WO2016065645A1 - 一种回程链路的分配方法及装置 - Google Patents

一种回程链路的分配方法及装置 Download PDF

Info

Publication number
WO2016065645A1
WO2016065645A1 PCT/CN2014/090122 CN2014090122W WO2016065645A1 WO 2016065645 A1 WO2016065645 A1 WO 2016065645A1 CN 2014090122 W CN2014090122 W CN 2014090122W WO 2016065645 A1 WO2016065645 A1 WO 2016065645A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
backhaul link
link information
gateway
path
Prior art date
Application number
PCT/CN2014/090122
Other languages
English (en)
French (fr)
Inventor
庄宏成
罗泽宙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480082269.7A priority Critical patent/CN106717056A/zh
Priority to PCT/CN2014/090122 priority patent/WO2016065645A1/zh
Publication of WO2016065645A1 publication Critical patent/WO2016065645A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for allocating a backhaul link.
  • the backhaul network may be composed of a gateway, a plurality of cell sites, and a backhaul link, as shown in FIG. 1, wherein the backhaul link may include a wireless backhaul link between cell sites, and a cable between the gateway and the cell site.
  • Backhaul link The base station in the cell site generates a data stream according to the user's requirement, and interacts with the gateway through the backhaul link to complete the data stream transmission and reception in the backhaul network.
  • the access point density of wireless networks is the development trend of wireless networks, that is, the number and density of cell sites are increasing, and many cell sites cannot directly interact with the gateway, but are connected by having wired backhaul links.
  • the interaction with the gateway is completed on the cell site, so that congestion is easily generated when the data stream is sent and received through the backhaul link in the backhaul network, causing the entire backhaul network to be paralyzed. Therefore, how to enable each cell site to effectively interact with the gateway becomes One of the important issues in the backhaul network.
  • a base station in a cell site usually directly interacts with a gateway by using a wired backhaul link.
  • the base station can acquire the available backhaul capacity of other base stations, based on other base stations. With the available backhaul capacity, the base station selects the corresponding backhaul link for data transmission and reception.
  • the above method merely provides an optional backhaul link for the base station from the perspective of a single base station, and does not provide an effective selection basis for the base station, but may cause new congestion or reduce the utilization of the backhaul link.
  • the base station 5 and the base station 6 are simultaneously congested, and both detect that the base station 4 has available backhaul capacity.
  • the base station 4 can only receive or transmit data at the same time. Flow, then the base station 4 will cause a new jam; or, after the base station 5 is congested, it sequentially queries the base station with the available backhaul capacity, and finally passes through the base stations 6, 7, 4, and 1 to communicate with the gateway.
  • Mutual greatly reducing the utilization of the backhaul link, it can be seen that in the backhaul network, the choice of the backhaul link used between the base station and the gateway has great blindness.
  • Embodiments of the present invention provide a method and an apparatus for allocating a backhaul link, which solves the congestion of the backhaul link and the utilization of the backhaul link due to the blind selection of the backhaul link in the prior art due to the interaction between the node and the gateway. The problem.
  • An embodiment of the present invention provides a method for allocating a backhaul link, including:
  • the control device acquires backhaul link information of the N nodes, where the backhaul link information includes wired backhaul link information and available wireless backhaul link information, where N is a positive integer;
  • the control device allocates, between the first node and the gateway, the first node according to the backhaul link information.
  • An interaction path where the interaction path is a path with a minimum number of available wireless backhaul links between the first node and the gateway, and the first node is one of the N nodes.
  • the method further includes:
  • the control device allocates a wired backhaul link in the wired backhaul link information to the first node.
  • the backhaul link information further includes a maximum transmission rate of the wired backhaul link of the N nodes, and a maximum of an available wireless backhaul link between the N nodes.
  • the transmission rate after the control device acquires the backhaul link information of the N nodes, further includes:
  • the control device calculates an optimal backhaul rate of the N nodes according to the backhaul link information.
  • control device determines, according to the backhaul link information, the first node and the gateway The interaction path between the two includes:
  • the control device passes the first node through the second node, and the number of available wireless backhaul links passing through the gateway is the least The path is determined as the interaction path, and the second node is one of the neighbor nodes of the first node.
  • control device passes the first node to the second node, and the gateway
  • the path with the least number of available wireless backhaul links is determined as the interaction path, and specifically includes:
  • the control device Determining, by the control device, the first transmission rate according to a maximum transmission rate of the available wireless backhaul link between the first node and the second node, and a maximum transmission rate of the wired backhaul link of the second node The interaction path between the node and the gateway.
  • the method further includes:
  • the control device uses a path that minimizes the number of available wireless backhaul links between the second node and the gateway, and the path A path between the first node and the second node is determined as the interaction path.
  • the control device sends an available wireless backhaul link between the second node and the gateway
  • the path with the least number of paths, and the path between the first node and the second node being determined as the interaction path specifically includes:
  • Determining, by the control device, the first node and the first node according to a maximum transmission rate of an available wireless backhaul link between the first node and the second node, and an optimal backhaul rate of the second node The interaction path between the gateways.
  • the method further includes:
  • the control device acquires a flow rate requirement reported by the N nodes
  • the control device according to the backhaul link information and the flow reported by the N nodes The speed requirement is calculated, and the flow velocity of the interaction between the first node and the gateway is calculated.
  • control device calculates, according to the backhaul link information and the flow rate requirement reported by the N nodes
  • the interaction flow rate of the first node and the gateway includes:
  • control device calculates the interaction flow rate of the first node and the gateway according to the flow rate requirement and the maximum transmission rate of the backhaul link.
  • the control device calculates, according to the flow rate requirement and a maximum transmission rate of the backhaul link, After the flow rate of the interaction between the node and the gateway, the method further includes:
  • the control device acquires between the N nodes Available wireless backhaul link information, including:
  • the control device receives a maximum transmission rate of a wireless backhaul link between the N nodes;
  • the control device determines the transmission rate of the wireless backhaul link and the wireless backhaul link as the available wireless backhaul Link information.
  • an embodiment of the present invention provides a control device, including:
  • An acquiring unit configured to acquire backhaul link information of N nodes, where the backhaul link
  • the information includes wired backhaul link information and available wireless backhaul link information, where N is a positive integer;
  • a path optimization unit configured to: if the backhaul link information does not include the wired backhaul link information of the first node, allocate the first node to the first node according to the backhaul link information in the acquiring unit An interaction path with the gateway, where the interaction path is a path with a minimum number of available wireless backhaul links between the first node and the gateway, and the first node is one of the N nodes node.
  • the path optimization unit is further configured to: if the backhaul link information includes wired backhaul link information of the first node, assign a wired backhaul link in the wired backhaul link information to the first node.
  • control device further includes a computing unit, where
  • the calculating unit is configured to calculate an optimal backhaul rate of the N nodes according to the backhaul link information
  • the backhaul link information further includes a maximum transmission rate of the wired backhaul link of the N nodes and a maximum transmission rate of the available wireless backhaul link between the N nodes.
  • the path optimization unit is specifically configured to: if the backhaul link information of the second node includes wired backhaul link information, the control device passes the first node through the second node, and passes through the gateway The path with the least number of available wireless backhaul links is determined as the interaction path, and the second node is one of the neighbor nodes of the first node.
  • the path optimization unit is further configured to: according to a maximum transmission rate of the available wireless backhaul link between the first node and the second node, and a maximum transmission rate of the wired backhaul link of the second node Determining the interaction path between the first node and the gateway.
  • the path optimization unit is further configured to: if the backhaul link information of the second node does not include wired backhaul link information, minimize the number of available wireless backhaul links between the second node and the gateway The path, and the path between the first node and the second node are determined as the interaction path.
  • the path optimization unit is further configured to determine, according to a maximum transmission rate of an available wireless backhaul link between the first node and the second node, and an optimal backhaul rate of the second node, The interaction path between the first node and the gateway.
  • control device further includes a flow rate optimization unit, wherein ,
  • the acquiring unit is further configured to acquire a flow rate requirement reported by the N nodes;
  • the flow rate optimization unit is configured to calculate an interaction flow rate of the first node and the gateway according to the backhaul link information in the acquiring unit and the flow rate requirement reported by the N nodes.
  • the flow rate optimization unit is specifically configured to determine a maximum competition circle of the N nodes according to the backhaul link information, where the maximum competition circle is used to reflect the available wireless backhaul link in the backhaul link information.
  • An interference situation for the maximum competition circle, calculating the interaction flow rate of the first node and the gateway according to the flow rate requirement and a maximum transmission rate of the backhaul link.
  • control device further includes a sending unit, where
  • the sending unit is configured to: the path optimization unit first node and the gateway
  • the interaction path between the interaction path and the first node in the flow rate optimization unit and the gateway is sent to the first node, such that the first node follows the interaction path and the The interactive flow rate interacts with the gateway.
  • the acquiring unit is further configured to receive a maximum transmission rate of the wireless backhaul link between the N nodes; if a maximum transmission rate of the wireless backhaul link between the N nodes is greater than a threshold, The wireless backhaul link and the transmission rate of the wireless backhaul link are determined as the available wireless backhaul link information.
  • an embodiment of the present invention provides a control device, where the control device includes a processor, and a transceiver connected to the processor, where
  • the transceiver is configured to acquire backhaul link information of N nodes, where the backhaul link information includes wired backhaul link information and available wireless backhaul link information, where N is a positive integer;
  • the processor is configured to: if the backhaul link information does not include the wired backhaul link information of the first node, allocate, according to the backhaul link information, the first node and the gateway to the first node
  • the interaction path is the path with the least number of available wireless backhaul links passing between the first node and the gateway, and the first node is one of the N nodes.
  • the processor is further configured to: if the backhaul link information includes wired backhaul link information of the first node, assign a wired backhaul link in the wired backhaul link information to the first node .
  • control device further includes a computing module connected to the processor, where
  • the calculating module is configured to calculate an optimal backhaul rate of the N nodes according to the backhaul link information
  • the backhaul link information further includes a maximum transmission rate of the wired backhaul link of the N nodes, and a maximum transmission speed of the available wireless backhaul link between the N nodes. rate.
  • the processor is specifically configured to: if the backhaul link information of the second node includes wired backhaul link information, pass the first node through the second node, and the available wireless backhaul chain passing through the gateway The path with the least number of paths is determined as the interaction path, and the second node is one of the neighbor nodes of the first node.
  • the processor is further configured to: according to a maximum transmission rate of an available wireless backhaul link between the first node and the second node, and a maximum transmission rate of the wired backhaul link of the second node, Determining the interaction path between the first node and the gateway.
  • the processor is further configured to: if the backhaul link information of the second node does not include wired backhaul link information, the number of available wireless backhaul links between the second node and the gateway is the least A path, and a path between the first node and the second node are determined as the interaction path.
  • the processor is further configured to determine, according to a maximum transmission rate of an available wireless backhaul link between the first node and the second node, and an optimal backhaul rate of the second node, The interaction path between a node and the gateway.
  • the transceiver is further configured to acquire a flow rate requirement reported by the N nodes;
  • the calculating module is further configured to calculate an interaction flow rate of the first node and the gateway according to the backhaul link information and a flow rate requirement reported by the N nodes.
  • the calculating module is specifically configured to determine a maximum competition circle of the N nodes according to the backhaul link information, where the maximum competition circle is used to reflect interference of the available wireless backhaul link in the backhaul link information. a situation; for the maximum number of competitions, calculating the interaction flow rate of the first node and the gateway according to the flow rate requirement and a maximum transmission rate of the backhaul link.
  • the transceiver is further configured to send the interaction path between the first node and the gateway, and the interaction flow rate of the first node and the gateway to the first node, so that The first node interacts with the gateway according to the interaction path and the interaction flow rate.
  • the transceiver is further configured to receive a maximum transmission rate of the wireless backhaul link between the N nodes;
  • the processor is further configured to determine, if the maximum transmission rate of the wireless backhaul link between the N nodes is greater than a threshold, the transmission rate of the wireless backhaul link and the wireless backhaul link as The available wireless backhaul link information.
  • an embodiment of the present invention provides a method for allocating a backhaul link, including:
  • the first node acquires backhaul link information, where the backhaul link information includes available wireless backhaul link information between the first node and the neighboring node, wired backhaul link information of the first node, and the first At least one of wired backhaul link information of a neighbor node of the node;
  • the first node determines an interaction path between the first node and the gateway according to the backhaul link information.
  • the first node determines, according to the backhaul link information, an interaction path between the first node and the gateway:
  • the path that the first node determines that the number of available wireless backhaul links between the first node and the gateway is the least is an interaction path between the first node and the gateway.
  • the first node determines, according to the backhaul link information,
  • the interaction path between the first node and the gateway is specifically:
  • the first node determines that the wired backhaul link in the wired backhaul link information of the first node is an interaction path between the first node and the gateway.
  • the backhaul link information includes a wired backhaul chain of the neighboring node of the first node
  • the path information is determined by the first node according to the backhaul link information, where the interaction path between the first node and the gateway is specifically:
  • the method further includes:
  • the first node calculates an optimal backhaul rate of the first node according to the backhaul link information
  • the available wireless backhaul link information between the first node and the neighboring node includes a maximum transmission rate of the available wireless backhaul link between the first node and the neighboring node, and the wired backhaul chain of the first node
  • the road information includes a maximum transmission rate of the wired backhaul link of the first node
  • the wired backhaul link information of the neighboring node of the first node includes a wired backhaul link rate of the neighboring node of the first node.
  • the backhaul link information does not include the first node
  • the wired backhaul link information of the neighboring node the first node determining, according to the backhaul link information, the interaction path between the first node and the gateway is:
  • the first node determines an interaction path between the first node and the gateway according to the available wireless backhaul link information between the first node and the neighboring node and the optimal backhaul rate of the first node.
  • an embodiment of the present invention provides a node, including:
  • an acquiring unit configured to acquire backhaul link information, where the backhaul link information includes available wireless backhaul link information between the first node and the neighboring node, wired backhaul link information of the first node, and the At least one of wired backhaul link information of a neighboring node of the first node;
  • a path optimization unit configured to determine an interaction path between the first node and the gateway according to the backhaul link information in the acquiring unit.
  • the path optimization unit is specifically configured to determine, if the backhaul link information does not include the wired backhaul link information of the first node, determine an available wireless backhaul link between the first node and the gateway.
  • the least number of paths are the interaction paths between the first node and the gateway.
  • the path optimization unit is specifically configured to: if the backhaul link information includes the wired backhaul link information of the first node, determine that the wired backhaul link in the wired backhaul link information of the first node is The interaction path between the first node and the gateway.
  • the path optimization unit is specifically configured to: if the backhaul link information includes wired backhaul link information of the neighboring node of the first node, according to the available wireless backhaul link between the first node and the neighboring node The information and the wired backhaul link information of the neighboring node of the first node determine an interaction path between the first node and the gateway.
  • the node further includes a computing unit, where
  • the calculating unit is configured to calculate an optimal backhaul rate of the first node according to the backhaul link information
  • the available wireless backhaul link information between the first node and the neighboring node includes a maximum transmission rate of the available wireless backhaul link between the first node and the neighboring node, and the wired backhaul chain of the first node
  • the road information includes a maximum transmission rate of the wired backhaul link of the first node
  • the wired backhaul link information of the neighboring node of the first node includes a wired backhaul link rate of the neighboring node of the first node.
  • the path optimization unit is specifically configured to: if the backhaul link information does not include wired backhaul link information of the neighboring node of the first node, according to the available wireless backhaul chain between the first node and the neighboring node The way information and the optimal backhaul rate of the first node determine an interaction path between the first node and the gateway.
  • an embodiment of the present invention provides a node, including a processor, and a transceiver connected to the processor, where
  • the transceiver is configured to acquire backhaul link information, where the backhaul link information includes available wireless backhaul link information between the first node and a neighboring node, and wired backhaul link information of the first node, and At least one of wired backhaul link information of the neighboring node of the first node;
  • the processor is configured to determine an interaction path between the first node and a gateway according to the backhaul link information.
  • the processor is further configured to determine, if the backhaul link information does not include wired backhaul link information of the first node, determine the number of available wireless backhaul links between the first node and the gateway. The least path is the interaction path between the first node and the gateway.
  • the processor is specifically configured to: if the backhaul link information includes the wired backhaul link information of the first node, determine the wired backhaul link information of the first node.
  • the wired backhaul link is an interaction path between the first node and the gateway.
  • the processor is specifically configured to: if the backhaul link information includes wired backhaul link information of the neighboring node of the first node, according to available wireless backhaul link information between the first node and the neighboring node And wired backhaul link information of the neighboring node of the first node, and determining an interaction path between the first node and the gateway.
  • the processor is further configured to calculate an optimal backhaul rate of the first node according to the backhaul link information
  • the available wireless backhaul link information between the first node and the neighboring node includes a maximum transmission rate of the available wireless backhaul link between the first node and the neighboring node, and the wired backhaul chain of the first node
  • the road information includes a maximum transmission rate of the wired backhaul link of the first node
  • the wired backhaul link information of the neighboring node of the first node includes a wired backhaul link rate of the neighboring node of the first node.
  • the processor is specifically configured to: if the backhaul link information does not include wired backhaul link information of the neighboring node of the first node, according to the available wireless backhaul link between the first node and the neighboring node.
  • the information and the optimal backhaul rate of the first node determine an interaction path between the first node and the gateway.
  • Embodiments of the present invention provide a method and apparatus for allocating a backhaul link, by acquiring wired backhaul link information of N nodes and available wireless backhaul link information, and further, according to wired backhaul link information of N nodes and N
  • the available wireless backhaul link information of the node determines the interaction path between each node and the gateway. Since the link distribution between the N nodes is determined in advance before each node interacts with the gateway, the N nodes are determined macroscopically.
  • the backhaul capability of the wired backhaul link and the available wireless backhaul links between the N nodes, so that the backhaul chain connected to each node in the backhaul network can be The carrying capacity of the road is targeted to determine the interaction path with the gateway for each node.
  • the congestion caused by the node being too concentrated or the link carrying capacity is limited during the interaction between the N nodes and the gateway is avoided.
  • the problem of the decrease in the backhaul link utilization solves the problem of congestion caused by blindly selecting the backhaul link and the utilization of the backhaul link due to the blind connection of the backhaul link in the prior art.
  • FIG. 1 is an architectural diagram of an interactive system of data flows in a backhaul network in the prior art
  • FIG. 2 is a system architecture diagram of data transmission and reception in a backhaul network according to an embodiment of the present invention
