WO2016065590A1 - 小站间切换方法、设备及系统 - Google Patents

小站间切换方法、设备及系统 Download PDF

Info

Publication number
WO2016065590A1
WO2016065590A1 PCT/CN2014/089943 CN2014089943W WO2016065590A1 WO 2016065590 A1 WO2016065590 A1 WO 2016065590A1 CN 2014089943 W CN2014089943 W CN 2014089943W WO 2016065590 A1 WO2016065590 A1 WO 2016065590A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
available
small
target
synchronization
Prior art date
Application number
PCT/CN2014/089943
Other languages
English (en)
French (fr)
Inventor
蒋广健
程静静
黄磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/089943 priority Critical patent/WO2016065590A1/zh
Priority to EP18195900.8A priority patent/EP3474599A1/en
Priority to EP14905120.3A priority patent/EP3206433B1/en
Publication of WO2016065590A1 publication Critical patent/WO2016065590A1/zh
Priority to US15/582,345 priority patent/US10219194B2/en
Priority to US16/246,857 priority patent/US10827405B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/085Reselecting an access point involving beams of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, device, and system for switching between stations.
  • FIG. 1 is a schematic diagram of a high-frequency network architecture.
  • the high-frequency network includes: one macro base station, user equipment (English: User Equipment, abbreviated as UE), and multiple under the coverage area of the macro base station.
  • UE User Equipment
  • a small station including a service station that performs data communication with the UE; wherein the small station can perform data service transmission with the UE through the high frequency band.
  • the UE Because the high-frequency signal is more serious than the low-frequency signal, the transmission loss is worse, and therefore, under the influence of factors such as building blockage, human body blockage, and high-frequency signal beam misalignment, the UE is easily in a small service.
  • the coverage area of the station makes the high-frequency signal received by the UE weak enough to be demodulated, or the high-frequency signal sent by the serving station is not received, thereby affecting the quality and probability of the UE receiving the high-frequency service. Therefore, when the UE is in the coverage area of the serving small station, corresponding measures need to be taken to reduce the probability of the UE receiving the high frequency service and maintain the continuity of the data communication.
  • the UE when the UE is in the coverage dead zone of the serving small station, the UE adopts an initial synchronization measurement method, and performs synchronous measurement with all the high-frequency beams of all the small stations around the UE, and selects The best small station and beam pair are re-accessed, and the high frequency data sent by the small station is received to ensure the continuity of high frequency data communication.
  • this implementation method requires the UE to perform synchronous measurement with all the beams of all the small stations, and the complexity is high, and the synchronization measurement time is long, so that the delay of the UE re-accessing other small stations is large, and the service of the UE is reduced.
  • Quality (English: Quality of Service, abbreviation: QoS).
  • Embodiments of the present invention provide a method, device, and system for inter-station handover, to solve the problem that when the UE is in the coverage area of the serving station, the UE performs simultaneous measurement with all the beams of all the small stations, resulting in an access delay. Large, the UE receives low-frequency QoS problems.
  • an embodiment of the present invention provides a method for switching between stations, including:
  • the user equipment UE performs synchronization measurement to determine a small station set available to the UE; wherein the available small station set includes at least one available small station, and an available beam pair of each of the available small stations; An available beam pair consisting of one high frequency beam of the UE and one high frequency beam of the available station;
  • the UE switches to a target station corresponding to the target available beam pair.
  • the UE performs a synchronization measurement, and determining that the small station set available to the UE includes:
  • the UE receives, on each of the high frequency beams of the UE, synchronization pilot signals transmitted by each small station on each of the high frequency beams of the small station;
  • the UE separately measures the signal strength of each synchronization pilot signal, and sorts the signal strengths in descending order;
  • the UE determines the small station transmitting the synchronization pilot signal of the maximum signal strength as the location a serving small station of the UE; determining at least one small station transmitting the synchronization pilot signal of the second largest signal strength as an available small station in the small station set available to the UE.
  • the UE performs synchronous measurement according to the first synchronization indication, and selects a target available beam.
  • the pair includes:
  • the UE measures a signal strength of a synchronization pilot signal on a high frequency beam of a UE in each of the available beam pairs;
  • the signal strength corresponding to the synchronization pilot signal with the highest signal strength is greater than or equal to the preset threshold, selecting the high frequency beam of the UE that receives the synchronization pilot signal with the highest signal strength and the synchronization pilot signal transmitting the maximum signal strength are available.
  • the beam pair composed of the high frequency beam of the small station is the target available beam pair.
  • the method further includes:
  • the UE Transmitting, by the UE, a handover result to the macro base station, so that the macro base station indicates, according to the handover result, that the target small station and the UE use a target available beam pair for data transmission, and indicates the service.
  • the small station ends the data transmission with the UE; wherein the handover result includes: a target available beam pair, and a cell identifier of the target station;
  • the target can use the beam pair for data transmission.
  • an embodiment of the present invention provides a method for switching between stations, including:
  • the available set of small stations includes at least one available small station, and available beam pairs of each of the available small stations; the available beam pair And consisting of a high frequency beam of the UE and a high frequency beam of the available small station;
  • a blind zone status indication sent by the current serving station of the UE, where the blind zone status indication is used to indicate whether the UE is in a current serving station Coverage blind spot;
  • the macro base station When the UE is in a service dead zone of the current serving small station, the macro base station simultaneously sends a first synchronization indication to the UE, and separately sends a second synchronization to each available small station in the available small station set. Instructing, to enable the UE to perform synchronization measurement according to the first synchronization indication, selecting a target available beam pair, and switching from a current serving station of the UE to a target station corresponding to the target available beam pair; The first synchronization indication is used to indicate that the UE performs synchronization measurement on a high frequency beam of a UE in each of the available beam pairs; the second synchronization indication is used to indicate the available small station A synchronization pilot signal is transmitted to the UE on a high frequency beam in an available beam pair of available stations.
  • the method further includes:
  • a handover result sent by the UE receives, by the macro base station, a handover result sent by the UE, where the handover result includes: the target available beam pair, and a cell identifier of the target small station corresponding to the target available beam pair;
  • the macro base station indicates, according to the handover result, the adoption between the target small station and the UE Before the target can use the beam pair for data transmission, the method further includes:
  • the macro base station divides the available small stations into groups, and the available small stations in the same coverage area of the macro base station are grouped into one group;
  • the data requested by the UE to be transmitted is separately sent to each group of available small stations in a multicast manner.
  • an embodiment of the present invention provides a method for switching between stations, including:
  • the UE Transmitting, by the UE, a first synchronization pilot signal, so that the UE measures the synchronization pilot signal, and determines an available small station of the UE and an available beam pair of the available small station;
  • the available beam pair consists of one high frequency beam of the available small station and one high frequency beam of the UE;
  • a synchronization indication sent by the macro base station; wherein the synchronization indication indicates that the available small station transmits a synchronization pilot signal to the UE on a high frequency beam in its available beam pair;
  • the available small station sends a second synchronization pilot signal to the UE according to the synchronization indication, so that the UE performs synchronous measurement on the high frequency beam of the UE in the available beam pair, determines the target available beam pair, and Switching from the current serving station of the UE to a target station corresponding to the target available beam pair;
  • the target station receives the data transmission indication sent by the macro base station, and performs data transmission with the target available beam pair by the UE.
  • the method before the available small station receives the data transmission indication sent by the macro base station, the method further includes:
  • the available small station receives data requested by the UE sent by the macro base station in a multicast form.
  • the method further includes:
  • blind zone status indication is used to indicate whether the UE is in a coverage dead zone of the small station
  • the current serving small station When the UE is in the service dead zone of the current serving small station, the current serving small station receives the indication information sent by the macro base station, and ends the data transmission with the UE.
  • the step of determining whether the UE is in a coverage hole of the small station includes:
  • the uplink demodulation error of the UE is determined at least twice consecutively, determining that the UE is in a coverage dead zone of the current serving station;
  • the reference signal received power RSRP sent by the UE is received, or the reference signal received quality RSRQ is less than a preset threshold, determining that the UE is in a coverage dead zone of the current serving station;
  • the response message of the UE is not received at least twice after sending the request message to the UE, determining that the UE is in a coverage dead zone of the small station.
  • an embodiment of the present invention provides a user equipment, where the user equipment includes:
  • a determining unit configured to perform a synchronization measurement, to determine a small station set available to the UE; wherein the available small station set includes at least one available small station, and an available beam pair of each of the available small stations;
  • the available beam pair consists of a high frequency beam of the UE and a high frequency beam of the available station;
  • a sending unit configured to send the available small station set to the macro base station
  • a receiving unit configured to receive a first synchronization indication sent by the macro base station when the UE is in a coverage dead zone of a current serving small station, where the first synchronization indication is used to indicate that the UE is in each of the Synchronous measurement on the high frequency beam of the UE in the available beam pair;
  • a selecting unit configured to perform synchronous measurement according to the first synchronization indication, and select a target available beam pair
  • a switching unit configured to switch to a target station corresponding to the target available beam pair.
  • the determining unit is specifically configured to:
  • Determining a small station of the synchronous pilot signal transmitting the maximum signal strength as a serving station of the UE; and at least one small station transmitting the synchronization pilot signal of the second largest signal strength The available small stations in the small station set available to the UE are determined.
  • the selecting unit is specifically configured to:
  • the signal strength corresponding to the synchronization pilot signal with the highest signal strength is greater than or equal to the preset threshold, selecting the high frequency beam of the UE that receives the synchronization pilot signal with the highest signal strength and the synchronization pilot signal transmitting the maximum signal strength are available.
  • the beam pair composed of the high frequency beam of the small station is the target available beam pair.
  • the user equipment further includes:
  • a result reporting unit configured to send a handover result to the macro base station, so that the macro base station indicates, according to the handover result, that data transmission is performed by using a target available beam pair between the target small station and the UE, and indicating The serving station ends data transmission with the UE; wherein the handover result includes: a target available beam pair, and a cell identifier of the target station;
  • the receiving unit is further configured to receive a data transmission indication sent by the macro base station, and perform data transmission with the target available beam pair by the target small station; wherein the data transmission indication is used to indicate that the target is small Data transmission is performed between the station and the UE using the target available beam pair.
  • the present invention provides a macro base station in real time, and the macro base station includes:
  • a receiving unit configured to receive an available small station set sent by the UE, where the available small station set includes at least one available small station, and an available beam pair of each of the available small stations; the available beam pair And consisting of a high frequency beam of the UE and a high frequency beam of the available small station;
  • a blind zone status indication where the blind zone status indication is used to indicate whether the UE is in a coverage blind zone of the serving small station
  • a sending unit configured to send a first synchronization indication to the UE when the UE is in a service dead zone of the current serving small station, and send a second to each available small station in the available small station set respectively Synchronizing the indication, so that the UE performs synchronization measurement according to the first synchronization indication, selects a target available beam pair, and switches from a current serving station of the UE to a target station corresponding to the target available beam pair
  • the first synchronization indication is used to indicate that the UE performs synchronization measurement on a high frequency beam of a UE in each of the available beam pairs
  • the second synchronization indication is used to indicate the available small station
  • a synchronization pilot signal is transmitted to the UE on the high frequency beam of the available beam pairs of the available small stations.
  • the receiving unit is further configured to receive a handover result sent by the UE, where the handover result includes: the target available beam pair, and a cell identifier of the target small station corresponding to the target available beam pair;
  • the macro base station further includes:
  • an indication unit configured to indicate, according to the handover result, that data transmission is performed by using the target available beam pair between the target small station and the UE, and instructing the serving small station to end data transmission with the UE.
  • the macro base station further includes:
  • a grouping unit configured to concentrate the available small stations in the macro base before the indicating unit indicates that the target small station and the UE use the target available beam pair to perform data transmission according to the switching result.
  • the available stations in the same coverage area of the station are grouped into one group;
  • the sending unit is further configured to: after the macro base station receives the blind zone status indication sent by the serving small station of the UE, send the data requested by the UE to each group of available small stations in a multicast manner.
  • an embodiment of the present invention provides a small station, where the small station includes:
  • the sending unit sending, by the sending unit, the first synchronization pilot signal to the UE, so that the UE measures the synchronization pilot signal, determining the available small station of the UE and the available small station An available beam pair; wherein the available beam pair consists of one high frequency beam of available small stations and one high frequency beam of the UE;
  • a receiving unit configured to receive a synchronization indication sent by the macro base station, where the synchronization indication indicates that the available small station sends a synchronization pilot signal to the UE on a high frequency beam in its available beam pair;
  • the sending unit is further configured to send, according to the synchronization indication, a second synchronization pilot signal to the UE, so that the UE performs synchronous measurement on a high frequency beam of a UE in an available beam pair, and determines a target available beam. And switching from the current serving station of the UE to the target station corresponding to the target available beam pair;
  • the receiving unit is further configured to receive a data transmission indication sent by the macro base station;
  • a data communication unit configured to perform data transmission with the UE by using the target available beam pair.
  • the receiving unit is further configured to: before the receiving unit receives the data transmission indication sent by the macro base station, receive data requested by the UE sent by the macro base station in a multicast manner.
  • the small station in combination with the sixth aspect or the first possible implementation manner of the sixth aspect, further includes:
  • a determining unit configured to determine whether the UE is in a coverage dead zone of a current serving station
  • the sending unit is further configured to send a blind zone status indication to the macro base station, where the blind zone status indication is used to indicate whether the UE is in a coverage blind zone of the small station;
  • the receiving unit is further configured to: when the UE is in a service dead zone of a current serving small station, the small station receives the indication information sent by the macro base station, and ends data transmission with the UE.
  • the determining unit is specifically configured to:
  • the uplink demodulation error of the UE is determined at least twice consecutively, determining that the UE is in a coverage dead zone of the current serving station;
  • the reference signal received power RSRP sent by the UE is received, or the reference signal received quality RSRQ is less than a preset threshold, determining that the UE is in a coverage dead zone of the current serving station;
  • the response message of the UE is not received at least twice after sending the request message to the UE, determining that the UE is in a coverage dead zone of the small station.
  • the embodiment of the present invention provides a small inter-station handover system, including the user equipment, as described in any one of the fourth aspect to the third possible implementation manner of the fourth aspect, such as Any of the macro base stations described in any one of the fifth aspect to the second possible implementation of the fifth aspect, and at least one of the third possible implementations of the sixth aspect to the sixth aspect The small station described in the implementation.
  • the eighth aspect of the present invention provides a user equipment, where the user equipment includes:
  • a processor configured to perform a synchronization measurement, to determine a small set of stations available to the UE; wherein the available set of small stations includes at least one available small station, and an available beam pair for each of the available small stations;
  • the available beam pair consists of a high frequency beam of the UE and a high frequency beam of the available station;
  • a communication unit configured to send the available small station set to the macro base station
  • a first synchronization indication when the UE is in a coverage hole of the serving small station, where the first synchronization indication is used to indicate that the UE is in each of the available beam pairs Simultaneous measurement on the high frequency beam of the UE;
  • the processor is further configured to perform synchronous measurement according to the first synchronization indication, and select a target available beam pair;
  • the processor is specifically configured to:
  • the beam pair composed of the high frequency beam of the UE receiving the synchronization pilot signal having the largest signal strength and the high frequency beam of the available small station transmitting the synchronization pilot signal having the largest signal strength is selected as the target available beam pair.
  • the communication unit is further configured to send a handover result to the macro base station, so that the macro base station indicates, according to the handover result, that the target small station and the UE use a target available beam pair for data transmission, and Instructing the serving station to end data transmission with the UE; wherein the handover result includes: a target available beam pair, and a cell identifier of the target station;
  • the target can use the beam pair for data transmission.
  • the present invention provides a macro base station in real time, and the macro base station includes:
  • a communication unit configured to receive an available small station set sent by the UE; wherein the available small station set includes at least one available small station, and an available beam pair of each of the available small stations; the available beam pair And consisting of a high frequency beam of the UE and a high frequency beam of the available small station;
  • the blind spot status indication is used to indicate whether the UE is in a coverage blind area of the serving small station;
  • the UE When the UE is in the service dead zone of the current serving small station, simultaneously sending a first synchronization indication to the UE, and sending a second synchronization indication to each available small station in the available small station set, respectively, so that The UE performs synchronization measurement according to the first synchronization indication, selects a target available beam pair, and switches from a current serving station of the UE to a target station corresponding to the target available beam pair; a first synchronization indication for indicating that the UE performs synchronization measurement on a high frequency beam of a UE in each of the available beam pairs; the second synchronization indication is used to indicate that the available small station is in the available small station Sending a synchronous pilot to the UE on the high frequency beam in the available beam pair signal.
  • the communication unit is further configured to receive a handover result sent by the UE, where the handover result includes: a target available beam pair, and , the cell identifier of the target station;
  • the macro base station further includes:
  • a processor configured to indicate, according to the handover result, data transmission between the target small station and the UE by using a target available beam pair, and instructing the serving small station to end data transmission with the UE.
  • the processor is further configured to concentrate the available small stations before the indication unit indicates that the target small station and the UE use the target available beam pair to perform data transmission according to the switching result.
  • the available small stations of the same coverage area of the macro base station are grouped into one group;
  • the communication unit is further configured to: after the macro base station receives the blind zone status indication sent by the serving small station of the UE, send the data requested by the UE to each group of available small stations in a multicast manner.
  • an embodiment of the present invention provides a small station, where the small station includes:
  • a communication unit configured to send a first synchronization pilot signal to the UE, so that the UE measures the synchronization pilot signal, and determines an available small station of the UE and an available beam pair of the available small station; wherein, The available beam pair consists of one high frequency beam of available small stations and one high frequency beam of the UE;
  • a synchronization indication sent by the macro base station wherein the synchronization indication indicates that the available small station sends a synchronization pilot signal to the UE on a high frequency beam in its available beam pair;
  • a second synchronization pilot signal Transmitting, according to the synchronization indication, a second synchronization pilot signal to the UE, so that the UE performs synchronization measurement on a high frequency beam of a UE in an available beam pair, determines a target available beam pair, and obtains from the UE The current serving station switches to the target station corresponding to the target available beam pair;
  • Data transmission is performed with the UE using the target available beam pair.
  • the communication unit is further configured to: before the communication unit receives the data transmission indication sent by the macro base station, receive data requested by the UE sent by the macro base station in a multicast form.
  • the station also includes:
  • a processor configured to determine whether the UE is in a coverage dead zone of a current serving station
  • the communication unit is further configured to send a blind zone status indication to the macro base station, where the blind zone status indication is used to indicate whether the UE is in a coverage blind zone of the small station;
  • the communication unit is further configured to: when the UE is in a service dead zone of a current serving small station, the small station receives the indication information sent by the macro base station, and ends data transmission with the UE.
  • the processor is specifically configured to:
  • the uplink demodulation error of the UE is determined at least twice consecutively, determining that the UE is in a coverage dead zone of the current serving station;
  • the reference signal received power RSRP sent by the UE is received, or the reference signal received quality RSRQ is less than a preset threshold, determining that the UE is in a coverage dead zone of the current serving station;
  • the response message of the UE is not received at least twice after sending the request message to the UE, determining that the UE is in a coverage dead zone of the small station.
  • an embodiment of the present invention provides a small inter-station handover system, including the user equipment according to any one of the third possible implementation manners of the eighth aspect to the eighth aspect, A macro base station as described in any one of the second possible implementation manners of the ninth aspect to the ninth aspect, and the tenth to tenth aspects A small station as described in any one of the third possible implementations of the surface.
  • an embodiment of the present invention provides a method and device for switching between stations, where the UE performs synchronization measurement to determine a small station set available to the UE, and sends the available small station set to the macro base station; Receiving, by the macro base station, a first synchronization indication sent by the macro base station; performing synchronization measurement according to the first synchronization indication, selecting a target available beam pair; and switching to the target available beam For the corresponding target station.
  • the UE when the UE is in the coverage hole of the serving small station, the UE only needs to perform synchronous measurement on each available beam pair determined by the available small station set determined by the UE, and then the best target small station and target beam pair can be selected.
  • Switching to the target small station reduces the delay of the UE re-accessing the high-frequency network, improves the QoS of the UE receiving the high-frequency service, and avoids the need for the UE to perform synchronous measurement with all beam pairs of all the small stations in the prior art.
  • the long measurement time of the synchronization is long, and the delay in re-accessing the high-frequency network of the UE is large, and the QoS of the UE receiving the high-frequency service is poor.
  • FIG. 1 is a schematic diagram of a high frequency network architecture
  • FIG. 2 is a flowchart of a method for switching between stations according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for switching between stations according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for switching between stations according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for switching between stations according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of a user equipment 60 according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of a user equipment 60 according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a macro base station 70 according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a macro base station 70 according to an embodiment of the present invention.
  • FIG. 7B is a structural diagram of a macro base station 70 according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of a small station 80 according to an embodiment of the present invention.
