WO2016064050A1 - Led 구동장치 및 led 구동방법 - Google Patents

Led 구동장치 및 led 구동방법 Download PDF

Info

Publication number
WO2016064050A1
WO2016064050A1 PCT/KR2015/003567 KR2015003567W WO2016064050A1 WO 2016064050 A1 WO2016064050 A1 WO 2016064050A1 KR 2015003567 W KR2015003567 W KR 2015003567W WO 2016064050 A1 WO2016064050 A1 WO 2016064050A1
Authority
WO
WIPO (PCT)
Prior art keywords
led module
led
driving
voltage
charge
Prior art date
Application number
PCT/KR2015/003567
Other languages
English (en)
French (fr)
Inventor
신봉섭
Original Assignee
신봉섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신봉섭 filed Critical 신봉섭
Publication of WO2016064050A1 publication Critical patent/WO2016064050A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/17Operational modes, e.g. switching from manual to automatic mode or prohibiting specific operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S9/00Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
    • F21S9/02Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator

Definitions

  • the LED when the input voltage is large, the LED is driven while charging the charging device connected to the LED (Light Emitting Diode) output side, and when the input voltage is insufficient, the LED is driven by the voltage charged in the charging device together with the input voltage.
  • LED drive device and LED drive that drive LED only by input voltage when drive voltage is smaller than input voltage and is larger than difference between input voltage and voltage charged in charging element (that is, when input voltage can drive LED) It is about a method.
  • LEDs are environmentally friendly and can respond at high speeds with a few nanoseconds, making them effective for video signal streams.
  • the LED can be impulsive, and the color reproducibility is 100% or more, and the brightness, color temperature, etc. can be arbitrarily changed by adjusting the amount of light of the red, green, and blue LEDs.
  • LEDs since LEDs have advantages that are suitable for light and small size reduction of liquid crystal display (LCD) panels, they have recently been applied to lighting devices as well as light sources for backlights of LCD panels.
  • LCD liquid crystal display
  • One LED is a point light source, but when a plurality of LEDs are collected, a line light source or a surface light source may be formed and used as an illumination device. Lighting device using LED has excellent energy saving effect due to low power consumption, and can reduce environmental pollution by replacing existing lamps containing various harmful substances.
  • a lighting device using LEDs may include one or more LED modules connected in series with a plurality of LEDs. To drive the LED modules, a voltage greater than the sum of the forward operating voltages of the LEDs connected in series must be applied to the LED modules. .
  • LED driver rectifies the commercial AC power to DC power, and converts the rectified DC power to a DC power of a constant size through a switch mode power supply (Switch mode power supply) to supply to the LED module.
  • switch mode power supply switch mode power supply
  • SMPS generates DC power of a certain size through high-speed switching, a lot of noise is generated, which often interferes with surrounding circuit elements and adversely affects them.
  • the LED driving device using the SMPS must additionally use other circuit components such as a noise filter, thereby increasing the volume and weight and increasing the cost.
  • AC direct type LED driving device In order to solve the problems of the LED driving device using the SMPS, an AC direct type LED driving device has been developed and used.
  • AC direct drive is to convert commercial AC power into DC power and convert rectified DC power into DC power of constant size through SMPS and supply it to LED module. It means to supply and drive.
  • FIG. 1 is a view schematically showing a configuration of a general AC direct type LED driving device, in which three LED units (LM1, LM2, and LM3) in which a plurality of LEDs are connected in series are provided in an LED module 3, and a switch unit is illustrated in FIG. (5) is provided with two first switch (SW1) and the second switch (SW2) is connected to the first switch (SW1) between the LM1 and LM2 and the second switch (SW2) between the LM2 and LM3 as an example Will be explained.
  • the LED module 3 and the switch unit 5 can be used by changing the number according to the usage environment.
  • the power supply unit 1 supplies commercial AC power to the rectifier 2.
  • the rectifier 2 is a conventional bridge diode, and rectifies the commercial AC power supplied from the power supply 1 into a DC power source and outputs the same to the LED module 3.
  • the LED module 3 is composed of three LED units LM1, LM2, and LM3, each of which is coupled with a plurality of LEDs in series, and emits light with a DC power supplied from the rectifying unit 2, but the short of the switch unit 5 Alternatively, the open operation allows the maximum number of LEDs connected in series to be driven.
  • the sequential drive control section 4 is based on the magnitude of the power applied to the LED module 3, the magnitude of the current flowing through the LED module 3, or a combination thereof, the maximum number of serially connected in the LED module 3 After generating a control signal for driving the LED, and outputs the generated control signal to the switch unit (5).
  • the switch unit 5 includes a first switch SW1 connected between the LM1 and the LM2 and a second switch SW2 connected between the LM2 and the LM3 and based on a control signal of the sequential driving control unit 4.
  • the LED module 3 may be sequentially driven according to the magnitude of the applied power by shorting or opening the switch SW1 or the second switch SW2. That is, only LM1 and LM2 operate (short the second switch SW2) or LM1 only operate (short the first switch SW1) according to the amount of power applied while the LM1, LM2, and LM3 are all operated. )
  • Constant current operates based on the control of the sequential drive controller 4 to perform a function to enable the first switch (SW1), the second switch (SW2) to operate linearly by the current control. .
  • the conventional AC direct type LED driving method is configured to change the number of LEDs in series according to the size of the input voltage to increase the efficiency and improve the power factor.
  • the conventional AC direct type LED driving method as described above has a problem that the operation of the LED is sequentially turned on and off repeatedly, and the variation of the brightness between the LEDs is large due to the difference in the lighting time for each LED.
  • the constant current was operated differently according to the input voltage level to reduce the brightness variation between the LEDs.
  • this method has a problem that the light efficiency of the LED is lowered because the maximum current is increased while increasing the light ripple.
  • the conventional AC direct type LED driving method has to be connected to the control circuit for each LED block when driving the LED, so the connection line is increased, which is difficult to design when producing a product.
  • a charge / discharge control circuit for charging and discharging is connected to the LED output side according to the magnitude of the input voltage, and any one of the discharge mode, the charge mode, and the direct connection mode is based on the magnitude of the input voltage and the LED driving voltage.
  • the present invention provides an LED driving device and an LED driving method for driving an LED.
  • the present invention operates in a charging mode for driving an LED while charging a charging device connected in series with the LED output side when the input voltage is large, and driving the LED with the voltage charged in the charging device together with the input voltage when the input voltage is insufficient.
  • LED driving device and LED driving method which operate in direct mode to drive LED by input voltage only when LED driving voltage is smaller than input voltage and difference between input voltage and voltage charged in charging device. do.
  • the power supply unit for supplying a commercial AC power supply
  • a rectifying unit for rectifying the commercial AC power supplied from the power supply unit to the DC power source, and operates with a DC power supply supplied from the rectifying unit
  • the LED module is driven based on an LED module having one or more LED units connected in series with LEDs, a magnitude of voltage applied to the LED module, a magnitude of current flowing through the LED module and the charge / discharge control unit, or a combination thereof.
  • the driving control unit checks the voltage applied to the LED module in the rectifier through step (1), compares and determines the LED module driving voltage, and (3) the driving control unit includes: If the LED module driving voltage is smaller than the difference between the voltage applied to the LED module and the voltage charged in the charging capacitor, the operation mode of the LED module is set to the charging mode and the charge / discharge connected to the output side of the LED module is determined.
  • the LED can operate at a lower maximum current than the conventional driving method in which the maximum value of the current flowing through the LED is increased, thereby increasing the light efficiency of the LED.
  • the wiring is simplified by minimizing the connection wiring for the LED control, the design can be easily performed during circuit development, thereby improving productivity.
  • FIG. 1 is a view schematically showing the configuration of a typical AC direct-connected LED driving device.
  • FIG. 2 is a view schematically showing the configuration of the LED driving apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining the driving of each LED according to the waveform of the voltage input to the LED module of Figure 2, the current flowing through the charging module of the LED module and the charge-discharge control unit.
  • FIG. 4 is a view for explaining a circuit operation according to a discharge mode, a direct connection mode, and a charge mode of the charge / discharge control unit of FIG. 2.
  • 5 is a view for explaining the operation of the charge and discharge control unit according to the short or open operation of the current control element in detail.
  • 6 to 9 are diagrams each showing an application example to which the LED driving device of the present invention is applied.
  • FIG. 10 is a flowchart showing in detail the operation of the LED driving method according to an embodiment of the present invention.
  • FIG. 11 is a flowchart showing in detail the operation of the LED driving method according to another embodiment of the present invention.
  • FIG. 2 is a view schematically showing the configuration of the LED driving apparatus according to an embodiment of the present invention
  • Figure 3 is a waveform of the voltage input to the LED module of Figure 2, flowing through the charging capacitor of the LED module and the charge and discharge control unit 4 is a view for explaining the driving of each mode according to the current
  • Figure 4 is a view for explaining the circuit operation according to the discharge mode, direct connection mode, the charging mode of the charge and discharge control unit of Figure 2
  • Figure 5 is a current control device Figures for explaining the operation of the charge and discharge control unit according to the short or open operation of the.
  • the LED driving apparatus of the present invention includes a power supply unit 10, a rectifying unit 20, an LED module 30 including one or more LED units LM11, LM12 and LM13, and a driving control unit. 40, the charge / discharge control section 50 and the like.
  • the LED driving device of the present invention reduces the number of terminals of the LED module, there is no brightness deviation between the LEDs, and obtains about 97% of LED driving efficiency higher than the conventional 90% while lowering the maximum operating current. Can be.
  • the power supply unit 10 outputs the commercial AC power input from the outside to the rectifier 20.
  • the rectifier 20 is composed of a conventional bridge diode, etc., and rectifies the commercial AC power supplied from the power supply unit 10 to a DC power source and outputs the LED module 30.
  • the LED module 30 operates as a DC power source supplied from the rectifying unit 20, and includes one or more LED units in which a plurality of LEDs are connected in series.
  • three examples of LM13 are described as an example, the present invention is not limited thereto and may be set differently according to the use environment.
  • the driving control unit 40 controls the LED module 30 based on the magnitude of the voltage applied to the LED module 30, the magnitude of the current flowing through the LED module 30 and the charge / discharge control unit 50, or a combination thereof.
  • a control signal for driving is generated, and the generated control signal is output to the charge / discharge control unit 50.
  • the charge / discharge control unit 50 is connected to an output side of the LED module 30, and performs charging with a voltage applied to the LED module 30 and simultaneously drives the LED module 30 to the charging mode and the LED module 30. Operates in any one of the discharge mode for driving the LED module 30 using the applied voltage and the pre-charged voltage, and the direct mode for driving the LED module with only the voltage applied to the LED module 30 without charging or discharging. do.
  • the constant current source CC1 is connected in series to the output side of the charge / discharge control unit 50 and operates based on the control of the drive control unit 40 to control the first current control element SW11 and the second current control of the charge / discharge control unit 50.
