WO2016065997A1 - 电力通信网移动运维系统及方法 - Google Patents

电力通信网移动运维系统及方法 Download PDF

Info

Publication number
WO2016065997A1
WO2016065997A1 PCT/CN2015/090392 CN2015090392W WO2016065997A1 WO 2016065997 A1 WO2016065997 A1 WO 2016065997A1 CN 2015090392 W CN2015090392 W CN 2015090392W WO 2016065997 A1 WO2016065997 A1 WO 2016065997A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
maintenance
bluetooth
instruction
bluetooth module
Prior art date
Application number
PCT/CN2015/090392
Other languages
English (en)
French (fr)
Inventor
高雪生
邵波
张懿
汤震
张际
于宝辉
Original Assignee
国家电网公司
江苏省电力公司
江苏省电力公司镇江供电公司
南京南瑞集团公司
南京南瑞信息通信科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 江苏省电力公司, 江苏省电力公司镇江供电公司, 南京南瑞集团公司, 南京南瑞信息通信科技有限公司 filed Critical 国家电网公司
Publication of WO2016065997A1 publication Critical patent/WO2016065997A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply

Definitions

  • the invention relates to a power communication network, in particular to a mobile operation and maintenance system and method of a power communication network, and belongs to the technical field of power communication.
  • the existing on-site operation and maintenance mainly has the following problems: (1) At present, the operation and maintenance site still uses manual methods for device positioning and information reading, which cannot guarantee the validity and accuracy of physical location and information reading of the device, and reduces the Work efficiency has caused hidden dangers to on-site operation and maintenance; (2) On-site operation and maintenance standardization management is not smooth. At present, due to manual identification of equipment information, the operation instruction book is paper, and it is impossible to use information technology to effectively use the two. Correlation, and once the operation and maintenance site has an unexpected situation, the on-site personnel and remote dispatchers will not be able to update the on-site data in time, which increases the uncertainty of on-site operation and maintenance; (3) the existing operation instructions indicate the guidance for on-site operation. Lack of on-site feedback and supervision, it is impossible to realize closed-loop management of on-site operation and maintenance, and it is impossible to determine whether on-site personnel have completed the on-site operation and maintenance according to the requirements of the guidelines.
  • the technology of intelligent identification and real-time transmission of mobile data based on networking and mobile Internet is introduced into the on-site operation and maintenance of power enterprise power communication network, and digital storage means is used to realize the format standardization and digital transformation of operation and maintenance operation guidance, and to integrate digital intelligence. Identifying acquisition, data localization storage, localized query, horizontal and vertical analysis of job instructions and field device data in off-line integrated data synchronization technology, realizing effective association between work instructions and faulty equipment, and on-site operation and maintenance It is necessary to provide diversified remote guidance to provide reasonable and effective auxiliary support for power enterprise power communication network operation and maintenance, remote support, standardized management and work decision.
  • the object of the present invention is to provide a mobile communication network operation and maintenance system and method for a power communication network, and to provide an intelligent standardization operation guidance platform based on the Internet of Things for the existing technical problems of the existing operation and maintenance system, and using the Internet of Things technology on the handheld mobile terminal , device positioning, device information collection, job guidance query, matching and feedback.
  • the intelligent standardized operation guidance platform is based on the existing power communication operation and maintenance system platform. Based on this, the data model, acquisition method, deployment method and application extension are added. Some unique data models are added and the original operation is added.
  • the instruction book and the work instruction query component have been expanded. Intelligent data extraction technology and localized storage such as RFID, two-dimensional code recognition, iODF intelligent optical distribution frame, image recognition, etc.
  • a power communication network mobile operation and maintenance system comprising a handheld terminal 1 and a remote background server 2, wherein the handheld terminal 1 and the remote background server 2 communicate via a 3G or 4G wireless public network;
  • the data collection terminal 5 includes a power supply circuit 8, a sensor 9, a signal amplifying circuit 10, an A/D converter 11, a microprocessor 12, a communication level conversion circuit 13, a data memory 14, a Bluetooth module 15, and a crystal oscillator circuit 16.
  • the output end of the sensor 9 is connected to the input end of the signal amplifying circuit 10, the output end of the signal amplifying circuit 10 is connected to the input end of the A/D converter 11, and the output end of the A/D converter 11 is connected to the microprocessor 12.
  • the data memory 14, the crystal oscillator circuit 16 is connected to the microprocessor 12, the input end of the communication level conversion circuit 13 is connected to the microprocessor 12, and the output end of the communication level conversion circuit 13 is connected to the Bluetooth module 15;
  • the smartphone 3 has a Bluetooth function, and the Bluetooth module 15 communicates with the smartphone 3 via Bluetooth.
  • An operation and maintenance method for a mobile communication network operation and maintenance system of a power communication network comprising the following steps:
  • the operation and maintenance work order, work instruction book and equipment account are used as initial storage resources as the operation and maintenance management basic data, and are stored in the operation and maintenance system; the location information of the alarm device and the line is initialized and stored;
  • the GPS positioning and RFID, two-dimensional code recognition technology, iODF intelligent optical distribution frame and image recognition technology of the data acquisition terminal are used to read the position of the mobile operation and maintenance personnel, and the equipment account, alarm information, work order information and equipment information are read. take;
  • the data collection terminal realizes data interaction with the smart phone and data transmission instruction transmission through Bluetooth
  • the signal obtained by the sensor is amplified and then A/D converted, and then the data is stored to the RAM chip.
  • the data stored in the RAM chip is defined according to the HCI-RS232 transmission protocol, level-converted and sent to the Bluetooth module, and the data is transmitted to the smart phone by the Bluetooth module;
  • the Bluetooth module performs Bluetooth communication by establishing a point-to-point Bluetooth asynchronous linkless data transmission channel at the interface HCI layer. After the two Bluetooth module links are successfully established, the data is transmitted and received according to the HCI data packet format specified by the Bluetooth specification;
  • the equipment account, alarm information, work order information, and equipment information data are all marked with a standardized ID, and the collected data ID and the system initialization data ID are compared;
  • the handheld terminal After the operation and maintenance work results are compared, the handheld terminal stores the comparison result locally. After the storage is completed, the handheld terminal transmits the data back to the remote background server through the 3G and 4G wireless transmission technologies.
  • the object of the present invention can also be further achieved by the following technical measures:
  • the microprocessor 12 is an AT89C51 single chip microcomputer, wherein the A/D converter 11 is an AD574A, wherein the data memory 14 is a RAM chip 6264, wherein the communication level conversion circuit 13 is a type of MAX3232, wherein the signal
  • the amplifying circuit 10 is an integrated operational amplifier TL082.
  • the foregoing power communication network mobile operation and maintenance system wherein the address allocation of the SRAM6 and the Flash7 of the external memory 4 is: using the address space of bank0 and bank1, and assigning CS0 and CS1 to SRAM6 and Flash7 respectively through the JP701 jumper, in the program call
  • SRAM6 is allocated to bank0 address
  • Flash7 is allocated as bank0 address
  • SRAM6 is bank1 address
  • jumper JP700 is shorted to the outside end, so that system1 resets boot1 and boot0 Is 1.
  • the operation and maintenance method of the foregoing mobile communication network operation and maintenance system, the smart phone and the Bluetooth module perform The method of Bluetooth communication is:
  • HCI packets Data communication between two Bluetooth modules is implemented by HCI packets, and there are three types of HCI packets: instruction packets, event packets, and data packets;
  • the smart phone and the bluetooth module communicate by the command response mode, and the smart phone sends the instruction packet to the microprocessor; after the microprocessor executes the instruction, it returns to the smart phone an instruction completion event packet, and the event packet carries the instruction completion. If there is no return instruction completion event, the return instruction status event packet is used to indicate that the instruction sent by the smartphone has been received and started processing; if the parameter of the instruction packet is incorrect, the returned instruction status event packet will be given Corresponding error code;
  • Bluetooth module itself initializes Init Bluetooth (), HCI flow control settings Flow Set (), query Inquiry (), establish a connection Great Connection (), data communication Data_Transmit (Data Length, HCI_Number) and disconnect Disconnect ().
  • the operation and maintenance work uses the handheld terminal of the present invention to perform device positioning and information reading, thereby improving the effectiveness and accuracy of information reading and improving work efficiency;
  • the device information adopts intelligent identification, and the operation instruction book is used as the initial storage resource as the basic data of operation and maintenance management, and is stored in the operation and maintenance system to realize the effective association between the two by means of informationization;
  • 3. Using the data acquisition technology of the Internet of Things to realize Accurately collect data on mobile operation and maintenance sites, equipment and lines, and supervise the actual operation and maintenance through data comparison, solve the situation that the operation and maintenance site cannot be supervised at this stage, and realize feedback supervision on the field operation.
