WO2016066874A1 - Capa refractaria de apoyo para tanques de almacenamiento térmico a altas temperaturas - Google Patents
Capa refractaria de apoyo para tanques de almacenamiento térmico a altas temperaturas Download PDFInfo
- Publication number
- WO2016066874A1 WO2016066874A1 PCT/ES2015/070761 ES2015070761W WO2016066874A1 WO 2016066874 A1 WO2016066874 A1 WO 2016066874A1 ES 2015070761 W ES2015070761 W ES 2015070761W WO 2016066874 A1 WO2016066874 A1 WO 2016066874A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- concrete
- layer
- refractory layer
- refractory
- support
- Prior art date
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D27/00—Foundations as substructures
- E02D27/32—Foundations for special purposes
- E02D27/38—Foundations for large tanks, e.g. oil tanks
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/16—Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H5/00—Buildings or groups of buildings for industrial or agricultural purposes
- E04H5/02—Buildings or groups of buildings for industrial purposes, e.g. for power-plants or factories
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/02—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
Definitions
- the present invention relates to a refractory support layer for thermal storage tanks at high temperatures, which falls within the field of insulation systems and solutions for storage tanks, and more specifically for the storage of fluids or heat transfer particulate solids. employees, for example, in solar thermal plants. It also refers to manufacturing processes of said refractory layer, and storage facilities for heat-carrying particles or solids comprising said refractory layer.
- Patent document US8590242 (“Insulated concrete wall”) is a good example of this.
- the patent document CN202689037 (“Foundation slab layer structure”) describes a multilayer system to form foundation slabs with waterproof characteristics, having a layer structure formed by cushioning concrete, waterproof membrane and structural concrete.
- Patent document US4365478 (“Support for a spherical tank”) describes a support system for spherical tanks comprising a foundation slab, an intermediate layer of insulating concrete with interior cavities to increase the insulating character and, finally, in contact with the tank, a layer of sand spherical shape.
- the object of the invention is to provide a refractory support layer for thermal storage tanks at high temperatures that overcomes the indicated drawbacks, offering satisfactory structural stability and thermal resistance.
- the support refractory layer for thermal storage tanks at high temperatures of the invention is a layer formed by concrete, the concrete being used as a concrete with a thermal conductivity of less than 1, 05 W / mK and a compressive strength greater than 15 MPa, and with a thickness between 0.2 m and 5 m.
- This refractory support layer works as a rigid and structurally stable support for the support of steel tanks, transmitting their loads directly to the ground or to the structural foundation element distributing the efforts; additionally it would fulfill an insulation function (due to its refractory conditions) in such a way that the ground or foundation does not suffer the tensions that thermal gradients derived from such high temperature differentials can produce.
- An additional advantage of the invention is that no environmental or atmospheric element will in any way affect the foundation or support of the tanks, as could be the case with the current technique.
- the current beds of expanded clay being layers of loose granular material, can accommodate rainwater that, accumulated, can favor its absorption by the grains, and therefore vary the structural and resistant behavior of the entire support system, causing new instabilities in steel tanks. This point can be aggravated by the fact that in the areas near the tanks the temperatures are high, there being, therefore, thermal differentials in the same bed of expanded clay, which causes dry and humid areas that can cause instabilities.
- the object of the present invention makes it possible not to increase the costs of current technologies, in such a way that similar or less investment is made in this refractory support layer than is currently made in expanded clay beds.
- the invention also provides a method of manufacturing a refractory support layer for thermal storage tanks at high temperatures consisting of the in situ execution of the layer by direct pouring or pumping of the concrete.
- the invention also provides a method of manufacturing a refractory support layer for thermal storage tanks at high temperatures divided into several sub-layers, in which the concrete is poured into different pitches, and polishing or fratating treatments are applied (surface finishes) on the contact surfaces between the sub-layers.
- the invention also provides a storage facility for heat-carrying particles or solids comprising:
- a refractory layer of concrete with a thermal conductivity of less than 1, 05 W / mK and a compressive strength of more than 15 MPa, and with a thickness between 0.2 m and 5 m, or of reinforced concrete, or of concrete in mass or divided into several sub-layers,
- the invention also provides a storage facility for heat-carrying particles or solids comprising:
- refractory layer of concrete with a thermal conductivity of less than 1, 05 W / mK and a compressive strength of more than 15 MPa, and with a thickness between 0.2 m and 5 m, or of mass concrete, or concrete armed or divided into several sub-layers,
- thermo storage tank at high temperatures, so that the refractory layer is inside the reinforced concrete enclosure, and the storage tank is supported directly on the refractory layer.