  • the device SW12 performs a function of allowing the element SW12 to operate linearly under the control of the drive controller 40.
  • the constant current source CC1 may perform a function of restricting the charging / discharging control unit 50 to operate in the charging mode so that the constant current does not flow when the voltage is high.
  • the charge / discharge control section 50 is composed of a charging capacitor C1, a rectifying diode D1, D2, a current control element SW11, SW12, and the like.
  • the charge and discharge control unit 50 can be used in connection with one or more in series depending on the use environment, of course.
  • the charging capacitor C1 is connected in series to the output side of the LED module 30, charges with a voltage applied to the LED module 30 during the charging mode operation, and discharges the charged voltage during the discharge mode operation.
  • the first rectifying diode D1 is connected between the output side of the LED module 30 and the anode (+) of the charging capacitor C1 so that the current flows in only one direction.
  • the second rectifying diode D2 is connected to the cathode (-) side of the charging capacitor C1 so that the current flows only in one direction.
  • the first current control element SW11 is composed of a conventional switch (the current control element can use any well-known element such as a transistor, a semiconductor element, a relay, etc. in addition to the switch), and the anode (+) of the charging capacitor C1. And a cathode (cathode) of the second rectifying diode D2 are connected in parallel, and perform a current control (for example, short or open) operation based on a control signal input from the driving controller 40 to perform an LED module ( 30) to be driven.
  • a current control for example, short or open
  • the second current control element SW12 is also composed of a conventional switch, connected in parallel between the anode (anode) of the first rectifying diode D1 and the cathode ( ⁇ ) of the charging capacitor C1, and the drive control unit ( The LED module 30 is driven by performing current control (for example, short or open) operation based on the control signal input from 40.
  • the charge / discharge control unit 50 is based on the control signal input from the drive control unit 40. Opening both the first current control element SW11 and the second current control element SW12 to charge the charging capacitor C1 with the voltage applied to the LED module 30 and simultaneously drive the LED module 30. Operate in charging mode. That is, when the input voltage is high, the constant current control element takes a lot of voltage and generates a lot of heat. The surplus voltage causes the charging capacitor C1 of the charge / discharge control unit 50 arranged in series on the output side of the LED module 30. To drive the LED module 30 while charging. In the charging mode, the current is from the LED module 30-> first rectifier diode (D1)-> positive pole (+) of the charge capacitor (C1)-> second rectifier diode (D2)-> constant current source (CC1). ) Flows sequentially.
  • the charge and discharge control unit 50 is The first current control device SW11 is shorted and the second current control device SW12 is opened, or the second current control device SW12 is shorted and the first current is controlled based on a control signal input from the driving controller 40.
  • the current control element SW11 operates in a direct connection mode in which the LED module 30 is driven only by a voltage applied to the LED module 30 without opening and charging the charging capacitor C1 or discharging the charged voltage. .
  • the LED module 30 when the input voltage is slightly lowered and becomes the input voltage at which the current does not flow in the LED module 30 due to the charging voltage of the charging capacitor C1, the LED module 30 is directly connected to the input voltage without passing through the charging capacitor C1. ) Is driven.
  • the current is the LED module 30-> first rectifier diode (D1)-> first current control element (SW11)-> constant current source (CC1), or LED module (30)-> second current
  • the control element SW12-> second rectifier diode D2-> constant current source CC1 flows sequentially.
  • the charge and discharge controller 50 is based on the control signal input from the drive controller 40, the first current control element (SW11) and the second.
  • the current control device SW12 is shorted to operate in a discharge mode in which the LED module 30 is driven using the voltage charged in the charging capacitor C1 and the voltage applied to the LED module 30. That is, if the current does not flow because the input voltage is lower than the threshold voltage of the LED, the charged capacitor C1 connected in reverse is connected in series to drive the LED module 30 by adding the voltage charged in the charge capacitor C1 to the input voltage. It is to let.
  • the current is controlled by the LED module 30-> the second current control element (SW12)-> the cathode of the charge capacitor (C1)-> the anode of the charge capacitor (C1)-> 1
  • Current control element SW11-> constant current source CC1 flows sequentially.
  • 6 to 9 are diagrams showing an application example to which the LED driving device of the present invention is applied.
  • FIG. 6 is a single-stage or multistage belly-fill circuit unit on the input side while using the AC direct-connected sequential control IC that has been commercialized using the drive control unit 40 for controlling the charge / discharge control unit 50 described in FIGS. 2 to 5.
  • PFC power factor correction
  • THD Total Harmonic Distortion
  • a current detector on the input side, the output side, and the output side of the charge / discharge control unit 50 and the output side of the constant current source, respectively, and directly operate the LED module 30 and the charge / discharge control unit 50 based on the current detected by the current detector. It is an application circuit to control.
  • FIG. 8 is an application circuit in which the driving control unit 40 controlling the charge / discharge control unit 50 described with reference to FIGS. 2 to 5 is implemented using at least one error amplifier, and a desired current is adjusted by adjusting a reference voltage and a gain of the error amplifier. You can create waveforms and omit the error amplification individually as needed.
  • FIG. 9 is an application circuit in which the driving control unit 40 and the charge / discharge control unit 50 described with reference to FIGS. 2 to 5 are implemented by a transistor driving method.
  • the power factor improving unit 70 used in FIGS. 6 to 8 may include an output side of any one LED unit or one or more LED units, respectively, from an input side of the LED module 30 and one or more LED units provided in the LED module 30.
  • the control signal input from the driving control unit 40 In FIG. 7, the LED module is sequentially driven in one or multiple stages by preventing voltage from being supplied to some LEDs among the LED units provided in the LED module 30 based on (control signal according to I4 current detection in the current detection unit). To do this.
  • the power factor improving unit 70 includes a current control element that performs a current control (for example, short or open) operation based on a control signal input from the driving controller 40 as shown in FIGS. 6 and 8. can do.
  • a current control element that performs a current control (for example, short or open) operation based on a control signal input from the driving controller 40 as shown in FIGS. 6 and 8. can do.
  • the power factor correcting unit 70 is connected to an input side of the LED module 30 to detect the magnitude of the current applied to the LED module as shown in FIG. 7, and controls the operation of the current control element based on the detected current. It may be configured to include a current control element for performing a current control (for example, short or open) operation based on the detection unit and the control of the current detection unit.
  • a current control element for performing a current control (for example, short or open) operation based on the detection unit and the control of the current detection unit.
  • the power factor improving unit 70 is not mentioned separately in the embodiment of Figures 2 to 5, it is of course possible to apply.
  • FIG. 10 is a flowchart showing in detail the operation of the LED driving method according to an embodiment of the present invention.
  • the rectifier 20 rectifies the DC power, outputs the rectified DC power to the LED module 30, and at least one LED is connected in series.
  • the LED units LM11, LM12, and LM13 are driven (S10).
  • the driving controller 40 checks the voltage applied to the LED module 30 from the rectifier 20 through step S10 and compares the input voltage with the driving voltage of the LED module (S20).
  • step S30 it is determined whether the LED module driving voltage is smaller than the difference between the voltage applied to the LED module 30 and the voltage charged in the charging capacitor C1 (S30).
  • the driving controller 40 may operate in the operation mode of the LED module 30. Set to the charging mode (S40). Then, the LED module 30 is controlled to be charged while charging the charging capacitor C1 in the charge / discharge control unit 50 connected to the output side of the LED module 30 (S50).
  • the driving controller 40 determines that the LED module driving voltage is less than the difference between the voltage applied to the LED module 30 and the voltage charged to the charging capacitor C1 as a result of the determination in step S30. It is determined whether the voltage is smaller than the voltage applied to the module 30 and is greater than the difference between the voltage applied to the LED module 30 and the voltage charged in the charging capacitor C1 (S60). If the LED module driving voltage is less than the voltage applied to the LED module 30 and the difference between the voltage applied to the LED module 30 and the voltage charged in the charging capacitor C1 in step S60, the driving control unit 40 ) Sets the operation mode of the LED module 30 to the direct connection mode (S70). Then, the LED module 30 is controlled to be driven only by the voltage applied to the LED module 30 without charging the charging capacitor C1 in the charge / discharge control unit 50 or discharging the charged voltage (S80).
  • the driving controller 40 determines that the LED module driving voltage is smaller than the voltage applied to the LED module 30 and the voltage applied to the LED module 30 and the voltage charged in the charging capacitor C1 are determined in step S60. If not greater than the difference, it is determined whether the voltage applied to the LED module is less than the LED module driving voltage (S90). That is, it is to determine whether the voltage can operate the LED module 30 by the rectified input voltage only. As a result of the determination in step S90, if the voltage applied to the LED module 30 is smaller than the LED module driving voltage, the driving controller 40 sets the operation mode of the LED module 30 to the discharge mode (S100). Then, the LED module 30 is controlled to be driven by simultaneously using the voltage charged in the charging capacitor C1 in the charge / discharge control unit 50 and the voltage applied to the LED module 30 (S110).
  • the drive control unit 40 in the process of operating by setting the operation mode of the LED module 30 to any one of the charging mode, direct connection mode, discharge mode through the step S30 to S110, the voltage applied to the LED module 30 In operation S120, it is determined whether the sum of the voltages charged in the charging capacitor C1 in the charge / discharge control unit 50 is smaller than the LED module driving voltage.
  • the driving control unit 40 LEDs.
  • Some of the LED unit provided in the module 30 is controlled so as not to supply a voltage to the LED unit (S130). That is, the driving control unit 40 is a power factor improvement connected in parallel between the input side of the LED module 30 and the output terminal of any one of the LED unit of the LED unit provided in the LED module 30 or one or more of each of the one or more LED units 30 in parallel.
  • the operation of the unit 70 is controlled so as not to supply a voltage to some LED units of the LED units provided in the LED module 30 or more.
  • the LED module 30 performs sequential driving of one stage or multiple stages based on the control operation of the power factor improving unit 70 (S140). That is, even if the sum of the voltage applied to the LED module 30 and the voltage charged in the charging capacitor C1 is lower than the LED module driving voltage, the LED module 30 can be operated without being turned off.
  • the charging mode of S30 to S50, the direct connection mode of S60 to S80, and the discharge mode of S90 to S110 in the above description compare and determine the input voltage applied to the LED module 30 and the driving voltage of the LED module.
  • step S120 to S140 may be omitted without performing when the power factor improving unit 70 is not provided.
  • FIG. 11 is a flowchart illustrating an operation of the LED driving method according to another embodiment of the present invention in detail, and is the same as the LED driving method according to the voltage control of FIG. 10 described above.
  • the present invention can operate the LED with a low maximum current, thereby increasing the light efficiency and power factor of the LED.
  • all LEDs are driven in series, eliminating brightness variations between LEDs.
  • wiring for LED control can be simplified, circuit development is easy and productivity is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

