WO2016065846A1 - 一种无线拥塞控制方法和设备 - Google Patents

一种无线拥塞控制方法和设备 Download PDF

Info

Publication number
WO2016065846A1
WO2016065846A1 PCT/CN2015/076087 CN2015076087W WO2016065846A1 WO 2016065846 A1 WO2016065846 A1 WO 2016065846A1 CN 2015076087 W CN2015076087 W CN 2015076087W WO 2016065846 A1 WO2016065846 A1 WO 2016065846A1
Authority
WO
WIPO (PCT)
Prior art keywords
service flow
rate
user terminals
actual rate
processed
Prior art date
Application number
PCT/CN2015/076087
Other languages
English (en)
French (fr)
Inventor
范宇群
周雷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15855648.0A priority Critical patent/EP3163817A4/en
Publication of WO2016065846A1 publication Critical patent/WO2016065846A1/zh
Priority to US15/426,337 priority patent/US20170150394A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/20Traffic policing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2441Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay

Definitions

  • the Policy and Charging Control (PCC) architecture is introduced to implement user data transmission policy decisions and charging functions.
  • policy and charging control function (English: Policy and Charging Rule Function; abbreviated as PCRF) is used as the main functional entity generated by the control strategy, and respectively receives application layer information from an application function (English: Application Function; abbreviation: AF).
  • PCRF Policy and Charging Rule Function
  • AF Application Function
  • IP- CAN IP Connectivity Access Network
  • SPR Subscription Profile Repository
  • PCEF Policy and Charging Enforcement Function
  • IP- CAN IP Connectivity Access Network
  • eNodeB Evolved Node B
  • the eNodeB transmits data to the UE according to the control policy and scheduling policy sent by the PCRF.
  • the data sent to the user is likely to be congested at the eNodeB, resulting in a long delay in user data transmission. Or problems such as data loss.
  • an embodiment of the present invention provides a wireless congestion control method and apparatus for determining a congestion mitigation policy to alleviate system congestion.
  • a wireless congestion control method including:
  • Policy and Charging Rule Function acquires the actual rate of service flows processed by multiple user terminals
  • the PCRF determines a congestion mitigation policy according to the obtained actual rate of the service flow processed by the multiple user terminals, where the congestion mitigation policy is used to limit an actual rate of the service flow processed by a part of the plurality of user terminals;
  • the PCRF sends the congestion mitigation policy to a service flow through a node.
  • the method further includes:
  • the PCRF acquires subscription information of the multiple user terminals, or acquires service flow information of the service flow processed by the multiple user terminals;
  • the PCRF determines that the actual rate of the service flow processed by the multiple user terminals, the acquired subscription information of the multiple user terminals, or the acquired application layer information of the service flow processed by the multiple user terminals, is determined to be restricted.
  • the target rate of the restricted service flow includes a maximum bit rate of the restricted service flow.
  • the method further includes:
  • the PCRF acquires channel quality measured by the multiple user terminals
  • the PCRF determines that the actual rate of the service flow processed by the multiple user terminals is obtained.
  • Plug mitigation strategies including:
  • the PCRF determines a congestion mitigation policy according to the traffic rate of the limited actual rate and the target rate of the restricted traffic.
  • the traffic flow limited by the actual rate satisfies one or more of the following conditions:
  • the actual rate of the traffic flow is greater than the set desired rate
  • the service flow limited by the actual rate belongs to a service flow processed by the user terminal whose user level is smaller than the first threshold level is set according to the obtained user level included in the subscription information of the multiple user terminals;
  • the service flow flow through node includes a policy and charging execution function PCEF, a data flow detection function TDF or an evolved node eNodeB At least one or more of them.
  • a wireless congestion control method including:
  • the traffic flow through node controls the current congestion according to the received congestion mitigation policy.
  • the service flow through the node sends the wireless user data congestion information RUCI to the policy and charging control function, wherein the RUCI includes the actual rate of the service flow processed by the plurality of user terminals.
  • the service flow flows through the node to the policy and charging control function Policy and Charging Rule Function sends the actual rate of service flows processed by multiple user terminals, including:
  • the service flow flows through the node to trigger the actual rate of the service flow processed by the multiple user terminals to be sent to the PCRF.
  • the congestion mitigation policy includes a service flow limited by an actual rate and a target rate of the service flow limited by the actual rate;
  • the service flow through the node controls the current congestion according to the received congestion mitigation policy, including:
  • the service flow through the node reduces the restricted processing of the user terminal according to the target rate of the service flow that is limited to the actual rate included in the congestion mitigation policy.
  • the actual rate of traffic is not limited to the actual rate of traffic.
  • a determining module configured to determine a congestion mitigation policy according to the obtained actual rate of the service flow processed by the multiple user terminals, where the congestion mitigation policy is used to limit a service flow processed by a part of the multiple user terminals Actual rate
  • a control module configured to send the congestion mitigation policy to the service flow through the node.
  • the acquiring module is further configured to acquire subscription information of the multiple user terminals, or obtain processing by the multiple user terminals.
  • the determining module is specifically configured to: according to the obtained actual rate of the service flow processed by the multiple user terminals, the obtained subscription information of the multiple user terminals, or the acquired application layer of the service flow processed by the multiple user terminals Information that determines the target rate of the traffic flow that is limited to the actual rate and the restricted traffic flow;
  • the target rate of the restricted service flow includes a maximum bit rate of the restricted service flow.
  • the acquiring module is further configured to acquire channel quality measured by the multiple user terminals;
  • the determining module is specifically configured to obtain the channel quality measured by the multiple user terminals, the obtained subscription information of the multiple user terminals, or acquired according to the obtained actual rate of the service flow processed by the multiple user terminals.
  • the application layer information of the service flow processed by the multiple user terminals determines a service flow restricted by the actual rate and a target rate of the restricted service flow;
  • a congestion mitigation policy is determined according to the traffic rate of the limited actual traffic and the target traffic of the restricted traffic.
  • the traffic flow limited by the actual rate satisfies one or more of the following conditions:
  • the actual rate of the traffic flow is greater than the set desired rate
  • the service flow limited by the actual rate belongs to a service flow processed by the user terminal whose user level is smaller than the first threshold level is set according to the obtained user level included in the subscription information of the multiple user terminals;
  • the service flow flow through node includes a policy and charging execution function PCEF, and the data flow detection function At least one or more of the TDF or the evolved node eNodeB.
  • a wireless congestion control apparatus comprising:
  • a receiving module configured to receive a congestion mitigation policy sent by the PCRF, where the congestion mitigation policy is determined by the PCRF according to an actual rate of a service flow processed by multiple user terminals, where the congestion mitigation policy is used to limit the multiple The actual rate of traffic flow of a portion of the user terminals in the user terminal;
  • the congestion control module is configured to control the current congestion according to the received congestion mitigation policy.
  • the congestion mitigation policy includes a service flow limited by an actual rate and a target rate of the service flow limited by the actual rate;
  • the congestion control module is specifically configured to reduce the processing of the user terminal according to a target rate of the service flow that is limited to an actual rate included in the congestion mitigation policy, for a user terminal that processes a traffic flow that is limited to an actual rate.
  • the actual rate of the restricted traffic flow is specifically configured to reduce the processing of the user terminal according to a target rate of the service flow that is limited to an actual rate included in the congestion mitigation policy, for a user terminal that processes a traffic flow that is limited to an actual rate.
  • the actual rate of the restricted traffic flow is specifically configured to reduce the processing of the user terminal according to a target rate of the service flow that is limited to an actual rate included in the congestion mitigation policy, for a user terminal that processes a traffic flow that is limited to an actual rate. The actual rate of the restricted traffic flow.
  • the policy and the charging control function PCRF acquires the actual rate of the service flows processed by the multiple user terminals; the PCRF determines the congestion mitigation policy according to the obtained actual rate of the service flows processed by the multiple user terminals, where the congestion mitigation is performed.
  • the policy is used to limit an actual rate of a service flow processed by a part of the plurality of user terminals; the PCRF sends the congestion mitigation policy to a service flow through a node, so that the service flow flows through the node execution Congestion mitigation strategy.
  • FIG. 1 is a schematic flowchart of a wireless congestion control method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic flowchart of a wireless congestion control method according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic flowchart of a wireless congestion control method according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic flowchart of a wireless congestion control method according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic structural diagram of a wireless congestion control device according to Embodiment 7 of the present invention.
  • an embodiment of the present invention provides a wireless congestion control method and device, and a policy and charging control function PCRF acquires an actual rate of a service flow processed by multiple user terminals; the PCRF processes according to the acquired multiple user terminals. Determining a congestion mitigation policy, wherein the congestion mitigation policy is used to limit an actual rate of traffic flow processed by a portion of the plurality of user terminals; the PCRF will use the congestion mitigation policy The sending is sent to the service flow through the node, so that the service flow flows through the node to execute the congestion mitigation policy.
  • the embodiment of the present invention determines the actual rate of the service flow processed by the restricted part of the user terminal by using the actual rate of the service flow processed by the different user terminals, so as to achieve the purpose of improving the actual rate of the service flow processed by other user terminals. Relieve system congestion and improve the business experience of congested users.
  • Step 101 The PCRF acquires an actual rate of the service flow processed by the multiple user terminals.
  • step 101 the PCRF acquires a plurality of user terminals included in the actual rate of the service flows processed by the plurality of user terminals to satisfy:
  • the user terminal in the user terminal group is accessed by code division multiple access (English: Code Division) Multiple Access; abbreviation: CDMA), Frequency Division Multiple Access (FRAM): or one or more of Time Division Multiple Access (English: Time Division Multiple Access; TDMA) Ways to access the same wireless resource.
  • code division multiple access English: Code Division) Multiple Access; abbreviation: CDMA
  • Frequency Division Multiple Access FRAM
  • TDMA Time Division Multiple Access
  • the actual rate of the service flow includes an average rate of the service flow within a set length of time.
  • the manner in which the policy and charging control function PCRF obtains the actual rate of the service flows processed by the plurality of user terminals includes, but is not limited to:
  • the PCRF receives the congestion awareness function entity RCAF or the service flow through the RUCI sent by the node, where the RUCI includes the actual rate of the service flow processed by the multiple user terminals;
  • the PCRF acquires an actual rate of service flows processed by a plurality of user terminals from the received RUCI.
  • the PCRF acquires the RUCI transmitted by the RCAF through an Np interface with the RCAF.
  • the first case is a first case:
  • the PCRF receiving the RCAF or the service flow flowing through the node includes the actual rate at which each user terminal processes the service flow within a set time length.
  • the PCRF performs the following operations on the actual rate at which each user terminal processes the service flow within the set length of time received:
  • the service flow processed by the user terminal in the set time length is in a congested state and belongs to a congested service flow;
  • the PCRF processes each user terminal within the set time period received. After determining the actual rate of the service flow, if at least one of the actual rates received is less than the set rate threshold, the PCRF triggers step 102 to determine a congestion mitigation policy.
  • the second case is a first case
  • the RCAF obtains, from the mobility management entity (English: Mobility Management Entity; MME), another second user terminal that accesses the same cell with the first user terminal that is congested, and is processed by other second user terminals that are obtained.
  • MME Mobility Management Entity
  • the RCAF sends the acquired actual rate of the service flow processed by the multiple user terminals to the PCRF, that is, the RUCI received by the PCRF includes the actual transmission rate of the service flows processed by the multiple user terminals.
  • the RCAF sends the obtained actual rate of the service flow processed by each user terminal to the PCRF, that is, the multiple RUCIs received by the PCRF, and each of the RUCIs includes the actual rate of the service flow processed by the user terminal.
  • the PCRF acquires the subscription information of the user terminal from the SPR, and obtains the service flow information of the service flow processed by the user terminal from the AF.
  • the user level is higher than the service flow processed by the user terminal that sets the first threshold level, and the actual rate is much smaller than the minimum rate;
  • the service flow limited by the actual rate belongs to a service flow processed by the user terminal whose user level is smaller than the first threshold level is set according to the obtained user level included in the subscription information of the multiple user terminals;
  • the actual rate of the service flow 1 processed by the user terminal A is 1.5 Mbps, and it can be determined that the service flow 1 processed by the user terminal A is congested, and the service flow for which the actual rate needs to be increased is determined; according to the application layer information of the service flow, the user terminal
  • the expected rate of the traffic flow 3 processed by the C is 1 Mbps (or no limitation), and the actual rate at which the currently obtained user terminal C processes the traffic flow 3 is 3 Mbps, which can be regarded as the service flow 3 processed by the user terminal C.
  • the target rate of the service stream 3 processed by the user terminal C may be determined according to the radio resource required by the user terminal A, or may be determined according to a preset value, which is not specifically limited herein.
  • the actual rate of traffic 3 is limited from the original 3 Mbps to 1 Mbps.
  • the maximum bit rate (English: Maximum Bit Rate; abbreviation: MBR) of the service stream 2 processed by the user terminal C is set to 1 Mbps in the congestion mitigation policy determined by the PCR.
  • step 103 the PCRF sends the congestion mitigation policy to the PCEF through the Gx interface or the service flow through the node, and the PCEF or the service flow through the node performs congestion control according to the received congestion mitigation policy.
  • PCRF is a logical PCRF.
  • the number of physical PCRFs is not specifically limited herein.
  • the scenario in which multiple PCRFs perform the same function in combination is regarded as the same logical PCRF.
  • the embodiment of the present invention determines the actual rate of the service flow processed by the restricted part of the user terminal by using the actual rate of the service flow processed by the different user terminals, so as to achieve the purpose of improving the actual rate of the service flow processed by other user terminals. Relieve system congestion and improve the business experience of congested users.
  • FIG. 2 a flow chart of a wireless congestion control method according to Embodiment 2 of the present invention is shown. intention.
  • the method can be as follows.
  • step 202 in order to alleviate the congestion of the system, at least the radio resources need to be coordinated between the service flows processed by one or more user terminals, and the actual rate of the other service flows is increased by limiting the actual rate of the part of the service flows. purpose.
  • the actual rate of the traffic flow is greater than the set desired rate
  • the service flow limited by the actual rate belongs to a service whose service processing level is less than the second threshold level. flow.
  • the set first threshold level and the set second threshold level may be determined according to actual needs, or may be determined according to the actually processed service flow, and are not specifically limited herein.
  • the subscription information of each user terminal and/or the application layer information of the service flow processed by each user terminal may be that the PCRF is obtained in real time from other network elements in the PCC architecture and stored locally.
  • the PCRF may obtain the subscription information of the user terminal from the SPR, and obtain the application layer information of the service flow processed by the user terminal from the AF.
  • the user level of the user terminal is determined according to the obtained subscription information of the user terminal, and the service processing level, the minimum rate, and the like of the service flow processed by the user terminal are determined according to the application layer information of the obtained service flow.
  • the minimum rate of each service flow processed by each user terminal is not necessarily determined, that is, the minimum rate of the partial service flow cannot be determined.
  • the PCRF selects a service flow that needs to increase the actual rate according to the determined user level of each user terminal, the minimum rate of each service flow, and the actual rate of the service flow processed by each user terminal, and estimates the actual rate to be increased.
  • the user level is higher than the service flow processed by the user terminal that sets the first threshold level, and the actual rate is much smaller than the minimum rate;
  • the PCRF selects the service flow that needs to be limited by the actual rate according to the determined user level of each user terminal, the minimum rate of each service flow, and the actual rate of the service flow processed by each user terminal, and obtains the required according to the above estimation.
  • the radio resource calculates a target rate of the restricted service flow.
  • the traffic flow limited by the actual rate satisfies one or more of the following conditions:
  • the actual rate of the traffic flow is greater than the set desired rate
  • the service flow limited by the actual rate belongs to a service whose service processing level is less than the second threshold level. flow.
  • the radio resources required to improve the actual rate of the service flow may be based on the service that increases the actual rate.
