WO2016064047A1 - Door rotating apparatus - Google Patents

Door rotating apparatus Download PDF

Info

Publication number
WO2016064047A1
WO2016064047A1 PCT/KR2015/002637 KR2015002637W WO2016064047A1 WO 2016064047 A1 WO2016064047 A1 WO 2016064047A1 KR 2015002637 W KR2015002637 W KR 2015002637W WO 2016064047 A1 WO2016064047 A1 WO 2016064047A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
space
coupled
groove
cam
Prior art date
Application number
PCT/KR2015/002637
Other languages
French (fr)
Korean (ko)
Inventor
정길석
전병기
Original Assignee
에버시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에버시스 주식회사 filed Critical 에버시스 주식회사
Publication of WO2016064047A1 publication Critical patent/WO2016064047A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F5/00Braking devices, e.g. checks; Stops; Buffers
    • E05F5/02Braking devices, e.g. checks; Stops; Buffers specially for preventing the slamming of swinging wings during final closing movement, e.g. jamb stops
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F1/00Closers or openers for wings, not otherwise provided for in this subclass
    • E05F1/02Closers or openers for wings, not otherwise provided for in this subclass gravity-actuated, e.g. by use of counterweights
    • E05F1/04Closers or openers for wings, not otherwise provided for in this subclass gravity-actuated, e.g. by use of counterweights for wings which lift during movement, operated by their own weight
    • E05F1/06Mechanisms in the shape of hinges or pivots, operated by the weight of the wing
    • E05F1/061Mechanisms in the shape of hinges or pivots, operated by the weight of the wing with cams or helical tracks
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F5/00Braking devices, e.g. checks; Stops; Buffers
    • E05F5/06Buffers or stops limiting opening of swinging wings, e.g. floor or wall stops

Definitions

  • the present invention relates to a door rotating device, and more particularly, to a door rotating device that can maintain the open and closed state of the door, and improve the feeling of use by varying the rotational speed of the door.
  • the door closer includes a function for providing a rotational force to rotate the door or the cover and a damper for providing a damping force to prevent sudden rotation of the door or the cover. .
  • the damper can be largely classified into an elastic member method using an elastic member such as a spring, and a viscous fluid method using a viscous fluid to impart a damping force.
  • the damper to which the elastic member method is applied is installed between the casing, the shaft rotatably inserted into the casing, and the one end protrudes, and the damping force is provided between the casing and the shaft, as in Korean Patent Application Publication No. 1988-0014408. It is composed of an elastic member.
  • the damper of such an elastic member type cannot be employed when damping force is required only in one direction because the damping force is generated in both directions (clockwise and counterclockwise).
  • the damping force cannot be kept constant because the number of times of use brings about a change in the elastic force of the elastic member.
  • the oil damper using the conventional viscous fluid method needs to adjust the damping force according to the rotational force for rotating the application object, but the conventional oil damper has a problem that such damping force cannot be controlled.
  • the oil damper using the conventional viscous fluid method has many components in the housing in order to obtain a damping force due to the sealing and rotation of the viscous fluid, so that the structure is complicated and the assembly process is complicated, resulting in low productivity.
  • the manufacturing cost is expensive, and the overall size of the oil damper has been increased, there are many limitations in applying to various fields.
  • the technical problem to be achieved by the present invention is to provide a door rotating device that can maintain the opening and closing state of the door, and improve the feeling of use by varying the rotational speed of the door.
  • an embodiment of the present invention includes a housing portion having a first space portion, and a second space portion formed separately from the first space portion and the viscous fluid is received therein; A first shaft part provided in the first space part, forming a center of rotation of the housing part, and rotating independently of the housing part; A second shaft part provided in the second space part and rotating independently of the housing part and provided with a damping force by the viscous fluid; And a gear portion having a first gear coupled to the first shaft portion, and a second gear coupled to the second shaft portion and gear-coupled with the first gear to transmit rotational force to the second shaft portion. to provide.
  • one end portion of the first shaft portion is extended to the outside of the housing portion, the other end portion is located in the first space portion is formed with a first cam, so as to rotate independently of the housing portion
  • a first cam coupled to the first cam and a first shaft coupled to the first cam and the other end coupled to the first gear;
  • a sliding cam sliding in the longitudinal direction of the first shaft, and having a second cam corresponding to the first cam formed at one end thereof facing the first cam, and surrounding the outer side of the first shaft.
  • a part may have an elastic member that contacts the other end of the sliding cam and the other end contacts the engaging portion formed in the first space to support the sliding cam in the direction of the rotating cam.
  • the outer surface of the sliding cam is formed with a sliding projection in the longitudinal direction of the first axis at a predetermined interval along the circumferential direction, the sliding projection is coupled to the inner surface of the first space portion Guide grooves may be formed.
  • the first cam may have a plurality of first peaks and first valleys are formed alternately along the circumferential direction.
  • the second cam may have a second bone portion and a second acid portion that are simultaneously engaged with each of the first hill portion and the first valley portion.
  • the second shaft portion is provided in the longitudinal direction of the housing portion in the second space portion, one end is coupled to the coupling groove formed in the bottom portion of the second space portion, the other end is A second shaft coupled to the second gear and rotating independently of the housing portion, a damper portion coupled to the second shaft to rotate in association with the second shaft and pressurize the viscous fluid contained in the second space portion; It may have a stopper coupled to the other end of the second shaft to block the second space so that the viscous fluid does not leak.
  • the damper portion is coupled to the second shaft and rotates together with the second axis, and includes a part of the close contact groove and the close contact groove extending in the longitudinal direction of the second axis;
  • the contact groove has a central groove formed in the longitudinal direction of the body, and the first contact surface and the second contact surface respectively formed on both sides of the central groove, the flow path groove is It may be formed to include a portion of the first contact surface and to be connected to the central groove.
  • the blade is a third contact surface in close contact with the first contact surface when the blade is tilted in one direction, and a fourth contact surface in close contact with the second contact surface when tilting in the other direction Can have
  • the second space portion may have a predetermined length along the circumferential direction of the second space portion, the outer surface may be formed to be in close contact with the body formed in contact with the body.
  • the inner peripheral surface of the second space portion may be formed to face the close contact with the speed adjusting groove having a predetermined length and width in the rotational direction of the second axis.
  • the housing portion may have a first housing having the first space portion and the second space portion, and a second housing coupled to the first housing so that the gear portion is provided inside.
  • the rotation speed of the door may be adjusted for each rotation section by using the damper unit.
  • the damping force by the viscous fluid when the blade of the damper portion rotates in the direction in which the door is opened while tilting when the second shaft rotates, the damping force by the viscous fluid may be reduced, thereby improving user convenience.
  • the damping force by the viscous fluid when the door rotates in the closing direction, the damping force by the viscous fluid is increased to prevent sudden rotation of the door, thereby improving safety.
  • FIG. 1 is a perspective view showing a door rotating apparatus according to an embodiment of the present invention.
  • Figure 2 is a block diagram showing the internal configuration of the door rotating apparatus according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view showing the internal configuration of the door rotating apparatus according to an embodiment of the present invention.
  • Figure 4 is an exploded perspective view showing a door rotating apparatus according to an embodiment of the present invention.
