WO2016065731A1 - 利用轴向色差进行快速辅助定心的光学装置 - Google Patents

利用轴向色差进行快速辅助定心的光学装置 Download PDF

Info

Publication number
WO2016065731A1
WO2016065731A1 PCT/CN2015/000679 CN2015000679W WO2016065731A1 WO 2016065731 A1 WO2016065731 A1 WO 2016065731A1 CN 2015000679 W CN2015000679 W CN 2015000679W WO 2016065731 A1 WO2016065731 A1 WO 2016065731A1
Authority
WO
WIPO (PCT)
Prior art keywords
centering
lens
interval
optical axis
mirror group
Prior art date
Application number
PCT/CN2015/000679
Other languages
English (en)
French (fr)
Inventor
赵阳
刘春来
王平
李显凌
杨怀江
隋永新
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春光学精密机械与物理研究所 filed Critical 中国科学院长春光学精密机械与物理研究所
Publication of WO2016065731A1 publication Critical patent/WO2016065731A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements

Definitions

  • the invention relates to an optical device for quickly assisting centering when an interval/thickness testing instrument is aligned with an optical axis of a measured object by using axial chromatic aberration, and belongs to the technical field of optical system integrated assembly.
  • High-precision transmission optical system integrated assembly must have sub-micron lens spacing test accuracy, using a non-contact interference type test instrument - interval measuring instrument, and to ensure the optical axis of the interval measuring instrument and the optical axis of the device to be tested coincide.
  • This type of interval measuring instrument uses the Michelson interference principle and uses a short coherent light source to achieve submicron measurement accuracy.
  • the commonly used method is to integrate the interval measuring instrument with the high-precision centering device. The interval measuring instrument is placed under the centering device, as long as the optical axis of the interval measuring instrument and the centering instrument optical axis are adjusted in advance, after the integration test process. High-precision testing of the spacing of the lenses is accomplished without the need to calibrate the two optical axes.
  • the largest measuring range of the existing interval measuring instrument is optical length 600mm, and the large NA transmissive objective lens, such as lithographic projection objective lens, the length of the objective lens is more than 1000mm, exceeding the measuring range, in order to realize the lens in the whole objective lens integration process.
  • the interval measuring instrument For interval measurement, the interval measuring instrument must be placed above the objective lens.
  • the measuring head of the interval measuring instrument is only continuously raised, and the interval between the lenses of the entire objective lens integration can be gradually tested. In order not to interfere with the centering test of the lens by the centering measuring head, in the process of lens integration and centering, the measuring head of the interval measuring instrument needs to be removed from the optical path of the centering instrument.
  • the spacing will be separated by the auxiliary tooling.
  • the measuring head of the measuring instrument is mounted on the spacer lens to be tested, and the optical axis of the interval measuring instrument is calibrated with the integrated platform rotating shaft before the high-precision measurement of the interval can be performed.
  • the main process of the calibration method of the optical axis of the interval measuring instrument and the axis of the integrated platform is as follows: the high-precision parallel plate and the high-precision ball are combined into an optical centering device, and the normal of the parallel plate and the high-precision ball optical axis are adjusted. Parallel, then align the optical axis of the interval measuring instrument with the optical axis of the optical centering device described above to make it coincide.
  • the deviation of the two images is tested by the rotation centering device, that is, the inclination and eccentricity of the interval measuring instrument and the centering shaft
  • the amount is adjusted by the four-dimensional adjustment mechanism to adjust the tilt and eccentricity errors in turn. Since the tilt adjustment mechanism generates eccentric coupling, it is necessary to repeatedly move the centering probe to measure the small ball and the flat plate. The center of the image is measured. For each center image, a turntable rotation is required for the target sampling calculation.
  • the iterative method is used to gradually adjust the optical axis of the interval measuring instrument to be coaxial with the integrated platform rotating shaft. Each time a lens is integrated, the optical axis of the interval measuring instrument and the rotating shaft of the turret need to be calibrated. This method of iterative test iteration convergence is inefficient. A lot of work and calibration time has been added.
  • the invention is to solve the technical problem that the method for calibrating the optical axis of the interval measuring instrument and the rotating shaft of the integrated platform adopts repeated test iterative convergence method, and proposes an optical device for quickly assisting centering by using axial chromatic aberration.