본 발명은 입력전압이 클 경우에는 LED(Light Emitting Diode) 출력측에 연결된 충전소자를 충전하면서 LED를 구동시키고, 입력전압이 부족할 경우에는 입력전압과 함께 충전소자에 충전된 전압으로 LED를 구동시키며, LED 구동전압이 입력전압보다 작고 입력전압과 충전소자에 충전된 전압의 차보다 클 때(즉 입력전압이 LED를 구동시킬 수 있는 전압일 때)는 입력전압만으로 LED를 구동시키는 LED 구동장치 및 LED 구동방법에 관한 것이다.

Description

LED 구동장치 및 LED 구동방법
본 발명은 입력전압이 클 경우에는 LED(Light Emitting Diode) 출력측에 연결된 충전소자를 충전하면서 LED를 구동시키고, 입력전압이 부족할 경우에는 입력전압과 함께 충전소자에 충전된 전압으로 LED를 구동시키며, LED 구동전압이 입력전압보다 작고 입력전압과 충전소자에 충전된 전압의 차보다 클 때(즉 입력전압이 LED를 구동시킬 수 있는 전압일 때)는 입력전압만으로 LED를 구동시키는 LED 구동장치 및 LED 구동방법에 관한 것이다.
일반적으로 LED는 친환경적이고, 응답속도가 수 나노 초로 고속 응답이 가능하여 비디오 신호 스트림에 효과적이다. 그리고 LED는 임펄시브(Impulsive) 구동이 가능하고 색 재현성이 100% 이상이고 적색, 녹색, 청색 LED의 광량을 조정하여 휘도, 색 온도 등을 임의로 변경할 수 있다. 이와 같이 LED는 LCD(Liquid Crystal Display) 패널의 경박단소화에 적합한 장점들을 가지고 있기 때문에 최근에 조명기기는 물론, LCD 패널의 백라이트용 광원으로도 많이 응용되고 있다.
LED 하나는 점광원이지만, 복수의 LED가 모이면 선광원이나 면광원을 형성하여 조명장치로 활용할 수 있다. LED를 이용한 조명장치는 낮은 전력소모로 인해 에너지 절감 효과가 우수하며, 각종 유해물질이 포함된 기존의 전등을 대체하여 환경오염을 줄일 수 있다.
LED를 이용한 조명장치는 다수 개의 LED가 직렬로 접속된 LED 모듈이 하나 이상 구비될 수 있는데, LED 모듈을 구동하기 위해서는 직렬 접속된 LED의 순방향 동작 전압의 합보다 큰 전압을 LED 모듈로 인가시켜야 한다.
통상적인 LED 구동장치는 상용교류전원을 직류전원으로 정류시키고, 정류된 직류전원을 스위치 모드 전원 공급기(Switch mode power supply)를 통해 일정한 크기의 직류전원으로 변환하여 LED 모듈로 공급한다. 그러나 SMPS는 고속 스위칭을 통해 일정 크기의 직류전원을 생성하기 때문에 노이즈가 많이 발생되어 주변 회로 소자에 간섭을 일으켜 악영향을 주는 경우가 많다. 이러한 악영향을 보완하기 위하여 SMPS를 이용한 LED 구동장치는 노이즈 필터 등 다른 회로 부품들이 추가적으로 사용되어야 하며, 이에 따라 부피와 무게가 커지고 비용이 상승하는 문제점이 있었다.
이러한 SMPS를 이용한 LED 구동장치가 갖는 문제점을 해결하기 위하여 교류 직결형 LED 구동장치가 개발되어 사용되고 있다. 교류 직결형 구동(AC Direct drive)이란 상용교류전원을 직류전원으로 정류시키고 정류된 직류전원을 SMPS를 통해 일정한 크기의 직류전원으로 변환하여 LED 모듈로 공급하는 대신 정류된 직류전원을 그대로 LED 모듈로 공급하여 구동하는 방식을 의미한다.
도 1은 일반적인 교류 직결형 LED 구동장치의 구성을 개략적으로 나타낸 도면으로서, LED 모듈(3)에 다수 개의 LED가 직렬로 접속되어 있는 LED부가 세 개(LM1, LM2, LM3) 구비되고, 스위치부(5)가 제1스위치(SW1)와 제2스위치(SW2) 두 개가 구비되어 LM1과 LM2 사이에 제1스위치(SW1)가 연결되고 LM2와 LM3 사이에 제2스위치(SW2)가 연결된 것을 예로 하여 설명한다. 이때 LED 모듈(3) 및 스위치부(5)는 사용환경에 따라 수량을 변경하여 사용할 수 있다.
도 1을 참조하면, 전원부(1)는 상용교류전원을 정류부(2)로 공급한다.
정류부(2)는 통상적인 브릿지 다이오드로서, 전원부(1)로부터 공급되는 상용교류전원을 직류전원으로 정류하여 LED 모듈(3)로 출력한다.
LED 모듈(3)은 각각 다수 개의 LED가 직렬로 결합된 세 개의 LED부(LM1, LM2, LM3)로 구성되며, 정류부(2)로부터 공급되는 직류전원으로 발광하되, 스위치부(5)의 쇼트 또는 오픈 동작에 따라 직렬 접속된 최대 수의 LED가 구동되도록 한다.
순차구동 제어부(4)는 LED 모듈(3)로 인가되는 전원의 크기, LED 모듈(3)에 흐르는 전류의 크기, 또는 이들의 조합을 기초로 하여 LED 모듈(3)에서 직렬 접속된 최대 수의 LED를 구동하기 위한 제어신호를 생성한 후, 생성된 제어신호를 스위치부(5)로 출력한다.
스위치부(5)는 LM1과 LM2 사이에 연결되는 제1스위치(SW1)와 LM2와 LM3 사이에 연결되는 제2스위치(SW2)로 구성되며, 순차구동 제어부(4)의 제어신호를 토대로 제1스위치(SW1) 또는 제2스위치(SW2)의 쇼트 또는 오픈을 수행하여 인가되는 전원의 크기에 따라 LED 모듈(3)이 순차구동될 수 있도록 한다. 즉 LM1, LM2, LM3가 모두 동작하는 상태에서 인가되는 전원의 크기에 따라 LM1과 LM2만 동작(제2스위치(SW2)를 쇼트)시키거나, 또는 LM1만 동작(제1스위치(SW1)를 쇼트)시키도록 하는 것이다.
정전류원(CC, Constant Current)은 순차구동 제어부(4)의 제어를 토대로 동작하여 제1스위치(SW1), 제2스위치(SW2)가 전류제어에 의해 리니어하게 동작할 수 있도록 하는 기능을 수행한다.
이처럼 종래의 교류 직결형 LED 구동방식은 입력전압의 크기에 따라 LED의 직렬 수를 바꾸어 효율을 높이면서 역율도 좋아지도록 구성하였다.
그러나, 상술한 바와 같은 종래의 교류 직결형 LED 구동방식은 LED의 동작이 순차적으로 점등과 소등을 반복하게 되고 이러한 LED마다 점등시간의 차이로 인해 LED 간 밝기의 편차가 큰 문제점이 있었다.
이를 해소하기 위해 LED 간 밝기 편차를 줄이기 위해 입력전압 단계별로 정전류 크기를 다르게 동작시켰으나, 이 방법은 광 리플을 증가시키면서 최대전류를 크게 하기 때문에 LED의 광효율이 저하되는 문제점이 있었다.
또한, 종래의 교류 직결형 LED 구동방식은 LED를 구동시킬 때 LED 블록별로 제어회로와 연결시켜 주어야 하기 때문에 연결선이 많아지게 되고, 이로 인해 제품화할 때 디자인하기 어려운 문제점이 있었다.
본 발명은, LED 출력측에 입력전압의 크기에 따라 충전, 방전을 수행하는 충방전 제어회로를 연결하고, 입력전압과 LED 구동전압의 크기를 토대로 방전모드, 충전모드, 직결모드 중 어느 하나의 모드로 LED를 구동시키는 LED 구동장치 및 LED 구동방법을 제공한다.
본 발명은, 입력전압이 클 경우에는 LED 출력측에 직렬로 연결된 충전소자를 충전하면서 LED를 구동시키는 충전모드로 동작하고, 입력전압이 부족할 경우에는 입력전압과 함께 충전소자에 충전된 전압으로 LED를 구동시키는 방전모드로 동작하며, LED 구동전압이 입력전압보다 작고 입력전압과 충전소자에 충전된 전압의 차보다 클 때는 입력전압만으로 LED를 구동시키는 직결모드로 동작하는 LED 구동장치 및 LED 구동방법을 제공한다.