  • the channel quality measured by the user terminal corresponding to the flow and the mapping relationship between the channel quality and the service flow rate are determined; and the target rate of the service flow restricted by the actual rate is also measured according to the user terminal corresponding to the service flow limited by the actual rate.
  • the channel quality and the mapping relationship between channel quality and traffic flow rate are determined.
  • mapping relationship between channel quality and service flow rate can be seen in Table 4:
  • the RUCI contains three service flows of three user terminals.
  • the specific information is shown in Table 5:
  • the subscription information of each user terminal it is determined that the user level of the user terminal A is higher than the user level of the user terminal C, and the user level of the user terminal A is higher than the user level of the user terminal B.
  • the service flow 2 processed by the user terminal B and the service flow 3 processed by the user terminal C are all in an actual rate, that is, the service flow 2 processed by the user terminal B and the service processed by the user terminal C can be considered.
  • Flow 3 belongs to a traffic flow that can be restricted, and then the PCRF determines the actual rate of the traffic flow 1 processed by the user terminal B and the actual rate of the traffic flow 3 processed by the user C to improve the actual rate of the traffic flow 1 processed by the user terminal A. .
  • the PCRF according to the mapping relationship between the channel quality and the service flow rate, the channel quality of the user terminal A, the actual rate of the service flow 2 processed by the user terminal A, the channel quality of the user terminal B, and the service flow processed by the user terminal B.
  • the ratio of C processing service flow 3 combined to occupy wireless resources is about 4:6.
  • the PCRF determines that the actual rate of the service stream 1 processed by the user terminal A is increased from 1.5 Mbps to 3 Mbps, and at least an additional doubling of the radio resource (relative to the current radio resource occupied by the user terminal A) is required, that is, the user terminal A occupies the radio resource.
  • the ratio of the radio resources occupied by the user terminal B and the user terminal C is adjusted from 8:6 to 8:2, and the actual rate of the service stream 2 processed by the user terminal B needs to be limited to the current 1/3, that is, the user.
  • the actual rate limit of the service flow 2 processed by the terminal B is limited to 0.66 Mbps
  • the actual rate of the service flow 3 processed by the user terminal C is limited to the current 1/3, that is, the actual rate limit of the service flow 3 processed by the user terminal C is limited to 1Mbps.
  • the maximum bit rate (MBR) of the service stream 2 processed by the user terminal B is set to 0.66 Mbps
  • the maximum bit rate of the service stream 3 processed by the user terminal C is set to 1 Mbps.
  • Step 203 The PCRF sends the congestion mitigation policy to a service flow through a node.
  • step 203 the PCRF sends the congestion mitigation policy to the PCEF through the Gx interface or the service flow through the node, and the PCEF or the service flow through the node performs congestion control according to the received congestion mitigation policy.
  • the PCRF according to the channel quality information of each user terminal and the actual rate at which each user terminal processes the service flow, and the mapping relationship between the channel quality and the service stream transmission rate, it is possible to accurately estimate the processing of each user terminal.
  • the amount of radio resources occupied by the traffic stream can accurately estimate the target rate of the restricted traffic flow to improve the effectiveness of the congestion mitigation strategy.
  • the method provided by the embodiment of the present invention also effectively mitigates the impact caused by the uneven distribution of radio resources between service flows caused by different application flow layer characteristics or different service flow priorities (for example, QCI).
  • QCI service flow priorities
  • the network element device that implements the congestion mitigation policy may also be an AF or a data flow detection function (English: Traffic Detection Function; abbreviation: TDF), where the execution body of the congestion mitigation policy is implemented. No specific restrictions.
  • the PCEF or the service flow flow through the node performs congestion control according to the received congestion mitigation policy, and the predicted rate of the service flow processed by each user terminal is obtained, for example, Table 6 shows:
  • Predicted rate User A service flow 1 3Mbps User B Service Flow 2 0.66Mbps User C Service Stream 3 1Mbps
  • the network element device that implements the congestion mitigation policy may be an eNodeB, an AF, or a data flow detection function (English: Traffic Detection Function; abbreviation: TDF), here the specific body of the congestion mitigation strategy is not specifically limited.
  • PCRF is a logical PCRF.
  • the number of physical PCRFs is not specifically limited herein.
  • the scenario in which multiple PCRFs perform the same function in combination is regarded as the same logical PCRF.
  • the MME is a logical MME.
  • the number of physical MMEs is not specifically limited.
  • the scenario in which multiple MMEs jointly perform the same function is regarded as the same logical MME.
  • the actual rate of the service flow processed by the different user terminals is obtained, and the actual rate of the service flow processed by the restricted part of the user terminal is determined to achieve the purpose of improving the actual rate of the service flow processed by other user terminals. Relieve system congestion and improve the business experience of congested users.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 3 is a schematic flowchart diagram of a wireless congestion control method according to Embodiment 3 of the present invention. The method can be as follows.
  • the third embodiment of the present invention is further described on the basis of the first embodiment of the present invention.
  • step 103 the PCRF sends the congestion mitigation policy to the service flow through the node.
  • step 103 the PCRF sends the congestion mitigation policy to the PCEF through the Gx interface or the service flow through the node, and the PCEF or the service flow through the node performs congestion control according to the received congestion mitigation policy.
  • Step 301 The policy and charging control function PCRF acquires the actual rate of the service flow processed by the plurality of user terminals again.
  • the actual rate of the service flow processed by the multiple user terminals is reported after the congestion mitigation policy sent by the PCRF is performed in step 103.
  • the obtaining manner is the same as that in step 101, and details are not described herein again.
  • Step 302 The PCRF requests the RCAF or the service flow through the node to obtain the channel quality measured by the multiple user terminals.
  • Step 303 The PCRF receives the multiple times that the RCAF or the service flow flows through the node. The channel quality measured by the terminal.
  • the identifier of the user terminal is also included, for example, the first user terminal: the user terminal 1, and the channel quality 1.
  • the channel quality may be sent together with the actual rate of the service flows processed by the plurality of user terminals obtained in step 101, as shown in Table 7:
  • the channel quality herein may refer to an average value of a channel quality indicator (CQI), or a signal to noise ratio (English: Signal to Noice Ratio; abbreviation: SNR).
  • CQI channel quality indicator
  • SNR Signal to Noice Ratio
  • the average value, here the representation of the channel quality is not limited.
  • Step 304 The PCRF obtains the channel quality measured by the multiple user terminals, the acquired subscription information of the multiple user terminals, or the acquired information according to the obtained actual rate of the service flows processed by the multiple user terminals.
  • the application layer information of the service flow processed by the multiple user terminals determines a new congestion mitigation policy.
  • the new congestion mitigation policy is used to limit the actual rate of service flows processed by some of the plurality of user terminals.
  • the method for determining the new congestion mitigation policy is as described in step 202 in the second embodiment, and is not described here.
  • Step 305 The PCRF sends a new congestion mitigation policy to the node through which the service flow flows.
  • step 305 the PCRF sends a new congestion mitigation policy to the PCEF through the Gx interface, and the PCEF performs wireless congestion control by using the received new congestion mitigation policy.
  • the service flow through node includes at least one or more of a policy and charging execution function PCEF, a data flow detection function TDF, or an evolved node eNodeB.
  • the first mitigation of the congestion mitigation policy is performed according to the actual rate of the service flows processed by the multiple user terminals, and the channel quality measured according to the received multiple user terminals is adjusted.
  • a new congestion mitigation strategy is determined to effectively improve the accuracy of congestion control.
  • the request and acquisition of channel quality information of each user terminal is not limited to after receiving the second congestion information, but may also occur at other times, and is not limited to PCRF request acquisition, and may also be RCAF or service.
  • the flow is actively reported by the node.
  • the acquisition of the channel quality information of each user terminal is not limited to being acquired from the RCAF, but may also be directly obtained by the PCRF from the RAN OAM or the RAN side node, such as the eNodeB.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 4 is a schematic flowchart of a wireless congestion control method according to Embodiment 4 of the present invention.
  • the fourth embodiment of the present invention is performed by a service flow through a node as an execution entity.
  • the method can be as follows.
  • Step 401 The service flow flows through the node to send the actual rate of the service flows processed by the multiple user terminals to the PCRF.
  • step 401 the service flow flows through the node to send the actual rate of the service flows processed by the multiple user terminals to the PCRF, including:
  • the service flow through the node sends wireless user data congestion information RUCI to the PCRF, where the RUCI includes the actual rate of the service flows processed by the plurality of user terminals.
  • the service flow flows through the node to send the actual rate of the service flows processed by the multiple user terminals to the PCRF, including:
  • the service flow flows through the node to calculate the actual rate of the service flow processed by the multiple user terminals within the set length of time, and calculates the average rate of the service flow processed by each user terminal in the set time length;
  • the service flow flows through the node to trigger the actual rate of the service flow processed by the multiple user terminals to be sent to the PCRF.
  • Step 402 The service flow flows through the node to receive a congestion mitigation policy sent by the PCRF.
  • the congestion mitigation policy is determined by the PCRF according to an actual rate of service flows processed by a plurality of user terminals, where the congestion mitigation policy is used to limit an actual rate of service flows of a part of the plurality of user terminals.
  • Step 403 The service flow flow through the node controls the current congestion according to the received congestion mitigation policy.
  • the congestion mitigation policy includes a service flow limited by an actual rate and a target rate of the service flow limited by the actual rate;
  • the service flow through the node reduces the restricted processing of the user terminal according to the target rate of the service flow that is limited to the actual rate included in the congestion mitigation policy.
  • the actual rate of traffic is not limited to the actual rate of traffic.
  • the service flow through node includes at least one or more of a policy and charging execution function PCEF, a data flow detection function TDF, or an evolved node eNodeB.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • FIG. 5 is a schematic structural diagram of a wireless congestion control device according to Embodiment 5 of the present invention.
  • the wireless congestion control device includes: an obtaining module 51, a determining module 52, and a control module 53, wherein:
  • the obtaining module 51 is configured to obtain an actual rate of the service flow processed by the multiple user terminals;
  • a determining module 52 configured to determine a congestion mitigation policy according to an actual rate of the service flows processed by the multiple user terminals acquired by the acquiring module 51, where the congestion mitigation policy is used to limit a part of the multiple user terminals The actual rate of traffic flow processed by the user terminal;
  • the control module 53 is configured to send the congestion mitigation policy determined by the determining module 52 to the industry The flow of information flows through the nodes.
  • the acquiring module 51 is further configured to acquire the subscription information of the multiple user terminals, or obtain the service flow information of the service flow processed by the multiple user terminals;
  • the determining module 52 is specifically configured to: according to the obtained actual rate of the service flow processed by the multiple user terminals, the obtained subscription information of the multiple user terminals, or the acquired application of the service flow processed by the multiple user terminals Layer information, determining a service flow that is limited to the actual rate and a target rate of the restricted service flow;
  • the target rate of the restricted service flow includes a maximum bit rate of the restricted service flow.
  • the acquiring module 51 is further configured to acquire channel quality measured by the multiple user terminals;
  • the determining module 52 is configured to obtain the channel quality measured by the multiple user terminals, the obtained subscription information of the multiple user terminals, or the acquired information according to the actual rate of the service flows processed by the multiple user terminals.
  • the application layer information of the service flow processed by the multiple user terminals determines a target flow rate of the service flow limited by the actual rate and the restricted service flow;
  • a congestion mitigation policy is determined according to the traffic rate of the limited actual traffic and the target traffic of the restricted traffic.
  • the traffic flow limited by the actual rate satisfies one or more of the following conditions:
  • the actual rate of the traffic flow is greater than the set desired rate
  • the service flow limited by the actual rate belongs to a service flow processed by the user terminal whose user level is smaller than the first threshold level is set according to the obtained user level included in the subscription information of the multiple user terminals;
  • the service flow limited by the actual rate belongs to a service whose service processing level is less than the second threshold level. flow.
  • the acquiring module 51 is specifically configured to receive the congestion-aware functional entity RCAF or the service flow of the wireless user data congestion information RUCI sent by the node, where the RUCI includes a service flow processed by multiple user terminals.
  • the actual rate; the actual rate of the service flows processed by the plurality of user terminals is obtained from the received RUCI.
  • the service flow through node includes at least one or more of a policy and charging execution function PCEF, a data flow detection function TDF or an evolved node eNodeB.
  • the wireless congestion control device provided in the fifth embodiment of the present invention may be a logical component integrated in the PCRF, or may be a device independent of the PCRF, may be implemented by using a hardware, or may be implemented by using a software.
  • FIG. 6 is a schematic structural diagram of a wireless congestion control device according to Embodiment 6 of the present invention.
  • the device includes: a sending module 61, a receiving module 62, and a congestion control module 63, where:
  • the sending module 61 is configured to send, to the policy and charging control function, a actual rate of the service flow processed by the multiple user terminals;
  • the receiving module 62 is configured to receive a congestion mitigation policy sent by the PCRF, where the congestion mitigation policy is determined by the PCRF according to an actual rate of service flows processed by multiple user terminals, where the congestion mitigation policy is used to limit the multiple The actual rate of traffic flow of a portion of the user terminals;
  • the congestion control module 63 is configured to control the currently occurring congestion according to the received congestion mitigation policy.
  • the sending module 61 is specifically configured to send the wireless user data congestion information RUCI to the Policy and Charging Rule Function, where the RUCI includes the actual rate of the service flows processed by the multiple user terminals. .
  • the sending module 61 is configured to calculate an actual rate of service flows processed by multiple user terminals within a set time length, and calculate an average rate of service flows processed by each user terminal in the set time length;
  • the PCRF sends the actual rate of the traffic flow processed by the plurality of user terminals.
  • the congestion mitigation policy includes a service flow limited by an actual rate and a target rate of the service flow limited by the actual rate;
  • the congestion control module 63 is configured to reduce the user terminal according to a target rate of the service flow that is limited to an actual rate included in the congestion mitigation policy, for a user terminal that processes a service flow that is limited to an actual rate.
  • the actual rate of processed restricted traffic is configured to reduce the user terminal according to a target rate of the service flow that is limited to an actual rate included in the congestion mitigation policy, for a user terminal that processes a service flow that is limited to an actual rate. The actual rate of processed restricted traffic.
  • the wireless congestion control device provided by Embodiment 6 of the present invention may be a logical component integrated in a service flow flowing through a node, or may be a device that flows through a node independently of a service flow, and may be implemented by using a hardware manner, or may be implemented by using a software manner. .
  • the service flow through node includes at least one or more of a policy and charging execution function PCEF, a data flow detection function TDF, or an evolved node eNodeB.
  • FIG. 7 is a schematic structural diagram of a wireless congestion control device according to Embodiment 7 of the present invention.
  • the wireless congestion control device is provided with the functions of the first embodiment to the fourth embodiment of the present invention.
  • the wireless congestion control device may adopt a general computer system structure, and the computer system structure may be specifically a processor-based computer.
  • the wireless congestion control device entity includes at least one processor 71, a communication bus 72, and at least one communication interface 73, at least one processor 71 and at least one communication interface 73 communicating over a communication bus 72.
  • the at least one communication interface 73 is configured to acquire an actual rate of the service flow processed by the multiple user terminals.
  • the at least one communication interface 73 is further configured to send the congestion mitigation policy to the service flow through the node.
  • the at least one processor 71 is configured to: according to the obtained actual rate of the service flow processed by the multiple user terminals, the acquired subscription information of the multiple user terminals, or the obtained service flow processed by the multiple user terminals Application layer information, determining a service flow that is limited to the actual rate and a target rate of the restricted service flow;
  • the target rate of the restricted service flow includes a maximum bit rate of the restricted service flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线拥塞控制方法和设备,包括:PCRF获取多个用户终端处理的业务流的实际速率;PCRF根据获取的多个用户终端处理的业务流的实际速率,确定拥塞缓解策略,其中,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端处理的业务流的实际速率;所述PCRF将所述拥塞缓解策略发送给业务流流经节点,使所述业务流流经节点执行所述拥塞缓解策略。通过获取的不同用户终端处理的业务流的实际速率,确定被限制的一部分用户终端处理的业务流的实际速率,以达到提升其他用户终端处理的业务流的实际速率的目的,有效缓解系统出现的拥塞,提升拥塞用户的业务体验。