  • FIG. 8A is a structural diagram of a small station 80 according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram of a small inter-station handover system 90 according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of a user equipment 100 according to an embodiment of the present invention.
  • FIG. 11 is a structural diagram of a macro base station 110 according to an embodiment of the present invention.
  • FIG. 12 is a structural diagram of a small station 120 according to an embodiment of the present invention.
  • FIG. 13 is a structural diagram of a small inter-station handover system 130 according to an embodiment of the present invention.
  • the inter-station handover method provided by the embodiment of the present invention is applicable to the high-frequency network architecture shown in FIG. 1 and is also applicable to small-station handover in any other cooperative communication scenario, and the comparison of the present invention is not limited.
  • the embodiment of the present invention is described by taking only the inter-station handover under the high-frequency network architecture shown in FIG. 1 as an example.
  • the small station 1 is a serving small station of the UE, and the small station 2, the small station 3, and the small station 4 are under the coverage area of the macro base station, and the service station of the UE is Neighboring stations, in which each small station can generate 10 high-frequency beams respectively, and the UE can generate 4 high-frequency beams: beam 1, beam 2, beam 3, and beam 4.
  • the UE When the UE is in the coverage hole of the serving station 1, if the existing method for reducing the probability of UE high-frequency data communication interruption is adopted, the UE needs to separately measure 10 high-frequency beams of the station 2 in the station 2 on the beam 1 of the UE.
  • the upper and lower stations 3 are on the 10 high-frequency beams of the small station 3, and the synchronous pilot signals transmitted by the small station 4 on the 10 high-frequency beams of the small station 4; the small stations are respectively measured on the beam 2 of the UE 2 Synchronous pilot signals transmitted on 10 high-frequency beams of small station 2, 10 high-frequency beams of small station 3 at small station 3, and 10 high-frequency beams of small station 4 at small station 4.
  • the transmitted synchronous pilot signal selects a small station and a beam pair corresponding to the synchronization signal with the highest received signal strength, accesses the selected small station, and performs high frequency data transmission using the selected beam pair.
  • the embodiment of the present invention provides a small inter-station handover method, which is applied to the high-frequency network architecture shown in FIG. 1 .
  • the method may include the following steps:
  • the UE performs synchronization measurement to determine a small station set available to the UE.
  • the available set of small stations comprises at least one available station, and an available beam pair for each of the available stations; the available beam pair is a high frequency beam of the UE and a high frequency of the available station Beam composition.
  • the UE may perform synchronization measurement as soon as the UE is turned on, determine a small station set available to the UE while determining the serving small station of the UE, or perform synchronization measurement when the user requests to establish a connection, and determine the UE.
  • the service station and the small station set available to the UE; and the UE may receive the high frequency data sent by the serving station, periodically perform synchronous measurement, and determine a small station set available to the UE.
  • the UE may perform synchronization measurement by using the following method to determine the UE.
  • Service station as well as, available station sets:
  • the UE receives, on each of the high frequency beams of the UE, synchronization pilot signals transmitted by each small station on each of the high frequency beams of the small station;
  • the UE separately measures the signal strength of each synchronization pilot signal, and sorts the signal strengths in descending order;
  • the signal strength may be an RSRP (Reference Signal Receiving Power) value of the current neighboring small station reference signal, or an RSRQ (Reference Signal Receiving Quality) value of the reference signal.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the UE determines that the small station 1 is the serving small station of the UE, and determines that the available small stations in the available small station set are the small station 2 and the small station 3, corresponding to the small station 2
  • the available beam pairs are (high frequency beam 2 of UE, high frequency beam 4 of small station 2), and the available beam pair corresponding to small station 3 is (high frequency beam 3 of UE, high frequency beam 6 of small station 3) .
  • the UE sends the available small station set to the macro base station.
  • the UE may send the available small station set to the macro base station through the low frequency channel; so that the macro station identifies the UE according to whether the received available small station set contains the information of the available small station; preferably, if Including the available small station, the UE is identified as an inter-station switchable user, and when the UE is in the coverage dead zone of the serving small station, the inter-station handover process described in the present invention is initiated; If the available small station is not included, the UE is defaulted or identified as an inter-station non-switchable user.
  • the first synchronization indication is used to indicate that the UE is in each of the available waves. Synchronous measurement on the high frequency beam of the UE of the beam pair;
  • the UE may receive the first synchronization indication sent by the macro base station on the low frequency channel.
  • the available beam pair determined in step 201 is (high frequency beam 2 of the UE, high frequency beam 4 of the small station 2), and (the high frequency beam 3 of the UE, the high frequency beam 6 of the small station 3)
  • the first synchronization indication is used to instruct the UE to receive the synchronization pilot signal sent by the small station on the high frequency beam 2 of the UE and the high frequency beam 3, respectively, to perform synchronous measurement.
  • the UE performs synchronous measurement according to the first synchronization indication, and selects a target available beam pair.
  • the target available beam pair is a beam pair with good channel quality and meeting high frequency data transmission requirements.
  • the UE may select a target available beam pair by using the following method:
  • the UE measures a signal strength of a synchronization pilot signal on a high frequency beam of a UE in each of the available beam pairs;
  • the signal strength corresponding to the synchronization pilot signal with the highest signal strength is greater than or equal to the preset threshold, selecting the high frequency beam of the UE that receives the synchronization pilot signal with the highest signal strength and the synchronization pilot signal transmitting the maximum signal strength are available.
  • the beam pair composed of the high frequency beam of the small station is the target available beam pair.
  • the UE uses the existing inter-station handover method to perform synchronous measurement with all the beams of all the small stations to select the optimal beam pair.
  • the preset threshold is set as needed, and is not limited in this embodiment of the present invention. If the signal strength of the synchronization pilot signal is greater than or equal to the preset threshold, the channel quality of transmitting and receiving the synchronization pilot signal is high. The requirement of the high frequency data transmission channel in the frequency network architecture; if the signal strength of the synchronous pilot signal is less than the preset threshold, it indicates that the channel quality of transmitting and receiving the synchronous pilot signal cannot meet the requirements of the high frequency data transmission channel in the high frequency network architecture, The high frequency transmission channel is not available.
  • the UE when the UE in FIG. 1 is in the coverage hole of the serving station, the UE only needs to pair the available beam pairs (high frequency beam 2 of the UE, high frequency beam 4 of the small station 2), and (UE) The high frequency beam 3, the high frequency beam 6 of the small station 3) is synchronously measured, and the target available beam pair is selected from the two beam pairs, that is, only two simultaneous measurements are performed, and the best beam pair can be determined.
  • 120 times of synchronous measurement is needed to determine the best beam pair, which greatly reduces the number of simultaneous measurements and reduces the synchronous measurement time, thereby saving the time for the UE to perform small station switching in step 205.
  • the delay of re-accessing the high-frequency network of the UE is reduced, and the QoS of the UE receiving the high-frequency service is improved.
  • the UE switches to a target station corresponding to the target available beam pair.
  • the method further includes:
  • the UE Transmitting, by the UE, a handover result to the macro base station, so that the macro base station indicates, according to the handover result, that data transmission is performed by using the target available beam pair between the target small station and the UE, and indicating the service station Ending data transmission with the UE; wherein the handover result includes: a target available beam pair, and a cell identifier of the target station;
  • the target can use the beam pair for data transmission.
  • the embodiment of the present invention provides a small inter-station handover method, where the UE performs synchronization measurement to determine a small station set available to the UE, and sends the available small station set to the macro base station;
  • the synchronization measurement is performed according to the first synchronization indication, the target available beam pair is selected, and the target small station corresponding to the target available beam pair is switched.
  • the UE when the UE is in the coverage hole of the serving small station, the UE only needs to perform synchronous measurement on each available beam pair determined by the available small station set determined by the UE, and then the best small station and beam pair can be selected.
  • the selected small station continues the high-frequency data transmission by using the selected beam pair, which reduces the synchronization measurement time, thereby reducing the delay of the UE re-accessing the high-frequency network, and improving the QoS of the UE receiving the high-frequency service.
  • the UE needs to perform synchronous measurement with all the beam pairs of all the small stations, the synchronization measurement time is long, the delay of the UE re-accessing the high-frequency network is large, and the QoS of the UE receiving the high-frequency service is poor. .
  • an embodiment of the present invention further provides a method for switching between stations, as shown in FIG. 3, The method can include the following steps:
  • the macro base station receives an available small station set sent by the UE.
  • the available set of small stations comprises at least one available station, and an available beam pair for each of the available stations; the available beam pair is a high frequency beam by the UE and the available station A high frequency beam consists of.
  • the macro base station receives a blind zone status indication sent by the serving small station of the UE.
  • the blind zone status indication is used to indicate whether the UE is in a coverage dead zone of the serving small station.
  • the macro base station can receive the blind zone status indication sent by the serving station on the low frequency channel.
  • the macro base station When the UE is in a service dead zone of the current serving small station, the macro base station simultaneously sends a first synchronization indication to the UE, and separately sends a second synchronization to each available small station in the available small station set. And indicating, so that the UE performs synchronous measurement according to the first synchronization indication, and selects a target available beam pair.
  • the first synchronization indication is used to indicate that the UE performs synchronization measurement on a high frequency beam of a UE in each of the available beam pairs; the second synchronization indication is used to indicate the available small station A synchronization pilot signal is transmitted to the UE on a high frequency beam in an available beam pair of available stations.
  • the method further includes:
  • a handover result sent by the UE receives, by the macro base station, a handover result sent by the UE, where the handover result includes: the target available beam pair, and a cell identifier of the target small station corresponding to the target available beam pair;
  • the method may further include:
  • the macro base station groups the available small stations into groups of available small stations in the same coverage area of the macro base station;
  • the data requested by the UE to be transmitted is separately sent to each group of available small stations in a multicast manner.
  • the macro base station before performing the synchronization measurement on the UE side and determining the target available beam pair, the macro base station first transmits the data requested by the UE to each small station in the available small station set in the data transmission in the form of multicast, so that the macro base station is receiving. After the result of the handover, the target small station is directly commanded to perform data transmission to the UE, instead of transmitting the data requested by the UE to the target small station after receiving the handover result, so that the target small station performs data transmission to the UE.
  • the embodiment of the present invention provides a small inter-station handover method, where the macro base station receives the available small station set sent by the UE and the blind area status indication sent by the current serving small station of the UE, when the UE is in the current service.
  • the macro base station When the station is in the service dead zone, the macro base station simultaneously sends a first synchronization indication to the UE, and sends a second synchronization indication to each available small station in the available small station set, respectively, so that the UE according to the
  • the first synchronization indication performs a synchronization measurement, and selects a target available beam pair; wherein the first synchronization indication is used to indicate that the UE performs synchronous measurement on a high frequency beam of a UE in each of the available beam pairs;
  • the second synchronization indication is used to indicate that the available small station transmits a synchronization pilot signal to the UE on a high frequency beam in an available beam pair of the available small station.
  • the macro base station After the macro base station receives the information that the UE sent by the serving small station is in the coverage area of the serving small station, the macro base station commands the UE to perform synchronous measurement with the available available beam pairs in the determined small station set, so that the number of synchronization measurements of the UE is obtained.
  • the measurement time is reduced, the delay of the UE re-accessing the high-frequency network is reduced, and the high-frequency QoS of the UE is improved.
  • the embodiment of the present invention further provides a method for switching between stations, as shown in FIG. 4, the method may include the following steps:
  • the available beam pair is a high frequency beam from the available station and the UE A high frequency beam consists of.
  • the available small station receives the synchronization indication sent by the macro base station, where the synchronization indication indicates that the available small station sends a synchronization pilot signal to the UE on the high frequency beam in its available beam pair.
  • the available small station sends a second synchronization pilot signal to the UE according to the synchronization indication, so that the UE performs synchronous measurement on the high frequency beam of the UE in the available beam pair, and determines a target available beam pair, and Switching from the current serving station of the UE to the target station corresponding to the target available beam pair.
  • the target station receives the data transmission indication sent by the macro base station, and performs data transmission with the target available beam pair by the UE.
  • step 404 the method further includes:
  • the available small station receives data requested by the UE sent by the macro base station in a multicast form.
  • the method further includes:
  • blind zone status indication is used to indicate whether the UE is in a coverage dead zone of the small station
  • the current serving small station When the UE is in the service dead zone of the current serving small station, the current serving small station receives the indication information sent by the macro base station, and ends the data transmission with the UE.
  • whether the UE is in the coverage hole of the service station can be determined by any one of the following three methods: (1), (2), and (3):
  • the preset threshold is set as needed, and the comparison in the embodiment of the present invention is not performed. limited.
  • an embodiment of the present invention provides a small inter-station handover method, which sends a first synchronization pilot signal to a UE, so that the UE measures the synchronization pilot signal, and determines the available small station of the UE.
  • the available beam pair of the available small station wherein the available beam pair is composed of one high frequency beam of the available small station and one high frequency beam of the UE; the small station can receive the synchronization indication sent by the macro base station;
  • the synchronization indication indicates that the available station transmits a synchronization pilot signal to the UE on a high frequency beam in its available beam pair; the available station transmits a second synchronization pilot signal to the UE according to the synchronization indication.
  • the UE In order to enable the UE to perform synchronous measurement on the high frequency beam of the UE in the available beam pair, determine the target available beam pair, and switch from the current serving station of the UE to the target station corresponding to the target available beam pair. And the target small station receives the data transmission indication sent by the macro base station, and performs data transmission with the UE by using the target available beam pair. In this way, when the UE is in the coverage area of the serving small station, the UE only needs to perform synchronous measurement on the available beam pairs in the available small station set, which greatly reduces the number of synchronizations, thereby reducing the delay of the UE accessing the high frequency networking. The QoS of the UE receiving the high frequency service is improved.
  • the above method is specifically described by taking the inter-station handover under the high-frequency network architecture shown in FIG. 1 as an example, wherein the UE currently serves the small station as the small station 1, and the available small station set includes the small station 2 And the small station 3, when the UE is in the coverage area of the service station, the determined target station is the station 2.
  • FIG. 5 is a flowchart of a method for switching between stations according to an embodiment of the present invention. As shown in FIG. 5, the method may include the following steps:
  • the UE performs synchronous measurement to determine a small station set available to the UE.
  • the available small station set includes the small station 2, the small station 3, and the available beam pair of the small station 2 (the high frequency beam 2 of the UE, the high frequency beam 4 of the small station 2), and the small station 3 is available.
  • the beam pair is (high frequency beam 3 of the UE, high frequency beam 6 of the small station 3).
  • the UE sends an available small station set to the macro base station.
  • the small station 1 determines that the UE is in the coverage dead zone of the serving small station.
  • the small station 1 can determine that the UE is in the coverage dead zone of the serving station by any one of the following three methods: (1), (2), and (3):
  • the preset threshold is set as needed, and the comparison between the embodiments of the present invention is not limited.
  • the small station 1 sends a blind zone status indication to the macro base station.
  • the macro base station simultaneously sends a first synchronization indication to the UE, and sends a second synchronization indication to the available small stations in the available small station set respectively.
  • the first synchronization indication is used to indicate that the UE performs synchronization measurement on the high frequency beam of the UE in each of the available beam pairs
  • the second synchronization indication is used to indicate the available small
  • a synchronization pilot signal is transmitted to the UE on a high frequency beam in an available beam pair of the available station.
  • the UE performs synchronous measurement according to the first synchronization indication, and selects a target available beam pair (the high frequency beam 2 of the UE and the high frequency beam 4 of the small station 2).
  • the UE switches to the target station station 2 corresponding to the target available beam pair.
  • the UE sends a handover result to the macro base station.
  • the macro base station sends indication information to the small station 2 according to the handover result, where the indication information is used to indicate that the small station 2 uses the target available beam pair to transmit high frequency data with the UE.
  • the embodiment of the present invention provides a small inter-station handover method, where the UE performs synchronization measurement, determines a small station set available to the UE, and sends an available small station set to the macro base station; the service small station determines that the UE is in the service station. Send a blind spot to the macro base station when covering the blind spot a status indication; the macro base station simultaneously sends a first synchronization indication to the UE, and separately sends a second synchronization indication to the available small stations in the available small station set; the UE performs synchronization measurement, selects a target beam pair, and switches to the target beam pair.
  • the target station transmits the handover result to the macro base station; the macro base station instructs the target station to transmit the high frequency data to the UE.
  • the UE when the UE is in the coverage hole of the serving small station, the UE only needs to perform synchronous measurement on each available beam pair determined by the available small station set determined by the UE, and then the best target small station and target beam pair can be selected.
  • Switching to the target small station reduces the delay of the UE re-accessing the high-frequency network, improves the QoS of the UE receiving the high-frequency service, and avoids the need for the UE to perform synchronous measurement with all beam pairs of all the small stations in the prior art.
  • the long measurement time of the synchronization is long, and the delay in re-accessing the high-frequency network of the UE is large, and the QoS of the UE receiving the high-frequency service is poor.
  • the embodiment of the present invention provides a user equipment 60.
  • the user equipment 60 may include:
  • the determining unit 601 is configured to perform synchronization measurement to determine a small station set available to the UE.
  • the available set of small stations comprises at least one available station, and an available beam pair for each of the available stations; the available beam pair is a high frequency beam by the UE and the available station A high frequency beam consists of.
  • the sending unit 602 is configured to send the available small station set to the macro base station.
  • the receiving unit 603 is configured to receive a first synchronization indication sent by the macro base station when the UE is in a coverage dead zone of a current serving small station.
  • the first synchronization indication is used to indicate that the UE performs synchronous measurement on a high frequency beam of a UE in each of the available beam pairs.
  • the selecting unit 604 is configured to perform synchronization measurement according to the first synchronization indication, and select a target available beam pair.
  • the switching unit 605 is configured to switch to a target station corresponding to the target available beam pair.
  • determining unit 601 is specifically configured to:
  • the signal strength may be an RSRP value of the current neighboring small station reference signal or an RSRQ value of the reference signal.
  • the UE After the UE performs the synchronization measurement, it determines that the small station 1 is the serving small station of the UE, and determines that the available small stations in the available small station set are the small station 2 and the small station 3, corresponding to the small station 2
  • the available beam pairs are (high frequency beam 2 of the UE, high frequency beam 4 of the small station 2), and the available beam pairs corresponding to the small station 3 are (high frequency beam 3 of the UE, high frequency beam 6 of the small station 3) ).
  • selecting unit 604 is specifically configured to:
  • the signal strength corresponding to the synchronization pilot signal with the highest signal strength is greater than or equal to the preset threshold, selecting the high frequency beam of the UE that receives the synchronization pilot signal with the highest signal strength and the synchronization pilot signal transmitting the maximum signal strength are available.
  • the beam pair composed of the high frequency beam of the small station is the target available beam pair.
  • the preset threshold is set as needed, and is not limited in this embodiment of the present invention. If the signal strength of the synchronization pilot signal is greater than or equal to the preset threshold, the channel quality of transmitting and receiving the synchronization pilot signal is high. The requirement of the high frequency data transmission channel in the frequency network architecture; if the signal strength of the synchronous pilot signal is less than the preset threshold, it indicates that the channel quality of transmitting and receiving the synchronous pilot signal cannot meet the requirements of the high frequency data transmission channel in the high frequency network architecture, The high frequency transmission channel is not available.
  • the UE in FIG. 1 when the UE in FIG. 1 is in the coverage hole of the serving station, the UE only needs to The available beam pairs (high frequency beam 2 of the UE, high frequency beam 4 of the small station 2), and (high frequency beam 3 of the UE, high frequency beam 6 of the small station 3) are simultaneously measured from the two beam pairs
  • the target available beam pair is selected, that is, only two synchronization measurements are needed, and the best beam pair can be determined.
  • 120 simultaneous measurements are needed to determine the best beam pair, which is greatly reduced.
  • the number of synchronization measurements reduces the synchronization measurement time, thereby performing small station handover for the UE, saving time, reducing the delay of the UE re-accessing the high frequency network, and improving the QoS of the UE receiving the high frequency service.
  • the user equipment further includes:
  • a result reporting unit 606 configured to send a handover result to the macro base station, so that the macro base station instructs, according to the handover result, that the target small station and the UE use a target available beam pair for data transmission, and Instructing the serving station to end data transmission with the UE; wherein the handover result includes: a target available beam pair, and a cell identifier of the target station;
  • the receiving unit 603 is further configured to receive a data transmission indication sent by the macro base station, and perform data transmission with the target available beam pair by the target small station; wherein the data transmission indication is used to indicate the target Data transmission is performed between the small station and the UE using the target available beam pair.
  • the embodiment of the present invention provides a user equipment 60, which first performs synchronization measurement, determines a small station set available to the UE, and sends the available small station set to the macro base station; when the UE is in the Receiving a coverage area of the small station, receiving a first synchronization indication sent by the macro base station, performing synchronization measurement according to the first synchronization indication, selecting a target available beam pair, and switching to a target corresponding to the target available beam pair Small station.
  • the UE when the UE is in the coverage hole of the serving small station, the UE only needs to perform synchronous measurement on each available beam pair determined by the available small station set determined by the UE, and then the best target small station and target beam pair can be selected.
  • Switching to the target small station reduces the delay of the UE re-accessing the high-frequency network, improves the QoS of the UE receiving the high-frequency service, and avoids the need for the UE to perform synchronous measurement with all beam pairs of all the small stations in the prior art.
  • the long measurement time of the synchronization is long, and the delay in re-accessing the high-frequency network of the UE is large, and the QoS of the UE receiving the high-frequency service is poor.
  • the embodiment of the present invention further provides a macro base station 70.
