WO2016067359A1 - Laser doppler sensor - Google Patents

Laser doppler sensor Download PDF

Info

Publication number
WO2016067359A1
WO2016067359A1 PCT/JP2014/078589 JP2014078589W WO2016067359A1 WO 2016067359 A1 WO2016067359 A1 WO 2016067359A1 JP 2014078589 W JP2014078589 W JP 2014078589W WO 2016067359 A1 WO2016067359 A1 WO 2016067359A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmission surface
light emitting
laser
unit
Prior art date
Application number
PCT/JP2014/078589
Other languages
French (fr)
Japanese (ja)
Inventor
義博 市川
渉 小野寺
加藤 哲也
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2016556080A priority Critical patent/JP6347848B2/en
Priority to PCT/JP2014/078589 priority patent/WO2016067359A1/en
Publication of WO2016067359A1 publication Critical patent/WO2016067359A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves

Definitions

  • the present invention relates to a technical field of a laser Doppler sensor that detects various kinds of information related to an object by irradiating the object with light.
  • Patent Document 1 proposes a technique of reducing the return light by providing a light shielding structure (pinhole) in the cover portion of the laser light source.
  • An object of the present invention is to provide a laser Doppler sensor capable of effectively suppressing instability of a laser light source with a relatively simple configuration.
  • a laser Doppler sensor for solving the above-described problems includes: a light emitting unit that irradiates a target with laser light; and a translucent member that covers the light emitting unit and has a transmission surface through which the laser light is transmitted.
  • the transmission surface is arranged to be inclined with respect to the irradiation light path of the laser beam.
  • the laser Doppler sensor includes a light emitting unit that irradiates an object with laser light, and a translucent member that covers the light emitting unit and has a transmission surface through which the laser light is transmitted. Are inclined with respect to the irradiation light path of the laser beam.
  • the object is irradiated with laser light from a light emitting unit configured as a semiconductor laser, for example.
  • the irradiated laser light is scattered on the object. If this scattered light is received, a signal indicating information about the object can be generated therefrom, and for example, a blood flow velocity or a pulse wave of a living body that is the object can be detected.
  • the light emitted from the light emitting part is transmitted through a transmissive member provided so as to cover the light emitting part before being irradiated onto the object.
  • “covering” does not mean that the transparent member completely covers the periphery of the light emitting portion, but is provided so as to cover the range through which the irradiated laser light passes.
  • the transmissive member may be provided as a mold that covers a light source that is an example of a light emitting unit, or may be provided as a cover member or a window positioned outside the mold.
  • the transmissive member has a transmissive surface configured to include a highly transmissive member such as glass, and the light emitted from the light emitting unit is transmitted through the transmissive surface and irradiated to the object.
  • the transmission surface of the transmission member is arranged to be inclined with respect to the irradiation light path of the laser beam. That is, the laser light irradiation optical path and the transmission surface are arranged so as not to be orthogonal to each other.
  • the transmission surface is not limited to a flat surface, and may be a curved surface.
  • the transmission surface of the transmissive member is not inclined with respect to the laser light irradiation optical path, the laser light irradiated from the light emitting unit is reflected on the transmission surface and becomes return light toward the light emitting unit. More specifically, a return light returning to the light emitting unit is generated by tracing the same path as the irradiated laser beam in the reverse direction. As a result, light interference caused by the return light occurs, and the light emitting section becomes unstable (specifically, mode hop).
  • the transmission surface of the translucent member is inclined with respect to the irradiation light path of the laser light, the light reflected by the light transmission surface returns to the light emitting unit. It will not be. Specifically, the reflection angle changes in accordance with the inclination of the transmission surface, and the return light travels to a position shifted from the light emitting unit. Therefore, destabilization of the light emitting portion due to light interference can be suppressed.
  • the transmissive surface of the transmissive member is inclined, thereby effectively suppressing the instability of the light emitting unit due to the return light. Can do.
  • the laser Doppler sensor further includes a light receiving unit that is disposed on the light emitting unit side when viewed from the transmission surface and receives the laser light scattered by the object.
  • the laser light emitted from the light emitting unit and transmitted through the transmission surface and applied to the object is reflected by the object and then transmitted through the transmission surface again and received by the light receiving unit. That is, the laser Doppler sensor according to this aspect is configured as a so-called reflection type laser Doppler sensor.
  • the transmission surface only needs to be inclined at a portion where the laser light emitted from the light emitting portion is transmitted, and only the light that should be received by the light receiving portion (that is, the light scattered by the object) is transmitted. There is no need to be inclined.
  • the translucent member has a first transmission surface corresponding to the light emitting unit and a second transmission surface corresponding to the light reception unit, and the first transmission surface and The second transmission surfaces may be arranged so as to have an inclination angle symmetrical to each other.
  • transmission surface namely, surface through which the laser beam irradiated mainly from the light emission part will permeate
  • a light emission part and the 2nd permeation
  • transmission surface namely, mainly target object
  • the mounting direction of the parts is limited depending on the inclination direction. Specifically, the portion that should become the first transmission surface and the portion that should become the second transmission surface have different shapes, and if the mounting direction is wrong, it may not be used or function properly.
  • the first transmission surface and the second transmission surface have a symmetrical tilt angle. For this reason, assembly work is possible without being conscious of the difference between the first transmission surface and the second transmission surface. Therefore, production efficiency can be improved.
  • “having a symmetrical inclination angle” in this aspect means a symmetric state in which the first transmission surface and the second transmission surface can be assembled without distinguishing each other's shape.
  • a shape having a symmetrical inclination angle a shape in which the first transmission surface and the second transmission surface are arranged in an M shape, or the first transmission surface and the second transmission surface are arranged in a mountain shape. Such a shape etc. are mentioned.
  • the light receiving unit is closer to the symmetrical center of the first transmission surface and the second transmission surface than the light emitting unit. It may be arranged at a position.
  • the light receiving unit is disposed at a position close to the symmetry center of the first transmission surface and the second transmission surface, the light reception efficiency of the light reception unit can be increased. Specifically, the light receiving unit can receive light in a wider range through both the first transmission surface and the second transmission surface. As a result, it is possible to prevent an insufficient amount of light received at the light receiving unit.
  • the light emitting unit is disposed at a position farther from the symmetry center of the first transmission surface and the second transmission surface than the light receiving unit. For this reason, the distance between the light receiving part and the light emitting part can be increased. Therefore, for example, the inconvenience that the laser light emitted from the light emitting unit is directly received by the light receiving unit without passing through the object can be suitably avoided.
  • the laser Doppler sensor further includes a light receiving unit that is provided separately from the light emitting unit and the translucent member and that receives the laser light scattered by the object.
  • the transmission type laser Doppler sensor it is possible to suppress instability of the light emitting portion by arranging the transmission surface of the transmission member to be inclined.
  • the parts may be shared by inclining the transmissive surface of the transmissive member on the light receiving unit side in the same manner as on the light emitting unit side.
  • the laser Doppler sensor according to the first embodiment will be described with reference to FIGS. Note that the laser Doppler sensor according to the first embodiment is configured as a reflective sensor that receives laser light reflected from an object and acquires various types of information.
  • FIG. 1 is a perspective view showing the overall configuration of the laser Doppler sensor according to the first embodiment.
  • the laser Doppler sensor includes a probe unit 100, a sensor unit 200 provided in the probe unit 100, a connection cable 300, and a connection terminal 400.
  • the sensor unit 200 includes a light emitting element (that is, an element that irradiates a target with laser light) and a light receiving element (that is, a laser reflected by the target). Element for receiving light).
  • laser light is emitted from the light emitting element of the sensor unit 200, and the laser light reflected by the object is received by the light receiving element.
  • the light receiving element generates a signal corresponding to the received laser beam.
  • the generated signal is output via the connection cable 300 and the connection terminal 400 to an external device (for example, a device that can perform various arithmetic processes on the signal and output information on the object).
  • FIG. 2 is a cross-sectional view showing the configuration of the sensor unit according to the first embodiment.
  • the sensor unit 200 is configured to be embedded in the probe 100 and to partially expose the surface.
  • the sensor unit 200 includes an element substrate 210, a light emitting element 221, a light receiving element 222, a mold part 230, and a cover part 240.
  • the cover part 240 is a specific example of the “translucent member”, and is located further outside the mold part 230, and a part thereof is exposed to the outside of the probe part 100.
  • the cover 240 is made of a material having translucency, such as highly transparent glass, in order to transmit the laser light emitted from the light emitting element 221 and the return light reflected by the object. .
  • the cover part 240 is also a part that comes into contact with an object during operation of the apparatus.
  • the cover 240 has a first transmission surface 241 through which laser light emitted mainly from the light emitting element 221 is transmitted, and a second transmission surface through which return light to be received by the light receiving element is transmitted. 242.
  • the first transmission surface 241 is disposed to be inclined with respect to the optical path of the laser light emitted from the light emitting element 221. That is, the optical path of the laser light and the first transmission surface 241 are arranged so as not to be orthogonal to each other (for example, in a state of being shifted by about 5 °).
  • the second transmission surface 242 is disposed so as to have an inclination angle symmetrical to the first transmission surface 241 with the symmetry center SC as the center.
  • the cover part 240 is configured as an M-shaped member.
  • the distance L2 from the symmetry center SC to the light receiving element 222 is smaller than the distance L1 from the symmetry center SC to the light emitting element 221 of the cover 240. That is, the light emitting element 221 and the light receiving element 222 are arranged so as to be shifted with respect to the symmetry center SC of the cover 240 so that L1> L2. If the light emitting element 221 and the light receiving element 222 are arranged in this manner, the distance between the light emitting element 221 and the light receiving element can be secured while expanding the light receiving range of the light receiving element 222.
  • FIG. 3 is a sectional view showing the optical paths of the outgoing light and the return light in the sensor unit.
  • FIG. 4 is a cross-sectional view illustrating a configuration of a sensor unit according to a comparative example according to the first embodiment.
  • the emitted light LB is emitted from the light emitting element 221 in a direction directly above the drawing.
  • the emitted light LB passes through the first transmission surface 241 of the cover part 240 and is irradiated onto the object.
  • a part of the emitted light LB is reflected by the first transmission surface 241 and becomes return light RB.
  • the return light RB is reflected at the boundary inside the first transmission surface 241 (namely, the light emitting element 221 side) and reflected at the boundary outside the first transmission surface 241 (namely, the object side). Light.
  • These return lights RB are reflected at an angle shifted from the emitted light LB because the first transmission surface 241 is inclined.
  • the return light RB is generated by the reflection at the cover part 240.
  • the return light RB here has a light (or more specifically, the same path as the emitted light LB) toward the light emitting element 221 because the optical path of the emitted light LB and the surface of the cover 240 are orthogonal to each other. And light returning to the light emitting element 221). In this case, light interference may occur, and the light emitting element 221 may become unstable.
  • the second transmission surface 242 on the light receiving element 222 side does not have the function of changing the optical path of the return light as described above because the outgoing light LB is not incident thereon.
  • the cover 240 since the first transmission surface 241 and the second transmission surface 242 have symmetrical inclination angles, the cover 240 has a symmetrical shape on the light emitting element 221 side and the light receiving element 222 side.
  • the assembly work can be performed without being aware of the difference between the first transmission surface 241 and the second transmission surface 242. That is, the cover part 240 having symmetry is not limited in the mounting direction of components during assembly. Therefore, production efficiency can be improved.
  • the shape of the cover part 240 is M-shaped, the object is fixed to the recessed part of the M-shape during use. For this reason, the shift
  • FIGS. 5 to 12 are cross-sectional views showing the configuration of the sensor unit according to the first to eighth modifications.
  • the first transmission surface 241 and the second transmission surface 242 of the cover unit 240 are arranged so as to form a mountain shape.
  • the inclination directions of the first transmission surface 241 and the second transmission surface 242 are not limited to the M-shape of the first embodiment.
  • the first transmission surface 241 is inclined with respect to the optical path of the outgoing light LB, and thus the return light RB is reflected at an angle shifted from the outgoing light LB. Therefore, instability of the light-emitting element 221 due to light interference can be suppressed.
  • the transmission surface of the mold unit 230 is disposed in an inclined manner instead of the cover unit 240.
  • the first transmissive surface 231 and the second transmissive surface 232 are formed on the mold part 230, respectively, and the mold part 230 functions as a specific example of the “translucent member”.
  • the return light RB is reflected at an angle shifted from the emitted light LB on the first transmission surface 231 of the mold part 230. Accordingly, instability of the light-emitting element 221 due to light interference can be suppressed.
  • the transmission surface of the cover part 240 may be inclined.
  • the transmissive surface through which the emitted light LB is transmitted is inclined, so that the destabilization of the light emitting element 221 caused by the return light RB is effective. Can be suppressed.
  • FIG. 13 is a perspective view showing the overall configuration of the laser Doppler sensor according to the second embodiment.
  • the laser Doppler sensor according to the second embodiment includes a light emitting side probe unit 110 having a light emitting side sensor unit 250, a light receiving side probe unit 120 having a light receiving side sensor unit 260, a connection cable 300, and a connection terminal. 400. That is, in the laser Doppler sensor according to the second embodiment, the probe portion is configured as a separate body on the light emitting side and the light receiving side.
  • the object 500 is disposed between the light emitting side probe unit 110 and the light receiving side probe unit 120.
  • the laser Doppler sensor according to the second embodiment when laser light is emitted from the light emitting element of the light emitting side sensor unit 250, the laser light transmitted through the object 500 is received by the light receiving element of the light receiving side sensor unit 260. Is done. That is, the laser Doppler sensor according to the second embodiment is configured as a transmission type sensor.
  • FIG. 14 is a cross-sectional view showing the configuration of the sensor unit according to the second embodiment.
  • the light emitting side sensor unit 250 includes an element substrate 210, a light emitting element 221, a mold unit 230, and a cover unit 240.
  • the light receiving side sensor unit 260 includes an element substrate 210b, a light emitting element 222, a mold unit 230b, and a cover unit 240b.
  • the cover part 240 in the light emitting side sensor part 250 is disposed to be inclined with respect to the optical path of the laser light emitted from the light emitting element 221. That is, the optical path of the emitted light LB and the transmission surface of the cover part 240 are arranged so as not to be orthogonal to each other. Thereby, the return light RB reflected by the cover part 240 is reflected at an angle shifted from the emitted light LB. Accordingly, instability of the light-emitting element 221 due to light interference can be suppressed.
  • cover part 240b in the light-receiving side sensor part 260 is also inclined in the same manner as the light-emitting side, it is not always necessary to place the cover 240b at an inclination because light interference does not have to be taken into consideration. However, if the cover part 240b inclined like the light emission side is used, parts can be made common and an increase in cost can be prevented.
  • the shapes of the cover portions 240 and 240b for example, the M shape shown in FIG. 3 or the mountain shape shown in FIG. 5, the symmetry of the parts can be realized and the productivity can be improved. Also in the second embodiment, it is possible to adopt the respective modifications described in the first embodiment.
  • the transmissive surface through which the emitted light LB is transmitted is inclined, so that the destabilization of the light emitting element 221 caused by the return light RB is effective. Can be suppressed.
  • Probe part 110 Light emission side probe part 120 Light reception side probe part 200 Sensor part 210 Element board