Description

一种无线拥塞控制方法和设备
本申请要求在2014年10月31日提交中国专利局、申请号为201410616678.2、发明名称为“一种无线拥塞控制方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种无线拥塞控制方法和设备。
背景技术
在无线长期演进(英文:Long Term Evolution;缩写:LTE)网络中,策略和收费控制(英文:Policy and Charging Control;缩写:PCC)架构被引以实现用户数据传输策略决策和收费功能。
具体地,策略和收费控制功能(英文:Policy and Charging Rule Function;缩写:PCRF)作为控制策略产生的主要功能实体,分别接收来自应用功能(英文:Application Function;缩写:AF)的应用层信息、来自Subscription Profile Repository(缩写:SPR)的用户签约信息、来自策略和收费执行功能(英文:Policy and Charging Enforcement Function;缩写:PCEF)的IP接入网(英文:IP Connectivity Access Network;缩写:IP-CAN)信息;根据接收到的应用层信息、用户签约信息和IP-CAN信息,得到基于服务数据流(英文:Service Date Flow;缩写:SDF)的控制策略,并将得到的控制策略发送至PCEF、演进节点(英文:Evolved Node B;缩写:eNodeB)等数据流经节点执行。
eNodeB作为数据流向用户终端(英文:User Equipment;缩写:UE)的最后一个节点,根据PCRF发送的控制策略和调度策略,向UE传输数据。但是在实际数据传输过程中,由于UE信道条件、同一个小区用户接入数量以及用户业务数据量等多方面原因,发送给用户的数据容易在eNodeB处发生拥塞,导致用户数据传输时延较长或者数据丢失等问题。
发明内容
有鉴于此,本发明实施例提供了一种无线拥塞控制方法和设备,用于确定拥塞缓解策略以缓解系统拥塞。
根据本发明的第一方面,提供了一种无线拥塞控制方法,包括:
策略和收费控制功能Policy and Charging Rule Function获取多个用户终端处理的业务流的实际速率;
PCRF根据获取的多个用户终端处理的业务流的实际速率,确定拥塞缓解策略,其中,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端处理的业务流的实际速率;
所述PCRF将所述拥塞缓解策略发送给业务流流经节点。
结合本发明第一方面可能的实施方式,在第一种可能的实施方式中,所述方法还包括:
所述PCRF获取所述多个用户终端的签约信息,或获取所述多个用户终端处理的业务流的业务流信息;
所述PCRF根据获取的多个用户终端处理的业务流的实际速率,确定拥塞缓解策略,包括:
所述PCRF根据获取的多个用户终端处理的业务流的实际速率、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定被限制实际速率的业务流及被限制的业务流的目标速率;
所述PCRF根据所述被限制实际速率的业务流及被限制的业务流的目标速率,确定拥塞缓解策略;
其中,所述被限制的业务流的目标速率包含了所述被限制的业务流的最大比特率。
结合本发明第一方面的第一种可能的实施方式,在第二种可能的实施方式中,所述方法还包括:
所述PCRF获取所述多个用户终端测量得到的信道质量;
所述PCRF根据获取的多个用户终端处理的业务流的实际速率,确定拥 塞缓解策略,包括:
所述PCRF根据获取的多个用户终端处理的业务流的实际速率、获取所述多个用户终端测量得到的信道质量、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定被限制实际速率的业务流及被限制的业务流的目标速率;
所述PCRF根据所述被限制实际速率的业务流及被限制的业务流的目标速率,确定拥塞缓解策略。
结合本发明第一方面可能的实施方式,或者结合本发明第一方面的第一种可能的实施方式,或者结合本发明第一方面的第二种可能的实施方式,在第三种可能的实施方式中,所述被限制实际速率的业务流满足以下条件中的一种或者多种:
业务流的实际速率大于设定的期望速率;
按照获取的所述多个用户终端的签约信息中包含的用户等级,所述被限制实际速率的业务流属于用户等级小于设定第一门限等级的用户终端处理的业务流;
和/或,按照获取的所述多个用户终端处理的业务流的应用层信息中包含的业务处理等级,所述被限制实际速率的业务流属于业务处理等级小于设定第二门限等级的业务流。
结合本发明第一方面可能的实施方式,或者结合本发明第一方面的第一种可能的实施方式,或者结合本发明第一方面的第二种可能的实施方式,或者结合本发明第一方面的第三种可能的实施方式,在第四种可能的实施方式中,PCRF获取多个用户终端处理的业务流的实际速率,包括:
PCRF接收拥塞感知功能实体RCAF或业务流流经节点发送的无线用户数据拥塞信息RUCI,其中,所述RUCI中包含了多个用户终端处理的业务流的实际速率;
所述PCRF从接收到的所述RUCI中获取多个用户终端处理的业务流的实际速率。
结合本发明第一方面的第四种可能的实施方式,在第五种可能的实施方式中,所述业务流流经节点包含了策略和收费执行功能PCEF,数据流检测功能TDF或者演进节点eNodeB中的至少一种或者多种。
根据本发明的第二方面,提供了一种无线拥塞控制方法,包括:
业务流流经节点向策略和收费控制功能Policy and Charging Rule Function发送多个用户终端处理的业务流的实际速率;
业务流流经节点接收PCRF发送的拥塞缓解策略,其中,所述拥塞缓解策略由所述PCRF根据多个用户终端处理的业务流的实际速率确定,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端的业务流的实际速率;
业务流流经节点根据接收到的所述拥塞缓解策略,对当前发生的拥塞进行控制。
结合本发明第二方面可能的实施方式,在第一种可能的实施方式中,业务流流经节点向策略和收费控制功能Policy and Charging Rule Function发送多个用户终端处理的业务流的实际速率,包括:
业务流流经节点向策略和收费控制功能Policy and Charging Rule Function发送无线用户数据拥塞信息RUCI,其中,所述RUCI中包含了多个用户终端处理的业务流的实际速率。
结合本发明第二方面可能的实施方式,或者结合本发明第二方面的第一种可能的实施方式,在第二种可能的实施方式中,业务流流经节点向策略和收费控制功能Policy and Charging Rule Function发送多个用户终端处理的业务流的实际速率,包括:
业务流流经节点统计设定时间长度内、多个用户终端处理的业务流的实际速率,并计算得到所述设定时间长度内每一个用户终端处理的业务流的平均速率;
当计算得到的至少一个业务流的平均速率小于设定速率门限时,业务流流经节点触发向PCRF发送所述多个用户终端处理的业务流的实际速率。
结合本发明第二方面可能的实施方式,或者结合本发明第二方面的第一种可能的实施方式,或者结合本发明第二方面的第二种可能的实施方式,在第三种可能的实施方式中,所述拥塞缓解策略中包含了被限制实际速率的业务流以及所述被限制实际速率的业务流的目标速率;
业务流流经节点根据接收到的所述拥塞缓解策略,对当前发生的拥塞进行控制,包括:
对于处理被限制实际速率的业务流的用户终端,业务流流经节点按照所述拥塞缓解策略中包含的所述被限制实际速率的业务流的目标速率,降低所述用户终端处理的被限制的业务流的实际速率。
根据本发明的第三方面,提供了一种无线拥塞控制设备,包括:
获取模块,用于获取多个用户终端处理的业务流的实际速率;
确定模块,用于根据获取的多个用户终端处理的业务流的实际速率,确定拥塞缓解策略,其中,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端处理的业务流的实际速率;
控制模块,用于将所述拥塞缓解策略发送给业务流流经节点。
结合本发明第三方面可能的实施方式,在第一种可能的实施方式中,所述获取模块,还用于获取所述多个用户终端的签约信息,或获取所述多个用户终端处理的业务流的业务流信息;
所述确定模块,具体用于根据获取的多个用户终端处理的业务流的实际速率、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定被限制实际速率的业务流及被限制的业务流的目标速率;
根据所述被限制实际速率的业务流及被限制的业务流的目标速率,确定拥塞缓解策略;
其中,所述被限制的业务流的目标速率包含了所述被限制的业务流的最大比特率。
结合本发明第三方面的第一种可能的实施方式,在第二种可能的实施方 式中,所述获取模块,还用于获取所述多个用户终端测量得到的信道质量;
所述确定模块,具体用于根据获取的多个用户终端处理的业务流的实际速率、获取所述多个用户终端测量得到的信道质量、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定被限制实际速率的业务流及被限制的业务流的目标速率;
根据所述被限制实际速率的业务流及被限制的业务流的目标速率,确定拥塞缓解策略。
结合本发明第三方面可能的实施方式,或者结合本发明第三方面的第一种可能的实施方式,或者结合本发明第三方面的第二种可能的实施方式,在第三种可能的实施方式中,所述被限制实际速率的业务流满足以下条件中的一种或者多种:
业务流的实际速率大于设定的期望速率;
按照获取的所述多个用户终端的签约信息中包含的用户等级,所述被限制实际速率的业务流属于用户等级小于设定第一门限等级的用户终端处理的业务流;
和/或,按照获取的所述多个用户终端处理的业务流的应用层信息中包含的业务处理等级,所述被限制实际速率的业务流属于业务处理等级小于设定第二门限等级的业务流。
结合本发明第三方面可能的实施方式,或者结合本发明第三方面的第一种可能的实施方式,或者结合本发明第三方面的第二种可能的实施方式,或者结合本发明第三方面的第三种可能的实施方式,在第四种可能的实施方式中,所述获取模块,具体用于接收拥塞感知功能实体RCAF或业务流流经节点发送的无线用户数据拥塞信息RUCI,其中,所述RUCI中包含了多个用户终端处理的业务流的实际速率;从接收到的所述RUCI中获取多个用户终端处理的业务流的实际速率。
结合本发明第三方面的第四种可能的实施方式,在第五种可能的实施方式中,所述业务流流经节点包含了策略和收费执行功能PCEF,数据流检测功 能TDF或者演进节点eNodeB中的至少一种或者多种。
根据本发明的第四方面,提供了一种无线拥塞控制设备,包括:
发送模块,用于向策略和收费控制功能Policy and Charging Rule Function发送多个用户终端处理的业务流的实际速率;
接收模块,用于接收PCRF发送的拥塞缓解策略,其中,所述拥塞缓解策略由所述PCRF根据多个用户终端处理的业务流的实际速率确定,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端的业务流的实际速率;
拥塞控制模块,用于根据接收到的所述拥塞缓解策略,对当前发生的拥塞进行控制。
结合本发明第四方面可能的实施方式,在第一种可能的实施方式中,所述发送模块,具体用于向策略和收费控制功能Policy and Charging Rule Function发送无线用户数据拥塞信息RUCI,其中,所述RUCI中包含了多个用户终端处理的业务流的实际速率。
结合本发明第四方面可能的实施方式,或者结合本发明第四方面的第一种可能的实施方式,在第二种可能的实施方式中,所述发送模块,具体用于统计设定时间长度内、多个用户终端处理的业务流的实际速率,并计算得到所述设定时间长度内每一个用户终端处理的业务流的平均速率;
当计算得到的至少一个业务流的平均速率小于设定速率门限时,触发向PCRF发送所述多个用户终端处理的业务流的实际速率。
结合本发明第四方面可能的实施方式,或者结合本发明第四方面的第一种可能的实施方式,或者结合本发明第四方面的第二种可能的实施方式,在第三种可能的实施方式中,所述拥塞缓解策略中包含了被限制实际速率的业务流以及所述被限制实际速率的业务流的目标速率;
所述拥塞控制模块,具体用于对于处理被限制实际速率的业务流的用户终端,按照所述拥塞缓解策略中包含的所述被限制实际速率的业务流的目标速率,降低所述用户终端处理的被限制的业务流的实际速率。
本发明有益效果如下:
本发明实施例策略和收费控制功能PCRF获取多个用户终端处理的业务流的实际速率;PCRF根据获取的多个用户终端处理的业务流的实际速率,确定拥塞缓解策略,其中,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端处理的业务流的实际速率;所述PCRF将所述拥塞缓解策略发送给业务流流经节点,使所述业务流流经节点执行所述拥塞缓解策略。本发明实施例通过获取的不同用户终端处理的业务流的实际速率,确定被限制的一部分用户终端处理的业务流的实际速率,以达到提升其他用户终端处理的业务流的实际速率的目的,有效缓解系统出现的拥塞,提升拥塞用户的业务体验。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的一种无线拥塞控制方法的流程示意图;
图2为本发明实施例二提供的一种无线拥塞控制方法的流程示意图;
图3为本发明实施例三提供的一种无线拥塞控制方法的流程示意图;
图4为本发明实施例四提供的一种无线拥塞控制方法的流程示意图;
图5为本发明实施例五提供的一种无线拥塞控制设备的结构示意图;
图6为本发明实施例六提供的一种无线拥塞控制设备的结构示意图;
图7为本发明实施例七提供的一种无线拥塞控制设备的结构示意图;
图8为本发明实施例八提供的一种无线拥塞控制设备的结构示意图。
具体实施方式
为了实现本发明的目的,本发明实施例提供了一种无线拥塞控制方法和设备,策略和收费控制功能PCRF获取多个用户终端处理的业务流的实际速率;PCRF根据获取的多个用户终端处理的业务流的实际速率,确定拥塞缓解策略,其中,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端处理的业务流的实际速率;所述PCRF将所述拥塞缓解策略发送给业务流流经节点,使所述业务流流经节点执行所述拥塞缓解策略。本发明实施例通过获取的不同用户终端处理的业务流的实际速率,确定被限制的一部分用户终端处理的业务流的实际速率,以达到提升其他用户终端处理的业务流的实际速率的目的,有效缓解系统出现的拥塞,提升拥塞用户的业务体验。