  • FIG. 3 is a flowchart 1 of a method for allocating a backhaul link according to an embodiment of the present invention
  • FIG. 4 is a tree diagram of an optimal network topology according to an embodiment of the present invention.
  • FIG. 5 is a second flowchart of a method for allocating a backhaul link according to an embodiment of the present invention
  • FIG. 6 is a flowchart 3 of a method for allocating a backhaul link according to an embodiment of the present invention.
  • FIG. 7 is a flowchart 4 of a method for allocating a backhaul link according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of hardware of a control device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of hardware of a node according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram 1 of a control device according to an embodiment of the present disclosure.
  • FIG. 11 is a second schematic structural diagram of a control device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram 3 of a control device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram 4 of a control device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram 1 of a node according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram 2 of a node according to an embodiment of the present invention.
  • FIG. 2 is a system architecture diagram of data transmission and reception in a backhaul network according to the present invention, wherein a gateway uses a wired backhaul link to interact with a base station, and a wireless backhaul link is used between the base station and the base station.
  • the base station that is not directly connected to the gateway through the wired backhaul link needs to be grafted on the base station with the wired backhaul link through the wireless link, and then interacts with the gateway through the base station with the wired backhaul link after transiting.
  • the control device is connected to the respective base stations for interaction, and may be independent of the gateway and the respective base stations, or the control device may be carried in a certain base station, so that the control device is each base station.
  • the optimal interaction scheme is provided, and the gateway interacts with the gateway.
  • the optimal interaction scheme may include an interaction path between the base station and the gateway, and an interaction flow rate.
  • the method for allocating the backhaul link can avoid congestion caused by the base station being too dense or the backhaul link bearability is limited to a certain extent, and the utilization of the backhaul link is improved.
  • the method for allocating a backhaul link provided by the present invention can be applied to a base station, and can also be applied to various nodes and cell sites. Therefore, the nodes, the base stations, and the cell sites involved in the present invention can be replaced with each other.
  • the invention is not limited thereto.
  • An embodiment of the present invention provides a method for allocating a backhaul link, as shown in FIG. 3, including:
  • the control device acquires backhaul link information of the N nodes, where the backhaul link information includes wired backhaul link information and available wireless backhaul link information, where N is a positive integer.
  • the control device allocates, according to the backhaul link information, the interaction path between the first node and the gateway, where the first node is The interaction path is a path with the least number of available wireless backhaul links passing between the first node and the gateway, and the first node is one of the N nodes.
  • the control device allocates an interaction path between the first node and the gateway to the first node, so that the first node interacts with the gateway according to the interaction path.
  • the wired backhaul link of the N nodes refers to a backhaul link directly connected by the node and the gateway, and the wireless backhaul link of the N nodes refers to a backhaul connected between the node and the node.
  • the available wireless backhaul link of the N nodes refers to a wireless backhaul link in which the maximum transmission speed of the N nodes is greater than a threshold.
  • the wired backhaul link information of the N nodes may include a wired backhaul link of the N nodes and a maximum transmission rate of the wired backhaul link, and the available wireless backhaul link information of the N nodes may include the The wireless backhaul link between the N nodes and the maximum transmission rate of the wireless backhaul link.
  • the control device acquires the backhaul link information, the backhaul link of the N nodes and the available wireless backhaul link of the N nodes An optimal network topology in which the N nodes interact with the gateway is formed.
  • the control device can receive the wired backhaul link of the N nodes sent by the N nodes, and the maximum transmission rate of the wireless backhaul link between the N nodes; if the wireless backhaul chain between the two nodes is determined When the maximum transmission rate of the path is greater than the threshold, the control device determines that the wireless backhaul link between the two nodes is an available wireless backhaul link; and further, the control device according to the wired backhaul of the N nodes The link, the available wireless backhaul link between the N nodes, determines an optimal network topology between the N nodes, as shown in FIG. 2 .
  • the control device may receive an available wireless backhaul link between the node and the neighboring node reported by each of the N nodes, where the available wireless backhaul link is the maximum transmission determined by the base station. a wireless backhaul link having a rate greater than a threshold; further, the control device determines an optimal network topology between the N nodes according to the wired backhaul link and the available wireless backhaul link, as shown in FIG. .
  • the control device may allocate the first node to the first node according to the backhaul link information.
  • An interaction path between a node and a gateway wherein the interaction path is a path with a minimum number of available wireless backhaul links between the first node and the gateway, and the first node is one of the N nodes.
  • the control device can determine the interaction path for the interaction with the gateway for each node in a targeted manner for the bearer capability of the backhaul link that each node connects in the backhaul network.
  • the control device determines, according to the backhaul link information, the passage between the first node and the gateway.
  • the path with the smallest number of available wireless backhaul links is the interaction path between the first node and the gateway.
  • the wired backhaul link can transmit and receive data streams at the same time, the wired backhaul link has the strongest bearer capability. Therefore, if the backhaul link information includes the wired backhaul link information of the first node, The control device then assigns a wired backhaul link in the wired backhaul link information to the first node, so that the first node interacts with the gateway according to the wired backhaul link.
  • FIG. 2 is a schematic diagram of an optimal network topology in which eight nodes interact with a gateway.
  • the control device may be based on the optimal The connection relationship between nodes and nodes in the network topology determines the tree diagram of the optional path of each node. As shown in Figure 4, it is a tree diagram of the optional path of node 7.
  • node 7 can be respectively After node 4 and node 1 interact with the gateway (3 hops in total), or node 7 can interact with the gateway through node 3 (2 hops in total), at this time, the control device can associate node 7 with the optimal network topology.
  • the path with the least number of interactions between the gateways serves as an interaction path between the node 7 and the gateway.
  • the control device can then instruct the node 7 to interact with the gateway according to the interaction path according to the determined interaction path.
  • the control device may further calculate an optimal backhaul rate of the N nodes according to the backhaul link information, where the optimal backhaul rate is combined with the maximum transmission rate of the neighboring node, which reflects The optimal transmission rate of a node. In this way, the control device can determine at least one interaction path between the first node and the gateway by referring to the optimal backhaul rate of the N nodes, thereby avoiding potential congestion. And improve the utilization of the backhaul network.
  • the number of available wireless backhaul links between the first node and the gateway determined by the control device may be multiple.
  • the control device may query whether the backhaul link information of the second node is And including the wired backhaul link information, determining an eligible interaction path as an optimal path for the first node to interact with the gateway, where the second node is one of the neighboring nodes of the first node.
  • the control device may be configured according to a maximum transmission rate of the available wireless backhaul link between the first node and the second node. And determining, by the maximum transmission rate of the wired backhaul link of the second node, an optimal path for the first node to interact with the gateway;
  • the control device may be configured according to a maximum transmission rate of the available wireless backhaul link between the first node and the second node, And an optimal backhaul rate of the second node, determining an optimal path for the first node to interact with the gateway.
  • control device may further determine an interaction flow rate of each node interacting with the network management according to the backhaul link information, so as to further control congestion and decrease caused by blindly selecting the link when the node sends and receives data streams in the backhaul network.
  • the problem of the utilization of the backhaul link, etc., in an optional implementation manner, the interaction path and the interaction flow rate of each node interacting with the gateway may be determined by constructing a neighbor information table of each node, and the method will be in the following embodiments. It is elaborated in detail, so it will not be repeated here.
  • step 103 after the control device determines the interaction path between the first node and the gateway, the control device allocates the interaction path to the first node, so that the first node follows the interaction path and the The gateway interacts to reduce congestion caused by excessive node concentration or limited link carrying capacity, and improves the utilization of the backhaul link.
  • An embodiment of the present invention provides a method for allocating a backhaul link, as shown in FIG. 5, including:
  • the first node acquires backhaul link information, where the backhaul link information includes available wireless backhaul link information between the first node and the neighboring node, and the wired backhaul of the first node. At least one of link information and wired backhaul link information of a neighboring node of the first node.
  • the first node determines an interaction path between the first node and the gateway according to the backhaul link information.
  • the first node interacts with the gateway according to the interaction path.
  • the first node may be any one of the base stations in the interactive system of the data flow in the backhaul network, and the first node may obtain the maximum transmission rate of the wireless backhaul link with the adjacent node, if The maximum transmission rate of the wireless backhaul link is greater than a threshold, and the first node uses the wireless backhaul link that is greater than the threshold as an available wireless backhaul link, and the available wireless backhaul link and the available wireless backhaul link
  • the maximum transmission rate is the available wireless backhaul link information between the first node and the neighboring node.
  • the backhaul link between the first node and the gateway is the wired backhaul link of the first node, and the wired backhaul link of the first node and the wired backhaul link of the first node
  • the maximum transmission rate is the wired backhaul link information of the first node.
  • the maximum transmission rate of the wired backhaul link of the neighboring node of the first node and the wired backhaul link of the neighboring node of the first node is the first node Wired backhaul link information of neighbor nodes.
  • the first node may determine, according to the wired backhaul link information, an interaction path between the first node and the gateway, so that the first node may be used for the first node.
  • the bearer capability of the backhaul link is targeted to determine the interaction path with the gateway for the first node.
  • the first node determines, according to the backhaul link information, the interaction between the first node and the gateway.
  • a path the path being the least number of available wireless backhaul links between the first node and the gateway.
  • the first node determines the wired backhaul link information of the first node.
  • the wired backhaul link is the interaction path between the first node and the gateway.
  • the first node preferably prefers the wired backhaul link to interact with the gateway as an interaction path.
  • the first node may determine according to the maximum transmission speed of the wireless backhaul path of the node adjacent thereto and the maximum transmission speed of the wired backhaul path of the adjacent node. The interaction path that interacts with the gateway.
  • the first node may further calculate an optimal backhaul rate of the first node according to the backhaul link information, and at this time, in the backhaul link information
  • the first node determines the first according to the available wireless backhaul link information between the first node and the neighboring node and the wired backhaul link information of the neighboring node of the first node.
  • the road information and the optimal backhaul rate of the first node determine an interaction path between the first node and the gateway.
  • the first node may determine the interaction path of the first node and the gateway by constructing the neighbor information table of the first node, and the method will be elaborated in the following embodiments, so the details are not described herein. .
  • step 203 after the first node determines the interaction path between the first node and the gateway, interacting with the gateway according to the interaction path, thereby reducing the blind selection of the backhaul link due to excessive node concentration.
  • the congestion problem improves the utilization of the backhaul link.
  • Embodiments of the present invention provide a method for allocating a backhaul link by acquiring wired backhaul link information of N nodes and available wireless backhaul link information, and further, according to wired backhaul link information of N nodes and N nodes.
  • the wireless backhaul link information can be used to determine the interaction path between each node and the gateway. Since the link distribution between the N nodes is determined in advance before each node interacts with the gateway, N nodes are macroscopically determined.
  • the wired backhaul link and the bearer capability of the available wireless backhaul link between the N nodes so that the bearer capability of the backhaul link connected to each node in the backhaul network can be targeted for each node.
  • Determining the interaction path with the gateway to some extent avoids the problem of congestion and backhaul link utilization caused by the node being too concentrated or the link carrying capacity is limited during the interaction between the N nodes and the gateway.
  • the congestion caused by the blind link selection of the backhaul link and the utilization of the backhaul link are reduced due to the interaction between the node and the gateway.
  • An embodiment of the present invention provides a method for allocating a backhaul link, as shown in FIG. 6, including:
  • the control device acquires backhaul link information to determine an optimal network topology between the N nodes, where the backhaul link information includes wired backhaul link information of N nodes and available wireless backhaul link information of N nodes.
  • N is an integer;
  • the control device receives a flow rate requirement reported by the N nodes.
  • the control device determines, according to the maximum transmission rate of the wired backhaul link and the available wireless backhaul link in the optimal network topology, an interaction path of the N nodes to receive and receive data streams;
  • the control device calculates an interaction flow rate of interaction between the N nodes and the gateway according to the flow rate requirement and the backhaul link information.
  • the control device allocates an interaction path and an interaction flow rate of the N nodes and the gateway to the corresponding N nodes, respectively, so that the N nodes interact with the gateway according to the interaction path and the interaction flow rate.
  • the wired backhaul link of the N nodes refers to a backhaul link directly connected between the node and the gateway
  • the wireless backhaul link between the N nodes refers to a connection between the node and the node.
  • the backhaul link, the available wireless backhaul link between the N nodes is a wireless backhaul link whose maximum transmission speed in the wireless backhaul link between the N nodes is greater than a threshold.
  • the control device can receive the wired of the N nodes sent by the N nodes. a maximum transmission rate of the backhaul link and the wireless backhaul link between the N nodes; if it is determined that the maximum transmission rate of the wireless backhaul link between the N nodes is greater than a threshold, the control device determines the wireless The backhaul link is an available wireless backhaul link; further, the control device determines an optimal network topology between the N nodes according to the wired backhaul link and the available wireless backhaul link, as shown in FIG. 2 Show.
  • the control device may receive an available wireless backhaul link between the node and the neighboring node reported by each of the N nodes, where the available wireless backhaul link is the maximum transmission determined by the base station. a wireless backhaul link having a rate greater than a threshold; further, the control device determines an optimal network topology between the N nodes according to the wired backhaul link and the available wireless backhaul link, as shown in FIG. .
  • the control device can receive the flow rate requirements reported from the N nodes.
  • the flow rate requirement may include a minimum rate requirement x f,min and a maximum rate requirement x f,max for each of the nodes to communicate with the gateway.
  • the backhaul link information further includes a maximum transmission rate of the wired backhaul link of the N nodes and a maximum transmission rate of the available wireless backhaul link between the N nodes.
  • the maximum transmission rate of the wireless backhaul link is:
  • l frame is the frame length of the wireless backhaul transmission
  • n symbol is the number of symbols contained in each frame
  • n bit is the number of bits per symbol of the link (i, j).
  • step 303 the control device determines, according to the optimal network topology, the interaction of the N nodes to receive and receive data streams according to the maximum transmission rate of the wired backhaul link and the available wireless backhaul link in the optimal network topology. path.
  • an interaction path of the first node (node i) is determined as an example, and the first node is any one of the N nodes.
  • control device may first determine an optimal wireless backhaul neighboring point j * of the first node:
  • r j,c is the maximum transmission rate of the wired backhaul link of the neighboring station j
  • r i,j is the maximum transmission rate of the wireless backhaul link of the first node i and its neighboring point j.
  • control device can determine the optimal optimal backhaul rate b h i of the first node:
  • r i,c is the maximum transmission rate of the wired backhaul link of the first node i
  • j * is the optimal wireless backhaul neighbor of the first node i.
  • the control device may according to the optimal backhaul rate bh i of the first node, the maximum transmission rate of the wireless backhaul link of the first node and the neighboring node, and the maximum transmission rate of the wired backhaul link of the neighboring node of the first node.
  • the neighbor node information table of the first set node is constructed. As shown in Table 1, the neighbor node information table is used to reflect the positional relationship between each node and the maximum transmission rate between each node.
  • r i,M is the maximum transmission rate of the wireless backhaul link from the first node i to the neighboring node M
  • bh M is the optimal backhaul rate of the neighboring node M
  • r M,c is the wired backhaul link of the neighboring node Maximum transfer rate.
  • the control device may construct a neighbor information table of each node, and finally obtain the neighbor information table of the N nodes to determine a positional relationship between the nodes in the optimal network topology and the optimal network topology.
  • the control device And selecting the wired backhaul link as the interaction path, where the first node is any one of the N nodes; if the first node needs to perform an L hop, and is connected to the node connected to the wired backhaul link, The control device selects a node that requires the least number of hops as the interaction path. If there are multiple nodes with the least number of hops, the node with the largest transmission rate is selected as the interaction according to the neighbor information table. path.
  • control device allocates an interaction path to the first node, and the control device determines, according to the neighbor information table, whether the first node is directly connected to the wired backhaul link, if the first node and the wired backhaul link Directly connected, the wired backhaul link is assigned as an interaction path to the first node.
  • the control device determines, according to the neighbor information table, that only a single hop is needed to reach the node connected to the wired backhaul link, if one hop is available And when there are multiple nodes connected to the wired backhaul link, according to the maximum transmission rate of the available wireless backhaul link between the first node and the neighboring node in the neighboring node information table, and the The maximum transmission rate of the wired backhaul link of the neighbor node is the first node i to allocate the single-hop wireless backhaul link with the largest transmission rate:
  • the control device if there is no single-hop wireless backhaul link to the node connected to the wired backhaul link, the control device preferably has the least hop path as the interaction path, and if the required hop count is the same, the control device can Determining, by the neighboring node information table, a maximum transmission rate of the available wireless backhaul link between the first node and the neighboring node, and an optimal backhaul rate of the neighboring node, selecting the node with the largest maximum transmission rate as Interaction path:
  • the control device determines N nodes to transmit and receive according to the maximum transmission rate of the wired backhaul link and the available wireless backhaul link in the optimal network topology.
  • the interactive path of the data stream is the control device determines N nodes to transmit and receive according to the maximum transmission rate of the wired backhaul link and the available wireless backhaul link in the optimal network topology.
  • step 304 based on the optimal network topology, the control device calculates an interaction flow rate of the N nodes to transmit and receive data streams according to the flow rate requirement and the maximum transmission rate of the wired backhaul link and the available wireless backhaul link in the optimal network topology.
  • control device determines a maximum competition circle in the optimal network topology according to the optimal network topology, where the maximum competition circle is used to reflect the available wireless backhaul link in the optimal network topology. Interference situation; further, for the maximum competition circle, the control device calculates the N node transmit and receive data streams according to the flow rate requirement and the maximum transmission rate of the wired backhaul link and the available wireless backhaul link in the optimal network topology The interactive flow rate.
  • each base station In order to determine the flow rate of the data stream when each node interacts with the gateway, it is first necessary to determine the maximum circle of competition for the stream. Because each base station can only send or receive wireless signals at a certain time, that is, each wireless backhaul link cannot simultaneously send and receive data at the same time.
  • the control device After determining the maximum number of competitions in the optimal network topology, the control device determines the minimum rate requirement x f,min and the maximum rate requirement x f,max , and the cable in the optimal network topology according to the interaction between each node and the gateway.
  • the maximum transmission rate of the backhaul link and the available wireless backhaul link calculate the price P j of each competition maximum circle:
  • ⁇ d is the derivative of L(x,p) versus p
  • is the iterative step size
  • F is the set of all data streams
  • B l is the maximum transmission rate of backhaul link 1 in the optimal network topology.
  • control device calculates the rate x i of sending and receiving data streams when each node interacts with the gateway based on the price of the competition maximum circle:
  • control device calculates the interactive flow rate of the N nodes to receive and receive data streams according to the flow rate requirement and the maximum transmission rate of the wired backhaul link and the available wireless backhaul link in the optimal network topology.
  • step 305 the control device allocates the interaction flow rate and the interaction path of the N nodes and the gateway to the corresponding N nodes, respectively, so that the N nodes interact with the gateway at the interaction flow rate according to the interaction path respectively.