본 발명의 일 실시예에 따른 LED 구동장치는, 상용교류전원을 공급하는 전원부와, 전원부로부터 공급되는 상용교류전원을 직류전원으로 정류하는 정류부와, 정류부로부터 공급되는 직류전원으로 동작하며, 다수 개의 LED가 직렬로 접속되어 있는 LED부가 하나 이상 구비된 LED 모듈과, LED 모듈로 인가되는 전압의 크기, LED 모듈과 충방전 제어부에 흐르는 전류의 크기, 또는 이들의 조합을 기초로 하여 LED 모듈을 구동하기 위한 제어신호를 생성하여 출력하는 구동 제어부, 그리고 LED 모듈의 출력측에 접속되며, 구동 제어부로부터 입력되는 제어신호를 토대로 LED 모듈에 인가되는 전압으로 충전을 수행함과 동시에 LED 모듈을 구동시키는 충전모드, LED 모듈에 인가되는 전압과 기 충전된 전압을 이용하여 LED 모듈을 구동시키는 방전모드, 충전 또는 방전 없이 LED 모듈에 인가되는 전압만으로 LED 모듈을 구동시키는 직결모드 중 어느 하나의 모드로 동작하는 충방전 제어부를 포함할 수 있다.
본 발명의 일 실시예에 따른 LED 구동방법은, (1) 전원부로부터 상용교류전원이 공급되면, 정류부에서 직류전원으로 정류한 후 다수 개의 LED가 직렬로 접속되어 있는 LED부가 하나 이상 구비된 LED 모듈로 출력하는 단계와, (2) 구동 제어부는, (1) 단계를 통해 정류부에서 LED 모듈에 인가되는 전압을 확인하여 LED 모듈 구동전압과 비교 판단하는 단계와, (3) 구동 제어부는, (2) 단계의 판단결과 LED 모듈 구동전압이 LED 모듈에 인가되는 전압과 충전용 콘덴서에 충전된 전압의 차보다 작으면, LED 모듈의 동작모드를 충전모드로 설정하고 LED 모듈의 출력측에 접속된 충방전 제어부 내의 충전용 콘덴서를 충전시키면서 LED 모듈이 구동하도록 제어하는 단계와, (4) 구동 제어부는, (2) 단계의 판단결과 LED 모듈 구동전압이 LED 모듈에 인가되는 전압보다 작고 LED 모듈에 인가되는 전압과 충전용 콘덴서에 충전된 전압의 차보다 크면, LED 모듈의 동작모드를 직결모드로 설정하고 충방전 제어부 내의 충전용 콘덴서를 충전하거나 충전된 전압을 방전할 필요없이 LED 모듈에 인가되는 전압만으로 LED 모듈이 구동하도록 제어하는 단계, 그리고 (5) 구동 제어부는, (2) 단계의 판단결과 LED 모듈에 인가되는 전압이 LED 모듈 구동전압보다 작으면, LED 모듈의 동작모드를 방전모드로 설정하고 충방전 제어부 내의 충전용 콘덴서에 충전된 전압과 LED 모듈에 인가되는 전압을 이용하여 LED 모듈이 구동하도록 제어하는 단계를 포함할 수 있다.
이상에서와 같이 본 발명의 LED 구동장치 및 LED 구동방법에 따르면, 입력전압과 LED 구동전압의 크기를 토대로 방전모드, 충전모드, 직결모드 중 어느 하나의 모드로 LED를 구동시키기 때문에 입력전압의 크기에 따라 LED의 직렬 수를 바꿈에 따라 LED에 흐르는 전류의 최대치가 커지는 종래의 구동방식과 달리 낮은 최대전류로 LED를 동작시킬 수 있으므로 LED의 광효율을 높일 수 있다.
또한, 모든 LED를 단차 동작 없이 직렬로 구동시키기 때문에 LED마다 점등시간의 차이로 인해 LED 간 밝기의 편차가 크게 발생하는 종래의 문제점을 해결할 수 있다.
또한, LED 제어를 위한 연결 배선을 최소화시켜 배선이 단순화되기 때문에 회로 개발시 디자인을 용이하게 수행할 수 있으며, 이에 따라 생산성을 향상시킬 수 있다.
도 1은 일반적인 교류 직결형 LED 구동장치의 구성을 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 LED 구동장치의 구성을 개략적으로 나타낸 도면이다.
도 3은 도 2의 LED 모듈로 입력되는 전압의 파형, LED 모듈과 충방전 제어부의 충전용 콘덴서에 흐르는 전류에 따른 각 모드별 LED 구동을 설명하기 위한 도면이다.
도 4는 도 2의 충방전 제어부의 방전모드, 직결모드, 충전모드에 따른 회로동작을 설명하기 위한 도면이다.
도 5는 전류제어소자의 쇼트 또는 오픈 동작에 따른 충방전 제어부의 동작을 상세하게 설명하기 위한 도면이다.
도 6 내지 도 9는 본 발명의 LED 구동장치를 적용한 응용 예를 각각 나타낸 도면이다.
도 10은 본 발명의 일 실시예에 따른 LED 구동방법의 동작과정을 상세하게 나타낸 순서도이다.
도 11은 본 발명의 다른 실시예에 따른 LED 구동방법의 동작과정을 상세하게 나타낸 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 LED 구동장치 및 LED 구동방법을 상세하게 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 실시예에 한정되지 않는다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다.
도 2는 본 발명의 일 실시예에 따른 LED 구동장치의 구성을 개략적으로 나타낸 도면이고, 도 3은 도 2의 LED 모듈로 입력되는 전압의 파형, LED 모듈과 충방전 제어부의 충전용 콘덴서에 흐르는 전류에 따른 각 모드별 LED 구동을 설명하기 위한 도면이고, 도 4는 도 2의 충방전 제어부의 방전모드, 직결모드, 충전모드에 따른 회로동작을 설명하기 위한 도면이며, 도 5는 전류제어소자의 쇼트 또는 오픈 동작에 따른 충방전 제어부의 동작을 상세하게 설명하기 위한 도면이다.
도 2 내지 도 5에 도시된 바와 같이 본 발명의 LED 구동장치는, 전원부(10), 정류부(20), 하나 이상의 LED부(LM11, LM12. LM13)를 포함하는 LED 모듈(30), 구동 제어부(40), 충방전 제어부(50) 등으로 구성된다. 이러한 본 발명의 LED 구동장치는 종래의 구동방식과 비교할 때 LED 모듈의 단자 수가 줄어들고, LED 간 밝기편차가 없으며, 최대동작전류를 낮추면서 종래의 90%보다 높은 97% 정도의 LED 구동 효율을 얻을 수 있다.
전원부(10)는 외부로부터 입력되는 상용교류전원을 정류부(20)로 출력한다.
정류부(20)는 통상적인 브릿지 다이오드 등으로 구성되며, 전원부(10)로부터 공급되는 상용교류전원을 직류전원으로 정류하여 LED 모듈(30)로 출력한다.
LED 모듈(30)은 정류부(20)로부터 공급되는 직류전원으로 동작하며, 다수 개의 LED가 직렬로 접속되어 있는 LED부가 하나 이상 구비되어 있다. 이때 본 발명에서는 LED부가 LM11, LM12. LM13의 세 개인 것을 예로 하여 설명하지만, 이에 한정되지 않고 사용환경에 따라 다르게 설정할 수 있다.
구동 제어부(40)는 LED 모듈(30)로 인가되는 전압의 크기, LED 모듈(30)과 충방전 제어부(50)에 흐르는 전류의 크기, 또는 이들의 조합을 기초로 하여 LED 모듈(30)을 구동하기 위한 제어신호를 생성하며, 생성된 제어신호를 충방전 제어부(50)로 출력한다.
충방전 제어부(50)는 LED 모듈(30)의 출력측에 접속되며, LED 모듈(30)에 인가되는 전압으로 충전을 수행함과 동시에 LED 모듈(30)을 구동시키는 충전모드, LED 모듈(30)에 인가되는 전압과 기 충전된 전압을 이용하여 LED 모듈(30)을 구동시키는 방전모드, 충전 또는 방전 없이 LED 모듈(30)에 인가되는 전압만으로 LED 모듈을 구동시키는 직결모드 중 어느 하나의 모드로 동작한다.
정전류원(CC1)은 충방전 제어부(50)의 출력측에 직렬 접속되고, 구동 제어부(40)의 제어를 토대로 동작하여 충방전 제어부(50)의 제1전류제어소자(SW11), 제2전류제어소자(SW12)가 구동 제어부(40)의 제어에 의해 리니어하게 동작할 수 있도록 하는 기능을 수행한다. 또한, 정전류원(CC1)은 충방전 제어부(50)가 충전모드로 동작하여 전압이 높을 때 일정전류 이상 흐르지 않도록 제한하는 기능을 수행할 수 있다.