需要说明的是:为了缓解系统拥塞问题,可以在PCC架构中引入无线拥塞感知功能(英文:Radio Congestion Awareness Function;缩写:RCAF)和新的接口Np。
其中,Np接口用于在RCAF和PCRF之间传输无线用户数据拥塞信息(英文:RAN User plan Congestion Information;缩写:RUCI)。
下面结合说明书附图对本发明各个实施例作进一步地详细描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例一:
如图1所示,为本发明实施例一提供的一种无线拥塞控制方法的流程示意图。所述方法可以如下所述。
步骤101:PCRF获取多个用户终端处理的业务流的实际速率。
在步骤101中,PCRF获取多个用户终端处理的业务流的实际速率中包含的多个用户终端满足:
所述多个用户终端属于一个用户终端群,该用户终端群中的用户终端共享同一无线资源。
其中,所述用户终端群中的用户终端以码分多址接入(英文:Code Division  Multiple Access;缩写:CDMA)、频分多址接入(英文:Frequency Division Multiple Access;缩写:FDMA)或者时分多址接入(英文:Time Division Multiple Access;缩写:TDMA)中的一种或多种方式接入同一无线资源。
例如:以上述接入方式接入同一个服务小区或扇区的多个用户终端;或者接入多个小区共同服务的用户终端。
需要说明的是,所述业务流的实际速率包括设定时间长度内所述业务流的平均速率。
在本发明的另一个实施例中,策略和收费控制功能PCRF获取多个用户终端处理的业务流的实际速率的方式包括但不限于:
所述PCRF接收拥塞感知功能实体RCAF或业务流流经节点发送的RUCI,其中,所述RUCI中包含了多个用户终端处理的业务流的实际速率;
所述PCRF从接收到的所述RUCI中获取多个用户终端处理的业务流的实际速率。
具体地,PCRF通过与RCAF之间的Np接口获取RCAF发送的RUCI。
第一种情形:
所述PCRF接收RCAF或业务流流经节点发送的RUCI中包含了设定时间长度内每一个用户终端处理业务流的实际速率。
此时,所述PCRF对接收到的设定时间长度内每一个用户终端处理业务流的实际速率,执行以下操作:
针对设定时间长度内每一个用户终端处理业务流的实际速率,判断该用户终端在设定时间长度内处理业务流的实际速率是否小于设定速率门限;
若该用户终端在设定时间长度内处理业务流的实际速率小于设定速率门限,则确定该用户终端在设定时间长度内处理的业务流已处于拥塞状态,属于拥塞业务流;
若该用户终端在设定时间长度内处理业务流的实际速率不小于设定速率门限,则确定该用户终端在设定时间长度内处理的业务流不处于拥塞。
也就是说,所述PCRF对接收到的设定时间长度内每一个用户终端处理 业务流的实际速率进行判断之后,若接收到的实际速率中至少存在一个实际速率小于设定速率门限,那么所述PCRF触发执行步骤102确定拥塞缓解策略。
这里需要说明的是,在第一种情形下,PCRF与RCAF协商,由RCAF对一个用户终端集群中每一个用户终端处理业务流的实际速率进行统计,并实时或者定时或者周期地将统计结果携带在RUCI中通过Np接口发送给PCRF,这里的PCRF需要根据统计结果判断是否存在用户终端处理的业务流发生拥塞。
第二种情形:
所述PCRF接收RCAF或业务流流经节点发送的RUCI中包含了发生拥塞的第一用户终端处理业务流的实际速率以及与所述第一用户终端属于同一个用户终端集群的其他第二用户终端处理业务流的实际速率。
需要说明的是,这里发生拥塞的第一用户终端可以是指一个用户终端,也可以是指多个用户终端,不做具体限定;这里的其他第二用户终端也可以是指一个用户终端,也可以是指多个用户终端,不做具体限定。
需要说明的是,若RUCI中包含了多个用户终端处理业务的实际速率,那么还需要包含每一个用户终端的终端标识,终端标识可以为IMSI(International Mobile Subscriber Identifier,国际移动用户标识符),也可以为用户ID等,这里不做具体限定。
在本发明的另一个实施例中,通过以下方式确定发生拥塞的第一用户终端:
RCAF统计设定时间长度内的第一用户终端处理的业务流的实际速率,并计算得到所述设定时间长度内所述第一用户终端处理的业务流的平均速率;当所述平均速率小于设定速率门限时,确定所述第一用户终端处理的业务流发生拥塞。
需要说明的是,设定速率门限可以由运营商预先设定,也可以由PCRF动态下发给RCAF,这里对其设定方式不做具体限定。
具体地,RCAF收集不同用户终端的业务流的实际速率,这里的业务流的实际速率可以来自无线接入网运营管理维护系统(英文:Radio Access Network Operation Administration and Maintenance system;缩写:RAN OAM),也可以来自无线接入网(英文:Radio Access Network;缩写:RAN)的一个节点(例如:eNodeB)。
针对每一个用户终端,RCAF计算得到设定时间长度内该用户终端处理的业务流的平均速率,并将该平均速率与设定速率门限(或者业务流的预期传输速率)进行比较;若该平均速率小于设定速率门限,则说明该用户终端处理的该业务流发生拥塞;若该平均速率不小于设定速率门限,则说明该用户终端处理的业务流未发生拥塞。
RCAF一旦确定存在用户终端处理的业务流发生拥塞,若RCAF确定第一用户终端处理的业务流发生拥塞时,确定与所述第一用户终端属于同一个用户终端集群的其他第二用户终端,并触发通过Np接口向PCRF发送RUCI。
这里的RUCI中包含了发生拥塞的第一用户终端处理的业务流的实际速率以及与所述第一用户终端属于同一个用户终端集群的其他第二用户终端处理业务流的实际速率。
例如:RCAF从移动管理实体(英文:Mobility Management Entity;缩写:MME)中获取与发生拥塞的第一用户终端接入同一个小区的其他第二用户终端,并得到获取的其他第二用户终端处理的业务流的实际速率。
需要说明的是,在第一种情形和第二种情形中,用户终端处理的业务流可以是该用户终端处理的全部业务流,也可以是该用户终端处理的部分业务流,这里不做限定。对于该用户终端处理的部分业务流,应至少包含以下业务流中的一种或多种:
发生拥塞的业务流;
业务处理等级大于设定门限值的业务流;
运营商预设或PCRF指定的业务流;
业务流的实际速率大于设定阈值的业务流。
其中,设定阈值可以由运营商预设或PCRF指定。
需要说明的是,如果该用户终端处理的业务流中同一个业务类型的多个业务流的实际速率的和值大于阈值,那么可将同一个业务类型的多个业务流作为一个业务流进行处理。
需要说明的是,这里的业务流的实际速率可以是指业务流在应用层的实际速率,也可以是指在其他协议层的实际速率,例如:MAC层的速率,这里对于业务流的实际速率具体指什么速率不做具体限定,在获取不同用户终端的业务流的实际速率时,获取的是不同用户终端在相同层面的业务流的实际速率(例如:统一是应用层速率,或者统一是其他协议层速率等等)。
对于第一种情形和第二种情形,RCAF通过Np接口向PCRF发送RUCI的方式包括但不限于:
第一种方式:
RCAF将获取的多个用户终端处理的业务流的实际速率生成一个RUCI发送给PCRF,也就是说PCRF接收到的RUCI中包含了多个用户终端处理的业务流的实际传输速率。
第二种方式:
RCAF将获取的每一个用户终端处理的业务流的实际速率生成一个RUCI发送给PCRF,也就是说PCRF接收到的多个RUCI,每一个RUCI中包含了一个用户终端处理的业务流的实际速率。
需要说明的是,本实例并不限定RUCI发送的具体方式,可以是以一个完整的RUCI发送,还可以以任何方式拆分为多个RUCI发送。
对于第一种情形和第二种情形,RCAF通过Np接口向PCRF发送RUCI的形式包括但不限于:
RCAF通过Np接口向PCRF发送RUCI可通过Diameter协议中的Message消息携带,具体包括:触发方式、所有用户终端的所有SDFs。
其中,所有用户终端的所有SDFs包含了每一个用户终端的所有SDF;每一个用户终端的所有SDF包含了用户终端标识和每一个SDF;每一个SDF包 含了SDF标识和该SDF的速率值。
例如:
*[Event-Trigger]:表示RUCI信息发送的触发方式;
*[Data-Rate-Description]:组合AVP,内含所有用户终端所有SDFs(英文:Service Data Flow;中文:服务数据流)速率描述;
*[UE-Rate-Description]:组合AVP,内含该用户终端所有SDFs速率描述;
*[UE-ID]:该UE的标识,通常为IMSI值;
*[Flow-Rate-Description]:组合AVP,内含该SDF信息;
*[Flow-Description]:该SDF的标识;
*[Flow-Data-Rate]:该SDF的速率值。
需要说明的是,Event-Trigger表达RCAF向PCRF上报RUCI的触发方式,可以是时间触发,如在RCAF上预设一个时间条件,也可以是事件触发,如RCAF检测到存在用户终端处理的业务流发生拥塞时触发发送RUCI或者PCRF要求RCAF上报RUCI时触发发送RUCI。
可选地,如表1所示,为RCAF发送的RUCI格式的结构示意图:
  业务流标识1 业务流标识2 …… 业务流标识n
第一用户终端 实际速率11 实际速率12 …… 实际速率n1
第二用户终端 实际速率21 实际速率22 …… 实际速率n2
…… …… …… …… ……
第N用户终端 实际速率n1 实际速率n2 …… 实际速率nn
表1
需要说明的是,在RCAF发送的RUCI中,对于第一用户终端,若处理的业务流有n个,那么RCAF发送的RUCI中可以包含第一用户终端处理的n个业务流的实际速率,也可以包含第一用户终端处理的n个业务流的部分业务流的实际速率。
可选地,所述方法还包括:
所述PCRF获取所述多个用户终端的签约信息,或获取所述多个用户终 端处理的业务流的业务流信息。
具体地,所述PCRF从SPR中获取用户终端的签约信息,从AF中获取用户终端处理的业务流的业务流信息。
步骤102:所述PCRF根据获取的多个用户终端处理的业务流的实际速率,确定拥塞缓解策略。
其中,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端处理的业务流的实际速率。
在步骤102中,为了缓解系统出现的拥塞,至少需要在一个或多个用户终端处理的业务流之间协调无线资源,通过限制一部分业务流的实际速率,达到提升另一部分业务流的实际速率的目的。
具体地,所述PCRF根据获取的多个用户终端处理的业务流的实际速率、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定被限制实际速率的业务流及被限制的业务流的目标速率;
所述PCRF根据所述被限制实际速率的业务流及被限制的业务流的目标速率,确定拥塞缓解策略。
其中,所述被限制的业务流的目标速率包含了所述被限制的业务流的最大比特率。
所述拥塞缓解策略中包含了所述被限制实际速率的业务流及被限制的业务流的目标速率。
所述被限制实际速率的业务流满足以下条件中的一种或者多种:
业务流的实际速率大于设定的期望速率;
按照获取的所述多个用户终端的签约信息中包含的用户等级,所述被限制实际速率的业务流属于用户等级小于设定第一门限等级的用户终端处理的业务流;
和/或,按照获取的所述多个用户终端处理的业务流的应用层信息中包含的业务处理等级,所述被限制实际速率的业务流属于业务处理等级小于设定 第二门限等级的业务流。
其中,所述设定的期望速率可以是应用层信息中包含的该业务流的预期速率或者最大速率;也可以是签约信息中包含的用户终端允许使用的最大速率;还可以根据其他形式确定,这里不做限定。
设定的第一门限等级和设定的第二门限等级可以根据实际需要确定,也可以是根据实际处理的业务流确定,这里也不做具体限定。
具体地,每一个用户终端的签约信息和/或每一个用户终端处理的业务流的应用层信息可以是PCRF从PCC架构中的其他网元中实时获取并存储在本地的。
例如,PCRF可以从SPR中获取用户终端的签约信息,从AF中获取用户终端处理的业务流的应用层信息。
具体地,根据获取的用户终端的签约信息,确定用户终端的用户等级;根据获取的业务流的应用层信息,确定用户终端处理的业务流的业务处理等级、最小速率等。
需要说明的是,从获取的业务流的应用层信息中并不是一定能够确定出每一个用户终端处理的每一个业务流的最小速率,也就是说存在部分业务流的最小速率不能确定的可能。
具体地,PCRF根据确定的每一个用户终端的用户等级、每一个业务流的最小速率以及每一个用户终端处理的业务流的实际速率,选择需要提高实际速率的业务流,并估算提高实际速率至期望速率或者最小速率所需的无线资源。
其中,需要提高实际速率的业务流至少包含以下业务流中的一种或者多种:
实际速率远远小于最小速率的业务流;
用户等级高于设定第一门限等级的用户终端处理的、且实际速率远远小于最小速率的业务流;
用户等级高于设定第一门限等级的用户终端处理的、业务处理等级高于 设定第二门限等级的、且实际速率远远小于最小速率的业务流。
PCRF根据确定的每一个用户终端的用户等级、每一个业务流的最小速率以及每一个用户终端处理的业务流的实际速率,选择需要被限制实际速率的业务流,并根据上述估算得到的所需的无线资源,计算得到所述被限制的业务流的目标速率。
其中,所述被限制实际速率的业务流满足以下条件中的一种或者多种:
业务流的实际速率大于设定的期望速率;
按照获取的所述多个用户终端的签约信息中包含的用户等级,所述被限制实际速率的业务流属于用户等级小于设定第一门限等级的用户终端处理的业务流;
和/或,按照获取的所述多个用户终端处理的业务流的应用层信息中包含的业务处理等级,所述被限制实际速率的业务流属于业务处理等级小于设定第二门限等级的业务流。
例如:RUCI中包含了三个用户终端的三个业务流,具体信息如表2所示:
  实际速率
用户终端A业务流1 1.5Mbps
用户终端B业务流2 2Mbps
用户终端C业务流3 3Mbps
表2
根据每一个用户终端的签约信息,确定用户终端A的用户等级高于用户终端C的用户等级,根据业务流的应用层信息,用户终端A处理的业务流1的期望速率为2Mbps,目前获取的用户终端A处理业务流1的实际速率为1.5Mbps,可以被认定为用户终端A处理的业务流1发生拥塞,为确定的需要提高实际速率的业务流;根据业务流的应用层信息,用户终端C处理的业务流3的期望速率为1Mbps(或者无限定),目前获取的用户终端C处理业务流3的实际速率为3Mbps,可以被认定为用户终端C处理的业务流3为确定的需要限制实际速率的业务流,且由于用户终端A的用户等级高于用户终端C 的用户等级,PCRF决策通过限制用户终端C处理的业务流3的实际速率以提升用户终端A处理的业务流1的实际速率。即根据估算得到的将用户终端A处理的业务流1的实际速率由1.5Mbps提升至2Mbps需要的无线资源,得到用户终端C处理的业务流3的目标速率(例如:1Mbps)。