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

This laser Doppler sensor is provided with a light emitting part (221) for emitting a laser beam onto an object (500), and a translucent member (240) covering the light emitting part and having a transparent surface (241) through which the laser beam passes. The transparent surface of the translucent member is disposed in an inclined manner with respect to an emission light path of the laser beam. Thereby, a light path of a return beam (RB) reflected at a cover part can be shifted from a light path of an emission beam (LB), and as a result, destabilization of the light emitting part because of light interference can be prevented.

Description

レーザードップラーセンサLaser Doppler sensor
 本発明は、光を対象物に照射することで、対象物に関する各種情報を検出するレーザードップラーセンサの技術分野に関する。 The present invention relates to a technical field of a laser Doppler sensor that detects various kinds of information related to an object by irradiating the object with light.
 この種の装置として、例えば生体に対して光を照射すると共に、生体で反射又は透過された光を検出することで、血流や脈波等の生体に関する情報を取得する装置が知られている。このような装置では、照射後の散乱等によってレーザ光源に戻ってきてしまう光(以下、適宜「戻り光」と称する)により光の干渉が発生し、レーザ光源の不安定化が発生するおそれがある。このため、例えば特許文献1では、レーザ光源のカバー部分に遮光構造(ピンホール)を設け、戻り光を低減するという技術が提案されている。 As this type of device, for example, there is known a device that obtains information about a living body such as blood flow and pulse wave by irradiating the living body with light and detecting light reflected or transmitted by the living body. . In such an apparatus, there is a possibility that light interference occurs due to light returning to the laser light source due to scattering after irradiation or the like (hereinafter referred to as “return light” as appropriate), resulting in instability of the laser light source. is there. For this reason, for example, Patent Document 1 proposes a technique of reducing the return light by providing a light shielding structure (pinhole) in the cover portion of the laser light source.
特開2007-175416号公報JP 2007-175416 A
 しかしながら、上述した特許文献1に記載されているような装置では、カバー部分(即ち、レーザ光が透過すべき部材)での反射によって生ずる戻り光が存在するため、レーザ光源の不安定化を十分に抑制することができない。また、遮光構造によって照射可能な光量が低下してしまうため、遮光構造がない場合と同等の光量を得るためには、レーザ光源の出力を大きくすることが要求されてしまう。更には、遮光構造を形成することによるコストの増大も避けられない。 However, in the apparatus described in Patent Document 1 described above, since there is return light generated by reflection at the cover portion (that is, a member through which the laser light is transmitted), the laser light source is sufficiently destabilized. Can not be suppressed. In addition, since the amount of light that can be irradiated is reduced by the light shielding structure, it is required to increase the output of the laser light source in order to obtain the same amount of light as that without the light shielding structure. Furthermore, an increase in cost due to the formation of the light shielding structure is inevitable.
 本発明が解決しようとする課題には上記のようなものが一例として挙げられる。本発明は、比較的簡単な構成で、レーザ光源の不安定化を効果的に抑制可能なレーザードップラーセンサを提供することを課題とする。 Examples of problems to be solved by the present invention include the above. An object of the present invention is to provide a laser Doppler sensor capable of effectively suppressing instability of a laser light source with a relatively simple configuration.
 上記課題を解決するためのレーザードップラーセンサは、対象物にレーザ光を照射する発光部と、前記発光部を被覆し、前記レーザ光が透過する透過面を有する透光性部材とを備え、前記透過面は、前記レーザ光の照射光路に対して傾斜して配置されている。 A laser Doppler sensor for solving the above-described problems includes: a light emitting unit that irradiates a target with laser light; and a translucent member that covers the light emitting unit and has a transmission surface through which the laser light is transmitted. The transmission surface is arranged to be inclined with respect to the irradiation light path of the laser beam.
第1実施例に係るレーザードップラーセンサの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the laser Doppler sensor which concerns on 1st Example. 第1実施例に係るセンサ部の構成を示す断面図である。It is sectional drawing which shows the structure of the sensor part which concerns on 1st Example. センサ部における出射光及び戻り光の光路を示す断面図である。It is sectional drawing which shows the optical path of the emitted light and return light in a sensor part. 第1実施例に係る比較例に係るセンサ部の構成を示す断面図である。It is sectional drawing which shows the structure of the sensor part which concerns on the comparative example which concerns on 1st Example. 第1変形例に係るセンサ部の構成を示す断面図である。It is sectional drawing which shows the structure of the sensor part which concerns on a 1st modification. 第2変形例に係るセンサ部の構成を示す断面図である。It is sectional drawing which shows the structure of the sensor part which concerns on a 2nd modification. 第3変形例に係るセンサ部の構成を示す断面図である。It is sectional drawing which shows the structure of the sensor part which concerns on a 3rd modification. 第4変形例に係るセンサ部の構成を示す断面図である。It is sectional drawing which shows the structure of the sensor part which concerns on a 4th modification. 第5変形例に係るセンサ部の構成を示す断面図である。It is sectional drawing which shows the structure of the sensor part which concerns on a 5th modification. 第6変形例に係るセンサ部の構成を示す断面図である。It is sectional drawing which shows the structure of the sensor part which concerns on a 6th modification. 第7変形例に係るセンサ部の構成を示す断面図である。It is sectional drawing which shows the structure of the sensor part which concerns on a 7th modification. 第8変形例に係るセンサ部の構成を示す断面図である。It is sectional drawing which shows the structure of the sensor part which concerns on an 8th modification. 第2実施例に係るレーザードップラーセンサの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the laser Doppler sensor which concerns on 2nd Example. 第2実施例に係るセンサ部の構成を示す断面図である。It is sectional drawing which shows the structure of the sensor part which concerns on 2nd Example.
 <1>
 本実施形態に係るレーザードップラーセンサは、対象物にレーザ光を照射する発光部と、前記発光部を被覆し、前記レーザ光が透過する透過面を有する透光性部材とを備え、前記透過面は、前記レーザ光の照射光路に対して傾斜して配置されている。
<1>
The laser Doppler sensor according to the present embodiment includes a light emitting unit that irradiates an object with laser light, and a translucent member that covers the light emitting unit and has a transmission surface through which the laser light is transmitted. Are inclined with respect to the irradiation light path of the laser beam.
 本実施形態のレーザードップラーセンサによれば、その動作時には、例えば半導体レーザとして構成される発光部から対象物に対してレーザ光が照射される。照射されたレーザ光は、対象物において散乱される。この散乱光を受光すれば、そこから対象物に関する情報を示す信号を生成し、例えば対象物である生体の血流速度や脈波等を検出することができる。 According to the laser Doppler sensor of the present embodiment, during the operation, the object is irradiated with laser light from a light emitting unit configured as a semiconductor laser, for example. The irradiated laser light is scattered on the object. If this scattered light is received, a signal indicating information about the object can be generated therefrom, and for example, a blood flow velocity or a pulse wave of a living body that is the object can be detected.
 発光部から照射された光は、対象物に照射される前に、発光部を被覆するように設けられた透過性部材を透過する。なお、ここでの「被覆」とは、透過性部材が発光部の周囲を完全に覆うことを意味するものではなく、照射されたレーザ光が通過する範囲をカバーするように設けられているという趣旨である。よって、透過性部材は、例えば発光部の一例である光源を覆うモールドとして設けられてもよいし、モールドより外側に位置するカバー部材や窓のようなものとして設けられていてもよい。透過性部材は、例えばガラス等の透光性の高い部材を含んで構成された透過面を有しており、発光部から照射された光は透過面を透過して対象物に照射される。 The light emitted from the light emitting part is transmitted through a transmissive member provided so as to cover the light emitting part before being irradiated onto the object. Note that “covering” here does not mean that the transparent member completely covers the periphery of the light emitting portion, but is provided so as to cover the range through which the irradiated laser light passes. It is the purpose. Therefore, the transmissive member may be provided as a mold that covers a light source that is an example of a light emitting unit, or may be provided as a cover member or a window positioned outside the mold. The transmissive member has a transmissive surface configured to include a highly transmissive member such as glass, and the light emitted from the light emitting unit is transmitted through the transmissive surface and irradiated to the object.
 ここで本実施形態では特に、透過性部材の透過面が、レーザ光の照射光路に対して傾斜して配置されている。即ち、レーザ光の照射光路と、透過面とが直交しないように配置されている。なお、透過面は平面に限定されるものではなく、曲面であってもよい。また、透過面は、表又は裏の少なくとも一方が照射光路に対して傾斜されて配置されていればよく、傾斜された面とは反対側の面は傾斜されずともよい。 Here, in the present embodiment, in particular, the transmission surface of the transmission member is arranged to be inclined with respect to the irradiation light path of the laser beam. That is, the laser light irradiation optical path and the transmission surface are arranged so as not to be orthogonal to each other. Note that the transmission surface is not limited to a flat surface, and may be a curved surface. In addition, it is sufficient that at least one of the front and back surfaces is inclined with respect to the irradiation light path, and the surface opposite to the inclined surface may not be inclined.