  • the macro base station 70 may include:
  • the receiving unit 701 is configured to receive an available small station set sent by the UE, where the available small station set includes at least one available small station, and an available beam pair of each of the available small stations; the available beam Comprising a high frequency beam of the UE and a high frequency beam of the available station;
  • a blind zone status indication is used to indicate that the UE is in a coverage blind zone of the serving small station.
  • the sending unit 702 is configured to send a first synchronization indication to the UE at the same time, and send a second synchronization indication to each available small station in the available small station set, respectively, so that the UE is according to the first Synchronizing the indication to perform the synchronization measurement, and selecting the target available beam pair; wherein the first synchronization indication is used to indicate that the UE performs synchronous measurement on the high frequency beam of the UE in each of the available beam pairs; A second synchronization indication is used to indicate that the available small station transmits a synchronization pilot signal to the UE on a high frequency beam in an available beam pair of the available small station.
  • the receiving unit 701 is further configured to receive a handover result sent by the UE, where the handover result includes: a target available beam pair, and a cell identifier of the target small station;
  • the macro base station further includes:
  • the indicating unit 703 is configured to indicate, according to the handover result, that data is transmitted by using the target available beam pair between the target small station and the UE, and instructing the serving small station to end data transmission with the UE .
  • the station also includes:
  • the grouping unit 704 is configured to concentrate the available small stations in the indication unit 703 before the data transmission between the target small station and the UE is performed according to the switching result,
  • the same coverage area of the macro base station Can be divided into groups by small stations;
  • the sending unit 702 is further configured to: after the macro base station receives the blind zone status indication sent by the serving small station of the UE, send the data requested by the UE to each group of available small stations in a multicast manner.
  • the macro base station when the UE performs the synchronization measurement and determines the target available beam pair, the macro base station first transmits the data requested by the UE to each small station in the available small station set in a multicast manner, so that the macro base station receives the handover result. Directly commanding the target small station to perform data transmission to the UE, which prevents the macro base station from transmitting the data requested by the UE to the target small station after receiving the handover result, so that the time lost by the target small station to the UE for data transmission is wasted.
  • the embodiment of the present invention provides a macro base station 70, which receives an available small station set sent by the UE, and sends a first synchronization indication to the UE after the macro base station receives the blind zone status indication sent by the serving small station.
  • a second synchronization indication For transmitting, to the available small stations in the set of available stations, a second synchronization indication, respectively, so that the UE performs synchronization measurement according to the first synchronization indication, and selects a target available beam pair; wherein a first synchronization indication for indicating that the UE performs synchronization measurement on a high frequency beam of a UE in each of the available beam pairs; the second synchronization indication is used to indicate that the available small station is in the available small station A synchronization pilot signal is transmitted to the UE on the high frequency beam in the available beam pair.
  • the macro base station After the macro base station receives the information that the UE sent by the serving small station is in the coverage area of the serving small station, the macro base station commands the UE to perform synchronous measurement with the available available beam pairs in the determined small station set, so that the number of synchronization measurements of the UE is obtained.
  • the measurement time is reduced, the delay of the UE re-accessing the high-frequency network is reduced, and the high-frequency QoS of the UE is improved.
  • an embodiment of the present invention provides a small station 80.
  • the small station 80 includes:
  • the sending unit 801 sends a first synchronization pilot signal to the UE, so that the UE measures the synchronization pilot signal, and determines an available small station of the UE and an available beam pair of the available small station.
  • the available beam pair consists of one high frequency beam of the available small station and one high frequency beam of the UE;
  • the receiving unit 802 is configured to receive a synchronization indication sent by the macro base station, where the synchronization indication indicates that the available small station sends a synchronization pilot signal to the UE on a high frequency beam in its available beam pair.
  • the sending unit 801 is further configured to send, according to the synchronization indication, a second synchronization pilot signal to the UE, so that the UE performs synchronous measurement on a high frequency beam of the UE in the available beam pair, and determines that the target is available.
  • the beam pair is switched from the current serving station of the UE to the target station corresponding to the target available beam pair.
  • the receiving unit 802 is further configured to receive a data transmission indication sent by the macro base station.
  • the data communication unit 803 is configured to perform data transmission with the UE by using the target available beam pair.
  • the receiving unit 802 is further configured to: before the receiving unit receives the data transmission indication sent by the macro base station, receive, by the macro base station, the data that the UE requests to transmit in a multicast form.
  • the small station 80 when the small station 80 is the current serving station of the UE, as shown in FIG. 8A, the small station 80 further includes:
  • a determining unit 804 configured to determine whether the UE is in a coverage hole of a current serving station
  • the sending unit 801 is further configured to send a blind zone status indication to the macro base station, where the blind zone status indication is used to indicate whether the UE is in a coverage blind zone of the small station;
  • the receiving unit 802 is further configured to: when the UE is in a service dead zone of a current serving small station, the small station receives the indication information sent by the macro base station, and ends data transmission with the UE.
  • determining unit 804 is specifically configured to:
  • the uplink demodulation error of the UE is determined at least twice consecutively, determining that the UE is in a coverage dead zone of the current serving station;
  • the UE is in the The coverage of the current service station is a blind spot; wherein the preset threshold is set as needed, and the comparison in the embodiment of the present invention is not limited;
  • the response message of the UE is not received at least twice after sending the request message to the UE, determining that the UE is in a coverage dead zone of the small station.
  • an embodiment of the present invention provides a small station 80, which sends a first synchronization pilot signal to a UE, so that the UE measures the synchronization pilot signal, determines an available small station of the UE, and the An available beam pair of a small station is available; wherein the available beam pair consists of one high frequency beam of the available station and one high frequency beam of the UE; the small station can receive the synchronization indication sent by the macro base station; wherein The synchronization indication indicates that the available small station transmits a synchronization pilot signal to the UE on a high frequency beam in its available beam pair; the available small station transmits a second synchronization pilot signal to the UE according to the synchronization indication, to Having the UE perform synchronous measurement on a high frequency beam of a UE in an available beam pair, determine a target available beam pair, and switch from a current serving station of the UE to a target station corresponding to a target available beam pair; The small station receives the data transmission indication
  • the UE when the UE is in the coverage area of the serving small station, the UE only needs to perform synchronous measurement on the available beam pairs in the available small station set, which greatly reduces the number of synchronizations, thereby reducing the delay of the UE accessing the high frequency networking.
  • the QoS of the UE receiving the high frequency service is improved.
  • an embodiment of the present invention provides an inter-station handover system 90.
  • the inter-station handover system 190 can include a user equipment 60, a macro base station 70, a service at least one small station 80, and at least one available. Small station 0;
  • the user equipment 60, the macro base station 70, and the small station 80 are the same as the user equipment 60, the macro base station 70, and the small station 80, and are not described here.
  • the embodiment of the present invention provides an inter-station handover system 90.
  • the UE 60 performs synchronization measurement, determines a small station set available to the UE 60, and sends an available small station set to the macro base station 70.
  • the small station 80 determines that the UE is in service.
  • the blind base state indication is sent to the macro base station 70;
  • the macro base station 70 simultaneously transmits the first synchronization indication to the UE, and sends the second synchronization indication to the available small stations in the available small station set;
  • the UE 60 performs synchronous measurement. , determine the target available beam pair, and switch to the corresponding target of the target available beam pair Standard station.
  • the UE when the UE is in the coverage hole of the serving small station, the UE only needs to perform synchronous measurement on each available beam pair determined by the available small station set determined by the UE, and then the best target small station and target beam pair can be selected.
  • Switching to the target small station reduces the delay of the UE re-accessing the high-frequency network, improves the QoS of the UE receiving the high-frequency service, and avoids the need for the UE to perform synchronous measurement with all beam pairs of all the small stations in the prior art.
  • the long measurement time of the synchronization is long, and the delay in re-accessing the high-frequency network of the UE is large, and the QoS of the UE receiving the high-frequency service is poor.
  • the embodiment of the present invention further provides a user equipment 100.
  • the user equipment 100 may include: a communication unit 1001, a processor 1002, a memory 1003, and at least one communication bus 1004. Connections between devices and mutual communication;
  • the processor 1002 may be a central processing unit (English: central processing unit, referred to as CPU).
  • the memory 1003 may be a volatile memory (English: volatile memory), such as random access memory (English: random-access memory, abbreviation: RAM); or non-volatile memory (English: non-volatile memory), for example Read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, abbreviation :SSD); or a combination of the above types of memory and providing instructions and data to the processor 1002.
  • volatile memory such as random access memory (English: random-access memory, abbreviation: RAM); or non-volatile memory (English: non-volatile memory), for example Read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, abbreviation :SSD); or a combination
  • the processor 1002 is configured to perform synchronization measurement to determine a small station set available to the UE.
  • the available set of small stations comprises at least one available station, and an available beam pair for each of the available stations; the available beam pair is a high frequency beam by the UE and the available station A high frequency beam consists of.
  • the communication unit 1001 is configured to send the available small station set to the macro base station;
  • the first synchronization indication is used to indicate that the UE is in each of the available waves. Synchronous measurements are made on the high frequency beam of the UE of the beam pair.
  • the processor 1002 is further configured to perform synchronization measurement according to the first synchronization indication, and select a target available beam pair;
  • processor 1002 is specifically configured to:
  • the signal strength may be an RSRP value of the current neighboring small station reference signal or an RSRQ value of the reference signal.
  • the UE After the UE performs the synchronization measurement, it determines that the small station 1 is the serving small station of the UE, and determines that the available small stations in the available small station set are the small station 2 and the small station 3, corresponding to the small station 2
  • the available beam pairs are (high frequency beam 2 of the UE, high frequency beam 4 of the small station 2), and the available beam pairs corresponding to the small station 3 are (high frequency beam 3 of the UE, high frequency beam 6 of the small station 3) ).
  • processor 1002 is specifically configured to:
  • the signal strength corresponding to the synchronization pilot signal with the highest signal strength is greater than or equal to the preset threshold, selecting the high frequency beam of the UE that receives the synchronization pilot signal with the highest signal strength and the synchronization pilot signal transmitting the maximum signal strength are available.
  • the beam pair composed of the high frequency beam of the small station is the target available beam pair.
  • the preset threshold is set as needed, and the embodiment of the present invention does not For example, if the signal strength of the synchronization pilot signal is greater than or equal to the preset threshold, it indicates that the channel quality of transmitting and receiving the synchronization pilot signal satisfies the requirement of the high frequency data transmission channel in the high frequency network architecture; if the signal strength of the synchronization pilot signal is If the threshold is less than the preset threshold, it indicates that the channel quality of transmitting and receiving the synchronization pilot signal cannot meet the requirement of the high-frequency data transmission channel in the high-frequency network architecture, and the high-frequency transmission channel is not available.
  • the UE when the UE in FIG. 1 is in the coverage hole of the serving station, the UE only needs to pair the available beam pairs (the high frequency beam 2 of the UE, the high frequency beam 4 of the small station 2), and (the high frequency beam of the UE) 3.
  • the high-frequency beam 6 of the small station 3 is synchronously measured, and the target available beam pair is selected from the two beam pairs, that is, only two synchronization measurements are needed, and the best beam pair can be determined, the same as the existing method.
  • 100 simultaneous measurements are needed to determine the best beam pair, which greatly reduces the number of simultaneous measurements and reduces the synchronous measurement time, thereby enabling small station switching for the UE, saving time and reducing UE re-access.
  • the delay of the high frequency network improves the QoS of the UE receiving the high frequency service.
  • the communication unit 1001 is further configured to send a handover result to the macro base station, so that the macro base station indicates, according to the handover result, that a target available beam pair is used between the target small station and the UE.
  • the handover result includes: a target available beam pair, and a cell identifier of the target station;
  • the target can use the beam pair for data transmission.
  • the embodiment of the present invention provides a user equipment 100, which first performs synchronization measurement, determines a small station set available to the UE, and sends the available small station set to the macro base station; when the UE is in the Receiving a coverage area of the small station, receiving a first synchronization indication sent by the macro base station, performing synchronization measurement according to the first synchronization indication, selecting a target available beam pair, and switching to a target corresponding to the target available beam pair Small station.
  • the UE when the UE is in the coverage hole of the serving small station, the UE only needs to perform synchronous measurement on each available beam pair determined by the available small station set determined by the UE, and then the best small station and beam pair can be selected.
  • the pair continues to perform high-frequency data transmission, which reduces the synchronization measurement time, thereby reducing the delay of the UE re-accessing the high-frequency network, improving the QoS of the UE receiving the high-frequency service, and avoiding the need for the UE to be the same in the prior art.
  • All the beam pairs of the station are synchronously measured, and the synchronous measurement time is long, resulting in a large delay in re-accessing the high-frequency network of the UE, and a problem that the QoS of the UE receiving the high-frequency service is poor.
  • the embodiment of the present invention further provides a macro base station 110.
  • the macro base station 110 may include: a communication unit 1101, a processor 1102, a memory 1103, and at least one communication bus 1104. Connections between devices and mutual communication;
  • the processor 1102 may be a central processing unit (English: central processing unit, referred to as CPU).
  • the memory 1103 may be a volatile memory (English: volatile memory), such as random access memory (English: random-access memory, abbreviation: RAM); or non-volatile memory (English: non-volatile memory), for example Read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, abbreviation :SSD); or a combination of the above types of memory and providing instructions and data to the processor 1102.
  • volatile memory such as random access memory (English: random-access memory, abbreviation: RAM); or non-volatile memory (English: non-volatile memory), for example Read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, abbreviation :SSD); or a combination
  • the communication unit 1101 is configured to receive an available small station set sent by the UE, where the available small station set includes at least one available small station, and an available beam pair of each of the available small stations; the available beam Comprising a high frequency beam of the UE and a high frequency beam of the available station;
  • the blind zone status indication is used to indicate that the UE is in a coverage blind zone of the serving small station;
  • the communication unit 1101 is further configured to receive a handover result sent by the UE, where the handover result includes: a target available beam pair, and a cell identifier of the target small station;
  • the processor 1102 is configured to indicate, according to the handover result, that the target small station and the UE use a target available beam pair for data transmission, and that the serving small station ends with the UE Data transfer between.
  • the data transmitted by the other small station on the high frequency channel is received as soon as possible, and the connection delay of the high frequency data service is reduced, and the processor 1102 is further used for Before the indicating unit indicates that the target small station and the UE use the target available beam pair for data transmission according to the switching result, the available small stations are concentrated in the same coverage area of the macro base station. The available stations are grouped together;
  • the communication unit 1101 is further configured to: after the macro base station receives the blind zone status indication sent by the serving small station of the UE, send the data requested by the UE to each set of available small stations in a multicast manner.
  • the macro base station when the UE performs the synchronization measurement and determines the target available beam pair, the macro base station first transmits the data requested by the UE to each small station in the available small station set in a multicast manner, so that the macro base station receives the handover result. Directly commanding the target small station to perform data transmission to the UE, which prevents the macro base station from transmitting the data requested by the UE to the target small station after receiving the handover result, so that the time lost by the target small station to the UE for data transmission is wasted.
  • the embodiment of the present invention provides a macro base station 110, which receives an available small station set sent by the UE, and sends a first synchronization indication to the UE after receiving the blind area status indication sent by the serving small station.
  • a second synchronization indication For transmitting, to the available small stations in the set of available stations, a second synchronization indication, respectively, so that the UE performs synchronization measurement according to the first synchronization indication, and selects a target available beam pair; wherein a first synchronization indication for instructing the UE to perform synchronization measurement on a high frequency beam of a UE in each of the available beam pairs; the second synchronization indication is used to indicate the available small station A synchronization pilot signal is transmitted to the UE on the high frequency beam of the available beam pairs of the available small stations.
  • the macro base station After the macro base station receives the information that the UE sent by the serving small station is in the coverage area of the serving small station, the macro base station commands the UE to perform synchronous measurement with the available available beam pairs in the determined small station set, so that the number of synchronization measurements of the UE is obtained.
  • the measurement time is reduced, the delay of the UE re-accessing the high-frequency network is reduced, and the high-frequency QoS of the UE is improved.
  • an embodiment of the present invention further provides a small station 120.
  • the small station 120 may include: a communication unit 1201, a processor 1202, a memory 1203, and at least one communication bus 1204. Connections between devices and mutual communication;
  • the processor 1202 may be a central processing unit (English: central processing unit, referred to as CPU).
  • the memory 1203 may be a volatile memory (English: volatile memory), such as random access memory (English: random-access memory, abbreviation: RAM); or non-volatile memory (English: non-volatile memory), for example Read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, abbreviation :SSD); or a combination of the above types of memory and providing instructions and data to the processor 1402.
  • volatile memory such as random access memory (English: random-access memory, abbreviation: RAM); or non-volatile memory (English: non-volatile memory), for example Read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, abbreviation :SSD); or a combination
  • the processor 1202 is configured to determine that the UE is in a coverage hole of the serving station.
  • the communication unit 1201 sends a first synchronization pilot signal to the UE, so that the UE measures the synchronization pilot signal, and determines an available small station of the UE and an available beam pair of the available small station.
  • the available beam pair consists of one high frequency beam of the available small station and one high frequency beam of the UE;
  • the communication unit 1201 is further configured to receive a synchronization indication sent by the macro base station, where the synchronization indication indicates that the available small station sends a synchronization pilot signal to the UE on a high frequency beam in its available beam pair;
  • Data transmission is performed with the UE using the target available beam pair.
  • the communication unit 1201 is further configured to: before the receiving unit receives the data transmission indication sent by the macro base station, receive data requested by the UE sent by the macro base station in a multicast manner.
  • the small station 120 is the current serving station of the UE.
  • the processor 1202 is configured to determine whether the UE is in a coverage hole of a current serving station
  • the communication unit 1201 is further configured to send a blind zone status indication to the macro base station, where the blind zone status indication is used to indicate whether the UE is in a coverage blind zone of the small station;
  • the small station When the UE is in the service dead zone of the current serving small station, the small station receives the indication information sent by the macro base station, and ends the data transmission with the UE.
  • processor 1202 is specifically configured to:
  • the uplink demodulation error of the UE is determined at least twice consecutively, determining that the UE is in a coverage dead zone of the current serving station;
  • the preset threshold is based on The setting needs to be performed, and the comparison of the embodiments of the present invention is not limited;
  • the response message of the UE is not received at least twice after sending the request message to the UE, determining that the UE is in a coverage dead zone of the small station.
  • an embodiment of the present invention provides a small station 120, which sends a first synchronization pilot signal to a UE, so that the UE measures the synchronization pilot signal, determines an available small station of the UE, and the An available beam pair of a small station is available; wherein the available beam pair consists of one high frequency beam of the available station and one high frequency beam of the UE; the small station can receive the synchronization indication sent by the macro base station; wherein Synchronization indication indication A small station may send a synchronization pilot signal to the UE on a high frequency beam in its available beam pair; the available station may send a second synchronization pilot signal to the UE according to the synchronization indication, such that the UE is Performing synchronous measurement on the high frequency beam of the UE in the available beam pair, determining the target available beam pair, and switching from the current serving station of the UE to the target station corresponding to the target available beam pair; the target station receiving the And transmitting, by the macro base station,
  • the UE when the UE is in the coverage area of the serving small station, the UE only needs to perform synchronous measurement on the available beam pairs in the available small station set, which greatly reduces the number of synchronizations, thereby reducing the delay of the UE accessing the high frequency networking.
  • the QoS of the UE receiving the high frequency service is improved.
  • an embodiment of the present invention provides a small inter-station handover system 130, as shown in FIG. 13, the inter-station handover system 130 may include a user equipment 100, a macro base station 110, and at least one small station 120;
  • the user equipment 100, the macro base station 110, and the small station 120 are the same as the user equipment 100, the macro base station 110, and the small station 120, and are not described here.
  • the embodiment of the present invention provides an inter-station handover system 130.
  • the UE 100 performs synchronization measurement, determines a small station set available to the UE 100, and sends an available small station set to the macro base station 110.
  • the small station 120 determines that the UE is in service.
  • the blind base state indication is sent to the macro base station 110; the macro base station 110 simultaneously sends the first synchronization indication to the UE, and separately sends the second synchronization indication to the available small stations in the available small station set; the UE 100 performs synchronization.
  • the measurement determines the target available beam pair and switches to the corresponding target station of the target available beam pair.
  • the UE when the UE is in the coverage hole of the serving small station, the UE only needs to perform synchronous measurement on each available beam pair determined by the available small station set determined by the UE, and then the best small station and beam pair can be selected.
  • the selected small station continues the high-frequency data transmission by using the selected beam pair, which reduces the synchronization measurement time, thereby reducing the delay of the UE re-accessing the high-frequency network, and improving the QoS of the UE receiving the high-frequency service.
  • the UE needs to perform synchronous measurement with all the beam pairs of all the small stations, the synchronization measurement time is long, the delay of the UE re-accessing the high-frequency network is large, and the QoS of the UE receiving the high-frequency service is poor. .
  • the mobile terminal and method can be implemented in other ways.
  • the mobile terminal embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through a number of interfaces, mobile terminals or units, and may be electrical, mechanical or otherwise.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional units described above are stored in a storage medium and include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了小站间切换方法、设备及系统,涉及通信技术领域,当UE处于服务小站的覆盖盲区时,UE只需要对UE确定出的可用的小站集中,每个可用波束对进行同步测量,降低了UE重新接入高频网络的延时,提高了UE接收高频服务的QoS。本发明实施例提供的小站间切换方法包括:UE进行同步测量,确定出所述UE可用的小站集;向宏基站发送所述可用的小站集;当所述UE处于当前服务小站的覆盖盲区时,UE接收所述宏基站发送的第一同步指示;根据第一同步指示进行同步测量,选择出目标可用波束对;切换到与所述目标可用波束对对应的目标小站。