需要说明的是,得到用户终端C处理的业务流3的目标速率可以根据用户终端A需要的无线资源确定,也可以根据预设值确定,这里不做具体限定。
另外,考虑到用户终端A处理的业务流1的实际速率从1.5Mbps速率提升至2Mbps,至少需要额外增加的1/3的无线资源(相对于用户终端A目前已使用的无线资源),而在无线基站PFS(英文:Proportional Fairness Scheduler;缩写:PFS)(部分公平调度)调度算法的作用下,用户终端C因被限制实际速率而让出的无线资源需要在用户终端A与用户终端B之间进行无线资源的平均分配,因此,用户终端C需让出自身2/3的无线资源,那么根据用户终端C出让的无线资源,得到用户处理的业务流3的目标速率,即将用户终端C处理的业务流3的实际速率由原来的3Mbps限制至1Mbps。此时,PCR确定的拥塞缓解策略中将用户终端C处理的业务流2的最大比特率(英文:Maximum Bit Rate;缩写:MBR)设置为1Mbps。
步骤103:所述PCRF将所述拥塞缓解策略发送给业务流流经节点。
在步骤103中,PCRF将拥塞缓解策略通过Gx接口发送给PCEF或者业务流流经节点,由所述PCEF或者业务流流经节点根据接收到的所述拥塞缓解策略进行拥塞控制。
具体地,PCEF可以执行AQM(Active Queue Management)中的RED(Random Early Detection)算法或者Token Bucket算法来实现拥塞缓解策略。
由于PCRF接收到的多个用户终端处理的业务流的实际速率,PCRF在确定拥塞缓解策略时,将每一个用户终端处理的业务流的实际速率作为Qos参数的量化依据,使得确定的拥塞缓解策略是针对一个或者多个用户终端的一个或者多个业务流的PCC策略集,有效地提升了拥塞缓解控制的精度。
仍以表2中所记载的用户终端为例,所述PCEF或者业务流流经节点根据 接收到的所述拥塞缓解策略进行拥塞控制,得到的每一个用户终端处理的业务流的预测速率,如表3所示:
  预测速率
用户终端A业务流1 2Mbps
用户终端B业务流2 2.6Mbps
用户终端C业务流3 1Mbps
表3
需要说明的是,执行拥塞缓解策略的网元设备除了PCEF之外,还可以是eNodeB、AF,或者数据流检测功能(英文:Traffic Detection Function;缩写:TDF),这里对于拥塞缓解策略的执行主体不做具体限定。
所述业务流流经节点包含了策略和收费执行功能PCEF,数据流检测功能TDF或者演进节点eNodeB中的至少一种或者多种。
需要说明的是,上述PCRF为逻辑PCRF,这里并不具体限定物理PCRF个数的多少,通过多个PCRF联合完成相同功能的场景视为同一逻辑PCRF。
需要说明的是,上述MME为逻辑MME,这里并不具体限定物理MME个数的多少,通过多个MME联合完成相同功能的场景视为同一逻辑MME。
通过本发明实施例一的方案,策略和收费控制功能PCRF获取多个用户终端处理的业务流的实际速率;PCRF根据获取的多个用户终端处理的业务流的实际速率,确定拥塞缓解策略,其中,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端处理的业务流的实际速率;所述PCRF将所述拥塞缓解策略发送给业务流流经节点,使所述业务流流经节点执行所述拥塞缓解策略。本发明实施例通过获取的不同用户终端处理的业务流的实际速率,确定被限制的一部分用户终端处理的业务流的实际速率,以达到提升其他用户终端处理的业务流的实际速率的目的,有效缓解系统出现的拥塞,提升拥塞用户的业务体验。
实施例二:
如图2所示,为本发明实施例二提供的一种无线拥塞控制方法的流程示 意图。所述方法可以如下所述。
步骤201:PCRF获取多个用户终端处理的业务流的实际速率和所述多个用户终端测量得到的信道质量。
需要说明的是,这里的信道质量可以是指信道质量指示(英文:Channel Quality Indicator;缩写:CQI)的平均值,也可以是指信噪比值(英文:Signal to Noice Ratio;缩写:SNR)的平均值,这里对于信道质量的表示形式不做限定。
所述PCRF获取所述多个用户终端测量得到的信道质量。
具体地,所述PCRF接收拥塞感知功能实体RCAF或业务流流经节点发送的RUCI,其中,所述RUCI中包含了多个用户终端测量得到的信道质量;
所述PCRF从接收到的所述RUCI中获取多个用户终端测量得到的信道质量。
需要说明的是,本发明实施例二中步骤201的具体实现方式与本发明实施例一中步骤101的实现方式相同,这里不做赘述。
步骤202:所述PCRF根据获取的多个用户终端处理的业务流的实际速率、获取所述多个用户终端测量得到的信道质量、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定拥塞缓解策略。
其中,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端处理的业务流的实际速率。
在步骤202中,为了缓解系统出现的拥塞,至少需要在一个或多个用户终端处理的业务流之间协调无线资源,通过限制一部分业务流的实际速率,达到提升另一部分业务流的实际速率的目的。
所述PCRF根据获取的多个用户终端处理的业务流的实际速率、获取所述多个用户终端测量得到的信道质量、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定被限制实际速率的业务流及被限制的业务流的目标速率;
所述PCRF根据所述被限制实际速率的业务流及被限制的业务流的目标速率,确定拥塞缓解策略。
其中,所述被限制的业务流的目标速率包含了所述被限制的业务流的最大比特率。
所述拥塞缓解策略中包含了所述被限制实际速率的业务流及被限制的业务流的目标速率。
所述被限制实际速率的业务流满足以下条件中的一种或者多种:
业务流的实际速率大于设定的期望速率;
按照获取的所述多个用户终端的签约信息中包含的用户等级,所述被限制实际速率的业务流属于用户等级小于设定第一门限等级的用户终端处理的业务流;
和/或,按照获取的所述多个用户终端处理的业务流的应用层信息中包含的业务处理等级,所述被限制实际速率的业务流属于业务处理等级小于设定第二门限等级的业务流。
其中,所述设定的期望速率可以是应用层信息中包含的该业务流的预期速率或者最大速率;也可以是签约信息中包含的用户终端允许使用的最大速率;还可以根据其他形式确定,这里不做限定。
设定的第一门限等级和设定的第二门限等级可以根据实际需要确定,也可以是根据实际处理的业务流确定,这里也不做具体限定。
具体地,每一个用户终端的签约信息和/或每一个用户终端处理的业务流的应用层信息可以是PCRF从PCC架构中的其他网元中实时获取并存储在本地的。
例如,PCRF可以从SPR中获取用户终端的签约信息,从AF中获取用户终端处理的业务流的应用层信息。
具体地,根据获取的用户终端的签约信息,确定用户终端的用户等级;根据获取的业务流的应用层信息,确定用户终端处理的业务流的业务处理等级、最小速率等。
需要说明的是,从获取的业务流的应用层信息中并不是一定能够确定出每一个用户终端处理的每一个业务流的最小速率,也就是说存在部分业务流的最小速率不能确定的可能。
具体地,PCRF根据确定的每一个用户终端的用户等级、每一个业务流的最小速率以及每一个用户终端处理的业务流的实际速率,选择需要提高实际速率的业务流,并估算提高实际速率至期望速率或者最小速率所需的无线资源。
其中,需要提高实际速率的业务流至少包含以下业务流中的一种或者多种:
实际速率远远小于最小速率的业务流;
用户等级高于设定第一门限等级的用户终端处理的、且实际速率远远小于最小速率的业务流;
用户等级高于设定第一门限等级的用户终端处理的、业务处理等级高于设定第二门限等级的、且实际速率远远小于最小速率的业务流。
PCRF根据确定的每一个用户终端的用户等级、每一个业务流的最小速率以及每一个用户终端处理的业务流的实际速率,选择需要被限制实际速率的业务流,并根据上述估算得到的所需的无线资源,计算得到所述被限制的业务流的目标速率。
其中,所述被限制实际速率的业务流满足以下条件中的一种或者多种:
业务流的实际速率大于设定的期望速率;
按照获取的所述多个用户终端的签约信息中包含的用户等级,所述被限制实际速率的业务流属于用户等级小于设定第一门限等级的用户终端处理的业务流;
和/或,按照获取的所述多个用户终端处理的业务流的应用层信息中包含的业务处理等级,所述被限制实际速率的业务流属于业务处理等级小于设定第二门限等级的业务流。
其中,提升实际速率的业务流所需无线资源可依据提升实际速率的业务 流对应的用户终端测量得到的信道质量以及信道质量与业务流速率之间的映射关系确定;以及被限制实际速率业务流的目标速率也可依据被限制实际速率的业务流对应的用户终端测量得到的信道质量以及信道质量与业务流速率之间的映射关系确定。
具体地,信道质量与业务流速率之间映射关系可以参见表4所示:
Figure PCTCN2015076087-appb-000001
表4
需要说明的是:上述对照表格为LTE系统10MHZ带宽下的经验数据,并无统一的标准化数据,各厂商各类型基站实现的实际情况会因各自实现不同而有一定的差异。
例如:RUCI中包含了三个用户终端的三个业务流,具体信息如表5所示:
  信道质量(CQI) 实际速率
用户终端A业务流1 4 1.5Mbps
用户终端B业务流2 5.5 2Mbps
用户终端C业务流3 7.5 3Mbps
表5
根据每一个用户终端的签约信息,确定用户终端A的用户等级高于用户终端C的用户等级,用户终端A的用户等级高于用户终端B的用户等级。
根据业务流的应用层信息,用户终端A处理的业务流1的期望速率为3Mbps,可以被认定为用户终端A处理的业务流1发生拥塞,为确定的需要提高实际速率的业务流。
根据业务流的应用层信息,用户终端B处理的业务流2和用户终端C处理的业务流3均属于实际速率无限制,即可以认为用户终端B处理的业务流2和用户终端C处理的业务流3属于可以被限制的业务流,那么PCRF确定通过限制用户终端B处理的业务流2的实际速率和用户C处理的业务流3的实际速率以提升用户终端A处理的业务流1的实际速率。
具体地,PCRF根据信道质量与业务流速率之间的映射关系、用户终端A的信道质量、用户终端A处理的业务流2的实际速率、用户终端B的信道质量、用户终端B处理的业务流2的实际速率、用户终端C的信道质量、用户终端C处理的业务流3的实际速率,估算出用户终端A处理的业务流1所占用无线资源与用户终端终端B处理业务流2和用户终端C处理业务流3组合占用无线资源的比例约为4:6。
PCRF确定将用户终端A处理的业务流1的实际速率从1.5Mbps提升为3Mbps,至少需要额外增加一倍的无线资源(相对于用户终端A当前所占无线资源),即将用户终端A占用无线资源与用户终端B和用户终端C占用的无线资源比例由原来的4:6调整为8:2,则需要分别将用户终端B处理的业务流2的实际速率限制为当前的1/3,即用户终端B处理的业务流2的实际速率限制为0.66Mbps,以及将用户终端C处理的业务流3的实际速率限制为当前的1/3,即用户终端C处理的业务流3的实际速率限制为1Mbps。
PCRF确定的拥塞缓解策略中将用户终端B处理的业务流2的最大比特率(MBR)设置为0.66Mbps,将用户终端C处理的业务流3的最大比特率设置为1Mbps。
步骤203:所述PCRF将所述拥塞缓解策略发送给业务流流经节点。
在步骤203中,PCRF将拥塞缓解策略通过Gx接口发送给PCEF或者业务流流经节点,由所述PCEF或者业务流流经节点根据接收到的所述拥塞缓解策略进行拥塞控制。
由于PCRF根据每一个用户终端的信道质量信息和每一个用户终端处理业务流的实际速率,以及利用信道质量与业务流传输速率之间的映射关系,能够比较精确估算得到了每一个用户终端处理的业务流所占无线资源的量,这样就能精确地估算出被限制业务流的目标速率,以提升拥塞缓解策略的有效性。
本发明实施例提供的方法还有效减轻了由各业务流应用层特性或各业务流优先级(例如:QCI)不同导致各业务流之间无线资源分配不均带来的影响。
需要说明的是,执行拥塞缓解策略的网元设备除了PCEF、eNodeB之外,还可以是AF,或者数据流检测功能(英文:Traffic Detection Function;缩写:TDF),这里对于拥塞缓解策略的执行主体不做具体限定。
仍以表5中所记载的用户终端为例,所述PCEF或者业务流流经节点根据接收到的所述拥塞缓解策略进行拥塞控制,得到的每一个用户终端处理的业务流的预测速率,如表6所示:
  预测速率
用户A业务流1 3Mbps
用户B业务流2 0.66Mbps
用户C业务流3 1Mbps
表6
需要说明的是,执行拥塞缓解策略的网元设备除了PCEF之外,还可以是eNodeB、AF,或者数据流检测功能(英文:Traffic Detection Function;缩写: TDF),这里对于拥塞缓解策略的执行主体不做具体限定。
所述业务流流经节点包含了策略和收费执行功能PCEF,数据流检测功能TDF或者演进节点eNodeB中的至少一种或者多种。
需要说明的是,上述PCRF为逻辑PCRF,这里并不具体限定物理PCRF个数的多少,通过多个PCRF联合完成相同功能的场景视为同一逻辑PCRF。
需要说明的是,上述MME为逻辑MME,这里并不具体限定物理MME个数的多少,通过多个MME联合完成相同功能的场景视为同一逻辑MME。
本发明实施例二通过获取的不同用户终端处理业务流的实际速率,确定被限制的一部分用户终端处理的业务流的实际速率,以达到提升其他用户终端处理的业务流的实际速率的目的,有效缓解系统出现的拥塞,提升拥塞用户的业务体验。
实施例三:
如图3所示,为本发明实施例三提供的一种无线拥塞控制方法的流程示意图。所述方法可以如下所述。
本发明实施例三在本发明实施例一的基础之上做进一步说明。
在本发明实施例一中,步骤103:所述PCRF将所述拥塞缓解策略发送给业务流流经节点。
在步骤103中,PCRF将拥塞缓解策略通过Gx接口发送给PCEF或者业务流流经节点,由所述PCEF或者业务流流经节点根据接收到的所述拥塞缓解策略进行拥塞控制。
步骤301:策略和收费控制功能PCRF再次获取多个用户终端处理的业务流的实际速率。
其中,多个用户终端处理的业务流的实际速率为步骤103执行PCRF发送的拥塞缓解策略之后上报的,获取方式与步骤101中相同,这里不再赘述。
步骤302:PCRF向RCAF或者业务流流经节点请求获取所述多个用户终端测量得到的信道质量。