 ここで仮に、透過性部材の透過面がレーザ光の照射光路に対して傾斜していないとすると、発光部から照射されたレーザ光は、透過面において反射され発光部に向かう戻り光となる。より具体的には、照射されたレーザ光と同様の経路を逆に辿って、発光部に戻ってくる戻り光が発生してしまう。この結果、戻り光に起因する光の干渉が発生し、発光部の不安定化(具体的には、モードホップ)を生ずる。 Here, if the transmission surface of the transmissive member is not inclined with respect to the laser light irradiation optical path, the laser light irradiated from the light emitting unit is reflected on the transmission surface and becomes return light toward the light emitting unit. More specifically, a return light returning to the light emitting unit is generated by tracing the same path as the irradiated laser beam in the reverse direction. As a result, light interference caused by the return light occurs, and the light emitting section becomes unstable (specifically, mode hop).
 しかるに本実施形態では、上述したように、透光性部材の透過面がレーザ光の照射光路に対して傾斜して配置されているため、透光面で反射した光は発光部に向かう戻り光とはならない。具体的には、透過面の傾斜に応じて反射角度が変化し、発光部とずれた位置に向かう戻り光となる。よって、光の干渉に起因する発光部の不安定化を抑制することができる。 However, in this embodiment, as described above, since the transmission surface of the translucent member is inclined with respect to the irradiation light path of the laser light, the light reflected by the light transmission surface returns to the light emitting unit. It will not be. Specifically, the reflection angle changes in accordance with the inclination of the transmission surface, and the return light travels to a position shifted from the light emitting unit. Therefore, destabilization of the light emitting portion due to light interference can be suppressed.
 なお、透過面の傾斜角度は、発光部から照射される際のレーザ光の拡散角度よりも大きくすることが好ましい。これにより、傾斜した透過面と拡散された(言い換えれば、角度を持って照射された)レーザ光の照射光路とが直交してしまうことを防止できる。また、透過面の傾斜角度は、透過性部材の効率的なレイアウトを実現できる程度に小さく設定されることが好ましい。即ち、透過面の傾斜角度を大きくし過ぎることで、透過性部材の配置スペースが大きくなってしまうことは、出来る限り避けることが好ましい。 In addition, it is preferable that the inclination angle of the transmission surface is larger than the diffusion angle of the laser beam when irradiated from the light emitting unit. Accordingly, it is possible to prevent the inclined transmission surface and the irradiation optical path of the diffused laser beam (in other words, irradiated with an angle) from being orthogonal to each other. In addition, it is preferable that the angle of inclination of the transmission surface is set small enough to realize an efficient layout of the transmission member. That is, it is preferable to avoid as much as possible that the space for disposing the transmissive member by increasing the inclination angle of the transmissive surface too much.
 以上説明したように、本実施形態に係るレーザードップラーセンサによれば、透過性部材の透過面が傾斜されていることにより、戻り光に起因する発光部の不安定化を効果的に抑制することができる。 As described above, according to the laser Doppler sensor according to the present embodiment, the transmissive surface of the transmissive member is inclined, thereby effectively suppressing the instability of the light emitting unit due to the return light. Can do.
 <2>
 本実施形態に係るレーザードップラーセンサの一態様では、前記透過面から見て前記発光部側に配置されており、前記対象物で散乱された前記レーザ光を受光する受光部を更に備える。
<2>
In one aspect of the laser Doppler sensor according to the present embodiment, the laser Doppler sensor further includes a light receiving unit that is disposed on the light emitting unit side when viewed from the transmission surface and receives the laser light scattered by the object.
 この態様によれば、発光部から出射され、透過面を透過して対象物に照射されたレーザ光は、対象物において反射された後、再び透過面を透過して受光部で受光される。即ち、本態様に係るレーザードップラーセンサは、所謂反射型のレーザードップラーセンサとして構成される。 According to this aspect, the laser light emitted from the light emitting unit and transmitted through the transmission surface and applied to the object is reflected by the object and then transmitted through the transmission surface again and received by the light receiving unit. That is, the laser Doppler sensor according to this aspect is configured as a so-called reflection type laser Doppler sensor.
 反射型のレーザードップラーセンサにおいても、透過面を傾斜して配置することにより、発光部の不安定化を抑制することができる。なお、透過面は、発光部から照射されたレーザ光が透過する部分において傾斜されていればよく、受光部において受光されるべき光(即ち、対象物において散乱された光)のみが透過する部分においては傾斜されずともよい。 Also in the reflection type laser Doppler sensor, it is possible to suppress the destabilization of the light emitting part by arranging the transmission surface to be inclined. The transmission surface only needs to be inclined at a portion where the laser light emitted from the light emitting portion is transmitted, and only the light that should be received by the light receiving portion (that is, the light scattered by the object) is transmitted. There is no need to be inclined.
 <3>
 上述した受光部を備える態様では、前記透光性部材は、前記発光部に対応する第1透過面、及び前記受光部に対応する第2透過面を有しており、前記第1透過面及び前記第2透過面は、互いに対称の傾斜角度を有するように配置されていてもよい。
<3>
In the aspect including the light receiving unit described above, the translucent member has a first transmission surface corresponding to the light emitting unit and a second transmission surface corresponding to the light reception unit, and the first transmission surface and The second transmission surfaces may be arranged so as to have an inclination angle symmetrical to each other.
 このように構成すれば、発光部に対応する第1透過面(即ち、主として発光部から照射されたレーザ光が透過する面)と、受光部に対応する第2透過面(即ち、主として対象物で散乱されたレーザ光が透過する面)とが、互いに対称の傾斜角度を有するように配置されるため、組み立て時における部品の取付方向が限定されない。 If comprised in this way, the 1st permeation | transmission surface (namely, surface through which the laser beam irradiated mainly from the light emission part will permeate | transmit) corresponding to a light emission part, and the 2nd permeation | transmission surface (namely, mainly target object) corresponding to a light reception part The surface where the laser light scattered in (1) passes is arranged so as to have a symmetrical inclination angle with each other, so that the mounting direction of the components at the time of assembly is not limited.
 ここで仮に、対称性を考慮せず透過性部材の透過面を傾斜させると、傾斜方向に応じて部品の取付方向が限定されてしまうことになる。具体的には、第1透過面となるべき部分と第2透過面となるべき部分とが異なった形状となり、取付方向を間違うと使用できない或いは正常に機能しないものになってしまうおそれがある。 Here, if the transmission surface of the transparent member is inclined without considering symmetry, the mounting direction of the parts is limited depending on the inclination direction. Specifically, the portion that should become the first transmission surface and the portion that should become the second transmission surface have different shapes, and if the mounting direction is wrong, it may not be used or function properly.
 しかるに本態様では、上述したように、第1透過面と第2透過面とが互いに対称の傾斜角度を有している。このため、第1透過面と第2透過面との違いを意識せずに組み立て作業が可能である。よって、生産効率を向上させることができる。 However, in this aspect, as described above, the first transmission surface and the second transmission surface have a symmetrical tilt angle. For this reason, assembly work is possible without being conscious of the difference between the first transmission surface and the second transmission surface. Therefore, production efficiency can be improved.
 なお、上述した説明からも分かるように、本態様における「対称の傾斜角度を有する」とは、第1透過面と第2透過面とが、互いの形状を区別せずに組み立て可能な対称状態であることを言う。対称の傾斜角度を有する形状の例としては、第1透過面と第2透過面がM字型に配置されるような形状や、第1透過面と第2透過面とが山形に配置されるような形状等が挙げられる。 As can be seen from the above description, “having a symmetrical inclination angle” in this aspect means a symmetric state in which the first transmission surface and the second transmission surface can be assembled without distinguishing each other's shape. Say that. As an example of a shape having a symmetrical inclination angle, a shape in which the first transmission surface and the second transmission surface are arranged in an M shape, or the first transmission surface and the second transmission surface are arranged in a mountain shape. Such a shape etc. are mentioned.
 <4>
 上述した第1透過面及び第2透過面が対称の傾斜角度を有する態様では、前記受光部は、前記第1透過面及び前記第2透過面の対称中心に対して、前記発光部よりも近い位置に配置されていてもよい。
<4>
In the aspect in which the first transmission surface and the second transmission surface described above have a symmetrical tilt angle, the light receiving unit is closer to the symmetrical center of the first transmission surface and the second transmission surface than the light emitting unit. It may be arranged at a position.
 このように構成すれば、受光部が第1透過面及び第2透過面の対称中心に近い位置に配置されるため、受光部の受光効率を高めることができる。具体的には、受光部が、第1透過面及び第2透過面の両方を介して、より広い範囲で光を受光することが可能となる。この結果、受光部における受光光量の不足を防止することができる。 With this configuration, since the light receiving unit is disposed at a position close to the symmetry center of the first transmission surface and the second transmission surface, the light reception efficiency of the light reception unit can be increased. Specifically, the light receiving unit can receive light in a wider range through both the first transmission surface and the second transmission surface. As a result, it is possible to prevent an insufficient amount of light received at the light receiving unit.
 一方で、発光部は、受光部よりも第1透過面及び第2透過面の対称中心から遠い位置に配置される。このため、受光部と発光部との間の距離を大きくすることができる。よって、例えば発光部から照射されたレーザ光が、対象物を介さずに直接受光部に受光されてしまうといった不都合を好適に回避できる。 On the other hand, the light emitting unit is disposed at a position farther from the symmetry center of the first transmission surface and the second transmission surface than the light receiving unit. For this reason, the distance between the light receiving part and the light emitting part can be increased. Therefore, for example, the inconvenience that the laser light emitted from the light emitting unit is directly received by the light receiving unit without passing through the object can be suitably avoided.