  • the optical device has the characteristics of simple structure and high calibration efficiency, and is particularly suitable for quick calibration of the optical axis of the test instrument and the optical axis of the objective lens.
  • Optical device for rapid self-centering using axial chromatic aberration including centering probe head assembly, interval measuring instrument measuring head, interval measuring mirror group and high precision air floating turret, centering probe head assembly, interval measuring instrument measuring head and
  • the spacer group to be tested is coaxially arranged from top to bottom, and the optical axis of the spacer group to be tested coincides with the axis of the high-precision air-floating turntable of the centering device, which is characterized by being between the centering probe component and the spacer group to be tested.
  • the auxiliary centering device is arranged, and the mirror group composed of the eccentric monitoring lens and the tilt monitoring lens in the auxiliary centering device is disposed on the four-dimensional adjusting frame, and the measuring instrument of the interval measuring instrument is coaxially disposed at the lower end of the mirror group.
  • the auxiliary centering optical device proposed by the invention can quickly realize the calibration of the optical axis of the interval measuring instrument and the optical axis of the objective lens to be integrated, and only needs to adjust the eccentricity and the oblique reflection image to coincide with the marked center position, and does not need Repeated movement of the measuring head and repeated rotation of the turntable for multiple iterations of the centering test significantly improve the centering efficiency. Since high-precision parallel plates are not required, the machining accuracy requirements of the lenses for monitoring eccentricity and tilt in the auxiliary centering optical device are also significantly reduced, saving tooling manufacturing costs.
  • FIG. 1 is a schematic view of an optical device for rapidly assisting centering using axial chromatic aberration according to the present invention.
  • FIG. 2 is a schematic view of an auxiliary centering device according to the present invention.
  • Figure 3 is a schematic diagram showing the center deviation of the centering machine display.
  • Centering measuring head assembly 11, fork light image illuminated by white light source, 12, switchable filter device, 121, infrared light transmission filter, 122, green light transmission filter, 13, half anti-half Light mirror, 14, wide spectrum response CCD, 15, collimating objective lens group, 16, concentrating mirror group, 2, auxiliary centering device, 21, eccentric monitoring lens, 22, tilt monitoring lens, 23, four-dimensional adjustment frame, 231, Tilt adjustment mechanism, 232, eccentricity adjustment mechanism, 3.
  • Interval measuring instrument measuring head 4. Spacer group to be tested, 41, interval to be tested, 42, interval to be tested, 5. High-precision air-floating turntable 6, CCD monitor display.
  • the optical device for quickly assisting centering by using axial chromatic aberration includes a centering probe head assembly 1, a gap measuring instrument measuring head 3, a spacer mirror group 4 to be tested, and a high-precision air floating turntable 5,
  • the centering probe head assembly 1, the interval measuring instrument measuring head 3 and the interval detecting mirror group 4 are coaxially arranged from top to bottom, and the optical axis of the measuring interval mirror group 4 coincides with the rotating shaft of the centering precision high-precision air floating turntable 5,
  • An auxiliary centering device 2 is disposed between the centering probe assembly 1 and the interval mirror group 4 to be tested, and the mirror group composed of the eccentric monitoring lens 21 and the tilt monitoring lens 22 in the auxiliary centering device 2 is disposed on the four-dimensional adjusting frame 23, and the interval is
  • the measuring head 3 is coaxially disposed at the lower end of the mirror.
  • the fast auxiliary centering optical device according to the present invention is used by the auxiliary centering device 2 and the high precision centering device to complete the high precision lens interval measurement of the spacer group 4 to be tested.
  • the centering instrument mainly includes a centering measuring head assembly 1 and a high-precision air floating turntable 5.
  • the auxiliary centering device 2 includes a mirror group composed of an eccentric monitoring lens 21 and a tilt monitoring lens 22, and a four-dimensional adjustment frame 23.
  • the mirror set is disposed on the four-dimensional mount 23.
  • the interval measuring instrument measuring head 3 is coaxially disposed at the lower end of the mirror group.
  • the eccentricity monitoring lens 21 is a lenticular lens for detecting eccentricity, and the upper surface 211 of the lenticular lens is plated with an infrared light-increasing and green light-reflecting film layer; the lower surface of the lenticular lens 212 is plated with a green light-transmitting film layer.
  • the tilting monitoring lens 22 is a concave lens for detecting the tilt, the upper surface 221 of the concave lens is a concave surface, and the green light-transmitting film layer is plated; the lower surface 222 of the concave lens is a flat surface, and the green light-increasing film layer is plated.
  • the high-precision centering adjustment of the interval measuring instrument measuring head 3 and the interval measuring mirror group 4 can be quickly completed by the auxiliary centering device 2, so as to obtain a high-precision lens group interval test result.
  • the auxiliary centering device 2 and the interval measuring instrument measuring head 3 are pre-adjusted coaxially.
  • the auxiliary centering device 2 is connected to the interposer group 4 to be tested by screws.
  • the eccentricity and tilt of the optical axis of the measuring head 3 and the optical axis of the detecting mirror group 4 are respectively adjusted by using the axial chromatic aberration.
  • the centering instrument to complete the test room in the interval group 4 to be tested The centering of the lower mirror group 42 and the upper mirror group 41 to be tested indicates that the optical axis of the spacer group 4 to be tested coincides with the rotating shaft of the high-precision air floating turntable 5.
  • the cross-hair image 11 illuminated by the white light source passes through the infrared light transmitting filter 121 in the switchable filter device 12 to transmit only infrared light, and the infrared beam passes through the half-transverse
  • the beam splitter 13 is incident on the collimating objective lens group 15 to generate a collimated beam, and the collimated beam is then passed through the concentrating mirror group 16 to generate a concentrated beam, and the relative height position of the centering measuring head assembly 1 and the auxiliary centering device 2 is adjusted, so that the concentrating mirror group 16 is
  • the focus of the generated concentrated beam coincides with the apex of the lenticular upper surface 211 of the eccentricity monitoring lens 21 in the auxiliary centering device 2, and the reflection field image generated by the apex is used to calibrate the central field of view of the CCD 14 as the present invention.
  • Benchmark 65 for centering adjustment.
  • the relative height position of the centering measuring head assembly 1 and the auxiliary centering device 2 is adjusted again such that the focus of the concentrated beam produced by the collecting mirror 16 coincides with the ball of the lenticular upper surface 211 of the eccentric monitoring lens 21 in the auxiliary centering device 2.
  • the heart coincides, that is, the incident beam is perpendicular to the lenticular lens upper surface 211 of the eccentricity monitoring lens 21, and is reflected on the surface, and the reflected light passes through the concentrating mirror group 16, the collimating objective lens group 15 and the half mirror half lens 13 in sequence, and finally converges to
  • the wide-spectrum response CCD 14 displays the eccentricity amount 61 of the auxiliary centering device 2 with respect to the centering adjustment reference on the display 6 through the wide-spectrum response CCD 14, and adjusts the eccentricity adjustment mechanism 231 of the four-dimensional adjustment frame 23 so that the eccentricity adjustment mechanism 231 of the four-dimensional adjustment frame 23 is adjusted.
  • the eccentricity 61 displayed on the display 6 is the smallest.
  • the eccentric adjustment of the auxiliary centering device 2 and the centering precision high-precision air-floating turret 5 shaft is completed, that is, the auxiliary centering device 2 and the optical axis of the interval mirror group 4 to be tested are completed.
  • the eccentric adjustment that is, the eccentricity adjustment of the optical axis of the interferometer measuring head 3 and the optical axis of the interposing mirror group 4 is completed.
  • the filter is switched so that only green light can pass, and the crosshair image 11 illuminated by the white light source passes through the green light transmitting filter 122 in the switchable filter device 12 to transmit only green light, green light.
  • the light beam is incident on the collimating objective lens group 15 through the half mirror half lens 13, and then the concentrated beam is generated by the concentrating mirror group 16, and the distance between the eccentricity monitoring lens 21 and the tilt monitoring lens 22 in the centering device 2 is appropriately designed to make the aforementioned infrared beam
  • the green light beam can be sequentially passed through the lenticular lens upper surface 211 of the eccentricity monitoring lens 21 without moving the centering probe 1 due to the axial chromatic aberration.
  • the mirror group 16, the collimating objective lens group 15 and the half-reflex lens half 13 are finally concentrated on the wide-spectrum response CCD 14, and the width of the auxiliary centering device 2 is displayed on the display 6 by the wide-spectrum response CCD 14.
  • the tilting adjustment of the optical axis of the centering device 2 and the interval mirror group 4 to be tested that is, the tilt adjustment of the optical axis of the interferometer measuring head 3 and the optical axis of the interposing mirror group 4 is completed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