步骤303:PCRF接收所述RCAF或者业务流流经节点发送的所述多个用 户终端测量得到的信道质量。
需要说明的是,RCAF或者业务流流经节点发送每一个用户终端测量得到的信道质量时,还包含了用户终端的标识,例如:第一用户终端:用户终端1,信道质量1。
或者,信道质量可以与步骤101中获取的多个用户终端处理的业务流的实际速率一并发送,如表7所示:
  信道质量 业务流标识1 业务流标识2 …… 业务流标识n
用户终端1 信道质量1 实际速率11 实际速率12 …… 实际速率n1
用户终端2 信道质量2 实际速率21 实际速率22 …… 实际速率n2
……   …… …… …… ……
用户终端N 信道质量n 实际速率n1 实际速率n2 …… 实际速率nn
表7
需要说明的是,这里的信道质量可以是指信道质量指示(英文:Channel Quality Indicator;缩写:CQI)的平均值,也可以是指信噪比值(英文:Signal to Noice Ratio;缩写:SNR)的平均值,这里对于信道质量的表示形式不做限定。
步骤304:所述PCRF根据获取的多个用户终端处理的业务流的实际速率、获取所述多个用户终端测量得到的信道质量、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定新的拥塞缓解策略。
其中,新的拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端处理的业务流的实际速率。
在步骤304中,新的拥塞缓解策略的确定方式如实施例二中步骤202中描述的,在此不再赘述。
步骤305:PCRF将新的拥塞缓解策略发送给业务流流经的节点。
在步骤305中,PCRF将新的拥塞缓解策略通过Gx接口发送给PCEF,由所述PCEF利用接收到的所述新的拥塞缓解策略进行无线拥塞控制。
所述业务流流经节点包含了策略和收费执行功能PCEF,数据流检测功能TDF或者演进节点eNodeB中的至少一种或者多种。
需要说明的是,执行拥塞缓解策略的网元设备除了PCEF、eNodeB之外,还可以是AF,或者数据流检测功能(英文:Traffic Detection Function;缩写:TDF),这里对于拥塞缓解策略的执行主体不做具体限定。
本发明实施例三PCRF根据第二次接收到的多个用户终端处理的业务流的实际速率对第一次下发的拥塞缓解策略进行调整,并根据接收到多个用户终端测量得到的信道质量,确定出新的拥塞缓解策略,有效地提升了拥塞控制的精度。
需要说明的是,每一个用户终端信道质量信息的请求和获取并不仅仅限于在接收到第二次拥塞信息之后,也可能发生在其他时刻,也不限于PCRF请求获取,也可以是RCAF或者业务流流经节点主动上报。
需要说明的是,每一个用户终端的信道质量信息的获取并不仅仅限于从RCAF获取,也可以由PCRF直接从RAN OAM或者RAN侧节点,如从eNodeB获取。
实施例四:
如图4所示,为本发明实施例四提供的一种无线拥塞控制方法的流程示意图,本发明实施例四是在业务流流经节点为执行主体完成的。所述方法可以如下所述。
步骤401:业务流流经节点向PCRF发送多个用户终端处理的业务流的实际速率。
在步骤401中,业务流流经节点向PCRF发送多个用户终端处理的业务流的实际速率,包括:
业务流流经节点向PCRF发送无线用户数据拥塞信息RUCI,其中,所述RUCI中包含了多个用户终端处理的业务流的实际速率。
可选地,业务流流经节点向PCRF发送多个用户终端处理的业务流的实际速率,包括:
业务流流经节点统计设定时间长度内、多个用户终端处理的业务流的实际速率,并计算得到所述设定时间长度内每一个用户终端处理的业务流的平均速率;
当计算得到的至少一个业务流的平均速率小于设定速率门限时,业务流流经节点触发向PCRF发送所述多个用户终端处理的业务流的实际速率。
步骤402:业务流流经节点接收PCRF发送的拥塞缓解策略。
其中,所述拥塞缓解策略由所述PCRF根据多个用户终端处理的业务流的实际速率确定,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端的业务流的实际速率。
步骤403:业务流流经节点根据接收到的所述拥塞缓解策略,对当前发生的拥塞进行控制。
在步骤403中,所述拥塞缓解策略中包含了被限制实际速率的业务流以及所述被限制实际速率的业务流的目标速率;
对于处理被限制实际速率的业务流的用户终端,业务流流经节点按照所述拥塞缓解策略中包含的所述被限制实际速率的业务流的目标速率,降低所述用户终端处理的被限制的业务流的实际速率。
所述业务流流经节点包含了策略和收费执行功能PCEF,数据流检测功能TDF或者演进节点eNodeB中的至少一种或者多种。
实施例五:
如图5所示,为本发明实施例五提供的一种无线拥塞控制设备的结构示意图。所述无线拥塞控制设备包括:获取模块51、确定模块52和控制模块53,其中:
获取模块51,用于获取多个用户终端处理的业务流的实际速率;
确定模块52,用于根据所述获取模块51获取的多个用户终端处理的业务流的实际速率,确定拥塞缓解策略,其中,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端处理的业务流的实际速率;
控制模块53,用于将所述确定模块52确定的所述拥塞缓解策略发送给业 务流流经节点。
具体地,所述获取模块51,还用于获取所述多个用户终端的签约信息,或获取所述多个用户终端处理的业务流的业务流信息;
所述确定模块52,具体用于根据获取的多个用户终端处理的业务流的实际速率、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定被限制实际速率的业务流及被限制的业务流的目标速率;
根据所述被限制实际速率的业务流及被限制的业务流的目标速率,确定拥塞缓解策略;
其中,所述被限制的业务流的目标速率包含了所述被限制的业务流的最大比特率。
具体地,所述获取模块51,还用于获取所述多个用户终端测量得到的信道质量;
所述确定模块52,具体用于根据获取的多个用户终端处理的业务流的实际速率、获取所述多个用户终端测量得到的信道质量、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定被限制实际速率的业务流及被限制的业务流的目标速率;
根据所述被限制实际速率的业务流及被限制的业务流的目标速率,确定拥塞缓解策略。
具体地,所述被限制实际速率的业务流满足以下条件中的一种或者多种:
业务流的实际速率大于设定的期望速率;
按照获取的所述多个用户终端的签约信息中包含的用户等级,所述被限制实际速率的业务流属于用户等级小于设定第一门限等级的用户终端处理的业务流;
和/或,按照获取的所述多个用户终端处理的业务流的应用层信息中包含的业务处理等级,所述被限制实际速率的业务流属于业务处理等级小于设定第二门限等级的业务流。
具体地,所述获取模块51,具体用于接收拥塞感知功能实体RCAF或业务流流经节点发送的无线用户数据拥塞信息RUCI,其中,所述RUCI中包含了多个用户终端处理的业务流的实际速率;从接收到的所述RUCI中获取多个用户终端处理的业务流的实际速率。
具体地,所述业务流流经节点包含了策略和收费执行功能PCEF,数据流检测功能TDF或者演进节点eNodeB中的至少一种或者多种。
本发明实施例五提供的无线拥塞控制设备可以是集成在PCRF内部的逻辑部件,也可以是独立于PCRF的设备,可以通过硬件方式实现,还可以通过软件方式实现。
实施例六:
如图6所示,为本发明实施例六提供的一种无线拥塞控制设备的结构示意图。所述设备包括:发送模块61、接收模块62和拥塞控制模块63,其中:
发送模块61,用于向策略和收费控制功能Policy and Charging Rule Function发送多个用户终端处理的业务流的实际速率;
接收模块62,用于接收PCRF发送的拥塞缓解策略,其中,所述拥塞缓解策略由所述PCRF根据多个用户终端处理的业务流的实际速率确定,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端的业务流的实际速率;
拥塞控制模块63,用于根据接收到的所述拥塞缓解策略,对当前发生的拥塞进行控制。
具体地,所述发送模块61,具体用于向策略和收费控制功能Policy and Charging Rule Function发送无线用户数据拥塞信息RUCI,其中,所述RUCI中包含了多个用户终端处理的业务流的实际速率。
所述发送模块61,具体用于统计设定时间长度内、多个用户终端处理的业务流的实际速率,并计算得到所述设定时间长度内每一个用户终端处理的业务流的平均速率;
当计算得到的至少一个业务流的平均速率小于设定速率门限时,触发向 PCRF发送所述多个用户终端处理的业务流的实际速率。
可选地,所述拥塞缓解策略中包含了被限制实际速率的业务流以及所述被限制实际速率的业务流的目标速率;
所述拥塞控制模块63,具体用于对于处理被限制实际速率的业务流的用户终端,按照所述拥塞缓解策略中包含的所述被限制实际速率的业务流的目标速率,降低所述用户终端处理的被限制的业务流的实际速率。
本发明实施例六提供的无线拥塞控制设备可以是集成在业务流流经节点内部的逻辑部件,也可以是独立于业务流流经节点的设备,可以通过硬件方式实现,还可以通过软件方式实现。
所述业务流流经节点包含了策略和收费执行功能PCEF,数据流检测功能TDF或者演进节点eNodeB中的至少一种或者多种。
实施例七:
如图7所示,为本发明实施例七提供的一种无线拥塞控制设备的结构示意图。所述无线拥塞控制设备具备执行本发明实施例一至实施例四的功能,所述无线拥塞控制设备可以采用通用计算机系统结构,计算机系统结构可具体是基于处理器的计算机。所述无线拥塞控制设备实体包括至少一个处理器71,通信总线72以及至少一个通信接口73,至少一个处理器71和至少一个通信接口73通过通信总线72进行通信。
其中,至少一个通信接口73,用于获取多个用户终端处理的业务流的实际速率;
至少一个处理器71,用于根据获取的多个用户终端处理的业务流的实际速率,确定拥塞缓解策略,其中,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端处理的业务流的实际速率;
至少一个通信接口73,还用于将所述拥塞缓解策略发送给业务流流经节点。
具体地,所述至少一个通信接口73,还用于获取所述多个用户终端的签约信息,或获取所述多个用户终端处理的业务流的业务流信息。
所述至少一个处理器71,具体用于根据获取的多个用户终端处理的业务流的实际速率、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定被限制实际速率的业务流及被限制的业务流的目标速率;
根据所述被限制实际速率的业务流及被限制的业务流的目标速率,确定拥塞缓解策略;
其中,所述被限制的业务流的目标速率包含了所述被限制的业务流的最大比特率。
具体地,所述至少一个通信接口73,还用于获取所述多个用户终端测量得到的信道质量;
所述至少一个处理器71,具体用于根据获取的多个用户终端处理的业务流的实际速率、获取所述多个用户终端测量得到的信道质量、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定被限制实际速率的业务流及被限制的业务流的目标速率;
根据所述被限制实际速率的业务流及被限制的业务流的目标速率,确定拥塞缓解策略。
具体地,所述被限制实际速率的业务流满足以下条件中的一种或者多种:
业务流的实际速率大于设定的期望速率;
按照获取的所述多个用户终端的签约信息中包含的用户等级,所述被限制实际速率的业务流属于用户等级小于设定第一门限等级的用户终端处理的业务流;
和/或,按照获取的所述多个用户终端处理的业务流的应用层信息中包含的业务处理等级,所述被限制实际速率的业务流属于业务处理等级小于设定第二门限等级的业务流。
所述至少一个通信接口73,具体用于接收拥塞感知功能实体RCAF或业务流流经节点发送的无线用户数据拥塞信息RUCI,其中,所述RUCI中包含了多个用户终端处理的业务流的实际速率;
从接收到的所述RUCI中获取多个用户终端处理的业务流的实际速率。
具体地,所述业务流流经节点包含了策略和收费执行功能PCEF,数据流检测功能TDF或者演进节点eNodeB中的至少一种或者多种。
处理器71可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
其中,所述通信总线72可包括一通路,在上述组件之间传送信息。所述通信接口73,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
实施例八:
如图8所示,为本发明实施例八提供的一种无线拥塞控制设备的结构示意图。所述无线拥塞控制设备具备执行本发明实施例一至实施例四的功能,所述无线拥塞控制设备可以采用通用计算机系统结构,计算机系统结构可具体是基于处理器的计算机。所述无线拥塞控制设备实体包括至少一个处理器81,信号接收器82和信号发射器83。
所述信号发射器83,用于向策略和收费控制功能Policy and Charging Rule Function发送多个用户终端处理的业务流的实际速率;
所述信号接收器82,用于接收PCRF发送的拥塞缓解策略,其中,所述拥塞缓解策略由所述PCRF根据多个用户终端处理的业务流的实际速率确定,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端的业务流的实际速率;
所述处理器81,用于根据接收到的所述拥塞缓解策略,对当前发生的拥塞进行控制。
具体地,所述信号发射器83,具体用于向策略和收费控制功能Policy and Charging Rule Function发送无线用户数据拥塞信息RUCI,其中,所述RUCI中包含了多个用户终端处理的业务流的实际速率。
具体地,所述信号发射器83,具体用于统计设定时间长度内、多个用户终端处理的业务流的实际速率,并计算得到所述设定时间长度内每一个用户终端处理的业务流的平均速率;
当计算得到的至少一个业务流的平均速率小于设定速率门限时,触发向PCRF发送所述多个用户终端处理的业务流的实际速率。
具体地,所述拥塞缓解策略中包含了被限制实际速率的业务流以及所述被限制实际速率的业务流的目标速率;
所述处理器81,具体用于对于处理被限制实际速率的业务流的用户终端,按照所述拥塞缓解策略中包含的所述被限制实际速率的业务流的目标速率,降低所述用户终端处理的被限制的业务流的实际速率。
其中,处理器81可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
本领域的技术人员应明白,本发明的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (20)