  • FIG. 1 is a structural diagram of a mobile operation and maintenance system of the present invention
  • FIG. 2 is a circuit structural diagram of a handheld terminal of the present invention
  • FIG. 3 is a circuit structural diagram of a data collection terminal of the present invention.
  • Figure 4 is an external memory address allocation map
  • FIG. 5 is a schematic diagram of an interface between the AT89C51 and the AD574 and the extended data memory 6264 of the present invention
  • Figure 6 is a schematic diagram of the interface of the AT89C51 through the MAX3232 and the Bluetooth module;
  • Figure 7 is a flow chart of data comparison.
  • the mobile communication network operation and maintenance system of the present invention comprises a handheld terminal 1 and a remote background server 2, wherein the handheld terminal 1 and the remote background server 2 communicate via a 3G or 4G wireless public network base station 101;
  • the handheld terminal 1 includes a smart phone 3, an external memory 4, and a data collection terminal 5.
  • the external memory 4 includes an SRAM 6 and a Flash 7, and the smart phone 3 is communicably connected to the external memory 4.
  • the data collection terminal 5 includes a power supply circuit 8, a sensor 9, a signal amplifying circuit 10, an A/D converter 11, a microprocessor 12, a communication level conversion circuit 13, a data memory 14, and a Bluetooth module 15, a crystal oscillator circuit 16, an output end of the sensor 9 is connected to an input end of the signal amplifying circuit 10, The output end of the signal amplifying circuit 10 is connected to the input end of the A/D converter 11, and the output end of the A/D converter 11 is connected to the microprocessor 12.
  • the data memory 14, the crystal oscillator circuit 16 is connected to the microprocessor 12.
  • the input end of the communication level conversion circuit 13 is connected to the microprocessor 12, and the output end of the communication level conversion circuit 13 is connected to the Bluetooth module 15; the smart phone 3 has a Bluetooth function, and the Bluetooth module 15 and the smart phone 3 Communicate via Bluetooth.
  • the sensor 9 is provided with an intelligent sensing function such as RFID or two-dimensional code recognition.
  • the software architecture of the operation and maintenance system of the present invention mainly includes:
  • the software system is based on a unified software framework platform across operating systems. It adopts a unified resource data model and can be standardized through real-time interactions such as RFID, two-dimensional code recognition, iODF intelligent optical distribution frame, image recognition and work instructions, and equipment ledger. Effectively realize the mobile operation and maintenance of power communication. It mainly includes three application modules:
  • the collection management application defines related functions from the perspective of process management of communication operation and maintenance scheduling, maintenance, faults, and spare parts. It mainly includes functions such as device location management, device information collection management, and operation and maintenance result collection and management.
  • the resource management provides a standardized and normalized management angle for various communication resource data in the operation and maintenance of the power communication network according to the configuration rules, and realizes the communication-oriented network.
  • the standardized management of various communication resources such as communication equipment and communication services makes the use of resources more convenient and the query of resource data more accurate. It mainly includes functions such as resource information maintenance management, resource scheduling management, query resource statistics, and data reporting.
  • the comparison query management provides real-time data comparison query function according to the data resource integration, processing and analysis results provided by the resource management, realizes the presentation of different device information and different fault handling operation instructions under the unified interface, and implements device-oriented Operation and maintenance management and intelligent fault analysis and processing methods.
  • the main functional modules include management functions such as alarm real-time monitoring, performance management, operational status monitoring, important business monitoring, and fault intelligent analysis.
  • the power communication mobile operation and maintenance method uses the process of “storage-acquisition-storage-comparison-display-acquisition-comparison-storage-return” to finally realize the guidance and results display of the on-site operation and maintenance operations.
  • Data storage Provide a friendly interface, select resources, form initial data (O&M work orders, work instructions, equipment ledgers) and collect data (equipment information, operation and maintenance results) into the database, and connect the data through wireless connection.
  • Initial data O&M work orders, work instructions, equipment ledgers
  • data equipment information, operation and maintenance results
  • Data collection of handheld terminals using handheld terminals to provide diversified data collection methods to collect data such as coordinates, device information, and operation and maintenance results;
  • Data comparison provide comparison between the collected data and the initial data to realize the confirmation of the operation and maintenance equipment and the line. At the same time, after the operation and maintenance work is completed, the operation and maintenance result data is again collected and compared with the previously provided operation instructions. Verification of the results of operation and maintenance work;
  • Data backhaul After all the operation and maintenance work is completed, the data will be backed up by wireless transmission and wired direct connection after the localized storage is completed, and the data synchronization between the handheld terminal and the system back-end database is realized.
  • Power communication mobile operation and maintenance is an important component of power communication operation and maintenance. It is based on the power network communication operation and maintenance management system software framework platform, using the power network unified resource data model, integrating data storage, data acquisition, data comparison, data display, and result return And other functions, and real-time interaction with the equipment ledger and work order management system. The specific steps are as follows:
  • the first step data storage
  • Power communication mobile operation and maintenance is a general term for the operation and maintenance of a type of communication network. Therefore, the initial storage selected in this operation and maintenance method should have the universal applicability of communication network operation and maintenance, operation and maintenance work orders, work instructions, equipment accounts, etc. Data resources are common in mobile communication operation and maintenance, and data storage, collection, and comparison are relatively easy resources. This operation and maintenance method will use operation and maintenance work orders, operation instructions, and equipment ledgers as initial storage resources for power communication and operation. Manage basic data, other data is set and collected by manual configuration.
  • the user logs in to the system according to the set mobile operation and maintenance tasks.
  • the system will display the operation and maintenance work orders, work instructions, and equipment account data according to the set tasks. Whether the operation and maintenance work orders, operation instructions, and equipment account data display in the operation and maintenance tasks are reasonable determines whether the operation and maintenance work is standardized and accurate. Therefore, when the data is displayed, the work orders and work instructions will be carried out according to the actual operation and maintenance tasks. The association of device accounting data.
  • the handheld terminal 1 Since the handheld terminal communicates through the public network, the handheld terminal 1 uses the external external memory 4 for data storage in consideration of data security. Therefore, the circuit design expands 4M SRAM and 16M Flash, and the storage circuit is as shown in FIG. 4 .
  • the circuit design expands 4M SRAM and 16M Flash, and the storage circuit is as shown in FIG. 4 .
  • the SRAM is allocated to the bank0 address when the program is called, because bank0 can perform interrupt vector remapping operations.
  • the Flash When the code is hardened to Flash, the Flash is allocated as the bank0 address, and the SRAM is the bank1 address, because bank0 can be used to boot the program. If you use the bank0 bootloader OK, you can short JP700 to the outside side, so that boot1 and boot0 are 1 when the system is reset.
  • the memory connection uses a 16-bit bus mode, the data bus uses D0-D15, the address bus uses A1-A20, and for 16-bit SRAM, the BLS0 and BLS1 signals are used to control the writing of low and high bytes.
  • the second step data collection
  • Data collection is mainly an important prerequisite for the operation and maintenance of the operation and maintenance site, operation and maintenance equipment, and operation and maintenance lines to ensure accurate operation and standardization.
  • the specific positioning functions are as follows:
  • the location information of the alarm device and the line is initialized and stored, and all the mobile operation and maintenance tasks provide the completed geographical location and equipment account information in the initialization phase;
  • GPS positioning and RFID two-dimensional code recognition technology
  • iODF intelligent optical distribution frame image recognition technology for mobile operation and maintenance personnel position reading, device information reading.
  • the system collects real-time data of operation and maintenance equipment, including: equipment account, alarm information, work order information and other data.
  • Data acquisition terminals two-dimensional code, RFID card, etc.
  • the system collects real-time data of operation and maintenance equipment, including: equipment account, alarm information, work order information and other data.
  • Data acquisition terminals two-dimensional code, RFID card, etc.
  • the system collects real-time data of operation and maintenance equipment, including: equipment account, alarm information, work order information and other data.
  • Data acquisition terminals two-dimensional code, RFID card, etc.
  • the third step data interaction
  • the data collection terminal realizes data interaction with the handheld terminal and data acquisition instruction transmission through Bluetooth, and can also customize the integrated terminal device of the handheld terminal and the data collection terminal according to the data transmission interface provided by the handheld terminal. Because Bluetooth has wide applicability, strong anti-interference ability, diverse transmission data format, low energy consumption, etc., this part only explains the Bluetooth module of the data collection terminal in the process of connecting the Bluetooth-connected split data acquisition terminal and the handheld terminal. .