한편, 충방전 제어부(50)는, 충전용 콘덴서(C1), 정류용 다이오드(D1)(D2), 전류제어소자(SW11)(SW12) 등으로 구성된다. 이때 충방전 제어부(50)는 사용 환경에 따라 하나 이상 직렬로 접속하여 사용할 수 있음은 물론이다.
충전용 콘덴서(C1)는 LED 모듈(30)의 출력측에 직렬 접속되고, 충전모드 동작시 LED 모듈(30)에 인가되는 전압으로 충전하며, 방전모드 동작시 충전된 전압을 방전한다.
제1정류용 다이오드(D1)는 LED 모듈(30)의 출력측과 충전용 콘덴서(C1)의 양극(+) 사이에 접속되어 전류를 일 방향으로만 흐르도록 한다.
제2정류용 다이오드(D2)는 충전용 콘덴서(C1)의 음극(-) 측에 접속되어 전류를 일 방향으로만 흐르도록 한다.
제1전류제어소자(SW11)는 통상적인 스위치(전류제어소자는 스위치 이외에 트랜지스터, 반도체소자, 릴레이 등 공지의 모든 소자를 사용할 수 있음)로 구성되고, 충전용 콘덴서(C1)의 양극(+)과 제2정류용 다이오드(D2)의 캐소드(음극) 사이에 병렬 접속되며, 구동 제어부(40)로부터 입력되는 제어신호를 토대로 전류 제어(예를 들어, 쇼트 또는 오픈) 동작을 수행하여 LED 모듈(30)이 구동되도록 한다.
제2전류제어소자(SW12) 또한 통상적인 스위치로 구성되고, 제1정류용 다이오드(D1)의 애노드(양극)와 충전용 콘덴서(C1)의 음극(-) 사이에 병렬 접속되며, 구동 제어부(40)로부터 입력되는 제어신호를 토대로 전류 제어(예를 들어, 쇼트 또는 오픈) 동작을 수행하여 LED 모듈(30)이 구동되도록 한다.
이와 같이 구성된 충방전 제어부(50)의 구동을 도 3 및 도 4를 참조하여 상세하게 설명하면 다음과 같다.
LED 모듈 구동전압이 LED 모듈(30)에 인가되는 전압과 충전용 콘덴서(C1)에 충전된 전압의 차보다 작으면, 충방전 제어부(50)는 구동 제어부(40)로부터 입력되는 제어신호를 토대로 제1전류제어소자(SW11) 및 제2전류제어소자(SW12)를 모두 오픈시켜 LED 모듈(30)에 인가되는 전압으로 충전용 콘덴서(C1)를 충전함과 동시에 LED 모듈(30)을 구동시키는 충전모드로 동작한다. 즉 입력전압이 높은 경우 정전류 제어소자에 전압이 많이 걸리게 되어 열이 많이 발생하는데, 이 잉여전압으로 LED 모듈(30)의 출력측에 직렬로 배치된 충방전 제어부(50)의 충전용 콘덴서(C1)를 충전하면서 LED 모듈(30)을 구동시키는 것이다. 충전모드의 경우 전류는 LED 모듈(30)->제1정류용 다이오드(D1)->충전용 콘덴서(C1)의 양극(+)->제2정류용 다이오드(D2)->정전류원(CC1)을 순차적으로 흐른다.
또한, LED 모듈 구동전압이 LED 모듈(30)에 인가되는 전압보다 작고 LED 모듈(30)에 인가되는 전압과 충전용 콘덴서(C1)에 충전된 전압의 차보다 크면, 충방전 제어부(50)는 구동 제어부(40)로부터 입력되는 제어신호를 토대로 제1전류제어소자(SW11)는 쇼트시키고 제2전류제어소자(SW12)는 오픈시키거나, 또는 제2전류제어소자(SW12)는 쇼트시키고 제1전류제어소자(SW11)는 오픈시켜 충전용 콘덴서(C1)를 충전하거나 또는 충전된 전압을 방전할 필요없이 LED 모듈(30)에 인가되는 전압만으로 LED 모듈(30)을 구동시키는 직결모드로 동작한다. 즉 입력전압이 조금 낮아져 충전용 콘덴서(C1)의 충전전압 때문에 LED 모듈(30)에 전류가 흐르지 못할 위치의 입력전압이 되면, 충전용 콘덴서(C1)를 거치지 않고 입력전압으로 직접 LED 모듈(30)을 구동시키는 것이다. 직결모드의 경우 전류는 LED 모듈(30)->제1정류용 다이오드(D1)->제1전류제어소자(SW11)->정전류원(CC1), 또는 LED 모듈(30)->제2전류제어소자(SW12)->제2정류용 다이오드(D2)->정전류원(CC1)을 순차적으로 흐른다.
또한, LED 모듈(30)에 인가되는 전압이 LED 모듈 구동전압보다 작으면, 충방전 제어부(50)는 구동 제어부(40)로부터 입력되는 제어신호를 토대로 제1전류제어소자(SW11) 및 제2전류제어소자(SW12)를 모두 쇼트시켜 충전용 콘덴서(C1)에 충전된 전압과 LED 모듈(30)에 인가되는 전압을 이용하여 LED 모듈(30)을 구동시키는 방전모드로 동작한다. 즉 입력전압이 LED의 문턱전압보다 낮아져서 전류가 흐르지 못하면 충전되었던 충전용 콘덴서(C1)를 역으로 직렬 연결하여 충전용 콘덴서(C1)에 충전된 전압을 입력전압에 더해서 LED 모듈(30)을 구동시키는 것이다. 방전모드의 경우 전류는 LED 모듈(30)->제2전류제어소자(SW12)->충전용 콘덴서(C1)의 음극(-)->충전용 콘덴서(C1)의 양극(+)->제1전류제어소자(SW11)->정전류원(CC1)을 순차적으로 흐른다.
도 6 내지 도 9는 본 발명의 LED 구동장치를 적용한 응용 예를 각각 나타낸 도면이다.
도 6은 도 2 내지 도 5에 설명한 충방전 제어부(50)를 제어하는 구동 제어부(40)를 기존의 제품화되어 있는 교류 직결형 순차제어 IC를 사용하면서, 입력측에 1단 또는 다단의 벨리필 회로부(60)를 적용시켜 출력 리플을 줄이고, 입력전류의 PFC(Power Factor Correction, 역율 보정), THD(Total Harmonic Distortion, 전 고조파 왜율)와 출력 리플 특성 보완을 위해 LED 모듈(30)에 1단 또는 다단의 순차구동을 적용하는 역율 개선부(70)를 추가한 응용 회로이다.
도 7은 도 2 내지 도 5에 설명한 충방전 제어부(50)를 제어하는 구동 제어부(40)를 통해 충방전 제어부(50) 및 LED 모듈(30)의 동작을 제어하는 것이 아니고, LED 모듈(30)의 입력측과 출력측, 충방전 제어부(50)의 출력측, 정전류원의 출력측에 전류검출부를 각각 구비한 후 전류검출부에서 검출한 전류를 토대로 직접 LED 모듈(30) 및 충방전 제어부(50)의 동작을 제어하는 응용 회로이다.
도 8은 도 2 내지 도 5에 설명한 충방전 제어부(50)를 제어하는 구동 제어부(40)를 하나 이상의 오차 증폭기를 사용하여 구현한 응용 회로로서, 오차 증폭기의 기준전압과 이득을 조정하여 원하는 전류파형을 만들고, 필요에 따라 오차증폭을 개별로 생략할 수 있다.
도 9는 도 2 내지 도 5에 설명한 구동 제어부(40) 및 충방전 제어부(50)의 구성을 트랜지스터 구동방식으로 구현한 응용 회로이다.
이때 도 6 내지 도 8에 사용되는 역율 개선부(70)는 LED 모듈(30)의 입력측과 LED 모듈(30)에 하나 이상 구비된 LED부 중 어느 하나의 LED부 출력단 또는 어느 하나 이상의 LED부 각각의 출력단 사이에 병렬 접속되며, LED 모듈(30)에 인가되는 전압과 충방전 제어부(50)에 기 충전된 전압의 합이 LED 모듈 구동전압보다 작으면, 구동 제어부(40)로부터 입력되는 제어신호(도 7에서는 전류검출부의 I4 전류검출에 따른 제어신호)를 토대로 LED 모듈(30)에 하나 이상 구비된 LED부 중 일부 LED부에 전압이 공급되지 않도록 하여 LED 모듈이 1단 또는 다단의 순차구동을 수행하도록 한다.
이러한 역율 개선부(70)는 도 6 및 도 8에서와 같이 구동 제어부(40)로부터 입력되는 제어신호를 토대로 전류 제어(예를 들어, 쇼트 또는 오픈) 동작을 수행하는 전류제어소자를 포함하여 구성할 수 있다.