  1. 一种无线拥塞控制方法,其特征在于,包括:
    策略和收费控制功能Policy and Charging Rule Function获取多个用户终端处理的业务流的实际速率;
    PCRF根据获取的多个用户终端处理的业务流的实际速率,确定拥塞缓解策略,其中,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端处理的业务流的实际速率;
    所述PCRF将所述拥塞缓解策略发送给业务流流经节点。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述PCRF获取所述多个用户终端的签约信息,或获取所述多个用户终端处理的业务流的业务流信息;
    所述PCRF根据获取的多个用户终端处理的业务流的实际速率,确定拥塞缓解策略,包括:
    所述PCRF根据获取的多个用户终端处理的业务流的实际速率、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定被限制实际速率的业务流及被限制的业务流的目标速率;
    所述PCRF根据所述被限制实际速率的业务流及被限制的业务流的目标速率,确定拥塞缓解策略;
    其中,所述被限制的业务流的目标速率包含了所述被限制的业务流的最大比特率。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    所述PCRF获取所述多个用户终端测量得到的信道质量;
    所述PCRF根据获取的多个用户终端处理的业务流的实际速率,确定拥塞缓解策略,包括:
    所述PCRF根据获取的多个用户终端处理的业务流的实际速率、获取所述多个用户终端测量得到的信道质量、获取的所述多个用户终端的签约信息或获 取的所述多个用户终端处理的业务流的应用层信息,确定被限制实际速率的业务流及被限制的业务流的目标速率;
    所述PCRF根据所述被限制实际速率的业务流及被限制的业务流的目标速率,确定拥塞缓解策略。
  4. 如权利要求1至3任一所述的方法,其特征在于,所述被限制实际速率的业务流满足以下条件中的一种或者多种:
    业务流的实际速率大于设定的期望速率;
    按照获取的所述多个用户终端的签约信息中包含的用户等级,所述被限制实际速率的业务流属于用户等级小于设定第一门限等级的用户终端处理的业务流;
    和/或,按照获取的所述多个用户终端处理的业务流的应用层信息中包含的业务处理等级,所述被限制实际速率的业务流属于业务处理等级小于设定第二门限等级的业务流。
  5. 如权利要求1至4任一所述的方法,其特征在于,PCRF获取多个用户终端处理的业务流的实际速率,包括:
    PCRF接收拥塞感知功能实体RCAF或业务流流经节点发送的无线用户数据拥塞信息RUCI,其中,所述RUCI中包含了多个用户终端处理的业务流的实际速率;
    所述PCRF从接收到的所述RUCI中获取多个用户终端处理的业务流的实际速率。
  6. 如权利要求5所述的方法,其特征在于,所述业务流流经节点包含了策略和收费执行功能PCEF,数据流检测功能TDF或者演进节点eNodeB中的至少一种或者多种。
  7. 一种无线拥塞控制方法,其特征在于,包括:
    业务流流经节点向策略和收费控制功能Policy and Charging Rule Function发送多个用户终端处理的业务流的实际速率;
    业务流流经节点接收PCRF发送的拥塞缓解策略,其中,所述拥塞缓解策略由所述PCRF根据多个用户终端处理的业务流的实际速率确定,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端的业务流的实际速率;
    业务流流经节点根据接收到的所述拥塞缓解策略,对当前发生的拥塞进行控制。
  8. 如权利要求7所述的方法,其特征在于,业务流流经节点向策略和收费控制功能Policy and Charging Rule Function发送多个用户终端处理的业务流的实际速率,包括:
    业务流流经节点向策略和收费控制功能Policy and Charging Rule Function发送无线用户数据拥塞信息RUCI,其中,所述RUCI中包含了多个用户终端处理的业务流的实际速率。
  9. 如权利要求7或8所述的方法,其特征在于,业务流流经节点向策略和收费控制功能Policy and Charging Rule Function发送多个用户终端处理的业务流的实际速率,包括:
    业务流流经节点统计设定时间长度内、多个用户终端处理的业务流的实际速率,并计算得到所述设定时间长度内每一个用户终端处理的业务流的平均速率;
    当计算得到的至少一个业务流的平均速率小于设定速率门限时,业务流流经节点触发向PCRF发送所述多个用户终端处理的业务流的实际速率。
  10. 如权利要求7至9任一所述的方法,其特征在于,所述拥塞缓解策略中包含了被限制实际速率的业务流以及所述被限制实际速率的业务流的目标速率;
    业务流流经节点根据接收到的所述拥塞缓解策略,对当前发生的拥塞进行控制,包括:
    对于处理被限制实际速率的业务流的用户终端,业务流流经节点按照所述拥塞缓解策略中包含的所述被限制实际速率的业务流的目标速率,降低所述用 户终端处理的被限制的业务流的实际速率。
  11. 一种无线拥塞控制设备,其特征在于,包括:
    获取模块,用于获取多个用户终端处理的业务流的实际速率;
    确定模块,用于根据获取的多个用户终端处理的业务流的实际速率,确定拥塞缓解策略,其中,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端处理的业务流的实际速率;
    控制模块,用于将所述拥塞缓解策略发送给业务流流经节点。
  12. 如权利要求11所述的设备,其特征在于,
    所述获取模块,还用于获取所述多个用户终端的签约信息,或获取所述多个用户终端处理的业务流的业务流信息;
    所述确定模块,具体用于根据获取的多个用户终端处理的业务流的实际速率、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定被限制实际速率的业务流及被限制的业务流的目标速率;
    根据所述被限制实际速率的业务流及被限制的业务流的目标速率,确定拥塞缓解策略;
    其中,所述被限制的业务流的目标速率包含了所述被限制的业务流的最大比特率。
  13. 如权利要求12所述的设备,其特征在于,
    所述获取模块,还用于获取所述多个用户终端测量得到的信道质量;
    所述确定模块,具体用于根据获取的多个用户终端处理的业务流的实际速率、获取所述多个用户终端测量得到的信道质量、获取的所述多个用户终端的签约信息或获取的所述多个用户终端处理的业务流的应用层信息,确定被限制实际速率的业务流及被限制的业务流的目标速率;
    根据所述被限制实际速率的业务流及被限制的业务流的目标速率,确定拥塞缓解策略。
  14. 如权利要求11至13任一所述的设备,其特征在于,所述被限制实际速率的业务流满足以下条件中的一种或者多种:
    业务流的实际速率大于设定的期望速率;
    按照获取的所述多个用户终端的签约信息中包含的用户等级,所述被限制实际速率的业务流属于用户等级小于设定第一门限等级的用户终端处理的业务流;
    和/或,按照获取的所述多个用户终端处理的业务流的应用层信息中包含的业务处理等级,所述被限制实际速率的业务流属于业务处理等级小于设定第二门限等级的业务流。
  15. 如权利要求11至14任一所述的设备,其特征在于,
    所述获取模块,具体用于接收拥塞感知功能实体RCAF或业务流流经节点发送的无线用户数据拥塞信息RUCI,其中,所述RUCI中包含了多个用户终端处理的业务流的实际速率;从接收到的所述RUCI中获取多个用户终端处理的业务流的实际速率。
  16. 如权利要求15所述的设备,其特征在于,所述业务流流经节点包含了策略和收费执行功能PCEF,数据流检测功能TDF或者演进节点eNodeB中的至少一种或者多种。
  17. 一种无线拥塞控制设备,其特征在于,包括:
    发送模块,用于向策略和收费控制功能Policy and Charging Rule Function发送多个用户终端处理的业务流的实际速率;
    接收模块,用于接收PCRF发送的拥塞缓解策略,其中,所述拥塞缓解策略由所述PCRF根据多个用户终端处理的业务流的实际速率确定,所述拥塞缓解策略用于限制所述多个用户终端中的一部分用户终端的业务流的实际速率;
    拥塞控制模块,用于根据接收到的所述拥塞缓解策略,对当前发生的拥塞进行控制。
  18. 如权利要求17所述的设备,其特征在于,
    所述发送模块,具体用于向策略和收费控制功能Policy and Charging Rule Function发送无线用户数据拥塞信息RUCI,其中,所述RUCI中包含了多个用户终端处理的业务流的实际速率。
  19. 如权利要求17或18所述的设备,其特征在于,
    所述发送模块,具体用于统计设定时间长度内、多个用户终端处理的业务流的实际速率,并计算得到所述设定时间长度内每一个用户终端处理的业务流的平均速率;
    当计算得到的至少一个业务流的平均速率小于设定速率门限时,触发向PCRF发送所述多个用户终端处理的业务流的实际速率。
  20. 如权利要求17至19任一所述的设备,其特征在于,所述拥塞缓解策略中包含了被限制实际速率的业务流以及所述被限制实际速率的业务流的目标速率;
    所述拥塞控制模块,具体用于对于处理被限制实际速率的业务流的用户终端,按照所述拥塞缓解策略中包含的所述被限制实际速率的业务流的目标速率,降低所述用户终端处理的被限制的业务流的实际速率。
PCT/CN2015/076087 2014-10-31 2015-04-08 一种无线拥塞控制方法和设备 WO2016065846A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15855648.0A EP3163817A4 (en) 2014-10-31 2015-04-08 Wireless congestion control method and device
US15/426,337 US20170150394A1 (en) 2014-10-31 2017-02-07 Radio Congestion Control Method and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410616678.2 2014-10-31
CN201410616678.2A CN104301250A (zh) 2014-10-31 2014-10-31 一种无线拥塞控制方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/426,337 Continuation US20170150394A1 (en) 2014-10-31 2017-02-07 Radio Congestion Control Method and Device