- Figure 1 Elevation view of the refractory support layer under tank.
- FIG. 2 Elevation view of the refractory support layer in structural concrete enclosure.
- Figure 3 Elevation view of the support refractory layer executed in sub-layers or toned. Detailed description of the invention
- the high temperatures of the fluids and heat carriers of the storage tanks 2 are those between 200 ° C and 1000 ° C.
- the invention consists of a layer 1 of support and refractory support for storage tanks 2 of heat-transfer fluid and solid particles, understanding it as a concrete plate that rests on the ground or on a foundation element and on which they will be supported the thermal storage tanks 2 at high temperatures, directly supported simply by said layer 1, executed with refractory or insulating concrete by the high working temperatures of the entire storage system (temperatures greater than 200 ° C).
- the global solution where this invention is framed is based on current storage systems in such a way that it would be perfectly adapted as another element of the global storage tank solution 2, because it can be composed of a reinforced concrete enclosure 3 with retaining walls cemented with a slab, within which the steel tanks 2 located directly on the refractory support layer 1 object of the invention are located.
- This refractory system lies in the nature of the concrete necessary for its execution.
- This concrete must have refractory or insulating properties, understanding these as that its thermal conductivity must be less than 1, 05 W / mK, while having structural characteristics, that is, having sufficient strength to withstand the stresses derived from the support of the tanks 2.
- the compressive strength of the concrete must be at least 15 MPa.
- this support layer 1 is designed with reinforced structural concrete, it must reach a minimum compressive strength of 25 MPa.
- the refractory support layer 1, object of the present invention is sized according to several parameters, among which the temperature of the tank 2 that rests on it stands out. This value will determine the thickness of the support layer 1, this being in a range of 0.2-5 meters.
- This refractory support layer 1 can be arranged in bulk or assembled with preferably conventional steel bar elements type B500SD, B500S, B400S or the like qualities, as well as with electro-welded meshes or even with active reinforcement elements for possible prestressing if the calculation stresses so require. In any case or structural combination, this layer 1 is characterized by being executed in situ by direct pouring or pumping of the specified refractory concrete.
- Another variant would consist of forming the refractory support layer 1 with prefabricated blocks of the refractory concrete as well as executing it by discretized and separated elements. These separations are treated by means of execution joints that isolate the blocks from each other to avoid that the dilations of the blocks cause destabilizations of the assembly as well as that they waterproof the entire layer 1 preventing water from entering the discontinuities that could in turn cause imbalances in the complete block system affecting the stability of the supported 2 tanks.
- the concrete of the refractory layer 1 will preferably be reinforced. However, it is also possible to use mass concrete or a refractory layer 1 divided into several sub-layers 4.
- the concrete of the refractory layer 1 will preferably be in bulk, since it already has a reinforced concrete base layer. However, it is also possible to use reinforced concrete or a refractory layer 1 divided into several sub-layers 4.
- Figure 1 represents a storage facility for heat-carrying particulate fluids or solids comprising: a refractory layer 1 of concrete with a thermal conductivity of less than 1, 05 W / mK and a compressive strength of more than 15 MPa, and with a thickness comprised between 0.2 m and 5 m, (or reinforced concrete or mass concrete or divided into several sub-layers 4), and a thermal storage tank 2 at high temperatures, so that the storage tank 2 is resting directly on the refractory layer 1.
- Figure 2 depicts a storage facility for heat-carrying particulate fluids or solids comprising: a refractory layer 1 of concrete with a thermal conductivity of less than 1, 05 W / mK and a compressive strength of more than 15 MPa, and with a thickness comprised between 0.2 m and 5 m, (or of mass concrete or reinforced concrete or divided into several sub-layers 4), a reinforced concrete enclosure 3 with retaining walls cemented with a slab, and a thermal storage tank 2 at high temperatures, so that the refractory layer 1 is inside the reinforced concrete enclosure 3, and the storage tank 2 is directly supported on the refractory layer 1.