  • Data acquisition system based on Bluetooth wireless transmission is to realize the number between data collection terminal and handheld terminal
  • the whole device is composed of front-end data acquisition, transmission part and data receiving part at the end.
  • the front-end data acquisition part consists of sensors, signal amplifier circuits, A/D converters, single-chip microcomputers, memory, serial communication, etc. located in the field.
  • the transmission part mainly uses the Bluetooth module with its own microstrip antenna for wireless transmission of data; Module and serial communication transmissions send data to the superior smartphone for further processing.
  • the AT89C51 single-chip microcomputer is used as the main controller of the lower data acquisition terminal 5.
  • the signal obtained by the sensor is amplified and sent to the 12-bit A/D converter AD574A for A/D conversion, and then the converted data is stored in the RAM chip 6264.
  • the lower computer can actively or after receiving the data transmission command sent by the upper computer through the Bluetooth module, and the data stored in the 6264 is defined according to the HCI-RS232 transmission protocol, and is level-converted by the MAX3232 and sent to the Bluetooth module.
  • the tooth module transmits the data to the space, and the Bluetooth module of the host computer receives the data, and then transmits the data to the smart phone through the MAX3232 level conversion, thereby completing the exchange of the Bluetooth wireless data.
  • the signal amplifying circuit mainly adopts a high common mode rejection ratio amplifying circuit, which is composed of three integrated operational amplifiers.
  • the integrated operational amplifier TL082 selected in this design has high precision and low drift characteristics.
  • the interface diagram of AT89C51 and A/D converter AD574A and external expansion data memory 6264 is shown in Figure 5.
  • the AT89C51 performs address selection on the A/D converter and the data memory through the address decoder 74LS138 and the address latch 74LS373.
  • the Bluetooth module and the AT89C51 serial port use the RS232 transmission layer interface provided by the Bluetooth module to realize communication, and the external circuit is required to realize level conversion. Since the Bluetooth module needs 3.3V power supply, the MAX3232 chip is used as the level conversion chip. In addition, in order to convert the 5V input voltage to 3.3V, the power regulator chip 7301 is selected to supply power to the Bluetooth module.
  • the interface diagram of the AT89C51 through the MAX3232 and the Bluetooth module is shown in Figure 6.
  • the software of this design mainly includes two parts: data acquisition and Bluetooth communication, using assembly language and C51 mixed programming.
  • the data acquisition part is programmed in assembly language.
  • the single-chip microcomputer adopts timing sampling. The specific timing mode is selected. The timing is 100 microseconds. After the timing is finished, A/D conversion is performed.
  • the single-chip microcomputer uses the query method to read. The conversion result of the AD574A is then stored in the external expansion memory 6264.
  • the serial port works in mode 1, with a baud rate of 9600 bps.
  • the Bluetooth communication part adopts C51 programming, which mainly realizes the point-to-point Bluetooth asynchronous linkless data transmission channel by using the host controller interface HCI layer. When the two Bluetooth module links are successfully established, they can be sent and received according to the HCI data packet format specified by the Bluetooth specification. data.
  • HCI packets The data communication between two Bluetooth devices is realized by HCI packets.
  • HCI As the interface between software and hardware in the Bluetooth software protocol stack, HCI provides a unified interface for accessing and controlling Bluetooth hardware for the upper layer. HCI exchanges information by means of a packet. There are three types of HCI packets: Command Packet, Event Packet, and Data Packet.
  • the Bluetooth module of the smart phone and the data collection terminal communicates with the command-response mode, and first sends the instruction packet; after the data acquisition terminal executes an instruction, in most cases, it returns a command completion event packet to the host (Command Complete Event Packet) ), the packet carries information that the instruction is completed. Some packets do not return an instruction completion event, but a Command Status Event Packet is used to indicate that the command sent by the smartphone has been received and begins processing. If the parameters of the instruction packet are incorrect, the returned instruction status event packet will give the corresponding error code; the data packet is divided into Asynchronous Connectionless (ACL) data packets and Synchronization Connection Oriented (SCO) data. Grouped in two. In the present invention, only data communication is involved, and no voice communication is involved, so an ACL link is established.
  • ACL Asynchronous Connectionless
  • SCO Synchronization Connection Oriented
  • the software interface between the MCU and the Bluetooth module refers to how the MCU sends the HCI command to the Bluetooth module through software. How does the Bluetooth module return the HCI event to the MCU through software and how to realize data transmission between the two.
  • the process of communication between the microcontroller and the Bluetooth module is to observe the received HCI event by typing the HCI command. After the two Bluetooth modules establish a successful link, they can send and receive data according to the HCI packet format specified by the Bluetooth specification.
  • the Bluetooth module When data communication is performed through the Bluetooth module, the initialization of the Bluetooth module and the flow control of the HCI layer are first performed.
  • the typical ACL data communication process between Bluetooth modules has six steps: the Bluetooth module itself initializes Init Bluetooth(), HCI flow control settings Flow Set(), queries Inquiry(), establishes connection Great Connection(), and performs data communication Data_Transmit( Data Length, HCI_Number) and disconnected Disconnect().
  • the initialization program is mainly for the MCU to send a series of command packets to Bluetooth. Each time the MCU sends an HCI command packet to Bluetooth, it will receive the event packet returned by Bluetooth to judge the execution of the command. If the return event grouping is incorrect, reinitialize Bluetooth until it is completely correct.
  • the flow control is opened by the Set_Host_Controller_To_Host_Flow_Control command, and the flow control is configured by the Host Buffer Size command, including the length of the data packet.
  • the master device queries the surrounding Bluetooth devices, and after finding them, can issue a connection establishment command to establish an ACL connection. Data communication can be performed after the connection is successfully established.
  • both the master device and the slave device can issue the disconnect command Disconnect.
  • the query process does not necessarily exist, so this is just a general process model. If an error event packet is returned after any instruction packet is sent, the instruction needs to be resent until it is correct.
  • the fourth step data comparison
  • Data such as equipment ledgers and work orders are marked with standardized IDs, so the data comparison is mainly for
  • the collected data ID is compared with the system initialization data ID to confirm the operation and maintenance related information (such as operation and maintenance equipment, operation and maintenance lines, and operation and maintenance work completion).
  • the modules that need to be involved in this part are: acquisition data reading module, initialization data reading module, data comparison processing module and comparison result storage presentation module. As shown in Figure 7:
  • the method of reading and forwarding the initialization data model is similar to the reading method of the more mature device accounting data model. Because the data model that needs to be read not only initializes the data, it is read as a class of independent models.
  • This service is similar to the method of reading and forwarding the initialization data model, because the data to be read needs to be compared with the initialization data, so it is read as a separate model.
  • the data comparison service is responsible for comparing the read data according to the initial setting, and outputting the comparison result. (Different devices and lines may be different in the comparison data, so the personalized initialization ratio of different devices and lines needs to be performed in the early stage. Set the data)
  • comparison results are divided into operation and maintenance equipment, line alignment comparison and operation and maintenance work results comparison two parts
  • the system will directly call the corresponding operation instructions for display.
  • the system will directly store the comparison result data, and prompt the operation and maintenance personnel to operate and maintain the work. Completion according to the requirements), if the comparison results do not meet the requirements, it will directly indicate that the requirements are not met.
  • the handheld terminal After completing the entire operation and maintenance work and comparing the results of the operation and maintenance work, the handheld terminal first compares and stores the results locally.
  • the comparison result data stored in the localized storage will be the work order of the power communication operation and maintenance system.
  • the data model and the device accounting data model are used for data storage; after the storage is completed, the handheld terminal will use 3G and 4G wireless transmission technologies for data backhaul (the returned data is mainly transmitted back to the background server, and the background server can data and corresponding
  • the power communication operation and maintenance system performs data interaction; in the later stage, when the data is connected, the returned data can be directly transmitted back to the relevant power communication operation and maintenance system, thereby achieving seamless management of the entire network power communication operation and maintenance. If the relevant wireless connection cannot be provided at the site, data wireless backhaul and direct connection back can be performed after the operation and maintenance personnel return.
  • the present invention may have other embodiments, and any technical solutions formed by equivalent replacement or equivalent transformation fall within the protection scope of the present invention.