  • Figure 5 is a perspective view showing the inner configuration of the second space portion of the door rotating apparatus according to an embodiment of the present invention.
  • Figure 6 is an exploded perspective view showing a damper portion of the door rotating apparatus according to an embodiment of the present invention.
  • FIG 7 and 8 are planar views showing an example of the operation of the second shaft portion of the door rotating apparatus according to an embodiment of the present invention.
  • FIG. 9 is a front view showing an example of the operation of the first shaft portion of the door rotating apparatus according to an embodiment of the present invention.
  • Figure 10 is an exploded perspective view showing a door rotation device and the bracket is coupled state according to an embodiment of the present invention.
  • FIG 11 is an exemplary view showing a state in which the door rotating apparatus according to an embodiment of the present invention is coupled to the refrigerator.
  • first housing 211 first space part
  • first axis portion 310 rotary cam
  • first contact surface 528 second contact surface
  • first gear 620 second gear
  • main body 920 door
  • FIG. 1 is a perspective view showing a door rotating apparatus according to an embodiment of the present invention
  • Figure 2 is a block diagram showing the internal configuration of the door rotating apparatus according to an embodiment of the present invention
  • Figure 3 is an embodiment of the present invention 4 is an exploded perspective view illustrating a door rotating apparatus according to an embodiment of the present invention
  • FIG. 5 is a door rotating apparatus according to an embodiment of the present invention.
  • Figure 6 is a perspective view showing the inner structure of the second space portion
  • Figure 6 is an exploded perspective view showing a damper portion of the door rotating apparatus according to an embodiment of the present invention.
  • the door rotating apparatus 100 is a housing portion 200, the first shaft portion 300, the second shaft portion 500 and the gear portion 600 It may include.
  • the housing part 200 may have a second space part 212 formed separately from the first space part 211 and the first space part 211 and accommodating viscous fluid therein.
  • the first shaft part 300 may be provided in the first space part 211, may form a center of rotation of the housing part 200, and may rotate independently of the housing part 200.
  • the second shaft part 500 may be provided in the second space part 212, and may rotate independently of the housing part 200 and receive a damping force by viscous fluid.
  • the gear unit 600 is coupled to the first gear 610 and the second shaft portion 500, the gear portion 600 is coupled to the first gear 610 and the second shaft portion 500 It may have a second gear 620 for transmitting a rotational force to.
  • the housing part 200 may form a body of the door rotating apparatus 100.
  • the housing part 200 may have a first housing 210 and a second housing 250, wherein the first housing 210 is formed to be separated from each other and the first space portion 211 and the second space portion 212. )
  • the first space portion 211 may be formed to open to the outside through both ends of the first housing 210. That is, the first space 211 may be formed through the first housing 210 in the longitudinal direction.
  • the second space part 212 may be formed to open outwardly through one end of the first housing 210. That is, the second space 212 may be formed in the shape of the groove in the first housing 210. In addition, a viscous fluid may be accommodated in the second space 212. In this case, the viscous fluid may be oil. As the second space portion 212 is formed in the shape of a groove, leakage of the received viscous fluid through another portion except for one end of the second space portion 212 may be structurally prevented.
  • the second housing 250 may be coupled to one side of the first housing 210, and may have an open shape on one surface thereof.
  • the second housing 250 may cover the gear unit 600 such that the gear unit 600, which will be described later, is provided on the inner side, and through this, the second housing 250 protects the gear unit 600, and foreign matter is Inflow can be prevented.
  • first shaft part 300 may have a rotary cam 310, a first shaft 320, a sliding cam 330, and an elastic member 340.
  • the rotary cam 310 may have a rotary body 311 and the extension 312.
  • the extension part 312 may form one end of the rotation cam 310 to protrude to the outside of the first space 211, and the rotation body 311 may form the other end of the rotation cam 310 to form a first end. It may be located in the space 211.
  • the outer surface of the rotating body 311 may be formed in a shape corresponding to the inner surface of the first space portion 211, for example, may have a cylindrical shape.
  • the rotating body 311 may be coupled to rotate independently of the first housing 210.
  • the first cam 313 may be formed at one end of the rotating body 311.
  • the first cam 313 may have a plurality of first peaks 314 and first valleys 315 which are alternately formed along the circumferential direction of the rotary body 311.
  • each of the first mountain portion 314 and each of the first valley portion 315 may be formed in the same shape, and two first mountain portions 314 and the first valley portion 315 may be formed.
  • each of the first hill portion 314 and the first valley portion 315 may be formed to be symmetrical with each other, and the first hill portion 314 and the first valley portion 315 may be formed to be symmetric with respect to their respective centers.
  • the highest portion of the first mountain portion 314 and the lowest portion of the neighboring first valley portion 315 may form an angular interval of 90 degrees with respect to the center of the rotation cam 310.
  • the extension 312 may be integrally formed with the rotation body 311.
  • the extension part 312 may have a coupling surface 316 on an outer surface thereof.
  • the coupling surface 316 may have a flat bottom surface and may be coupled to the first coupling hole 810 of the bracket 800.
  • the washer 380 may be further coupled between the bracket 800 and the extension part 312.
  • a first through hole 317 may be formed in the center of the rotary cam 310 in the axial direction.
  • the first shaft 320 may be provided in the first space part 211 in the longitudinal direction of the first housing 210. One end of the first shaft 320 may be coupled to the first through hole 317 of the rotary cam 310. Through this, the first shaft 320 may be integrally rotated with the rotary cam 310.
  • a second through hole 331 may be formed in the center of the sliding cam 330 in the axial direction, and the first shaft 320 may be inserted into the second through hole 331.
  • the inner diameter of the second through hole 331 may be larger than the outer diameter of the first shaft 320, through which the sliding cam 330 may slide in the longitudinal direction of the first shaft 320.
  • the first shaft 320 may rotate independently of the sliding cam 330.
  • the sliding protrusion 332 may be formed on the outer surface of the sliding cam 330 at a predetermined interval along the circumferential direction in the longitudinal direction of the first shaft 320.
  • the guide groove 213 may be formed on the inner surface of the first space 211 to correspond to the sliding protrusion 332.
  • the sliding protrusion 332 may be coupled to the guide groove 213, so that the sliding cam 330 may move in the longitudinal direction of the first shaft 320 without rotating in the first space 211. Will be.
  • the sliding cam 330 can rotate in conjunction with the first housing 210.
  • the sliding cam 330 may be in close contact with the rotary cam 310, and the one end of the sliding cam 330 opposite to the first cam 313 of the rotary cam 310 may correspond to the first cam 313.
  • the second cam 335 may be formed.
  • the second cam 335 may have a second valley portion 336 and a second hill portion 337 that may be simultaneously engaged with each of the first hill portion 314 and the first valley portion 315 of the first cam 313. have. To this end, the second cam 335 may be formed to correspond to the shape of the first cam 313.
  • the elastic member 340 may be provided to surround the outside of the first shaft 320.
  • the elastic member 340 may be a coil spring.
  • One end of the elastic member 340 is provided to contact the other end of the sliding cam 330, the other end may be provided to contact the engaging portion 214 formed in the first space 211. Accordingly, the elastic member 340 may support the sliding cam 330 in the direction of the rotary cam 310.