一种利用轴向色差进行快速辅助定心的光学装置,包括定心仪探测头组件(1)、间隔测量仪测量头(3)、待测间隔镜组(4)及高精度气浮转台(5),定心仪探测头组件(1)、间隔测量仪测量头(3)和待测间隔镜组(4)从上至下同轴设置,待测间隔镜组(4)光轴与高精度气浮转台(5)的转轴重合,在定心仪探测头组件(1)和待测间隔镜组(4)之间设置辅助定心装置(2),辅助定心装置(2)中偏心监测镜片(21)和倾斜监测镜片(22)组成的镜组设置在思维调整架(23)上,间隔测量仪测量头(1)同轴设置在间隔镜组(4)的下端。这种光学装置属于光学系统集成装配技术领域,特别适用于测试仪器光轴与物镜光轴的快速校准,解决了现有技术中间隔测量仪光轴与集成平台转轴的校准方法采用反复测试迭代收敛的方法效率很低的技术问题。

Description

利用轴向色差进行快速辅助定心的光学装置 技术领域
本发明涉及一种利用轴向色差对间隔/厚度测试仪器与被测对象光轴对准时进行快速辅助定心的光学装置,属于光学系统集成装配技术领域。
背景技术
高精度透射式光学系统集成装配,必须具有亚微米量级镜片间隔测试精度,须使用非接触式的干涉类测试仪器--间隔测量仪,并且保证间隔测量仪的光轴与待测件光轴重合。该类间隔测量仪采用迈克尔逊干涉原理,使用短相干光源,能够实现亚微米的测量精度。目前常用的做法是将间隔测量仪与高精度定心仪集成在一起使用,间隔测量仪放置在定心仪下方,只要事先将间隔测量仪光轴与定心仪光轴调节重合后,在整个集成测试过程中无需再进行上述两个光轴的校准即可完成各镜片间隔的高精度测试。
现有的间隔测量仪最大的测量范围为光学长度600mm,而大NA透射式物镜,例如光刻投影物镜,物镜长度达到1000mm以上,超过测量范围,为了在整个物镜集成过程中都能够实现镜片的间隔测量,就必须将间隔测量仪放置在物镜上方,在物镜不断集成过程中,间隔测量仪的测量头只有不断升高,才能够逐步测试整个物镜集成时各镜片的间隔。为了不妨碍定心仪测量头对镜片进行定心测试,在镜片集成定心过程中,需要将间隔测量仪的测量头从定心仪光路中移出,待镜片定心集成后,再通过辅助工装将间隔测量仪器的测量头安装固定到待测间隔镜片之上,并对间隔测量仪的光轴与集成平台转轴进行校准之后,才能进行间隔的高精度测量。
目前间隔测量仪光轴与集成平台转轴的校准方法的主要过程如下:用高精度平行平板与高精度小球组合成光学定心装置,并且将平行平板的法线与高精度小球光轴调节平行,然后校准间隔测量仪光轴与上述光学定心装置的光轴,使其一致。利用定心仪测量头的上下移动分别找到小球的共焦像与平板的“猫眼”像,通过转动定心仪分别测试上述两个像的偏离,即为间隔测量仪与定心仪转轴的倾斜与偏心量,再通过四维调节机构,依次调节倾斜与偏心误差。由于倾斜调节机构会产生偏心耦合,需要反复移动定心仪测头测量小球与平板反 射像的中心偏,每测一个中心像,都需要转台转动一周进行目标采样计算,利用此迭代方式逐步调节间隔测量仪光轴使其与集成平台转轴同轴。每集成一个镜片,间隔测量仪光轴与转台转轴都需要进行校准,这种反复测试迭代收敛的方法效率很低。增加了很多工作量和校准时间。
发明内容
本发明是为了解决现有技术中间隔测量仪光轴与集成平台转轴的校准方法采用反复测试迭代收敛的方法效率很低的技术问题,提出一种利用轴向色差进行快速辅助定心的光学装置。该光学装置具有结构简单,校准效率高等特点,特别适用于测试仪器光轴与物镜光轴的快速校准。
本发明解决上述技术问题的方案如下:
利用轴向色差进行快速辅助定心的光学装置,包括定心仪探测头组件、间隔测量仪测量头、待测间隔镜组及高精度气浮转台,定心仪探测头组件、间隔测量仪测量头和待测间隔镜组从上至下同轴设置,待测间隔镜组光轴与定心仪高精度气浮转台的转轴重合,其特征是,在定心仪探测头组件和待测间隔镜组之间设置辅助定心装置,辅助定心装置中偏心监测镜片和倾斜监测镜片组成的镜组设置在四维调整架上,间隔测量仪测量头同轴设置在所述镜组的下端。
本发明的有益效果:
本发明提出的辅助定心光学装置,其能够快速实现间隔测量仪光轴与待集成物镜光轴校准,只需将偏心和倾斜反射像调节到与标校好的中心位置重合即可,不需要反复移动测量头以及反复转动转台进行中心偏测试的多次迭代,明显提高定心效率。由于不需要使用高精度平行平板,因此辅助定心光学装置中用于监测偏心和倾斜的镜片的加工精度要求也明显降低,节约了工装加工制造成本。
附图说明
图1为本发明利用轴向色差进行快速辅助定心的光学装置示意图。
图2为本发明所述的辅助定心装置示意图。
图3为定心仪计算机显示的中心偏示意图。