  • Embodiments of the present invention provide a method for allocating a backhaul link by acquiring wired backhaul link information of N nodes and available wireless backhaul link information, and further, according to wired backhaul link information of N nodes and N nodes.
  • the wireless backhaul link information can be used to determine the interaction path between each node and the gateway. Since the link distribution between the N nodes is determined in advance before each node interacts with the gateway, the wired backhaul of the N nodes is determined macroscopically.
  • the bearer capability of the link and the available wireless backhaul link between the N nodes so that the bearer capability of the backhaul link connected to each node in the backhaul network can be targeted and determined for each node.
  • the interaction path of the interaction avoids the problem of congestion and backhaul link utilization caused by the node being too concentrated or the link carrying capacity is limited in the process of the interaction between the N nodes and the gateway, and the prior art is solved. Congestion caused by blindly selecting the backhaul link when the node interacts with the gateway and the utilization of the backhaul link is reduced .
  • An embodiment of the present invention provides a method for allocating a backhaul link, as shown in FIG. 7, including:
  • the first node determines an available wireless backhaul link with the neighboring node, and a wired backhaul link of the first node.
  • the first node determines, according to the wired backhaul link and the available wireless backhaul link, an interaction path between the first node and the gateway.
  • the first node reports the flow rate requirement and the maximum transmission of the interaction path to the control device. Transmitting rate, so that the control device determines the interaction flow rate of the first node according to the flow rate requirement and the maximum transmission rate of the interaction path and sends the interactive flow rate to the first node;
  • the first node interacts with the gateway according to the interaction path and the interaction flow rate.
  • the first node may be any one of the base stations in the interactive system of the data flow in the backhaul network, and the first node may obtain the maximum transmission rate of the wireless backhaul link with the neighboring node, if The maximum transmission rate of the wireless backhaul link is greater than a threshold, and the first node uses the wireless backhaul link that is greater than the threshold as an available wireless backhaul link. If the first node is directly connected to the gateway, the backhaul link between the first node and the gateway is the wired backhaul link of the first node.
  • the first node may receive the wired backhaul link of the neighboring node.
  • the maximum transmission rate and the maximum transmission rate of the available wireless backhaul link between the first node and the neighboring node are the maximum transmission rate and the maximum transmission rate of the available wireless backhaul link between the first node and the neighboring node.
  • the first node determines, according to the maximum transmission rate of the wired backhaul link and the maximum transmission rate of the available wireless backhaul link, the neighbor node information table of the first node, as shown in Table 2,
  • the neighbor information table is used to reflect a set of maximum transmission rates between the first node and the neighboring point.
  • r i,M is the maximum transmission rate of the wireless backhaul link from the first node i to the neighboring node M
  • bh M is the optimal backhaul rate of the neighboring node M
  • r M,c is the wired backhaul link of the neighboring node Maximum transfer rate.
  • the first node neighbor information table includes a node that connects to the wired backhaul link, that is, r i,c is not 0, the first node uses the wired backhaul link as the first node and the gateway. Interactive interaction path.
  • the first node neighbor information table does not include a section connecting the wired backhaul link Point, but the neighboring node of the first node in the first node neighbor information table is connected with a wired backhaul link, and then the first node selects the neighbor node with the largest transmission rate of the wireless backhaul link as the interaction path.
  • the first node may be from the adjacency And acquiring a neighboring node information table of the neighboring point; and determining, according to the neighboring node information table of the neighboring point, an interaction path of the first node interacting with the gateway.
  • the neighboring node information table of the neighboring node still does not include the node that connects the wired backhaul link, continue to acquire the neighboring node information table of the neighboring node of the neighboring node until the node that includes the wired backhaul link is obtained, and Select the node with the fewest hops to interact with the gateway as the interaction path.
  • the first node determines an interaction path of the first node to interact with the gateway according to the wired backhaul link and the available wireless backhaul link.
  • step 403 the first node reports the flow rate requirement and the maximum transmission rate of the interaction path to the control device, so that the control device determines the interaction flow rate of the first node according to the flow rate requirement and the maximum transmission rate of the interaction path, and sends the interaction flow rate to the first One node.
  • the control device determines the interaction flow rate of the first node according to the flow rate requirement and the maximum transmission rate of the interaction path, and sends the interaction flow rate to the first One node.
  • step 404 the first node interacts with the gateway according to the interaction path determined in step 402 and the interaction flow rate determined in step 403.
  • the interactive system of the data flow in the backhaul network is equivalent to determining the most between the node and the node in the invisible network.
  • An embodiment of the present invention provides a method for allocating a backhaul link, and determining an interaction path between a first node and a gateway by acquiring wired backhaul link information of the first node and available wireless backhaul link information between the first node. Since the link distribution between the first node and the gateway is determined in advance before the first node interacts with the gateway, the wired backhaul link of the first node and the available wireless backhaul chain between the first node are macroscopically determined.
  • the carrying capacity of the road is such that the first node determines the interaction path with the gateway for the first node, and avoids the interaction between the first node and the gateway in the process of interacting with the gateway due to blind selection. Congestion and the problem of reduced utilization of the backhaul link.
  • FIG. 8 is a block diagram showing the hardware of the control device of the present invention:
  • control device includes a processor 01, a transceiver 02, and a calculation module 03,
  • the processor 01, the transceiver 02, and the calculation module 03 are connected and communicated via the bus 04.
  • the processor 01 is a control center of the control device, and the processor 01 performs processing on the data received by the transceiver 02, and calls the software or program in the transceiver 02 or the calculation module 03 to execute each of the control devices. Item function.
  • the transceiver 02 can be used for transmitting and receiving information or receiving and transmitting signals during a call. After receiving the information sent by the base station or the terminal, the transceiver 02 processes the processor 01; in addition, the transceiver 02 can communicate with the network and other through wireless communication. Device communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to GSM (Globa l Stem tem of Mobile communication), GPRS (General Packet Radio Service), CDMA (Code Division) Multiple Access, Code Division Multiple Access, WCDMA (Wideband Code Division Multiple Access), LTE (Long Term Evolution), and the like.
  • the calculation module 03 can be used for adding, subtracting, multiplying, and dividing various data sent by the transceiver 02 or the processor 01 to provide an operation function for the control device shown.
  • the transceiver 02 is configured to acquire backhaul link information of N nodes, where the backhaul link information includes wired backhaul link information and Wireless backhaul link information is available, N is a positive integer;
  • the processor 01 is configured to: if the backhaul link information does not include the wired backhaul link information of the first node, allocate the first node and the gateway to the first node according to the backhaul link information. An interaction path between the first node and the gateway with a minimum number of available wireless backhaul links, the first node being one of the N nodes.
  • the processor 01 is further configured to: if the backhaul link information includes the wired backhaul link information of the first node, allocate a wired backhaul link in the wired backhaul link information to the The first node is described.
  • the calculating module 03 is configured to calculate an optimal backhaul rate of the N nodes according to the backhaul link information
  • the backhaul link information further includes a maximum transmission rate of the wired backhaul link of the N nodes and a maximum transmission rate of the available wireless backhaul link between the N nodes.
  • the processor 01 is specifically configured to: if the backhaul link information of the second node includes wired backhaul link information, pass the first node to the second node, and pass through the second node The path with the smallest number of available wireless backhaul links is determined as the interaction path, and the second node is one of the neighbor nodes of the first node.
  • the processor 01 is further configured to: according to a maximum transmission rate of an available wireless backhaul link between the first node and the second node, and a wired backhaul link of the second node a maximum transmission rate, the interaction path between the first node and the gateway is determined.
  • the processor 01 is further configured to: if the backhaul link information of the second node does not include wired backhaul link information, pass the available wireless backhaul chain between the second node and the gateway A path having the fewest number of paths, and a path between the first node and the second node are determined as the interaction path.
  • the processor 01 is further configured to: according to a maximum transmission rate of an available wireless backhaul link between the first node and the second node, and an optimal backhaul rate of the second node, Determining the between the first node and the gateway Interaction path.
  • the transceiver 02 is further configured to acquire a flow rate requirement reported by the N nodes;
  • the calculating module 03 is further configured to calculate an interaction flow rate of the first node and the gateway according to the backhaul link information and a flow rate requirement reported by the N nodes.
  • the calculating module 03 is specifically configured to determine, according to the backhaul link information, a contention maximum circle of the N nodes, where the contention maximum circle is used to reflect the available wireless backhaul in the backhaul link information.
  • the interference condition of the link for the maximum circle of competition, calculating the interaction flow rate of the first node and the gateway according to the flow rate requirement and the maximum transmission rate of the backhaul link.
  • the transceiver 02 is further configured to send the interaction path between the first node and the gateway, and the interaction flow rate of the first node and the gateway to the first a node, such that the first node interacts with the gateway according to the interaction path and the interaction flow rate.
  • the transceiver 02 is further configured to receive a maximum transmission rate of the wireless backhaul link between the N nodes;
  • the processor 01 is further configured to: if a maximum transmission rate of the wireless backhaul link between the N nodes is greater than a threshold, determine a transmission rate of the wireless backhaul link and the wireless backhaul link as The available wireless backhaul link information.
  • FIG. 9 is a hardware diagram of a node provided by the present invention:
  • the node can be any type of base station or a cell site.
  • the base station is used as a node as an example:
  • control device includes a processor 11 and a transceiver 12.
  • the processor 11 and the transceiver 12 are communicatively connected via a bus 13.
  • the processor 11 is a control center of the base station.
  • the processor 11 performs various functions of the base station by processing data received by the transceiver 12 and calling software or programs in the transceiver 12.
  • the transceiver 12 can be used for receiving and transmitting information during the transmission or reception of information or a call, and the transceiver 12 receives the information sent by the base station or the terminal, and then processes the information to the processor 11;
  • the transceiver 12 can communicate with the network and other devices via wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to GSM (Global System of Mobi le communication), GPRS (Genera l Packet Radio Service), CDMA (Code Division) Multiple Access, Code Division Multiple Access, WCDMA (Wideband Code Division Multiple Access), LTE (Long Term Evolution), and the like.
  • the transceiver 12 is configured to acquire backhaul link information, where the backhaul link information includes available wireless backhaul link information between the first node and a neighboring node, At least one of wired backhaul link information of the first node and wired backhaul link information of a neighboring node of the first node;
  • the processor 11 is configured to determine an interaction path between the first node and a gateway according to the backhaul link information.
  • the processor 11 is specifically configured to: if the backhaul link information includes the wired backhaul link information of the first node, determine a wired backhaul chain in the wired backhaul link information of the first node.
  • the path is an interaction path between the first node and the gateway.
  • the processor 11 is specifically configured to: if the backhaul link information includes wired backhaul link information of the neighboring node of the first node, according to available wireless between the first node and the neighboring node.
  • the backhaul link information and the wired backhaul link information of the neighboring node of the first node determine an interaction path between the first node and the gateway.
  • processor 11 is further configured to calculate an optimal backhaul rate of the first node according to the backhaul link information
  • the available wireless backhaul link information between the first node and the neighboring node includes a maximum transmission rate of the available wireless backhaul link between the first node and the neighboring node, and the wired backhaul chain of the first node
  • the road information includes a maximum transmission rate of the wired backhaul link of the first node
  • the wired backhaul link information of the neighboring node of the first node includes a wired backhaul link rate of the neighboring node of the first node.
  • the processor 11 is specifically configured to: if the backhaul link information does not include wired backhaul link information of the neighboring node of the first node, according to the first section
  • the available wireless backhaul link information between the point and the neighboring node and the optimal backhaul rate of the first node determine an interaction path between the first node and the gateway.
  • Embodiments of the present invention provide a backhaul link allocation apparatus, which acquires wired backhaul link information of N nodes and available wireless backhaul link information, and further, according to wired backhaul link information of N nodes and N nodes.
  • the wireless backhaul link information can be used to determine the interaction path between each node and the gateway. Since the link distribution between the N nodes is determined in advance before each node interacts with the gateway, the wired backhaul of the N nodes is determined macroscopically.
  • the bearer capability of the link and the available wireless backhaul link between the N nodes so that the bearer capability of the backhaul link connected to each node in the backhaul network can be targeted and determined for each node.
  • the interaction path of the interaction avoids the problem of congestion and backhaul link utilization caused by the node being too concentrated or the link carrying capacity is limited in the process of the interaction between the N nodes and the gateway, and the prior art is solved. Congestion caused by blindly selecting the backhaul link when the node interacts with the gateway and the utilization of the backhaul link is reduced .
  • An embodiment of the present invention provides a control device, as shown in FIG. 10, including:
  • the obtaining unit 21 is configured to acquire backhaul link information of the N nodes, where the backhaul link information includes wired backhaul link information and available wireless backhaul link information, where N is a positive integer;
  • the path optimization unit 22 is configured to allocate, by the first node, an interaction path between the first node and the gateway, where the interaction path is the first node, if the backhaul link information in the acquiring unit 21 The path with the least number of available wireless backhaul links passing through the gateway, the first node being one of the N nodes.
  • the path optimization unit 22 is further configured to: if the backhaul link information includes the wired backhaul link information of the first node, allocate a wired backhaul link in the wired backhaul link information to The first node.
  • control device further includes a computing unit 23, where
  • the calculating unit 23 is configured to: according to the backhaul link signal in the acquiring unit 21 Calculating an optimal backhaul rate of the N nodes;
  • the backhaul link information further includes a maximum transmission rate of the wired backhaul link of the N nodes and a maximum transmission rate of the available wireless backhaul link between the N nodes.
  • the path optimization unit 22 is specifically configured to: if the backhaul link information of the second node includes wired backhaul link information, the control device passes the first node to the second node, and the The path with the least number of available wireless backhaul links passing between the gateways is determined as the interaction path, and the second node is one of the neighbor nodes of the first node.
  • the path optimization unit 22 is further configured to: according to a maximum transmission rate of the available wireless backhaul link between the first node and the second node, and a wired backhaul link of the second node The maximum transmission rate is determined by the interaction path between the first node and the gateway.
  • the path optimization unit 22 is further configured to: if the backhaul link information of the second node does not include wired backhaul link information, pass the available wireless backhaul between the second node and the gateway. A path having the fewest number of links, and a path between the first node and the second node are determined as the interaction path.
  • the path optimization unit 22 is further configured to: according to a maximum transmission rate of the available wireless backhaul link between the first node and the second node, and an optimal backhaul rate of the second node. Determining the interaction path between the first node and the gateway.
  • control device further includes a flow rate optimization unit 24, wherein
  • the obtaining unit 21 is further configured to acquire a flow rate requirement reported by the N nodes;
  • the flow rate optimization unit 24 is configured to calculate an interaction flow rate of the first node and the gateway according to the backhaul link information in the acquiring unit 21 and the flow rate requirement reported by the N nodes.
  • the flow rate optimization unit 24 is specifically configured to determine a maximum competition circle of the N nodes according to the backhaul link information, where the maximum competition circle is used to reflect the Calculating the interference situation of the available wireless backhaul link in the backhaul link information; calculating, for the maximum competition circle, the first node and the gateway according to the flow rate requirement and the maximum transmission rate of the backhaul link The interactive flow rate.
  • control device further includes:
  • a sending unit 25 configured to send the interaction path between the first node of the path optimization unit 22 and the gateway, and the interaction flow rate of the first node and the gateway in the flow rate optimization unit 24 to The first node, such that the first node interacts with the gateway according to the interaction path and the interaction flow rate.
  • the acquiring unit 21 is further configured to receive a maximum transmission rate of the wireless backhaul link between the N nodes; if a maximum transmission rate of the wireless backhaul link between the N nodes is greater than a threshold And determining a transmission rate of the wireless backhaul link and the wireless backhaul link as the available wireless backhaul link information.
  • An embodiment of the present invention provides a node, as shown in FIG. 14, including:
  • the obtaining unit 31 is configured to acquire backhaul link information, where the backhaul link information includes available wireless backhaul link information between the first node and the neighboring node, and the wired backhaul link information of the first node and the At least one of wired backhaul link information of a neighboring node of the first node;
  • the path optimization unit 32 is configured to determine an interaction path between the first node and the gateway according to the backhaul link information in the acquiring unit 31.
  • the path optimization unit 32 is specifically configured to: if the backhaul link information does not include the wired backhaul link information of the first node, determine that the first node and the gateway pass the available The path with the least number of wireless backhaul links is the interaction path between the first node and the gateway.
  • the path optimization unit 32 is specifically configured to: if the backhaul link information includes the wired backhaul link information of the first node, determine a wired backhaul in the wired backhaul link information of the first node.
  • the link is an interaction path between the first node and the gateway.
  • the path optimization unit 32 is specifically configured to: if the backhaul link information includes wired backhaul link information of the neighboring node of the first node, according to the The available wireless backhaul link information between the node and the neighboring node and the wired backhaul link information of the neighboring node of the first node determine an interaction path between the first node and the gateway.
  • the node further includes a calculating unit 33, where
  • the calculating unit 33 is configured to calculate an optimal backhaul rate of the first node according to the backhaul link information in the acquiring unit 31.
  • the available wireless backhaul link information between the first node and the neighboring node includes a maximum transmission rate of the available wireless backhaul link between the first node and the neighboring node, and the wired backhaul chain of the first node
  • the road information includes a maximum transmission rate of the wired backhaul link of the first node
  • the wired backhaul link information of the neighboring node of the first node includes a wired backhaul link rate of the neighboring node of the first node.
  • the path optimization unit 32 is specifically configured to: if the backhaul link information does not include the wired backhaul link information of the neighboring node of the first node, according to the first node and the neighboring node
  • the interaction path between the first node and the gateway may be determined by using wireless backhaul link information and an optimal backhaul rate of the first node.
  • Embodiments of the present invention provide a backhaul link allocation apparatus, which acquires wired backhaul link information of N nodes and available wireless backhaul link information, and further, according to wired backhaul link information of N nodes and N nodes.
  • the wireless backhaul link information can be used to determine the interaction path between each node and the gateway. Since the link distribution between the N nodes is determined in advance before each node interacts with the gateway, the wired backhaul of the N nodes is determined macroscopically.
  • the bearer capability of the link and the available wireless backhaul link between the N nodes so that the bearer capability of the backhaul link connected to each node in the backhaul network can be targeted and determined for each node.
  • the interaction path of the interaction avoids the problem of congestion and backhaul link utilization caused by the node being too concentrated or the link carrying capacity is limited in the process of the interaction between the N nodes and the gateway, and the prior art is solved. Congestion caused by blindly selecting the backhaul link when the node interacts with the gateway and the utilization of the backhaul link is reduced .
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, and a read-only memory.
  • a medium that can store program code such as a ROM (Read-Only Memory), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种回程链路的分配方法及装置,涉及通信领域,一定程度解决了由于节点与网关的交互时盲目地选择回程链路而导致的拥塞以及回程链路的利用率降低的问题。该方法包括:控制设备获取N个节点的回程链路信息,回程链路信息包括有线回程链路信息和可用无线回程链路信息,N为正整数(101);若回程链路信息中不包括第一节点的有线回程链路信息,控制设备则根据回程链路信息,为第一节点分配第一节点与网关之间的交互路径,所述交互路径为第一节点与网关之间经过的可用无线回程链路数目最少的路径,所述第一节点为N个节点中的一个节点(102)。