Abstract

本发明公开了一种电力通信网移动运维系统及方法,其中所述电力通信网移动运维系统包括手持终端(1)、远程后台服务器(2),所述手持终端(1)、远程后台服务器(2)通过3G或4G无线公网通信;所述手持终端(1)包括智能手机(3)、外存储器(4)、数据采集终端(5),所述外存储器(4)包括静态存储器(SRAM)和闪存(Flash),所述智能手机(3)与外存储器(4)通信连接。所述电力通信网移动运维方法使用"存储-采集-存储-比对-展示-采集-比对-存储-回传"的过程,最终实现对现场运维作业指导和结果展示。

Description

电力通信网移动运维系统及方法 技术领域
本发明涉及电力通信网,尤其涉及电力通信网的移动运维系统及方法,属于电力通信技术领域。
背景技术
“十二五”期间的电力通信网建设工作即将完成,电力企业电力通信网建设也将迎来新的建设周期,面对已经存在和即将建设的电力通信网,现有的运行维护方式由于存在资料存储技术落后、现场运维指标数据繁多、层级结构不清晰、数据资源整合协同不畅、工单现场运维环节缺失等问题,将面临越来越重工作压力;这不仅造成运维过程中现场运维人员无法完全按照制度要求进行规范化操作,还降低了运维的工作效率,对运维造成了隐患,制约了电力通信网的安全稳定运行。
现有的现场运维主要存在以下问题:(1)现阶段运维现场依然采用人工方式进行设备定位和信息读取,无法保证设备物理位置定位和信息读取的有效性和准确性,降低了工作效率,对现场运维造成了隐患;(2)现场运维规范化管理不畅,现阶段由于设备信息采用人工识别,作业指导书为纸质,无法利用信息化手段进行二者之间的有效关联,同时一旦运维现场出现突发情况现场人员和远程调度人员将无法及时进行现场数据更新,增加了现场运维的不确定性;(3)现有作业指导书指示进行现场作业的指导,缺少现场反馈监管环节,无法实现现场运维的闭环管理,无法确定现场人员是否按照指导书要求规范、准确、有效的完成了现场运维工作。
因此,将基于联网和移动互联网的智能识别、移动数据实时传输的技术引入到电力企业电力通信网现场运维,采用数字化存储手段实现对于运维作业指导书的格式规范化、数字化改造,集数字化智能识别采集、数据本地化存储、本地化查询、在离线一体化数据同步技术完成作业指导书和现场设备数据的横向协同和纵向分析,实现作业指导书和故障设备的有效关联,并对现场运维提供多样化的远程指导,为电力企业电力通信网运维、远程支持、规范化管理和工作决策提供合理有效的辅助支撑是十分必要的。
发明内容
本发明的目的在于提供一种电力通信网移动运维系统及方法,针对现有运维系统存在的技术不足,提供基于物联网的智能标准化作业指导书平台,利用物联网技术在手持移动终端上,进行设备定位、设备信息采集、作业指导书查询、匹配和反馈。智能标准化作业指导书平台基于已有的电力通信运维系统平台,在此基础上进行了数据模型、采集方式、部署方式和应用的扩展,加入了一些特有的数据模型,并对原有的作业指导书和作业指导书查询组件进行了功能扩充。以物联网中RFID、二维码识别、iODF智能光纤配线架、图像识别等智能数据提取技术和本地化存储为数据基础,结合运维工单、设备台账管理和作业指导书匹配以及现场运维校验,从而在保证现场运维时效性的同时,提高电力通信网移动运维的规范性和准确性,实现全新的智能感知化、规范化的电力通信网运维系统。
本发明的目的通过以下技术方案予以实现:
一种电力通信网移动运维系统,包括手持终端1、远程后台服务器2,所述手持终端1、远程后台服务器2通过3G或4G无线公网通信;所述手持终端1 包括智能手机3、外存储器4、数据采集终端5,所述外存储器4包括SRAM6和Flash7,所述智能手机3与外存储器4通信连接;
所述数据采集终端5,包括电源电路8、传感器9、信号放大电路10、A/D转换器11、微处理器12、通信电平转换电路13、数据存储器14、蓝牙模块15、晶振电路16,所述传感器9的输出端接信号放大电路10的输入端,信号放大电路10的输出端接A/D转换器11的输入端,A/D转换器11的输出端接微处理器12,所述数据存储器14、晶振电路16与微处理器12相连,所述通信电平转换电路13的输入端接微处理器12,所述通信电平转换电路13的输出端接蓝牙模块15;所述智能手机3具有蓝牙功能,所述蓝牙模块15与智能手机3通过蓝牙方式通信。
一种电力通信网移动运维系统的运维方法,包括以下步骤:
1.数据存储:
将运维工单、作业指导书、设备台账作为初始化存储资源作为运维管理基础数据存入运维系统;进行报警设备、线路的位置信息初始化存储;
2.数据采集:
首先进行运维场地、运维设备、运维线路的确认;
采用数据采集终端的GPS定位和RFID、二维码识别技术、iODF智能光纤配线架、图像识别技术进行移动运维人员位置读取,进行设备台账、报警信息、工单信息、设备信息读取;
3.数据交互:
数据采集终端通过蓝牙实现与智能手机的数据交互和数据采集指令传输;
传感器获得的信号经过放大然后进行A/D转换,然后数据存储到RAM芯片, 再将RAM芯片中存储的数据按照HCI-RS232传输协议进行数据定义,进行电平转换后送至蓝牙模块,由蓝牙模块将数据传送到智能手机;
所述蓝牙模块进行蓝牙通信的方法为在接口HCI层建立点对点的蓝牙异步无链接数据传输通道,当两个蓝牙模块链路建立成功后,按照蓝牙规范规定的HCI数据分组格式收发数据;
4.数据比对:
设备台账、报警信息、工单信息、设备信息数据均采用标准化ID进行标示,并将采集到的数据ID和系统初始化数据ID进行比对;
5.结果回发:
将运维工作结果比对后,手持终端将比对结果进行本地化存储,完成存储之后手持终端通过3G、4G无线传输技术进行数据回传至远程后台服务器。
本发明的目的还可以通过以下技术措施来进一步实现:
前述电力通信网移动运维系统,其中微处理器12为AT89C51单片机,其中A/D转换器11为AD574A,其中数据存储器14为RAM芯片6264,其中通信电平转换电路13型号为MAX3232,其中信号放大电路10为集成运算放大器TL082。
前述电力通信网移动运维系统,其中对外存储器4的SRAM6和Flash7进行地址分配的方法为:使用bank0和bank1的地址空间,通过JP701跳线将CS0和CS1分别分配给SRAM6和Flash7,在程序调用时分配SRAM6为bank0地址;当代码固化到Flash7时,分配Flash7为bank0地址,SRAM6为bank1地址;当使用bank0引导程序运行时,将跳线JP700短接到outside端,使系统复位时boot1和boot0为1。
前述电力通信网移动运维系统的运维方法,所述智能手机与蓝牙模块进行 蓝牙通信的方法为:
两个蓝牙模块间进行数据通信通过HCI分组实现,HCI分组有三种类型:指令分组、事件分组和数据分组;
智能手机与蓝牙模块用指令应答方式进行通信,智能手机向微处理器发送指令分组;微处理器执行指令后,正常情况下会返回给智能手机一个指令完成事件分组,该事件分组携带有指令完成的信息;如果没有返回指令完成事件,而返回指令状态事件分组用以说明智能手机发出的指令己经被接收并开始处理;如果指令分组的参数有误,返回的指令状态事件分组就会给出相应的错误代码;
当两个蓝牙模块建立链路成功后,按照蓝牙规范规定的HCI数据包格式收发数据,在通过蓝牙模块进行数据通信时,首先进行蓝牙模块的初始化和HCI层流控设置,ACL数据通信流程包括以下6个步骤:蓝牙模块自身初始化Init Bluetooth()、HCI流量控制设置Flow Set()、查询Inquiry()、建立连接Great Connection()、进行数据通信Data_Transmit(Data Length,HCI_Number)和断开连接Disconnect()。