图中:1、定心仪测量头组件,11、白光光源照明的叉丝像,12、可切换滤光片装置,121、红外光透过滤光片,122、绿光透过滤光片,13、半反半透分 光镜,14、宽谱段响应CCD,15、准直物镜组,16、聚光镜组,2、辅助定心装置,21、偏心监测镜片,22、倾斜监测镜片,23、四维调节架,231、倾斜调节机构,232、偏心调节机构,3、间隔测量仪测量头,4、待测间隔镜组,41、待测间隔上镜组,42、待测间隔下镜组,5、高精度气浮转台,6、CCD监测显示器。
具体实施方式
如图1、2所示,利用轴向色差进行快速辅助定心的光学装置,包括定心仪探测头组件1、间隔测量仪测量头3、待测间隔镜组4及高精度气浮转台5,定心仪探测头组件1、间隔测量仪测量头3和待测间隔镜组4从上至下同轴设置,待测间隔镜组4光轴与定心仪高精度气浮转台5的转轴重合,在定心仪探测头组件1和待测间隔镜组4之间设置辅助定心装置2,辅助定心装置2中偏心监测镜片21和倾斜监测镜片22组成的镜组设置在四维调整架23上,间隔测量仪测量头3同轴设置在所述镜组的下端。
本发明所述的快速辅助定心的光学装置,其由辅助定心装置2与高精度定心仪配合使用用以完成待测间隔镜组4高精度镜片间隔测量。
定心仪主要包含定心仪测量头组件1和高精度气浮转台5。
辅助定心装置2包括偏心监测镜片21和倾斜监测镜片22组成的镜组,以及四维调整架23。所述镜组设置在四维调整架23上。间隔测量仪测量头3同轴设置在所述镜组的下端。
偏心监测镜片21为双凸透镜,用于检测偏心,双凸透镜上表面211镀红外光增反、绿光增透膜层;双凸透镜下表面212镀绿光增透膜层。倾斜监测镜片22为凹透镜,用于检测倾斜,凹透镜上表面221为凹面,镀绿光增透膜层;凹透镜下表面222为平面,镀绿光增反膜层。
利用辅助定心装置2能够快速完成间隔测量仪测量头3与待测间隔镜组4的高精度定心调整,以便得到高精度镜组间隔测试结果。辅助定心装置2与间隔测量仪测量头3事先调节同轴。辅助定心装置2通过螺钉与待测间隔镜组4连接。
如图1-3所示,利用轴向色差实现分别调节间隔测量仪测量头3光轴与待测间隔镜组4光轴的偏心与倾斜。利用定心仪分别完成待测间隔镜组4中待测间 隔下镜组42和待测间隔上镜组41的定心,表明所述的待测间隔镜组4光轴与高精度气浮转台5的转轴重合。
在定心仪测量头组件1中,白光光源照明的叉丝像11经过可切换滤光片装置12中的红外光透过滤光片121仅能使红外光透过,红外光束经过半反半透分光镜13入射到准直物镜组15生成准直光束,准直光束再经过聚光镜组16产生会聚光束,调节定心仪测量头组件1与辅助定心装置2的相对高度位置,使得由聚光镜组16产生的会聚光束的焦点恰好与辅助定心装置2中偏心监测镜片21的双凸透镜上表面211的顶点重合,利用该顶点产生的反射像标校出CCD 14的中心视场位置,以作为本发明定心调节的基准65。再次调节定心仪测量头组件1与辅助定心装置2的相对高度位置,使得由聚光镜组16产生的会聚光束的焦点恰好与辅助定心装置2中偏心监测镜片21的双凸透镜上表面211的球心重合,即入射光束垂直于偏心监测镜片21的双凸透镜上表面211,并在该表面上发生反射,反射光依次经过聚光镜组16、准直物镜组15和半反半透镜13,最终会聚到宽谱段响应CCD 14上,通过宽谱段响应CCD 14在显示器6上会显示辅助定心装置2相对于定心调节基准的偏心量大小61,调节四维调节架23的偏心调节机构231,使显示器6上显示的的偏心量61最小,此时完成辅助定心装置2与定心仪高精度气浮转台5转轴的偏心调节,即完成辅助定心装置2与待测间隔镜组4光轴的偏心调节,也即完成间隔测量仪测头3光轴与待测间隔镜组4光轴的偏心调节。
将滤光片切换成仅能使绿光通过,白光光源照明的十字叉丝像11经过可切换滤光片装置12中的绿光透过滤光片122仅能使绿光透过,绿光光束经过半反半透镜13入射到准直物镜组15,再经过聚光镜组16产生会聚光束,通过合理设计辅助定心装置2中偏心监测镜片21与倾斜监测镜片22的间隔,使得在前述红外光束与偏心监测镜片21的双凸透镜上表面211共焦时,由于轴向色差的存在,不需移动定心仪上测头1,可使绿光光束依次经过偏心监测镜片21的双凸透镜上表面211和偏心监测镜片21的镀绿光增透膜的的双凸透镜下表面212,以及倾斜监测镜片22的镀绿光增透膜的凹平透镜上表面221,最后垂直入射到倾斜监测镜片22的镀绿光增反膜的凹平透镜下表面222,绿光在该表面经过反射,依次透过倾斜监测镜片22的凹平透镜上表面221,偏心监测镜片21,聚光 镜组16、准直物镜组15和半反半透镜13,最终会聚到宽谱段响应CCD 14上,通过宽谱段响应CCD 14在显示器6上会显示辅助定心装置2倾斜量的大小64,调节四维调节架23的倾斜调节机构232,使显示器6上显示的辅助定心装置2倾斜量最小,完成辅助定心装置2与定心仪高精度气浮转台5转轴的倾斜调节,即完成辅助定心装置2与待测间隔镜组4光轴的倾斜调节,即完成间隔测量仪测头3光轴与待测间隔镜组4光轴的倾斜调节。