  • the other end of the first shaft 320 may be provided to extend to the outside of the first space 211, the other end of the first shaft 320 through the third through-hole formed in the first gear 610 May be coupled to the ball 611.
  • the other end of the first shaft 320 may be formed through the first pin hole 321, the first gear 610 may be formed through the second pin hole 612, the first pin hole 321 and As the first coupling pin 650 is coupled to the second pin hole 612, the first gear 610 may rotate integrally with the first shaft 320. That is, the rotary cam 310, the first shaft 320 and the first gear 610 may be integrally rotated.
  • the first cam 313 of the rotary cam 310 is rotated to push the sliding cam 330, where the sliding cam 330 ) Is a sliding protrusion 332 is coupled to the guide groove 213, so that the rotation is impossible, it is moved in the longitudinal direction of the first shaft (320). Then, when the rotational force applied to the rotary cam 310 is removed, the sliding cam 330 is moved in the direction of the rotary cam 310 by the elastic force of the elastic member 340, accordingly, the rotary cam 310 It can be rotated in the opposite direction.
  • the second shaft part 500 may have a second shaft 510, a damper part 520, and a stopper part 540.
  • the second shaft 510 may be provided in the second space part 212 in the longitudinal direction of the first housing 210.
  • the second shaft 510 may be provided in parallel with the first shaft 320.
  • One end of the second shaft 510 may be coupled to the coupling groove 215 formed at the bottom of the second space 212.
  • the coupling groove 215 may be formed to have an inner diameter larger than the outer diameter of the second shaft 510, through which the second shaft 510 is rotated in a state coupled to the coupling groove 215 This may be possible.
  • the other end of the second shaft 510 may be coupled to the fourth through hole 621 formed in the second gear 620.
  • a third pin hole 511 may be formed through the other end of the second shaft 510, a fourth pin hole 622 may be formed through the second gear 620, and a third pin hole 511 may be formed therethrough.
  • the second coupling pin 651 is coupled to the fourth pin hole 622, the second gear 620 may rotate integrally with the second shaft 510. That is, the second shaft 510 can be rotated independently of the first housing 210.
  • damper unit 520 may be coupled to the second shaft 510 to rotate together with the second shaft 510.
  • the damper portion 520 may have a body 521 and a blade 531.
  • the body 521 may have a fifth through hole 523 formed in the axial direction.
  • the body 521 may be integrally rotated with the second shaft 510 by coupling the second shaft 510 to the fifth through hole 523.
  • the body 521 may have a close groove 524 and a flow path groove 525.
  • the close contact groove 524 may extend in the longitudinal direction of the body 521.
  • the close contact groove 524 has a central groove 526 formed in the longitudinal direction of the body 521 and a first contact surface 527 and a second contact surface 528 respectively formed at both sides of the central groove 526. Can have.
  • the flow path groove 525 may be formed to include a part of the contact groove 524, and specifically, may be formed to include a part of the first contact surface 527. In addition, the flow path groove 525 may be formed deeper than the close groove 524, it may be formed to be connected to the central groove 526. A plurality of flow path grooves 525 may be formed along the length direction of the body 521.
  • the blade 531 may be coupled to the contact groove 524 of the body 521.
  • the blade 531 has a third contact surface 532 formed to correspond to the first contact surface 527 of the contact groove 524 and a fourth contact surface 533 formed to correspond to the second contact surface 528. )
  • the third contact surface 532 and the fourth contact surface 533 may be formed in a convex shape as a whole.
  • the blade 531 may have a length corresponding to the length of the body 521.
  • the blade 531 may be coupled to the tight groove 524 and positioned between the outer side of the body 521 and the inner circumferential surface of the second space part 212, and may be caught by the close groove 524 and rotate together with the body 521. can do.
  • the blade 531 may have a clearance with the tight groove 524. Accordingly, the blade 531 may move in the circumferential direction from the inner side of the contact groove 524, or tilting may be inclined left and right about the longitudinal axis of the blade 531.
  • the blade 531 coupled to the contact groove 524 of the body 521 is also rotated together.
  • the blade 531 is attached to the viscous fluid received in the front of the rotation direction. May be pressurized.
  • the blade 531 has a tolerance with the contact grooves 524, and the third contact surface 532 and the fourth contact surface 533 have convex shapes, so that the blade 531 is applied by the pressure of the viscous fluid. ) May be tilted such that the front end is lifted rearward in the direction of rotation.
  • the front end of the blade 531 means a front portion of the blade 531 based on the rotation direction of the blade 531.
  • This tilting direction of the blade 531 may be reversed depending on the rotation direction of the second axis 510.
  • the third contact surface 532 and the fourth contact surface 533 of the blade 531 are respectively the first contact surface 527 and the second contact surface () of the contact groove 524.
  • 528 may be in close contact with the flow of the viscous fluid, and through this, it may be provided with a damping force that prevents rotation of the second shaft 510.
  • the fourth contact surface 533 is continuous in the longitudinal direction of the body 521. Since it is formed as, the flow of the viscous fluid between the blade 531 and the body 521 can be blocked, through which a large damping force can occur.
  • the blade 531 can selectively open and close the flow path groove 525 while tilting in a different direction according to the rotational direction, whereby a different damping force may occur.
  • the blade 531 may be tilted such that the third contact surface 532 comes into close contact with the first contact surface 527 when the blade 531 rotates in a direction in which the door 920 (see FIG. 11) to be described later opens. Fluid may be moved through the flow path groove 525.
  • the blade 531 may be tilted so that the fourth contact surface 533 is in close contact with the second contact surface 528 to block the flow of the viscous fluid.
  • the stopper 540 may be coupled to the other end of the second shaft 510. Specifically, the stopper 540 may be provided between the second gear 620 and the damper 520.
  • a sixth through hole 541 penetrating in the axial direction may be formed in the center of the stopper 540, and the second shaft 510 may be inserted into and coupled to the sixth through hole 541.
  • the inner diameter of the sixth through hole 541 may be larger than the outer diameter of the second shaft 510, and thus, the second shaft in the state in which the plug portion 540 is coupled to the first housing 210. 510 may be rotatable.
  • the plug portion 540 may have a first screw thread 542 on the outer surface, the first screw thread 542 is screwed to the second screw thread 216 formed on the inner surface of the second space portion 212. Can be combined.
  • the stopper 540 may be screwed to the second space 212 to seal the second space 212.
  • the plug portion 540 may have a first groove 543 in the circumferential direction, and the first sealing member 544 may be coupled to the first groove 543.
  • the first sealing member 544 is in close contact with the inner surface of the second space portion 212 so that the viscous fluid contained in the second space portion 212 leaks between the plug portion 540 and the second space portion 212. Can be prevented.
  • a plurality of first sealing members 544 and first grooves 543 may be provided.
  • a second groove 512 may be formed in a portion of the second shaft 510 to which the stopper 540 is coupled, and a second sealing member 513 may be coupled to the second groove 512. .
  • the second sealing member 513 may be in close contact with the inner surface of the sixth through hole 541 of the stopper 540, thereby preventing the viscous fluid from leaking through the sixth through hole 541. Can be.