Description

小站间切换方法、设备及系统 技术领域
本发明涉及通信技术领域,尤其涉及一种小站间切换方法、设备及系统。
背景技术
随着宽带无线通信技术的不断发展,未来移动宽带业务量将达到现今的千倍以上,为了满足这一发展,使用高速率、大带宽的高频段进行数据通信势必会成为宽带无线通信系统发展的趋势。图1为一种高频网络架构示意图,如图1所示,该高频网络包括:1个宏基站、用户设备(英文:User Equipment,缩写:UE)、以及处于宏基站覆盖区域下的多个小站(包含与UE进行数据通信的服务小站);其中,小站可以通过高频段与UE进行数据业务传输。
由于,高频信号相比低频信号,传输损耗更严重,穿透能力更差,因此,在建筑物阻挡、人体阻挡、高频信号波束未对准等因素的影响下,UE很容易处于服务小站的覆盖盲区,使得UE接收到的高频信号弱到无法解调,或者,接收不到服务小站发送的高频信号,从而影响UE接收高频服务的质量及概率。所以,当UE处于服务小站的覆盖盲区时,需要采用相应的措施,来降低UE接收高频服务的中断概率,保持数据通信的连续性。
为了解决上述问题,目前,在高频网络通信系统中,当UE处于服务小站的覆盖盲区时,UE采用初始同步测量方法,与UE周围的所有小站的所有高频波束进行同步测量,选择出最好的小站和波束对重新接入,接收该小站发送的高频数据,保证高频数据通信的连续性。但是,这种实现方法需要UE与所有小站的所有波束进行同步测量,复杂度较高,同步测量时间较长,从而导致UE重新接入其他小站的时延较大,降低了UE的服务质量(英文:Quality of  Service,缩写:QoS)。
发明内容
本发明的实施例提供一种小站间切换方法、设备及系统,以解决当UE处于服务小站的覆盖盲区时,UE与所有小站的所有波束进行同步测量,导致的接入时延较大,UE接收高频服务的QoS较低的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明实施例提供一种小站间切换方法,包括:
用户设备UE进行同步测量,确定出所述UE可用的小站集;其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成;
所述UE向宏基站发送所述可用的小站集;
当所述UE处于当前服务小站的覆盖盲区时,接收所述宏基站发送的第一同步指示;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;
所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对;
所述UE切换到与所述目标可用波束对对应的目标小站。
在第一方面的第一种可能的实现方式中,结合第一方面,所述UE进行同步测量,确定出所述UE可用的小站集包括:
所述UE向所述宏基站发送同步测量请求,以使得所述宏基站通知所述宏基站覆盖区域下的所有小站向所述UE发送同步导频信号;
所述UE分别在所述UE的每个高频波束上,接收所有小站在所述小站的每个高频波束上发送的同步导频信号;
所述UE分别测量每个同步导频信号的信号强度,并按照从大到小的顺序对所述信号强度进行排序;
所述UE将发送最大信号强度的同步导频信号的小站确定为所 述UE的服务小站;将至少一个发送次大信号强度的同步导频信号的小站确定为所述UE可用的小站集中的可用小站。
在第一方面的第二种可能的实现方式中,结合第一方面或第一方面的第一种可能的实现方式,所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对包括:
所述UE测量每个所述可用波束对中的UE的高频波束上的同步导频信号的信号强度;
若信号强度最大的同步导频信号对应的信号强度大于等于预设阈值,则选择接收信号强度最大的同步导频信号的UE的高频波束和发送所述信号强度最大的同步导频信号的可用小站的高频波束组成的波束对为目标可用波束对。
在第一方面的第三种可能的实现方式中,结合第一方面至第一方面的第二种可能的实现方式中的任一种实现方式,所述方法还包括:
所述UE向所述宏基站发送切换结果,以使得所述宏基站根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输;其中,所述切换结果包含:目标可用波束对,以及,目标小站的小区标识;
接收所述宏基站发送的数据传输指示,与所述目标小站采用所述目标可用波束对进行数据传输;其中,所述数据传输指示用于指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输。
第二方面,本发明实施例提供一种小站间切换方法,包括:
宏基站接收UE发送的所述UE可用的小站集;其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成;
所述宏基站接收所述UE的当前服务小站发送的盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于当前服务小站 的覆盖盲区;
当所述UE处于当前服务小站的服务盲区时,所述宏基站同时向所述UE发送第一同步指示,以及,分别向所述可用的小站集中的每个可用小站发送第二同步指示,以使得所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对,并从所述UE的当前服务小站切换到与所述目标可用波束对对应的目标小站;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;所述第二同步指示用于指示所述可用小站在所述可用小站的可用波束对中的高频波束上向所述UE发送同步导频信号。
在第二方面的第一种可能的实现方式中,结合第二方面,所述方法还包括:
所述宏基站接收所述UE发送的切换结果;其中,所述切换结果包含:所述目标可用波束对,以及,与所述目标可用波束对对应的目标小站的小区标识;
所述宏基站根据所述切换结果指示所述目标小站与所述UE之间采用所述目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输。
在第二方面的第二种可能的实现方式中,结合第二方面的第一种可能的实现方式,在所述宏基站根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输之前,所述方法还包括:
所述宏基站将所述可用的小站集中,处于所述宏基站的同一覆盖区域的可用小站分为一组;
在所述宏基站接收所述UE的服务小站发送的盲区状态指示后,以组播形式分别向每组可用小站发送所述UE请求传输的数据。
第三方面,本发明实施例提供一种小站间切换方法,包括:
向UE发送第一同步导频信号,以使得所述UE测量所述同步导频信号,确定出所述UE的可用小站和所述可用小站的可用波束对; 其中,所述可用波束对由可用小站的一个高频波束和所述UE的一个高频波束组成;
可用小站接收宏基站发送的同步指示;其中,所述同步指示指示所述可用小站在其可用波束对中的高频波束上向所述UE发送同步导频信号;
所述可用小站根据所述同步指示向所述UE发送第二同步导频信号,以使得所述UE在可用波束对中的UE的高频波束上进行同步测量,确定目标可用波束对,并从所述UE的当前服务小站切换到与目标可用波束对相应的目标小站;
所述目标小站接收所述宏基站发送的数据传输指示,与所述UE采用所述目标可用波束对进行数据传输。
在第三方面的第一种可能的实现方式中,结合第三方面,在所述可用小站接收所述宏基站发送的数据传输指示之前,所述方法还包括:
所述可用小站接收所述宏基站以组播形式发送的所述UE请求传输的数据。
在第三方面的第二种可能的实现方式中,结合第三方面或第三方面的第一种可能的实现方式,所述方法还包括:
确定所述UE是否处于当前服务小站的覆盖盲区;
向所述宏基站发送盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于所述小站的覆盖盲区;
当所述UE处于当前服务小站的服务盲区时,所述当前服务小站接收所述宏基站发送的指示信息,结束与所述UE之间的数据传输。
在第三方面的第三种可能的实现方式中,结合第三方面的第二种可能的实现方式,
所述确定所述UE是否处于所述小站的覆盖盲区的步骤包括:
若至少连续两次确定所述UE的上行链路解调错误,则确定所述UE处于所述当前服务小站的覆盖盲区;
或者,若接收到所述UE发送的参考信号接收功率RSRP,或者,参考信号接收质量RSRQ小于预设阈值,则确定所述UE处于所述当前服务小站的覆盖盲区;
或者,若向所述UE发送请求消息后,至少连续两次接收不到所述UE的响应消息,则确定所述UE处于所述小站的覆盖盲区。
第四方面,本发明实施例提供一种用户设备,所述用户设备包括:
确定单元,用于进行同步测量,确定出所述UE可用的小站集;其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成;
发送单元,用于向宏基站发送所述可用的小站集;
接收单元,用于当所述UE处于当前服务小站的覆盖盲区时,接收所述宏基站发送的第一同步指示;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;
选择单元,用于根据所述第一同步指示进行同步测量,选择出目标可用波束对;
切换单元,用于切换到与所述目标可用波束对对应的目标小站。
在第四方面的第一种可能的实现方式中,结合第四方面,所述确定单元,具体用于:
向所述宏基站发送同步测量请求,以使得所述宏基站通知所述宏基站覆盖区域下的所有小站向所述UE发送同步导频信号;
分别在所述UE的每个高频波束上,接收所有小站在所述小站的每个高频波束上发送的同步导频信号;
分别测量每个同步导频信号的信号强度,并按照从大到小的顺序对所述信号强度进行排序;
将发送最大信号强度的同步导频信号的小站确定为所述UE的服务小站;将至少一个发送次大信号强度的同步导频信号的小站确 定为所述UE可用的小站集中的可用小站。
在第四方面的第二种可能的实现方式中,结合第四方面或第四方面的第一种可能的实现方式,所述选择单元,具体用于:
测量每个所述可用波束对中的UE的高频波束上的同步导频信号的信号强度;
若信号强度最大的同步导频信号对应的信号强度大于等于预设阈值,则选择接收信号强度最大的同步导频信号的UE的高频波束和发送所述信号强度最大的同步导频信号的可用小站的高频波束组成的波束对为目标可用波束对。
在第四方面的第三种可能的实现方式中,结合第四方面至第四方面的第二种可能的实现方式中的任一种实现方式,所述用户设备还包括:
结果上报单元,用于向所述宏基站发送切换结果,以使得所述宏基站根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输;其中,所述切换结果包含:目标可用波束对,以及,目标小站的小区标识;
所述接收单元,还用于接收所述宏基站发送的数据传输指示,与所述目标小站采用所述目标可用波束对进行数据传输;其中,所述数据传输指示用于指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输。
第五方面,本发明实时提供一种宏基站,所述宏基站包括:
接收单元,用于接收UE发送的可用的小站集;其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成;
以及,接收所述UE的服务小站发送的盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于所述服务小站的覆盖盲区的UE;
发送单元,用于当所述UE处于当前服务小站的服务盲区时,同时向所述UE发送第一同步指示,以及,分别向所述可用的小站集中的每个可用小站发送第二同步指示,以使得所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对,并从所述UE的当前服务小站切换到与所述目标可用波束对对应的目标小站;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;所述第二同步指示用于指示所述可用小站在所述可用小站的可用波束对中的高频波束上向所述UE发送同步导频信号。
在第五方面的第一种可能的实现方式中,结合第五方面,
所述接收单元,还用于接收所述UE发送的切换结果;其中,所述切换结果包含:所述目标可用波束对,以及,与所述目标可用波束对对应的目标小站的小区标识;
所述宏基站,还包括:
指示单元,用于根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输。
在第五方面的第二种可能的实现方式中,结合第五方面的第一种可能的实现方式,所述宏基站还包括:
分组单元,用于在所述指示单元根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输之前,将所述可用的小站集中,处于所述宏基站的同一覆盖区域的可用小站分为一组;
所述发送单元,还用于在所述宏基站接收所述UE的服务小站发送的盲区状态指示后,以组播形式分别向每组可用小站发送所述UE请求传输的数据。
第六方面,本发明实施例提供一种小站,所述小站包括:
发送单元,向UE发送第一同步导频信号,以使得所述UE测量所述同步导频信号,确定出所述UE的可用小站和所述可用小站的 可用波束对;其中,所述可用波束对由可用小站的一个高频波束和所述UE的一个高频波束组成;
接收单元,用于接收宏基站发送的同步指示;其中,所述同步指示指示所述可用小站在其可用波束对中的高频波束上向所述UE发送同步导频信号;
所述发送单元,还用于根据所述同步指示向所述UE发送第二同步导频信号,以使得所述UE在可用波束对中的UE的高频波束上进行同步测量,确定目标可用波束对,并从所述UE的当前服务小站切换到与目标可用波束对相应的目标小站;
所述接收单元,还用于接收所述宏基站发送的数据传输指示;
数据通信单元,用于与所述UE采用所述目标可用波束对进行数据传输。
在第六方面的第一种可能的实现方式中,结合第六方面,
所述接收单元,还用于在所述接收单元接收所述宏基站发送的数据传输指示之前,接收所述宏基站以组播形式发送的所述UE请求传输的数据。
在第六方面的第二种可能的实现方式中,结合第六方面或第六方面的第一种可能的实现方式,所述小站还包括:
确定单元,用于确定所述UE是否处于当前服务小站的覆盖盲区;
所述发送单元,还用于向所述宏基站发送盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于所述小站的覆盖盲区;
所述接收单元,还用于当所述UE处于当前服务小站的服务盲区时,所述小站接收所述宏基站发送的指示信息,结束与所述UE之间的数据传输。
在第六方面的第三种可能的实现方式中,结合第六方面的第二种可能的实现方式,所述确定单元,具体用于:
若至少连续两次确定所述UE的上行链路解调错误,则确定所述UE处于所述当前服务小站的覆盖盲区;
或者,若接收到所述UE发送的参考信号接收功率RSRP,或者,参考信号接收质量RSRQ小于预设阈值,则确定所述UE处于所述当前服务小站的覆盖盲区;
或者,若向所述UE发送请求消息后,至少连续两次接收不到所述UE的响应消息,则确定所述UE处于所述小站的覆盖盲区。
第七方面,本发明实施例提供一种小站间切换系统,包括如第四方面至第四方面的第三种可能的实现方式的任一种实现方式中所述所述的用户设备、如第五方面至第五方面的第二种可能的实现方式的任一种实现方式中所述的宏基站、以及至少一个如第六方面至第六方面的第三种可能的实现方式的任一种实现方式中所述的小站。
第八方面,本发明实施例提供一种用户设备,所述用户设备包括:
处理器,用于进行同步测量,确定出所述UE可用的小站集;其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成;
通信单元,用于向宏基站发送所述可用的小站集;
当所述UE处于所述服务小站的覆盖盲区时,接收所述宏基站发送的第一同步指示;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;
所述处理器,还用于根据所述第一同步指示进行同步测量,选择出目标可用波束对;
切换到与所述目标可用波束对对应的目标小站。
在第八方面的第二种可能的实现方式中,结合第八方面或第八方面的第一种可能的实现方式,所述处理器,具体用于:
测量每个所述可用波束对中的UE的高频波束上的同步导频信号的信号强度;
若信号强度最大的同步导频信号对应的信号强度大于等于预设 阈值,则选择接收信号强度最大的同步导频信号的UE的高频波束和发送所述信号强度最大的同步导频信号的可用小站的高频波束组成的波束对为目标可用波束对。
在第八方面的第三种可能的实现方式中,结合第八方面至第八方面的第二种可能的实现方式中的任一种实现方式,
所述通信单元,还用于向所述宏基站发送切换结果,以使得所述宏基站根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输;其中,所述切换结果包含:目标可用波束对,以及,目标小站的小区标识;
接收所述宏基站发送的数据传输指示,与所述目标小站采用所述目标可用波束对进行数据传输;其中,所述数据传输指示用于指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输。
第九方面,本发明实时提供一种宏基站,所述宏基站包括:
通信单元,用于接收UE发送的可用的小站集;其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成;
接收所述UE的服务小站发送的盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于所述服务小站的覆盖盲区的UE;
当所述UE处于当前服务小站的服务盲区时,同时向所述UE发送第一同步指示,以及,分别向所述可用的小站集中的每个可用小站发送第二同步指示,以使得所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对,并从所述UE的当前服务小站切换到与所述目标可用波束对对应的目标小站;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;所述第二同步指示用于指示所述可用小站在所述可用小站的可用波束对中的高频波束上向所述UE发送同步导频 信号。
在第九方面的第一种可能的实现方式中,结合第九方面,所述通信单元,还用于接收所述UE发送的切换结果;其中,所述切换结果包含:目标可用波束对,以及,目标小站的小区标识;
所述宏基站,还包括:
处理器,用于根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输。
在第九方面的第二种可能的实现方式中,结合第九方面的第一种可能的实现方式,
所述处理器,还用于在所述指示单元根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输之前,将所述可用的小站集中,处于所述宏基站的同一覆盖区域的可用小站分为一组;
所述通信单元,还用于在所述宏基站接收所述UE的服务小站发送的盲区状态指示后,以组播形式分别向每组可用小站发送所述UE请求传输的数据。
第十方面,本发明实施例提供一种小站,所述小站包括:
通信单元,向UE发送第一同步导频信号,以使得所述UE测量所述同步导频信号,确定出所述UE的可用小站和所述可用小站的可用波束对;其中,所述可用波束对由可用小站的一个高频波束和所述UE的一个高频波束组成;
接收宏基站发送的同步指示;其中,所述同步指示指示所述可用小站在其可用波束对中的高频波束上向所述UE发送同步导频信号;
根据所述同步指示向所述UE发送第二同步导频信号,以使得所述UE在可用波束对中的UE的高频波束上进行同步测量,确定目标可用波束对,并从所述UE的当前服务小站切换到与目标可用波束对相应的目标小站;
接收所述宏基站发送的数据传输指示;
与所述UE采用所述目标可用波束对进行数据传输。
在第十方面的第一种可能的实现方式中,结合第十方面,
所述通信单元,还用于在所述通信单元接收所述宏基站发送的数据传输指示之前,接收所述宏基站以组播形式发送的所述UE请求传输的数据。
在第十方面的第二种可能的实现方式中,结合第十方面或第十方面的第一种可能的实现方式,
所述小站还包括:
处理器,用于确定所述UE是否处于当前服务小站的覆盖盲区;
所述通信单元,还用于向所述宏基站发送盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于所述小站的覆盖盲区;
所述通信单元,还用于当所述UE处于当前服务小站的服务盲区时,所述小站接收所述宏基站发送的指示信息,结束与所述UE之间的数据传输。
在第十方面的第三种可能的实现方式中,结合第十方面的第二种可能的实现方式,
所述处理器,具体用于:
若至少连续两次确定所述UE的上行链路解调错误,则确定所述UE处于所述当前服务小站的覆盖盲区;
或者,若接收到所述UE发送的参考信号接收功率RSRP,或者,参考信号接收质量RSRQ小于预设阈值,则确定所述UE处于所述当前服务小站的覆盖盲区;
或者,若向所述UE发送请求消息后,至少连续两次接收不到所述UE的响应消息,则确定所述UE处于所述小站的覆盖盲区。
第十一方面,本发明实施例提供一种小站间切换系统,包括如第八方面至第八方面的第三种可能的实现方式的任一种实现方式中所述所述的用户设备、如第九方面至第九方面的第二种可能的实现方式的任一种实现方式中所述的宏基站、以及如第十方面至第十方 面的第三种可能的实现方式的任一种实现方式中所述的小站。
由上可知,本发明实施例提供一种小站间切换方法及设备,UE进行同步测量,确定出所述UE可用的小站集;向宏基站发送所述可用的小站集;当所述UE处于所述服务小站的覆盖盲区时,接收所述宏基站发送的第一同步指示;根据所述第一同步指示进行同步测量,选择出目标可用波束对;切换到与所述目标可用波束对对应的目标小站。如此,当UE处于服务小站的覆盖盲区时,UE只需要对UE确定出的可用的小站集中,每个可用波束对进行同步测量,就可以选择出最好的目标小站和目标波束对,切换至目标小站,降低了UE重新接入高频网络的延时,提高了UE接收高频服务的QoS,避免了现有技术中UE需要同所有小站的所有波束对进行同步测量,同步测量时间长,导致的UE重新接入高频网络延时较大,UE接收高频服务的QoS较差的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为高频网络架构示意图;