또한, 역율 개선부(70)는 도 7에서와 같이 LED 모듈(30)의 입력측에 접속되어 LED 모듈로 인가되는 전류의 크기를 검출하며, 검출된 전류를 토대로 전류제어소자의 동작을 제어하는 전류검출부와, 전류검출부의 제어를 토대로 전류 제어(예를 들어, 쇼트 또는 오픈) 동작을 수행하는 전류제어소자를 포함하여 구성할 수 있다.
한편, 역율 개선부(70)는 도 2 내지 도 5의 실시예에서는 별도로 언급하지 않았으나, 적용이 가능함은 물론이다.
다음에는, 이와 같이 구성된 본 발명에 따른 LED 구동방법의 일 실시예를 도 10을 참조하여 상세하게 설명한다. 이때 본 발명의 방법에 따른 각 단계는 사용 환경이나 당업자에 의해 순서가 변경될 수 있다.
도 10은 본 발명의 일 실시예에 따른 LED 구동방법의 동작과정을 상세하게 나타낸 순서도이다.
우선, 전원부(10)로부터 상용교류전원이 공급되면, 정류부(20)에서 이를 직류전원으로 정류하고, 정류된 직류전원을 LED 모듈(30)로 출력하여 다수 개의 LED가 직렬로 접속되어 있는 하나 이상의 LED부(LM11, LM12, LM13)가 구동되도록 한다(S10).
그러면 구동 제어부(40)는 S10 단계를 통해 정류부(20)에서 LED 모듈(30)에 인가되는 전압을 확인하고, 입력전압과 LED 모듈 구동전압을 비교한다(S20).
비교결과 LED 모듈 구동전압이 LED 모듈(30)에 인가되는 전압과 충전용 콘덴서(C1)에 충전된 전압의 차보다 작은지를 판단한다(S30). S30 단계의 판단결과 LED 모듈 구동전압이 LED 모듈(30)에 인가되는 전압과 충전용 콘덴서(C1)에 충전된 전압의 차보다 작으면, 구동 제어부(40)는 LED 모듈(30)의 동작모드를 충전모드로 설정한다(S40). 그리고 LED 모듈(30)의 출력측에 접속된 충방전 제어부(50) 내의 충전용 콘덴서(C1)를 충전시키면서 LED 모듈(30)을 구동하도록 제어한다(S50).
또한, 구동 제어부(40)는 S30 단계의 판단결과 LED 모듈 구동전압이 LED 모듈(30)에 인가되는 전압과 충전용 콘덴서(C1)에 충전된 전압의 차보다 작지 않으면, LED 모듈 구동전압이 LED 모듈(30)에 인가되는 전압보다 작고 LED 모듈(30)에 인가되는 전압과 충전용 콘덴서(C1)에 충전된 전압의 차보다 큰지를 판단한다(S60). S60 단계의 판단결과 LED 모듈 구동전압이 LED 모듈(30)에 인가되는 전압보다 작고 LED 모듈(30)에 인가되는 전압과 충전용 콘덴서(C1)에 충전된 전압의 차보다 크면, 구동 제어부(40)는 LED 모듈(30)의 동작모드를 직결모드로 설정한다(S70). 그리고 충방전 제어부(50) 내의 충전용 콘덴서(C1)를 충전하거나 또는 충전된 전압을 방전할 필요없이 LED 모듈(30)에 인가되는 전압만으로 LED 모듈(30)을 구동하도록 제어한다(S80).
또한, 구동 제어부(40)는 S60 단계의 판단결과 LED 모듈 구동전압이 LED 모듈(30)에 인가되는 전압보다 작고 LED 모듈(30)에 인가되는 전압과 충전용 콘덴서(C1)에 충전된 전압의 차보다 크지 않으면, LED 모듈에 인가되는 전압이 LED 모듈 구동전압보다 작은지를 판단한다(S90). 즉 정류된 입력전압만으로 LED 모듈(30)을 동작시킬 수 있는 전압인지를 판단하는 것이다. S90 단계의 판단결과 LED 모듈(30)에 인가되는 전압이 LED 모듈 구동전압보다 작으면, 구동 제어부(40)는 LED 모듈(30)의 동작모드를 방전모드로 설정한다(S100). 그리고 충방전 제어부(50) 내의 충전용 콘덴서(C1)에 충전된 전압과 LED 모듈(30)에 인가되는 전압을 동시에 이용하여 LED 모듈(30)을 구동하도록 제어한다(S110).
한편, 구동 제어부(40)는 S30 내지 S110 단계를 통해 LED 모듈(30)의 동작모드를 충전모드, 직결모드, 방전모드 중 어느 하나로 설정하여 동작하는 과정에서, LED 모듈(30)에 인가되는 전압과 충방전 제어부(50) 내의 충전용 콘덴서(C1)에 충전된 전압의 합이 LED 모듈 구동전압보다 작은지를 판단한다(S120).
S120 단계의 판단결과 LED 모듈(30)에 인가되는 전압과 충방전 제어부(50) 내의 충전용 콘덴서(C1)에 충전된 전압의 합이 LED 모듈 구동전압보다 작으면, 구동 제어부(40)는 LED 모듈(30)에 하나 이상 구비된 LED부 중 일부 LED부에 전압을 공급하지 않도록 제어한다(S130). 즉 구동 제어부(40)는 LED 모듈(30)의 입력측과 LED 모듈(30)에 하나 이상 구비된 LED부 중 어느 하나의 LED부 출력단 또는 어느 하나 이상의 LED부 각각의 출력단 사이에 병렬 접속되는 역율 개선부(70)의 동작을 제어하여 LED 모듈(30)에 하나 이상 구비된 LED부 중 일부 LED부에 전압을 공급하지 않도록 하는 것이다.
그러면 LED 모듈(30)은 역율 개선부(70)의 제어동작을 토대로 1단 또는 다단의 순차구동을 수행한다(S140). 즉 LED 모듈(30)에 인가되는 전압과 충전용 콘덴서(C1)에 충전된 전압의 합이 LED 모듈 구동전압보다 낮더라도 LED 모듈(30)은 꺼지지 않고 일부를 동작시킬 수 있게 되는 것이다.
이때 전술한 설명에서 LED 모듈(30)에 인가되는 입력전압과 LED 모듈 구동전압을 비교 판단하는 S30 내지 S50의 충전모드, S60 내지 S80의 직결모드, S90 내지 S110의 방전모드는 사용 상태나 환경에 따라 변경하여 적용될 수 있음은 물론이며, S120 내지 S140 단계는 역율 개선부(70)를 구비하지 않은 경우 수행하지 않고 생략될 수 있다.
한편, 전술한 본 발명의 일 실시예에 따른 LED 구동방법은 전압 제어를 토대로 한 동작을 예로 하여 설명하였지만, LED 구동방식은 전압 제어 이외에 도 11에서와 같이 전류 제어를 토대로 수행할 수도 있다. 도 11은 본 발명의 다른 실시예에 따른 LED 구동방법의 동작과정을 상세하게 나타낸 순서도로서, 전술한 도 10의 전압 제어에 의한 LED 구동방식과 동일하므로 여기에서의 상세한 설명은 생략하기로 한다.
이처럼, 본 발명은 낮은 최대전류로 LED를 동작시킬 수 있으므로 LED의 광효율 및 역율을 높일 수 있다. 또한, 모든 LED를 직렬로 구동시키기 때문에 LED 간에 발생하는 밝기 편차를 없앨 수 있다. 또한, LED 제어를 위한 배선을 단순화시킬 수 있으므로 회로 개발이 용이함은 물론, 생산성이 향상된다.
여기에서, 상술한 본 발명에서는 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경할 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 상용교류전원을 공급하는 전원부,
    상기 전원부로부터 공급되는 상용교류전원을 직류전원으로 정류하는 정류부,
    상기 정류부로부터 공급되는 직류전원으로 동작하며, 다수 개의 LED가 직렬로 접속되어 있는 LED부가 하나 이상 구비된 LED 모듈,
    상기 LED 모듈로 인가되는 전압의 크기, 상기 LED 모듈과 충방전 제어부에 흐르는 전류의 크기, 또는 이들의 조합을 기초로 하여 상기 LED 모듈을 구동하기 위한 제어신호를 생성하여 출력하는 구동 제어부, 그리고
    상기 LED 모듈의 출력측에 접속되며, 상기 구동 제어부로부터 입력되는 제어신호를 토대로 상기 LED 모듈에 인가되는 전압으로 충전을 수행함과 동시에 상기 LED 모듈을 구동시키는 충전모드, 상기 LED 모듈에 인가되는 전압과 기 충전된 전압을 이용하여 상기 LED 모듈을 구동시키는 방전모드, 충전 또는 방전 없이 상기 LED 모듈에 인가되는 전압만으로 상기 LED 모듈을 구동시키는 직결모드 중 어느 하나의 모드로 동작하는 충방전 제어부