  • a first fastening groove 545 may be further formed on the top surface of the stopper 540 to which a rotating member (not shown) for rotating the stopper 540 may be coupled.
  • a plurality of first fastening grooves 545 may be formed at predetermined intervals along the circumferential direction.
  • the plug portion 540 may be formed through the oil hole 546.
  • the oil filling hole 546 may be formed to penetrate the upper and lower surfaces of the stopper 540. Accordingly, even after the plug portion 540 is coupled to the second space portion 212, the viscous fluid may be supplied to the second space portion 212 through the oil filling hole 546.
  • a stopper 547 may be coupled to the oil filling hole 546, and the stopper 547 seals the oil filling hole 546 so that the viscous fluid contained in the second space part 212 does not leak through the oil filling hole 546. You can do that.
  • the stopper 547 and the oil filling hole 546 may be screwed, and a second fastening groove 548 may be coupled to the head of the stopper 547 to which a tool (not shown) for rotating the stopper 547 may be coupled. Can be formed.
  • the tool may be a wrench or the like.
  • the close contact portion 217 may protrude from the second space portion 212.
  • the close contact portion 217 may be formed to have a predetermined length along the circumferential direction of the second space portion 212.
  • the outer surface 218 of the contact portion 217 may be formed to contact the body 521 of the damper portion 520. That is, the outer surface 218 of the contact portion 217 may be formed to have a curved surface corresponding to the outer peripheral surface of the body 521 of the damper portion 520. Accordingly, the movement of the viscous fluid through the contact portion 217 and the body 521 of the damper portion 520 may be limited.
  • the blade 531 of the damper portion 520 may rotate in a space where the close contact portion 217 is not formed in the second space portion 212.
  • the adhesion part 217 may reduce the volume of the viscous fluid accommodated in the second space part 212 by reducing the volume of the second space part 212, and may be applied to the viscous fluid pressurized by the rotating blade 531. Pressure may help to be delivered to the blade 531 more efficiently.
  • a speed control groove 219 may be formed on the inner circumferential surface of the second space part 212.
  • the speed adjusting groove 219 may be formed to face the contact portion 217, and the speed adjusting groove 219 may be formed along the rotation direction of the second shaft 510.
  • the speed adjusting groove 219 may be formed to have a predetermined length and width. The speed adjusting groove 219 forms a space therein, and therefore, forms a space between the outer surface of the blade 531 and thus the viscous fluid can be moved through the speed adjusting groove 219.
  • the rotational speed of the damper part 520 may be controlled by the depth and width of the speed control groove 219 and the depth and width of the flow path groove 525 formed in the body 521 of the damper part 520.
  • the rotational speed of the damper unit 520 may be adjusted differently for each angular section according to the length of the speed control groove 219.
  • FIG. 7 and 8 are planar views showing an operation example of the second shaft portion of the door rotating apparatus according to an embodiment of the present invention
  • Figure 9 is a first shaft portion of the door rotating apparatus according to an embodiment of the present invention 10 is an exploded perspective view showing an operation example
  • Figure 10 is an exploded perspective view showing a state in which the door rotating device and the bracket is coupled
  • Figure 11 is a refrigerator door rotating device according to an embodiment of the present invention Exemplary diagram showing a state coupled to.
  • FIG. 9 shows an operation example of the first shaft portion in each operating state of FIG.
  • the door rotating apparatus 100 may be mounted on all articles provided with doors, but for convenience, the door rotating apparatus 100 is described as an example in which the door rotating apparatus 100 is mounted in the refrigerator.
  • the door rotating apparatus 100 may be coupled to the bracket 800.
  • the bracket 800 may be formed with a second coupling hole 820, and as the coupling member (not shown) coupled to the second coupling hole 820 is coupled to the main body 910 of the refrigerator 900, the bracket The 800 may be fixed to the main body 910 of the refrigerator 900.
  • the housing 200 may be coupled to the inside of the door 920, and may rotate in conjunction with the door 920. In this case, the door 920 and the housing 200 are rotated about the first shaft 320 (see FIG. 9).
  • the viscous fluid contained in the second space part 212 is pressurized. This is in equilibrium.
  • the blade 531 may not be tilted in the close contact groove 524.
  • the state where the blade 531 is not tilted means that the third contact surface 532 and the fourth contact surface 533 of the blade 531 adhere to the first contact surface 527 and the second contact surface of the contact groove 524. It may mean a state that is not in close contact with the surface 528.
  • the first cam 313 of the rotary cam 310 and the second cam 335 of the sliding cam 330 may be in a state of being in close contact with each other.
  • the housing part 200 When the door 920 rotates to open the main body 910, the housing part 200 also rotates. As shown in FIG. 7B, when the housing part 200 rotates in one direction, since the second shaft part 500 (see FIG. 4) rotates in association with the housing part 200, the first gear The second gear 620 coupled to the 610 is rotated about the first shaft 320.
  • the damper part 520 rotates about the second shaft 510 because the second shaft 510 also rotates. That is, when the housing part 200 rotates about the first axis 320, the second axis part rotates about the first axis 320 and rotates about the second axis 510. At the same time.
  • the gear ratio of the first gear 610 and the second gear 620 may be one. That is, the first gear 610 and the second gear 620 may be the same.
  • the gear ratio is 1, when the housing part 200 rotates 45 degrees in one direction about the first shaft 320, the second gear 620 is rotated by 45 degrees in one direction. Can be rotated about 90 degrees.
  • the blade 531 of the damper unit 520 may be located near one end of the speed control groove 219.
  • the fourth contact surface 533 of the blade 531 may be pressed by the viscous fluid accommodated in the front space in the rotational movement direction of the blade 531.
  • the blade 531 may be tilted so that the front end portion is lifted by the pressing force applied to the fourth contact surface 533 by the viscous fluid.
  • the third contact surface 532 of the blade 531 may be in close contact with the first contact surface 527 of the contact groove 524, the third contact surface 532 and the first contact surface 527. Movement of the viscous fluid through may be blocked.
  • the sliding cam 330 is also interlocked to rotate in one direction about the first axis 320.
  • the sliding cam 330 that rotates in conjunction with the housing 200 when the rotation is rotated, the second cam 335 is the first cam ( 313 and the sliding is moved upward.
  • the elastic member 340 is in a compressed state at this time.
  • the sliding cam 330 at this time is rotated 90 degrees with respect to the initial state. Therefore, when the housing 200 is rotated in one direction in this state, the sliding cam 330 is moved downward by the elastic force of the compressed elastic member 340 even after the external force is removed by the user. 200 may be rotated.
  • the door 920 may be rotated and closed even if the user releases the door 920.
  • the door 920 may be rotated until it is fully opened (rotated 180 degrees).
  • the second gear 620 rotates 270 degrees.
  • the blade 531 of the damper unit 520 may be located at the other end portion of the speed control groove 219.
  • the speed adjusting groove 219 is formed so that the blade 531 is located within the range of the speed adjusting groove 219 when the housing 200 is rotated in an angle range of 45 ⁇ 135 degrees. Can be. This allows the user to rotate the door more easily when the door 920 is in the 45 to 135 degree range. In addition, the rotational speed of the door can also be increased to provide a luxurious feel.