- Figure 3 depicts a storage facility for heat-carrying particles or solids comprising: a refractory layer 1 of concrete divided into several sub-layers 4, and a thermal storage tank 2 at high temperatures, so that the storage tank 2 is supported directly on the refractory layer 1.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Building Environments (AREA)
Abstract
Capa refractaria (1) de apoyo para tanques de almacenamiento (2) térmico a altas tempera- turas, estando dicha capa (1) formada por hormigón, en la que el hormigón empleado se trata de un hormigón con una conductividad térmica inferior a 1,05 W/mK y una resistencia a compresión superior a 15 MPa, y porque su espesor está comprendido entre 0,2 m y 5 m. También se describen procedimientos de fabricación de dicha capa refractaria (1), e instala- ciones de almacenamiento de fluidos o sólidos particulados caloportadores que comprenden dicha capa refractaria (1).
Description
DESCRIPCIÓN
Capa refractaria de apoyo para tanques de almacenamiento térmico a altas temperaturas Campo de la invención
La presente invención se refiere a una capa refractaria de apoyo para tanques de almacenamiento térmico a altas temperaturas, que se encuadra dentro del campo de sistemas y soluciones de aislamiento para tanques de almacenamiento, y más en concreto de almacenamiento de fluidos o sólidos particulados caloportadores de los empleados, por ejemplo, en plantas termosolares. También se refiere a procedimientos de fabricación de dicha capa refractaria, y a instalaciones de almacenamiento de fluidos o sólidos particulados caloportadores que comprenden dicha capa refractaria.
Antecedentes de la invención
La principal problemática que surge en los tanques de acero para almacenamiento de fluidos y sólidos particulados caloportadores es que las cimentaciones convencionales y habituales en la ingeniería civil no pueden cumplir su función adecuadamente, al estar sometidas a muy altas temperaturas. Por ello se ha recurrido en la técnica anterior a diferentes soluciones que pasan por usar y ejecutar lechos de arcilla expandida como soporte, los cuales presentan importantes inconvenientes, siendo el principal de ellos la inestabilidad que causa debido a su carácter granular no cohesivo. La arcilla expandida se fabrica a partir de arcillas que son sometidas en hornos rotatorios a un choque térmico de más de 1000 °C, el cual produce la expansión de las partículas arcillosas. Esto conlleva que la arcilla expandida en cualquiera de sus granulometrías sea un material granular expandido, de grano suelto y por tanto sin cohesión. La consecuencia inmediata de ello es la imposibilidad de compactación de una capa o lecho de arcilla expandida, al no tener material fino que cierre la matriz mediante aporte de humedad u otros métodos menos usuales. Por tanto, esta característica se convierte en una deficiencia a la hora de utilizar este material como soporte, apoyo o cimentación, ya que al posar el elemento estructural se producen inevitablemente asientos diferenciales, pues los granos de arcilla expandida se redistribuyen por la presión que ejercen sobre ella los puntos de apoyo. Estos asientos se acaban transmitiendo a los tanques que soportan, derivándoles esas inestabilidades estructurales y pudiendo provocar graves daños en la integridad de dichos depósitos de acero.
Dentro de los múltiples y diferentes sistemas para aislar térmicamente aparatos o equipos de almacenamiento, se encuentran pocos ejemplos de capas aislantes para apoyo de dichos elementos. Es mucho más común localizar productos o materiales refractarios y/o ais-
lantes con aplicaciones en aislamientos de diferentes equipos, bien sean de almacenamiento (como tanques de almacenamiento térmico a altas temperaturas), o bien otro tipo de dispositivos que necesiten de dicha propiedad aislante.
Existen en la técnica anterior documentos de patentes relacionados con estratos o películas milimétricas, casi siempre enfocados a sus métodos de fabricación, aplicación e, incluso, a la medida de dichos estratos o películas.
También existen en la técnica anterior varios ejemplos de recubrimientos aislantes/refractarios para vasijas o elementos de almacenamiento. La mayoría del estado del arte localizado alrededor de este concepto gira en torno a composiciones de diferentes materiales en diferentes capas o estratos, incluyendo de manera general una o varias capas aislantes más elementos estructurales. Entre los materiales más usuales localizados en estas patentes se encuentran principalmente los siguientes: ladrillos, áridos, cavidades de aire, polímeros y metales. Los documentos de patente CA2611360 ("Insulating refractory lining") y CA1 198571 ("Monolithic refractory layer for metallurgical vessels and method of application") son ejemplos de este concepto.