与现有技术相比,本发明的有益效果是:1.运维工作采用本发明的手持终端进行设备定位和信息读取,提高了信息读取的有效性和准确性,提高了工作效率;2.设备信息采用智能识别,作业指导书作为初始化存储资源作为运维管理基础数据存入运维系统,实现使用信息化手段进行二者之间的有效关联;3.利用物联网数据采集技术实现对于移动运维现场、设备、线路的数据精确化采集,并通过数据比对实现对于运维实际情况的监管,解决了现阶段运维现场无法监管的情况,实现了对现场作业的反馈监管,实现运维的闭环管理,确保现 场人员按照指导书要求规范、准确、有效的完成现场运维工作;4.利用本地化数据缓存,实现远程数据的本地化存储,保证数据安全性;5.实现高效的数据存储切换机制不仅保证了数据存储的安全性还提升了数据存储读取的效能,便于对运维现场提供多样化的运维信息化支撑。
附图说明
图1是本发明的移动运维系统结构图;
图2是本发明手持终端的电路结构图;
图3是本发明数据采集终端的电路结构图;
图4是外存储器地址分配图;
图5是本发明的AT89C51与AD574及外扩数据存储器6264的接口示意图;
图6是AT89C51通过MAX3232与蓝牙模块的接口示意图;
图7是数据比对流程图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
如图1所示,本发明的电力通信网移动运维系统,包括手持终端1、远程后台服务器2,所述手持终端1、远程后台服务器2通过3G或4G无线公网基站101通信;如图2所示,手持终端1包括智能手机3、外存储器4、数据采集终端5,所述外存储器4包括SRAM6和Flash7,所述智能手机3与外存储器4通信连接。
如图3所示,数据采集终端5包括电源电路8、传感器9、信号放大电路10、A/D转换器11、微处理器12、通信电平转换电路13、数据存储器14、蓝牙模块15、晶振电路16,所述传感器9的输出端接信号放大电路10的输入端, 信号放大电路10的输出端接A/D转换器11的输入端,A/D转换器11的输出端接微处理器12,所述数据存储器14、晶振电路16与微处理器12相连,所述通信电平转换电路13的输入端接微处理器12,所述通信电平转换电路13的输出端接蓝牙模块15;所述智能手机3具有蓝牙功能,所述蓝牙模块15与智能手机3通过蓝牙方式通信。所述传感器9具备RFID、二维码识别等智能感知功能。
本发明的运维系统的软件架构主要包括:
1.一套智能标准化作业指导书平台
软件系统基于跨操作系统的统一软件框架平台,采用了统一资源数据模型,通过RFID、二维码识别、iODF智能光纤配线架、图像识别与作业指导书、设备台账等实时交互,能够规范、有效的实现对于电力通信的移动运维。主要包括三大应用模块:
(1)采集管理:
采集管理类应用从通信运维的调度、检修、故障、备件等方面的流程化管理角度出发定义相关功能。主要包括设备定位管理、设备信息采集管理、运维结果采集管理等功能。
(2)资源管理
资源管理的数据部分除了初始化的资源外,还有部分资源来自于采集管理,资源管理按照配置规则提供对电力通信网运维中各种通信资源数据的规范化、常态化管理角,实现面向通信网络、通信设备、通信业务等各类通信资源的规范化管理,使资源的使用更加便利、资源数据的查询更加准确。主要包括资源信息维护管理、资源调度管理、查询资源统计、数据报表等功能。
(3)比对查询管理
比对查询管理按照资源管理提供的数据资源整合、处理和分析结果提供实时的数据比对查询功能,实现在统一的界面下对不同设备信息、不同故障处理作业指导书的展现,实现面向设备的运维管理以及智能化的故障分析处理手段。主要功能模块包括告警实时监视、性能管理、运行状态监视、重要业务监视、故障智能分析等管理功能。
2.电力通信移动运维方法
电力通信移动运维方法使用“存储-采集-存储-比对-展示-采集-比对-存储-回传”的过程,最终实现对现场运维作业指导和结果展示。
数据存储:提供友好界面,选择资源,形成初始化数据(运维工单、作业指导书、设备台账)和采集数据(设备信息、运维结果)存入数据库,通过无线方式连接实现数据在手持终端的本地化存储;
手持终端数据采集:利用手持终端提供多样化数据采集方式,实现对于坐标、设备信息、运维结果等数据的采集;
数据比对:提供采集数据与初始化数据的比对,实现对于运维设备、线路的确认,同时在完成运维工作后再次采集运维结果数据和之前提供的作业指导书进行比对,实现对于运维工作成果的校验;
数据展示:完成比对后,系统将按照实际比对结果向运维人员提供作业指导书和运维作业完成确认信息;
数据回传:完成所有运维工作后,各项数据在完成本地化存储后将利用无线传输和有线直连方式进行数据回传,实现手持终端与系统后台数据库的数据同步。
3.基于物联网智能感知技术的电力通信移动运维方法
电力通信移动运维是电力通信运维的重要组成,基于电力网通信运维管理系统软件框架平台,使用电力网统一资源数据模型,综合了数据存储、数据采集、数据比对、数据展示、结果回发等功能,并与设备台账、工单管理系统实时交互。具体的步骤如下:
第一步:数据存储
电力通信移动运维是一类通信网运维的总称,所以在本运维方法中选择的初始化存储应该具有通信网运维的普遍适用性,运维工单、作业指导书、设备台账等数据资源是电力通信移动运维普遍存在且数据存储、采集、比对较为容易资源,本运维方法将采用运维工单、作业指导书、设备台账作为初始化存储资源进行电力通信移动运维管理基础数据,其他数据则采用手工配置的方法进行设置和采集。
用户登录系统按照设定好的移动运维任务,系统将按照设置任务情况进行运维工单、作业指导书、设备台账数据的展示。运维任务中的运维工单、作业指导书、设备台账数据展示是否合理决定了运维工作是否规范准确,所以在展示数据时将会按照实际运维任务进行工单、作业指导书、设备台账数据的关联。
由于手持终端是通过公共网络进行通信的,考虑到数据安全性,手持终端1采用外置的外存储器4进行数据存储,因此电路设计扩展了4M SRAM和16M Flash,存储电路如图4所示。为了方便程序调用和代码固化应用,我们使用了bank0和bank1的地址空间,可以通过JP701跳线将CS0和CS1分别分配给SRAM和Flash。在程序调用时分配SRAM为bank0地址,因为bank0可以进行中断向量重新映射操作。当代码固化到Flash时,分配Flash为bank0地址,SRAM为bank1地址,因为bank0可以用来引导程序的运行。若使用bank0引导程序运 行,可将JP700短接到outside端,使系统复位时boot1和boot0为1。
存储器连接使用了16位总线方式,数据总线使用了D0-D15,地址总线使用了A1-A20,对于16位的SRAM,BLS0和BLS1信号用于控制低字节和高字节的写作。
第二步:数据采集
数据采集主要是进行运维场地、运维设备、运维线路的确认,确保运维工作准确、规范开展的重要先决条件。具体定位功能如下:
报警设备、线路的位置信息初始化存储,所有移动运维任务在初始化阶段均提供完成的地理位置、设备台账信息;
采用GPS定位和RFID、二维码识别技术、iODF智能光纤配线架、图像识别技术实现对于移动运维人员位置读取,设备信息读取。
该系统采集的是运维设备的实时数据,主要包括:设备台账、报警信息、工单信息等数据。在每台电力通信设备上安装数据采集终端(二维码、RFID卡等),利用无线、有线方式完成内部管理系统与手持终端采集系统的通信,实现双向实时的设备信息交互。
第三步:数据交互
数据采集终端通过蓝牙实现与手持终端的数据交互和数据采集指令传输,同时根据手持终端自带的数据传输接口也可定制开发手持终端与数据采集终端一体式终端设备。由于蓝牙具有适用性广、抗干扰能力强、传输数据格式多样、能耗低等特点,所以本部分只对蓝牙连接的分体式数据采集终端与手持终端对接过程中数据采集终端的蓝牙模块进行说明。
基于蓝牙无线传输的数据采集系统是实现数据采集终端与手持终端之间数 据交互的基础手段,整个装置由前端数据采集、传送部分以及末端的数据接受部分组成。前端数据采集部分由位于现场的传感器、信号放大电路、A/D转换器、单片机、存储器、串口通信等构成,传送部分主要利用自带微带天线的蓝牙模块进行数据的无线传输;末端通过蓝牙模块、串口通信传输将数据送到上位的智能手机进一步处理。
AT89C51单片机作为下位的数据采集终端5的主控制器,传感器获得的信号经过放大后送入12位A/D转换器AD574A进行A/D转换,然后将转换后的数据存储到RAM芯片6264中。下位机可以主动地或者在接收上位机通过蓝牙模块发送的传送数据指令后,将6264中存储的数据按照HCI-RS232传输协议进行数据定义,通过MAX3232进行电平转换后送至蓝牙模块,由篮牙模块将数据传送到空间,同时上位机的蓝牙模块对此数据进行接收,再通过MAX3232电平转换后传送至智能手机,从而完成蓝牙无线数据的交换。
信号放大电路主要采用高共模抑制比放大电路,它由三个集成运算放大器组成,本设计中选用的集成运算放大器TL082具有高精度、低漂移的特性。
AT89C51与A/D转换器AD574A及外扩数据存储器6264的接口示意图如图5所示。AT89C51通过地址译码器74LS138、地址锁存器74LS373,对A/D转换器、数据存储器进行地址选择。
蓝牙模块与AT89C51串口之间采用蓝牙模块提供的RS232传输层接口实现通信,需要外接电路实现电平转换,由于蓝牙模块需3.3V供电,因此这里选用MAX3232芯片作电平转换芯片。另外,为了将5V输入电压转换为3.3V电压,选用电源稳压芯片7301为蓝牙模块供电。AT89C51通过MAX3232与蓝牙模块的接口示意图如图6所示。
在软件实现上本设计的软件主要包括两部分:数据采集和蓝牙通信,采用汇编语言和C51混合编程。为了保证数据采集的实时性,数据采集部分采用汇编语言编程,单片机采用定时采样,具体选择定时方式2,定时为100微秒,定时结束后,进行A/D转换,单片机采用查询的方式读取AD574A的转换结果,然后将转换后的数据存至外扩存储器6264中。另外,串行口工作在方式1,波特率为9600bps。蓝牙通信部分采用C51编程,主要实现利用主机控制器接口HCI层建立点对点的蓝牙异步无链接数据传输通道,当两个蓝牙模块链路建立成功后,就可以按照蓝牙规范规定的HCI数据分组格式收发数据。
两个蓝牙设备间进行数据通信是通过HCI分组实现的,HCI作为蓝牙软件协议堆栈中软硬件之间的接口,为上层提供了访问和控制蓝牙硬件的统一接口。HCI是通过分组(Packet)的方式来进行信息交换的。HCI分组有三种类型:指令分组(Command Packet)、事件分组(Event Packet)和数据分组(Data Packet)。
智能手机与数据采集终端的蓝牙模块用指令--应答方式进行通信,先发送指令分组;数据采集终端执行某一指令后,大多数情况下会返回给主机一个指令完成事件分组(Command Complete Event Packet),该分组携带有指令完成的信息。有些分组不会返回指令完成事件,而返回指令状态事件分组(Command Status Event Packet)用以说明智能手机发出的指令己经被接收并开始处理。如果指令分组的参数有误,返回的指令状态事件分组就会给出相应的错误代码;数据分组分为异步无连接(Asynchronous Connectionless,ACL)数据分组和同步面向连接(Synchronization Connection Oriented,SCO)数据分组两种。在本发明中,仅涉及到数据通信,而没有涉及到语音通信,因此建立的是ACL链路。
单片机与蓝牙模块的软件接口,就是指单片机如何通过软件实现向蓝牙模块发送HCI指令,蓝牙模块又如何通过软件向单片机返回HCI事件以及两者之间如何实现数据传输。单片机和蓝牙模块间通信的过程是通过键入HCI指令,观察收到的HCI事件。当两个蓝牙模块建立链路成功后,就可以按照蓝牙规范规定的HCI数据包格式收发数据。
在通过蓝牙模块进行数据通信时,首先要进行蓝牙模块的初始化和HCI层流控设置。典型的蓝牙模块间的ACL数据通信流程有6个步骤:蓝牙模块自身初始化Init Bluetooth()、HCI流量控制设置Flow Set()、查询Inquiry()、建立连接Great Connection()、进行数据通信Data_Transmit(Data Length,HCI_Number)和断开连接Disconnect()。
初始化程序主要是单片机对蓝牙发送一系列命令分组。单片机每向蓝牙发送一个HCI命令分组就要接收蓝牙返回的事件分组,判断命令执行的情况。若返回事件分组不正确就要重新初始化蓝牙,直到完全正确。蓝牙设备在初始化完成之后,通过Set_Host_Controller_To_Host_Flow_Control指令打开流量控制,并通过Host Buffer Size指令来对流量控制进行配置,包括数据分组的长度等。此后,主设备查询周围的蓝牙设备,找到之后即可向其发出建立连接指令,建立ACL连接。成功建立连接之后就可以进行数据通信。通信完成后,主设备和从设备都可以发出断开连接的命令Disconnect。在上述过程中,查询过程不一定存在,所以这只是一般的流程模型。如果在任何一条指令分组发出后,返回错误的事件分组,则指令需重发直到正确为止。
第四步:数据比对
设备台账、工单等数据均采用标准化ID进行标示,所以数据比对主要是对 采集到的数据ID和系统初始化数据ID进行比对,确认运维的相关信息(如运维设备、运维线路和运维工作完成情况)。
本部分需要参与的模块有:采集数据读取模块、初始化数据读取模块、数据比对处理模块和比对结果存储展现模块。如图7所示:
(1)初始化数据读取服务
服务名:pm_readmodel;
初始化数据模型的读取、转发方式,类似于目前较为成熟的设备台账数据模型的读取方式,因为需要读取的数据模型不止初始化数据,所以将其作为一类独立的模型读取。
(2)采集数据读取服务
服务名:pm_monitor;
此服务和初始化数据模型的读取、转发方式类似,因为需要读取的数据需要和初始化数据进行比对,所以将其作为一类独立的模型读取。
(3)数据比对服务
服务名:pm_data comparison
数据比对服务负责将读取的数据按照初始化设置进行比对,并输出比对结果,(不同设备、线路在比对数据上可能出现不同,所以前期需要为不同设备、线路进行个性化初始化比对数据设置)
(4)数据比对结果存储展示
服务名:pm_data comparison results storage
负责对比对结果进行回传存储和展示,如果比对结果符合要求将进行有效数据展示(比对数据分为运维设备、线路定位比对和运维工作结果比对两个部 分;设备、线路定位比对符合要求后系统将直接调用对应的作业指导书进行展示,运维工作结果比对符合要求后系统将直接存储比对结果数据,并提示运维人员运维工作已经按照要求完成),若比对结果不符合要求将直接提示不符合要求。
第五步:结果回发
在完成整个运维工作,并进行运维工作结果比对后,手持终端首先会对比对结果进行本地化存储,比对结果数据在本地化存储的存储将会以电力通信运维系统的工单数据模型和设备台账数据模型为基础进行数据存储;完成存储之后手持终端将利用3G、4G无线传输技术进行数据回传(回传数据主要是回传至后台服务器,后台服务器可以将数据和相应的电力通信运维系统进行数据交互;后期在完成数据对接的情况,回传数据可以直接回传至相关的电力通信运维系统,从而实现全网电力通信运维的无缝化管理。)。如果现场无法提供相关无线连接,可以在运维人员返回后进行数据无线回传和直连回传。
除上述实施例外,本发明还可以有其他实施方式,凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围内。