图2为本发明实施例提供的一种小站间切换方法的流程图;
图3为本发明实施例提供的一种小站间切换方法的流程图;
图4为本发明实施例提供的一种小站间切换方法的流程图;
图5为本发明实施例提供的一种小站间切换方法的流程图;
图6为本发明实施例提供的一种用户设备60的结构图;
图6A为本发明实施例提供的一种用户设备60的结构图;
图7为本发明实施例提供的一种宏基站70的结构图;
图7A为本发明实施例提供的一种宏基站70的结构图;
图7B为本发明实施例提供的一种宏基站70的结构图;
图8为本发明实施例提供的一种小站80的结构图;
图8A为本发明实施例提供的一种小站80的结构图;
图9为本发明实施例提供的一种小站间切换系统90的结构图;
图10为本发明实施例提供的一种用户设备100的结构图;
图11为本发明实施例提供的一种宏基站110的结构图;
图12为本发明实施例提供的一种小站120的结构图;
图13为本发明实施例提供的一种小站间切换系统130的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供的小站间切换方法,适用于如图1所示的高频网络架构下,同时,也适用于其他任意一个协作通信场景下的小站间切换,本发明对比不进行限定,本发明实施例仅以图1所示的高频网络架构下的小站间切换为例进行说明。
在如图1所示的高频网络架构下,小站1为UE的服务小站,小站2、小站3、小站4为处于宏基站的覆盖区域下,与UE的服务小站相邻的小站,其中,每个小站能分别生成10个高频波束,UE能生成4个高频波束:波束1、波束2、波束3、波束4。当UE处于服务小站1的覆盖盲区时,若采用现有降低UE高频数据通信中断概率的方法,UE需要在UE的波束1上分别测量小站2在小站2的10个高频波束上、小站3在小站3的10个高频波束上、以及,小站4在小站4的10个高频波束上发送的同步导频信号;在UE的波束2上分别测量小站2在小站2的10个高频波束上、小站3在小站3的10个高频波束上、以及,小站4在小站4的10个高频波束上发送的同步导频信号;在UE的波束3上分别测量小站2在小站2 的10个高频波束上、小站3在小站3的10个高频波束上、以及,小站4在小站4的10个高频波束上发送的同步导频信号;在UE的波束4上分别测量小站2在小站2的10个高频波束上、小站3在小站3的10个高频波束上、以及,小站4在小站4的10个高频波束上发送的同步导频信号,选择出接收信号强度最大的同步信号所对应的小站和波束对,接入选择出的小站,并采用选择出的波束对进行高频数据传输。
不难理解,在图1所示的高频网络架构下,当UE处于服务小站的覆盖盲区时,如果采用现有的小站间切换技术,UE需要进行4×3×10=120的同步测量,才能选择出最优的小站和波束对,重新接入高频组网,即UE在小站间切换过程中的同步测量次数与UE周围的小站的个数,以及,每个小站能够生成的高频波束的个数有很大关系,此时,UE周围的小站的个数和/或每个小站生成的高频波束的个数很大,若需要与服务小站的所有相邻小站进行同步测量选择出最优可用小区,则会造成同步测量次数较多,同步测量时间较长,从而会导致UE重新接入其他小站的时延较大,降低了UE接收高频服务的QoS。为此,本发明实施例提供一种小站间切换方法,应用于如图1所示的高频网络架构下,参见图2所示,该方法可以包括以下步骤:
201、UE进行同步测量,确定出所述UE可用的小站集。
其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由UE的一个高频波束和可用小站的一个高频波束组成。
优选的,UE可以一开机就进行同步测量,在确定出所述UE的服务小站同时,确定出UE可用的小站集;也可以在用户请求建立连接时,进行同步测量,确定所述UE的服务小站和UE可用的小站集;还可以在UE接收服务小站发送的高频数据的同时,周期性的进行同步测量,确定所述UE可用的小站集。
具体的,UE可以采用下述方法进行同步测量,确定所述UE的 服务小站,以及,可用的小站集:
所述UE向所述宏基站发送同步测量请求,以使得所述宏基站通知所述宏基站覆盖区域下的所有小站向所述UE发送同步导频信号;
所述UE分别在所述UE的每个高频波束上,接收所有小站在所述小站的每个高频波束上发送的同步导频信号;
所述UE分别测量每个同步导频信号的信号强度,并按照从大到小的顺序对所述信号强度进行排序;
所述UE将发送最大信号强度的同步导频信号的小站确定为所述UE的服务小站;将至少一个发送次大信号强度的同步导频信号的小站确定为所述UE可用的小站集中的可用小站。
其中,信号强度可以是测量当前相邻小站参考信号的RSRP(Reference Signal Receiving Power,参考信号接收功率)值,或者参考信号的RSRQ(Reference Signal Receiving Quality)值。
例如,如图1所示,UE经过初始同步测量后,确定小站1为UE的服务小站,确定可用的小站集中的可用小站为小站2和小站3,与小站2对应的可用波束对为(UE的高频波束2,小站2的高频波束4),与小站3对应的可用波束对为(UE的高频波束3,小站3的高频波束6)。
202、UE向宏基站发送所述可用的小站集。
优选的,UE可以通过低频信道向宏基站发送所述可用的小站集;以使得宏站根据接收到的可用的小站集是否包含可用小站的信息,对UE进行标识;优选的,若包含有可用小站,则将所述UE标识为小站间可切换用户,进而当所述UE处于所述服务小站的覆盖盲区时,发起本发明中所述的小站间切换过程;若不包含可用小站,则将所述UE默认或者标识为小站间不可切换用户。
203、当所述UE处于当前服务小站的覆盖盲区时,接收所述宏基站发送的第一同步指示。
其中,所述第一同步指示用于指示所述UE在每个所述可用波 束对中的UE的高频波束上进行同步测量;。
优选的,UE可以在低频信道上接收所述宏基站发送的第一同步指示。
例如,若在步骤201中确定出的可用波束对为(UE的高频波束2,小站2的高频波束4),以及,(UE的高频波束3,小站3的高频波束6),则第一同步指示用于指示UE分别在UE的高频波束2,以及,高频波束3上接收小站发送的同步导频信号,进行同步测量。
204、UE根据所述第一同步指示进行同步测量,选择出目标可用波束对。
其中,所述目标可用波束对为信道质量良好,满足高频数据传输要求的波束对。
优选的,UE可以采用下述方法,选择出目标可用波束对:
所述UE测量每个所述可用波束对中的UE的高频波束上的同步导频信号的信号强度;
若信号强度最大的同步导频信号对应的信号强度大于等于预设阈值,则选择接收信号强度最大的同步导频信号的UE的高频波束和发送所述信号强度最大的同步导频信号的可用小站的高频波束组成的波束对为目标可用波束对。
若信号强度最大的同步导频信号的信号强度小于等于预设阈值,则UE采用现有小站间切换方法,同所有小站的所有波束进行同步测量,选择出最优波束对。
其中,预设阈值为根据需要进行设置的,本发明实施例对此不进行限定,若同步导频信号的信号强度大于等于预设阈值,则表示发送接收该同步导频信号的信道质量满足高频网络架构中高频数据传输信道的要求;若同步导频信号的信号强度小于预设阈值,则表示发送接收该同步导频信号的信道质量不能满足高频网络架构中高频数据传输信道的要求,为不可用高频传输信道。
例如,当图1中的UE处于服务小站的覆盖盲区时,UE只需对可用波束对(UE的高频波束2,小站2的高频波束4),以及,(UE 的高频波束3,小站3的高频波束6)进行同步测量,从这两个波束对中选择出目标可用波束对,即只需进行2次同步测量,就可以确定最好波束对,同现有方法中需要进行120次的同步测量,才能确定出最好波束对相比,大大降低了同步测量次数,减少了同步测量时间,从而为步骤205中UE进行小站切换,节约了时间,降低了UE重新接入高频网络的时延,提高了UE接收高频服务的QoS。
205、UE切换到与所述目标可用波束对对应的目标小站。
进一步的,所述方法还包括:
UE向所述宏基站发送切换结果,以使得所述宏基站根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输;其中,所述切换结果包含:目标可用波束对,以及,目标小站的小区标识;
接收所述宏基站发送的数据传输指示,与所述目标小站采用所述目标可用波束对进行数据传输;其中,所述数据传输指示用于指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输。
由上可知,本发明实施例提供一种小站间切换方法,UE进行同步测量,确定出所述UE可用的小站集;向宏基站发送所述可用的小站集;当所述UE处于当前服务小站的覆盖盲区时,根据所述第一同步指示进行同步测量,选择出目标可用波束对;切换到与所述目标可用波束对相对应的目标小站。如此,当UE处于服务小站的覆盖盲区时,UE只需要对UE确定出的可用的小站集中,每个可用波束对进行同步测量,就可以选择出最好的小站和波束对,接入选择出的小站,采用选择出的波束对继续进行高频数据传输,减少了同步测量时间,进而降低了UE重新接入高频网络的延时,提高了UE接收高频服务的QoS,避免了现有技术中UE需要同所有小站的所有波束对进行同步测量,同步测量时间长,导致的UE重新接入高频网络延时较大,UE接收高频服务的QoS较差的问题。
此外,本发明实施例还提供一种小站间切换方法,如图3所示, 所述方法可以包括以下步骤:
301、宏基站接收UE发送的可用的小站集。
其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成。
302、宏基站接收所述UE的服务小站发送的盲区状态指示。
其中,所述盲区状态指示用于指示所述UE是否处于所述服务小站的覆盖盲区。
优选的,宏基站可以在低频信道接收服务小站发送的盲区状态指示。
303、当所述UE处于当前服务小站的服务盲区时,宏基站同时向所述UE发送第一同步指示,以及,分别向所述可用的小站集中的每个可用小站发送第二同步指示,以使得所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对。
其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;所述第二同步指示用于指示所述可用小站在所述可用小站的可用波束对中的高频波束上向所述UE发送同步导频信号。
进一步的,所述方法还包括:
宏基站接收所述UE发送的切换结果;其中,所述切换结果包含:所述目标可用波束对,以及,与所述目标可用波束对对应的目标小站的小区标识;
根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输。
进一步的,为了保证UE处于当前服务小站的覆盖盲区时,尽可能快的接收目标小站在高频信道传输的数据,降低高频数据服务的接续延时,在宏基站指示目标小站采用目标可用波束对向UE进行数据传输之前,所述方法还可以包括:
宏基站将所述可用的小站集中,处于所述宏基站的同一覆盖区域的可用小站分为一组;
在所述宏基站接收所述UE的服务小站发送的盲区状态指示后,以组播形式分别向每组可用小站发送所述UE请求传输的数据。
如此,在UE侧进行同步测量,确定目标可用波束对之前,宏基站先以组播形式的数据传输将UE请求的数据发送至可用的小站集中的每个小站,以使得宏基站在接收切换结果后,直接命令目标小站向UE进行数据传输,而不是在接收切换结果后,才传输UE请求的数据给目标小站,让目标小站向UE进行数据传输。
由上可知,本发明实施例提供一种小站间切换方法,宏基站接收UE发送的可用的小站集以及UE的当前服务小站发送的盲区状态指示后,当所述UE处于当前服务小站的服务盲区时,宏基站同时向所述UE发送第一同步指示,以及,分别向所述可用的小站集中的每个可用小站发送第二同步指示,以使得所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;所述第二同步指示用于指示所述可用小站在所述可用小站的可用波束对中的高频波束上向所述UE发送同步导频信号。如此,当宏基站接收服务小站发送的UE处于服务小站的覆盖盲区的信息后,宏基站命令UE同确定出的可用的小站集中的可用波束对进行同步测量,使得UE的同步测量次数大大减少,测量时间降低,进而降低UE重新接入高频组网的延时,提高UE的高频QoS。
此外,本发明实施例还提供一种小站间切换方法,如图4所示,该方法可以包括以下步骤:
401、向UE发送第一同步导频信号,以使得所述UE测量所述同步导频信号,确定出所述UE的可用小站和所述可用小站的可用波束对。
其中,所述可用波束对由可用小站的一个高频波束和所述UE 的一个高频波束组成。
402、可用小站接收宏基站发送的同步指示;其中,所述同步指示指示所述可用小站在其可用波束对中的高频波束上向所述UE发送同步导频信号。
403、可用小站根据所述同步指示向所述UE发送第二同步导频信号,以使得所述UE在可用波束对中的UE的高频波束上进行同步测量,确定目标可用波束对,并从所述UE的当前服务小站切换到与目标可用波束对相应的目标小站。
404、目标小站接收所述宏基站发送的数据传输指示,与所述UE采用所述目标可用波束对进行数据传输。
进一步的,在步骤404之前,所述方法还包括:
所述可用小站接收所述宏基站以组播形式发送的所述UE请求传输的数据。
进一步的,所述小站为UE的当前服务小站时,所述方法还包括:
确定所述UE是否处于当前服务小站的覆盖盲区;
向所述宏基站发送盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于所述小站的覆盖盲区;
当所述UE处于当前服务小站的服务盲区时,所述当前服务小站接收所述宏基站发送的指示信息,结束与所述UE之间的数据传输。
优选的,可以通过下述(1)(2)(3)三种方法中的任一种方法确定UE是否处于所述服务小站的覆盖盲区:
(1)若至少连续两次确定所述UE的上行链路解调错误,则确定所述UE处于所述当前服务小站的覆盖盲区。
(2)若接收到所述UE发送的参考信号接收功率RSRP,或者,参考信号接收质量RSRQ小于预设阈值,则确定所述UE处于所述当前服务小站的覆盖盲区。
其中,预设阈值根据需要进行设置,本发明实施例对比不进行 限定。
(3)若向所述UE发送请求消息后,至少连续两次接收不到所述UE的响应消息,则确定所述UE处于所述小站的覆盖盲区。
由上可知,本发明实施例提供一种小站间切换方法,向UE发送第一同步导频信号,以使得所述UE测量所述同步导频信号,确定出所述UE的可用小站和所述可用小站的可用波束对;其中,所述可用波束对由可用小站的一个高频波束和所述UE的一个高频波束组成;可用小站接收宏基站发送的同步指示;其中,所述同步指示指示所述可用小站在其可用波束对中的高频波束上向所述UE发送同步导频信号;可用小站根据所述同步指示向所述UE发送第二同步导频信号,以使得所述UE在可用波束对中的UE的高频波束上进行同步测量,确定目标可用波束对,并从所述UE的当前服务小站切换到与目标可用波束对相应的目标小站;目标小站接收所述宏基站发送的数据传输指示,与所述UE采用所述目标可用波束对进行数据传输。如此,当UE处于服务小站的覆盖盲区时,UE只需通可用的小站集中的可用波束对进行同步测量,大大减少了同步次数,从而降低了UE接入高频组网的时延,提高了UE接收高频服务的QoS。
下面以在图1所示的高频网络架构下的小站间切换为例,对上述方法进行具体说明,其中,假设UE当前服务小站为小站1,可用的小站集中包含小站2以及小站3,当UE处于服务小站的覆盖盲区时,确定出的目标小站为小站2。
图5为本发明实施例提供的一种小站间切换方法的流程图,如图5所示,该方法可以包括以下步骤:
501、UE进行同步测量,确定出UE可用的小站集。
其中,所述可用的小站集中包含小站2、小站3,以及,小站2的可用波束对(UE的高频波束2,小站2的高频波束4),小站3的可用波束对为(UE的高频波束3,小站3的高频波束6)。
502、UE向宏基站发送可用的小站集。
503、小站1确定UE处于服务小站的覆盖盲区。
优选的,小站1可以通过下述(1)(2)(3)三种方法中的任一种方法确定UE处于所述服务小站的覆盖盲区:
(1)若至少连续两次确定所述UE的上行链路解调错误,则确定所述UE处于所述当前服务小站的覆盖盲区。
(2)若接收到所述UE发送的参考信号接收功率RSRP,或者,参考信号接收质量RSRQ小于预设阈值,则确定所述UE处于所述当前服务小站的覆盖盲区。
其中,预设阈值根据需要进行设置,本发明实施例对比不进行限定。
(3)若向所述UE发送请求消息后,至少连续两次接收不到所述UE的响应消息,则确定所述UE处于所述小站的覆盖盲区。
504、小站1向宏基站发送盲区状态指示。
505、宏基站同时向UE发送第一同步指示,以及,分别向可用的小站集中的可用小站发送第二同步指示。
其中,所述第一同步指示用于指示所述UE,分别在每个所述可用波束对中所述UE的高频波束上进行同步测量;所述第二同步指示用于指示所述可用小站在所述可用小站的可用波束对中的高频波束上向所述UE发送同步导频信号。
506、UE根据所述第一同步指示进行同步测量,选择出目标可用波束对(UE的高频波束2,小站2的高频波束4)。
507、UE切换至与目标可用波束对对应的目标小站小站2。
508、UE向宏基站发送切换结果。
509、宏基站根据切换结果,向小站2发送指示信息,其中,所述指示信息用于指示小站2采用目标可用波束对与UE之间传输高频数据。
由上可知,本发明实施例提供一种小站间切换方法,UE进行同步测量,确定出UE可用的小站集,向宏基站发送可用的小站集;服务小站确定UE处于服务小站的覆盖盲区时,向宏基站发送盲区 状态指示;宏基站同时向UE发送第一同步指示,以及,分别向可用的小站集中的可用小站发送第二同步指示;UE进行同步测量,选择出目标波束对,切换至目标波束对对应的目标小站,并向宏基站发送切换结果;宏基站指示目标小站向UE传输高频数据。如此,当UE处于服务小站的覆盖盲区时,UE只需要对UE确定出的可用的小站集中,每个可用波束对进行同步测量,就可以选择出最好的目标小站和目标波束对,切换至目标小站,降低了UE重新接入高频网络的延时,提高了UE接收高频服务的QoS,避免了现有技术中UE需要同所有小站的所有波束对进行同步测量,同步测量时间长,导致的UE重新接入高频网络延时较大,UE接收高频服务的QoS较差的问题。
此外,本发明实施例提供还一种用户设备60,如图6所示,所述用户设备60可以包括:
确定单元601,用于进行同步测量,确定出所述UE可用的小站集。
其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成。
发送单元602,用于向宏基站发送所述可用的小站集。
接收单元603,用于当所述UE处于当前服务小站的覆盖盲区时,接收所述宏基站发送的第一同步指示。
其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量。
选择单元604,用于根据所述第一同步指示进行同步测量,选择出目标可用波束对。
切换单元605,用于切换到与所述目标可用波束对对应的目标小站。
进一步的,所述确定单元601,具体用于:
向所述宏基站发送同步测量请求,以使得所述宏基站通知所述 宏基站覆盖区域下的所有小站向所述UE发送同步导频信号;
分别在所述UE的每个高频波束上,接收所有小站在所述小站的每个高频波束上发送的同步导频信号;
分别测量每个同步导频信号的信号强度,并按照从大到小的顺序对所述信号强度进行排序;
将发送最大信号强度的同步导频信号的小站确定为所述UE的服务小站;将至少一个发送次大信号强度的同步导频信号的小站确定为所述UE可用的小站集中的可用小站。
其中,信号强度可以是测量当前相邻小站参考信号的RSRP值,或者参考信号的RSRQ值。
例如,如图1所示,UE经过同步测量后,确定小站1为UE的服务小站,确定可用的小站集中的可用小站为小站2和小站3,与小站2相对应的可用波束对为(UE的高频波束2,小站2的高频波束4),与小站3相对应的可用波束对为(UE的高频波束3,小站3的高频波束6)。
进一步的,所述选择单元604,具体用于:
测量每个所述可用波束对中的UE的高频波束上的同步导频信号的信号强度;
若信号强度最大的同步导频信号对应的信号强度大于等于预设阈值,则选择接收信号强度最大的同步导频信号的UE的高频波束和发送所述信号强度最大的同步导频信号的可用小站的高频波束组成的波束对为目标可用波束对。
其中,预设阈值为根据需要进行设置的,本发明实施例对此不进行限定,若同步导频信号的信号强度大于等于预设阈值,则表示发送接收该同步导频信号的信道质量满足高频网络架构中高频数据传输信道的要求;若同步导频信号的信号强度小于预设阈值,则表示发送接收该同步导频信号的信道质量不能满足高频网络架构中高频数据传输信道的要求,为不可用高频传输信道。
例如,当图1中的UE处于服务小站的覆盖盲区时,UE只需对 可用波束对(UE的高频波束2,小站2的高频波束4),以及,(UE的高频波束3,小站3的高频波束6)进行同步测量,从这两个波束对中选择出目标可用波束对,即只需进行2次同步测量,就可以确定最好波束对,同现有方法中需要进行120次的同步测量,才能确定出最好波束对相比,大大降低了同步测量次数,减少了同步测量时间,从而为UE进行小站切换,节约了时间,降低了UE重新接入高频网络的时延,提高了UE接收高频服务的QoS。
进一步的,如图6A所示,所述用户设备还包括:
结果上报单元606,用于向所述宏基站发送切换结果,以使得所述宏基站根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输;其中,所述切换结果包含:目标可用波束对,以及,目标小站的小区标识;