 <5>
 本実施形態に係るレーザードップラーセンサの一態様では、前記発光部及び前記透光性部材と別体として設けられており、前記対象物で散乱された前記レーザ光を受光する受光部を更に備える。
<5>
In one aspect of the laser Doppler sensor according to the present embodiment, the laser Doppler sensor further includes a light receiving unit that is provided separately from the light emitting unit and the translucent member and that receives the laser light scattered by the object.
 この態様によれば、発光部から出射され、透過面を透過して対象物に照射されたレーザ光は、対象物を透過した後、別体として設けられた受光部で受光される。即ち、本態様に係るレーザードップラーセンサは、所謂透過型のレーザードップラーセンサとして構成される。 According to this aspect, the laser beam emitted from the light emitting unit, transmitted through the transmission surface and irradiated onto the object is received by the light receiving unit provided separately after passing through the object. That is, the laser Doppler sensor according to this aspect is configured as a so-called transmission type laser Doppler sensor.
 透過型のレーザードップラーセンサにおいても、透過性部材の透過面を傾斜して配置することにより、発光部の不安定化を抑制することができる。なお、受光部側にも透過性部材が設けられる場合には、受光部側の透過性部材の透過面も発光部側と同様に傾斜させることで、部品の共通化を図ってもよい。 Also in the transmission type laser Doppler sensor, it is possible to suppress instability of the light emitting portion by arranging the transmission surface of the transmission member to be inclined. In the case where a transmissive member is also provided on the light receiving unit side, the parts may be shared by inclining the transmissive surface of the transmissive member on the light receiving unit side in the same manner as on the light emitting unit side.
 本実施形態に係るレーザードップラーセンサの作用及び他の利得については、以下に示す実施例において、より詳細に説明する。 The operation and other gains of the laser Doppler sensor according to this embodiment will be described in more detail in the following examples.
 以下では、図面を参照してレーザードップラーセンサの実施例について詳細に説明する。 Hereinafter, embodiments of the laser Doppler sensor will be described in detail with reference to the drawings.
 <第1実施例>
 第1実施例に係るレーザードップラーセンサについて、図1から図12を参照して説明する。なお、第1実施例に係るレーザードップラーセンサは、対象物において反射されたレーザ光を受光して各種情報を取得する反射型のセンサとして構成されている。
<First embodiment>
The laser Doppler sensor according to the first embodiment will be described with reference to FIGS. Note that the laser Doppler sensor according to the first embodiment is configured as a reflective sensor that receives laser light reflected from an object and acquires various types of information.
 <装置構成>
 先ず、第1実施例に係るレーザードップラーセンサの全体構成について、図1を参照して説明する。ここに図1は、第1実施例に係るレーザードップラーセンサの全体構成を示す斜視図である。
<Device configuration>
First, the overall configuration of the laser Doppler sensor according to the first embodiment will be described with reference to FIG. FIG. 1 is a perspective view showing the overall configuration of the laser Doppler sensor according to the first embodiment.
 図1において、第1実施例に係るレーザードップラーセンサは、プローブ部100と、プローブ部100に設けられたセンサ部200と、接続ケーブル300と、接続端子400とを備えて構成されている。なお、ここでの図示は省略しているが、センサ部200は、後述する発光素子(即ち、対象物に対してレーザ光を照射する素子)及び受光素子(即ち、対象物で反射されたレーザ光を受光する素子)を有している。 1, the laser Doppler sensor according to the first embodiment includes a probe unit 100, a sensor unit 200 provided in the probe unit 100, a connection cable 300, and a connection terminal 400. Although not shown here, the sensor unit 200 includes a light emitting element (that is, an element that irradiates a target with laser light) and a light receiving element (that is, a laser reflected by the target). Element for receiving light).
 第1実施例に係るレーザードップラーセンサの動作時には、センサ部200が有する発光素子からレーザ光が照射されると共に、対象物で反射されたレーザ光が受光素子において受光される。この際、受光素子では、受光したレーザ光に応じた信号が生成される。生成された信号は、接続ケーブル300及び接続端子400を介して、外部の装置(例えば、信号に各種演算処理を施して、対象物に関する情報を出力可能な装置等)に出力される。 During the operation of the laser Doppler sensor according to the first embodiment, laser light is emitted from the light emitting element of the sensor unit 200, and the laser light reflected by the object is received by the light receiving element. At this time, the light receiving element generates a signal corresponding to the received laser beam. The generated signal is output via the connection cable 300 and the connection terminal 400 to an external device (for example, a device that can perform various arithmetic processes on the signal and output information on the object).
 次に、センサ部200の具体的な構成について、図2を参照して詳細に説明する。ここに図2は、第1実施例に係るセンサ部の構成を示す断面図である。 Next, a specific configuration of the sensor unit 200 will be described in detail with reference to FIG. FIG. 2 is a cross-sectional view showing the configuration of the sensor unit according to the first embodiment.
 図2において、第1実施例に係るセンサ部200は、プローブ100内部に埋め込まれ、表面を一部露出させるように構成されている。センサ部200は、素子基板210と、発光素子221と、受光素子222と、モールド部230と、カバー部240とを備えて構成されている。 In FIG. 2, the sensor unit 200 according to the first embodiment is configured to be embedded in the probe 100 and to partially expose the surface. The sensor unit 200 includes an element substrate 210, a light emitting element 221, a light receiving element 222, a mold part 230, and a cover part 240.
 発光素子221は、「発光部」の一具体例であり、素子基板210上に配置されている。発光素子221は、例えば半導体レーザ等として構成される。受光素子222は、「受光部」の一具体例であり、発光素子221と同様に素子基板210上に配置されている。受光素子222は、例えばフォトダイオード等として構成される。発光素子221及び受光素子222は、透明材料からなるモールド部230によって周囲を覆われている。 The light emitting element 221 is a specific example of the “light emitting unit” and is disposed on the element substrate 210. The light emitting element 221 is configured as a semiconductor laser, for example. The light receiving element 222 is a specific example of the “light receiving unit”, and is disposed on the element substrate 210 in the same manner as the light emitting element 221. The light receiving element 222 is configured as a photodiode, for example. The periphery of the light emitting element 221 and the light receiving element 222 is covered with a mold part 230 made of a transparent material.
 カバー部240は、「透光性部材」の一具体例であり、モールド部230よりも更に外側に位置し、その一部がプローブ部100の外部に露出されている。カバー部240は、発光素子221から出射されたレーザ光、及び対象物で反射された戻り光を透過するために、例えば透明性の高いガラスのように透光性を有する材料で構成されている。カバー部240は、装置の動作時において、対象物と接触する部分でもある。 The cover part 240 is a specific example of the “translucent member”, and is located further outside the mold part 230, and a part thereof is exposed to the outside of the probe part 100. The cover 240 is made of a material having translucency, such as highly transparent glass, in order to transmit the laser light emitted from the light emitting element 221 and the return light reflected by the object. . The cover part 240 is also a part that comes into contact with an object during operation of the apparatus.
 本実施例では特に、カバー部240は、主に発光素子221から出射されたレーザ光が透過する第1透過面241、及び主に受光素子に受光されるべき戻り光が透過する第2透過面242を有している。第1透過面241は、発光素子221から出射されるレーザ光の光路に対して傾斜して配置されている。即ち、レーザ光の光路と第1透過面241とが互いに直交しないように(例えば、5°程度ずれた状態で)配置されている。第2透過面242は、対称中心SCを中心として、第1透過面241と対称の傾斜角度を有するように配置されている。この結果、カバー部240は、M字型の部材として構成されている。 In the present embodiment, in particular, the cover 240 has a first transmission surface 241 through which laser light emitted mainly from the light emitting element 221 is transmitted, and a second transmission surface through which return light to be received by the light receiving element is transmitted. 242. The first transmission surface 241 is disposed to be inclined with respect to the optical path of the laser light emitted from the light emitting element 221. That is, the optical path of the laser light and the first transmission surface 241 are arranged so as not to be orthogonal to each other (for example, in a state of being shifted by about 5 °). The second transmission surface 242 is disposed so as to have an inclination angle symmetrical to the first transmission surface 241 with the symmetry center SC as the center. As a result, the cover part 240 is configured as an M-shaped member.
 また本実施例では、カバー部240の対称中心SCから発光素子221までの距離L1と比べて、対称中心SCから受光素子222までの距離L2が小さくなるように配置されている。即ち、L1>L2となるように、発光素子221及び受光素子222が、カバー部240の対称中心SCに対してずれて配置されている。このように発光素子221及び受光素子222を配置すれば、受光素子222における受光範囲を拡大しつつ、発光素子221と受光素子との間の距離を確保できる。 In this embodiment, the distance L2 from the symmetry center SC to the light receiving element 222 is smaller than the distance L1 from the symmetry center SC to the light emitting element 221 of the cover 240. That is, the light emitting element 221 and the light receiving element 222 are arranged so as to be shifted with respect to the symmetry center SC of the cover 240 so that L1> L2. If the light emitting element 221 and the light receiving element 222 are arranged in this manner, the distance between the light emitting element 221 and the light receiving element can be secured while expanding the light receiving range of the light receiving element 222.
 <作用効果>
 次に、カバー部240を傾斜させることで得られる効果について、図3及び図4を参照して詳細に説明する。ここに図3は、センサ部における出射光及び戻り光の光路を示す断面図である。また図4は、第1実施例に係る比較例に係るセンサ部の構成を示す断面図である。