Centrando más la técnica anterior en la idea de una capa refractaria para apoyo de estructuras, más concretamente tanques de almacenamiento, y, por tanto, en invenciones con una carga estructural y aislante simultánea, se localizan principalmente documentos de patente de muros, bloques o estructuras generales que combinan dichos elementos. Casi todos ellos se centran en describir y proteger los métodos de fabricación y/o montaje de dichos productos. El documento de patente US8590242 ("Insulated concrete wall") es un buen ejemplo de ello.
Por otro lado, el documento de patente CN202689037 ("Foundation slab layer structure") describe un sistema multicapa para conformar losas de cimentación con características impermeables, al contar con una estructura de capa formada por hormigón de amortiguación, membrana impermeable y hormigón estructural.
El documento de patente US4365478 ("Support for a spherical tank") describe un sistema de apoyo para tanques esféricos que comprende una losa de cimentación, una capa intermedia de hormigón aislante con cavidades interiores para aumentar el carácter aislante y, finalmente al contacto con el tanque, una capa de arena de forma esférica.
Se hace, pues, necesario obtener una sustentación para tanques de fluidos y sólidos calo- portadores que ofrezca simultáneamente estabilidad estructural y resistencia térmica para aplicaciones de altas temperaturas.
Sumario de la invención
Por tanto, el objeto de la invención es proporcionar una capa refractaria de apoyo para tanques de almacenamiento térmico a altas temperaturas que supere los inconvenientes indicados, ofreciendo una estabilidad estructural y una resistencia térmica satisfactorias.
La capa refractaria de apoyo para tanques de almacenamiento térmico a altas temperaturas de la invención se trata de una capa formada por hormigón, siendo el hormigón empleado un hormigón con una conductividad térmica inferior a 1 ,05 W/mK y una resistencia a compresión superior a 15 MPa, y con un espesor comprendido entre 0,2 m y 5 m.
Esta capa refractaria de apoyo trabaja como un sustento rígido y estable estructuralmente para la sustentación de los tanques de acero, transmitiendo las cargas de éstos directamente al terreno o al elemento de cimentación estructural distribuyendo los esfuerzos; adicio- nalmente cumpliría una función de aislamiento (por sus condiciones refractarias) de tal manera que el terreno o cimentación no sufra las tensiones que le puedan producir los gradientes térmicos derivados de los diferenciales de temperatura tan altos.
Mediante la presente invención se asegura la estabilidad estructural y la resistencia térmica, ya que se define por una capa de hormigón (aportando la rigidez, resistencia mecánica y estabilidad estructural necesaria para soportar los esfuerzos provocados por los tanques y su contenido y que éstos no sufran asientos diferenciales en sus apoyos), en la que el hormigón debe tener características refractarias o aislantes aportando la resistencia a altas temperaturas necesaria para mantener sus prestaciones durante la vida útil del sistema de almacenamiento.
Una ventaja adicional de la invención es que ningún elemento ambiental o atmosférico afectará en caso alguno a la cimentación o soporte de los tanques, como podría ocurrir con la técnica actual. Los actuales lechos de arcilla expandida, al ser capas de material granular suelto, pueden alojar agua de lluvia que, acumulada, puede favorecer su absorción por los granos, y variar por tanto el comportamiento estructural y resistente de todo el sistema de apoyo, provocando nuevas inestabilidades en los tanques de acero. Este punto se puede ver agravado por el hecho de que en las zonas cercanas a los tanques las temperaturas son altas, existiendo, por consiguiente, diferenciales térmicos en el mismo lecho de arcilla expandida, lo que ocasiona zonas secas y húmedas que pueden provocar inestabilidades.
Además, el objeto de la presente invención permite no encarecer los costes de las tecnologías actuales, de tal manera que se realiza similar o menor inversión en esta capa de apoyo refractaria que la que actualmente se realiza en los lechos de arcilla expandida.
La invención también proporciona un procedimiento de fabricación de una capa refractaria de apoyo para tanques de almacenamiento térmico a altas temperaturas que consiste en la ejecución in situ de la capa mediante vertido directo o bombeo del hormigón.
La invención también proporciona un procedimiento de fabricación de una capa refractaria de apoyo para tanques de almacenamiento térmico a altas temperaturas dividida en varias subcapas, en el que el hormigón se vierte en diferentes tongadas, y se aplican tratamientos de pulido o fratasado (acabados superficiales) sobre las superficies de contacto entre las subcapas.