    를 포함하는 LED 구동장치.
  2. 제 1 항에 있어서,
    상기 충방전 제어부는,
    상기 LED 모듈의 출력측에 직렬 접속되고, 충전모드 동작시 상기 LED 모듈에 인가되는 전압으로 충전하며, 방전모드 동작시 충전된 전압을 방전하는 충전용 콘덴서,
    상기 LED 모듈의 출력측과 상기 충전용 콘덴서의 양극(+) 사이에 접속되는 제1정류용 다이오드,
    상기 충전용 콘덴서의 음극(-) 측에 접속되는 제2정류용 다이오드,
    상기 충전용 콘덴서의 양극(+)과 상기 제2정류용 다이오드의 캐소드(음극) 사이에 병렬 접속되며, 상기 구동 제어부로부터 입력되는 제어신호를 토대로 전류 제어 동작을 수행하는 제1전류제어소자, 그리고
    상기 제1정류용 다이오드의 애노드(양극)와 상기 충전용 콘덴서의 음극(-) 사이에 병렬 접속되며, 상기 구동 제어부로부터 입력되는 제어신호를 토대로 전류 제어 동작을 수행하는 제2전류제어소자
    를 포함하는 LED 구동장치.
  3. 제 2 항에 있어서,
    상기 충방전 제어부는,
    LED 모듈 구동전압이 상기 LED 모듈에 인가되는 전압과 상기 충전용 콘덴서에 충전된 전압의 차보다 작으면, 상기 구동 제어부로부터 입력되는 제어신호를 토대로 상기 제1전류제어소자 및 상기 제2전류제어소자를 모두 오픈시켜 상기 LED 모듈에 인가되는 전압으로 상기 충전용 콘덴서를 충전함과 동시에 상기 LED 모듈을 구동시키는 충전모드로 동작하고,
    상기 LED 모듈에 인가되는 전압이 상기 LED 모듈 구동전압보다 작으면, 상기 구동 제어부로부터 입력되는 제어신호를 토대로 상기 제1전류제어소자 및 상기 제2전류제어소자를 모두 쇼트시켜 상기 충전용 콘덴서에 충전된 전압과 상기 LED 모듈에 인가되는 전압을 이용하여 상기 LED 모듈을 구동시키는 방전모드로 동작하며,
    상기 LED 모듈 구동전압이 상기 LED 모듈에 인가되는 전압보다 작고 상기 LED 모듈에 인가되는 전압과 충전용 콘덴서에 충전된 전압의 차보다 크면, 상기 구동 제어부로부터 입력되는 제어신호를 토대로 상기 제1전류제어소자는 쇼트시키고 상기 제2전류제어소자는 오픈시키거나, 또는 상기 제2전류제어소자는 쇼트시키고 상기 제1전류제어소자는 오픈시켜 상기 충전용 콘덴서를 충전하거나 충전된 전압을 방전할 필요없이 상기 LED 모듈에 인가되는 전압만으로 상기 LED 모듈을 구동시키는 직결모드로 동작하는 LED 구동장치.
  4. 제 2 항에 있어서,
    상기 충방전 제어부는,
    직렬로 하나 이상 접속하여 사용할 수 있는 LED 구동장치.
  5. 제 1 항에 있어서,
    상기 충방전 제어부의 출력측에 직렬 접속되고, 상기 구동 제어부의 제어를 토대로 동작하여 상기 충방전 제어부가 상기 구동 제어부의 제어에 의해 리니어하게 동작하도록 하며, 상기 충방전 제어부가 충전모드로 동작하여 입력전압이 높을 때 일정전류 이상 흐르지 않도록 제한하는 기능을 수행하는 정전류원을 더 포함하는 LED 구동장치.
  6. 제 1 항에 있어서,
    상기 LED 모듈의 입력측과 상기 LED 모듈에 하나 이상 구비된 LED부 중 어느 하나의 LED부 출력단 또는 어느 하나 이상의 LED부 각각의 출력단 사이에 병렬 접속되며, 상기 LED 모듈에 인가되는 전압과 상기 충방전 제어부에 기 충전된 전압의 합이 상기 LED 모듈 구동전압보다 작으면, 상기 구동 제어부로부터 입력되는 제어신호를 토대로 상기 LED 모듈에 하나 이상 구비된 LED부 중 일부 LED부에 전압이 공급되지 않도록 하여 상기 LED 모듈이 1단 또는 다단의 순차구동을 수행하도록 하는 역율 개선부를 더 포함하는 LED 구동장치.
  7. 제 6 항에 있어서,
    상기 역율 개선부는,
    상기 구동 제어부로부터 입력되는 제어신호를 토대로 전류 제어 동작을 수행하는 전류제어소자
    를 포함하는 LED 구동장치.
  8. 제 6 항에 있어서,
    상기 역율 개선부는,
    상기 LED 모듈의 입력측에 접속되어 상기 LED 모듈로 인가되는 전류의 크기를 검출하며, 검출된 전류를 토대로 전류제어소자의 동작을 제어하는 전류검출부, 그리고
    상기 전류검출부의 제어를 토대로 전류 제어 동작을 수행하는 전류제어소자
    를 포함하는 LED 구동장치.
  9. (1) 전원부로부터 상용교류전원이 공급되면, 정류부에서 직류전원으로 정류한 후 다수 개의 LED가 직렬로 접속되어 있는 LED부가 하나 이상 구비된 LED 모듈로 출력하는 단계,
    (2) 구동 제어부는, 상기 (1) 단계를 통해 상기 정류부에서 상기 LED 모듈에 인가되는 전압을 확인하여 LED 모듈 구동전압과 비교 판단하는 단계,
    (3) 상기 구동 제어부는, 상기 (2) 단계의 판단결과 LED 모듈 구동전압이 상기 LED 모듈에 인가되는 전압과 충전용 콘덴서에 충전된 전압의 차보다 작으면, 상기 LED 모듈의 동작모드를 충전모드로 설정하고 상기 LED 모듈의 출력측에 접속된 충방전 제어부 내의 충전용 콘덴서를 충전시키면서 상기 LED 모듈이 구동하도록 제어하는 단계,
    (4) 상기 구동 제어부는, 상기 (2) 단계의 판단결과 LED 모듈 구동전압이 상기 LED 모듈에 인가되는 전압보다 작고 상기 LED 모듈에 인가되는 전압과 충전용 콘덴서에 충전된 전압의 차보다 크면, 상기 LED 모듈의 동작모드를 직결모드로 설정하고 상기 충방전 제어부 내의 충전용 콘덴서를 충전하거나 충전된 전압을 방전할 필요없이 상기 LED 모듈에 인가되는 전압만으로 상기 LED 모듈이 구동하도록 제어하는 단계, 그리고
    (5) 상기 구동 제어부는, 상기 (2) 단계의 판단결과 상기 LED 모듈에 인가되는 전압이 LED 모듈 구동전압보다 작으면, 상기 LED 모듈의 동작모드를 방전모드로 설정하고 상기 충방전 제어부 내의 충전용 콘덴서에 충전된 전압과 상기 LED 모듈에 인가되는 전압을 이용하여 상기 LED 모듈이 구동하도록 제어하는 단계
    를 포함하는 LED 구동방법.
  10. 제 9 항에 있어서,
    (6) 상기 구동 제어부는, 상기 LED 모듈의 동작모드를 충전모드, 직결모드, 방전모드 중 어느 하나로 설정하여 동작하는 과정에서, 상기 LED 모듈에 인가되는 전압과 상기 충방전 제어부 내의 충전용 콘덴서에 충전된 전압의 합이 상기 LED 모듈 구동전압보다 작은지를 판단하는 단계, 그리고
    (7) 상기 구동 제어부는, 상기 (6) 단계의 판단결과 LED 모듈에 인가되는 전압과 충방전 제어부 내의 충전용 콘덴서에 충전된 전압의 합이 LED 모듈 구동전압보다 작으면, LED 모듈에 하나 이상 구비된 LED부 중 일부 LED부에 전압을 공급하지 않도록 제어하여 1단 또는 다단의 순차구동이 이루어지도록 하는 단계를 더 수행하는 LED 구동방법.
PCT/KR2015/003567 2014-10-23 2015-04-09 Led 구동장치 및 led 구동방법 WO2016064050A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140143932A KR20160047711A (ko) 2014-10-23 2014-10-23 Led 구동장치 및 led 구동방법
KR10-2014-0143932 2014-10-23