  • the length of the speed control groove 219 formed in the circumferential direction can be designed in various ways, through which the rotational speed of the door can be adjusted for each section according to the opening angle of the door.
  • the damper part 520 rotates about the second shaft 510.
  • the third contact surface 532 of the blade 531 may be pressed by the viscous fluid accommodated in the front space in the rotational movement direction of the blade 531.
  • the blade 531 may be tilted so that the front end portion is lifted by the pressing force applied to the third contact surface 532 by the viscous fluid. Accordingly, the fourth contact surface 533 of the blade 531 may be in close contact with the second contact surface 528 of the contact groove 524, the fourth contact surface 533 and the second contact surface 528. Movement of the viscous fluid through may be blocked. In this state, since the movement of the viscous fluid through the flow path groove 525 is also blocked, the movement of the viscous fluid between the body of the damper portion 520 and the blade 531 does not occur.
  • the blade 531 rotates in the section in which the speed adjusting groove 219 is not formed in the 45 degree angle section in which the door 920 rotates to seal the main body 910. do. Therefore, in this section, the viscous fluid contained in the front space in the rotational movement direction of the blade 531 can move only between the outer circumferential surface of the blade 531 and the inner surface of the second space portion 212. At this time, since the clearance between the outer circumferential surface of the blade 531 and the inner surface of the second space portion 212 is minute, the flow rate of the viscous fluid is reduced, so that the rotation of the second shaft 510 is made slowly.
  • a relatively large damping force is generated when the door 920 is rotated to be closed than when the door 920 is rotated to open the main body 910, which may improve safety by preventing sudden rotation of the door 920. Can be.
  • the damping force due to the viscous fluid is reduced, so that the door 920 can be opened quickly, thereby improving user convenience.
  • the rotation speed of the door may be adjusted for each rotation section.

Abstract

The present invention relates to a door rotating apparatus which can maintain the open or closed state of a door, and vary the rotation speed of the door differently so that a user can enjoy a high quality feeling in use. A door rotating apparatus according to an embodiment of the present invention comprises: a housing part; a first shaft part; a second shaft part; and a gear part. Here, the housing part has a first space part and a second space part, which is separated from the first space part and contains a viscous fluid thereinside. The first shaft part is arranged in the first space part, forms the rotation center of the housing part, and rotates independently of the housing part. The second shaft part is arranged in the second space part, rotates independently of the housing part, and is provided with damping force by the viscous fluid. In addition, the gear part has a first gear coupled to the first shaft part, and a second gear, coupled to the second shaft part, in gear engagement with the first gear to deliver a rotation force to the second shaft part.

Description

도어 회전장치Door rotator
본 발명은 도어 회전장치에 관한 것으로, 더욱 상세하게는 도어의 개폐 상태를 유지하고, 도어의 회전속도를 달리하여 사용감을 고급스럽게 할 수 있는 도어 회전장치에 관한 것이다.The present invention relates to a door rotating device, and more particularly, to a door rotating device that can maintain the open and closed state of the door, and improve the feeling of use by varying the rotational speed of the door.
일반적으로, 도어, 덮개, 뚜껑 등을 개폐하는 과정에서 회전력을 제어하여 도어나 덮개 등이 급격하게 닫히지 않도록 하기 위하여 도어 클로저(Door Closer)를 사용하고 있다. In general, in order to control the rotational force in the process of opening and closing the door, the cover, the lid and the like to use a door closer (Door Closer) so as not to close the door or cover suddenly.
그리고, 도어 클로저는 도어나 덮개 등이 회전할 수 있도록 회전력을 제공하기 위한 기능과, 도어나 덮개 등의 급격한 회전을 방지하기 위한 댐핑(Damping)력을 제공하기 위한 댐퍼(Damper)를 포함하고 있다.The door closer includes a function for providing a rotational force to rotate the door or the cover and a damper for providing a damping force to prevent sudden rotation of the door or the cover. .
댐퍼는 크게 스프링 등의 탄성부재를 이용하는 탄성부재 방식과, 점성 유체를 사용하여 감쇠력을 부여하는 점성 유체 방식으로 구분될 수 있다.The damper can be largely classified into an elastic member method using an elastic member such as a spring, and a viscous fluid method using a viscous fluid to impart a damping force.
탄성부재 방식을 적용한 댐퍼는 대한민국 공개특허공보 1988-0014408호와 같이, 케이싱과, 케이싱의 내부에 회전 가능하게 삽입되어 일단이 돌출되는 축과, 케이싱과 축 사이에 설치되어 축에 감쇠력을 제공하는 탄성부재로 구성된 것이다.The damper to which the elastic member method is applied is installed between the casing, the shaft rotatably inserted into the casing, and the one end protrudes, and the damping force is provided between the casing and the shaft, as in Korean Patent Application Publication No. 1988-0014408. It is composed of an elastic member.
이러한 탄성부재 방식의 댐퍼는 감쇠력이 양방향(시계 방향과 반시계 방향) 모두에 대하여 발생하기 때문에 일방향으로만 감쇠력이 필요한 경우에는 채용할 수 없다. 또한, 사용 횟수가 늘어남에 따라 탄성부재의 탄성력에 변화를 가져오기 때문에 감쇠력을 일정하게 유지할 수 없게 되는 문제점이 있었다.The damper of such an elastic member type cannot be employed when damping force is required only in one direction because the damping force is generated in both directions (clockwise and counterclockwise). In addition, there is a problem in that the damping force cannot be kept constant because the number of times of use brings about a change in the elastic force of the elastic member.
한편, 점성 유체 방식을 이용한 댐퍼로는, 대한민국 등록특허공보 제0414520호가 공개되어 있다. 그러나, 이러한 종래의 점성 유체 방식을 이용한 댐퍼는 다음과 같은 문제점이 있었다.On the other hand, as a damper using a viscous fluid method, Korean Patent Publication No. 0414520 is disclosed. However, the damper using the conventional viscous fluid method has the following problems.
먼저, 종래의 점성 유체 방식을 이용한 오일 댐퍼는 적용 대상을 회전시키는 회전력에 따라서 감쇠력을 조절할 필요가 있는데, 종래 오일 댐퍼는 이 같은 감쇠력의 제어가 불가능한 문제가 있었다.First, the oil damper using the conventional viscous fluid method needs to adjust the damping force according to the rotational force for rotating the application object, but the conventional oil damper has a problem that such damping force cannot be controlled.
그리고, 종래의 점성 유체 방식을 이용한 오일 댐퍼는 점성 유체의 밀폐 및 회전에 의한 감쇠력을 얻기 위하여 많은 부품이 하우징 내부에 구성되어 있어, 구조가 복잡하고 조립 과정이 복잡하여 생산성이 낮은 문제점이 있었다. 또한, 이러한 복잡한 구조로 인하여 제작 원가가 고가이며, 오일 댐퍼의 전체적인 크기가 커져서 다양한 분야에 적용하는데 많은 제약이 있었다.In addition, the oil damper using the conventional viscous fluid method has many components in the housing in order to obtain a damping force due to the sealing and rotation of the viscous fluid, so that the structure is complicated and the assembly process is complicated, resulting in low productivity. In addition, due to such a complicated structure, the manufacturing cost is expensive, and the overall size of the oil damper has been increased, there are many limitations in applying to various fields.
상기와 같은 문제점을 해결하기 위하여, 본 발명이 이루고자 하는 기술적 과제는 도어의 개폐 상태를 유지하고, 도어의 회전속도를 달리하여 사용감을 고급스럽게 할 수 있는 도어 회전장치를 제공하는 것이다.In order to solve the above problems, the technical problem to be achieved by the present invention is to provide a door rotating device that can maintain the opening and closing state of the door, and improve the feeling of use by varying the rotational speed of the door.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일실시예는 제1공간부와, 상기 제1공간부와 분리 형성되고 내측에 점성 유체가 수용되는 제2공간부를 가지는 하우징부; 상기 제1공간부에 마련되고, 상기 하우징부의 회전중심을 이루며, 상기 하우징부와 독립적으로 회전하는 제1축부; 상기 제2공간부에 마련되고, 상기 하우징부와 독립적으로 회전하며 상기 점성 유체에 의한 댐핑력을 제공받는 제2축부; 그리고 상기 제1축부에 결합되는 제1기어와, 상기 제2축부에 결합되고 상기 제1기어와 기어 결합되어 상기 제2축부에 회전력을 전달하는 제2기어를 가지는 기어부를 포함하는 도어 회전장치를 제공한다.In order to achieve the above technical problem, an embodiment of the present invention includes a housing portion having a first space portion, and a second space portion formed separately from the first space portion and the viscous fluid is received therein; A first shaft part provided in the first space part, forming a center of rotation of the housing part, and rotating independently of the housing part; A second shaft part provided in the second space part and rotating independently of the housing part and provided with a damping force by the viscous fluid; And a gear portion having a first gear coupled to the first shaft portion, and a second gear coupled to the second shaft portion and gear-coupled with the first gear to transmit rotational force to the second shaft portion. to provide.
본 발명의 일실시예에 있어서, 상기 제1축부는 일단부는 상기 하우징부의 외측으로 연장되고, 상기 제1공간부에 위치되는 타단부에는 제1캠이 형성되며, 상기 하우징부와 독립적으로 회전되도록 마련되는 회전캠과, 상기 제1공간부에 상기 하우징부의 길이 방향으로 마련되고, 일단부는 상기 회전캠에 결합되고 타단부는 상기 제1기어에 결합되는 제1축과, 상기 제1축에 결합되어 상기 제1축의 길이 방향으로 슬라이딩되고, 상기 제1캠에 대향되는 일단부에는 상기 제1캠에 대응되는 제2캠이 형성되는 슬라이딩캠과, 상기 제1축의 외측을 감싸도록 마련되고, 일단부는 상기 슬라이딩캠의 타단부에 접하고 타단부는 상기 제1공간부에 형성된 걸림부에 접하여 상기 슬라이딩캠을 상기 회전캠 방향으로 탄발 지지하는 탄성부재를 가질 수 있다.In one embodiment of the present invention, one end portion of the first shaft portion is extended to the outside of the housing portion, the other end portion is located in the first space portion is formed with a first cam, so as to rotate independently of the housing portion A first cam coupled to the first cam and a first shaft coupled to the first cam and the other end coupled to the first gear; And a sliding cam sliding in the longitudinal direction of the first shaft, and having a second cam corresponding to the first cam formed at one end thereof facing the first cam, and surrounding the outer side of the first shaft. A part may have an elastic member that contacts the other end of the sliding cam and the other end contacts the engaging portion formed in the first space to support the sliding cam in the direction of the rotating cam.
본 발명의 일실시예에 있어서, 상기 슬라이딩캠의 외면에는 원주 방향을 따라 미리 정해진 간격으로 슬라이딩 돌기가 상기 제1축의 길이방향으로 형성되고, 상기 제1공간부의 내측면에는 상기 슬라이딩 돌기가 결합되는 안내홈이 형성될 수 있다.In one embodiment of the present invention, the outer surface of the sliding cam is formed with a sliding projection in the longitudinal direction of the first axis at a predetermined interval along the circumferential direction, the sliding projection is coupled to the inner surface of the first space portion Guide grooves may be formed.
본 발명의 일실시예에 있어서, 상기 제1캠은 원주 방향을 따라 교대로 형성되는 복수의 제1산부 및 제1골부를 가질 수 있다.In one embodiment of the present invention, the first cam may have a plurality of first peaks and first valleys are formed alternately along the circumferential direction.
본 발명의 일실시예에 있어서, 상기 제2캠은 상기 제1산부 및 상기 제1골부 각각에 동시에 치합되는 제2골부 및 제2산부를 가질 수 있다.In one embodiment of the present invention, the second cam may have a second bone portion and a second acid portion that are simultaneously engaged with each of the first hill portion and the first valley portion.
본 발명의 일실시예에 있어서, 상기 제2축부는 상기 제2공간부에 상기 하우징부의 길이 방향으로 마련되되 일단부는 상기 제2공간부의 바닥부에 형성된 결합홈에 결합되고, 타단부는 상기 제2기어에 결합되어 상기 하우징부와 독립적으로 회전되는 제2축과, 상기 제2축에 결합되어 상기 제2축과 연동하여 회전하면서 상기 제2공간부에 수용된 점성 유체를 가압하는 댐퍼부와, 상기 제2축의 타단부에 결합되어 상기 점성 유체가 누출되지 않도록 상기 제2공간부를 막는 마개부를 가질 수 있다.In one embodiment of the present invention, the second shaft portion is provided in the longitudinal direction of the housing portion in the second space portion, one end is coupled to the coupling groove formed in the bottom portion of the second space portion, the other end is A second shaft coupled to the second gear and rotating independently of the housing portion, a damper portion coupled to the second shaft to rotate in association with the second shaft and pressurize the viscous fluid contained in the second space portion; It may have a stopper coupled to the other end of the second shaft to block the second space so that the viscous fluid does not leak.
본 발명의 일실시예에 있어서, 상기 댐퍼부는, 상기 제2축에 결합되어 상기 제2축과 함께 회전하고, 상기 제2축의 길이 방향으로 연장 형성되는 밀착홈 및 상기 밀착홈의 일부를 포함하고 상기 밀착홈보다 깊게 형성되어 상기 점성 유체가 이동하도록 유로를 형성하는 유로홈을 가지는 몸체와, 상기 밀착홈에 결합되고, 상기 몸체의 회전 시에 상기 점성 유체에 의해 가압되어 상기 몸체의 회전 방향의 후방으로 전단부가 들리도록 틸팅(Tilting)되면서 상기 유로홈을 선택적으로 개폐하는 블레이드를 가질 수 있다.In one embodiment of the present invention, the damper portion is coupled to the second shaft and rotates together with the second axis, and includes a part of the close contact groove and the close contact groove extending in the longitudinal direction of the second axis; A body having a flow path groove that is formed deeper than the contact groove to form a flow path for the viscous fluid to move, and is coupled to the contact groove and is pressed by the viscous fluid when the body is rotated to be in a rotational direction of the body. It may have a blade for selectively opening and closing the flow path groove while being tilted to hear the front end portion rearward.