La invención también proporciona una instalación de almacenamiento de fluidos o sólidos particulados caloportadores que comprende:
- una capa refractaria de hormigón con una conductividad térmica inferior a 1 ,05 W/mK y una resistencia a compresión superior a 15 MPa, y con un espesor comprendido entre 0,2 m y 5 m, o de hormigón armado, o de hormigón en masa o dividida en varias subcapas,
- un tanque de almacenamiento térmico a altas temperaturas, de modo que el tanque de almacenamiento está apoyado directamente sobre la capa refractaria.
La invención también proporciona una instalación de almacenamiento de fluidos o sólidos particulados caloportadores que comprende:
- una capa refractaria de hormigón con una conductividad térmica inferior a 1 ,05 W/mK y una resistencia a compresión superior a 15 MPa, y con un espesor comprendido entre 0,2 m y 5 m, o de hormigón en masa, o de hormigón armado o dividida en varias subcapas,
- un recinto de hormigón armado cimentado y con muros de contención, y
- un tanque de almacenamiento térmico a altas temperaturas, de modo que la capa refractaria se encuentra dentro del recinto de hormigón armado, y el tanque de almacenamiento está apoyado directamente sobre la capa refractaria.
Otras características y ventajas de la presente invención se desprenderán de la siguiente descripción detallada del objeto de la misma en relación con las figuras que se acompañan.
Breve descripción de las figuras
Figura 1 : Vista en alzado de la capa refractaria de apoyo bajo tanque.
Figura 2: Vista en alzado de la capa refractaria de apoyo en recinto de hormigón estructural.
Figura 3: Vista en alzado de la capa refractaria de apoyo ejecutada en subcapas o tongadas. Descripción detallada de la invención
A los efectos del presente documento, se entenderá que las altas temperaturas de los fluidos y sólidos caloportadores de los tanques de almacenamiento 2 son las comprendidas entre 200°C y 1000°C.
La invención consiste en una capa 1 de apoyo y soportación refractaria para tanques 2 de acero de almacenamiento de fluidos y sólidos particulados caloportadores, entendiéndola como una placa de hormigón que se apoya sobre el terreno o sobre un elemento de cimentación y sobre la cual se soportarán los tanques de almacenamiento 2 térmico a altas temperaturas, de manera directa simplemente apoyados en dicha capa 1 , ejecutada con hormigón refractario o aislante por las altas temperaturas de trabajo de todo el sistema de almacenamiento (temperaturas mayores de 200°C).
La solución global donde se enmarca esta invención se basa en los sistemas actuales de almacenamiento de tal manera que se adaptaría perfectamente como un elemento más de la solución global de tanques de almacenamiento 2, debido a que puede componerse de un recinto 3 de hormigón armado con muros de contención cimentado con una losa, dentro del cual se ubican los tanques 2 de acero apoyados directamente sobre la capa 1 de apoyo refractaria objeto de la invención.
El elemento más innovador de este sistema refractario reside en la naturaleza del hormigón necesario para su ejecución. Este hormigón debe tener propiedades refractarias o aislantes, entendiendo éstas como que su conductividad térmica debe ser menor de 1 ,05 W/mK, a la par que tenga características estructurales, es decir, que posea suficiente resistencia para soportar los esfuerzos derivados del apoyo de los tanques 2. En el caso de disponerse una capa 1 de apoyo refractaria en la que el hormigón fuese diseñado en masa la resistencia a compresión del hormigón debe ser, al menos, de 15 MPa. Por el contrario, si esta capa 1 de apoyo se diseña con hormigón estructural armado, éste deberá alcanzar una resistencia a compresión mínima de 25 MPa.
La capa 1 de apoyo refractaria, objeto de la presente invención, se dimensiona en función de varios parámetros, entre los cuales destaca la temperatura del tanque 2 que apoye sobre ella. Este valor determinará el espesor de la capa 1 de apoyo, estando éste en un rango de 0,2-5 metros.
Esta capa 1 de apoyo refractaria puede disponerse en masa o armada con elementos de barras de acero preferentemente convencionales tipo B500SD, B500S, B400S o similares
calidades, así como con mallas electrosoldadas o incluso con elementos de armadura activa para un posible pretensado si las tensiones de cálculo así lo requiriesen. En cualquier caso o combinación estructural, esta capa 1 se caracteriza por ser ejecutada in situ mediante vertido directo o bombeo del hormigón refractario especificado.
