier signals after equalization of three adjacent channels (that is, phase noise compensation coefficient in Equation 13 above)
Figure JPOXMLDOC01-appb-I000066
Since this does not depend on the subcarrier number, the phase noise compensation coefficient can be learned using the subcarrier.

(3) Description of Essential Part of the Present Invention FIG. 2 is a diagram for explaining the phase noise compensation circuit 140 and the phase noise compensation coefficient estimation circuit 145 that constitute the principal part of the present invention. The main part of the present invention includes a phase noise compensation circuit 140 and a phase noise compensation coefficient estimation circuit 145, which are indicated by a two-dot chain line in FIG.
 本発明では、位相雑音補償係数推定回路145が、パイロット信号とレプリカ信号を用いて、位相雑音補償係数を推定(学習)し、推定(学習)した位相雑音補償係数を位相雑音補償回路140に出力するようにしている。 In the present invention, the phase noise compensation coefficient estimation circuit 145 estimates (learns) the phase noise compensation coefficient using the pilot signal and the replica signal, and outputs the estimated (learned) phase noise compensation coefficient to the phase noise compensation circuit 140. Like to do.
 また、位相雑音補償係数推定回路145では、レプリカ信号とパイロット信号の平均二乗誤差が最小となるように、位相雑音補償係数を推定するようにしている。 Also, the phase noise compensation coefficient estimation circuit 145 estimates the phase noise compensation coefficient so that the mean square error between the replica signal and the pilot signal is minimized.
 ちなみに、本発明では、位相雑音補償係数推定回路145により位相雑音補償係数を推定する際に、例えば、MMSE(Minimum Mean Squared Error)法、LMS(Least Mean Square)法やRLS(Recursive Least-Squares)法といった既知の方法を用いることができる。 Incidentally, in the present invention, when the phase noise compensation coefficient estimation circuit 145 estimates the phase noise compensation coefficient, for example, the MMSE (Minimum Mean Squared Error) method, the LMS (Least Mean Square) method or the RLS (Recursive Least-Squares) method. Known methods such as the method can be used.
 そして、位相雑音補償回路140は、位相雑音補償係数推定回路145から出力される位相雑音補償係数と、チャネル等化後の受信サブキャリア信号を用いて、上記数13に基づいて、隣接する3つのチャネル等化後の受信サブキャリア信号を合成することにより、受信信号に含まれている局部発振器位相雑音を補償し、補償結果(即ち、位相雑音補償された受信信号)を出力する。 Then, the phase noise compensation circuit 140 uses the phase noise compensation coefficient output from the phase noise compensation coefficient estimation circuit 145 and the received subcarrier signal after channel equalization, based on Equation 13 above, By synthesizing the received subcarrier signal after channel equalization, the local oscillator phase noise included in the received signal is compensated, and a compensation result (that is, a received signal subjected to phase noise compensation) is output.
 つまり、位相雑音補償回路140から出力される補償結果(位相雑音補償された受信信号)は、受信機ベースバンドにおけるチャネル等化後の隣接する3つの受信サブキャリア信号と、位相雑音補償係数推定回路145により推定された位相雑音補償係数を、上記数13に基づいて合成して得られた信号である。 That is, the compensation result (received signal subjected to phase noise compensation) output from the phase noise compensation circuit 140 includes three adjacent received subcarrier signals after channel equalization in the receiver baseband, and a phase noise compensation coefficient estimation circuit. This is a signal obtained by synthesizing the phase noise compensation coefficient estimated at 145 based on the above equation (13).
 以下、本発明では、位相雑音補償係数推定回路145により行われる、位相雑音補償係数を推定するための位相雑音補償係数推定処理の具体例について説明する。 Hereinafter, in the present invention, a specific example of the phase noise compensation coefficient estimation process for estimating the phase noise compensation coefficient performed by the phase noise compensation coefficient estimation circuit 145 will be described.
 まず、位相雑音補償係数推定回路145において、位相雑音補償係数を推定する際に、MMSE法を用いる場合の位相雑音補償係数推定処理の手順について説明する。 First, the procedure of phase noise compensation coefficient estimation processing when the MMSE method is used when the phase noise compensation coefficient estimation circuit 145 estimates the phase noise compensation coefficient will be described.
 位相雑音補償係数推定処理にMMSE法を用いる場合に、下記数14に基づいて、位相雑音補償係数
Figure JPOXMLDOC01-appb-I000067
を推定する。
When the MMSE method is used for the phase noise compensation coefficient estimation process, the phase noise compensation coefficient is calculated based on the following equation (14).
Figure JPOXMLDOC01-appb-I000067
Is estimated.
Figure JPOXMLDOC01-appb-M000068
 ただし、位相雑音補償係数は
Figure JPOXMLDOC01-appb-I000069
である。また、
Figure JPOXMLDOC01-appb-I000070
は複素係数
Figure JPOXMLDOC01-appb-I000071
の3次元行ベクトルの転置である。また、
Figure JPOXMLDOC01-appb-I000072
は送信パイロット信号を要素とするベクトルであり、下記数15で表す。そして、以下では、
Figure JPOXMLDOC01-appb-I000073
は転置記号である。
Figure JPOXMLDOC01-appb-M000068
However, the phase noise compensation coefficient is
Figure JPOXMLDOC01-appb-I000069
It is. Also,
Figure JPOXMLDOC01-appb-I000070
Is the complex coefficient
Figure JPOXMLDOC01-appb-I000071
Is a transpose of the three-dimensional row vector. Also,
Figure JPOXMLDOC01-appb-I000072
Is a vector whose elements are transmission pilot signals, and is expressed by the following equation (15). And below
Figure JPOXMLDOC01-appb-I000073
Is a transpose symbol.
Figure JPOXMLDOC01-appb-M000074
 ただし、
Figure JPOXMLDOC01-appb-I000075
はOFDMシンボルあたりに含まれるパイロット信号である。また、
Figure JPOXMLDOC01-appb-I000076
はパイロットサブキャリアのサブキャリアインデックスを表す。
Figure JPOXMLDOC01-appb-M000074
However,
Figure JPOXMLDOC01-appb-I000075
Is a pilot signal included per OFDM symbol. Also,
Figure JPOXMLDOC01-appb-I000076
Represents the subcarrier index of the pilot subcarrier.
 更に、
Figure JPOXMLDOC01-appb-I000077
はチャネル等化後のパイロット信号と、当該チャネル等化後のパイロット信号に隣接するチャネル等化後の受信信号(周波数領域信号)を要素とする行列であり、下記数16で表す。
Figure JPOXMLDOC01-appb-I000078
の複素共役転置行列を表す。
Furthermore,
Figure JPOXMLDOC01-appb-I000077
Is a matrix whose elements are a pilot signal after channel equalization and a received signal (frequency domain signal) after channel equalization adjacent to the pilot signal after channel equalization.
Figure JPOXMLDOC01-appb-I000078
Represents the complex conjugate transpose of.
Figure JPOXMLDOC01-appb-M000079
 なお、本発明では、位相雑音補償係数推定回路145において、位相雑音補償係数を推定する際に、MMSE法を用いる場合に、後述するレプリカ信号
Figure JPOXMLDOC01-appb-I000080
を明示的に生成しない。しかしながら、上述したMMSE法によって(即ち、上記数14に基づいて)推定された位相雑音補償係数
Figure JPOXMLDOC01-appb-I000081
と下記数17で表す
Figure JPOXMLDOC01-appb-I000082
を用いて、レプリカ信号
Figure JPOXMLDOC01-appb-I000083
を生成すること、及び、レプリカ信号
Figure JPOXMLDOC01-appb-I000084
とパイロット信号の平均二乗誤差が最小化されることは、数学的に可能である。
Figure JPOXMLDOC01-appb-M000079
In the present invention, when the phase noise compensation coefficient estimation circuit 145 uses the MMSE method to estimate the phase noise compensation coefficient, a replica signal described later is used.
Figure JPOXMLDOC01-appb-I000080
Is not explicitly generated. However, the phase noise compensation coefficient estimated by the above-described MMSE method (that is, based on Equation 14 above)
Figure JPOXMLDOC01-appb-I000081
And expressed by Equation 17 below
Figure JPOXMLDOC01-appb-I000082
Use the replica signal
Figure JPOXMLDOC01-appb-I000083
And replica signal
Figure JPOXMLDOC01-appb-I000084
It is mathematically possible that the mean square error of the pilot signal is minimized.
 次に、位相雑音補償係数推定回路145において、位相雑音補償係数を推定する際に、LMS法を用いる場合の位相雑音補償係数推定処理の手順について説明する。 Next, the procedure of the phase noise compensation coefficient estimation process when the LMS method is used when the phase noise compensation coefficient estimation circuit 145 estimates the phase noise compensation coefficient will be described.
 位相雑音補償係数推定処理にLMS法を用いる場合に、下記LMSアルゴリズムに基づいて、位相雑音補償係数
Figure JPOXMLDOC01-appb-I000085
を推定する。
LMSアルゴリズム
Figure JPOXMLDOC01-appb-I000086
 ただし、上記LMSアルゴリズムでは、
Figure JPOXMLDOC01-appb-I000087
はレプリカ信号を表す。また、
Figure JPOXMLDOC01-appb-I000088
はチャネル等化後のパイロット信号と、当該チャネル等化後のパイロット信号に隣接する2つのチャネル等化後の受信信号(周波数領域信号)を要素とするベクトルであり、下記数17で表す。
When the LMS method is used for the phase noise compensation coefficient estimation process, the phase noise compensation coefficient is based on the following LMS algorithm.
Figure JPOXMLDOC01-appb-I000085
Is estimated.
LMS algorithm
Figure JPOXMLDOC01-appb-I000086
However, in the above LMS algorithm,
Figure JPOXMLDOC01-appb-I000087
Represents a replica signal. Also,
Figure JPOXMLDOC01-appb-I000088
Is a vector whose elements are a pilot signal after channel equalization and two channel equalized reception signals (frequency domain signals) adjacent to the pilot signal after channel equalization.
Figure JPOXMLDOC01-appb-M000089
 ただし、piはパイロット信号のサブキャリア番号を表す。
Figure JPOXMLDOC01-appb-I000090
の要素となる、チャネル等化後のパイロット信号である。また、
Figure JPOXMLDOC01-appb-I000091
の要素となる、チャネル等化後のパイロット信号に隣接する2つのチャネル等化後の受信信号である。
Figure JPOXMLDOC01-appb-M000089
Here, p i represents the subcarrier number of the pilot signal.
Figure JPOXMLDOC01-appb-I000090
Is a pilot signal after channel equalization. Also,
Figure JPOXMLDOC01-appb-I000091
Are received signals after equalization of two channels adjacent to the pilot signal after channel equalization.
 また、上記LMSアルゴリズムでは、μはステップ・サイズパラメタと呼ばれる実正定数であり、任意に設定することができる。推定された位相雑音補償係数の収束速度がμに応じて変化するので、適切なμを設定する必要がある。
 
(4)本発明の実施例
 ここで、図面を参照しながら、本発明の具体的な実施形態を説明する。図3は本発明の位相雑音補償技術を用いたOFDM受信機の構成例を示すブロック図である。以下、図3に示された本発明の位相雑音補償技術を用いたOFDM受信機(単に、「本発明の位相雑音補償受信機」とも言う。)の受信動作について説明する。
In the LMS algorithm, μ is a real positive constant called a step size parameter, and can be set arbitrarily. Since the convergence speed of the estimated phase noise compensation coefficient changes according to μ, it is necessary to set an appropriate μ.

(4) Examples of the Present Invention Here, specific embodiments of the present invention will be described with reference to the drawings. FIG. 3 is a block diagram showing a configuration example of an OFDM receiver using the phase noise compensation technique of the present invention. The reception operation of the OFDM receiver using the phase noise compensation technique of the present invention shown in FIG. 3 (also simply referred to as “phase noise compensation receiver of the present invention”) will be described below.
 図3に示されたように、本発明の位相雑音補償技術を用いたOFDM受信機は、アンテナ100と、IQ復調回路110と、局部発振器111と、A/D変換回路115と、同期回路117と、CP除去回路120と、FFT回路125と、チャネル等化器130と、チャネル推定回路135と、位相雑音補償回路140と、位相雑音補償係数推定回路145と、QAM復調器150と、デインターリーバ155と、誤り訂正復号器160を備えるようになっている。また、図3の2点鎖線で示されている部分、即ち、位相雑音補償回路140と位相雑音補償係数推定回路145は、本発明の要部を構成する。 As shown in FIG. 3, the OFDM receiver using the phase noise compensation technique of the present invention includes an antenna 100, an IQ demodulation circuit 110, a local oscillator 111, an A / D conversion circuit 115, and a synchronization circuit 117. A CP elimination circuit 120, an FFT circuit 125, a channel equalizer 130, a channel estimation circuit 135, a phase noise compensation circuit 140, a phase noise compensation coefficient estimation circuit 145, a QAM demodulator 150, A leaver 155 and an error correction decoder 160 are provided. Further, the part indicated by the two-dot chain line in FIG. 3, that is, the phase noise compensation circuit 140 and the phase noise compensation coefficient estimation circuit 145 constitute the main part of the present invention.
 図3に示されたように、アンテナ100は、送信側でOFDM変調されたバーストOFDM変調信号を受信するようになっている。IQ復調回路110は、局部発振器111から入力されるキャリア信号を参照して、アンテナ100を介して受信された、バーストOFDM変調信号(以下、単に「受信OFDM変調信号」とも言う。)をアナログ複素ベースバンド信号に変換し、出力する。 As shown in FIG. 3, the antenna 100 is adapted to receive a burst OFDM modulated signal that is OFDM modulated on the transmission side. The IQ demodulation circuit 110 refers to the carrier signal input from the local oscillator 111 and analog-complexes a burst OFDM modulated signal (hereinafter also simply referred to as “received OFDM modulated signal”) received via the antenna 100. Convert to baseband signal and output.
 ここで、IQ復調回路110から出力されるアナログ複素ベースバンド信号は、OFDM受信機内の局部発振器111に起因する位相雑音の影響を受けているので、位相雑音を含む受信信号となっている。以下、IQ復調回路110から出力されるアナログ複素ベースバンド信号を単に「位相雑音を含む受信信号」とも言う。 Here, since the analog complex baseband signal output from the IQ demodulation circuit 110 is affected by the phase noise caused by the local oscillator 111 in the OFDM receiver, it is a received signal including the phase noise. Hereinafter, the analog complex baseband signal output from the IQ demodulation circuit 110 is also simply referred to as “received signal including phase noise”.
 次に、標本量子化手段としてのA/D変換回路115は、IQ復調回路110から出力されるアナログ複素ベースバンド信号を標本量子化する。 Next, the A / D conversion circuit 115 as sample quantization means performs sample quantization on the analog complex baseband signal output from the IQ demodulation circuit 110.
 同期回路117は、A/D変換回路115により標本量子化されたベースバンド信号(以下、単に「ディジタル複素ベースバンド信号」とも言う。)のタイミング同期処理及び搬送波周波数同期処理を行い、同期処理後のディジタル複素ベースバンド信号を出力する。 The synchronization circuit 117 performs timing synchronization processing and carrier frequency synchronization processing of the baseband signal sampled and quantized by the A / D conversion circuit 115 (hereinafter also simply referred to as “digital complex baseband signal”). The digital complex baseband signal is output.
 つまり、同期回路117は、「タイミング/搬送波周波数同期用プリアンブル」を受信する時に、A/D変換回路115から出力される標本量子化後のディジタル複素ベースバンド信号を入力し、搬送波周波数同期とシンボルタイミング同期を確立するようにしている。 That is, when receiving the “timing / carrier frequency synchronization preamble”, the synchronization circuit 117 receives the digital complex baseband signal after the sample quantization output from the A / D conversion circuit 115, and receives the carrier frequency synchronization and symbol. Timing synchronization is established.
 次に、CP除去回路120は、同期回路117から出力される同期処理後のディジタル複素ベースバンド信号からCPを削除し、CPを削除した、同期処理後のディジタル複素ベースバンド信号(以下、単に「CP削除後のディジタル複素ベースバンド信号」とも言う。)を出力する。 Next, the CP removal circuit 120 deletes the CP from the digital complex baseband signal after the synchronization process output from the synchronization circuit 117, and deletes the CP. Also referred to as “digital complex baseband signal after CP removal”).
 FFT回路125は、CP除去回路120から出力される、CP削除後のディジタル複素ベースバンド信号を高速フーリエ変換(FFT)することにより、受信OFDM変調信号をサブキャリア毎の信号(以下、単に「受信サブキャリア信号」とも言う。)に分離する。 The FFT circuit 125 performs fast Fourier transform (FFT) on the digital complex baseband signal after CP deletion output from the CP removal circuit 120, thereby converting the received OFDM modulation signal into a signal for each subcarrier (hereinafter simply referred to as "reception"). Also referred to as “subcarrier signal”.
 次に、チャネル推定回路135は、「伝搬路推定用プリアンブル」を受信する時に、FFT回路125から出力される、サブキャリア毎に分離された受信サブキャリア信号を用いて、チャネル伝達関数を推定し、推定したチャネル伝達関数を出力する。 Next, the channel estimation circuit 135 estimates the channel transfer function using the reception subcarrier signal separated for each subcarrier output from the FFT circuit 125 when the “propagation path preamble” is received. The estimated channel transfer function is output.
 また、チャネル等化器130は、推定したチャネル伝達関数を用いて、FFT回路125から出力された受信サブキャリア信号をチャネル等化し、チャネル等化後の受信サブキャリア信号を出力する。 Further, the channel equalizer 130 equalizes the received subcarrier signal output from the FFT circuit 125 using the estimated channel transfer function, and outputs the received subcarrier signal after channel equalization.
 次に、位相雑音補償係数推定回路145は、チャネル等化器130から出力される「チャネル等化後の受信サブキャリア信号」と「チャネル等化後のパイロット信号」を用いて、位相雑音補償係数を学習し、学習した位相雑音補償係数を出力する。位相雑音補償回路140は、位相雑音補償係数推定回路145から出力される「位相雑音補償係数」と、チャネル等化器130から出力される「チャネル等化後の受信サブキャリア信号」を用いて、受信信号に含まれている位相雑音の補償を行い、位相雑音補償結果、即ち、位相雑音補償された受信信号(以下、「位相雑音補償された受信信号」を単に「位相雑音補償後の受信信号」とも言う。)を出力する。 Next, the phase noise compensation coefficient estimation circuit 145 uses the “received subcarrier signal after channel equalization” and “pilot signal after channel equalization” output from the channel equalizer 130 to generate a phase noise compensation coefficient. And the learned phase noise compensation coefficient is output. The phase noise compensation circuit 140 uses the “phase noise compensation coefficient” output from the phase noise compensation coefficient estimation circuit 145 and the “received subcarrier signal after channel equalization” output from the channel equalizer 130, Compensate the phase noise included in the received signal, and the phase noise compensation result, that is, the received signal with phase noise compensation (hereinafter referred to as “received signal with phase noise compensation”) is simply “received signal after phase noise compensation”. Is also output.).
 次に、QAM復調器150は、位相雑音補償回路140から出力される位相雑音補償結果(位相雑音補償後の受信信号)をサブキャリア毎に復調し、復調後の信号(復調された位相雑音補償後の受信信号)を出力する。デインターリーバ155は、QAM復調器150から出力される復調後の信号に対し、デインターリーブを行い、デインターリーブ後の信号(デインターリーブされた復調後の信号)を出力する。 Next, the QAM demodulator 150 demodulates the phase noise compensation result (received signal after phase noise compensation) output from the phase noise compensation circuit 140 for each subcarrier, and the demodulated signal (demodulated phase noise compensation). The later received signal) is output. The deinterleaver 155 deinterleaves the demodulated signal output from the QAM demodulator 150, and outputs a deinterleaved signal (deinterleaved demodulated signal).
 最後に、誤り訂正復号器160は、デインターリーバ155から出力されるデインターリーブ後の信号に対し、誤り訂正復号を行い、誤り訂正復号後の信号(誤り訂正復号されたデインターリーブ後の信号)を出力する。これで、図3に示された本発明の位相雑音補償受信機の受信動作が終了する。 Finally, the error correction decoder 160 performs error correction decoding on the deinterleaved signal output from the deinterleaver 155, and the signal after error correction decoding (the signal after error correction decoded deinterleaving) Is output. This completes the reception operation of the phase noise compensation receiver of the present invention shown in FIG.
 図4は本発明において、送信OFDM変調信号(時間領域信号)のフォーマットの構成例を示す図である。図4に示されたように、送信OFDM変調信号(時間領域信号)は、「タイミング/搬送波周波数同期用プリアンブル」と「伝搬路推定用プリアンブル(チャネル推定用プリアンブルとも呼ぶ)」と「データ」との3つの部分に大別される。 FIG. 4 is a diagram showing a configuration example of a format of a transmission OFDM modulation signal (time domain signal) in the present invention. As shown in FIG. 4, the transmission OFDM modulation signal (time domain signal) includes “timing / carrier frequency synchronization preamble”, “propagation preamble (also referred to as channel estimation preamble)” and “data”. It is roughly divided into three parts.
 「タイミング/搬送波周波数同期用プリアンブル」及び「伝搬路推定用プリアンブル」は、OFDM送信機とOFDM受信機が共有している情報であり、既知信号系列と呼ばれる。 “Timing / carrier frequency synchronization preamble” and “propagation path preamble” are information shared by the OFDM transmitter and the OFDM receiver, and are called known signal sequences.
 また、「タイミング/搬送波周波数同期用プリアンブル」は、OFDM受信機において、受信OFDM変調信号(時間領域信号)の開始タイミングを検出するための機能を持つ。そして、「伝搬路推定用プリアンブル」は、OFDM受信機のチャネル推定回路135において、チャネル(「無線チャネル」又は「伝搬路」とも呼ぶ)を推定するための情報を提供する。 Also, the “timing / carrier frequency synchronization preamble” has a function for detecting the start timing of the received OFDM modulated signal (time domain signal) in the OFDM receiver. The “propagation path preamble” provides information for estimating a channel (also referred to as “radio channel” or “propagation path”) in the channel estimation circuit 135 of the OFDM receiver.
 更に、「データ」は、複数のOFDMシンボルで構成される。各OFDMシンボルは、FFT/IFFTポイント数に等しい数のサブキャリア毎の信号で構成される。OFDMシンボル内のサブキャリア毎の信号のうち、幾つかのサブキャリア信号は、送受信において既知信号であり、プリアンブルと区別してパイロット信号と呼ばれる。このパイロット信号は、上述したように、本発明において、位相雑音補償係数を推定するための情報を提供する。
 
(5)本発明と従来手法の比較
 本発明の優れた効果を実証するために、本発明の位相雑音補償技術と非特許文献1に開示された従来の位相雑音補償技術(以下、単に「従来手法」とも言う。)を比較し、比較した結果を図5~図7に示す。
Furthermore, “data” is composed of a plurality of OFDM symbols. Each OFDM symbol is composed of a number of signals per subcarrier equal to the number of FFT / IFFT points. Among the signals for each subcarrier in the OFDM symbol, some subcarrier signals are known signals in transmission and reception, and are called pilot signals to distinguish them from preambles. As described above, this pilot signal provides information for estimating the phase noise compensation coefficient in the present invention.

(5) Comparison between the present invention and the conventional method In order to demonstrate the superior effect of the present invention, the phase noise compensation technique of the present invention and the conventional phase noise compensation technique disclosed in Non-Patent Document 1 (hereinafter simply referred to as “conventional”). The results are also shown in FIGS. 5 to 7. FIG.
 ちなみに、図5は従来手法と本発明の計算量の比較を示すグラフであり、図5では、計算量として、実数同士乗算回数を用いる。また、図6は従来手法と本発明のビット誤り率を数値計算シミュレーションにより比較した結果を示すグラフである。更に、図7は従来手法と本発明のパケット誤り率を数値計算シミュレーションにより比較した結果を示すグラフである。なお、数値計算シミュレーションの条件を下記表1に示す。 Incidentally, FIG. 5 is a graph showing a comparison of the calculation amount between the conventional method and the present invention. In FIG. 5, the number of multiplications between real numbers is used as the calculation amount. FIG. 6 is a graph showing the result of comparing the bit error rate of the conventional method and the present invention by numerical simulation. Further, FIG. 7 is a graph showing the result of comparing the packet error rate of the conventional method and the present invention by numerical calculation simulation. The conditions for numerical calculation simulation are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000092
 本発明の位相雑音補償技術を用いることで、本発明に係る位相雑音補償受信機のベースバンド部において、位相雑音補償に費やす計算量(図5では、実数同士乗算回数)を従来手法の30分の1程度まで大幅に削減することができる。
Figure JPOXMLDOC01-appb-T000092
By using the phase noise compensation technique of the present invention, in the baseband part of the phase noise compensation receiver according to the present invention, the amount of calculation spent for phase noise compensation (in FIG. 5, the number of multiplications between real numbers) is 30 minutes of the conventional method. It can be significantly reduced to about 1.
 具体的に、本発明と従来手法に対し、位相雑音補償に係る実数同士の乗算回数をそれぞれ求め、求めた実数同士乗算回数を図5に示すようにした。本発明の位相雑音補償技術に係る計算量(図5では、実数同士乗算回数)を計算するに当たり、具体例として、位相雑音補償係数推定回路145において、MMSE法又はLMS法を用いる場合を検証した。なお、実数同士乗算回数を計算する際に、1回の複素数同士の乗算は4回の実数同士の乗算として計算するようにしている。図5のグラフの縦軸の値は大きいほど計算量が多く計算時間がかかることを表しており、計算量は小さいほうが良い。図5に示されたように、従来手法では位相雑音補償に係る実数同士の乗算回数が211968回であるのに対し、本発明では、位相雑音補償係数推定回路145において、MMSE法を用いた場合に、位相雑音補償に係る実数同士の乗算回数が7488回である。また、図示されていないが、本発明では、位相雑音補償係数推定回路145において、LMS法を用いた場合に、位相雑音補償に係る実数同士の乗算回数が6624回である。 Specifically, for the present invention and the conventional method, the number of multiplications between real numbers related to phase noise compensation was obtained, and the obtained number of multiplications between real numbers was as shown in FIG. In calculating the amount of calculation related to the phase noise compensation technique of the present invention (the number of multiplications between real numbers in FIG. 5), as a specific example, the case where the MMSE method or the LMS method is used in the phase noise compensation coefficient estimation circuit 145 was verified. . When calculating the number of multiplications between real numbers, one multiplication between complex numbers is calculated as four multiplications between real numbers. The larger the value on the vertical axis of the graph of FIG. 5, the greater the amount of calculation and the longer the calculation time. As shown in FIG. 5, in the conventional method, the number of multiplications between real numbers related to phase noise compensation is 211968, whereas in the present invention, the phase noise compensation coefficient estimation circuit 145 uses the MMSE method. In addition, the number of multiplications between real numbers for phase noise compensation is 7488. Although not shown, in the present invention, when the LMS method is used in the phase noise compensation coefficient estimation circuit 145, the number of multiplications between real numbers related to phase noise compensation is 6624 times.
 このように、本発明では、LMS法又はMMSE法のいずれかを用いた場合も、本発明の位相雑音補償技術に係る計算量(位相雑音補償係数推定回路145に係る計算量)が、従来手法の約30分の1程度の計算量である。この比較結果から、本発明の位相雑音補償技術を用いることで、位相雑音補償に費やす計算量を大幅に削減できることが明らかである。 As described above, in the present invention, even when either the LMS method or the MMSE method is used, the calculation amount related to the phase noise compensation technique of the present invention (the calculation amount related to the phase noise compensation coefficient estimation circuit 145) is the same as the conventional method. Is about 1/30 of the calculation amount. From this comparison result, it is clear that the amount of calculation spent for phase noise compensation can be greatly reduced by using the phase noise compensation technique of the present invention.
 図6では、従来手法と本発明におけるビット誤り率特性を比較した。図6の横軸は信号対雑音比(SNR)であり、また、図6の縦軸はビット誤り率(BER:Bit Error Rate)である。BERは値が小さいほど良い。図6のシミュレーション結果から、同一のビット誤り率を得るために、本発明は、非線形処理による従来手法よりも2dB(@BER=10-4)程度大きな受信電力を要することが分かる。 In FIG. 6, the bit error rate characteristics in the conventional method and the present invention are compared. The horizontal axis in FIG. 6 is the signal-to-noise ratio (SNR), and the vertical axis in FIG. 6 is the bit error rate (BER). The smaller the value of BER, the better. From the simulation results in FIG. 6, it can be seen that the present invention requires a received power that is about 2 dB (@ BER = 10 −4 ) larger than the conventional method using nonlinear processing in order to obtain the same bit error rate.
 また、図6における「補償なし」は、受信機において位相雑音補償を行わなかった場合のビット誤り率特性を表している。本発明及び従来手法はいかなる信号対雑音比(SNR)においても、補償なしの場合よりも小さなビット誤り率を示している。つまり、本発明及び従来手法は、位相雑音に起因する通信品質劣化を改善することに成功していることを表している。 Further, “no compensation” in FIG. 6 represents a bit error rate characteristic when phase noise compensation is not performed in the receiver. The present invention and the conventional approach show a lower bit error rate at any signal to noise ratio (SNR) than without compensation. In other words, the present invention and the conventional method have succeeded in improving the communication quality deterioration caused by the phase noise.
 図7では、従来手法と本発明におけるパケット誤り率(PER:Packet Error Rate)特性を比較した。図7の横軸は信号対雑音比(SNR)であり、また、図7の縦軸はパケット誤り率である。PERは値が小さいほど良い。 FIG. 7 compares the packet error rate (PER) characteristics of the conventional method and the present invention. The horizontal axis in FIG. 7 is the signal-to-noise ratio (SNR), and the vertical axis in FIG. 7 is the packet error rate. The smaller the value of PER, the better.
 また、図7における「補償なし」は、受信機において位相雑音補償を行わなかった場合のパケット誤り率特性を表している。本発明及び従来手法はいかなる信号対雑音比(SNR)においても、補償なしの場合よりも小さなパケット誤り率を示している。つまり、本発明及び従来手法は、位相雑音に起因する通信品質劣化を改善することに成功していることを表している。 Further, “no compensation” in FIG. 7 represents a packet error rate characteristic when the phase noise compensation is not performed in the receiver. The present invention and the prior art show a lower packet error rate at any signal-to-noise ratio (SNR) than without compensation. In other words, the present invention and the conventional method have succeeded in improving the communication quality deterioration caused by the phase noise.
 図7の本シミュレーション結果から、同一のパケット誤り率を得るために、本発明は、非線形処理による従来手法よりも2dB(@PER=10-2)程度大きな受信電力を要することが分かる。 From the simulation results of FIG. 7, it can be seen that the present invention requires a received power that is about 2 dB (@ PER = 10 −2 ) larger than the conventional method using nonlinear processing in order to obtain the same packet error rate.
 以上、本発明の実施形態について説明したが、本発明の位相雑音補償受信機の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨(本発明の着眼点及び本発明の要部の構成)を逸脱しない範囲で種々変形が可能である。 The embodiment of the present invention has been described above, but the specific configuration of the phase noise compensation receiver of the present invention is not limited to the above-described embodiment, and the gist of the present invention (the focus of the present invention) Various modifications can be made without departing from the scope of the present invention.
10,100   アンテナ
11,110   IQ復調回路
12,115   A/D変換回路
13,120   CP除去回路
14   判定指向型位相雑音推定器
15,135   チャネル推定回路
15a,140   位相雑音補償回路
16,125   FFT回路
17   判定指向型チャネル推定器
18,130   チャネル等化器
19   CP挿入器
20   CPE補償器
21   CPE補償係数推定回路
22,150   QAM復調器
23   OFDM変調信号生成器
24,155   デインターリーバ
25   インターリーバ
26,160   誤り訂正復号器
27   誤り訂正符号器
28   スイッチ
29   CRC復号器
111   局部発振器
117   同期回路
145   位相雑音補償係数推定回路
10,100 Antenna 11,110 IQ demodulation circuit 12,115 A / D conversion circuit 13,120 CP removal circuit 14 Decision-directed phase noise estimator 15,135 Channel estimation circuit 15a, 140 Phase noise compensation circuit 16,125 FFT circuit 17 Decision-oriented channel estimator 18, 130 Channel equalizer 19 CP inserter 20 CPE compensator 21 CPE compensation coefficient estimation circuit 22, 150 QAM demodulator 23 OFDM modulation signal generator 24, 155 Deinterleaver 25 Interleaver 26 , 160 error correction decoder 27 error correction encoder 28 switch 29 CRC decoder 111 local oscillator 117 synchronization circuit 145 phase noise compensation coefficient estimation circuit

Claims (4)

  1.  直交周波数分割多重(OFDM)信号を受信する位相雑音補償受信機であって、
     OFDMシンボルに含まれる既知なパイロット信号とレプリカ信号を用いて、位相雑音補償係数を推定する位相雑音補償係数推定回路と、
     前記位相雑音補償係数推定回路から出力される前記位相雑音補償係数を用いて、隣接する3つのチャネル等化後の受信サブキャリア信号を合成することにより、受信信号に含まれている局部発振器位相雑音を補償する位相雑音補償回路と、
     を備えることを特徴とする位相雑音補償受信機。
    A phase noise compensation receiver for receiving an orthogonal frequency division multiplexing (OFDM) signal, comprising:
    A phase noise compensation coefficient estimation circuit that estimates a phase noise compensation coefficient using a known pilot signal and replica signal included in the OFDM symbol;
    By using the phase noise compensation coefficient output from the phase noise compensation coefficient estimation circuit and synthesizing adjacent reception subcarrier signals after three channel equalization, local oscillator phase noise included in the reception signal is obtained. A phase noise compensation circuit for compensating
    A phase noise compensation receiver comprising:
  2.  前記レプリカ信号は、前記位相雑音補償係数と、周波数領域信号であるチャネル等化後のパイロット信号と、前記チャネル等化後のパイロット信号に隣接する、周波数領域信号である2つのチャネル等化後の受信信号とに基づいて生成され、
     前記レプリカ信号を生成する際に、前記周波数領域信号である2つのチャネル等化後の受信信号は既知又は未知である請求項1に記載の位相雑音補償受信機。
    The replica signal includes the phase noise compensation coefficient, a pilot signal after channel equalization which is a frequency domain signal, and two channel equalization signals which are adjacent to the pilot signal after channel equalization and which are frequency domain signals. Generated based on the received signal,
    2. The phase noise compensation receiver according to claim 1, wherein, when generating the replica signal, the two channel equalized reception signals which are the frequency domain signals are known or unknown.
  3.  前記位相雑音補償係数推定回路では、前記レプリカ信号と前記パイロット信号の平均二乗誤差が最小となるように、前記位相雑音補償係数を推定する請求項1又は2に記載の位相雑音補償受信機。 3. The phase noise compensation receiver according to claim 1, wherein the phase noise compensation coefficient estimation circuit estimates the phase noise compensation coefficient so that a mean square error between the replica signal and the pilot signal is minimized.
  4.  前記位相雑音補償係数推定回路では、前記レプリカ信号と前記パイロット信号に基づいて、MMSE法、LMS法又はRLS法を用いて前記位相雑音補償係数を推定する請求項1又は2に記載の位相雑音補償受信機。 3. The phase noise compensation coefficient according to claim 1, wherein the phase noise compensation coefficient estimation circuit estimates the phase noise compensation coefficient using an MMSE method, an LMS method, or an RLS method based on the replica signal and the pilot signal. Receiving machine.
PCT/JP2015/068614 2014-10-29 2015-06-29 Phase noise compensation receiver WO2016067675A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-220797 2014-10-29
JP2014220797A JP2016092454A (en) 2014-10-29 2014-10-29 Phase noise compensation receiver

Publications (1)

Publication Number Publication Date
WO2016067675A1 true WO2016067675A1 (en) 2016-05-06

Family

ID=55857026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068614 WO2016067675A1 (en) 2014-10-29 2015-06-29 Phase noise compensation receiver

Country Status (2)

Country Link
JP (1) JP2016092454A (en)
WO (1) WO2016067675A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030920A1 (en) * 2016-08-10 2018-02-15 Общество с ограниченной ответственностью "Радио Гигабит" Method of compensating for the effect of phase noise on data transmission over a radio-frequency channel
CN109274433A (en) * 2018-10-31 2019-01-25 重庆邮电大学 A kind of fusion zero forcing algorithm and the novel phase noise compensation scheme from elimination algorithm in CO-OFDM system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083924A1 (en) * 2016-11-01 2018-05-11 日本電気株式会社 Base station, terminal device, method, program, and recording medium
WO2020217941A1 (en) * 2019-04-25 2020-10-29 日本電気株式会社 Modulation device and demodulation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313624A (en) * 1999-04-22 2001-11-09 Nippon Telegr & Teleph Corp <Ntt> Receiver for ofdm packet communication
WO2014003598A1 (en) * 2012-06-28 2014-01-03 Intel Corporation Inter-carrier interference phase noise compensation
US20140169434A1 (en) * 2012-12-14 2014-06-19 Thushara Hewavithana Method and apparatus for phase noise mitigation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313624A (en) * 1999-04-22 2001-11-09 Nippon Telegr & Teleph Corp <Ntt> Receiver for ofdm packet communication
WO2014003598A1 (en) * 2012-06-28 2014-01-03 Intel Corporation Inter-carrier interference phase noise compensation
US20140169434A1 (en) * 2012-12-14 2014-06-19 Thushara Hewavithana Method and apparatus for phase noise mitigation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOHEI MATSUMOTO: "Frequency Domain Phase Noise Compensation Employing Adaptive Algorithms for Millimeter-Wave OFDM Systems", PROCEEDINGS OF ASIA-PACIFIC MICROWAVE CONFERENCE 2014, November 2014 (2014-11-01), pages 1262 - 1264, XP032750299 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030920A1 (en) * 2016-08-10 2018-02-15 Общество с ограниченной ответственностью "Радио Гигабит" Method of compensating for the effect of phase noise on data transmission over a radio-frequency channel
US10461790B2 (en) 2016-08-10 2019-10-29 Limited Liability Company “Radio Gigabit” Method for compensation of phase noise effect on data transmission in radio channel
CN109274433A (en) * 2018-10-31 2019-01-25 重庆邮电大学 A kind of fusion zero forcing algorithm and the novel phase noise compensation scheme from elimination algorithm in CO-OFDM system

Also Published As

Publication number Publication date
JP2016092454A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
JP5344121B2 (en) Wireless communication method and apparatus in single carrier transmission system
JP4121407B2 (en) Receiver for demodulating OFDM symbols
El Tabach et al. Spatial data multiplexing over OFDM/OQAM modulations
Ozturk et al. Generalized frequency division multiplexing with index modulation
WO2008037284A1 (en) Scrambled multicarrier transmission
KR100906948B1 (en) Reception of multicarrier spread-spectrum signals
Al-Kamali et al. Joint low-complexity equalization and carrier frequency offsets compensation scheme for MIMO SC-FDMA systems
JP2004221702A (en) Ofdm (orthogonal frequency division multiplexing) adaptive equalization reception system and receiver
Gupta et al. BER performance improvement in OFDM system with ZFE and MMSE equalizers
WO2016067675A1 (en) Phase noise compensation receiver
WO2011044846A1 (en) Channel estimation method, apparatus and communication system
Ketonen et al. MIMO detection in single carrier systems
Zhang et al. Iterative Tx and Rx phase noise compensation for 60 GHz systems with SC-FDE transmission
JP2008258899A (en) Receiver and receiving method
Harbi et al. IIC of the MIMO-FBMC/OQAM system using linear and SIC detection schemes in LTE channel
Javaudin et al. Channel estimation in mimo ofdm/oqam
Kotzsch et al. Joint detection and CFO compensation in asynchronous multi-user MIMO OFDM systems
Seifert et al. Soft-PIC frequency-domain equalization in iterative MIMO receivers for the LTE-A uplink
JP2014187418A (en) Receiver and receiving method
Suyama et al. Decision-directed phase noise compensation for millimeter-wave single carrier transmission systems with frequency-domain equalization
Kumar et al. Intersymbol interference resilient interleaving architecture for multi‐stream interleaved frequency division multiple access system
Beheshti et al. Joint compensation of transmitter and receiver IQ imbalance for MIMO-OFDM over doubly selective channels
Suyama et al. Decision-directed phase noise compensation for millimeter-wave single carrier systems with iterative frequency-domain equalization
Aoude et al. Interference cancellation in coded OFDM/OQAM
Namboodiri et al. Successive interference cancelation and MAP decoding for mobile MIMO OFDM systems and their convergence behavior

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855334

Country of ref document: EP

Kind code of ref document: A1