Description

一种回程链路的分配方法及装置 技术领域
本发明涉及通信领域,尤其涉及一种回程链路的分配方法及装置。
背景技术
回程网络可以由网关、多个小区站点(cellsite)以及回程链路构成,如图1所示,其中回程链路可以包括小区站点之间的无线回程链路,和网关与小区站点之间的有线回程链路。小区站点内的基站根据用户需求生成数据流,并通过回程链路与网关进行交互,完成在回程网络中数据流的收发。
目前,无线网络的接入点密集化是无线网络的发展趋势,即小区站点的数量和密度越来越多高,许多小区站点无法直接与网关交互,而是通过搭接在具有有线回程链路的小区站点上完成与网关的交互,这样一来,在回程网络中通过回程链路收发数据流时很容易出现拥塞,导致整个回程网络瘫痪,因此,如何使各个小区站点有效与网关进行交互成为回程网络中重要问题之一。
在现有技术中,小区站点内的基站通常情况下使用有线回程链路直接与网关进行交互,当基站的负载过大或者能力不足时,基站可以获取其他基站的可用回程容量,基于其他基站的可用回程容量,基站选取相应的回程链路进行数据收发。然而,上述方法仅仅是站在单个基站的角度为基站提供可选的回程链路,并不能为基站提供有效的选择依据,反而可能会导致新的拥塞或者降低回程链路的利用率的问题。例如,基站5和基站6同时拥塞,又都检测到基站4有可用回程容量,当基站5和基站6同时让基站4发送数据流至网关时,由于基站4同一时刻只能接收或发送一次数据流,那么基站4就会引发新的堵塞;又或者,基站5发生拥塞后,依次查询有可用回程容量的基站,最终依次通过基站6、7、4和1与网关进行交 互,大大降低了回程链路的利用率降,可以看出,在回程网络中,对基站与网关之间使用的回程链路的选择具有很大的盲目性。
发明内容
本发明的实施例提供一种回程链路的分配方法及装置,一定程度解决了现有技术中由于节点与网关的交互时盲目地选择回程链路而导致的拥塞以及回程链路的利用率降低的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
本发明的实施例提供一种回程链路的分配方法,包括:
控制设备获取N个节点的回程链路信息,所述回程链路信息包括有线回程链路信息和可用无线回程链路信息,N为正整数;
若所述回程链路信息中不包括第一节点的有线回程链路信息,所述控制设备则根据所述回程链路信息,为所述第一节点分配所述第一节点与网关之间的交互路径,所述交互路径为所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径,所述第一节点为所述N个节点中的一个节点。
在第一方面的第一种可能的实现方式中,在所述控制设备获取所述回程链路信息之后,还包括:
若所述回程链路信息中包括所述第一节点的有线回程链路信息,所述控制设备将所述有线回程链路信息中的有线回程链路分配给所述第一节点。
在第一方面的第二种可能的实现方式中,所述回程链路信息还包括所述N个节点的有线回程链路的最大传输速率、N个节点之间的可用无线回程链路的最大传输速率,在所述控制设备获取所述N个节点的回程链路信息之后,还包括:
所述控制设备根据所述回程链路信息计算所述N个节点的最优回程速率。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述控制设备根据所述回程链路信息,确定所述第一节点与所述网关之间的所述交互路径,包括:
若第二节点的回程链路信息包含有线回程链路信息,所述控制设备将所述第一节点经过所述第二节点,且与所述网关之间经过的可用无线回程链路数目最少的路径确定为所述交互路径,所述第二节点为所述第一节点的邻节点之一。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述控制设备将所述第一节点经过所述第二节点,且与所述网关之间经过的可用无线回程链路数目最少的路径确定为所述交互路径,具体包括:
所述控制设备根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的有线回程链路的最大传输速率,确定所述第一节点与所述网关之间的所述交互路径。
结合第一方面的第三种可能的实现方式,在第一方面的第五种可能的实现方式中,所述方法还包括:
若所述第二节点的回程链路信息不包含有线回程链路信息,所述控制设备将所述第二节点与所述网关之间经过的可用无线回程链路数目最少的路径,以及所述第一节点与所述第二节点之间的路径确定为所述交互路径。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述控制设备将所述第二节点与所述网关之间经过的可用无线回程链路数目最少的路径,以及所述第一节点与所述第二节点之间的路径确定为所述交互路径具体包括:
所述控制设备根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的最优回程速率,确定所述第一节点与所述网关之间的所述交互路径。
结合第一方面的第一至六种可能的实现方式中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,所述方法还包括:
所述控制设备获取所述N个节点上报的流速需求;
所述控制设备根据所述回程链路信息和所述N个节点上报的流 速需求,计算所述第一节点与所述网关的交互流速。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,所述控制设备根据所述回程链路信息和所述N个节点上报的流速需求,计算所述第一节点与所述网关的所述交互流速,包括:
所述控制设备根据所述回程链路信息确定所述N个节点的竞争最大圈,所述竞争最大圈用于反映所述回程链路信息中所述可用无线回程链路的干扰情况;
针对所述竞争最大圈,所述控制设备根据所述流速需求以及所述回程链路的最大传输速率,计算所述第一节点与所述网关的所述交互流速。
结合第一方面的第八种可能的实现方式,在第一方面的第九种可能的实现方式中,在所述控制设备根据所述流速需求以及所述回程链路的最大传输速率,计算第一节点与所述网关的所述交互流速之后,还包括:
所述控制设备将所述第一节点与所述网关之间的所述交互路径以及所述第一节点与所述网关的所述交互流速发送至所述第一节点,以使得所述第一节点按照所述交互路径和所述交互流速与所述网关进行交互。
结合第一方面的第一至九种可能的实现方式中的任一种可能的实现方式,在第一方面的第十种可能的实现方式中,所述控制设备获取所述N个节点之间的可用无线回程链路信息,包括:
所述控制设备接收所述N个节点之间的无线回程链路的最大传输速率;
若所述N个节点之间的无线回程链路的最大传输速率大于阈值时,所述控制设备则将所述无线回程链路以及所述无线回程链路的传输速率确定为所述可用无线回程链路信息。
第二方面,本发明的实施例提供一种控制设备,包括:
获取单元,用于获取N个节点的回程链路信息,所述回程链路 信息包括有线回程链路信息和可用无线回程链路信息,N为正整数;
路径优化单元,用于若所述回程链路信息中不包括第一节点的有线回程链路信息,根据所述获取单元中的回程链路信息,为所述第一节点分配所述第一节点与网关之间的交互路径,所述交互路径为所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径,所述第一节点为所述N个节点中的一个节点。
在第二方面的第一种可能的实现方式中,
所述路径优化单元,还用于若所述回程链路信息中包括所述第一节点的有线回程链路信息,将所述有线回程链路信息中的有线回程链路分配给所述第一节点。
在第二方面的第二种可能的实现方式中,所述控制设备还包括计算单元,其中,
所述计算单元,用于根据所述回程链路信息计算所述N个节点的最优回程速率;
其中,所述回程链路信息还包括所述N个节点的有线回程链路的最大传输速率、N个节点之间的可用无线回程链路的最大传输速率。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,
所述路径优化单元,具体用于若第二节点的回程链路信息包含有线回程链路信息,所述控制设备将所述第一节点经过所述第二节点,且与所述网关之间经过的可用无线回程链路数目最少的路径确定为所述交互路径,所述第二节点为所述第一节点的邻节点之一。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,
所述路径优化单元,具体还用于根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的有线回程链路的最大传输速率,确定所述第一节点与所述网关之间的所述交互路径。
结合第二方面的第三种可能的实现方式,在第二方面的第五种可能的实现方式中,
所述路径优化单元,具体还用于若所述第二节点的回程链路信息不包含有线回程链路信息,将所述第二节点与所述网关之间经过的可用无线回程链路数目最少的路径,以及所述第一节点与所述第二节点之间的路径确定为所述交互路径。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,
所述路径优化单元,具体还用于根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的最优回程速率,确定所述第一节点与所述网关之间的所述交互路径。
结合第二方面的第一至第六种可能的实现方式中的任一种可能的实现方式,在第二方面的第七种可能的实现方式中,所述控制设备还包括流速优化单元,其中,
所述获取单元,还用于获取所述N个节点上报的流速需求;
所述流速优化单元,用于根据所述获取单元中的回程链路信息和所述N个节点上报的流速需求,计算所述第一节点与所述网关的交互流速。
结合第二方面的第七种可能的实现方式,在第二方面的第八种可能的实现方式中,
所述流速优化单元,具体用于根据所述回程链路信息确定所述N个节点的竞争最大圈,所述竞争最大圈用于反映所述回程链路信息中所述可用无线回程链路的干扰情况;针对所述竞争最大圈,根据所述流速需求以及所述回程链路的最大传输速率,计算所述第一节点与所述网关的所述交互流速。
结合第二方面的第八种可能的实现方式,在第二方面的第九种可能的实现方式中,所述控制设备还包括发送单元,其中,
所述发送单元,用于将所述路径优化单元第一节点与所述网关 之间的所述交互路径以及所述流速优化单元中的第一节点与所述网关的所述交互流速发送至所述第一节点,以使得所述第一节点按照所述交互路径和所述交互流速与所述网关进行交互。
结合第二方面的第一至九种可能的实现方式中的任一种实现方式,在第二方面的第十种可能的实现方式中,
所述获取单元,还用于接收所述N个节点之间的无线回程链路的最大传输速率;若所述N个节点之间的无线回程链路的最大传输速率大于阈值时,则将所述无线回程链路以及所述无线回程链路的传输速率确定为所述可用无线回程链路信息。
第三方面,本发明的实施例提供一种控制设备,所述控制设备包括处理器,以及与所述处理器相连的收发器,其中,
所述收发器,用于获取N个节点的回程链路信息,所述回程链路信息包括有线回程链路信息和可用无线回程链路信息,N为正整数;
所述处理器,用于若所述回程链路信息中不包括第一节点的有线回程链路信息,根据所述回程链路信息,为所述第一节点分配所述第一节点与网关之间的交互路径,所述交互路径为所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径,所述第一节点为所述N个节点中的一个节点。
在第三方面的第一种可能的实现方式中,
所述处理器,还用于若所述回程链路信息中包括所述第一节点的有线回程链路信息,将所述有线回程链路信息中的有线回程链路分配给所述第一节点。
在第三方面的第二种可能的实现方式中,所述控制设备还包括与所述处理器相连的计算模块,其中,
所述计算模块,用于根据所述回程链路信息计算所述N个节点的最优回程速率;
其中,所述回程链路信息还包括所述N个节点的有线回程链路的最大传输速率、N个节点之间的可用无线回程链路的最大传输速 率。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,
所述处理器,具体用于若第二节点的回程链路信息包含有线回程链路信息,将所述第一节点经过所述第二节点,且与所述网关之间经过的可用无线回程链路数目最少的路径确定为所述交互路径,所述第二节点为所述第一节点的邻节点之一。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,
所述处理器,具体还用于根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的有线回程链路的最大传输速率,确定所述第一节点与所述网关之间的所述交互路径。
结合第三方面的第三种可能的实现方式,在第三方面的第五种可能的实现方式中,
所述处理器,具体还用于若所述第二节点的回程链路信息不包含有线回程链路信息,将所述第二节点与所述网关之间经过的可用无线回程链路数目最少的路径,以及所述第一节点与所述第二节点之间的路径确定为所述交互路径。
结合第三方面的第五种可能的实现方式,在第三方面的第六种可能的实现方式中,
所述处理器,具体还用于根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的最优回程速率,确定所述第一节点与所述网关之间的所述交互路径。
结合第三方面的第一至第六种可能的实现方式,在第三方面的第七种可能的实现方式中,
所述收发器,还用于获取所述N个节点上报的流速需求;
所述计算模块,还用于根据所述回程链路信息和所述N个节点上报的流速需求,计算所述第一节点与所述网关的交互流速。
结合第三方面的第七种可能的实现方式,在第三方面的第八种可能的实现方式中,
所述计算模块,具体用于根据所述回程链路信息确定所述N个节点的竞争最大圈,所述竞争最大圈用于反映所述回程链路信息中所述可用无线回程链路的干扰情况;针对所述竞争最大圈,根据所述流速需求以及所述回程链路的最大传输速率,计算所述第一节点与所述网关的所述交互流速。
结合第三方面的第八种可能的实现方式,在第三方面的第九种可能的实现方式中,
所述收发器,还用于将所述第一节点与所述网关之间的所述交互路径以及所述第一节点与所述网关的所述交互流速发送至所述第一节点,以使得所述第一节点按照所述交互路径和所述交互流速与所述网关进行交互。
结合第三方面的第一至第九种可能的实现方式,在第三方面的第十种可能的实现方式中,
所述收发器,还用于接收所述N个节点之间的无线回程链路的最大传输速率;
所述处理器,还用于若所述N个节点之间的无线回程链路的最大传输速率大于阈值时,则将所述无线回程链路以及所述无线回程链路的传输速率确定为所述可用无线回程链路信息。
第四方面,本发明的实施例提供一种回程链路的分配方法,包括:
第一节点获取回程链路信息,所述回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路信息、所述第一节点的有线回程链路信息以及所述第一节点的邻节点的有线回程链路信息中的至少一项;
所述第一节点根据所述回程链路信息确定所述第一节点与网关之间的交互路径。
在第四方面的第一种可能的实现方式中,若所述回程链路信息 中不包括所述第一节点的有线回程链路信息,所述第一节点根据所述回程链路信息确定所述第一节点与网关之间的交互路径具体为:
所述第一节点确定所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径为所述第一节点与所述网关之间的交互路径。
在第四方面的第二种可能的实现方式中,若所述回程链路信息中包括所述第一节点的有线回程链路信息,所述第一节点根据所述回程链路信息确定所述第一节点与网关之间的交互路径具体为:
所述第一节点确定所述第一节点的有线回程链路信息中的有线回程链路为所述第一节点与网关之间的交互路径。
结合前述的第四方面的第一种可能的实现方式,在第四方面的第三种可能的实现方式中,若所述回程链路信息中包括所述第一节点的邻节点的有线回程链路信息,所述第一节点根据所述回程链路信息确定所述第一节点与网关之间的交互路径具体为:
所述第一节点根据所述第一节点与邻节点之间的可用无线回程链路信息以及所述第一节点的邻节点的有线回程链路信息,确定所述第一节点与网关之间的交互路径。
结合前述的第四方面的第一种可能的实现方式,在第四方面的第四种可能的实现方式中,在所述第一节点获取回程链路信息之后,还包括:
所述第一节点根据所述回程链路信息计算所述第一节点的最优回程速率;
其中,所述第一节点与邻节点之间的可用无线回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路的最大传输速率,所述第一节点的有线回程链路信息包括所述第一节点的有线回程链路的最大传输速率,所述第一节点的邻节点的有线回程链路信息包括所述第一节点的邻节点的有线回程链路速率。
结合第四方面的第四种可能的实现方式,在第四方面的第五种可能的实现方式中,若所述回程链路信息中不包括所述第一节点的 邻节点的有线回程链路信息,所述第一节点根据所述回程链路信息确定所述第一节点与网关之间的交互路径具体为:
所述第一节点则根据所述第一节点与邻节点之间的可用无线回程链路信息以及第一节点的最优回程速率确定所述第一节点与网关之间的交互路径。
第五方面,本发明的实施例提供以一种节点,包括:
获取单元,用于获取回程链路信息,所述回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路信息、所述第一节点的有线回程链路信息以及所述第一节点的邻节点的有线回程链路信息中的至少一项;
路径优化单元,用于根据所述获取单元中的回程链路信息确定所述第一节点与网关之间的交互路径。
在第五方面的第一种可能实现的方式中,
所述路径优化单元,具体用于若所述回程链路信息中不包括所述第一节点的有线回程链路信息,确定所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径为所述第一节点与所述网关之间的交互路径。
在第五方面的第二种可能实现的方式中,
所述路径优化单元,具体用于若所述回程链路信息中包括所述第一节点的有线回程链路信息,确定所述第一节点的有线回程链路信息中的有线回程链路为所述第一节点与网关之间的交互路径。
结合前述的第五方面的第一种可能实现的方式,在第五方面的第三种可能实现的方式中,
所述路径优化单元,具体用于若所述回程链路信息中包括所述第一节点的邻节点的有线回程链路信息,根据所述第一节点与邻节点之间的可用无线回程链路信息以及所述第一节点的邻节点的有线回程链路信息,确定所述第一节点与网关之间的交互路径。
结合前述的第五方面的第一种可能实现的方式,在第五方面的第四种可能实现的方式中,所述节点还包括计算单元,其中,
所述计算单元,用于根据所述回程链路信息计算所述第一节点的最优回程速率;
其中,所述第一节点与邻节点之间的可用无线回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路的最大传输速率,所述第一节点的有线回程链路信息包括所述第一节点的有线回程链路的最大传输速率,所述第一节点的邻节点的有线回程链路信息包括所述第一节点的邻节点的有线回程链路速率。
结合第五方面的第四种可能实现的方式,在第五方面的第五种可能实现的方式中,
所述路径优化单元,具体用于若所述回程链路信息中不包括所述第一节点的邻节点的有线回程链路信息,根据所述第一节点与邻节点之间的可用无线回程链路信息以及第一节点的最优回程速率确定所述第一节点与网关之间的交互路径。
第六方面,本发明的实施例提供以一种节点,包括处理器,以及与所述处理器相连的收发器,其中,
所述收发器,用于获取回程链路信息,所述回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路信息、所述第一节点的有线回程链路信息以及所述第一节点的邻节点的有线回程链路信息中的至少一项;
所述处理器,用于根据所述回程链路信息确定所述第一节点与网关之间的交互路径。
在第六方面的第一种可能的实现方式中,
所述处理器,还用于若所述回程链路信息中不包括所述第一节点的有线回程链路信息,确定所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径为所述第一节点与所述网关之间的交互路径。
在第六方面的第二种可能的实现方式中,
所述处理器,具体用于若所述回程链路信息中包括所述第一节点的有线回程链路信息,确定所述第一节点的有线回程链路信息中 的有线回程链路为所述第一节点与网关之间的交互路径。
结合前述的第六方面的第一种可能的实现方式,在第六方面的第三种可能的实现方式中,
所述处理器,具体用于若所述回程链路信息中包括所述第一节点的邻节点的有线回程链路信息,根据所述第一节点与邻节点之间的可用无线回程链路信息以及所述第一节点的邻节点的有线回程链路信息,确定所述第一节点与网关之间的交互路径。
结合前述的第六方面的第一种可能的实现方式,在第六方面的第四种可能的实现方式中,
所述处理器,还用于根据所述回程链路信息计算所述第一节点的最优回程速率;
其中,所述第一节点与邻节点之间的可用无线回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路的最大传输速率,所述第一节点的有线回程链路信息包括所述第一节点的有线回程链路的最大传输速率,所述第一节点的邻节点的有线回程链路信息包括所述第一节点的邻节点的有线回程链路速率。
结合第六方面的第第四种可能的实现方式,在第六方面的第五种可能的实现方式中,
所述处理器,具体用于若所述回程链路信息中不包括所述第一节点的邻节点的有线回程链路信息,根据所述第一节点与邻节点之间的可用无线回程链路信息以及第一节点的最优回程速率确定所述第一节点与网关之间的交互路径。
本发明的实施例提供一种回程链路的分配方法及装置,通过获取N个节点的有线回程链路信息和可用无线回程链路信息,进而根据N个节点的有线回程链路信息和N个节点的可用无线回程链路信息确定每个节点与网关交互的交互路径,由于在各个节点与网关交互之前提前确定了N个节点之间的链路分布,即从宏观上确定了N个节点的有线回程链路以及N个节点之间的可用无线回程链路的承载能力,这样就可以针对每一个节点在回程网络中所连接的回程链 路的承载能力,有针对性的为每一个节点确定与网关交互的交互路径,一定程度避免了N个节点与网关交互的过程中由于节点过于集中或者链路承载能力有限的原因导致的拥塞和回程链路利用率下降的问题,解决了现有技术中由于节点与网关的交互时盲目地选择回程链路而导致的拥塞以及回程链路的利用率降低的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为现有技术中回程网络中数据流的交互系统的架构图;
图2为本发明实施例提供的一种回程网络中数据流的收发的系统架构图;
图3为本发明实施例提供的一种回程链路的分配方法的流程图一;
图4为本发明实施例提供的一种最优网络拓扑的树状图;
图5为本发明实施例提供的一种回程链路的分配方法的流程图二;
图6为本发明实施例提供的一种回程链路的分配方法的流程图三;
图7为本发明实施例提供的一种回程链路的分配方法的流程图四;
图8为本发明实施例提供的控制设备的硬件示意图;
图9为本发明实施例提供的一种节点的硬件示意图;
图10为本发明实施例提供的控制设备的结构示意图一;
图11为本发明实施例提供的控制设备的结构示意图二;
图12为本发明实施例提供的控制设备的结构示意图三;
图13为本发明实施例提供的控制设备的结构示意图四;
图14为本发明实施例提供的节点的结构示意图一;
图15为本发明实施例提供的节点的结构示意图二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
如图2所示,为本发明提供的一种回程网络中数据流的收发的系统架构图,其中,网关与基站之间使用有线回程链路进行交互,基站与基站之间使用无线回程链路进行交互,没有直接与网关通过有线回程链路相连接的基站,需要通过无线链路嫁接在具有有线回程链路的基站上,进而通过具有有线回程链路的基站进行中转后与网关进行交互。控制设备与所述各个基站分别相连进行交互,其可以独立于所述网关和所述各个基站之外,也可以将所述控制设备承载于某个基站内,以使得所述控制设备为各个基站提供最优交互方案,分别与网关进行交互,该最优交互方案可以包括基站与网关的交互路径和交互流速等。本发明提供的一种回程链路的分配方法可以在一定程度及时避免由于基站过于密集或者回程链路承载能力有限的原因导致的拥塞,同时提高回程链路的利用率。
另外,本发明提供的一种回程链路的分配方法既可以应用于基站,也可以应用于各种节点和小区站点(cellsite),所以本发明中涉及的节点,基站还有小区站点可以相互置换,本发明对此不做限定。
实施例一
本发明的实施例提供一种回程链路的分配方法,如图3所示,包括:
101、控制设备获取N个节点的回程链路信息,所述回程链路信息包括有线回程链路信息和可用无线回程链路信息,N为正整数。
102、若回程链路信息中不包括第一节点的有线回程链路信息,控制设备根据所述回程链路信息,为所述第一节点分配第一节点与网关之间的交互路径,所述交互路径为第一节点与网关之间经过的可用无线回程链路数目最少的路径,所述第一节点为所述N个节点中的一个节点。
103、控制设备将第一节点与网关之间的交互路径分配给第一节点,以使第一节点按照该交互路径与网关进行交互。
具体的,在步骤101中,所述N个节点的有线回程链路是指节点与网关直接相连的回程链路,所述N个节点的无线回程链路是指节点与节点之间相连的回程链路,所述N个节点的可用无线回程链路是指,所述N个节点的无线回程链路中最大传输速度大于阈值的无线回程链路。所述N个节点的有线回程链路信息可以包括所述N个节点的有线回程链路以及该有线回程链路的最大传输速率,所述N个节点的可用无线回程链路信息可以包括所述N个节点之间的无线回程链路以及该无线回程链路的最大传输速率。
具体的,在上述回程网络中数据流的收发的系统架构中,当控制设备获取到上述回程链路信息时,所述N个节点的回程链路以及所述N个节点的可用无线回程链路便形成了所述N个节点与网关交互的最优网络拓扑。
示例性的,有两种确定所述最优网络拓扑的方法。
其一,控制设备可以接收所述N个节点发送的N个节点的有线回程链路、N个节点之间的无线回程链路的最大传输速率;若判断某两个节点之间的无线回程链路的最大传输速率大于阈值时,所述控制设备则确定所述某两个节点之间的无线回程链路为可用无线回程链路;进而,所述控制设备根据所述N个节点的有线回程链路、所述N个节点之间的可用无线回程链路,确定所述N个节点之间的最优网络拓扑,如图2所示。
其二,控制设备可以接收所述N个节点中每个节点上报的所述每个节点与邻节点之间的可用无线回程链路,其中,所述可用无线回程链路为基站确定的最大传输速率大于阈值的无线回程链路;进而,所述控制设备根据所述有线回程链路、所述可用无线回程链路,确定所述N个节点之间的最优网络拓扑,如图2所示。
在步骤102中,当控制设备确定了N个节点的回程链路信息之后,所述控制设备可以根据所述回程链路信息,为第一节点分配第 一节点与网关之间的交互路径,其中,所述交互路径为第一节点与网关之间经过的可用无线回程链路数目最少的路径,所述第一节点为所述N个节点中的一个节点,这样,所述控制设备就可以针对每一个节点在回程网络中所连接的回程链路的承载能力,有针对性的为每一个节点确定与网关交互的交互路径。
具体的,若所述回程链路信息中不包括第一节点的有线回程链路信息,所述控制设备则根据所述回程链路信息,确定所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径为所述第一节点与所述网关之间交互路径。
相应的,由于有线回程链路可以在同一时刻进行数据流的收发,所以有线回程链路的承载能力最强,因此,若所述回程链路信息中包括第一节点的有线回程链路信息,所述控制设备则将所述有线回程链路信息中的有线回程链路分配给所述第一节点,以使所述第一节点按照所述有线回程链路与所述网关进行交互。
示例性的,如图2所示为8个节点与网关交互的最优网络拓扑的示意图,当8个节点的回程链路信息形成所述最优网络拓扑后,控制设备可以根据所述最优网络拓扑中节点与节点之间的连接关系确定每个节点可选路径的树状图,如图4所示,为节点7的可选路径的树状图,在图4中,节点7可以分别经过节点4和节点1与网关交互(共3跳),或者节点7可以经过节点3与网关交互(共2跳),此时,控制设备可以将所述最优网络拓扑中节点7所需与网关交互的条数最少的路径,作为节点7与网关交互的交互路径,进而控制设备就可以根据以确定好的所述交互路径指示节点7根据所述交互路径与网关进行交互。
进一步地,控制设备在获取回程链路信息之后,还可以根据所述回程链路信息计算所述N个节点的最优回程速率,所述最优回程速率结合邻节点的最大传输速率,反映了某一节点最佳的传输速率。这样一来,控制设备可以参考所述N个节点的最优回程速率,确定所述第一节点与网关之间的至少一个交互路径,避免了潜在的拥塞, 且提高了回程网络的利用率。
进一步地,由于控制设备确定的第一节点与所述网关之间经过的可用无线回程链路数目最少的路径可能有多个,此时,控制设备可以根据查询第二节点的回程链路信息是否包含有线回程链路信息,确定符合条件的一个交互路径作为所述第一节点与网关交互的最优路径,其中,所述第二节点为所述第一节点的邻节点之一。
具体的,若所述第二节点的回程链路信息包含有线回程链路信息,所述控制设备可以根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的有线回程链路的最大传输速率,确定所述第一节点与网关交互的最优路径;
若所述第二节点的回程链路信息不包含有线回程链路信息,所述控制设备则可以根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的最优回程速率,确定所述第一节点与网关交互的最优路径。
另外,所述控制设备还可以根据回程链路信息进一步确定每个节点与网管交互的交互流速,这样就可以进一步控制节点在回程网络中收发数据流时因为盲目选择链路而导致的拥塞和降低回程链路的利用率等问题,在一个可选的实施方式中,可以通过构建每个节点的邻站信息表确定每个节点与网关交互的交互路径和交互流速,该方法将在后续实施例中详细阐述,故此处不再赘述。
在步骤103中,当控制设备确定了第一节点与网关之间的交互路径后,控制设备将该交互路径分配给所述第一节点,以使所述第一节点按照该交互路径与所述网关进行交互,进而减少由于节点过于集中或者链路承载能力有限的原因导致的拥塞问题,提高了回程链路的利用率。
本发明的实施例提供一种回程链路的分配方法,如图5所示,包括:
201、第一节点获取回程链路信息,所述回程链路信息包括第一节点与邻节点之间的可用无线回程链路信息、第一节点的有线回程 链路信息以及第一节点的邻节点的有线回程链路信息中的至少一项。
202、第一节点根据回程链路信息确定第一节点与网关之间的交互路径。
203、第一节点按照该交互路径与所述网关进行交互。
具体的,在步骤201中,所述第一节点可以是回程网络中数据流的交互系统中的任意一个基站,第一节点可以获取到与相邻节点的无线回程链路的最大传输速率,若所述无线回程链路的最大传输速率大于阈值,所述第一节点则将所述大于阈值的无线回程链路作为可用无线回程链路,而该可用无线回程链路和该可用无线回程链路的最大传输速率即为所述第一节点与邻节点之间的可用无线回程链路信息。
若第一节点与网关直接相连,则第一节点与网关之间的回程链路即为第一节点的有线回程链路,该第一节点的有线回程链路和第一节点的有线回程链路的最大传输速率即为所述第一节点的有线回程链路信息。
若第一节点的邻节点连接有有线回程链路,则第一节点的邻节点的有线回程链路和第一节点的邻节点的有线回程链路的最大传输速率即为所述第一节点的邻节点的有线回程链路信息。
在步骤202中,当第一节点获取到回程链路信息之后,第一节点可以根据所述有线回程链路信息确定所述第一节点与网关交互的交互路径,这样就可以针对第一节点的回程链路的承载能力,有针对性的为第一节点确定与网关交互的交互路径。
具体的,若所述回程链路信息中不包括所述第一节点的有线回程链路信息,所述第一节点则根据所述回程链路信息确定所述第一节点与网关之间的交互路径,所述交互路径为所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径。
相应的,若所述回程链路信息中包括所述第一节点的有线回程链路信息,所述第一节点则确定所述第一节点的有线回程链路信息 中的有线回程链路为所述第一节点与网关之间的交互路径。
例如,第一节点与第二节之间有可用无线回程链路,且第一节点与网关之间拥有有线回程链路,由于有线回程链路支持数据同时刻进行收发,不会造成拥塞问题,因此,此时第一节点优选所述有线回程链路为交互路径与网关交互。相应的,若第一节点没有有线回程链路,那么,第一节点可以根据与其相邻的节点的无线回程路径的最大传输速度,以及其相邻的节点的有线回程路径的最大传输速度,确定与网关交互的交互路径。
进一步地,若回程链路信息中不包括第一节点的有线回程链路信息,第一节点还可以根据回程链路信息计算第一节点的最优回程速率,此时,当回程链路信息中包括第一节点的邻节点的有线回程链路信息时,第一节点根据第一节点与邻节点之间的可用无线回程链路信息以及第一节点的邻节点的有线回程链路信息,确定第一节点与网关之间的交互路径;当回程链路信息中不包括第一节点的邻节点的有线回程链路信息时,第一节点可以根据第一节点与邻节点之间的可用无线回程链路信息以及第一节点的最优回程速率确定第一节点与网关之间的交互路径。
在一个可选的实施方式中,第一节点可以通过构建第一节点的邻站信息表确定第一节点与网关交互的交互路径,该方法将在后续实施例中详细阐述,故此处不再赘述。
在步骤203中,当所述第一节点确定所述第一节点与网关之间的交互路径之后,按照所述交互路径与网关进行交互,进而减少由于节点过于集中盲目选择回程链路而导致的拥塞问题,提高了回程链路的利用率。
本发明的实施例提供一种回程链路的分配方法,通过获取N个节点的有线回程链路信息和可用无线回程链路信息,进而根据N个节点的有线回程链路信息和N个节点的可用无线回程链路信息确定每个节点与网关交互的交互路径,由于在各个节点与网关交互之前提前确定了N个节点之间的链路分布,即从宏观上确定了N个节点 的有线回程链路以及N个节点之间的可用无线回程链路的承载能力,这样就可以针对每一个节点在回程网络中所连接的回程链路的承载能力,有针对性的为每一个节点确定与网关交互的交互路径,一定程度避免了N个节点与网关交互的过程中由于节点过于集中或者链路承载能力有限的原因导致的拥塞和回程链路利用率下降的问题,解决了现有技术中由于节点与网关的交互时盲目地选择回程链路而导致的拥塞以及回程链路的利用率降低的问题。
实施例二
本发明的实施例提供一种回程链路的分配方法,如图6所示,包括:
301、控制设备获取回程链路信息以确定N个节点之间的最优网络拓扑,所述回程链路信息包括N个节点的有线回程链路信息和N个节点的可用无线回程链路信息,N为整数;
302、控制设备接收N个节点上报的流速需求;
303、控制设备根据最优网络拓扑中有线回程链路和可用无线回程链路的最大传输速率,确定N个节点收发数据流的交互路径;
304、控制设备根据流速需求以及回程链路信息,计算N个节点与网关交互的交互流速;
305、控制设备将N个节点与网关交互的交互路径和交互流速分别分配给对应的N个节点,以使得N个节点按照交互路径和交互流速与网关交互。
具体的,在步骤301中,所述N个节点的有线回程链路是指节点与网关直接相连的回程链路,所述N个节点之间的无线回程链路是指节点与节点之间相连的回程链路,所述N个节点之间的可用无线回程链路为,所述N个节点之间的无线回程链路中最大传输速度大于阈值的无线回程链路。
示例性的,有两种确定所述N个节点之间的最优网络拓扑的方法。
其一,控制设备可以接收所述N个节点发送的N个节点的有线 回程链路、N个节点之间的无线回程链路的最大传输速率;若判断所述N个节点之间的无线回程链路的最大传输速率大于阈值时,所述控制设备则确定所述无线回程链路为可用无线回程链路;进而,所述控制设备根据所述有线回程链路、所述可用无线回程链路,确定所述N个节点之间的最优网络拓扑,如图2所示。
其二,控制设备可以接收所述N个节点中每个节点上报的所述每个节点与邻节点之间的可用无线回程链路,其中,所述可用无线回程链路为基站确定的最大传输速率大于阈值的无线回程链路;进而,所述控制设备根据所述有线回程链路、所述可用无线回程链路,确定所述N个节点之间的最优网络拓扑,如图2所示。
在步骤302中,在控制设备确了定N个节点之间的最优网络拓扑之后,控制设备可以接收来自N个节点上报的流速需求。所述流速需求可以包含每个节点与网关交互时收发数据流的最小速率需求xf,min和最大速率需求xf,max
另外,所述回程链路信息还包括所述N个节点的有线回程链路的最大传输速率、N个节点之间的可用无线回程链路的最大传输速率。
其中,所述无线回程链路的最大传输速率为:
Figure PCTCN2014090122-appb-000001
lframe为无线回程传输的帧长,nsymbol为每帧所含的符号数,nbit,ij为链路(i,j)每符号所含的比特数。
在步骤303中,控制设备基于所述最优网络拓扑,可以根据所述最优网络拓扑中有线回程链路和可用无线回程链路的最大传输速率,确定所述N个节点收发数据流的交互路径。
以下描述中以确定第一节点(节点i)的交互路径为例进行说明,所述第一节点为所述N个节点中的任一个。
具体的,控制设备可以首先确定第一节点最优的无线回程邻接点j*
Figure PCTCN2014090122-appb-000002
其中,rj,c为邻站j的有线回程链路的最大传输速率,ri,j为第一节点i与其邻接点j的无线回程链路的最大传输速率。
其次,控制设备可以确定第一节点最优的最优的回程速率b hi
Figure PCTCN2014090122-appb-000003
其中,ri,c为第一节点i的有线回程链路的最大传输速率,j*为第一节点i的最优的无线回程邻站。
然后,控制设备可以根据所述第一节点最优的回程速率bhi,第一节点与邻节点的无线回程链路的最大传输速率以及第一节点的邻节点的有线回程链路的最大传输速率,构造第一集节点的邻节点信息表,如表1所示,所述邻节点信息表用于反映每个节点之间的位置关系和每个节点之间的最大传输速率。
表1
Figure PCTCN2014090122-appb-000004
其中,ri,M为第一节点i到邻节点M的无线回程链路的最大传输速率,bhM为邻节点M的最优回程速率,rM,c为邻节点的有线回程链路的最大传输速率。
控制设备可以构建出每一个节点的邻站信息表,最终获取所述述N个节点的邻站信息表以确定所述最优网络拓扑中的节点之间的位置关系以及所述最优网络拓扑中的节点之间回程链路的传输速率,以使得控制设备根据所述邻站信息表分别确定所述N个节点与网关交互的交互路径。
具体的,若第一节点与所述有线回程链路相连,所述控制设备 则选择所述有线回程链路作为交互路径,所述第一节点为所述N个节点中的任一个;若第一节点需要进行L跳后与连接有所述有线回程链路的节点相连,所述控制设备则选择需要进行跳数最少的节点作为交互路径;其中,若需要进行跳数最少的节点有多个,则根据所述邻节点信息表选择所述最大传输速率最大的节点作为交互路径。
示例性的,控制设备为所述第一节点分配交互路径,控制设备根据所述邻站信息表,确定所述第一节点是否与有线回程链路直接相连,如果第一节点与有线回程链路直接相连,则将所述有线回程链路作为交互路径分配给第一节点。
进一步地,如果第一节点没有与有线回程链路直接相连,控制设备则根据所述邻站信息表确定只需要单跳便可到达连接有所述有线回程链路的节点,如果一跳便可到达连接有所述有线回程链路的节点有多个,则根据所述邻节点信息表中所述第一节点与所述邻节点之间的可用无线回程链路的最大传输速率,以及所述邻节点的有线回程链路的最大传输速率为第一节点i分配传输速率最大的单跳无线回程链路:
Figure PCTCN2014090122-appb-000005
再进一步地,如果没有单跳无线回程链路可以到连接有有线回程链路的节点,控制设备优选跳数最少的路径为交互路径,在所需跳数相同的情况下,控制设备可以根据所述邻节点信息表中的所述第一节点与所述邻节点之间的可用无线回程链路的最大传输速率,以及所述邻节点的最优回程速率选择所述最大传输速率最大的节点作为交互路径:
Figure PCTCN2014090122-appb-000006
至此,基于最优网络拓扑,控制设备根据最优网络拓扑中有线回程链路和可用无线回程链路的最大传输速率,确定N个节点收发 数据流的交互路径。
在步骤304中,基于最优网络拓扑,控制设备根据流速需求以及最优网络拓扑中有线回程链路和可用无线回程链路的最大传输速率,计算N个节点收发数据流的交互流速。
具体的,所述控制设备根据所述最优网络拓扑确定所述最优网络拓扑中的竞争最大圈,所述竞争最大圈用于反映所述最优网络拓扑中所述可用无线回程链路的干扰情况;进而针对所述竞争最大圈,所述控制设备根据所述流速需求以及最优网络拓扑中有线回程链路和可用无线回程链路的最大传输速率,计算所述N个节点收发数据流的交互流速。
为了确定每个节点与网关交互时收发数据流的流速率,首先需要确定流的竞争最大圈。因为每个基站在某个时刻只能发送或接收无线信号,即每个无线回程链路不能在同一时刻同时收发数据。
控制设备确定了最优网络拓扑中的竞争最大圈后,根据每个节点与网关交互时收发数据流的最小速率需求xf,min和最大速率需求xf,max,以及最优网络拓扑中有线回程链路和可用无线回程链路的最大传输速率,计算每个竞争最大圈的价格Pj
Figure PCTCN2014090122-appb-000007
其中,Δd为L(x,p)对p的导数,γ为迭代的步长,F是所有数据流的集合,Bl是最优网络拓扑中回程链路1的最大传输速率。
其中,
Figure PCTCN2014090122-appb-000008
最终,控制设备基于所述竞争最大圈的价格,计算每个节点与网关交互时收发数据流的速率xi
Figure PCTCN2014090122-appb-000009
至此,控制设备根据流速需求以及最优网络拓扑中有线回程链路和可用无线回程链路的最大传输速率,计算N个节点收发数据流的交互流速。
在步骤305中,控制设备将N个节点与网关交互的交互流速和交互路径分别分配给对应的N个节点,以使得N个节点分别按照所述交互路径以所述交互流速与所述网关交互。
本发明的实施例提供一种回程链路的分配方法,通过获取N个节点的有线回程链路信息和可用无线回程链路信息,进而根据N个节点的有线回程链路信息和N个节点的可用无线回程链路信息确定每个节点与网关交互的交互路径,由于在各个节点与网关交互之前提前确定了N个节点之间的链路分布,即从宏观上确定了N个节点的有线回程链路以及N个节点之间的可用无线回程链路的承载能力,这样就可以针对每一个节点在回程网络中所连接的回程链路的承载能力,有针对性的为每一个节点确定与网关交互的交互路径,一定程度避免了N个节点与网关交互的过程中由于节点过于集中或者链路承载能力有限的原因导致的拥塞和回程链路利用率下降的问题,解决了现有技术中由于节点与网关的交互时盲目地选择回程链路而导致的拥塞以及回程链路的利用率降低的问题。
实施例三
本发明的实施例提供一种回程链路的分配方法,如图7所示,包括:
401、第一节点确定与邻节点之间的可用无线回程链路,以及第一节点的有线回程链路;
402、第一节点根据有线回程链路和可用无线回程链路确定第一节点与网关交互的交互路径;
403、第一节点向控制设备上报流速需求以及交互路径的最大传 输速率,以使得控制设备根据流速需求以及交互路径的最大传输速率确定第一节点的交互流速并将交互流速发送至第一节点;
404、第一节点按照所述交互路径和交互流速与网关进行交互。
具体的,在步骤401中,所述第一节点可以是回程网络中数据流的交互系统中的任意一个基站,第一节点可以获取到与相邻节点的无线回程链路的最大传输速率,若所述无线回程链路的最大传输速率大于阈值,所述第一节点则将所述大于阈值的无线回程链路作为可用无线回程链路。若第一节点与网关直接相连,则第一节点与网关之间的回程链路即为第一节点的有线回程链路。
在步骤402中,第一节点在确定与邻节点之间的可用无线回程链路,以及第一节点的有线回程链路之后,所述第一节点可以接收所述邻节点的有线回程链路的最大传输速率,并确定所述第一节点与邻节点之间的可用无线回程链路的最大传输速率。
进一步地,第一节点根据所述有线回程链路的最大传输速率和所述可用无线回程链路的最大传输速率,确定所述第一节点的邻节点信息表,如表2所示,所述邻节点信息表用于反映所述第一节点与所述邻接点之间的最大传输速率的集合。
表2
Figure PCTCN2014090122-appb-000010
其中,ri,M为第一节点i到邻节点M的无线回程链路的最大传输速率,bhM为邻节点M的最优回程速率,rM,c为邻节点的有线回程链路的最大传输速率。
若所述第一节点邻节点信息表中包含连接有线回程链路的节点,即ri,c不为0,所述第一节点则将所述有线回程链路作为所述第一节点与网关交互的交互路径。
若所述第一节点邻节点信息表中不包含连接有线回程链路的节 点,但所述第一节点邻节点信息表中第一节点的邻节点连接有有线回程链路,那么第一节点选择无线回程链路传输速率最大的邻节点为交互路径。
Figure PCTCN2014090122-appb-000011
若所述第一节点邻节点信息表中不包含连接有线回程链路的节点,且第一节点的邻节点与有线回程链路都不相连,此时,所述第一节点可以从所述邻接点获取所述邻接点的邻节点信息表;并根据所述邻接点的邻节点信息表确定所述第一节点与网关交互的交互路径。
若所述邻接点的邻节点信息表中仍然不包含连接有线回程链路的节点,则继续获取邻节点的邻节点的邻节点信息表,直至获取到包含连接有线回程链路的节点为止,并选择需要与网关交互的跳数最少的节点为交互路径。
至此,第一节点根据所述有线回程链路和可用无线回程链路确定所述第一节点与网关交互的交互路径。
在步骤403中,第一节点向控制设备上报流速需求以及交互路径的最大传输速率,以使得控制设备根据流速需求以及交互路径的最大传输速率确定第一节点的交互流速并将交互流速发送至第一节点。控制设备确定第一节点的交互流速的方法具体请参见上述实施例中的步骤304,此处不再赘述。
在步骤404中,第一节点根据步骤402中确定的交互路径和步骤403中确定的交互流速,与所述网关交互。
当回程网络中数据流的交互系统中的所有节点都按照上述步骤401至404完成与网关的交互后,回程网络中数据流的交互系统中相当于在无形中确定了节点与节点之间的最优网络拓扑,并基于上述最优网络拓扑确定出每个节点自身与网关交互的最优交互方案,进而减少由于节点过于集中或者链路承载能力有限的原因导致的拥塞问题,提高了回程链路的利用率。
本发明的实施例提供一种回程链路的分配方法,通过获取第一节点的有线回程链路信息和第一节点之间的可用无线回程链路信息,确定第一节点与网关交互的交互路径,由于在第一节点与网关交互之前提前确定了第一节点与网关之间的链路分布,即从宏观上确定了第一节点的有线回程链路以及第一节点之间的可用无线回程链路的承载能力,这样就有针对性的为第一节点确定与网关交互的交互路径,避免了第一节点与网关交互的过程中由于盲目地选择就回程链路进行与网关的交互而可能带来的拥塞以及回程链路的利用率降低的问题。
实施例四
附图8示出的是本发明的控制设备的硬件示意图:
如图8,控制设备包括处理器01、收发器02以及计算模块03,
其中,处理器01、收发器02以及计算模块03通过总线04连接并进行通信。
处理器01,是所述控制设备的控制中心,处理器01通过对收发器02接收到的数据进行处理,并调用收发器02或者计算模块03中的软件或程序,执行所述控制设备的各项功能。
收发器02,可用于收发信息或通话过程中,信号的接收和发送,收发器02接收基站或终端发送的信息后,给处理器01处理;另外,收发器02可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Globa l Sys tem of Mobile communication,全球移动通讯系统)、GPRS(General Packet Radio Service,通用分组无线服务)、CDMA(Code Division Multiple Access,码分多址)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、LTE(Long Term Evolution,长期演进)等。
计算模块03,可用于对收发器02或者处理器01发送的各种数据进行加、减、乘、除等处理,为所示控制设备提供运算功能。
具体的,在本发明的实施例中,所述收发器02,用于获取N个节点的回程链路信息,所述回程链路信息包括有线回程链路信息和 可用无线回程链路信息,N为正整数;
所述处理器01,用于若所述回程链路信息中不包括第一节点的有线回程链路信息,根据所述回程链路信息,为所述第一节点分配所述第一节点与网关之间的交互路径,所述交互路径为所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径,所述第一节点为所述N个节点中的一个节点。
进一步地,所述处理器01,还用于若所述回程链路信息中包括所述第一节点的有线回程链路信息,将所述有线回程链路信息中的有线回程链路分配给所述第一节点。
进一步地,所述计算模块03,用于根据所述回程链路信息计算所述N个节点的最优回程速率;
其中,所述回程链路信息还包括所述N个节点的有线回程链路的最大传输速率、N个节点之间的可用无线回程链路的最大传输速率。
进一步地,所述处理器01,具体用于若第二节点的回程链路信息包含有线回程链路信息,将所述第一节点经过所述第二节点,且与所述网关之间经过的可用无线回程链路数目最少的路径确定为所述交互路径,所述第二节点为所述第一节点的邻节点之一。
进一步地,所述处理器01,具体还用于根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的有线回程链路的最大传输速率,确定所述第一节点与所述网关之间的所述交互路径。
进一步地,所述处理器01,具体还用于若所述第二节点的回程链路信息不包含有线回程链路信息,将所述第二节点与所述网关之间经过的可用无线回程链路数目最少的路径,以及所述第一节点与所述第二节点之间的路径确定为所述交互路径。
进一步地,所述处理器01,具体还用于根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的最优回程速率,确定所述第一节点与所述网关之间的所述 交互路径。
进一步地,所述收发器02,还用于获取所述N个节点上报的流速需求;
所述计算模块03,还用于根据所述回程链路信息和所述N个节点上报的流速需求,计算所述第一节点与所述网关的交互流速。
进一步地,所述计算模块03,具体用于根据所述回程链路信息确定所述N个节点的竞争最大圈,所述竞争最大圈用于反映所述回程链路信息中所述可用无线回程链路的干扰情况;针对所述竞争最大圈,根据所述流速需求以及所述回程链路的最大传输速率,计算所述第一节点与所述网关的所述交互流速。
进一步地,所述收发器02,还用于将所述第一节点与所述网关之间的所述交互路径以及所述第一节点与所述网关的所述交互流速发送至所述第一节点,以使得所述第一节点按照所述交互路径和所述交互流速与所述网关进行交互。
进一步地,所述收发器02,还用于接收所述N个节点之间的无线回程链路的最大传输速率;
所述处理器01,还用于若所述N个节点之间的无线回程链路的最大传输速率大于阈值时,则将所述无线回程链路以及所述无线回程链路的传输速率确定为所述可用无线回程链路信息。
附图9示出的是本发明提供的节点的硬件示意图:
该节点可以为任意类型的基站或者小区站点,本实施例以基站作为节点举例说明:
如图9,控制设备包括处理器11和收发器12,
其中,处理器11和收发器12通过总线13通信连接。
处理器11,是所述基站的控制中心,处理器11通过对收发器12接收到的数据进行处理,并调用收发器12中的软件或程序,执行所述基站的各项功能。
收发器12,可用于收发信息或通话过程中,信号的接收和发送,收发器12接收基站或终端发送的信息后,给处理器11处理;另外, 收发器12可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Global System of Mobi le communication,全球移动通讯系统)、GPRS(Genera l Packet Radio Service,通用分组无线服务)、CDMA(Code Division Multiple Access,码分多址)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、LTE(Long Term Evolution,长期演进)等。
具体的,在本发明的实施例中,所述收发器12,用于获取回程链路信息,所述回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路信息、所述第一节点的有线回程链路信息以及所述第一节点的邻节点的有线回程链路信息中的至少一项;
所述处理器11,用于根据所述回程链路信息确定所述第一节点与网关之间的交互路径。
进一步地,所述处理器11,具体用于若所述回程链路信息中包括所述第一节点的有线回程链路信息,确定所述第一节点的有线回程链路信息中的有线回程链路为所述第一节点与网关之间的交互路径。
进一步地,所述处理器11,具体用于若所述回程链路信息中包括所述第一节点的邻节点的有线回程链路信息,根据所述第一节点与邻节点之间的可用无线回程链路信息以及所述第一节点的邻节点的有线回程链路信息,确定所述第一节点与网关之间的交互路径。
进一步地,所述处理器11,还用于根据所述回程链路信息计算所述第一节点的最优回程速率;
其中,所述第一节点与邻节点之间的可用无线回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路的最大传输速率,所述第一节点的有线回程链路信息包括所述第一节点的有线回程链路的最大传输速率,所述第一节点的邻节点的有线回程链路信息包括所述第一节点的邻节点的有线回程链路速率。
进一步地,所述处理器11,具体用于若所述回程链路信息中不包括所述第一节点的邻节点的有线回程链路信息,根据所述第一节 点与邻节点之间的可用无线回程链路信息以及第一节点的最优回程速率确定所述第一节点与网关之间的交互路径。
本发明的实施例提供一种回程链路的分配装置,通过获取N个节点的有线回程链路信息和可用无线回程链路信息,进而根据N个节点的有线回程链路信息和N个节点的可用无线回程链路信息确定每个节点与网关交互的交互路径,由于在各个节点与网关交互之前提前确定了N个节点之间的链路分布,即从宏观上确定了N个节点的有线回程链路以及N个节点之间的可用无线回程链路的承载能力,这样就可以针对每一个节点在回程网络中所连接的回程链路的承载能力,有针对性的为每一个节点确定与网关交互的交互路径,一定程度避免了N个节点与网关交互的过程中由于节点过于集中或者链路承载能力有限的原因导致的拥塞和回程链路利用率下降的问题,解决了现有技术中由于节点与网关的交互时盲目地选择回程链路而导致的拥塞以及回程链路的利用率降低的问题。
实施例五
本发明的实施例提供一种控制设备,如图10所示,包括:
获取单元21,用于获取N个节点的回程链路信息,所述回程链路信息包括有线回程链路信息和可用无线回程链路信息,N为正整数;
路径优化单元22,用于若所述获取单元21中的回程链路信息,为所述第一节点分配所述第一节点与网关之间的交互路径,所述交互路径为所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径,所述第一节点为所述N个节点中的一个节点。
进一步地,所述路径优化单元22,还用于若所述回程链路信息中包括所述第一节点的有线回程链路信息,将所述有线回程链路信息中的有线回程链路分配给所述第一节点。
进一步地,如图11所示,所述控制设备还包括计算单元23,其中,
所述计算单元23,用于根据所述获取单元21中的回程链路信 息计算所述N个节点的最优回程速率;
其中,所述回程链路信息还包括所述N个节点的有线回程链路的最大传输速率、N个节点之间的可用无线回程链路的最大传输速率。
进一步地,所述路径优化单元22,具体用于若第二节点的回程链路信息包含有线回程链路信息,所述控制设备将所述第一节点经过所述第二节点,且与所述网关之间经过的可用无线回程链路数目最少的路径确定为所述交互路径,所述第二节点为所述第一节点的邻节点之一。
进一步地,所述路径优化单元22,具体还用于根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的有线回程链路的最大传输速率,确定所述第一节点与所述网关之间的所述交互路径。
进一步地,所述路径优化单元22,具体还用于若所述第二节点的回程链路信息不包含有线回程链路信息,将所述第二节点与所述网关之间经过的可用无线回程链路数目最少的路径,以及所述第一节点与所述第二节点之间的路径确定为所述交互路径。
进一步地,所述路径优化单元22,具体还用于根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的最优回程速率,确定所述第一节点与所述网关之间的所述交互路径。
进一步地,如图12所示,所述控制设备还包括流速优化单元24,其中,
所述获取单元21,还用于获取所述N个节点上报的流速需求;
所述流速优化单元24,用于根据所述获取单元21中的回程链路信息和所述N个节点上报的流速需求,计算所述第一节点与所述网关的交互流速。
进一步地,所述流速优化单元24,具体用于根据所述回程链路信息确定所述N个节点的竞争最大圈,所述竞争最大圈用于反映所 述回程链路信息中所述可用无线回程链路的干扰情况;针对所述竞争最大圈,根据所述流速需求以及所述回程链路的最大传输速率,计算所述第一节点与所述网关的所述交互流速。
进一步地,如图13所示,所述控制设备还包括:
发送单元25,用于将所述路径优化单元22第一节点与所述网关之间的所述交互路径以及所述流速优化单元24中的第一节点与所述网关的所述交互流速发送至所述第一节点,以使得所述第一节点按照所述交互路径和所述交互流速与所述网关进行交互。
进一步地,所述获取单元21,还用于接收所述N个节点之间的无线回程链路的最大传输速率;若所述N个节点之间的无线回程链路的最大传输速率大于阈值时,则将所述无线回程链路以及所述无线回程链路的传输速率确定为所述可用无线回程链路信息。
本发明的实施例提供一种节点,如图14所示,包括:
获取单元31,用于获取回程链路信息,所述回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路信息、所述第一节点的有线回程链路信息以及所述第一节点的邻节点的有线回程链路信息中的至少一项;
路径优化单元32,用于根据所述获取单元31中的回程链路信息确定所述第一节点与网关之间的交互路径。
进一步地,所述路径优化单元32,具体用于若所述回程链路信息中不包括所述第一节点的有线回程链路信息,确定所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径为所述第一节点与所述网关之间的交互路径。
进一步地,所述路径优化单元32,具体用于若所述回程链路信息中包括所述第一节点的有线回程链路信息,确定所述第一节点的有线回程链路信息中的有线回程链路为所述第一节点与网关之间的交互路径。
进一步地,所述路径优化单元32,具体用于若所述回程链路信息中包括所述第一节点的邻节点的有线回程链路信息,根据所述第 一节点与邻节点之间的可用无线回程链路信息以及所述第一节点的邻节点的有线回程链路信息,确定所述第一节点与网关之间的交互路径。
进一步地,如图15所示,所述节点还包括计算单元33,其中,
所述计算单元33,用于根据所述获取单元31中的回程链路信息计算所述第一节点的最优回程速率;
其中,所述第一节点与邻节点之间的可用无线回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路的最大传输速率,所述第一节点的有线回程链路信息包括所述第一节点的有线回程链路的最大传输速率,所述第一节点的邻节点的有线回程链路信息包括所述第一节点的邻节点的有线回程链路速率。
进一步地,所述路径优化单元32,具体用于若所述回程链路信息中不包括所述第一节点的邻节点的有线回程链路信息,根据所述第一节点与邻节点之间的可用无线回程链路信息以及第一节点的最优回程速率确定所述第一节点与网关之间的交互路径。
本发明的实施例提供一种回程链路的分配装置,通过获取N个节点的有线回程链路信息和可用无线回程链路信息,进而根据N个节点的有线回程链路信息和N个节点的可用无线回程链路信息确定每个节点与网关交互的交互路径,由于在各个节点与网关交互之前提前确定了N个节点之间的链路分布,即从宏观上确定了N个节点的有线回程链路以及N个节点之间的可用无线回程链路的承载能力,这样就可以针对每一个节点在回程网络中所连接的回程链路的承载能力,有针对性的为每一个节点确定与网关交互的交互路径,一定程度避免了N个节点与网关交互的过程中由于节点过于集中或者链路承载能力有限的原因导致的拥塞和回程链路利用率下降的问题,解决了现有技术中由于节点与网关的交互时盲目地选择回程链路而导致的拥塞以及回程链路的利用率降低的问题。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据 需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存 储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (51)

  1. 一种回程链路的分配方法,其特征在于,包括:
    控制设备获取N个节点的回程链路信息,所述回程链路信息包括有线回程链路信息和可用无线回程链路信息,N为正整数;
    若所述回程链路信息中不包括第一节点的有线回程链路信息,所述控制设备则根据所述回程链路信息,为所述第一节点分配所述第一节点与网关之间的交互路径,所述交互路径为所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径,所述第一节点为所述N个节点中的一个节点。
  2. 根据权利要求1所述的方法,其特征在于,在所述控制设备获取所述回程链路信息之后,还包括:
    若所述回程链路信息中包括所述第一节点的有线回程链路信息,所述控制设备将所述有线回程链路信息中的有线回程链路分配给所述第一节点。
  3. 根据权利要求1所述的方法,其特征在于,所述回程链路信息还包括所述N个节点的有线回程链路的最大传输速率、N个节点之间的可用无线回程链路的最大传输速率,在所述控制设备获取所述N个节点的回程链路信息之后,还包括:
    所述控制设备根据所述回程链路信息计算所述N个节点的最优回程速率。
  4. 根据权利要求3所述的方法,其特征在于,所述控制设备根据所述回程链路信息,确定所述第一节点与所述网关之间的所述交互路径,包括:
    若第二节点的回程链路信息包含有线回程链路信息,所述控制设备将所述第一节点经过所述第二节点,且与所述网关之间经过的可用无线回程链路数目最少的路径确定为所述交互路径,所述第二节点为所述第一节点的邻节点之一。
  5. 根据权利要求4所述的方法,其特征在于,所述控制设备将所述第一节点经过所述第二节点,且与所述网关之间经过的可用无线 回程链路数目最少的路径确定为所述交互路径,具体包括:
    所述控制设备根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的有线回程链路的最大传输速率,确定所述第一节点与所述网关之间的所述交互路径。
  6. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    若所述第二节点的回程链路信息不包含有线回程链路信息,所述控制设备将所述第二节点与所述网关之间经过的可用无线回程链路数目最少的路径,以及所述第一节点与所述第二节点之间的路径确定为所述交互路径。
  7. 根据权利要求6所述的方法,其特征在于,所述控制设备将所述第二节点与所述网关之间经过的可用无线回程链路数目最少的路径,以及所述第一节点与所述第二节点之间的路径确定为所述交互路径具体包括:
    所述控制设备根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的最优回程速率,确定所述第一节点与所述网关之间的所述交互路径。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述控制设备获取所述N个节点上报的流速需求;
    所述控制设备根据所述回程链路信息和所述N个节点上报的流速需求,计算所述第一节点与所述网关的交互流速。
  9. 根据权利要求8所述的方法,其特征在于,所述控制设备根据所述回程链路信息和所述N个节点上报的流速需求,计算所述第一节点与所述网关的所述交互流速,包括:
    所述控制设备根据所述回程链路信息确定所述N个节点的竞争最大圈,所述竞争最大圈用于反映所述回程链路信息中所述可用无线回程链路的干扰情况;
    针对所述竞争最大圈,所述控制设备根据所述流速需求以及所述回程链路的最大传输速率,计算所述第一节点与所述网关的所述交互 流速。
  10. 根据权利要求9所述的方法,其特征在于,在所述控制设备根据所述流速需求以及所述回程链路的最大传输速率,计算第一节点与所述网关的所述交互流速之后,还包括:
    所述控制设备将所述第一节点与所述网关之间的所述交互路径以及所述第一节点与所述网关的所述交互流速发送至所述第一节点,以使得所述第一节点按照所述交互路径和所述交互流速与所述网关进行交互。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述控制设备获取所述N个节点之间的可用无线回程链路信息,包括:
    所述控制设备接收所述N个节点之间的无线回程链路的最大传输速率;
    若所述N个节点之间的无线回程链路的最大传输速率大于阈值时,所述控制设备则将所述无线回程链路以及所述无线回程链路的传输速率确定为所述可用无线回程链路信息。
  12. 一种控制设备,其特征在于,包括:
    获取单元,用于获取N个节点的回程链路信息,所述回程链路信息包括有线回程链路信息和可用无线回程链路信息,N为正整数;
    路径优化单元,用于若所述回程链路信息中不包括第一节点的有线回程链路信息,根据所述获取单元中的回程链路信息,为所述第一节点分配所述第一节点与网关之间的交互路径,所述交互路径为所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径,所述第一节点为所述N个节点中的一个节点。
  13. 根据权利要求12所述的控制设备,其特征在于,
    所述路径优化单元,还用于若所述回程链路信息中包括所述第一节点的有线回程链路信息,将所述有线回程链路信息中的有线回程链路分配给所述第一节点。
  14. 根据权利要求12所述的控制设备,其特征在于,所述控制 设备还包括计算单元,其中,
    所述计算单元,用于根据所述获取单元中的回程链路信息计算所述N个节点的最优回程速率;
    其中,所述回程链路信息还包括所述N个节点的有线回程链路的最大传输速率、N个节点之间的可用无线回程链路的最大传输速率。
  15. 根据权利要求14所述的控制设备,其特征在于,
    所述路径优化单元,具体用于若第二节点的回程链路信息包含有线回程链路信息,所述控制设备将所述第一节点经过所述第二节点,且与所述网关之间经过的可用无线回程链路数目最少的路径确定为所述交互路径,所述第二节点为所述第一节点的邻节点之一。
  16. 根据权利要求15所述的控制设备,其特征在于,
    所述路径优化单元,具体还用于根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的有线回程链路的最大传输速率,确定所述第一节点与所述网关之间的所述交互路径。
  17. 根据权利要求15所述的控制设备,其特征在于,
    所述路径优化单元,具体还用于若所述第二节点的回程链路信息不包含有线回程链路信息,将所述第二节点与所述网关之间经过的可用无线回程链路数目最少的路径,以及所述第一节点与所述第二节点之间的路径确定为所述交互路径。
  18. 根据权利要求17所述的控制设备,其特征在于,
    所述路径优化单元,具体还用于根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的最优回程速率,确定所述第一节点与所述网关之间的所述交互路径。
  19. 根据权利要求12至18中任一项所述的控制设备,其特征在于,所述控制设备还包括流速优化单元,其中,
    所述获取单元,还用于获取所述N个节点上报的流速需求;
    所述流速优化单元,用于根据所述获取单元中的回程链路信息和所述N个节点上报的流速需求,计算所述第一节点与所述网关的交互 流速。
  20. 根据权利要求19所述的控制设备,其特征在于,
    所述流速优化单元,具体用于根据所述回程链路信息确定所述N个节点的竞争最大圈,所述竞争最大圈用于反映所述回程链路信息中所述可用无线回程链路的干扰情况;针对所述竞争最大圈,根据所述流速需求以及所述回程链路的最大传输速率,计算所述第一节点与所述网关的所述交互流速。
  21. 根据权利要求20所述的控制设备,其特征在于,所述控制设备还包括发送单元,其中,
    所述发送单元,用于将所述路径优化单元第一节点与所述网关之间的所述交互路径以及所述流速优化单元中的第一节点与所述网关的所述交互流速发送至所述第一节点,以使得所述第一节点按照所述交互路径和所述交互流速与所述网关进行交互。
  22. 根据权利要求12至21中任一项所述的控制设备,其特征在于,
    所述获取单元,还用于接收所述N个节点之间的无线回程链路的最大传输速率;若所述N个节点之间的无线回程链路的最大传输速率大于阈值时,则将所述无线回程链路以及所述无线回程链路的传输速率确定为所述可用无线回程链路信息。
  23. 一种控制设备,其特征在于,所述控制设备包括处理器,以及与所述处理器相连的收发器,其中,
    所述收发器,用于获取N个节点的回程链路信息,所述回程链路信息包括有线回程链路信息和可用无线回程链路信息,N为正整数;
    所述处理器,用于若所述回程链路信息中不包括第一节点的有线回程链路信息,根据所述回程链路信息,为所述第一节点分配所述第一节点与网关之间的交互路径,所述交互路径为所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径,所述第一节点为所述N个节点中的一个节点。
  24. 根据权利要求23所述的控制设备,其特征在于,
    所述处理器,还用于若所述回程链路信息中包括所述第一节点的有线回程链路信息,将所述有线回程链路信息中的有线回程链路分配给所述第一节点。
  25. 根据权利要求23所述的控制设备,其特征在于,所述控制设备还包括与所述处理器相连的计算模块,其中,
    所述计算模块,用于根据所述回程链路信息计算所述N个节点的最优回程速率;
    其中,所述回程链路信息还包括所述N个节点的有线回程链路的最大传输速率、N个节点之间的可用无线回程链路的最大传输速率。
  26. 根据权利要求25所述的控制设备,其特征在于,
    所述处理器,具体用于若第二节点的回程链路信息包含有线回程链路信息,将所述第一节点经过所述第二节点,且与所述网关之间经过的可用无线回程链路数目最少的路径确定为所述交互路径,所述第二节点为所述第一节点的邻节点之一。
  27. 根据权利要求26所述的控制设备,其特征在于,
    所述处理器,具体还用于根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的有线回程链路的最大传输速率,确定所述第一节点与所述网关之间的所述交互路径。
  28. 根据权利要求26所述的控制设备,其特征在于,
    所述处理器,具体还用于若所述第二节点的回程链路信息不包含有线回程链路信息,将所述第二节点与所述网关之间经过的可用无线回程链路数目最少的路径,以及所述第一节点与所述第二节点之间的路径确定为所述交互路径。
  29. 根据权利要求28所述的控制设备,其特征在于,
    所述处理器,具体还用于根据所述第一节点与所述第二节点之间的可用无线回程链路的最大传输速率,以及所述第二节点的最优回程速率,确定所述第一节点与所述网关之间的所述交互路径。
  30. 根据权利要求23至29中任一项所述的控制设备,其特征在 于,
    所述收发器,还用于获取所述N个节点上报的流速需求;
    所述计算模块,还用于根据所述回程链路信息和所述N个节点上报的流速需求,计算所述第一节点与所述网关的交互流速。
  31. 根据权利要求30所述的控制设备,其特征在于,
    所述计算模块,具体用于根据所述回程链路信息确定所述N个节点的竞争最大圈,所述竞争最大圈用于反映所述回程链路信息中所述可用无线回程链路的干扰情况;针对所述竞争最大圈,根据所述流速需求以及所述回程链路的最大传输速率,计算所述第一节点与所述网关的所述交互流速。
  32. 根据权利要求31所述的控制设备,其特征在于,
    所述收发器,还用于将所述第一节点与所述网关之间的所述交互路径以及所述第一节点与所述网关的所述交互流速发送至所述第一节点,以使得所述第一节点按照所述交互路径和所述交互流速与所述网关进行交互。
  33. 根据权利要求23至32中任一项所述的控制设备,其特征在于,
    所述收发器,还用于接收所述N个节点之间的无线回程链路的最大传输速率;
    所述处理器,还用于若所述N个节点之间的无线回程链路的最大传输速率大于阈值时,则将所述无线回程链路以及所述无线回程链路的传输速率确定为所述可用无线回程链路信息。
  34. 一种回程链路的分配方法,其特征在于,包括:
    第一节点获取回程链路信息,所述回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路信息、所述第一节点的有线回程链路信息以及所述第一节点的邻节点的有线回程链路信息中的至少一项;
    所述第一节点根据所述回程链路信息确定所述第一节点与网关之间的交互路径。
  35. 根据权利要求34所述的方法,其特征在于,若所述回程链路信息中不包括所述第一节点的有线回程链路信息,所述第一节点根据所述回程链路信息确定所述第一节点与网关之间的交互路径具体为:
    所述第一节点确定所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径为所述第一节点与所述网关之间的交互路径。
  36. 根据权利要求34所述的方法,其特征在于,若所述回程链路信息中包括所述第一节点的有线回程链路信息,所述第一节点根据所述回程链路信息确定所述第一节点与网关之间的交互路径具体为:
    所述第一节点确定所述第一节点的有线回程链路信息中的有线回程链路为所述第一节点与网关之间的交互路径。
  37. 根据权利要求35所述的方法,其特征在于,若所述回程链路信息中包括所述第一节点的邻节点的有线回程链路信息,所述第一节点根据所述回程链路信息确定所述第一节点与网关之间的交互路径具体为:
    所述第一节点根据所述第一节点与邻节点之间的可用无线回程链路信息以及所述第一节点的邻节点的有线回程链路信息,确定所述第一节点与网关之间的交互路径。
  38. 根据权利要求35所述的方法,其特征在于,在所述第一节点获取回程链路信息之后,还包括:
    所述第一节点根据所述回程链路信息计算所述第一节点的最优回程速率;
    其中,所述第一节点与邻节点之间的可用无线回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路的最大传输速率,所述第一节点的有线回程链路信息包括所述第一节点的有线回程链路的最大传输速率,所述第一节点的邻节点的有线回程链路信息包括所述第一节点的邻节点的有线回程链路速率。
  39. 根据权利要求38所述的方法,其特征在于,若所述回程链 路信息中不包括所述第一节点的邻节点的有线回程链路信息,所述第一节点根据所述回程链路信息确定所述第一节点与网关之间的交互路径具体为:
    所述第一节点则根据所述第一节点与邻节点之间的可用无线回程链路信息以及第一节点的最优回程速率确定所述第一节点与网关之间的交互路径。
  40. 一种节点,其特征在于,包括:
    获取单元,用于获取回程链路信息,所述回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路信息、所述第一节点的有线回程链路信息以及所述第一节点的邻节点的有线回程链路信息中的至少一项;
    路径优化单元,用于根据所述获取单元中的回程链路信息确定所述第一节点与网关之间的交互路径。
  41. 根据权利要求40所述的节点,其特征在于,
    所述路径优化单元,具体用于若所述回程链路信息中不包括所述第一节点的有线回程链路信息,确定所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径为所述第一节点与所述网关之间的交互路径。
  42. 根据权利要求40所述的节点,其特征在于,
    所述路径优化单元,具体用于若所述回程链路信息中包括所述第一节点的有线回程链路信息,确定所述第一节点的有线回程链路信息中的有线回程链路为所述第一节点与网关之间的交互路径。
  43. 根据权利要求41所述的节点,其特征在于,
    所述路径优化单元,具体用于若所述回程链路信息中包括所述第一节点的邻节点的有线回程链路信息,根据所述第一节点与邻节点之间的可用无线回程链路信息以及所述第一节点的邻节点的有线回程链路信息,确定所述第一节点与网关之间的交互路径。
  44. 根据权利要求41所述的节点,其特征在于,所述节点还包括计算单元,其中,
    所述计算单元,用于根据所述获取单元中的回程链路信息计算所述第一节点的最优回程速率;
    其中,所述第一节点与邻节点之间的可用无线回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路的最大传输速率,所述第一节点的有线回程链路信息包括所述第一节点的有线回程链路的最大传输速率,所述第一节点的邻节点的有线回程链路信息包括所述第一节点的邻节点的有线回程链路速率。
  45. 根据权利要求44所述的节点,其特征在于,
    所述路径优化单元,具体用于若所述回程链路信息中不包括所述第一节点的邻节点的有线回程链路信息,根据所述第一节点与邻节点之间的可用无线回程链路信息以及第一节点的最优回程速率确定所述第一节点与网关之间的交互路径。
  46. 一种节点,其特征在于,所述节点包括处理器,以及与所述处理器相连的收发器,其中,
    所述收发器,用于获取回程链路信息,所述回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路信息、所述第一节点的有线回程链路信息以及所述第一节点的邻节点的有线回程链路信息中的至少一项;
    所述处理器,用于根据所述回程链路信息确定所述第一节点与网关之间的交互路径。
  47. 根据权利要求46所述的节点,其特征在于,
    所述处理器,还用于若所述回程链路信息中不包括所述第一节点的有线回程链路信息,确定所述第一节点与所述网关之间经过的可用无线回程链路数目最少的路径为所述第一节点与所述网关之间的交互路径。
  48. 根据权利要求46所述的节点,其特征在于,
    所述处理器,具体用于若所述回程链路信息中包括所述第一节点的有线回程链路信息,确定所述第一节点的有线回程链路信息中的有线回程链路为所述第一节点与网关之间的交互路径。
  49. 根据权利要求47所述的节点,其特征在于,
    所述处理器,具体用于若所述回程链路信息中包括所述第一节点的邻节点的有线回程链路信息,根据所述第一节点与邻节点之间的可用无线回程链路信息以及所述第一节点的邻节点的有线回程链路信息,确定所述第一节点与网关之间的交互路径。
  50. 根据权利要求47所述的节点,其特征在于,
    所述处理器,还用于根据所述回程链路信息计算所述第一节点的最优回程速率;
    其中,所述第一节点与邻节点之间的可用无线回程链路信息包括所述第一节点与邻节点之间的可用无线回程链路的最大传输速率,所述第一节点的有线回程链路信息包括所述第一节点的有线回程链路的最大传输速率,所述第一节点的邻节点的有线回程链路信息包括所述第一节点的邻节点的有线回程链路速率。
  51. 根据权利要求50所述的节点,其特征在于,
    所述处理器,具体用于若所述回程链路信息中不包括所述第一节点的邻节点的有线回程链路信息,根据所述第一节点与邻节点之间的可用无线回程链路信息以及第一节点的最优回程速率确定所述第一节点与网关之间的交互路径。
PCT/CN2014/090122 2014-10-31 2014-10-31 一种回程链路的分配方法及装置 WO2016065645A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480082269.7A CN106717056A (zh) 2014-10-31 2014-10-31 一种回程链路的分配方法及装置
PCT/CN2014/090122 WO2016065645A1 (zh) 2014-10-31 2014-10-31 一种回程链路的分配方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/090122 WO2016065645A1 (zh) 2014-10-31 2014-10-31 一种回程链路的分配方法及装置