본 발명의 일실시예에 있어서, 상기 밀착홈은 상기 몸체의 길이 방향으로 형성되는 중앙홈과, 상기 중앙홈의 양측에 각각 형성되는 제1밀착면 및 제2밀착면을 가지고, 상기 유로홈은 상기 제1밀착면의 일부를 포함하고 상기 중앙홈과 연결되도록 형성될 수 있다.In one embodiment of the present invention, the contact groove has a central groove formed in the longitudinal direction of the body, and the first contact surface and the second contact surface respectively formed on both sides of the central groove, the flow path groove is It may be formed to include a portion of the first contact surface and to be connected to the central groove.
본 발명의 일실시예에 있어서, 상기 블레이드는 상기 블레이드가 일방향으로 틸팅 시 상기 제1밀착면에 밀착되는 제3밀착면과, 타방향으로 틸팅 시 상기 제2밀착면에 밀착되는 제4밀착면을 가질 수 있다.In one embodiment of the present invention, the blade is a third contact surface in close contact with the first contact surface when the blade is tilted in one direction, and a fourth contact surface in close contact with the second contact surface when tilting in the other direction Can have
본 발명의 일실시예에 있어서, 상기 제2공간부에는 상기 제2공간부의 원주방향을 따라 미리 정해진 길이를 가지고, 외측면은 상기 몸체에 접하도록 형성되는 밀착부가 돌출 형성될 수 있다.In one embodiment of the present invention, the second space portion may have a predetermined length along the circumferential direction of the second space portion, the outer surface may be formed to be in close contact with the body formed in contact with the body.
본 발명의 일실시예에 있어서, 상기 제2공간부의 내주면에는 상기 제2축의 회전방향을 따라 미리 정해진 길이 및 폭을 가지는 속도조절홈이 상기 밀착부에 대향되어 형성될 수 있다.In one embodiment of the present invention, the inner peripheral surface of the second space portion may be formed to face the close contact with the speed adjusting groove having a predetermined length and width in the rotational direction of the second axis.
본 발명의 일실시예에 있어서, 상기 하우징부는 상기 제1공간부 및 상기 제2공간부를 가지는 제1하우징과, 내측에 상기 기어부가 마련되도록 상기 제1하우징에 결합되는 제2하우징을 가질 수 있다.In one embodiment of the present invention, the housing portion may have a first housing having the first space portion and the second space portion, and a second housing coupled to the first housing so that the gear portion is provided inside. .
본 발명의 일실시예에 따르면, 댐퍼부를 이용하여 도어의 회전 속도를 회전 구간별로 조절할 수 있다.According to an embodiment of the present invention, the rotation speed of the door may be adjusted for each rotation section by using the damper unit.
또한, 본 발명의 일실시예에 따르면, 댐퍼부의 블레이드가 제2축의 회전 시에 틸팅하면서 도어가 열리는 방향으로 회전할 때는 점성 유체에 의한 댐핑력이 작아지도록 하여 사용자 편의성을 개선할 수 있다. 또한, 도어가 닫히는 방향으로 회전할 때는 점성 유체에 의한 댐핑력이 커지도록 하여 도어의 급격한 회전을 방지함으로써, 안전성을 개선할 수 있다.In addition, according to an embodiment of the present invention, when the blade of the damper portion rotates in the direction in which the door is opened while tilting when the second shaft rotates, the damping force by the viscous fluid may be reduced, thereby improving user convenience. In addition, when the door rotates in the closing direction, the damping force by the viscous fluid is increased to prevent sudden rotation of the door, thereby improving safety.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above-described effects, but should be understood to include all the effects deduced from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 일실시예에 따른 도어 회전장치를 나타낸 사시도이다.1 is a perspective view showing a door rotating apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 도어 회전장치의 내부구성을 나타낸 구성도이다.Figure 2 is a block diagram showing the internal configuration of the door rotating apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 도어 회전장치의 내부 구성을 나타낸 단면예시도이다.Figure 3 is a cross-sectional view showing the internal configuration of the door rotating apparatus according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 도어 회전장치를 나타낸 분해사시도이다.Figure 4 is an exploded perspective view showing a door rotating apparatus according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 도어 회전장치의 제2공간부의 내측 구성을 나타낸 사시도이다.Figure 5 is a perspective view showing the inner configuration of the second space portion of the door rotating apparatus according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 도어 회전장치의 댐퍼부를 나타낸 분해사시도이다.Figure 6 is an exploded perspective view showing a damper portion of the door rotating apparatus according to an embodiment of the present invention.
도 7 및 도 8은 본 발명의 일실시예에 따른 도어 회전장치의 제2축부의 작동예를 나타낸 평면예시도이다.7 and 8 are planar views showing an example of the operation of the second shaft portion of the door rotating apparatus according to an embodiment of the present invention.
도 9는 본 발명의 일실시예에 따른 도어 회전장치의 제1축부의 작동예를 나타낸 정면예시도이다.9 is a front view showing an example of the operation of the first shaft portion of the door rotating apparatus according to an embodiment of the present invention.
도 10은 본 발명의 일실시예에 따른 도어 회전장치와 브래킷이 결합 상태를 나타낸 분해 사시도이다.Figure 10 is an exploded perspective view showing a door rotation device and the bracket is coupled state according to an embodiment of the present invention.
도 11은 본 발명의 일실시예에 따른 도어 회전장치가 냉장고에 결합된 상태를 나타낸 예시도이다.11 is an exemplary view showing a state in which the door rotating apparatus according to an embodiment of the present invention is coupled to the refrigerator.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
100: 도어 회전장치 200: 하우징부100: door rotation device 200: housing portion
210: 제1하우징 211: 제1공간부210: first housing 211: first space part
212: 제2공간부 219: 속도조절홈212: second space part 219: speed control groove
300: 제1축부 310: 회전캠300: first axis portion 310: rotary cam
320: 제1축 330: 슬라이딩캠320: first axis 330: sliding cam
340: 탄성부재 500: 제2축부340: elastic member 500: second shaft portion
510: 제2축 520: 댐퍼부510: second axis 520: damper portion
521: 몸체 524: 밀착홈521: body 524: contact groove
525: 유로홈 526: 중앙홈525: Euro groove 526: Central groove
527: 제1밀착면 528: 제2밀착면527: first contact surface 528: second contact surface
531: 블레이드 532: 제3밀착면531: blade 532: third contact surface
533: 제4밀착면 540: 마개부533: fourth contact surface 540: stopper
546: 주유홀 600: 기어부546: oil filling hole 600: gear unit
610: 제1기어 620: 제2기어610: first gear 620: second gear
800: 브래킷 900: 냉장고800: bracket 900: refrigerator
910: 본체 920: 도어910: main body 920: door
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the accompanying drawings will be described the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is "connected" to another part, it includes not only "directly connected" but also "indirectly connected" with another member in between. . In addition, when a part is said to "include" a certain component, this means that it may further include other components, without excluding the other components unless otherwise stated.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시예에 따른 도어 회전장치를 나타낸 사시도이고, 도 2는 본 발명의 일실시예에 따른 도어 회전장치의 내부구성을 나타낸 구성도이고, 도 3은 본 발명의 일실시예에 따른 도어 회전장치의 내부구성을 나타낸 단면예시도이고, 도 4는 본 발명의 일실시예에 따른 도어 회전장치를 나타낸 분해사시도이고, 도 5는 본 발명의 일실시예에 따른 도어 회전장치의 제2공간부의 내측 구성을 나타낸 사시도이고, 도 6은 본 발명의 일실시예에 따른 도어 회전장치의 댐퍼부를 나타낸 분해사시도이다.1 is a perspective view showing a door rotating apparatus according to an embodiment of the present invention, Figure 2 is a block diagram showing the internal configuration of the door rotating apparatus according to an embodiment of the present invention, Figure 3 is an embodiment of the present invention 4 is an exploded perspective view illustrating a door rotating apparatus according to an embodiment of the present invention, and FIG. 5 is a door rotating apparatus according to an embodiment of the present invention. Figure 6 is a perspective view showing the inner structure of the second space portion, Figure 6 is an exploded perspective view showing a damper portion of the door rotating apparatus according to an embodiment of the present invention.