Claims (5)

  1. 一种电力通信网移动运维系统,其特征在于,包括手持终端(1)、远程后台服务器(2),所述手持终端(1)、远程后台服务器(2)通过3G或4G无线公网通信;所述手持终端(1)包括智能手机(3)、外存储器(4)、数据采集终端(5),所述外存储器(4)包括SRAM(6)和Flash(7),所述智能手机(3)与外存储器(4)通信连接;所述数据采集终端(5),包括电源电路(8)、传感器(9)、信号放大电路(10)、A/D转换器(11)、微处理器(12)、通信电平转换电路(13)、数据存储器(14)、蓝牙模块(15)、晶振电路(16),所述传感器(9)的输出端接信号放大电路(10)的输入端,信号放大电路(10)的输出端接A/D转换器(11)的输入端,A/D转换器(11)的输出端接微处理器(12),所述数据存储器(14)、晶振电路(16)与微处理器(12)相连,所述通信电平转换电路(13)的输入端接微处理器(12),所述通信电平转换电路(13)的输出端接蓝牙模块(15);所述智能手机(3)具有蓝牙功能,所述蓝牙模块(15)与智能手机(3)通过蓝牙方式通信。
  2. 如权利要求1所述的电力通信网移动运维系统,其特征在于,所述微处理器(12)为AT89C51单片机,所述A/D转换器(11)型号为AD574A,所述数据存储器(14)为RAM芯片6264,所述通信电平转换电路(13)型号为MAX3232,所述信号放大电路(10)为集成运算放大器TL082。
  3. 如权利要求1所述的电力通信网移动运维系统的对外存储器(4)的SRAM(6)和Flash(7)进行地址分配的方法,其特征在于,使用bank0和bank1的地址空间,通过JP701跳线将CS0和CS1分别分配给SRAM(6)和Flash(7),在程序调用时分配SRAM(6)为bank0地址;当代码固化到Flash(7)时,分 配Flash(7)为bank0地址,SRAM(6)为bank1地址;当使用bank0引导程序运行时,将跳线JP700短接到outside端,使系统复位时boot1和boot0为1。
  4. 一种如权利要求1所述的电力通信网移动运维系统的运维方法,其特征在于,包括以下步骤:
    (1)数据存储:
    将运维工单、作业指导书、设备台账作为初始化存储资源作为运维管理基础数据存入运维系统;进行报警设备、线路的位置信息初始化存储;
    (2)数据采集:
    首先进行运维场地、运维设备、运维线路的确认;
    采用数据采集终端的GPS定位和RFID、二维码识别技术、iODF智能光纤配线架、图像识别技术进行移动运维人员位置读取,进行设备台账、报警信息、工单信息、设备信息读取;
    (3)数据交互:
    数据采集终端通过蓝牙实现与智能手机的数据交互和数据采集指令传输;
    传感器获得的信号经过放大然后进行A/D转换,然后数据存储到RAM芯片,再将RAM芯片中存储的数据按照HCI-RS232传输协议进行数据定义,进行电平转换后送至蓝牙模块,由蓝牙模块将数据传送到智能手机;
    所述蓝牙模块进行蓝牙通信的方法为在接口HCI层建立点对点的蓝牙异步无链接数据传输通道,当两个蓝牙模块链路建立成功后,按照蓝牙规范规定的HCI数据分组格式收发数据;
    (4)数据比对:
    设备台账、报警信息、工单信息、设备信息数据均采用标准化ID进行标示,并将采集到的数据ID和系统初始化数据ID进行比对;
    (5)结果回发:
    将运维工作结果比对后,手持终端将比对结果进行本地化存储,完成存储之后手持终端通过3G、4G无线传输技术进行数据回传至远程后台服务器。
  5. 如权利要求4所述的电力通信网移动运维系统的运维方法,其特征在于,
    所述智能手机与蓝牙模块进行蓝牙通信的方法为:
    两个蓝牙模块间进行数据通信通过HCI分组实现,HCI分组有三种类型:指令分组、事件分组和数据分组;
    智能手机与蓝牙模块用指令应答方式进行通信,智能手机向微处理器发送指令分组;微处理器执行指令后,正常情况下会返回给智能手机一个指令完成事件分组,该事件分组携带有指令完成的信息;如果没有返回指令完成事件,而返回指令状态事件分组用以说明智能手机发出的指令己经被接收并开始处理;如果指令分组的参数有误,返回的指令状态事件分组就会给出相应的错误代码;
    当两个蓝牙模块建立链路成功后,按照蓝牙规范规定的HCI数据包格式收发数据,在通过蓝牙模块进行数据通信时,首先进行蓝牙模块的初始化和HCI层流控设置,ACL数据通信流程包括以下6个步骤:蓝牙模块自身初始化Init Bluetooth( )、HCI流量控制设置Flow Set( )、查询Inquiry( )、建立连接Great Connection( )、进行数据通信Data_Transmit(Data Length,HCI_Number)和断开连接Disconnect( )。
PCT/CN2015/090392 2014-10-28 2015-09-23 电力通信网移动运维系统及方法 WO2016065997A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410586428.9 2014-10-28
CN201410586428.9A CN104301151A (zh) 2014-10-28 2014-10-28 电力通信网移动运维系统及方法

Publications (1)

Publication Number Publication Date
WO2016065997A1 true WO2016065997A1 (zh) 2016-05-06