Existen otras posibilidades estructurales que el diseño permite manteniendo la función refractaria y estructural de esta capa 1 de apoyo. Una variación para reducir las tensiones, y por tanto el posible armado de la capa 1 , en el nivel de temperaturas más alto (temperaturas mayores de 600°C) consistiría en la desconexión de subcapas 4 o tongadas a lo largo de todo el espesor; mediante hormigonados en tongadas independientes y con tratamientos de pulido, fratasado o similares operaciones de acabado superficial sobre los planos de contacto se conseguiría aportar grados de libertad a los sucesivos elementos de la capa 1 de apoyo, posibilitando una reducción de esfuerzos y tensiones que deriven en un ahorro de coste por armadura.
Otra variante consistiría en conformar la capa 1 de apoyo refractaria con bloques prefabricados del hormigón refractario así como también ejecutarla por elementos discretizados y separados. Estas separaciones son tratadas mediante juntas de ejecución que aislen los bloques entre sí para evitar que las dilataciones de los bloques provoquen desestabilizaciones del conjunto así como también que impermeabilicen toda la capa 1 evitando entrada de agua en las discontinuidades que podría causar a su vez desequilibrios en el sistema completo de bloques afectando a la estabilidad de los tanques 2 apoyados.
Cuando el tanque 2 va directamente apoyado sobre el terreno, el hormigón de la capa refractaria 1 será preferentemente armado. No obstante, también es posible emplear hormigón en masa o bien una capa refractaria 1 dividida en varias subcapas 4.
Cuando la capa refractaria 1 se encuentra dentro del recinto 3, el hormigón de la capa refractaria 1 será preferentemente en masa, pues ya cuenta con una capa de hormigón armado de base. No obstante, también es posible emplear hormigón armado o bien una capa refractaria 1 dividida en varias subcapas 4.
La figura 1 representa una instalación de almacenamiento de fluidos o sólidos particulados caloportadores que comprende: una capa refractaria 1 de hormigón con una conductividad térmica inferior a 1 ,05 W/mK y una resistencia a compresión superior a 15 MPa, y con un espesor comprendido entre 0,2 m y 5 m, (o de hormigón armado o de hormigón en masa o dividida en varias subcapas 4), y un tanque de almacenamiento 2 térmico a altas temperaturas,
de modo que el tanque de almacenamiento 2 está apoyado directamente sobre la capa refractaria 1.
La figura 2 representa una instalación de almacenamiento de fluidos o sólidos particulados caloportadores que comprende: una capa refractaria 1 de hormigón con una conductividad térmica inferior a 1 ,05 W/mK y una resistencia a compresión superior a 15 MPa, y con un espesor comprendido entre 0,2 m y 5 m, (o de hormigón en masa o de hormigón armado o dividida en varias subcapas 4), un recinto 3 de hormigón armado con muros de contención cimentado con una losa, y un tanque de almacenamiento 2 térmico a altas temperaturas, de modo que la capa refractaria 1 se encuentra dentro del recinto 3 de hormigón armado, y el tanque de almacenamiento 2 está apoyado directamente sobre la capa refractaria 1.
La figura 3 representa una instalación de almacenamiento de fluidos o sólidos particulados caloportadores que comprende: una capa refractaria 1 de hormigón dividida en varias subcapas 4, y un tanque de almacenamiento 2 térmico a altas temperaturas, de modo que el tanque de almacenamiento 2 está apoyado directamente sobre la capa refractaria 1.
Toda esta variedad de configuraciones estructurales hacen a esta solución de aislamiento y soporte para tanques 2 de acero de almacenamiento de fluidos o sólidos particulados calo- portadores mediante capa 1 de apoyo de hormigón refractario diferenciarse del actual estado de la técnica, permitiendo:
- temperaturas de trabajo en los tanques 2 a altas temperaturas (200-1000°C), mayores de las actuales temperaturas de trabajo, uso de hormigones refractarios para construir una capa 1 de soporte y apoyo a esos tanques 2 mejorando el comportamiento estructural y resistente del sistema actual a la par que no penaliza los costes asociados a la construcción, y, solucionar de manera efectiva y barata los principales problemas de diseño y comportamiento de las actuales configuraciones, tales como asientos diferenciales indeseables por las cimentaciones de lecho de arcilla expandida.
Aunque la presente invención se ha descrito enteramente en conexión con realizaciones preferidas, es evidente que se pueden introducir aquellas modificaciones dentro de su alcance, no considerando éste como limitado por las anteriores realizaciones, sino por el contenido de las reivindicaciones siguientes.
Claims
1. - Capa refractaria (1) de apoyo para tanques de almacenamiento (2) térmico a altas temperaturas, estando dicha capa (1) formada por hormigón, caracterizada porque el hormigón empleado se trata de un hormigón con una conductividad térmica inferior a 1 ,05 W/mK y una resistencia a compresión superior a 15 MPa, y porque su espesor está comprendido entre 0,2 m y 5 m.
2. - Capa refractaria (1) de apoyo para tanques de almacenamiento (2) térmico a altas temperaturas, según la reivindicación 1 , en la que el hormigón empleado se trata de hormigón en masa.
3. - Capa refractaria (1) de apoyo para tanques de almacenamiento (2) térmico a altas temperaturas, según la reivindicación 1 , en la que el hormigón empleado se trata de hormigón armado con una resistencia a compresión superior a 25 MPa.
4. - Capa refractaria (1) de apoyo para tanques de almacenamiento (2) térmico a altas temperaturas, según cualquiera de las reivindicaciones anteriores, caracterizada porque se encuentra dividida en varias subcapas (4).
5. - Capa refractaria (1) de apoyo para tanques de almacenamiento (2) térmico a altas temperaturas, según cualquiera de las reivindicaciones 1 a 3, caracterizada porque está conformada por bloques prefabricados de hormigón entre los que se disponen juntas de ejecución que aislan dichos bloques entre sí.
6. - Procedimiento de fabricación de una capa refractaria (1) de apoyo para tanques de almacenamiento (2) térmico a altas temperaturas de cualquiera de las reivindicaciones 1 a 3, caracterizado porque consiste en la ejecución in situ de la capa mediante vertido directo o bombeo del hormigón.
7. - Procedimiento de fabricación de una capa refractaria (1) de apoyo para tanques de almacenamiento (2) térmico a altas temperaturas de la reivindicación 4, caracterizado porque el hormigón se vierte en diferentes tongadas, y se aplican tratamientos de pulido o fratasado de acabado superficial sobre los planos de contacto entre las subcapas (4).
8. - Instalación de almacenamiento de fluidos o sólidos particulados caloportadores, caracterizada porque comprende: una capa refractaria (1) de la reivindicación 1 , 2, 3 o 4, y un tanque de almacenamiento (2) térmico a altas temperaturas,
de modo que el tanque de almacenamiento (2) está apoyado directamente sobre la capa refractaria (1).
9.- Instalación de almacenamiento de fluidos o sólidos particulados caloportadores, caracterizada porque comprende: una capa refractaria (1) de la reivindicación 1 , 2, 3 o 4, un recinto (3) de hormigón armado cimentado y con muros de contención, y un tanque de almacenamiento (2) térmico a altas temperaturas, de modo que la capa refractaria (1) se encuentra dentro del recinto (3) de hormigón armado, y el tanque de almacenamiento (2) está apoyado directamente sobre la capa refractaria (1).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201431584A ES2572190B1 (es) | 2014-10-29 | 2014-10-29 | Capa refractaria de apoyo para tanques de almacenamiento térmico a altas temperaturas |
ES201431584 | 2014-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016066874A1 true WO2016066874A1 (es) | 2016-05-06 |
Family
ID=55856654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2015/070761 WO2016066874A1 (es) | 2014-10-29 | 2015-10-22 | Capa refractaria de apoyo para tanques de almacenamiento térmico a altas temperaturas |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2572190B1 (es) |
WO (1) | WO2016066874A1 (es) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3666250A (en) * | 1969-09-11 | 1972-05-30 | Elphiac Sa | Furnace and method of making same |
US4268317A (en) * | 1978-12-22 | 1981-05-19 | Rayl Layton L | Lightweight insulating structural concrete |