Publications (1)

Publication Number Publication Date
WO2016065846A1 true WO2016065846A1 (zh) 2016-05-06

Family

ID=52320822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076087 WO2016065846A1 (zh) 2014-10-31 2015-04-08 一种无线拥塞控制方法和设备

Country Status (4)

Country Link
US (1) US20170150394A1 (zh)
EP (1) EP3163817A4 (zh)
CN (1) CN104301250A (zh)
WO (1) WO2016065846A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104301250A (zh) * 2014-10-31 2015-01-21 华为技术有限公司 一种无线拥塞控制方法和设备
CN105897607A (zh) * 2015-01-26 2016-08-24 中兴通讯股份有限公司 一种拥塞信息的管理方法、装置和系统
WO2016169053A1 (zh) * 2015-04-24 2016-10-27 华为技术有限公司 一种无线数据的传输方法及装置
WO2017054199A1 (zh) * 2015-09-30 2017-04-06 华为技术有限公司 一种策略的确定方法及装置
KR102277173B1 (ko) * 2016-04-11 2021-07-14 삼성전자 주식회사 이동 통신 시스템에서 단말의 트래픽을 제어하는 방법 및 장치
CN107872836B (zh) * 2016-09-26 2021-05-25 中国电信股份有限公司 用于根据用户终端类型进行策略配置的方法和系统
US10917901B2 (en) * 2017-03-23 2021-02-09 Qualcomm Incorporated Quality of service configurations for radio bearers with multiple data flows
EP3579609B1 (en) * 2017-03-31 2021-05-19 Huawei Technologies Co., Ltd. Network congestion control method, device and system
CN113395218B (zh) * 2021-06-08 2022-05-06 杭州电子科技大学 一种避免网络拥塞的混合触发控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062606A1 (en) * 2009-11-18 2011-05-26 Cisco Technology, Inc. Protection of network flows during congestion in a communications network
CN102138301A (zh) * 2008-05-28 2011-07-27 凯敏公司 合理使用管理方法和系统
CN104038968A (zh) * 2013-03-08 2014-09-10 中国移动通信集团广东有限公司 一种控制电子设备共享网络带宽的方法及装置
CN104301250A (zh) * 2014-10-31 2015-01-21 华为技术有限公司 一种无线拥塞控制方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035145A2 (en) * 1998-12-07 2000-06-15 Marconi Communications Israel Ltd. Wireless local loop system and methods useful therefor
CN101087244A (zh) * 2006-06-07 2007-12-12 华为技术有限公司 一种流控制传输中拥塞控制的实现方法
CN101001204B (zh) * 2006-12-31 2011-02-02 华为技术有限公司 一种高速数据分组接入业务下行拥塞检测控制方法
US8335161B2 (en) * 2010-02-03 2012-12-18 Bridgewater Systems Corp. Systems and methods for network congestion management using radio access network congestion indicators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138301A (zh) * 2008-05-28 2011-07-27 凯敏公司 合理使用管理方法和系统
WO2011062606A1 (en) * 2009-11-18 2011-05-26 Cisco Technology, Inc. Protection of network flows during congestion in a communications network
CN104038968A (zh) * 2013-03-08 2014-09-10 中国移动通信集团广东有限公司 一种控制电子设备共享网络带宽的方法及装置
CN104301250A (zh) * 2014-10-31 2015-01-21 华为技术有限公司 一种无线拥塞控制方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3163817A4 *

Also Published As

Publication number Publication date
US20170150394A1 (en) 2017-05-25
EP3163817A4 (en) 2017-08-16
CN104301250A (zh) 2015-01-21
EP3163817A1 (en) 2017-05-03

Similar Documents

Publication Publication Date Title
WO2016065846A1 (zh) 一种无线拥塞控制方法和设备
US10999758B2 (en) Systems and method for quality of service monitoring, policy enforcement, and charging in a communications network
US8665717B2 (en) Data rate aware scheduling in advanced wireless networks
KR102025128B1 (ko) 통신들의 경험 품질 시행
US20200280871A1 (en) Optimization of resource allocation based on received quality of experience information
US20180146395A1 (en) Dynamically provisioning subscribers to manage network traffic
EP2824963B1 (en) Method and device for controlling radio access network traffic in radio communication system
US20150222560A1 (en) Capacity management based on backlog information
WO2019166031A1 (zh) 一种多连接下的数据量上报方法
US20150245238A1 (en) Pcrf apparatus and traffic handling method for use in pcr
US9912597B2 (en) Method and apparatus for controlling traffic of radio access network in a wireless communication system
US8953447B2 (en) Method and apparatus for controlling traffic transfer rate based on cell capacity in mobile communication system
US20150003246A1 (en) Radio access network triggered bearer modification procedure
US10027448B2 (en) Methods of adapting codec data rate based on radio condition to improve LTE service coverage and capacity
EP3047672B1 (en) Congestion measurement and reporting for real-time delay-sensitive applications
WO2013082789A1 (zh) 一种拥塞控制方法及装置
KR101749200B1 (ko) 무선 통신 네트워크의 허용 제어를 위한 방법 및 장치
EP3232709B1 (en) Method and device for controlling congestion in mobile communication system
US10827400B2 (en) Allocating radio resources in a cellular network
US20170019908A1 (en) Method and System for Controlling Quality of Service of Sharing Network
US9319273B2 (en) Policy coordination between policy enforcement points
WO2016078503A1 (zh) 一种统计小区无线负荷的方法和装置
WO2015196796A1 (zh) 拥塞处理方法、装置、ran rcaf及pcrf
WO2014040254A1 (en) Policy coordination between policy enforcement points

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855648

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015855648

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015855648

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE