WO2016065708A1 - 一种多播交换光开关 - Google Patents

一种多播交换光开关 Download PDF

Info

Publication number
WO2016065708A1
WO2016065708A1 PCT/CN2014/094188 CN2014094188W WO2016065708A1 WO 2016065708 A1 WO2016065708 A1 WO 2016065708A1 CN 2014094188 W CN2014094188 W CN 2014094188W WO 2016065708 A1 WO2016065708 A1 WO 2016065708A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
micro
input port
axis
input
Prior art date
Application number
PCT/CN2014/094188
Other languages
English (en)
French (fr)
Inventor
胡强高
孙莉萍
张博
胡蕾蕾
杨柳
张玉安
梁飞
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to US15/523,206 priority Critical patent/US10048445B2/en
Publication of WO2016065708A1 publication Critical patent/WO2016065708A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3518Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element being an intrinsic part of a MEMS device, i.e. fabricated together with the MEMS device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35543D constellations, i.e. with switching elements and switched beams located in a volume
    • G02B6/3556NxM switch, i.e. regular arrays of switches elements of matrix type constellation

Definitions

  • the present invention relates to an optical switch, and more particularly to an optical switch having a multicast switching function, and the present invention belongs to the field of optical fiber communication.
  • a multicast switching optical switch is a wavelength-independent optical device that can split an input signal optical signal into multiple output optical signals for transmission to different ports.
  • the multicast switching optical switch and the wavelength selective optical switch can be used together to meet the OLEDM system's colorlessness, non-directionality, and non-competitiveness.
  • the functional requirements are very important for increasing the flexibility of network construction and reducing costs.
  • the main commercial multicast switching switch implementation methods are mainly splicing methods and integration methods.
  • PLC Planar Lightwave Circuit
  • the port between the splitter and the optical switch needs to use a large number of optical fibers to connect the optical path, with the number of ports Increase, assembly difficulty and volume will become larger; using PLC integrated splitter and switch integrated mode multicast switching optical switch, technical difficulty, high requirements for equipment, and due to the PLC switch itself control principle, will cause Large power consumption.
  • PLC Planar Lightwave Circuit
  • the object of the present invention overcomes the technical deficiencies of the prior art and provides a multicast switching optical switch device that is compact in structure, simple in assembly, and low in cost.
  • a multicast switching optical switch comprising: an input port device composed of M input ports, an output port device composed of N output ports, a diffractive beam splitting component, an optical focusing component, a 1 ⁇ N reflective array device, and an input port array direction Y
  • the output port is arranged in the X-axis direction
  • the diffractive beam splitting element diffracts each input signal of the input port into at least N directions into the optical focusing element
  • the optical focusing element comprises a first focusing lens and a second focusing lens, The image focal planes of the focusing lens coincide with each other;
  • the first focusing lens focuses the sub-signal beams having the same diffraction order from the respective input ports distributed along the Y-axis direction, and the second focusing lens will have different diffraction orders of the same input port
  • the sub-signal beams are respectively focused in the X-axis direction;
  • the 1 ⁇ N reflective array device is disposed on the focal plane of the optical focusing element, and each of the reflecting units is
  • the input port and the output port adopt an optical fiber array, and a microlens array is disposed at the rear end of the optical fiber array for light collimation.
  • the input port and the output port adopt a collimator array
  • the collimator of the collimator array is provided with a first micro-expansion lens and a fifth micro-expansion lens
  • the beam expanders are all X-direction cylindrical lenses, wherein the focal length f 3 of the first micro-expansion lens is smaller than the focus f 4 of the fifth micro-expansion lens, and the collimator of the collimator array is disposed on the first micro-expansion lens At the front focal plane, the image focal plane of the first micro-expansion lens coincides with the object focal plane of the fifth micro-expansion lens.
  • the first focus lens is a Y-direction cylindrical lens
  • the second focus lens is an X-direction cylindrical lens
  • Each input port and output port of the optical fiber array is configured with a Y-direction micro-column lens and an X-direction micro-column lens.
  • the input port and the output port are located in front of the corresponding Y-direction micro-column lens and X-direction micro-column lens.
  • the focal length f 1 of the X-directed micro-column lens is greater than the focal length f 2 of the Y-directed micro-column lens.
  • the diffractive beam splitting element may be a reflective grating element or a transmissive grating element.
  • the 1 ⁇ N reflective array device is a MEMS mirror array, and each of the mirrors is respectively rotatable about a first rotation axis and a second rotation axis.
  • the first rotation axis is parallel to the X axis
  • the second The axis of rotation is parallel to the Y axis.
  • the first input port and the second input port are respectively connected with a first isolator and a second isolator.
  • the device of the invention has the characteristics of compact structure, simple assembly and low cost.
  • FIG. 1(a) is a schematic view showing a first embodiment of a multicast switching optical switch of the present invention
  • 1(b) is a plan view showing a first embodiment of a multicast switching optical switch of the present invention
  • Figure 1 (c) is a side view of the first embodiment of the multicast switch optical switch of the present invention.
  • FIG. 2 is a schematic diagram of a second embodiment of a multicast switching optical switch according to the present invention.
  • FIG. 3 is a schematic diagram of an output port selection manner according to a first embodiment of the present invention.
  • Figure 4 is a side view of the multicast switch optical switch incorporating the optical isolator on the basis of Figure 1 (c);
  • 5(a) is a schematic view showing the adjustment of the MEMS around the second rotating shaft to the no-output state according to the first embodiment of the present invention
  • FIG. 5(b) is a schematic view showing the adjustment of the MEMS around the first rotating shaft to the no-output state according to the first embodiment of the present invention
  • 6(a) is a schematic diagram of direct switching of input signals and movement of lossless switching spots
  • FIG. 6(b) is a schematic diagram of direct switching of the output port and movement of the lossless switching spot
  • FIG. 7 is a schematic diagram of a lossless switching spot shift of an input signal with a multicast switch optical switch with an isolator
  • the incident light beam is indicated by a solid line
  • the reflected light beam is indicated by a broken line.
  • 101 a first input port
  • 102 a second input port
  • 111 a first output port
  • 112 a second output port
  • 201 a first Y-direction micro-collimating cylindrical lens
  • 202 a second Y-direction micro-collimating cylindrical lens
  • 211 a third Y-direction micro-collimating cylindrical lens
  • 212 a fourth Y-direction micro-collimating cylindrical lens
  • 221 a first micro beam expander lens
  • 222 a second micro beam expander lens
  • 231 a third micro beam expander lens
  • 232 a fourth micro beam expander lens
  • 301 a first X-direction micro collimating cylindrical lens
  • 302 a second X-direction micro collimating cylindrical lens
  • 311 a third X-direction micro collimating cylindrical lens
  • 312 a fourth X-direction micro collimating cylindrical lens
  • 321 a fifth micro beam expander lens
  • 322 a sixth micro beam expander lens
  • 331 a seventh micro beam expander lens
  • 332 an eighth micro beam expander lens
  • 400 transmission diffraction spectroscopic element
  • 401 reflective diffraction spectroscopic element
  • 501 a first focus lens
  • 502 a second focus lens
  • 601 a first mirror
  • 602 a second mirror
  • 611 a second axis of rotation of the mirror 601; 612: a second axis of rotation of the mirror 602;
  • 701 a first optical isolator
  • 702 a second optical isolator
  • 801 a first input signal component
  • 802 a second input signal component
  • Figure 1 (a) is a conceptual diagram of a first embodiment of an M x N multicast switching device.
  • M and N can choose other values according to their needs, such as 4, 12, 17, and so on.
  • the device includes an input port device composed of M input ports, that is, a first input port 101 to a second input port 102, M is greater than or equal to 1; an output port device composed of N output ports, that is, a first output port 111 to Two output ports 112, N is greater than or equal to 1.
  • the first input port 101 to the second input 102 and the first output port 111 to the second output port 112 in the figure are optical fiber arrays.
  • the signal light emitted from the fiber array is divergent light, it is necessary to perform collimation using the microlens array.
  • the divergent lights from the first input port 101 to the second input port 102 pass through the first Y-direction micro-column lens 201 to the second Y-direction micro-column lens 202, and the first X-direction micro-column lens 301 to the second X, respectively.
  • the micro-column lens 302 is collimated; the emitted collimated light passes through the third X-direction micro-column lens 311 to the fourth X-direction micro-column lens 312, and the third Y-direction micro-column lens 211 to the fourth 212 and the first output port 111
  • the fiber array of the second output port 112 is coupled.
  • the input port and the output port may be collimator arrays, waveguides, and the like as known in the art. When the input and output signal lights are collimated light, the microlens need not be used again. Collimate.
  • the X-Y-Z three-dimensional coordinate system shown in Fig. 1 is defined.
  • the light transmission direction is the Z-axis direction
  • the first input port 101 to the second input port 102 are arranged in the Y-axis direction
  • the first output port 111 to the second output port 112 are arranged in the X-axis direction.
  • the first input port 101 to the second input port 102 and the first output port 111 to the second output port 112 are optical fiber arrays, and each input port and output port are configured with a Y-direction micro a cylindrical lens, an X-directed micro-column lens, an input port, an output port are located at a front focal plane of the corresponding Y-direction micro-column lens and the X-direction micro-column lens, and an X-direction micro-column lens focal length f 1 is greater than a Y-direction micro-column lens
  • the focal length f 2 is used to collimate the incident divergent light into the system or to focus the outgoing collimated light onto the output fiber end face.
  • the input port 101 is located at the front focal plane of the first Y-direction micro-column lens 201 and the first X-direction micro-column lens 301. And the focal length f 1 of the first X-direction micro cylindrical lens 301 is larger than the focal length f 2 of the first Y-direction micro cylindrical lens 201.
  • the divergent signal light from the first input port 101 is sequentially collimated through the first Y-direction micro-column lens 201 and the first X-direction micro-column lens 301, and the obtained collimated beam has a radius in the X direction greater than the Y direction.
  • the signal light is incident on the diffraction element after being expanded, which increases the interference level and improves the resolution.
  • the optical beam can be expanded by an optical device such as a lens or a rectangular prism without collimating the beam by the micro lens series.
  • Figure 2 of the present invention shows a schematic diagram of an embodiment in which a fiber collimator is used as an input and output port.
  • the diffractive beam splitting element 400 is a transmissive grating element which can split the incident signal beam into a plurality of sub-signal beams.
  • the transmission direction of each sub-signal beam is determined by a grating equation, and the intensity of each sub-signal beam is approximately equal.
  • the reticle distance of the diffractive beam splitting element 400 is large, the angle of dispersion of the wavelength signals of the same level is much smaller than the angle between the sub-signal beams of the adjacent diffraction orders.
  • each sub-signal beam can retain all of the frequency information of the input signal.
  • the collimated signal light expanded in the X direction is incident on the diffraction beam splitting element 400, and a plurality of spatially separated sub-signal beams are obtained.
  • the diffractive beam splitting element in the conceptual diagram diffracts the incident light energy in approximately two directions with approximately equal intensity.
  • a suitable diffractive beam splitting element can be selected according to the actual number of output ports required, and the number of splitting of the diffractive beam splitting element should be greater than or equal to the number of output ports required.
  • each of the input signal lights is split into sub-signal beams of N directions, and a total of M ⁇ N beam sub-signal light is obtained.
  • the optical focusing device includes a first focusing lens 501 and a second focusing lens 502.
  • First focus lens 501 is a Y-direction cylindrical lens
  • the second focus lens 502 is an X-direction cylindrical lens
  • the image focal planes of the two focus lenses coincide with each other
  • the diffraction beam splitting element 400 is located on the object focal plane of the second focus lens 502.
  • the first focusing lens 501 focuses the sub-signal beams having the same diffraction order from the respective input ports distributed in the Y direction
  • the second focusing lens 502 respectively sets the sub-signal beams of different diffraction orders of the same input port in the X direction. Focus.
  • the M x N beam signal light split by the diffraction beam splitting element 400 passes through the optical focusing device, and a 1 ⁇ N spot arranged in the X direction is formed in the image focal plane thereof.
  • the reflective array device is a 1 ⁇ N linear MEMS mirror array, and each MEMS mirror is located at the N focus spots respectively. Each mirror can be rotated around two axes to switch.
  • the first axis of rotation 620 of the mirror in the MEMS mirror array is parallel to the X axis, and the respective mirrors, i.e., the second axis of rotation 611 of the mirror 601, and the second axis of rotation 612 of the mirror 602 are parallel to the Y axis.
  • the MEMS mirror rotates around the first rotation axis 620 of the mirror, and any one of the input signals can be selected to be coupled to the output port; the MEMS mirror rotates around the second axis of rotation 611 of the mirror 601 and the second axis of rotation 612 of the mirror 602. Select any of the output port outputs.
  • the optical signal reflected by the MEMS mirror passes through the optical focusing device, the diffractive beam splitting element in reverse, and is coupled to the output port through the micro-column lens.
  • the forward and backward reflected paths are staggered in the X and Y directions, and the optical elements experienced in the Z direction are completely identical.
  • the backward optical path is reversely passed through the diffractive beam splitting element 400, and the respective wavelength signals separated by the dispersion effect are re-aggregated and received by the output port.
  • 1(b) is a top plan view of a first embodiment of an M ⁇ N multicast switching device according to the present invention, wherein the first input port 101 to the second input port 102 and the micro cylindrical lens array comprise a first Y-direction micro collimating cylindrical lens
  • the arrangement direction of the 201-second Y-direction micro-collimating cylindrical lens 202, the first X-direction micro-collimating cylindrical lens 301 to the second X-direction micro-collimating cylindrical lens 302 is perpendicular to the plane of the schematic view.
  • the input divergent light from the first input port 101 to the second input port 102 passes through the micro cylindrical lens first Y direction 201 to the second Y direction 202, and the first X direction micro collimating cylinder lens 301 to the second X direction micro
  • the collimating cylindrical lens 302 is collimated and incident on the diffraction beam splitting element 400, and is diffracted in the upper and lower directions, and the intensity of the sub-beams in the two diffraction directions is approximately equal.
  • the diffractive beam splitting element 400 is located on the object focal plane of the second focus lens 502, and the MEMS reflective array is located on the image focal plane of the second focus lens 502.
  • the second focusing lens 502 focuses the signal light of each diffraction order of the input signal to its image focal plane, and the reflecting units of the MEMS reflective array are located at the focus of each beam.
  • the first mirror 601 is at the focus of the lower diffracted beam
  • the second mirror 602 is at the focus of the upper diffracted beam.
  • the sub-beams reflected by the mirror will return to the optical focusing device again and return to the diffractive beam splitting element 400 at a parallel angle to the respective incident diffracting components.
  • the sub-signal light reflected by the first mirror 601 is reversed to the lower diffracted beam after passing through the optical focusing device.
  • the sub-signal light reflected by the second mirror 602 is reversed through the optical focusing device. , parallel to the upper diffracted beam. After the reflected beam passes backward through the diffractive beam splitting element 400, it will be parallel to the incident beam and refocused by the microlens to each of the output ports.
  • any output port output can be selected.
  • the MEMS mirror is controlled to rotate at an appropriate angle, so that the sub-signal reflected by the first mirror 601 can be outputted by the first output port 111, and the sub-signal reflected by the second mirror 602 can be outputted by the second output port.
  • 112 output. 3 illustrates the case where all of the mirrors are coupled to the same output port 111 in the first embodiment of the present invention, in which case the MEMS reflective array is controlled around the respective mirror 601.
  • the second axis of rotation 612 of the second axis of rotation 611 to the mirror 602 is rotated to a state parallel to each other, and the second output port 112 has no signal output.
  • the MEMS mirror rotates about a first axis of rotation 620 of the mirror parallel to the X axis, and the sub-signal light of any one of the input ports can be coupled to the output port.
  • the first to second mirrors 601 to 602 of the MEMS mirror can independently surround the first axis of rotation of the mirror.
  • the 620 is rotated to select any one of the signals from the first input port 101 or the second input port 102 to be coupled to the first output port 111 to the second output port 112.
  • control MEMS mirror when the control MEMS mirror is rotated about the mirror first axis of rotation 620 to select an input signal, it is likely that other unselected reflected light is coupled to certain input ports. As shown in FIG. 1(c), when the signal light of the first input port 101 is selected to be coupled to the output port, the reflected light from the second input port 102 will be reflected back to the second input port itself.
  • FIG. 4 illustrates a multicast switch optical switch of a series optical isolator.
  • the first input port 101 and the second input port 102 are respectively connected with a first isolator 701 and a second isolator 702.
  • the second optical isolator 702 can block the reflected light of the second input port 102 coupled back to the second input port 102.
  • FIG. 2 is a schematic diagram of a second embodiment of a multicast switch optical switch of the present invention.
  • the input port and output port in the figure are still indicated by the serial number of the embodiment of Fig. 1, however, note that the input and output ports are shown as collimator arrays.
  • the first micro-expansion lens 221 and the fifth micro-expansion lens 321 are both X-direction cylindrical lenses, wherein the focal length f 3 of the first micro-expansion lens 221 is smaller than the fifth micro-expansion lens.
  • the focus of 321 is f 4 .
  • the first input port 101 of the collimator in the input collimator array is disposed at the front focal plane of the first micro-expansion lens 221, the image focal plane of the first micro-expansion lens 221 and the fifth micro-expansion lens of the lens
  • the object focal plane of 321 coincides.
  • the collimated signal light from the first input port 101 sequentially passes through the first micro-expansion lens 221 and the fifth micro-expansion lens 321 described above to obtain collimated signal light that is expanded in the X direction.
  • the diffraction beam splitting element 401 in this example is a reflective grating element.
  • the device positional relationship and beam propagation principle of the second embodiment of FIG. 2 are the same as those of the first embodiment, and will not be repeated here.
  • a certain spacing may be reserved between the input ports or between the output ports according to the spot size, so that in some cases, by controlling the MEMS mirrors respectively around the first axis of rotation of the mirror
  • the second axis of rotation of the mirror 601 is rotated by the second axis of rotation of the mirror 602, and the reflected light is between the two adjacent ports to achieve a "no output" state.
  • 5(a) and 5(b) show the case where there is no output in the plan view direction and the side view direction in the first embodiment of the present invention.
  • the reflected beam and the incident beam coincide in the X-Z plane, and are shifted by a certain distance in the Y direction. In this direction, no output port receives the outgoing signal and reaches the outputless state.
  • the first mirror 601 can be rotated counterclockwise around the second axis of rotation 611 of the mirror 601, so that the reflected beam can be emitted from below the first output port 111.
  • the second mirror 602 surrounds the mirror 602.
  • the second axis of rotation 612 rotates clockwise such that the reflected beam exits above the second output port 112 to a no output state.
  • the first mirror 601 - the second mirror 602 rotate around the first rotation axis 620 of the mirror, so that the reflected light of the first input port can be emitted from the second input port and the output port.
  • the reflected light of the two input ports is emitted from between the first input port and the second input port to achieve no output state.
  • Lossless switching is typically required when adjusting MEMS mirrors for switching. For example, when it is required to switch the signal of an output port from the signal M 1 to the signal M 2 , other signals cannot be experienced during the request process. If the direct control of the MEMS mirror about the mirror axis of the first rotation regulating, all output port signal from a signal subjected to signal M 1 to M 2.
  • the distance between the input and output ports is set to reach no output state, which can realize lossless switching.
  • the MEMS mirror can be first controlled to rotate around the axis of its respective mirror to an output-free state, and then controlled.
  • the MEMS mirrors are signal-switched around the first axis of rotation of the mirror, and finally the MEMS mirrors are controlled to return to the original port about the axis of their respective mirrors.
  • Fig. 6(a) illustrates the movement of the spot when the input signal is directly switched and the lossless switching is performed by the 3 ⁇ 4 multicast switch.
  • the first input port 101 to the third input port 103 are input port arrays
  • the first output port 111 to the fourth output port 114 are output port arrays
  • the three-input signal component 803 corresponds to the same-order diffracted component of the signal light of the first input port 101 to the third input port 103 at the output port 111.
  • the first signal component 801 from the first input port 101 is output by the first output port 111.
  • the corresponding diffraction component of the order is directly adjusted.
  • the MEMS mirror is switched about its first axis of rotation, the second signal component 802 from the second input port 102 will pass through the first output port 111 prior to the third input signal component 803, as shown by the solid path in the figure. .
  • the MEMS mirror is rotated around the second rotation axis of the mirror, so that the first signal component 801 to the third signal component 803 are located between the output ports in the X direction, and the output state is reached.
  • the MEMS mirror is then rotated about the first axis of rotation of the mirror such that the third input signal component 803 is coaxial with the first output port 111 in the X direction, and finally the MEMS mirror is rotated about the second axis of rotation of the mirror such that the third The input signal component 803 coincides with the first output port 111 as shown by the dashed path in the figure.
  • the output port is switched from N 1 to N 2 .
  • the MEMS mirror is directly controlled to adjust around the second axis of rotation of the mirror, the output signal will experience all ports from N 1 to N 2 .
  • the MEMS mirror can be first controlled to rotate around the first rotation axis of the mirror to an output-free state, and then the MEMS mirror is controlled to switch the output port around the second rotation axis of the mirror, and finally the first rotation of the MEMS mirror around the mirror is controlled.
  • the axis selects the original signal.
  • Figure 6 (b) shows the movement of the spot when the 3 x 4 multicast switch switches the output port directly and losslessly.
  • the first signal component 801 of the first input port is switched from the first output port 111 to the third output port 113, and the solid line path is a direct switching process. At this time, the first input signal component 801 will first pass through the second output port 112. The third output port 113 can then be reached.
  • the dashed path is a non-damage switching process.
  • the MEMS mirror is rotated around the first rotation axis of the mirror such that the first input signal component 801 is located between the output port and the input port in the Y direction to achieve no output state.
  • the MEMS mirror is then rotated about the second axis of rotation of the mirror such that the first input signal component 801 is coaxial with the third output port 113 in the Y direction, and finally the MEMS mirror is rotated about the first axis of rotation of the mirror such that the first The input signal component 801 coincides with the third output port 113.
  • each input port is configured with an optical isolator.
  • the optical isolator is connected to the input port of the device by means of fusion.
  • the first isolator 701 and the second isolator 702 are respectively connected in series with the first input port 101 and the second input port 102.
  • the device size can be compactly arranged in the X direction to achieve a smaller device volume. .
  • FIG. 7 illustrates a 3 ⁇ 6 multicast switch as an example.
  • the first signal component 801 from the first input port 101 is output by the second output port 112. If the signal light of the second output port 112 is required to be The first signal component 801 is switched to the third signal component 803.
  • the MEMS mirror can be first rotated around the first rotation axis of the mirror to a non-output state, and then rotated around the second rotation axis to the signal light first signal component 801 to the third signal component 803 and the first input port 101 to the third input.
  • Port 103 is coaxial in the Y direction.
  • the MEMS mirror is adjusted to surround the first rotation axis of the mirror, and the third signal component 803 is selected to be the light-free position closest to the X-axis.
  • the optical isolator can be coupled to the first output port 101 during the adjustment process.
  • the MEMS mirror is then rotated about the second axis of rotation of the mirror such that the third input signal component 803 is coaxial with the second output port 112 in the Y direction, and finally the fine tuned MEMS mirror is rotated about the first axis of rotation of the mirror such that the signal is third
  • the input signal component 803 coincides with the second output port 112 to complete the lossless switching process.
  • the multicast switched optical switch of the present invention is capable of propagating signal light of any input port to any output port; any output port can accept signal light from any input port.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

一种多播交换光开关,包括M个输入端口(101,102)组成的输入端口装置、N个输出端口(111,112)组成的输出端口装置、衍射分光元件(400)、光学聚焦元件、1×N反射阵列器件。输入端口(101,102)排列方向为Y轴方向,输出端口(111,112)排列方向为X轴方向。衍射分光元件(400)将输入端口(101,102)的每一束输入信号衍射到至少N个方向进入光学聚焦元件。光学聚焦元件包括第一聚焦透镜(501)和第二聚焦透镜(502),两聚焦透镜(501,502)的像方焦平面相互重合。第一聚焦透镜(501)将沿Y轴方向分布的来自各输入端口(101,102)具有相同衍射级次的子信号光束聚焦,第二聚焦透镜(502)将同一输入端口的不同衍射级次的子信号光束在X轴方向各自聚焦。1×N反射阵列器件设置于光学聚焦元件的焦平面上,其各反射单元(601,602)处于信号光各衍射级次的聚焦处,反射任意输入端口(101,102)的子光束至任意输出端口(111,112)。

Description

一种多播交换光开关 技术领域
本发明涉及一种光开关,尤其涉及一种具有多播交换功能的光开关,本发明属于光纤通信领域。
背景技术
多播交换光开关是一种波长无关的光器件,它能够将一路输入信号光信号分成多路输出光信号传输至不同的端口。作为下一代可重构光分插复用(ROADM)系统中的核心器件之一,多播交换光开关和波长选择光开关配合使用,可以满足ROADM系统无颜色性、无方向性、无竞争性的功能要求,对于增加网络建设的灵活性、降低成本都具有非常重要的。
目前主要商用的多播交换开关实现方式主要是拼接方式与集成方式。使用平面光波导线路(PLC:Planar Lightwave Circuit)分路器和光开关拼接方式的多播交换光开关,分路器和光开关之间的端口需要使用大量的光纤对光路进行连接,随着端口数的增加,装配难度和体积都会变大;使用PLC集成分路器和开关的集成方式多播交换光开关,技术难度较大,对设备的要求较高,又由于PLC开关自身控制原理,会造成较大的功耗。
发明内容
本发明的目的克服现有技术存在的技术缺陷,提供一种结构紧凑、组装简单、成本低廉的多播交换光开关装置。
本发明技术方案是:
一种多播交换光开关,包括M个输入端口组成的输入端口装置、N个输出端口组成的输出端口装置、衍射分光元件、光学聚焦元件、1×N反射阵列器件,输入端口排列方向为Y轴方向,输出端口排列方向为X轴方向;衍射分光元件将输入端口的每一束输入信号衍射到至少N个方向进入光学聚焦元件;光学聚焦元件包括第一聚焦透镜和第二聚焦透镜,两聚焦透镜的像方焦平面相互重合;第一聚焦透镜将沿Y轴方向分布的来自各输入端口具有相同衍射级次的子信号光束聚焦,第二聚焦透镜将同一输入端口的不同衍射级次的子信号光束在X轴方向各自聚焦;1×N反射阵列器件设置于光学聚焦元件的焦平面上,其各反射单元处于信号光各衍射级次的聚焦处,反射任意输入端口的子光束至任意输出端口。
所述输入端口、输出端口采用光纤阵列,光纤阵列输出后端设置有微透镜阵列进行光准直。
所述输入端口、输出端口采用准直器阵列,准直器阵列的准直器后设置有第一微型扩束透镜、第五微型扩束透镜,所述第一微型扩束透镜、第五微型扩束透镜均为X方向柱透镜,其中第一微型扩束透镜的焦距f3小于第五微型扩束透镜的聚焦f4,准直器阵列的准直器设置于第一微型扩束透镜的前焦平面处,第一微型扩束透镜的像方焦平面与第五微型扩束透镜的物方焦平面重合。
所述第一聚焦透镜为Y方向柱面透镜,第二聚焦透镜为X方向柱面透镜。
所述光纤阵列的每个输入端口、输出端口均配置有一个Y向微型柱透镜、一个X向微型柱透镜,输入端口、输出端口位于对应的Y向微型柱透镜、X向微型柱透镜的前焦平面处,X向微型柱透镜焦距f1大于Y向微型柱透镜的焦距f2
所述衍射分光元件可以为反射式光栅元件或透射式光栅元件。
所述1×N反射阵列器件为MEMS反射镜阵列,每一个反射镜可分别绕其第一旋转轴线、第二旋转轴线旋转进行切换,第一旋转轴线与X轴平行,第二 旋转轴线与Y轴平行。
所述第一输入端口、第二输入端口分别串接有第一隔离器、第二隔离器。
本发明的优点是:
本发明装置具有结构紧凑、组装简单、成本低廉的特点。
附图说明
图1(a)为本发明的多播交换光开关第一实施例示意图;
图1(b)为本发明的多播交换光开关第一实施例俯视图;
图1(c)为本发明的多播交换光开关第一实施例侧视图;
图2为本发明的多播交换光开关第二实施例示意图;
图3为本发明第一实施例一种输出端口选择方式;
图4为在图1(c)基础上加入光隔离器的多播交换光开关侧视图;
图5(a)为本发明第一实施例调节MEMS绕第二旋转轴至无输出状态示意图;
图5(b)为本发明第一实施例调节MEMS绕第一旋转轴至无输出状态示意图;
图6(a)为输入信号直接切换及无损切换光斑移动示意图;
图6(b)为输出端口直接切换及无损切换光斑移动示意图;
图7为带有隔离器的多播交换光开关进行输入信号无损切换光斑移动示意图;
图1~图5中入射光束以实线表示,反射光束以虚线表示。
其中:
101:第一输入端口;                   102:第二输入端口;
103:第三输入端口;
111:第一输出端口;                 112:第二输出端口;
113:第三输出端口;                 114:第四输出端口;
115:第五输出端口;                 116:第六输出端口;
201:第一Y向微型准直柱透镜;        202:第二Y向微型准直柱透镜;
211:第三Y向微型准直柱透镜;        212:第四Y向微型准直柱透镜;
221:第一微型扩束透镜;             222:第二微型扩束透镜
231:第三微型扩束透镜;             232:第四微型扩束透镜;
301:第一X向微型准直柱透镜;        302:第二X向微型准直柱透镜;
311:第三X向微型准直柱透镜;        312:第四X向微型准直柱透镜;
321:第五微型扩束透镜;             322:第六微型扩束透镜;
331:第七微型扩束透镜;             332:第八微型扩束透镜;
400:透射式衍射分光元件;           401:反射式衍射分光元件;
501:第一聚焦透镜;                 502:第二聚焦透镜;
601:第一反射镜;                   602:第二反射镜;
611:反射镜601的第二旋转轴线;      612:反射镜602的第二旋转轴线;
620:反射镜第一旋转轴线;
701:第一光隔离器;                 702:第二光隔离器;
801:第一输入信号分量;             802:第二输入信号分量;
803:第三输入信号分量;
具体实施方式
下面结合附图对本发明做进一步详细描述;
图1(a)为M×N多播交换开关装置第一实施例的概念示意图。如图所示,为了便于说明,在图1的实施例中M=2,N=2。在实践中,M和N可以根据需求选择其它的数值,比如4,12,17等等。该装置包含由M个输入端口组成的输入端口装置,即第一输入端口101~第二输入端口102,M大于等于1;N个输出端口组成的输出端口装置,即第一输出端口111~第二输出端口112,N大于等于1。图中的第一输入端口101~第二输入102、第一输出端口111~第二输出端口112为光纤阵列。由于从光纤阵列出射的信号光为发散光,需要利用微透镜阵列进行准直。图中,来自第一输入端口101~第二输入端口102的发散光分别通过第一Y向微型柱透镜201~第二Y向微型柱透镜202,第一X向微型柱透镜301~第二X向微型柱透镜302进行准直;出射准直光通过第三X向微型柱透镜311~第四X向微型柱透镜312,第三Y向微型柱透镜211~第四212与第一输出端口111~第二输出端口112的光纤阵列耦合。在本发明的其它实施例中,输入端口、输出端口可以为准直器阵列、波导等本技术领域已知的光耦合元件,当输入、输出信号光为准直光时则无需再次利用微透镜进行准直。
为便于说明,定义如图1所示X-Y-Z三维坐标系。其中,光线传输方向为Z轴方向,第一输入端口101~第二输入端口102排列方向为Y轴方向,第一输出端口111~第二输出端口112排列方向为X轴方向。
如前所述,本图中第一输入端口101~第二输入端口102、第一输出端口111~第二输出端口112为光纤阵列,且每个输入端口、输出端口均配置有一个Y向微型柱透镜、一个X向微型柱透镜,输入端口、输出端口位于对应的Y向微型柱透镜、X向微型柱透镜的前焦平面处,X向微型柱透镜焦距f1大于Y向微型柱透镜的焦距f2,以将入射的发散光准直后耦合进入系统,或是将出射准直光聚焦至输出光纤端面。以第一输入端口101为例,输入端口101位于第一Y向 微型柱透镜201、第一X向微型柱透镜301的前焦平面处。并且第一X向微型柱透镜301焦距f1大于第一Y向微型柱透镜201的焦距f2。来自第一输入端口101的发散信号光依次经过第一Y向微型柱透镜201、第一X向微型柱透镜301准直,得到的准直光束在X方向的半径大于Y方向。
信号光经扩束后入射至衍射元件可增加干涉级次,提高分辨率。当输入、输出信号光为准直光时,可用透镜、直方棱镜等光学器件对光束扩束,而无需微型透镜系列进行光束准直。本发明的图2给出以光纤准直器作为输入、输出端口的实施例示意图。
衍射分光元件400为透射式光栅元件,它可以将入射信号光束分离成若干子信号光束,各子信号光束的传输方向由光栅方程确定,且各子信号光束的强度近似相等。并且由于衍射分光元件400的刻线距离较大,同一级次中各波长信号色散分离的角度远小于相邻衍射级次的子信号光束之间的夹角。例如对于周期d=0.1mm的衍射分光元件,假定入射角度为0deg,对于波长为1550nm的信号光,相邻级次的信号角度约为0.89deg,而对于含有波长为1525~1570的信号光,其色散分离的角度仅为0.026deg。因此,各子信号光束可以保留输入信号的全部频率信息。
经X方向扩束的准直信号光入射至衍射分光元件400上,得到若干束在空间分离的子信号光束。本概念图中的衍射分光元件将入射光能量近似等强度的衍射至两个方向。在实践中,可以根据实际需要的输出端口数来选择适宜的衍射分光元件,衍射分光元件的分光数目应大于等于所需的输出端口数目。如上所述,输入信号光经过衍射分光元件400分光后,每一路输入信号光将被分成N个方向的子信号光束,共得到M×N束子信号光。
光学聚焦器件包括第一聚焦透镜501,第二聚焦透镜502。第一聚焦透镜 501为Y方向柱面透镜,第二聚焦透镜502为X方向柱面透镜,两聚焦透镜的像方焦平面相互重合,衍射分光元件400位于第二聚焦透镜502的物方焦平面上。第一聚焦透镜501将沿Y方向分布的来自各输入端口具有相同衍射级次的子信号光束聚焦,同时,第二聚焦透镜502将同一输入端口的不同衍射级次的子信号光束在X方向各自聚焦。于是,经衍射分光元件400分束得到的M×N束子信号光经光学聚焦器件后,将在其像方焦平面形成沿X方向排列的1×N光斑。
考虑到由衍射分光元件引入的色散效应,每个光斑内各波长的信号光将存在微小的错位。根据上文中周期d=0.1mm的衍射分光元件计算得到的角度,若第二聚焦透镜502的焦距为100mm,则同一光斑内各波长最大的错位距离约为0.045mm,与之相对的,相邻衍射级次光斑的距离约为1.55mm。
反射阵列器件为1×N线性MEMS反射镜阵列,各MEMS反射镜分别位于上述N个聚焦光斑处。每一个反射镜均可以分别绕两条轴线旋转进行切换。如图中MEMS反射镜阵列中反射镜第一旋转轴线620与X轴平行,各自的反射镜,即反射镜601的第二旋转轴线611、反射镜602的第二旋转轴线612与Y轴平行。MEMS反射镜绕反射镜第一旋转轴线620旋转,可以选择任意一路输入信号耦合至输出端口;MEMS反射镜绕反射镜601的第二旋转轴线611、反射镜602的第二旋转轴线612旋转,可以选择任意一个输出端口输出。
经MEMS反射镜反射的光信号,逆向依次经过光学聚焦器件、衍射分光元件,并通过微型柱透镜耦合至输出端口。总而言之,前向传输光路和后向反射光路在X、Y方向上相互错开,而Z方向经历的光学元件是完全一致的。后向光路逆向经过衍射分光元件400,由色散效应而分离的各波长信号将重新汇聚,并由输出端口接收。
图1(b)为本发明M×N多播交换开关装置第一实施例的俯视图,其中第一输入端口101~第二输入端口102,微型柱透镜阵列包括第一Y向微型准直柱透镜201~第二Y向微型准直柱透镜202、第一X向微型准直柱透镜301~第二X向微型准直柱透镜302的排列方向与示意图所在平面相互垂直。图中来自第一输入端口101~第二输入端口102的输入发散光经微型柱透镜第一Y向201~第二Y向202、第一X向微型准直柱透镜301~第二X向微型准直柱透镜302准直后入射至衍射分光元件400,被衍射至上、下两个方向,两个衍射方向的子光束强度近似相等。衍射分光元件400位于第二聚焦透镜502的物方焦平面上,MEMS反射阵列位于第二聚焦透镜502的像方焦平面上。第二聚焦透镜502将输入信号的各衍射级次的信号光各自聚焦至其像方焦平面处,MEMS反射阵列的各反射单元位于各光束聚焦处。如图第一反射镜601处于下方衍射光束聚焦处,第二反射镜602处于上方衍射光束的聚焦处。经反射镜反射的子光束将再次返回光学聚焦器件,并以与各自对应的入射衍射分量的平行的角度回到衍射分光元件400。如图所示,经第一反射镜601反射的子信号光,逆向经过光学聚焦器件后,与下方衍射光束平行;同理,经第二反射镜602反射的子信号光逆向经过光学聚焦器件后,与上方衍射光束平行。反射光束逆向经过衍射分光元件400后,将与入射光束平行,并通过微透镜重新聚焦至各输出端口。
通过控制MEMS反射镜绕各自与Y轴平行的反射镜601的第二旋转轴线611~反射镜602的第二旋转轴线612旋转,可以选择任意的输出端口输出。如图1(b)控制MEMS反射镜旋转合适的角度,可以使得由第一反射镜601反射的子信号由第一输出端口111输出,由第二反射镜602反射的子信号由第二输出端口112输出。图3示意在本发明的第一实施例中,全部反射镜都耦合至同一个输出端口111的情形,此时MEMS反射阵列被控制绕各自的反射镜601的 第二旋转轴线611~反射镜602的第二旋转轴线612旋转至相互平行的状态,第二输出端口112无信号输出。
MEMS反射镜绕与X轴平行的反射镜第一旋转轴线620旋转,可选择任意一路输入端口的子信号光与输出端口耦合。如图1(c)本发明M×N多播交换开关装置第一实施例的侧视图所示,MEMS反射镜的第一反射镜601~第二反射镜602可独立绕反射镜第一旋转轴线620旋转,选择来自第一输入端口101或第二输入端口102的任意某一路信号耦合至第一输出端口111~第二输出端口112。
注意到当控制MEMS反射镜绕反射镜第一旋转轴线620旋转以选择输入信号时,很可能使得其它未被选择的反射光耦合至某些输入端口。如图1(c)中,当选择第一输入端口101的信号光耦合至输出端口时,来自第二输入端口102的反射光将反射回第二输入端口本身。
为克服上述情形导致的方向性问题,一种可行的方法是在器件的输入端口加入光隔离器。光隔离器并不属于本发明多播交换开关装置的范畴,通常利用熔接的方法与本装置的输入端口连接。本发明图4示意串联光隔离器的多播交换光开关,第一输入端口101、第二输入端口102分别串接有第一隔离器701、第二隔离器702。此时,第二光隔离器702可以阻断第二输入端口102耦合回第二输入端口102的反射光。
图2为本发明的多播交换光开关的第二实施例示意图。图中输入端口、输出端口仍以图1实施例序号标明,然而注意此时输入、输出端口示意为准直器阵列。以第一输入端口101为例,第一微型扩束透镜221、第五微型扩束透镜321均为X方向柱透镜,其中第一微型扩束透镜221的焦距f3小于第五微型扩束透镜321的聚焦f4。输入准直器阵列中的准直器第一输入端口101设置于第一微型扩束透镜221的前焦平面处,第一微型扩束透镜221的像方焦平面与透 镜第五微型扩束透镜321的物方焦平面重合。来自第一输入端口101的准直信号光依次经过上述的第一微型扩束透镜221、第五微型扩束透镜321可以得到X方向扩束的准直信号光。本例中衍射分光元件401为反射式光栅元件。图2的第二实施例器件位置关系及光束传播原理与第一实施例相同,此处不再复述。
本发明的多播交换光开关装置中,输入端口之间或输出端口之间可以根据光斑尺寸预留一定的间距,可使得在某些情形下,通过控制MEMS反射镜分别绕反射镜第一旋转轴线、反射镜601的第二旋转轴线、反射镜602的第二旋转轴线旋转,反射光线处于两相邻端口之间,达到“无输出”的状态。图5(a)、5(b)示意在本发明第一实施例中,俯视方向及侧视方向无输出的情形。
图5(a)中,反射光束与入射光束在X-Z平面内重合,在Y方向错开一定的距离,在此方向并无输出端口接收出射信号,达到无输出状态。当然,也可以通过调整第一反射镜601绕反射镜601的第二旋转轴线611逆时针旋转,可使得反射光束从第一输出端口111下方出射;同理,第二反射镜602绕反射镜602的第二旋转轴线612顺时针旋转,可使得反射光束从第二输出端口112上方出射,达到无输出状态。
图5(b)中,第一反射镜601~第二反射镜602绕反射镜第一旋转轴线620旋转,可使得第一输入端口的反射光从第二输入端口与输出端口之间出射,第二输入端口的反射光从第一输入端口与第二输入端口之间出射,达到无输出状态。
在调节MEMS反射镜进行切换时,通常要求无损切换。例如当需要将某输出端口的信号从信号M1切换至信号M2时,要求过程中不能经历其它信号。若直接控制MEMS反射镜绕反射镜第一旋转轴线调节,输出端口将经历从信号M1至信号M2的所有信号。
输入、输出端口之间预留达到无输出状态的间距,可实现无损切换。当需要调节MEMS反射镜绕反射镜第一旋转轴线旋转,使输入信号从M1切换至M2,此时可首先控制此MEMS反射镜绕其各自反射镜的轴线旋转至无输出状态,然后控制MEMS反射镜绕反射镜第一旋转轴线进行信号切换,最后控制MEMS反射镜绕其各自反射镜的轴线回到原端口。
图6(a)示意3×4多播交换开关对输入信号直接切换及无损切换时光斑的移动过程。如图6(a)所示,其中第一输入端口101~第三输入端口103为输入端口阵列,第一输出端口111~第四输出端口114为输出端口阵列,第一输入信号分量801~第三输入信号分量803对应于第一输入端口101~第三输入端口103的信号光在输出端口111的同级次衍射分量。初始时,来自第一输入端口101的第一信号分量801被第一输出端口111输出,若需切换来自第三输入端口103的第三输入信号分量803,直接调节上述级次的衍射分量对应的MEMS反射镜绕其反射镜第一旋转轴线切换时,来自第二输入端口102的第二信号分量802将先于第三输入信号分量803经过第一输出端口111,如图中实线路径所示。而对于无损伤切换过程,首先调节MEMS反射镜绕反射镜第二旋转轴线旋转,使得第一信号分量801~第三信号分理803在X方向位于输出端口之间,达到无输出状态。然后调节MEMS反射镜绕反射镜第一旋转轴线旋转,使得第三输入信号分量803与第一输出端口111在X方向共轴,最后调节MEMS反射镜绕反射镜第二旋转轴线旋转,使得第三输入信号分量803与第一输出端口111重合,如图中虚线路径所示。
当需要调节MEMS反射镜绕反射镜第二旋转轴线旋转,使输出端口从N1切换至N2。同理,若直接控制MEMS反射镜绕反射镜第二旋转轴线调节,输出信号将经历N1至N2的所有端口。此时,可以首先控制MEMS反射镜绕反射 镜第一旋转轴线旋转至无输出状态,然后控制MEMS反射镜绕反射镜第二旋转轴线进行输出端口切换,最后控制MEMS反射镜绕反射镜第一旋转轴线选择原信号。
图6(b)示意3×4多播交换开关对输出端口直接切换及无损切换时光斑的移动过程。第一输入端口的第一信号分量801从第一输出端口111切换至第三输出端口113,实线路径为直接切换过程,此时,第一输入信号分量801将首先经过第二输出端口112,之后才能到达第三输出端口113。虚线路径为无损伤切换过程,首先调节MEMS反射镜绕反射镜第一旋转轴线旋转,使得第一输入信号分量801在Y方向位于输出端口与输入端口之间,达到无输出状态。然后调节MEMS反射镜绕反射镜第二旋转轴线旋转,使得第一输入信号分量801与第三输出端口113在Y方向共轴,最后调节MEMS反射镜绕反射镜第一旋转轴线旋转,使得第一输入信号分量801与第三输出端口113重合。
在本发明的其它实施例中,每个输入端口配置有光隔离器。光隔离器通常利用熔接的方式与本装置的输入端口连接,如图4所示第一隔离器701、第二隔离器702分别串接于第一输入端口101、第二输入端口102处。对于在输入端口配置有光隔离器的多播交换光开关,为实现无损切换,仅需在Y方向预留达到“无输出”的间距,而在X方向可以紧凑的排列达到更小的器件体积。
当需要调节MEMS反射镜绕反射镜第二旋转轴线旋转使输出端口从N1切换至N2,无损切换过程与图6(b)虚线路径所示相同,此处不再复述。当需要调节MEMS反射镜绕反射镜第一旋转轴线旋转,使输入信号从M1切换至M2,由于此时在X方向排列紧凑,无法通过调节MEMS反射镜绕反射镜第二旋转轴线达到“无输出”状态。下面根据图7说明在输入端口配置有光隔离器,且X方向输出端口排列紧凑的多播交换光开关无损调节过程。
图7以3×6多播交换开关为例进行说明,初始时,来自第一输入端口101的第一信号分量801由第二输出端口112输出,若需将第二输出端口112的信号光由第一信号分量801切换至第三信号分量803。可先调节MEMS反射镜绕反射镜第一旋转轴线旋转至无输出状态,再绕第二旋转轴旋转至信号光第一信号分量801~第三信号分量803与第一输入端口101~第三输入端口103在Y方向共轴。此时再调节MEMS反射镜绕反射镜第一旋转轴线,选择第三信号分量803光至离X轴最近的无光位置,此时光隔离器可阻断调节过程中耦合至第一输出端口101~第三输出端口103的反向信号光801~803。然后调节MEMS反射镜绕反射镜第二旋转轴线旋转使得第三输入信号分量803与第二输出端口112在Y方向共轴,最后微调MEMS反射镜绕反射镜第一旋转轴线旋转,使得信号第三输入信号分量803与第二输出端口112重合,完成无损切换过程。
应当注意在示意图6~图7中无损切换的路径并不是唯一的。
本发明的多播交换光开关能够将任意输入端口的信号光传播至任意的输出端口;任意输出端口可以接受来自任意输入端口的信号光。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