Claims (4)

  1. 利用轴向色差进行快速辅助定心的光学装置,包括定心仪探测头组件(1)、间隔测量仪测量头(3)、待测间隔镜组(4)及高精度气浮转台(5),定心仪探测头组件(1)、间隔测量仪测量头(3)和待测间隔镜组(4)从上至下同轴设置,待测间隔镜组(4)光轴与定心仪高精度气浮转台(5)的转轴重合,其特征是,在定心仪探测头组件(1)和待测间隔镜组(4)之间设置辅助定心装置(2),辅助定心装置(2)中偏心监测镜片(21)和倾斜监测镜片(22)组成的镜组设置在四维调整架(23)上,间隔测量仪测量头(3)同轴设置在所述镜组的下端。
  2. 根据权利要求1所述的利用轴向色差进行快速辅助定心的光学装置,其特征在于,定心仪探测头组件(1)中可切换滤光片装置(12)可以切换两个谱段滤光片,分别为红外波段和绿光波段,可实现将白光光源分别产生红外光和绿光。
  3. 根据权利要求1所述的利用轴向色差进行快速辅助定心的光学装置,其特征在于,偏心监测镜片(21)为双凸透镜,双凸透镜上表面(211)镀红外光增反膜且绿光增透膜,双凸透镜下表面(212)镀绿光增透膜;倾斜监测镜片(22)为凹平透镜,凹平透镜上表面(221)为凹面,镀绿光增透膜;凹平透镜下表面(222)为平面,镀绿光增反膜。
  4. 根据权利要求3所述的利用轴向色差进行快速辅助定心的光学装置,其特征在于,偏心监测镜片(21)与倾斜监测镜片(22)的间隔关系为:红外光测量时,偏心监测镜片(21)的双凸透镜上表面(211)凸面球心与定心仪测量光束共焦,不需要移动定心仪测量头(1)位置,切换至绿光测量时,即实现定心仪测量光束垂直于倾斜监测镜片(22)凹平透镜下表面(222)的平面。
PCT/CN2015/000679 2014-10-31 2015-10-08 利用轴向色差进行快速辅助定心的光学装置 WO2016065731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410613532.2 2014-10-31
CN201410613532.2A CN104317030B (zh) 2014-10-31 2014-10-31 利用轴向色差进行快速辅助定心的光学装置

Publications (1)

Publication Number Publication Date
WO2016065731A1 true WO2016065731A1 (zh) 2016-05-06

Family

ID=52372279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000679 WO2016065731A1 (zh) 2014-10-31 2015-10-08 利用轴向色差进行快速辅助定心的光学装置

Country Status (2)

Country Link
CN (1) CN104317030B (zh)
WO (1) WO2016065731A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916344A (zh) * 2019-04-08 2019-06-21 天津中精微仪器设备有限公司 气浮式连杆测量仪
CN110561540A (zh) * 2019-08-23 2019-12-13 中国科学院西安光学精密机械研究所 一种用于光学定心仪的调整装置
CN111077627A (zh) * 2019-12-27 2020-04-28 焦作天裕精密光学有限公司 一种微小透镜快速定心胶合装置及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104317030B (zh) * 2014-10-31 2017-04-05 中国科学院长春光学精密机械与物理研究所 利用轴向色差进行快速辅助定心的光学装置
WO2018119730A1 (zh) * 2016-12-28 2018-07-05 中国科学院长春光学精密机械与物理研究所 光学集成检测平台
CN108801178B (zh) * 2017-05-04 2020-07-10 北京理工大学 差动共焦自准直中心偏和曲率半径测量方法与装置
CN113093399A (zh) * 2020-01-08 2021-07-09 三营超精密光电(晋城)有限公司 透镜组装装置及透镜组装方法
CN112697054A (zh) * 2020-12-10 2021-04-23 无锡鑫巨宏智能科技有限公司 一种微透镜矢高测量装置及方法
TWI777876B (zh) * 2021-12-21 2022-09-11 亞泰影像科技股份有限公司 透鏡置中模組及其置中方法,掃描裝置
CN114199730B (zh) * 2022-02-15 2022-05-27 中国科学院大气物理研究所 一种用于激光器校准的气密封装型多向调节结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208514A (ja) * 1990-11-30 1992-07-30 Toshiba Corp アライメント光学系の光軸出し装置および光軸出し方法
US20070201037A1 (en) * 2005-09-06 2007-08-30 Instrument Technology Research Center Lens measuring method and device for determining decenter and tilt of the lens
CN101226344A (zh) * 2008-01-31 2008-07-23 上海微电子装备有限公司 测量光学系统参数的测量装置及其测量方法
KR20100041395A (ko) * 2008-10-14 2010-04-22 재영솔루텍 주식회사 렌즈모듈의 변위량 및 틸트 측정장치 및 방법
CN102538689A (zh) * 2011-12-29 2012-07-04 中国科学院上海光学精密机械研究所 光学系统定心定位装置及其使用方法
CN103064195A (zh) * 2011-12-17 2013-04-24 中国航空工业集团公司洛阳电光设备研究所 一种非共轴光学系统的装调方法
CN104317030A (zh) * 2014-10-31 2015-01-28 中国科学院长春光学精密机械与物理研究所 利用轴向色差进行快速辅助定心的光学装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4433763A1 (de) * 1994-09-22 1996-05-23 Hell Ag Linotype Vorrichtung zur Strahlteilung
WO2014117781A1 (en) * 2013-01-31 2014-08-07 Danmarks Tekniske Universitet Infrared up-conversion telescope
CN203365782U (zh) * 2013-06-27 2013-12-25 中国科学院西安光学精密机械研究所 角锥棱镜水平式光学定轴系统
CN203811868U (zh) * 2014-01-11 2014-09-03 长春理工大学光电信息学院 采用psd的光电定心仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208514A (ja) * 1990-11-30 1992-07-30 Toshiba Corp アライメント光学系の光軸出し装置および光軸出し方法
US20070201037A1 (en) * 2005-09-06 2007-08-30 Instrument Technology Research Center Lens measuring method and device for determining decenter and tilt of the lens
CN101226344A (zh) * 2008-01-31 2008-07-23 上海微电子装备有限公司 测量光学系统参数的测量装置及其测量方法
KR20100041395A (ko) * 2008-10-14 2010-04-22 재영솔루텍 주식회사 렌즈모듈의 변위량 및 틸트 측정장치 및 방법
CN103064195A (zh) * 2011-12-17 2013-04-24 中国航空工业集团公司洛阳电光设备研究所 一种非共轴光学系统的装调方法
CN102538689A (zh) * 2011-12-29 2012-07-04 中国科学院上海光学精密机械研究所 光学系统定心定位装置及其使用方法
CN104317030A (zh) * 2014-10-31 2015-01-28 中国科学院长春光学精密机械与物理研究所 利用轴向色差进行快速辅助定心的光学装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916344A (zh) * 2019-04-08 2019-06-21 天津中精微仪器设备有限公司 气浮式连杆测量仪
CN110561540A (zh) * 2019-08-23 2019-12-13 中国科学院西安光学精密机械研究所 一种用于光学定心仪的调整装置
CN110561540B (zh) * 2019-08-23 2024-04-05 中国科学院西安光学精密机械研究所 一种用于光学定心仪的调整装置
CN111077627A (zh) * 2019-12-27 2020-04-28 焦作天裕精密光学有限公司 一种微小透镜快速定心胶合装置及方法