Publications (1)

Publication Number Publication Date
WO2016064050A1 true WO2016064050A1 (ko) 2016-04-28

Family

ID=55761066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003567 WO2016064050A1 (ko) 2014-10-23 2015-04-09 Led 구동장치 및 led 구동방법

Country Status (2)

Country Link
KR (1) KR20160047711A (ko)
WO (1) WO2016064050A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101317852B1 (ko) * 2013-06-20 2013-10-15 주식회사 디에스이 엘이디 조명등용 의사부하 전원회로
KR20140050955A (ko) * 2012-10-22 2014-04-30 주식회사 디엠비테크놀로지 Direct AC LED 구동 장치 및 구동 방법
KR20140123175A (ko) * 2013-04-11 2014-10-22 그린칩 주식회사 Led조명의 순차구동 제어장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140050955A (ko) * 2012-10-22 2014-04-30 주식회사 디엠비테크놀로지 Direct AC LED 구동 장치 및 구동 방법
KR20140123175A (ko) * 2013-04-11 2014-10-22 그린칩 주식회사 Led조명의 순차구동 제어장치
KR101317852B1 (ko) * 2013-06-20 2013-10-15 주식회사 디에스이 엘이디 조명등용 의사부하 전원회로

Also Published As

Publication number Publication date
KR20160047711A (ko) 2016-05-03

Similar Documents

Publication Publication Date Title
WO2013100733A1 (en) Backlight driving apparatus
CN102214432B (zh) 电源管理与控制模块以及液晶显示器
WO2013089506A1 (ko) Led 구동장치
WO2014098303A1 (en) Led lighting apparatus with improved total harmonic distortion in source current
WO2014058196A2 (ko) Led 연속구동을 위한 led 구동장치 및 구동방법
WO2011108792A1 (ko) Led 조명 구동 장치
WO2012115323A1 (en) Current regulation apparatus
WO2012091258A1 (en) Power supply
WO2014148767A1 (ko) 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치
WO2012008800A2 (ko) Led 조명용 통합 전원 집적 회로
WO2013085158A1 (ko) 교류 직결형 발광다이오드 조명장치
WO2016108615A1 (ko) 램프 제어 장치
JP2003152224A (ja) 高効率led駆動システム
WO2015152548A1 (ko) 발광 모듈
WO2015190746A1 (ko) 교류구동 발광소자의 조명장치
WO2014030895A1 (ko) 전류원의 시간지연 기능을 갖는 엘이디 구동회로
WO2014189284A1 (ko) 발광 다이오드 조명 장치의 제어 회로 및 전압 생성 방법
WO2018143582A1 (ko) 디스플레이 장치 및 디스플레이 장치의 제어 방법
WO2015142042A1 (ko) 형광등 호환형 엘이디 조명장치와 이를 위한 감전보호장치
WO2016093421A1 (en) An ac led luminescent apparatus and a driving method thereof
WO2015020265A1 (ko) Led 조명기구
WO2013069843A1 (en) Power saving circuit of led lighting apparatus
WO2015068978A1 (ko) 교류 led 구동회로
WO2013180500A1 (ko) Led 백라이트를 구비하는 디스플레이 장치와 그 전원 공급 장치 및 방법
WO2014069939A1 (ko) 전원전압 변화 시의 광량 보상 기능을 갖는 엘이디 조명 구동회로

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852416

Country of ref document: EP

Kind code of ref document: A1