  1. 一种多播交换光开关,其特征在于:包括M个输入端口组成的输入端口装置、N个输出端口组成的输出端口装置、衍射分光元件、光学聚焦元件、1×N反射阵列器件,输入端口排列方向为Y轴方向,输出端口排列方向为X轴方向;衍射分光元件将输入端口的每一束输入信号衍射到至少N个方向进入光学聚焦元件;光学聚焦元件包括第一聚焦透镜(501)和第二聚焦透镜(502),两聚焦透镜的像方焦平面相互重合;第一聚焦透镜(501)将沿Y轴方向分布的来自各输入端口具有相同衍射级次的子信号光束聚焦,第二聚焦透镜(502)将同一输入端口的不同衍射级次的子信号光束在X轴方向各自聚焦;1×N反射阵列器件设置于光学聚焦元件的焦平面上,其各反射单元处于信号光各衍射级次的聚焦处,反射任意输入端口的子光束至任意输出端口。
  2. 根据权利要求1所述的一种多播交换光开关,其特征在于:所述输入端口、输出端口采用光纤阵列,光纤阵列输出后端设置有微透镜阵列进行光准直。
  3. 根据权利要求1所述的一种多播交换光开关,其特征在于:所述输入端口、输出端口采用准直器阵列,准直器阵列的准直器后设置有第一微型扩束透镜(221)、第五微型扩束透镜(321),所述第一微型扩束透镜(221)、第五微型扩束透镜(321)均为X方向柱透镜,其中第一微型扩束透镜(221)的焦距f3小于第五微型扩束透镜(321)的聚焦f4,准直器阵列的准直器设置于第一微型扩束透镜(221)的前焦平面处,第一微型扩束透镜(221)的像方焦平面与第五微型扩束透镜(321)的物方焦平面重合。
  4. 根据权利要求1所述的一种多播交换光开关,其特征在于:所述第一聚焦透镜(501)为Y方向柱面透镜,第二聚焦透镜(502)为X方向柱面透镜。
  5. 根据权利要求2所述的一种多播交换光开关,其特征在于:所述光纤阵列的每个输入端口、输出端口均配置有一个Y向微型柱透镜、一个X向微型柱透镜,输入端口、输出端口位于对应的Y向微型柱透镜、X向微型柱透镜的前焦平面处,X向微型柱透镜焦距f1大于Y向微型柱透镜的焦距f2。
  6. 根据权利要求1或2或3所述的一种多播交换光开关,其特征在于:所述衍射分光元件可以为反射式光栅元件或透射式光栅元件。
  7. 根据权利要求1或2或3所述的一种多播交换光开关,其特征在于:所述1×N反射阵列器件为MEMS反射镜阵列,每一个反射镜可分别绕其第一旋转轴线、第二旋转轴线旋转进行切换,第一旋转轴线与X轴平行,第二旋转轴线与Y轴平行。
  8. 根据权利要求1或2或3所述的一种多播交换光开关,其特征在于:所述第一输入端口(101)、第二输入端口(102)分别串接有第一隔离器(701)、第二隔离器(702)。
PCT/CN2014/094188 2014-10-31 2014-12-18 一种多播交换光开关 WO2016065708A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/523,206 US10048445B2 (en) 2014-10-31 2014-12-18 Multicast exchange optical switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410606115.5 2014-10-31
CN201410606115.5A CN104297858A (zh) 2014-10-31 2014-10-31 一种多播交换光开关

Publications (1)

Publication Number Publication Date
WO2016065708A1 true WO2016065708A1 (zh) 2016-05-06

Family

ID=52317659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094188 WO2016065708A1 (zh) 2014-10-31 2014-12-18 一种多播交换光开关

Country Status (3)

Country Link
US (1) US10048445B2 (zh)
CN (1) CN104297858A (zh)
WO (1) WO2016065708A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9998252B2 (en) * 2014-02-21 2018-06-12 Dicon Fiberoptics, Inc. Apparatus and manufacturing method for an integrated multicast switch, for use in reconfigurable optical add-drop networks
CN105891965A (zh) * 2016-05-10 2016-08-24 许德蛟 大容量光纤开关装置及程控交换方法
CN107861267A (zh) * 2017-10-27 2018-03-30 武汉光迅科技股份有限公司 一种分光比可调的多播交换光开关及方法
CN111221081B (zh) 2018-11-26 2021-11-19 华为技术有限公司 一种基于LCoS的波长选择开关
CN111290084A (zh) * 2020-03-31 2020-06-16 武汉光谷信息光电子创新中心有限公司 多播交换光开关
CN113740971B (zh) * 2020-05-30 2022-10-28 华为技术有限公司 光交换装置、重定向方法、可重构光分插复用器及系统
CN113625462B (zh) * 2021-09-13 2023-01-06 江西欧迈斯微电子有限公司 衍射光学元件、投射模组及电子设备
GB202206315D0 (en) * 2022-04-29 2022-06-15 Huber Suhner Polatis Ltd Optical switch utilising gap optics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077003A1 (en) * 2005-09-30 2007-04-05 Fujitsu Limited Wavelength selective optical switch, and optical device provided with spectrscopic function
US20070104418A1 (en) * 2002-06-12 2007-05-10 Mcguire James P Jr Wavelength selective optical switch
CN102608710A (zh) * 2012-04-20 2012-07-25 武汉邮电科学研究院 基于lcos的波长选择开关及降低端口间串扰的方法
CN103543497A (zh) * 2013-11-05 2014-01-29 武汉邮电科学研究院 波长选择开关装置、用于其的波长切换方法、和通信设备
CN103558667A (zh) * 2013-11-19 2014-02-05 武汉光迅科技股份有限公司 一种基于自由空间传输的多播交换光开关
CN103969748A (zh) * 2013-01-30 2014-08-06 福州高意通讯有限公司 一种基于dlp的波长选择开关

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9069139B2 (en) * 2011-07-28 2015-06-30 Jds Uniphase Corporation Multicast optical switch

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070104418A1 (en) * 2002-06-12 2007-05-10 Mcguire James P Jr Wavelength selective optical switch
US20070077003A1 (en) * 2005-09-30 2007-04-05 Fujitsu Limited Wavelength selective optical switch, and optical device provided with spectrscopic function
CN102608710A (zh) * 2012-04-20 2012-07-25 武汉邮电科学研究院 基于lcos的波长选择开关及降低端口间串扰的方法
CN103969748A (zh) * 2013-01-30 2014-08-06 福州高意通讯有限公司 一种基于dlp的波长选择开关
CN103543497A (zh) * 2013-11-05 2014-01-29 武汉邮电科学研究院 波长选择开关装置、用于其的波长切换方法、和通信设备
CN103558667A (zh) * 2013-11-19 2014-02-05 武汉光迅科技股份有限公司 一种基于自由空间传输的多播交换光开关

Also Published As

Publication number Publication date
CN104297858A (zh) 2015-01-21
US10048445B2 (en) 2018-08-14
US20170315300A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
WO2016065708A1 (zh) 一种多播交换光开关
JP6068478B2 (ja) 光信号処理装置
US6768834B1 (en) Slab optical multiplexer
CN103246015B (zh) 多播光学开关
US8873905B2 (en) Reconfigurable optical add-drop multiplexer
US9641917B2 (en) Optical communications apparatus and method
US9326050B2 (en) Wavelength selective switch and method of manufacturing same
WO2015074266A1 (zh) 一种基于自由空间传输的多播交换光开关
CN104254797A (zh) 多播光学开关
JP2009063964A (ja) 波長選択スイッチ
KR20150131383A (ko) 실리콘 상층 액정 소자를 포함하고, 감소된 크로스 토크를 가지는 파장 선택 스위치
CN105739026B (zh) 一种高端口数目波长选择开关
JP2009168840A (ja) 波長選択スイッチ
KR101967624B1 (ko) 복수 유닛의 파장 선택 스위치
CN104024898A (zh) 多信道光信号监测设备及方法
US7162115B2 (en) Multiport wavelength-selective optical switch
CN108897102B (zh) 一种双波长选择开关
US8755651B2 (en) Tunable optical filters with multiple ports
JP2011179979A (ja) ダブルパスモノクロメータ、波長選択光スイッチ、および光チャンネルモニタ
JP5651904B2 (ja) N×n波長選択スイッチ
US7277607B2 (en) Optical multiplexer/demultiplexer, optical device, and optical transmission system
JP2002107566A (ja) 光機能モジュール
KR101929472B1 (ko) 파장 선택 스위치
JP2018124402A (ja) 光入出力装置
KR101832874B1 (ko) 광 교차연결 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905106

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15523206

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905106

Country of ref document: EP

Kind code of ref document: A1