所述接收单元603,还用于接收所述宏基站发送的数据传输指示,与所述目标小站采用所述目标可用波束对进行数据传输;其中,所述数据传输指示用于指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输。
由上可知,本发明实施例提供一种用户设备60,首先进行同步测量,确定出所述UE可用的小站集,向宏基站发送所述可用的小站集;当所述UE处于所述服务小站的覆盖盲区时,接收所述宏基站发送的第一同步指示,根据所述第一同步指示进行同步测量,选择出目标可用波束对;切换到与所述目标可用波束对对应的目标小站。如此,当UE处于服务小站的覆盖盲区时,UE只需要对UE确定出的可用的小站集中,每个可用波束对进行同步测量,就可以选择出最好的目标小站和目标波束对,切换至目标小站,降低了UE重新接入高频网络的延时,提高了UE接收高频服务的QoS,避免了现有技术中UE需要同所有小站的所有波束对进行同步测量,同步测量时间长,导致的UE重新接入高频网络延时较大,UE接收高频服务的QoS较差的问题。
此外,本发明实施例还提供一种宏基站70,如图7所示,所述宏基站70可以包括:
接收单元701,用于接收UE发送的可用的小站集;其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成;
以及,接收所述UE的服务小站发送的盲区状态指示;其中,所述盲区状态指示用于指示所述UE处于所述服务小站的覆盖盲区的UE。
发送单元702,用于同时向所述UE发送第一同步指示,以及,分别向所述可用的小站集中的每个可用小站发送第二同步指示,以使得所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;所述第二同步指示用于指示所述可用小站在所述可用小站的可用波束对中的高频波束上向所述UE发送同步导频信号。
进一步的,所述接收单元701,还用于接收所述UE发送的切换结果;其中,所述切换结果包含:目标可用波束对,以及,目标小站的小区标识;
相应的,如图7A所示,所述宏基站还包括:
指示单元703,用于根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输。
进一步的,为了保证UE处于服务小站的覆盖盲区时,尽可能快的接收其他小站在高频信道传输的数据,降低高频数据服务的接续延时,如图7B所示,所述宏基站还包括:
分组单元704,用于在所述指示单元703根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输之前,将所述可用的小站集中,处于所述宏基站的同一覆盖区域的 可用小站分为一组;
所述发送单元702,还用于在所述宏基站接收所述UE的服务小站发送的盲区状态指示后,以组播形式分别向每组可用小站发送所述UE请求传输的数据。
如此,在UE侧进行同步测量,确定出目标可用波束对时,宏基站先以组播形式将UE请求的数据发送至可用的小站集中的每个小站,使得宏基站在接收切换结果后,直接命令目标小站向UE进行数据传输,避免了宏基站在接收切换结果后,才传输UE请求的数据给目标小站,让目标小站向UE进行数据传输造成的时间浪费。
由上可知,本发明实施例提供一种宏基站70,接收UE发送的可用的小站集,在宏基站接收服务小站发送的盲区状态指示后,同时向所述UE发送第一同步指示,以及,分别向所述可用的小站集中的每个可用小站发送第二同步指示,以使得所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;所述第二同步指示用于指示所述可用小站在所述可用小站的可用波束对中的高频波束上向所述UE发送同步导频信号。如此,当宏基站接收服务小站发送的UE处于服务小站的覆盖盲区的信息后,宏基站命令UE同确定出的可用的小站集中的可用波束对进行同步测量,使得UE的同步测量次数大大减少,测量时间降低,进而降低UE重新接入高频组网的延时,提高UE的高频QoS。
此外,本发明实施例提供一种小站80,如图8所示,所述小站80包括:
发送单元801,向UE发送第一同步导频信号,以使得所述UE测量所述同步导频信号,确定出所述UE的可用小站和所述可用小站的可用波束对。
其中,所述可用波束对由可用小站的一个高频波束和所述UE的一个高频波束组成;
接收单元802,用于接收宏基站发送的同步指示;其中,所述同步指示指示所述可用小站在其可用波束对中的高频波束上向所述UE发送同步导频信号。
所述发送单元801,还用于根据所述同步指示向所述UE发送第二同步导频信号,以使得所述UE在可用波束对中的UE的高频波束上进行同步测量,确定目标可用波束对,并从所述UE的当前服务小站切换到与目标可用波束对相应的目标小站。
所述接收单元802,还用于接收所述宏基站发送的数据传输指示。
数据通信单元803,用于与所述UE采用所述目标可用波束对进行数据传输。
进一步的,所述接收单元802,还用于在所述接收单元接收所述宏基站发送的数据传输指示之前,接收所述宏基站以组播形式发送的所述UE请求传输的数据。
进一步的,当小站80为UE的当前服务小站时,如图8A所示,所述小站80还包括:
确定单元804,用于确定所述UE是否处于当前服务小站的覆盖盲区;
所述发送单元801,还用于向所述宏基站发送盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于所述小站的覆盖盲区;
所述接收单元802,还用于当所述UE处于当前服务小站的服务盲区时,所述小站接收所述宏基站发送的指示信息,结束与所述UE之间的数据传输。
进一步的,所述确定单元804,具体用于:
若至少连续两次确定所述UE的上行链路解调错误,则确定所述UE处于所述当前服务小站的覆盖盲区;
或者,若接收到所述UE发送的参考信号接收功率RSRP,或者,参考信号接收质量RSRQ小于预设阈值,则确定所述UE处于所述 当前服务小站的覆盖盲区;其中,预设阈值根据需要进行设置,本发明实施例对比不进行限定;
或者,若向所述UE发送请求消息后,至少连续两次接收不到所述UE的响应消息,则确定所述UE处于所述小站的覆盖盲区。
由上可知,本发明实施例提供一种小站80,向UE发送第一同步导频信号,以使得所述UE测量所述同步导频信号,确定出所述UE的可用小站和所述可用小站的可用波束对;其中,所述可用波束对由可用小站的一个高频波束和所述UE的一个高频波束组成;可用小站接收宏基站发送的同步指示;其中,所述同步指示指示所述可用小站在其可用波束对中的高频波束上向所述UE发送同步导频信号;可用小站根据所述同步指示向所述UE发送第二同步导频信号,以使得所述UE在可用波束对中的UE的高频波束上进行同步测量,确定目标可用波束对,并从所述UE的当前服务小站切换到与目标可用波束对相应的目标小站;目标小站接收所述宏基站发送的数据传输指示,与所述UE采用所述目标可用波束对进行数据传输。如此,当UE处于服务小站的覆盖盲区时,UE只需通可用的小站集中的可用波束对进行同步测量,大大减少了同步次数,从而降低了UE接入高频组网的时延,提高了UE接收高频服务的QoS。
此外,本发明实施例提供一种小站间切换系统90,如图9所示,所述小站间切换系统190可以包括用户设备60、宏基站70、服务至少一个小站80以及至少一个可用小站0;
其中,用户设备60、宏基站70、小站80分别与上述用户设备60、宏基站70、小站80相同,在此不再赘述。
由上可知,本发明实施例提供一种小站间切换系统90,UE60进行同步测量,确定出UE60可用的小站集,向宏基站70发送可用的小站集;小站80确定UE处于服务小站的覆盖盲区时,向宏基站70发送盲区状态指示;宏基站70同时向UE发送第一同步指示,以及,向可用的小站集中的可用小站发送第二同步指示;UE60进行同步测量,确定出目标可用波束对,切换至目标可用波束对对应的目 标小站。如此,当UE处于服务小站的覆盖盲区时,UE只需要对UE确定出的可用的小站集中,每个可用波束对进行同步测量,就可以选择出最好的目标小站和目标波束对,切换至目标小站,降低了UE重新接入高频网络的延时,提高了UE接收高频服务的QoS,避免了现有技术中UE需要同所有小站的所有波束对进行同步测量,同步测量时间长,导致的UE重新接入高频网络延时较大,UE接收高频服务的QoS较差的问题。
此外,本发明实施例提供还提供一种用户设备100,如图10所示,所述用户设备100可以包括:通信单元1001,处理器1002、存储器1003、至少一个通信总线1004,用于实现这些装置之间的连接和相互通信;
处理器1002可能是一个中央处理器(英文:central processing unit,简称为CPU)。
存储器1003,可以是易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);或者非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);或者上述种类的存储器的组合,并向处理器1002提供指令和数据。
所述处理器1002,用于进行同步测量,确定出所述UE可用的小站集。
其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成。
所述通信单元1001,用于向宏基站发送所述可用的小站集;
当所述UE处于当前服务小站的覆盖盲区时,接收所述宏基站发送的第一同步指示。
其中,所述第一同步指示用于指示所述UE在每个所述可用波 束对中的UE的高频波束上进行同步测量。
所述处理器1002,还用于根据所述第一同步指示进行同步测量,选择出目标可用波束对;
切换到与所述目标可用波束对对应的目标小站。
进一步的,所述处理器1002,具体用于:
向所述宏基站发送同步测量请求,以使得所述宏基站通知所述宏基站覆盖区域下的所有小站向所述UE发送同步导频信号;
分别在所述UE的每个高频波束上,接收所有小站在所述小站的每个高频波束上发送的同步导频信号;
分别测量每个同步导频信号的信号强度,并按照从大到小的顺序对所述信号强度进行排序;
将发送最大信号强度的同步导频信号的小站确定为所述UE的服务小站;将至少一个发送次大信号强度的同步导频信号的小站确定为所述UE可用的小站集中的可用小站。
其中,信号强度可以是测量当前相邻小站参考信号的RSRP值,或者参考信号的RSRQ值。
例如,如图1所示,UE经过同步测量后,确定小站1为UE的服务小站,确定可用的小站集中的可用小站为小站2和小站3,与小站2相对应的可用波束对为(UE的高频波束2,小站2的高频波束4),与小站3相对应的可用波束对为(UE的高频波束3,小站3的高频波束6)。
进一步的,所述处理器1002,具体用于:
测量每个所述可用波束对中的UE的高频波束上的同步导频信号的信号强度;
若信号强度最大的同步导频信号对应的信号强度大于等于预设阈值,则选择接收信号强度最大的同步导频信号的UE的高频波束和发送所述信号强度最大的同步导频信号的可用小站的高频波束组成的波束对为目标可用波束对。
其中,预设阈值为根据需要进行设置的,本发明实施例对此不 进行限定,若同步导频信号的信号强度大于等于预设阈值,则表示发送接收该同步导频信号的信道质量满足高频网络架构中高频数据传输信道的要求;若同步导频信号的信号强度小于预设阈值,则表示发送接收该同步导频信号的信道质量不能满足高频网络架构中高频数据传输信道的要求,为不可用高频传输信道。
例如,当图1中的UE处于服务小站的覆盖盲区时,UE只需对可用波束对(UE的高频波束2,小站2的高频波束4),以及,(UE的高频波束3,小站3的高频波束6)进行同步测量,从这两个波束对中选择出目标可用波束对,即只需进行2次同步测量,就可以确定最好波束对,同现有方法中需要进行100次的同步测量,才能确定出最好波束对相比,大大降低了同步测量次数,减少了同步测量时间,从而为UE进行小站切换,节约了时间,降低了UE重新接入高频网络的时延,提高了UE接收高频服务的QoS。
进一步的,所述通信单元1001,还用于向所述宏基站发送切换结果,以使得所述宏基站根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输;其中,所述切换结果包含:目标可用波束对,以及,目标小站的小区标识;
接收所述宏基站发送的数据传输指示,与所述目标小站采用所述目标可用波束对进行数据传输;其中,所述数据传输指示用于指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输。
由上可知,本发明实施例提供一种用户设备100,首先进行同步测量,确定出所述UE可用的小站集,向宏基站发送所述可用的小站集;当所述UE处于所述服务小站的覆盖盲区时,接收所述宏基站发送的第一同步指示,根据所述第一同步指示进行同步测量,选择出目标可用波束对;切换到与所述目标可用波束对对应的目标小站。如此,当UE处于服务小站的覆盖盲区时,UE只需要对UE确定出的可用的小站集中,每个可用波束对进行同步测量,就可以选择出最好的小站和波束对,接入选择出的小站,采用选择出的波 束对继续进行高频数据传输,减少了同步测量时间,进而降低了UE重新接入高频网络的延时,提高了UE接收高频服务的QoS,避免了现有技术中UE需要同所有小站的所有波束对进行同步测量,同步测量时间长,导致的UE重新接入高频网络延时较大,UE接收高频服务的QoS较差的问题。
此外,本发明实施例提供还提供一种宏基站110,如图11所示,所述宏基站110可以包括:通信单元1101,处理器1102、存储器1103、至少一个通信总线1104,用于实现这些装置之间的连接和相互通信;
处理器1102可能是一个中央处理器(英文:central processing unit,简称为CPU)。
存储器1103,可以是易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);或者非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);或者上述种类的存储器的组合,并向处理器1102提供指令和数据。
通信单元1101,用于接收UE发送的可用的小站集;其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成;
以及,接收所述UE的服务小站发送的盲区状态指示;其中,所述盲区状态指示用于指示所述UE处于所述服务小站的覆盖盲区的UE;
同时向所述UE发送第一同步指示,以及,分别向所述可用的小站集中的每个可用小站发送第二同步指示,以使得所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;所述第二同步指示用于指示所述可用 小站在所述可用小站的可用波束对中的高频波束上向所述UE发送同步导频信号。
进一步的,所述通信单元1101,还用于接收所述UE发送的切换结果;其中,所述切换结果包含:目标可用波束对,以及,目标小站的小区标识;
相应的,所述处理器1102,用于根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输。
进一步的,为了保证UE处于服务小站的覆盖盲区时,尽可能快的接收其他小站在高频信道传输的数据,降低高频数据服务的接续延时,所述处理器1102,还用于在所述指示单元根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输之前,将所述可用的小站集中,处于所述宏基站的同一覆盖区域的可用小站分为一组;
所述通信单元1101,还用于在所述宏基站接收所述UE的服务小站发送的盲区状态指示后,以组播形式分别向每组可用小站发送所述UE请求传输的数据。
如此,在UE侧进行同步测量,确定出目标可用波束对时,宏基站先以组播形式将UE请求的数据发送至可用的小站集中的每个小站,使得宏基站在接收切换结果后,直接命令目标小站向UE进行数据传输,避免了宏基站在接收切换结果后,才传输UE请求的数据给目标小站,让目标小站向UE进行数据传输造成的时间浪费。
由上可知,本发明实施例提供一种宏基站110,接收UE发送的可用的小站集,在宏基站接收服务小站发送的盲区状态指示后,同时向所述UE发送第一同步指示,以及,分别向所述可用的小站集中的每个可用小站发送第二同步指示,以使得所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;所述第二同步指示用于指示所述可用小站在 所述可用小站的可用波束对中的高频波束上向所述UE发送同步导频信号。如此,当宏基站接收服务小站发送的UE处于服务小站的覆盖盲区的信息后,宏基站命令UE同确定出的可用的小站集中的可用波束对进行同步测量,使得UE的同步测量次数大大减少,测量时间降低,进而降低UE重新接入高频组网的延时,提高UE的高频QoS。
此外,本发明实施例提供还提供一种小站120,如图12所示,所述小站120可以包括:通信单元1201,处理器1202、存储器1203、至少一个通信总线1204,用于实现这些装置之间的连接和相互通信;
处理器1202可能是一个中央处理器(英文:central processing unit,简称为CPU)。
存储器1203,可以是易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);或者非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);或者上述种类的存储器的组合,并向处理器1402提供指令和数据。
处理器1202,用于确定UE处于所述服务小站的覆盖盲区。
通信单元1201,向UE发送第一同步导频信号,以使得所述UE测量所述同步导频信号,确定出所述UE的可用小站和所述可用小站的可用波束对。
其中,所述可用波束对由可用小站的一个高频波束和所述UE的一个高频波束组成;
所述通信单元1201,还用于接收宏基站发送的同步指示;其中,所述同步指示指示所述可用小站在其可用波束对中的高频波束上向所述UE发送同步导频信号;
根据所述同步指示向所述UE发送第二同步导频信号,以使得所述UE在可用波束对中的UE的高频波束上进行同步测量,确定目 标可用波束对,并从所述UE的当前服务小站切换到与目标可用波束对相应的目标小站;
接收所述宏基站发送的数据传输指示;
与所述UE采用所述目标可用波束对进行数据传输。
进一步的,所述通信单元1201,还用于在所述接收单元接收所述宏基站发送的数据传输指示之前,接收所述宏基站以组播形式发送的所述UE请求传输的数据。
进一步的,当小站120为UE的当前服务小站时,
所述处理器1202,用于确定所述UE是否处于当前服务小站的覆盖盲区;
所述通信单元1201,还用于向所述宏基站发送盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于所述小站的覆盖盲区;
当所述UE处于当前服务小站的服务盲区时,所述小站接收所述宏基站发送的指示信息,结束与所述UE之间的数据传输。
进一步的,所述处理器1202,具体用于:
若至少连续两次确定所述UE的上行链路解调错误,则确定所述UE处于所述当前服务小站的覆盖盲区;
或者,若接收到所述UE发送的参考信号接收功率RSRP,或者,参考信号接收质量RSRQ小于预设阈值,则确定所述UE处于所述当前服务小站的覆盖盲区;其中,预设阈值根据需要进行设置,本发明实施例对比不进行限定;
或者,若向所述UE发送请求消息后,至少连续两次接收不到所述UE的响应消息,则确定所述UE处于所述小站的覆盖盲区。
由上可知,本发明实施例提供一种小站120,向UE发送第一同步导频信号,以使得所述UE测量所述同步导频信号,确定出所述UE的可用小站和所述可用小站的可用波束对;其中,所述可用波束对由可用小站的一个高频波束和所述UE的一个高频波束组成;可用小站接收宏基站发送的同步指示;其中,所述同步指示指示所述 可用小站在其可用波束对中的高频波束上向所述UE发送同步导频信号;可用小站根据所述同步指示向所述UE发送第二同步导频信号,以使得所述UE在可用波束对中的UE的高频波束上进行同步测量,确定目标可用波束对,并从所述UE的当前服务小站切换到与目标可用波束对相应的目标小站;目标小站接收所述宏基站发送的数据传输指示,与所述UE采用所述目标可用波束对进行数据传输。如此,当UE处于服务小站的覆盖盲区时,UE只需通可用的小站集中的可用波束对进行同步测量,大大减少了同步次数,从而降低了UE接入高频组网的时延,提高了UE接收高频服务的QoS。
此外,本发明实施例提供一种小站间切换系统130,如图13所示,所述小站间切换系统130可以包括用户设备100、宏基站110以及至少一个小站120;
其中,用户设备100、宏基站110以及小站120分别与上述用户设备100、宏基站110以及小站120相同,在此不再赘述。
由上可知,本发明实施例提供一种小站间切换系统130,UE100进行同步测量,确定出UE100可用的小站集,向宏基站110发送可用的小站集;小站120确定UE处于服务小站的覆盖盲区时,向宏基站110发送盲区状态指示;宏基站110同时向UE发送第一同步指示,以及,分别向可用的小站集中的可用小站发送第二同步指示;UE100进行同步测量,确定出目标可用波束对,切换至目标可用波束对对应的目标小站。如此,当UE处于服务小站的覆盖盲区时,UE只需要对UE确定出的可用的小站集中,每个可用波束对进行同步测量,就可以选择出最好的小站和波束对,接入选择出的小站,采用选择出的波束对继续进行高频数据传输,减少了同步测量时间,进而降低了UE重新接入高频网络的延时,提高了UE接收高频服务的QoS,避免了现有技术中UE需要同所有小站的所有波束对进行同步测量,同步测量时间长,导致的UE重新接入高频网络延时较大,UE接收高频服务的QoS较差的问题。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统, 移动终端和方法,可以通过其它的方式实现。例如,以上所描述的移动终端实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,移动终端或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (35)

  1. 一种小站间切换方法,其特征在于,包括:
    用户设备UE进行同步测量,确定出所述UE可用的小站集;其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成;
    所述UE向宏基站发送所述可用的小站集;
    当所述UE处于当前服务小站的覆盖盲区时,接收所述宏基站发送的第一同步指示;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;
    所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对;
    所述UE切换到与所述目标可用波束对对应的目标小站。
  2. 根据权利要求1所述的小站间切换方法,其特征在于,所述UE进行同步测量,确定出所述UE可用的小站集包括:
    所述UE向所述宏基站发送同步测量请求,以使得所述宏基站通知所述宏基站覆盖区域下的所有小站向所述UE发送同步导频信号;
    所述UE分别在所述UE的每个高频波束上,接收所有小站在所述小站的每个高频波束上发送的同步导频信号;
    所述UE分别测量每个同步导频信号的信号强度,并按照从大到小的顺序对所述信号强度进行排序;
    所述UE将发送最大信号强度的同步导频信号的小站确定为所述UE的服务小站;将至少一个发送次大信号强度的同步导频信号的小站确定为所述UE可用的小站集中的可用小站。
  3. 根据权利要求1或2所述的小站间切换方法,其特征在于,所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对包括:
    所述UE测量每个所述可用波束对中的UE的高频波束上的同步导频信号的信号强度;
    若信号强度最大的同步导频信号对应的信号强度大于等于预设阈值,则选择接收信号强度最大的同步导频信号的UE的高频波束和发送所述信号强度最大的同步导频信号的可用小站的高频波束组成的波束对为目标可用波束对。
  4. 根据权利要求1-3任一项所述的小站间切换方法,其特征在于,所述方法还包括:
    所述UE向所述宏基站发送切换结果,以使得所述宏基站根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输;其中,所述切换结果包含:目标可用波束对,以及,目标小站的小区标识;
    接收所述宏基站发送的数据传输指示,与所述目标小站采用所述目标可用波束对进行数据传输;其中,所述数据传输指示用于指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输。
  5. 一种小站间切换方法,其特征在于,包括:
    宏基站接收UE发送的所述UE可用的小站集;其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成;
    所述宏基站接收所述UE的当前服务小站发送的盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于当前服务小站的覆盖盲区;
    当所述UE处于当前服务小站的服务盲区时,所述宏基站同时向所述UE发送第一同步指示,以及,分别向所述可用的小站集中的每个可用小站发送第二同步指示,以使得所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对,并从所述UE的当前服务小站切换到与所述目标可用波束对对应的目标小站;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;所述第二同步指示用于指示所述可用小站在所述 可用小站的可用波束对中的高频波束上向所述UE发送同步导频信号。
  6. 根据权利要求5所述的小站间切换方法,其特征在于,所述方法还包括:
    所述宏基站接收所述UE发送的切换结果;其中,所述切换结果包含:所述目标可用波束对,以及,与所述目标可用波束对对应的目标小站的小区标识;
    所述宏基站根据所述切换结果指示所述目标小站与所述UE之间采用所述目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输。
  7. 根据权利要求6所述的小站间切换方法,其特征在于,在所述宏基站根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输之前,所述方法还包括:
    所述宏基站将所述可用的小站集中,处于所述宏基站的同一覆盖区域的可用小站分为一组;
    在所述宏基站接收所述UE的服务小站发送的盲区状态指示后,以组播形式分别向每组可用小站发送所述UE请求传输的数据。
  8. 一种小站间切换方法,其特征在于,包括:
    向UE发送第一同步导频信号,以使得所述UE测量所述同步导频信号,确定出所述UE的可用小站和所述可用小站的可用波束对;其中,所述可用波束对由可用小站的一个高频波束和所述UE的一个高频波束组成;
    可用小站接收宏基站发送的同步指示;其中,所述同步指示指示所述可用小站在其可用波束对中的高频波束上向所述UE发送同步导频信号;
    所述可用小站根据所述同步指示向所述UE发送第二同步导频信号,以使得所述UE在可用波束对中的UE的高频波束上进行同步测量,确定目标可用波束对,并从所述UE的当前服务小站切换到与目标可用波束对相应的目标小站;
    所述目标小站接收所述宏基站发送的数据传输指示,与所述UE采用所述目标可用波束对进行数据传输。
  9. 根据权利要求8所述的小站间切换方法,其特征在于,在所述可用小站接收所述宏基站发送的数据传输指示之前,所述方法还包括:
    所述可用小站接收所述宏基站以组播形式发送的所述UE请求传输的数据。
  10. 根据权利要求8或9所述的小站间切换方法,其特征在于,所述方法还包括:
    确定所述UE是否处于当前服务小站的覆盖盲区;
    向所述宏基站发送盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于所述小站的覆盖盲区;
    当所述UE处于当前服务小站的服务盲区时,所述当前服务小站接收所述宏基站发送的指示信息,结束与所述UE之间的数据传输。
  11. 根据权利要求10所述的小站间切换方法,其特征在于,所述确定所述UE是否处于所述小站的覆盖盲区的步骤包括:
    若至少连续两次确定所述UE的上行链路解调错误,则确定所述UE处于所述当前服务小站的覆盖盲区;
    或者,若接收到所述UE发送的参考信号接收功率RSRP,或者,参考信号接收质量RSRQ小于预设阈值,则确定所述UE处于所述当前服务小站的覆盖盲区;
    或者,若向所述UE发送请求消息后,至少连续两次接收不到所述UE的响应消息,则确定所述UE处于所述小站的覆盖盲区。
  12. 一种用户设备,其特征在于,所述用户设备包括:
    确定单元,用于进行同步测量,确定出所述UE可用的小站集;其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成;
    发送单元,用于向宏基站发送所述可用的小站集;
    接收单元,用于当所述UE处于当前服务小站的覆盖盲区时,接收所述宏基站发送的第一同步指示;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;
    选择单元,用于根据所述第一同步指示进行同步测量,选择出目标可用波束对;
    切换单元,用于切换到与所述目标可用波束对对应的目标小站。
  13. 根据权利要求12所述的用户设备,其特征在于,所述确定单元,具体用于:
    向所述宏基站发送同步测量请求,以使得所述宏基站通知所述宏基站覆盖区域下的所有小站向所述UE发送同步导频信号;
    分别在所述UE的每个高频波束上,接收所有小站在所述小站的每个高频波束上发送的同步导频信号;
    分别测量每个同步导频信号的信号强度,并按照从大到小的顺序对所述信号强度进行排序;
    将发送最大信号强度的同步导频信号的小站确定为所述UE的服务小站;将至少一个发送次大信号强度的同步导频信号的小站确定为所述UE可用的小站集中的可用小站。
  14. 根据权利要求12或13所述的用户设备,其特征在于,所述选择单元,具体用于:
    测量每个所述可用波束对中的UE的高频波束上的同步导频信号的信号强度;
    若信号强度最大的同步导频信号对应的信号强度大于等于预设阈值,则选择接收信号强度最大的同步导频信号的UE的高频波束和发送所述信号强度最大的同步导频信号的可用小站的高频波束组成的波束对为目标可用波束对。
  15. 根据权利要求12-14任一项所述的用户设备,其特征在于,所述用户设备还包括:
    结果上报单元,用于向所述宏基站发送切换结果,以使得所述宏 基站根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输;其中,所述切换结果包含:目标可用波束对,以及,目标小站的小区标识;
    所述接收单元,还用于接收所述宏基站发送的数据传输指示,与所述目标小站采用所述目标可用波束对进行数据传输;其中,所述数据传输指示用于指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输。
  16. 一种宏基站,其特征在于,所述宏基站包括:
    接收单元,用于接收UE发送的可用的小站集;其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成;
    以及,接收所述UE的服务小站发送的盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于所述服务小站的覆盖盲区的UE;
    发送单元,用于当所述UE处于当前服务小站的服务盲区时,同时向所述UE发送第一同步指示,以及,分别向所述可用的小站集中的每个可用小站发送第二同步指示,以使得所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对,并从所述UE的当前服务小站切换到与所述目标可用波束对对应的目标小站;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;所述第二同步指示用于指示所述可用小站在所述可用小站的可用波束对中的高频波束上向所述UE发送同步导频信号。
  17. 根据权利要求16所述的宏基站,其特征在于,
    所述接收单元,还用于接收所述UE发送的切换结果;其中,所述切换结果包含:所述目标可用波束对,以及,与所述目标可用波束对对应的目标小站的小区标识;
    所述宏基站,还包括:
    指示单元,用于根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输。
  18. 根据权利要求17所述的宏基站,其特征在于,所述宏基站还包括:
    分组单元,用于在所述指示单元根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输之前,将所述可用的小站集中,处于所述宏基站的同一覆盖区域的可用小站分为一组;
    所述发送单元,还用于在所述宏基站接收所述UE的服务小站发送的盲区状态指示后,以组播形式分别向每组可用小站发送所述UE请求传输的数据。
  19. 一种小站,其特征在于,所述小站包括:
    发送单元,向UE发送第一同步导频信号,以使得所述UE测量所述同步导频信号,确定出所述UE的可用小站和所述可用小站的可用波束对;其中,所述可用波束对由可用小站的一个高频波束和所述UE的一个高频波束组成;
    接收单元,用于接收宏基站发送的同步指示;其中,所述同步指示指示所述可用小站在其可用波束对中的高频波束上向所述UE发送同步导频信号;
    所述发送单元,还用于根据所述同步指示向所述UE发送第二同步导频信号,以使得所述UE在可用波束对中的UE的高频波束上进行同步测量,确定目标可用波束对,并从所述UE的当前服务小站切换到与目标可用波束对相应的目标小站;
    所述接收单元,还用于接收所述宏基站发送的数据传输指示;
    数据通信单元,用于与所述UE采用所述目标可用波束对进行数据传输。
  20. 根据权利要求19所述的小站,其特征在于,
    所述接收单元,还用于在所述接收单元接收所述宏基站发送的数据传输指示之前,接收所述宏基站以组播形式发送的所述UE请求传输的数据。
  21. 根据权利要求19或20所述的小站,其特征在于,所述小站还包括:
    确定单元,用于确定所述UE是否处于当前服务小站的覆盖盲区;
    所述发送单元,还用于向所述宏基站发送盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于所述小站的覆盖盲区;
    所述接收单元,还用于当所述UE处于当前服务小站的服务盲区时,所述小站接收所述宏基站发送的指示信息,结束与所述UE之间的数据传输。
  22. 根据权利要求21所述的小站,其特征在于,所述确定单元,具体用于:
    若至少连续两次确定所述UE的上行链路解调错误,则确定所述UE处于所述当前服务小站的覆盖盲区;
    或者,若接收到所述UE发送的参考信号接收功率RSRP,或者,参考信号接收质量RSRQ小于预设阈值,则确定所述UE处于所述当前服务小站的覆盖盲区;
    或者,若向所述UE发送请求消息后,至少连续两次接收不到所述UE的响应消息,则确定所述UE处于所述小站的覆盖盲区。
  23. 一种小站间切换系统,其特征在于,包括如权利要求12-15任一项所述的用户设备、如权利要求16-18任一项所述的宏基站、以及至少一个如权利要求19-22任一项所述的小站。
  24. 一种用户设备,其特征在于,所述用户设备包括:
    处理器,用于进行同步测量,确定出所述UE可用的小站集;其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成;
    通信单元,用于向宏基站发送所述可用的小站集;
    当所述UE处于当前服务小站的覆盖盲区时,接收所述宏基站发送的第一同步指示;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;
    所述处理器,还用于根据所述第一同步指示进行同步测量,选择出目标可用波束对;
    切换到与所述目标可用波束对对应的目标小站。
  25. 根据权利要求24所述的用户设备,其特征在于,所述处理器,具体用于:
    向所述宏基站发送同步测量请求,以使得所述宏基站通知所述宏基站覆盖区域下的所有小站向所述UE发送同步导频信号;
    分别在所述UE的每个高频波束上,接收所有小站在所述小站的每个高频波束上发送的同步导频信号;
    分别测量每个同步导频信号的信号强度,并按照从大到小的顺序对所述信号强度进行排序;
    将发送最大信号强度的同步导频信号的小站确定为所述UE的服务小站;将至少一个发送次大信号强度的同步导频信号的小站确定为所述UE可用的小站集中的可用小站。
  26. 根据权利要求24或25所述的用户设备,其特征在于,所述处理器,具体用于:
    测量每个所述可用波束对中的UE的高频波束上的同步导频信号的信号强度;
    若信号强度最大的同步导频信号对应的信号强度大于等于预设阈值,则选择接收信号强度最大的同步导频信号的UE的高频波束和发送所述信号强度最大的同步导频信号的可用小站的高频波束组成的波束对为目标可用波束对。
  27. 根据权利要求24-26任一项所述的用户设备,其特征在于,
    所述通信单元,还用于向所述宏基站发送切换结果,以使得所述宏基站根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE 之间的数据传输;其中,所述切换结果包含:目标可用波束对,以及,目标小站的小区标识;
    接收所述宏基站发送的数据传输指示,与所述目标小站采用所述目标可用波束对进行数据传输;其中,所述数据传输指示用于指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输。
  28. 一种宏基站,其特征在于,所述宏基站包括:
    通信单元,用于接收UE发送的可用的小站集;其中,所述可用的小站集包含至少一个可用小站,以及,每个所述可用小站的可用波束对;所述可用波束对由所述UE的一个高频波束和所述可用小站的一个高频波束组成;
    接收所述UE的服务小站发送的盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于所述服务小站的覆盖盲区的UE;
    当所述UE处于当前服务小站的服务盲区时,同时向所述UE发送第一同步指示,以及,分别向所述可用的小站集中的每个可用小站发送第二同步指示,以使得所述UE根据所述第一同步指示进行同步测量,选择出目标可用波束对,并从所述UE的当前服务小站切换到与所述目标可用波束对对应的目标小站;其中,所述第一同步指示用于指示所述UE在每个所述可用波束对中的UE的高频波束上进行同步测量;所述第二同步指示用于指示所述可用小站在所述可用小站的可用波束对中的高频波束上向所述UE发送同步导频信号。
  29. 根据权利要求28所述的宏基站,其特征在于,
    所述通信单元,还用于接收所述UE发送的切换结果;其中,所述切换结果包含:所述目标可用波束对,以及,与所述目标可用波束对对应的目标小站的小区标识;
    所述宏基站,还包括:
    处理器,用于根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输,以及,指示所述服务小站结束与所述UE之间的数据传输。
  30. 根据权利要求29所述的宏基站,其特征在于,
    所述处理器,还用于在所述指示单元根据所述切换结果指示所述目标小站与所述UE之间采用目标可用波束对进行数据传输之前,将所述可用的小站集中,处于所述宏基站的同一覆盖区域的可用小站分为一组;
    所述通信单元,还用于在所述宏基站接收所述UE的服务小站发送的盲区状态指示后,以组播形式分别向每组可用小站发送所述UE请求传输的数据。
  31. 一种小站,其特征在于,所述小站包括:
    通信单元,向UE发送第一同步导频信号,以使得所述UE测量所述同步导频信号,确定出所述UE的可用小站和所述可用小站的可用波束对;其中,所述可用波束对由可用小站的一个高频波束和所述UE的一个高频波束组成;
    接收宏基站发送的同步指示;其中,所述同步指示指示所述可用小站在其可用波束对中的高频波束上向所述UE发送同步导频信号;
    根据所述同步指示向所述UE发送第二同步导频信号,以使得所述UE在可用波束对中的UE的高频波束上进行同步测量,确定目标可用波束对,并从所述UE的当前服务小站切换到与目标可用波束对相应的目标小站;
    接收所述宏基站发送的数据传输指示;
    与所述UE采用所述目标可用波束对进行数据传输。
  32. 根据权利要求31所述的小站,其特征在于,
    所述通信单元,还用于在所述通信单元接收所述宏基站发送的数据传输指示之前,接收所述宏基站以组播形式发送的所述UE请求传输的数据。
  33. 根据权利要求31或32所述的小站,其特征在于,所述小站还包括:
    处理器,用于确定所述UE是否处于当前服务小站的覆盖盲区;
    所述通信单元,还用于向所述宏基站发送盲区状态指示;其中,所述盲区状态指示用于指示所述UE是否处于所述小站的覆盖盲区;
    所述通信单元,还用于当所述UE处于当前服务小站的服务盲区时,所述小站接收所述宏基站发送的指示信息,结束与所述UE之间的数据传输。
  34. 根据权利要求33所述的小站,其特征在于,所述处理器,具体用于:
    若至少连续两次确定所述UE的上行链路解调错误,则确定所述UE处于所述当前服务小站的覆盖盲区;
    或者,若接收到所述UE发送的参考信号接收功率RSRP,或者,参考信号接收质量RSRQ小于预设阈值,则确定所述UE处于所述当前服务小站的覆盖盲区;
    或者,若向所述UE发送请求消息后,至少连续两次接收不到所述UE的响应消息,则确定所述UE处于所述小站的覆盖盲区。
  35. 一种小站间切换系统,其特征在于,包括如权利要求24-27任一项所述的用户设备、如权利要求28-30任一项所述的宏基站、以及至少一个如权利要求31-34任一项所述的小站。
PCT/CN2014/089943 2014-10-30 2014-10-30 小站间切换方法、设备及系统 WO2016065590A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2014/089943 WO2016065590A1 (zh) 2014-10-30 2014-10-30 小站间切换方法、设备及系统
EP18195900.8A EP3474599A1 (en) 2014-10-30 2014-10-30 Inter-small cell handover method, device and system
EP14905120.3A EP3206433B1 (en) 2014-10-30 2014-10-30 Inter-small cell switching methods, devices and system
US15/582,345 US10219194B2 (en) 2014-10-30 2017-04-28 Inter-small cell handover method, device, and system
US16/246,857 US10827405B2 (en) 2014-10-30 2019-01-14 Inter-small cell handover method, device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/089943 WO2016065590A1 (zh) 2014-10-30 2014-10-30 小站间切换方法、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/582,345 Continuation US10219194B2 (en) 2014-10-30 2017-04-28 Inter-small cell handover method, device, and system