US20080289793A1 (en) * | 2007-05-22 | 2008-11-27 | Gerald Geiken | Thermal energy storage systems and methods |
JP2011074567A (ja) * | 2009-09-29 | 2011-04-14 | Mitsubishi Heavy Ind Ltd | 高温タンクの基礎構造及び基礎工法 |
WO2014006194A1 (en) * | 2012-07-06 | 2014-01-09 | Lafarge | Lightweight concrete with low thermal conductivity |
WO2014023862A1 (es) * | 2012-08-06 | 2014-02-13 | Abengoa Solar New Technologies, S.A. | Tanque de almacenamiento térmico de un fluido presurizado y su procedimiento de construcción |
CN203834702U (zh) * | 2014-05-05 | 2014-09-17 | 淮南中科储能科技有限公司 | 一种太阳能热发电高温熔盐储热罐基底保温结构 |
-
2014
- 2014-10-29 ES ES201431584A patent/ES2572190B1/es active Active
-
2015
- 2015-10-22 WO PCT/ES2015/070761 patent/WO2016066874A1/es active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3666250A (en) * | 1969-09-11 | 1972-05-30 | Elphiac Sa | Furnace and method of making same |
US4268317A (en) * | 1978-12-22 | 1981-05-19 | Rayl Layton L | Lightweight insulating structural concrete |
US20080289793A1 (en) * | 2007-05-22 | 2008-11-27 | Gerald Geiken | Thermal energy storage systems and methods |
JP2011074567A (ja) * | 2009-09-29 | 2011-04-14 | Mitsubishi Heavy Ind Ltd | 高温タンクの基礎構造及び基礎工法 |
WO2014006194A1 (en) * | 2012-07-06 | 2014-01-09 | Lafarge | Lightweight concrete with low thermal conductivity |
WO2014023862A1 (es) * | 2012-08-06 | 2014-02-13 | Abengoa Solar New Technologies, S.A. | Tanque de almacenamiento térmico de un fluido presurizado y su procedimiento de construcción |
CN203834702U (zh) * | 2014-05-05 | 2014-09-17 | 淮南中科储能科技有限公司 | 一种太阳能热发电高温熔盐储热罐基底保温结构 |
Non-Patent Citations (3)
Title |
---|
DATABASE WPI Week 201128, Derwent World Patents Index; Class Q42, AN 2011-D81385 * |
DATABASE WPI Week 201481, Derwent World Patents Index; Class q43, AN 2014-w02941 * |
U. JOHNSON ALENGARAM ET AL., A COMPARISON OF THE THERMAL CONDUCTIVITY OF OIL PALM SHELL FOAMED CONCRETE WITH CONVENTIONAL MATERIALS., vol. 522, 30 April 2013 (2013-04-30), pages 526 - 529, XP028676068 * |
Also Published As
Publication number | Publication date |
---|---|
ES2572190R2 (es) | 2016-09-19 |
ES2572190A2 (es) | 2016-05-30 |
ES2572190B1 (es) | 2017-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6444585B2 (ja) | ガス貯蔵タンク及びlngタンクの施工方法 | |
ES2453618T3 (es) | Estructura constructiva producida mediante el uso de mortero que contiene conglomerados de poliestireno expandido unidos por cemento | |
US3338010A (en) | Insulation foundation for low temperature and cryogenic storage tanks | |
RU2007102218A (ru) | Резервуар для хранения текучей среды предпочтительно при низких температурах | |
CN102359201A (zh) | 现浇无机双层保温墙体及其施工方法 | |
CN102363962A (zh) | 光热发电高温熔盐储罐的复合功能储罐基础 | |
JP2017172724A (ja) | 断熱パネルおよび断熱構造 | |
EP2857363B1 (en) | Crown structure | |
CN103883080A (zh) | 一体化屋面防水保温结构及其施工方法 | |
CN105888097A (zh) | 一种梁柱一体化墙板 | |
US10279992B2 (en) | Thermally insulated reservoir | |
ES2572190B1 (es) | Capa refractaria de apoyo para tanques de almacenamiento térmico a altas temperaturas | |
JP4969627B2 (ja) | 高温タンクの基礎構造及び基礎工法 | |
CN101520270B (zh) | 节电经济型冷库 | |
CN207934288U (zh) | 一种下沉式卫生间回填结构 | |
CN207878700U (zh) | 一种建筑节能保温结构 | |
CN202182612U (zh) | 一种立式石灰窑的衬里结构 | |
EP3303966A2 (en) | Underground thermal energy storage | |
CN208251366U (zh) | 一种耐火保温墙体结构 | |
JP2004060995A (ja) | 蓄熱タンク | |
ES2566831B1 (es) | Tanque de almacenamiento de fluidos caloportadores no presurizados | |
WO2014023862A1 (es) | Tanque de almacenamiento térmico de un fluido presurizado y su procedimiento de construcción | |
CN204626675U (zh) | 耐火浇注工作层 | |
CN220365042U (zh) | 一种架空式高温熔盐储罐基础 | |
CN220978445U (zh) | 冷库墙体结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15855073 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15855073 Country of ref document: EP Kind code of ref document: A1 |