Also Published As

Publication number Publication date
CN104317030B (zh) 2017-04-05
CN104317030A (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
WO2016065731A1 (zh) 利用轴向色差进行快速辅助定心的光学装置
CN107796329B (zh) 一种凸非球面反射镜面形检测装置及检测方法
KR102011209B1 (ko) 투명 기판이 제공되는 박막을 위한 측정 장치 및 측정 방법
TWI715121B (zh) 一種感測裝置及感測方法
US9658129B2 (en) Method and system for determining information about a transparent optical element comprising a lens portion and a plane parallel portion
CN103267743B (zh) 一种折射率测量装置及方法
CN104949630B (zh) 一种大数值孔径条纹对比度可调节的点衍射干涉装置
WO2016116036A1 (zh) 消杂光双光路光学定中仪
CN101210806A (zh) 基于辅助光源的激光发射轴与机械基准面同轴度测量方法
CN107990833B (zh) 光学镀膜透镜中心厚度测量装置及方法
CN104713489B (zh) 一种三维云纹干涉仪及材料表面测量方法
CN112556990A (zh) 镜片折射率测量装置及其测量方法
CN112556991A (zh) 一种镜片折射率测量装置及其测量方法
CN105424325B (zh) 点衍射干涉波像差测量仪及光学系统波像差的检测方法
CN114577125B (zh) 一种非接触式光学透镜中心厚度测量方法及测量装置
Langehanenberg et al. Automated measurement of centering errors and relative surface distances for the optimized assembly of micro-optics
CN106767471B (zh) 一种非球面检测光路中光学间隔测量系统及方法
CN110553820B (zh) 一种镜片多波长折射率检测装置及方法
CN210293627U (zh) 一种镜片多波长折射率检测装置
CN103424243B (zh) 畸变测试用目标系统
WO2023098349A1 (zh) 一种光学镜片参数测量装置及方法
CN210863101U (zh) 一种镜片折射率测量装置
CN206193312U (zh) 一种基于表面反射像的微米级光电定心装置
CN114815284B (zh) 一种带有折转光路光学镜头消除光学间隔装调误差的方法
CN109029935A (zh) 光学镜头的间距偏心和波前像差一体化测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856143

Country of ref document: EP

Kind code of ref document: A1