Family

ID=52320730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090392 WO2016065997A1 (zh) 2014-10-28 2015-09-23 电力通信网移动运维系统及方法

Country Status (2)

Country Link
CN (1) CN104301151A (zh)
WO (1) WO2016065997A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108075842A (zh) * 2017-12-07 2018-05-25 北京交大思诺科技股份有限公司 一种便携式btm检测仪
CN108075838A (zh) * 2017-12-07 2018-05-25 北京交大思诺科技股份有限公司 一种便携式btm检测仪和检测方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104301151A (zh) * 2014-10-28 2015-01-21 国家电网公司 电力通信网移动运维系统及方法
CN104993955A (zh) * 2015-06-20 2015-10-21 海南电网有限责任公司 一种基于离线应用的电力移动抢修系统
CN107426684A (zh) * 2017-09-27 2017-12-01 武汉青禾科技有限公司 3d打印机无线数据传输网关
CN108491993A (zh) * 2018-02-05 2018-09-04 国电南瑞科技股份有限公司 基于rfid的配网资产运维精益管理系统及方法
CN108682016B (zh) * 2018-05-18 2020-10-23 深圳市星火云科技有限公司 一种插纤识别方法及系统
CN109462739A (zh) * 2018-10-30 2019-03-12 华北电力科学研究院有限责任公司 发电厂设备运维方法及系统
CN109493502A (zh) * 2018-11-16 2019-03-19 无锡市人民医院 用于医院超声科的可双向调控的智能叫号系统
CN109544008A (zh) * 2018-11-26 2019-03-29 新疆联海创智信息科技有限公司 实现资产管理系统与运维系统信息交互的方法及电子设备
CN109938442B (zh) * 2018-12-07 2021-11-02 云南电网有限责任公司保山供电局 一种用于电力作业的智能安全头盔及辅助方法
CN109831590A (zh) * 2019-01-15 2019-05-31 深圳供电局有限公司 一种通信管理平台及管理方法
CN111025051B (zh) * 2019-11-28 2022-06-17 国网电力科学研究院武汉南瑞有限责任公司 一种基于无线传感网络设备的智能运检系统及方法
CN111292201A (zh) * 2020-01-16 2020-06-16 广东电网有限责任公司 一种基于Apriori和RETE的电力通信网现场运维信息推送的方法
CN111695704A (zh) * 2020-06-02 2020-09-22 广西电网有限责任公司电力科学研究院 一种配电终端近端维护系统
CN111697694A (zh) * 2020-06-02 2020-09-22 广西电网有限责任公司电力科学研究院 一种配电终端近端维护身份认证方法及系统
CN111969726A (zh) * 2020-07-31 2020-11-20 国网四川省电力公司信息通信公司 一种基于多向交互机制的电力通信智能运维装置
CN113450488A (zh) * 2021-06-30 2021-09-28 贵州电网有限责任公司 一种基于AIoT技术的测试设备库房管理系统
CN114284939A (zh) * 2021-12-27 2022-04-05 国网北京市电力公司 配电网运维巡视方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202534145U (zh) * 2012-04-26 2012-11-14 吴保方 蓝牙传感器
CN102855541A (zh) * 2012-07-17 2013-01-02 浙江新能量科技有限公司 基于gps的电力运维轨迹定位调度系统及调度方法
CN102867227A (zh) * 2012-07-17 2013-01-09 浙江新能量科技有限公司 基于条形码技术的电力设备运行管理系统及管理方法
CN102968748A (zh) * 2012-12-06 2013-03-13 厦门明翰电气股份有限公司 一种配电网电气设备现场综合维护系统
CN103685215A (zh) * 2013-04-28 2014-03-26 中国南方电网有限责任公司 电力通信运维移动系统以及电力通信运维方法
CN104301151A (zh) * 2014-10-28 2015-01-21 国家电网公司 电力通信网移动运维系统及方法
CN204145521U (zh) * 2014-10-28 2015-02-04 国家电网公司 电力通信网移动运维系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369925A (zh) * 2007-08-15 2009-02-18 陈国林 船舶机舱设备运行状态无线网络监视系统
CN102082968A (zh) * 2010-10-29 2011-06-01 广东星海数字家庭产业技术研究院有限公司 一种多硬件兼容蓝牙设备驱动系统
CN103152464B (zh) * 2013-02-05 2015-07-15 武汉四方汇动科技有限公司 通过无线方式获取固话来电信息的设备、方法和系统
CN103294474A (zh) * 2013-05-31 2013-09-11 北京奇虎科技有限公司 浏览器操作同步方法和进行浏览器操作同步的装置
CN203838861U (zh) * 2013-12-31 2014-09-17 钱炳芸 一种基于蓝牙技术的家庭监控报警系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202534145U (zh) * 2012-04-26 2012-11-14 吴保方 蓝牙传感器
CN102855541A (zh) * 2012-07-17 2013-01-02 浙江新能量科技有限公司 基于gps的电力运维轨迹定位调度系统及调度方法
CN102867227A (zh) * 2012-07-17 2013-01-09 浙江新能量科技有限公司 基于条形码技术的电力设备运行管理系统及管理方法
CN102968748A (zh) * 2012-12-06 2013-03-13 厦门明翰电气股份有限公司 一种配电网电气设备现场综合维护系统
CN103685215A (zh) * 2013-04-28 2014-03-26 中国南方电网有限责任公司 电力通信运维移动系统以及电力通信运维方法
CN104301151A (zh) * 2014-10-28 2015-01-21 国家电网公司 电力通信网移动运维系统及方法
CN204145521U (zh) * 2014-10-28 2015-02-04 国家电网公司 电力通信网移动运维系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108075842A (zh) * 2017-12-07 2018-05-25 北京交大思诺科技股份有限公司 一种便携式btm检测仪
CN108075838A (zh) * 2017-12-07 2018-05-25 北京交大思诺科技股份有限公司 一种便携式btm检测仪和检测方法
CN108075842B (zh) * 2017-12-07 2020-12-11 北京交大思诺科技股份有限公司 一种便携式btm检测仪

Also Published As

Publication number Publication date
CN104301151A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2016065997A1 (zh) 电力通信网移动运维系统及方法
CN108565747A (zh) 一种基于智能可穿戴设备的变电站巡检系统
CN105809575A (zh) 一种水电生产管理移动作业系统和方法
CN104742545A (zh) 一种印章监控系统
KR20210115440A (ko) 모바일 기기를 이용한 지능형 설비관리 시스템 및 방법
CN111683003B (zh) 一种带有gps定位和多通讯组网模式的物联网网关设备
CN104239985A (zh) 电力设备作业智能管理系统
CN103149855A (zh) 海上打桩远程监控系统
CN103475728A (zh) 基于无线传感器网络的果园生态环境远程监控系统
CN106909206A (zh) 一种云端穿透型串口服务器
CN104377835A (zh) 一种配电防误智能终端
CN206848744U (zh) 一种智能楼宇工程设备调试系统
CN204069178U (zh) 一种基于cors系统的高精度定位视频监测获取装置
CN206311095U (zh) 一种全站仪远程控制系统
CN106406249A (zh) 基于Android平台的变电站巡检机器人控制系统及方法
CN203193630U (zh) 电力线与无线结合的集中器
CN104504492A (zh) 基于移动平台的铁路调度指挥系统信息的共享方法及装置
CN203054911U (zh) 移动智能终端安全检查系统
CN206757491U (zh) 一种云端穿透型串口服务器
CN111221310A (zh) 缝制车间稼动率的获取系统及方法
KR20180003334A (ko) 스마트 콘센트
CN111105202A (zh) 一种设备管理系统
CN203261357U (zh) 一种新型通用的物联网网关
CN101730275A (zh) 通讯模块、测控终端及数据交换方法
CN204145521U (zh) 电力通信网移动运维系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854448

Country of ref document: EP

Kind code of ref document: A1