Publications (1)

Publication Number Publication Date
WO2016065590A1 true WO2016065590A1 (zh) 2016-05-06

Family

ID=55856408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089943 WO2016065590A1 (zh) 2014-10-30 2014-10-30 小站间切换方法、设备及系统

Country Status (3)

Country Link
US (2) US10219194B2 (zh)
EP (2) EP3206433B1 (zh)
WO (1) WO2016065590A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797573A (zh) * 2017-01-05 2017-05-31 北京小米移动软件有限公司 寻呼方法及装置
CN108540177A (zh) * 2017-03-03 2018-09-14 中国移动通信有限公司研究院 一种切换波束对的方法和设备
WO2018199991A1 (en) * 2017-04-28 2018-11-01 Intel Corporation Cell selection techniques for directional communications
CN109417415A (zh) * 2016-07-11 2019-03-01 英特尔Ip公司 用于确认波束切换的系统和方法
CN109565731A (zh) * 2016-08-03 2019-04-02 日本电气株式会社 与波束成形有关的设备、方法、系统、程序和记录介质
CN109716673A (zh) * 2016-09-16 2019-05-03 高通股份有限公司 波束切换和恢复
CN110476369A (zh) * 2017-04-03 2019-11-19 高通股份有限公司 用于快速链路阻塞恢复的基于定时器的ue侧波束扫描
CN114221681A (zh) * 2016-07-06 2022-03-22 索尼移动通信株式会社 基站、终端设备、通信方法和记录介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129725A1 (ko) * 2015-02-13 2016-08-18 엘지전자 주식회사 밀리미터 웨이브를 지원하는 무선 접속 시스템에서 하이브리드 스캐닝 수행 방법 및 장치
US10756874B2 (en) 2018-05-15 2020-08-25 Google Llc Beam search pilots for paging channel communications
WO2020118480A1 (en) * 2018-12-10 2020-06-18 Qualcomm Incorporated Cell and beam selection for conditional handover procedure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123426A (zh) * 2010-01-12 2011-07-13 中兴通讯股份有限公司 无线通信系统中仔基站发现方法、切换预处理方法及终端
CN102378260A (zh) * 2010-08-20 2012-03-14 中国移动通信集团公司 一种移动负载均衡实现方法和装置
CN102469557A (zh) * 2010-11-15 2012-05-23 华为技术有限公司 接入基站方法、基站和用户设备
CN102695228A (zh) * 2012-06-07 2012-09-26 中国科学技术大学 一种预切换的方法、网络系统及家庭基站
US20130252612A1 (en) * 2011-07-21 2013-09-26 Ntt Docomo, Inc. Radio communication system, radio base station, and communication control method
CN103874151A (zh) * 2012-12-17 2014-06-18 电信科学技术研究院 分层组网时的承载转移方法和设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1507427A1 (en) * 2003-08-11 2005-02-16 Alcatel Beam selection in a wireless cellular telecommunication system
US7295811B2 (en) * 2004-02-05 2007-11-13 Interdigital Technology Corporation Method for performing measurements for handoff of a mobile unit operating with a switched beam antenna in a wireless communication system, and corresponding system
EP2989730B1 (en) * 2013-04-25 2021-08-18 Samsung Electronics Co., Ltd. Method and system for acquiring high frequency carrier in a wireless communication network
KR102139223B1 (ko) * 2013-07-02 2020-08-11 삼성전자주식회사 빔포밍 시스템에서 동기 설정 및 신호 송수신 방법 및 장치
WO2015018025A1 (en) * 2013-08-08 2015-02-12 Nokia Corporation Methods, apparatuses, and computer-readable storage media for inter-frequency small cell detection and reporting
JP2015164281A (ja) * 2014-01-31 2015-09-10 株式会社Nttドコモ ユーザ装置、基地局、及び通信方法
US10219232B2 (en) * 2014-04-17 2019-02-26 Samsung Electronics Co., Ltd. Apparatus and method searching neighboring cells in wireless communication system
WO2015170496A1 (ja) * 2014-05-09 2015-11-12 ソニー株式会社 装置
KR102206789B1 (ko) * 2014-09-15 2021-01-26 삼성전자 주식회사 무선 통신 시스템에서 채널 접속 방법 및 장치
BR112017003647A2 (pt) * 2014-10-01 2017-12-05 Intel Ip Corp comunicação móvel em redes de pequena célula assistidas por macrocélula
ES2778204T3 (es) * 2014-11-13 2020-08-10 Huawei Tech Co Ltd Método y dispositivo de sincronización de señal para la comunicación de alta frecuencia

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123426A (zh) * 2010-01-12 2011-07-13 中兴通讯股份有限公司 无线通信系统中仔基站发现方法、切换预处理方法及终端
CN102378260A (zh) * 2010-08-20 2012-03-14 中国移动通信集团公司 一种移动负载均衡实现方法和装置
CN102469557A (zh) * 2010-11-15 2012-05-23 华为技术有限公司 接入基站方法、基站和用户设备
US20130252612A1 (en) * 2011-07-21 2013-09-26 Ntt Docomo, Inc. Radio communication system, radio base station, and communication control method
CN102695228A (zh) * 2012-06-07 2012-09-26 中国科学技术大学 一种预切换的方法、网络系统及家庭基站
CN103874151A (zh) * 2012-12-17 2014-06-18 电信科学技术研究院 分层组网时的承载转移方法和设备

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114221681A (zh) * 2016-07-06 2022-03-22 索尼移动通信株式会社 基站、终端设备、通信方法和记录介质
CN109417415A (zh) * 2016-07-11 2019-03-01 英特尔Ip公司 用于确认波束切换的系统和方法
CN109417415B (zh) * 2016-07-11 2022-06-07 苹果公司 用于确认波束切换的系统和方法
CN109565731B (zh) * 2016-08-03 2021-11-23 日本电气株式会社 与波束成形有关的设备、方法、系统、程序和记录介质
CN109565731A (zh) * 2016-08-03 2019-04-02 日本电气株式会社 与波束成形有关的设备、方法、系统、程序和记录介质
US11516711B2 (en) 2016-08-03 2022-11-29 Nec Corporation Apparatus, method, system, program and recording medium related to beamforming
US10849027B2 (en) 2016-08-03 2020-11-24 Nec Corporation Apparatus, method, system, program and recording medium related to beamforming
CN109716673A (zh) * 2016-09-16 2019-05-03 高通股份有限公司 波束切换和恢复
CN109716673B (zh) * 2016-09-16 2022-03-01 高通股份有限公司 波束切换和恢复
CN106797573B (zh) * 2017-01-05 2020-07-31 北京小米移动软件有限公司 寻呼方法及装置
US10820262B2 (en) 2017-01-05 2020-10-27 Beijing Xiaomi Mobile Software Co., Ltd. Paging method and device
CN106797573A (zh) * 2017-01-05 2017-05-31 北京小米移动软件有限公司 寻呼方法及装置
CN108540177A (zh) * 2017-03-03 2018-09-14 中国移动通信有限公司研究院 一种切换波束对的方法和设备
CN110476369A (zh) * 2017-04-03 2019-11-19 高通股份有限公司 用于快速链路阻塞恢复的基于定时器的ue侧波束扫描
CN110622560A (zh) * 2017-04-28 2019-12-27 英特尔公司 用于定向通信的小区选择技术
WO2018199991A1 (en) * 2017-04-28 2018-11-01 Intel Corporation Cell selection techniques for directional communications
CN110622560B (zh) * 2017-04-28 2022-03-04 苹果公司 用于定向通信的小区选择技术
US10849042B2 (en) 2017-04-28 2020-11-24 Apple Inc. Cell selection techniques for directional communications

Also Published As

Publication number Publication date
EP3474599A1 (en) 2019-04-24
EP3206433A1 (en) 2017-08-16
EP3206433A4 (en) 2017-08-16
US20190150044A1 (en) 2019-05-16
US10827405B2 (en) 2020-11-03
US10219194B2 (en) 2019-02-26
US20170238222A1 (en) 2017-08-17
EP3206433B1 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
WO2016065590A1 (zh) 小站间切换方法、设备及系统
US11190613B2 (en) Method, device, and computer storage medium for radio connection
JP2019532604A (ja) セルハンドオーバ方法、装置、およびシステム
WO2018228270A1 (zh) 测量方法、测量配置方法和相关设备
WO2012139456A1 (zh) 用于小区切换的方法和装置
EP4193681A1 (en) Sn-initiated conditional pscell change (cpc) with sn change
CN104956731A (zh) 用于在移动通信系统中针对具有小小区服务区域的小区控制移动性的方法和装置
US9706461B2 (en) Method of handover in device to device communication, base station and communication system
WO2018045573A1 (zh) 终端移动性管理的方法、网络设备及终端
JP2016522648A (ja) キャリアアグリゲーション技術に基づいてソフトハンドオフを実現する方法及び基地局、端末
WO2018027947A1 (zh) 一种数据处理方法以及相关设备
WO2016183816A1 (zh) 通信方法和设备
WO2018045572A1 (zh) 终端接入方法及网络设备
US11381979B2 (en) Standalone unlicensed spectrum carrier aggregation combinations using dynamic frequency selection (DFS) spectrum
WO2021204022A1 (zh) 一种测量方法和装置
WO2017193387A1 (zh) 异制式小区间切换的方法及装置
US20210112614A1 (en) Communication Method, Communications Apparatus, and Storage Medium
WO2011088637A1 (zh) 一种中继网络中小区选择与切换的方法及系统
US20200178155A1 (en) Path Switching Method and Related Device
WO2024066812A1 (zh) 小区切换的方法、终端设备和网络设备
WO2022133785A1 (zh) 一种iab节点的mt的小区配置方法及装置
WO2024061165A1 (zh) 通信方法及通信装置
WO2023108354A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023125297A1 (zh) 中继通信方法及装置、计算机可读存储介质
WO2024051584A1 (zh) 配置的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014905120

Country of ref document: EP