<Effect>
Next, the effect obtained by inclining the cover part 240 will be described in detail with reference to FIGS. 3 and 4. FIG. 3 is a sectional view showing the optical paths of the outgoing light and the return light in the sensor unit. FIG. 4 is a cross-sectional view illustrating a configuration of a sensor unit according to a comparative example according to the first embodiment.
 図3において、第1実施例に係るセンサ部200の動作時には、発光素子221から図の真上方向に出射光LBが出射される。出射光LBは、カバー部240の第1透過面241を透過して対象物に照射されることになるが、その一部は、第1透過面241において反射され戻り光RBとなる。この戻り光RBとしては、第1透過面241の内側(即ち、発光素子221側)の境界で反射された光、及び第1透過面241の外側(即ち、対象物側)の境界で反射された光が挙げられる。これらの戻り光RBは、第1透過面241が傾斜されているために、出射光LBとずれた角度で反射される。 In FIG. 3, when the sensor unit 200 according to the first embodiment is in operation, the emitted light LB is emitted from the light emitting element 221 in a direction directly above the drawing. The emitted light LB passes through the first transmission surface 241 of the cover part 240 and is irradiated onto the object. A part of the emitted light LB is reflected by the first transmission surface 241 and becomes return light RB. The return light RB is reflected at the boundary inside the first transmission surface 241 (namely, the light emitting element 221 side) and reflected at the boundary outside the first transmission surface 241 (namely, the object side). Light. These return lights RB are reflected at an angle shifted from the emitted light LB because the first transmission surface 241 is inclined.
 図4において、カバー部240が傾斜されていないセンサ部200bについて考える。比較例に係るセンサ部200bでも同様に、カバー部240における反射によって戻り光RBが発生する。しかしながら、ここでの戻り光RBは、出射光LBの光路とカバー部240の面とが直交しているために、発光素子221に向かう光(より具体的には、出射光LBと同じ経路を辿って発光素子221に戻ってくる光)となる。この場合、光の干渉が発生し、発光素子221における不安定化が生じてしまうおそれがある。 In FIG. 4, consider the sensor unit 200b in which the cover unit 240 is not inclined. Similarly, in the sensor part 200b according to the comparative example, the return light RB is generated by the reflection at the cover part 240. However, the return light RB here has a light (or more specifically, the same path as the emitted light LB) toward the light emitting element 221 because the optical path of the emitted light LB and the surface of the cover 240 are orthogonal to each other. And light returning to the light emitting element 221). In this case, light interference may occur, and the light emitting element 221 may become unstable.
 これに対し、本実施例のように傾斜されたカバー部240によれば、戻り光RBの光路が出射光LBの光路に対してずれた状態になる(図3参照)。よって、光の干渉に起因する発光素子221の不安定化を抑制することができる。なお、第1透過面241の傾斜角度は、出射光LBの拡散角度よりも大きくすることが好ましい。これにより、傾斜した第1透過面241と拡散された出射光LBの光路とが直交してしまうことを防止できる。また、第1透過面241の傾斜角度は、カバー部240の効率的なレイアウトを実現できる程度に小さく設定されることが好ましい。 On the other hand, according to the inclined cover 240 as in the present embodiment, the optical path of the return light RB is shifted from the optical path of the outgoing light LB (see FIG. 3). Therefore, instability of the light-emitting element 221 due to light interference can be suppressed. Note that the inclination angle of the first transmission surface 241 is preferably larger than the diffusion angle of the emitted light LB. Thereby, it can prevent that the inclined 1st permeation | transmission surface 241 and the optical path of the diffused outgoing light LB cross at right angles. In addition, the inclination angle of the first transmission surface 241 is preferably set small enough to realize an efficient layout of the cover part 240.
 ちなみに、受光素子222側の第2透過面242については、出射光LBが入射されないため、上述したような戻り光の光路を変化させる機能は有していない。しかしながら、第1透過面241と第2透過面242とが対称の傾斜角度を有することで、カバー部240は、発光素子221側と受光素子222側とが対称的な形状となる。この結果、製造工程における部品の組み立て時において、第1透過面241と第2透過面242との違いを意識せずに組み立て作業が可能である。即ち、対称性を有するカバー部240は、組み立て時における部品の取付方向が限定されない。よって、生産効率を向上させることができる。 Incidentally, the second transmission surface 242 on the light receiving element 222 side does not have the function of changing the optical path of the return light as described above because the outgoing light LB is not incident thereon. However, since the first transmission surface 241 and the second transmission surface 242 have symmetrical inclination angles, the cover 240 has a symmetrical shape on the light emitting element 221 side and the light receiving element 222 side. As a result, when the parts are assembled in the manufacturing process, the assembly work can be performed without being aware of the difference between the first transmission surface 241 and the second transmission surface 242. That is, the cover part 240 having symmetry is not limited in the mounting direction of components during assembly. Therefore, production efficiency can be improved.
 また、カバー部240の形状がM字型になることで、使用時において対象物がM字のくぼみ部分に固定される。このため、使用中の対象物のずれを低減でき、より好適な計測を実現することが可能となる。 Also, since the shape of the cover part 240 is M-shaped, the object is fixed to the recessed part of the M-shape during use. For this reason, the shift | offset | difference of the target object in use can be reduced and it becomes possible to implement | achieve more suitable measurement.
 <変形例>
 次に、カバー部240の変形例について、図5から図12を参照して説明する。ここに図5から図12は夫々、第1から第8変形例に係るセンサ部の構成を示す断面図である。
<Modification>
Next, modified examples of the cover part 240 will be described with reference to FIGS. FIGS. 5 to 12 are cross-sectional views showing the configuration of the sensor unit according to the first to eighth modifications.
 図5において、第1変形例に係るセンサ部200cでは、カバー部240の第1透過面241及び第2透過面242が山型になるように配置されている。このように、第1透過面241及び第2透過面242の傾斜方向は、第1実施例のM字型に限定される訳ではない。 5, in the sensor unit 200c according to the first modification, the first transmission surface 241 and the second transmission surface 242 of the cover unit 240 are arranged so as to form a mountain shape. Thus, the inclination directions of the first transmission surface 241 and the second transmission surface 242 are not limited to the M-shape of the first embodiment.
 第1変形例に係るセンサ部200cにおいても、出射光LBの光路に対して第1透過面241が傾斜されているため、戻り光RBは出射光LBとずれた角度で反射される。よって、光の干渉に起因する発光素子221の不安定化を抑制することができる。 Also in the sensor unit 200c according to the first modification, the first transmission surface 241 is inclined with respect to the optical path of the outgoing light LB, and thus the return light RB is reflected at an angle shifted from the outgoing light LB. Therefore, instability of the light-emitting element 221 due to light interference can be suppressed.
 なお、第1透過面241及び第2透過面242が対称の傾斜角度を有しているため、部品の対称性も保持され、生産効率を向上させることができる。また、使用時においては、山型の凸部分が対象物に食い込むことで対象物のずれを低減することができる。 In addition, since the 1st permeation | transmission surface 241 and the 2nd permeation | transmission surface 242 have a symmetrical inclination angle, the symmetry of components is also hold | maintained and production efficiency can be improved. In use, deviation of the object can be reduced because the convex portion of the mountain shape bites into the object.
 図6及び図7において、第2変形例に係るセンサ部200d及び第3変形例に係るセンサ部200eでは、カバー部240の第1透過面241及び第2透過面242が夫々曲面として構成されている。このような構成においても、戻り光RBは出射光LBとずれた角度で反射されるため、光の干渉に起因する発光素子221の不安定化を抑制することができる。なお、第1透過面241及び第2透過面242は、平面及び曲面が併存するような形状とされても構わない。 6 and 7, in the sensor unit 200d according to the second modification and the sensor unit 200e according to the third modification, the first transmission surface 241 and the second transmission surface 242 of the cover unit 240 are configured as curved surfaces, respectively. Yes. Even in such a configuration, since the return light RB is reflected at an angle shifted from the emission light LB, instability of the light-emitting element 221 due to light interference can be suppressed. The first transmission surface 241 and the second transmission surface 242 may have a shape in which a plane and a curved surface coexist.
 図8及び図9において、第4変形例に係るセンサ部200f及び第5変形例に係るセンサ部200gでは、カバー部240の第1透過面241のみが傾斜するように配置され、第2透過面242は傾斜して配置されていない。このように構成した場合、カバー部240の対称性は失われるが、戻り光RBは出射光LBとずれた角度で反射されるため、光の干渉に起因する発光素子221の不安定化を抑制することができる。 8 and 9, in the sensor unit 200f according to the fourth modified example and the sensor unit 200g according to the fifth modified example, only the first transmission surface 241 of the cover unit 240 is disposed so as to be inclined, and the second transmission surface 242 is not inclined. When configured in this manner, the symmetry of the cover 240 is lost, but the return light RB is reflected at an angle shifted from the outgoing light LB, so that destabilization of the light emitting element 221 due to light interference is suppressed. can do.
 図10及び図11において、第6変形例に係るセンサ部200h及び第7変形例に係るセンサ部200iでは、カバー部240の第1透過面241及び第2透過面242の一方の面のみが傾斜されている。具体的には、第6変形例に係るセンサ部200hでは、カバー部240の内側の面(即ち、発光素子221側の面)のみが傾斜されており、外側の面(即ち、対象物側の面)は傾斜されていない。逆に、第7変形例に係るセンサ部200iでは、カバー部240の外側の面のみが傾斜されており、内側の面は傾斜されていない。このような構成においても、傾斜した一方の面では、戻り光RBは出射光LBとずれた角度で反射される。従って、光の干渉に起因する発光素子221の不安定化を抑制することができる。 10 and 11, in the sensor unit 200h according to the sixth modification and the sensor unit 200i according to the seventh modification, only one surface of the first transmission surface 241 and the second transmission surface 242 of the cover 240 is inclined. Has been. Specifically, in the sensor unit 200h according to the sixth modification, only the inner surface (that is, the surface on the light emitting element 221 side) of the cover 240 is inclined, and the outer surface (that is, the object side). Surface) is not inclined. On the contrary, in the sensor unit 200i according to the seventh modification, only the outer surface of the cover unit 240 is inclined, and the inner surface is not inclined. Even in such a configuration, the return light RB is reflected at an angle shifted from the outgoing light LB on one inclined surface. Accordingly, instability of the light-emitting element 221 due to light interference can be suppressed.
 図12において、第8変形例に係るセンサ部200jでは、カバー部240に代えてモールド部230の透過面が傾斜して配置されている。具体的には、モールド部230に第1透過面231及び第2透過面232が夫々形成されており、モールド部230が「透光性部材」の一具体例として機能する。このように構成した場合、モールド部230の第1透過面231において、戻り光RBは出射光LBとずれた角度で反射される。従って、光の干渉に起因する発光素子221の不安定化を抑制することができる。なお、モールド部230の透過面に加えて、カバー部240の透過面も傾斜されてよい。 In FIG. 12, in the sensor unit 200j according to the eighth modification, the transmission surface of the mold unit 230 is disposed in an inclined manner instead of the cover unit 240. Specifically, the first transmissive surface 231 and the second transmissive surface 232 are formed on the mold part 230, respectively, and the mold part 230 functions as a specific example of the “translucent member”. When configured in this manner, the return light RB is reflected at an angle shifted from the emitted light LB on the first transmission surface 231 of the mold part 230. Accordingly, instability of the light-emitting element 221 due to light interference can be suppressed. In addition to the transmission surface of the mold part 230, the transmission surface of the cover part 240 may be inclined.
 以上説明したように、第1実施例に係るレーザードップラーセンサによれば、出射光LBが透過する透過面が傾斜されていることにより、戻り光RBに起因する発光素子221の不安定化を効果的に抑制することができる。 As described above, according to the laser Doppler sensor according to the first embodiment, the transmissive surface through which the emitted light LB is transmitted is inclined, so that the destabilization of the light emitting element 221 caused by the return light RB is effective. Can be suppressed.
 <第2実施例>
 次に、第2実施例に係るレーザードップラーセンサについて、図13及び図14を参照して説明する。なお、第2実施例は、上述した第1実施例と比較して一部の構成が異なるのみであり、その他の部分については概ね同様である。このため、以下では、第1実施例と異なる部分について詳細に説明し、他の重複する部分については適宜説明を省略するものとする。
<Second embodiment>
Next, a laser Doppler sensor according to a second embodiment will be described with reference to FIGS. The second embodiment is different from the first embodiment described above only in part of the configuration, and the other parts are substantially the same. For this reason, below, a different part from 1st Example is demonstrated in detail, and description is abbreviate | omitted suitably about another overlapping part.
 先ず、第2実施例に係るレーザードップラーセンサの全体構成について、図13を参照して説明する。ここに図13は、第2実施例に係るレーザードップラーセンサの全体構成を示す斜視図である。 First, the overall configuration of the laser Doppler sensor according to the second embodiment will be described with reference to FIG. FIG. 13 is a perspective view showing the overall configuration of the laser Doppler sensor according to the second embodiment.
 図13において、第2実施例に係るレーザードップラーセンサは、発光側センサ部250を有する発光側プローブ部110と、受光側センサ部260を有する受光側プローブ部120と、接続ケーブル300と、接続端子400とを備えて構成されている。即ち、第2実施例に係るレーザードップラーセンサでは、プローブ部が発光側と受光側とで別体として構成されている。 In FIG. 13, the laser Doppler sensor according to the second embodiment includes a light emitting side probe unit 110 having a light emitting side sensor unit 250, a light receiving side probe unit 120 having a light receiving side sensor unit 260, a connection cable 300, and a connection terminal. 400. That is, in the laser Doppler sensor according to the second embodiment, the probe portion is configured as a separate body on the light emitting side and the light receiving side.
 第2実施例に係るレーザードップラーセンサの動作時には、対象物500が、発光側プローブ部110と受光側プローブ部120との間に配置される。第2実施例に係るレーザードップラーセンサでは、発光側センサ部250が有する発光素子からレーザ光が照射されると、対象物500を透過したレーザ光が、受光側センサ部260が有する受光素子において受光される。即ち、第2実施例に係るレーザードップラーセンサは、透過型のセンサとして構成されている。 When the laser Doppler sensor according to the second embodiment is operated, the object 500 is disposed between the light emitting side probe unit 110 and the light receiving side probe unit 120. In the laser Doppler sensor according to the second embodiment, when laser light is emitted from the light emitting element of the light emitting side sensor unit 250, the laser light transmitted through the object 500 is received by the light receiving element of the light receiving side sensor unit 260. Is done. That is, the laser Doppler sensor according to the second embodiment is configured as a transmission type sensor.
 続いて、第2実施例に係るセンサ部の具体的な構成について、図14を参照して説明する。ここに図14は、第2実施例に係るセンサ部の構成を示す断面図である。 Subsequently, a specific configuration of the sensor unit according to the second embodiment will be described with reference to FIG. FIG. 14 is a cross-sectional view showing the configuration of the sensor unit according to the second embodiment.
 図14において、発光側センサ部250は、素子基板210と、発光素子221と、モールド部230と、カバー部240とを備えて構成されている。他方、受光側センサ部260は、素子基板210bと、発光素子222と、モールド部230bと、カバー部240bとを備えて構成されている。 In FIG. 14, the light emitting side sensor unit 250 includes an element substrate 210, a light emitting element 221, a mold unit 230, and a cover unit 240. On the other hand, the light receiving side sensor unit 260 includes an element substrate 210b, a light emitting element 222, a mold unit 230b, and a cover unit 240b.
 発光側センサ部250におけるカバー部240は、発光素子221から出射されるレーザ光の光路に対して傾斜して配置されている。即ち、出射光LBの光路とカバー部240の透過面とが互いに直交しないように配置されている。これにより、カバー部240において反射された戻り光RBは、出射光LBとずれた角度で反射される。従って、光の干渉に起因する発光素子221の不安定化を抑制することができる。 The cover part 240 in the light emitting side sensor part 250 is disposed to be inclined with respect to the optical path of the laser light emitted from the light emitting element 221. That is, the optical path of the emitted light LB and the transmission surface of the cover part 240 are arranged so as not to be orthogonal to each other. Thereby, the return light RB reflected by the cover part 240 is reflected at an angle shifted from the emitted light LB. Accordingly, instability of the light-emitting element 221 due to light interference can be suppressed.
 なお、受光側センサ部260におけるカバー部240bも、発光側と同様に傾斜されているが、受光側においては光の干渉を考慮せずともよいため、必ずしも傾斜して配置することは要求されない。ただし、発光側と同様に傾斜されたカバー部240bを用いれば、部品を共通化してコストの増大を防止することができる。 In addition, although the cover part 240b in the light-receiving side sensor part 260 is also inclined in the same manner as the light-emitting side, it is not always necessary to place the cover 240b at an inclination because light interference does not have to be taken into consideration. However, if the cover part 240b inclined like the light emission side is used, parts can be made common and an increase in cost can be prevented.
 ちなみに、カバー部240及び240bの形状を、例えば図3で示したM字型や図5で示した山型にすることで、部品の対称性を実現し生産性を向上させることもできる。また、第2実施例においても、第1実施例において挙げた各変形例を採用することが可能である。 Incidentally, by making the shapes of the cover portions 240 and 240b, for example, the M shape shown in FIG. 3 or the mountain shape shown in FIG. 5, the symmetry of the parts can be realized and the productivity can be improved. Also in the second embodiment, it is possible to adopt the respective modifications described in the first embodiment.
 以上説明したように、第2実施例に係るレーザードップラーセンサによれば、出射光LBが透過する透過面が傾斜されていることにより、戻り光RBに起因する発光素子221の不安定化を効果的に抑制することができる。 As described above, according to the laser Doppler sensor according to the second embodiment, the transmissive surface through which the emitted light LB is transmitted is inclined, so that the destabilization of the light emitting element 221 caused by the return light RB is effective. Can be suppressed.
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うレーザードップラーセンサもまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit or concept of the invention that can be read from the claims and the entire specification, and a laser Doppler sensor with such a change. Is also included in the technical scope of the present invention.
 100 プローブ部
 110 発光側プローブ部
 120 受光側プローブ部
 200 センサ部
 210 素子基板
 221 発光素子
 222 受光素子
 230 モールド部
 240 カバー部
 231,241 第1透過面
 232,242 第2透過面
 250 発光側センサ部
 260 受光側センサ部
 300 接続ケーブル
 400 接続端子
 500 対象物
 LB 出射光
 RB 戻り光
 SC 対称中心
DESCRIPTION OF SYMBOLS 100 Probe part 110 Light emission side probe part 120 Light reception side probe part 200 Sensor part 210 Element board | substrate 221 Light emitting element 222 Light receiving element 230 Mold part 240 Cover part 231,241 1st transmission surface 232,242 2nd transmission surface 250 Light emission side sensor part 260 Light-receiving side sensor unit 300 Connection cable 400 Connection terminal 500 Object LB Emission light RB Return light SC Symmetry center

Claims (5)

  1.  対象物にレーザ光を照射する発光部と、
     前記発光部を被覆し、前記レーザ光が透過する透過面を有する透光性部材と
     を備え、
     前記透過面は、前記レーザ光の照射光路に対して傾斜して配置されている
     ことを特徴とするレーザードップラーセンサ。
    A light emitting unit for irradiating an object with laser light;
    A translucent member that covers the light emitting portion and has a transmission surface through which the laser beam is transmitted;
    The laser Doppler sensor, wherein the transmission surface is arranged to be inclined with respect to the irradiation light path of the laser light.
  2.  前記透過面から見て前記発光部側に配置されており、前記対象物で散乱された前記レーザ光を受光する受光部を更に備えることを特徴とする請求項1に記載のレーザードップラーセンサ。 2. The laser Doppler sensor according to claim 1, further comprising a light receiving portion that is disposed on the light emitting portion side when viewed from the transmission surface and receives the laser light scattered by the object.
  3.  前記透光性部材は、前記発光部に対応する第1透過面、及び前記受光部に対応する第2透過面を有しており、
     前記第1透過面及び前記第2透過面は、互いに対称の傾斜角度を有するように配置されている
     ことを特徴とする請求項2に記載のレーザードップラーセンサ。
    The translucent member has a first transmission surface corresponding to the light emitting unit and a second transmission surface corresponding to the light receiving unit,
    The laser Doppler sensor according to claim 2, wherein the first transmission surface and the second transmission surface are arranged so as to have a symmetrical inclination angle.
  4.  前記受光部は、前記第1透過面及び前記第2透過面の対称中心に対して、前記発光部よりも近い位置に配置されていることを特徴とする請求項3に記載のレーザードップラーセンサ。 The laser Doppler sensor according to claim 3, wherein the light receiving unit is disposed at a position closer to the light emitting unit with respect to a symmetrical center of the first transmission surface and the second transmission surface.
  5.  前記発光部及び前記透光性部材と別体として設けられており、前記対象物で散乱された前記レーザ光を受光する受光部を更に備えることを特徴とする請求項1に記載のレーザードップラーセンサ。 2. The laser Doppler sensor according to claim 1, further comprising a light receiving portion that is provided separately from the light emitting portion and the light transmissive member, and that receives the laser light scattered by the object. .
PCT/JP2014/078589 2014-10-28 2014-10-28 Laser doppler sensor WO2016067359A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016556080A JP6347848B2 (en) 2014-10-28 2014-10-28 Laser Doppler sensor
PCT/JP2014/078589 WO2016067359A1 (en) 2014-10-28 2014-10-28 Laser doppler sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078589 WO2016067359A1 (en) 2014-10-28 2014-10-28 Laser doppler sensor

Publications (1)

Publication Number Publication Date
WO2016067359A1 true WO2016067359A1 (en) 2016-05-06

Family

ID=55856753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078589 WO2016067359A1 (en) 2014-10-28 2014-10-28 Laser doppler sensor

Country Status (2)

Country Link
JP (1) JP6347848B2 (en)
WO (1) WO2016067359A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168104A1 (en) * 2017-03-13 2018-09-20 コニカミノルタ株式会社 Body motion detection device and monitoring system
JP2020010913A (en) * 2018-07-20 2020-01-23 セイコーエプソン株式会社 Biological sensor module and biological information measuring apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137641A (en) * 2013-01-15 2014-07-28 Fujitsu Ltd Biological information imaging device and biometric authentication, and manufacturing method of biological information imaging device
WO2014136242A1 (en) * 2013-03-07 2014-09-12 パイオニア株式会社 Detector
JP2014180291A (en) * 2013-03-18 2014-09-29 Seiko Epson Corp Biological information detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137641A (en) * 2013-01-15 2014-07-28 Fujitsu Ltd Biological information imaging device and biometric authentication, and manufacturing method of biological information imaging device
WO2014136242A1 (en) * 2013-03-07 2014-09-12 パイオニア株式会社 Detector
JP2014180291A (en) * 2013-03-18 2014-09-29 Seiko Epson Corp Biological information detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168104A1 (en) * 2017-03-13 2018-09-20 コニカミノルタ株式会社 Body motion detection device and monitoring system
JPWO2018168104A1 (en) * 2017-03-13 2020-01-16 コニカミノルタ株式会社 Body motion detection device and watching system
JP6996551B2 (en) 2017-03-13 2022-01-17 コニカミノルタ株式会社 Body movement detection device and watching system
JP2020010913A (en) * 2018-07-20 2020-01-23 セイコーエプソン株式会社 Biological sensor module and biological information measuring apparatus
JP7155704B2 (en) 2018-07-20 2022-10-19 セイコーエプソン株式会社 Biosensor module and biometric information measuring device

Also Published As

Publication number Publication date
JPWO2016067359A1 (en) 2017-09-07
JP6347848B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP6050048B2 (en) Vehicle lighting
JP5441801B2 (en) Vehicle lighting
US8702281B2 (en) Lighting fixture unit
US20140071703A1 (en) Vehicular lamp
JP2013515289A5 (en)
JP6257132B2 (en) Light guide device
JP2012243493A (en) Vehicular signal lamp
JP2012028155A (en) Lamp unit for vehicle
JP6178589B2 (en) Vehicle lighting
JP6557543B2 (en) Vehicle lighting
JP2014089941A (en) Vehicular lighting unit
JP6347848B2 (en) Laser Doppler sensor
JP2006324256A5 (en)
JP5801164B2 (en) Vehicle lighting
JP2018158125A (en) Laser Doppler Sensor
JP6050064B2 (en) Vehicle lighting
JP6228035B2 (en) Vehicle lighting
JP6179138B2 (en) Vehicle lighting
JP2015077911A (en) Vehicle lamp fitting
JP2020058826A (en) Laser doppler sensor
JP2007188681A (en) Surface light-emitting device
JP2014170630A (en) Vehicular lighting fixture
JP6144898B2 (en) Vehicle lighting
JP2019197743A5 (en)
JP2007242451A (en) Vehicular lighting fixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556080

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904850

Country of ref document: EP

Kind code of ref document: A1