Publications (1)

Publication Number Publication Date
WO2016065645A1 true WO2016065645A1 (zh) 2016-05-06

Family

ID=55856455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090122 WO2016065645A1 (zh) 2014-10-31 2014-10-31 一种回程链路的分配方法及装置

Country Status (2)

Country Link
CN (1) CN106717056A (zh)
WO (1) WO2016065645A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511132A (zh) * 2009-03-23 2009-08-19 杭州华三通信技术有限公司 一种数据报文的转发方法和系统
CN102026295A (zh) * 2010-12-23 2011-04-20 上海华为技术有限公司 一种回程链路中的数据通信方法、装置和系统
US20110312267A1 (en) * 2009-02-02 2011-12-22 Ajou University Industry-Academic Cooperation Foundation Apparatus and method for relaying multiple links in a communication system
CN103888981A (zh) * 2014-03-25 2014-06-25 电信科学技术研究院 一种通信路径的确定方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110312267A1 (en) * 2009-02-02 2011-12-22 Ajou University Industry-Academic Cooperation Foundation Apparatus and method for relaying multiple links in a communication system
CN101511132A (zh) * 2009-03-23 2009-08-19 杭州华三通信技术有限公司 一种数据报文的转发方法和系统
CN102026295A (zh) * 2010-12-23 2011-04-20 上海华为技术有限公司 一种回程链路中的数据通信方法、装置和系统
CN103888981A (zh) * 2014-03-25 2014-06-25 电信科学技术研究院 一种通信路径的确定方法和装置

Also Published As

Publication number Publication date
CN106717056A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
CN105264845B (zh) 数据传输控制节点、通信系统及数据传输管理方法
CN105450555B (zh) 一种片上网络系统,及片上网络通信链路的建立方法
CN102918908B (zh) 用于通过支持若干技术的设备使用未使用tv频谱的方法和装置
US8982708B1 (en) Priority aware dynamic routing protocol for ad-hoc networks
JP5624225B2 (ja) セルラーネットワークにおけるピアツーピアトラフィックをスケジューリングするための方法および装置
CN101146263B (zh) 用于再利用无线网络中的无线资源的系统和方法
CN108632910A (zh) 一种QoS处理方法和设备
CN109804581A (zh) 协同通信
CN107318146B (zh) 移动集群自组网的拓扑控制方法
JP6424887B2 (ja) 無線通信システムにおける装置、方法及びユーザ機器
CN114363984B (zh) 一种云边协同光载网络频谱资源分配方法及系统
CN108370531A (zh) 用于确定传输链路的方法和终端设备
CN106686679B (zh) 内容中心网络中基于能效的多跳d2d路由跳数限制方法
CN115396514B (zh) 资源分配方法、装置及存储介质
CN106851769A (zh) 生成路由信息及确定传输路径的方法、装置
CN105472742A (zh) 一种lte多跳网络中的资源分配方法、设备以及系统
CN106900174A (zh) 无线局域网网状网络的数据传输方法、装置及系统
CN111132236B (zh) 基于改进olsr协议的多无人机自组织网络mpr节点选择方法
Wang et al. Joint multicast routing and channel assignment for multi-radio multi-channel wireless mesh networks with hybrid traffic
CN103596276A (zh) 一种基于信道间隔的无线网络信道分配策略
Selvakumar et al. Escalating quality of services with channel assignment and traffic scheduling in wireless mesh networks
CN105049347A (zh) 一种基于社会网络任务分发模型的dtn路由方法
CN105357716A (zh) 一种资源分配方法及装置
US20160183163A1 (en) Control method, controller and packet processing method for software-defined network
CN114390593A (zh) 一种iab网络中的通信方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904714

Country of ref document: EP

Kind code of ref document: A1