도 1 내지 도 6에서 보는 바와 같이, 본 발명의 일실시예에 따른 도어 회전장치(100)는 하우징부(200), 제1축부(300), 제2축부(500) 그리고 기어부(600)를 포함할 수 있다. 1 to 6, the door rotating apparatus 100 according to an embodiment of the present invention is a housing portion 200, the first shaft portion 300, the second shaft portion 500 and the gear portion 600 It may include.
여기서, 하우징부(200)는 제1공간부(211) 및 제1공간부(211)와 분리 형성되고 내측에 점성 유체가 수용되는 제2공간부(212)를 가질 수 있다. Here, the housing part 200 may have a second space part 212 formed separately from the first space part 211 and the first space part 211 and accommodating viscous fluid therein.
제1축부(300)는 제1공간부(211)에 마련되고, 하우징부(200)의 회전중심을 이룰 수 있으며, 하우징부(200)와 독립적으로 회전할 수 있다.The first shaft part 300 may be provided in the first space part 211, may form a center of rotation of the housing part 200, and may rotate independently of the housing part 200.
또한, 제2축부(500)는 제2공간부(212)에 마련되고, 하우징부(200)와 독립적으로 회전하며 점성 유체에 의한 댐핑력을 제공받을 수 있다. In addition, the second shaft part 500 may be provided in the second space part 212, and may rotate independently of the housing part 200 and receive a damping force by viscous fluid.
그리고, 기어부(600)는 제1축부(300)에 결합되는 제1기어(610)와, 제2축부(500)에 결합되고 제1기어(610)와 기어 결합되어 제2축부(500)에 회전력을 전달하는 제2기어(620)를 가질 수 있다.In addition, the gear unit 600 is coupled to the first gear 610 and the second shaft portion 500, the gear portion 600 is coupled to the first gear 610 and the second shaft portion 500 It may have a second gear 620 for transmitting a rotational force to.
상세히, 하우징부(200)는 도어 회전장치(100)의 몸체를 형성할 수 있다. In detail, the housing part 200 may form a body of the door rotating apparatus 100.
하우징부(200)는 제1하우징(210)과 제2하우징(250)을 가질 수 있는데, 제1하우징(210)은 서로 분리되어 형성되는 제1공간부(211) 및 제2공간부(212)를 가질 수 있다. The housing part 200 may have a first housing 210 and a second housing 250, wherein the first housing 210 is formed to be separated from each other and the first space portion 211 and the second space portion 212. )
제1공간부(211)는 제1하우징(210)의 양단부를 통해 외측으로 개방되도록 형성될 수 있다. 즉, 제1공간부(211)는 제1하우징(210)을 길이 방향으로 관통하여 형성될 수 있다. The first space portion 211 may be formed to open to the outside through both ends of the first housing 210. That is, the first space 211 may be formed through the first housing 210 in the longitudinal direction.
그리고, 제2공간부(212)는 제1하우징(210)의 일단부를 통해 외측으로 개방되도록 형성될 수 있다. 즉, 제2공간부(212)는 제1하우징(210)에 홈의 형상으로 형성될 수 있다. 또한, 제2공간부(212)에는 점성 유체가 수용될 수 있다. 이때, 점성 유체는 오일일 수 있다. 제2공간부(212)가 홈의 형상으로 형성됨에 따라, 수용된 점성 유체가 제2공간부(212)의 일단부를 제외한 다른 부분을 통해 누출되는 것이 구조적으로 방지될 수 있다. The second space part 212 may be formed to open outwardly through one end of the first housing 210. That is, the second space 212 may be formed in the shape of the groove in the first housing 210. In addition, a viscous fluid may be accommodated in the second space 212. In this case, the viscous fluid may be oil. As the second space portion 212 is formed in the shape of a groove, leakage of the received viscous fluid through another portion except for one end of the second space portion 212 may be structurally prevented.
제2하우징(250)은 제1하우징(210)의 일측에 결합될 수 있으며, 일면이 개방된 형상을 가질 수 있다. 제2하우징(250)은 후술할 기어부(600)가 내측에 마련되도록 기어부(600)를 덮을 수 있으며, 이를 통해, 제2하우징(250)은 기어부(600)를 보호하고, 이물질이 유입되는 것을 방지할 수 있다. The second housing 250 may be coupled to one side of the first housing 210, and may have an open shape on one surface thereof. The second housing 250 may cover the gear unit 600 such that the gear unit 600, which will be described later, is provided on the inner side, and through this, the second housing 250 protects the gear unit 600, and foreign matter is Inflow can be prevented.
그리고, 제1축부(300)는 회전캠(310), 제1축(320), 슬라이딩캠(330) 및 탄성부재(340)를 가질 수 있다.In addition, the first shaft part 300 may have a rotary cam 310, a first shaft 320, a sliding cam 330, and an elastic member 340.
먼저, 회전캠(310)은 회전몸체(311)와 연장부(312)를 가질 수 있다. 연장부(312)는 회전캠(310)의 일단부를 형성하여 제1공간부(211)의 외측으로 돌출될 수 있으며, 회전몸체(311)는 회전캠(310)의 타단부를 형성하여 제1공간부(211)에 위치될 수 있다.First, the rotary cam 310 may have a rotary body 311 and the extension 312. The extension part 312 may form one end of the rotation cam 310 to protrude to the outside of the first space 211, and the rotation body 311 may form the other end of the rotation cam 310 to form a first end. It may be located in the space 211.
회전몸체(311)의 외측면은 제1공간부(211)의 내측면에 대응되는 형상으로 형성될 수 있는데, 예를 들면, 원통 형상을 가질 수 있다. 회전몸체(311)는 제1하우징(210)과 독립적으로 회전하도록 결합될 수 있다.The outer surface of the rotating body 311 may be formed in a shape corresponding to the inner surface of the first space portion 211, for example, may have a cylindrical shape. The rotating body 311 may be coupled to rotate independently of the first housing 210.
그리고, 회전몸체(311)의 일단부에는 제1캠(313)이 형성될 수 있다. 제1캠(313)은 회전몸체(311)의 원주방향을 따라 교대로 형성되는 복수의 제1산부(314) 및 제1골부(315)를 가질 수 있다. The first cam 313 may be formed at one end of the rotating body 311. The first cam 313 may have a plurality of first peaks 314 and first valleys 315 which are alternately formed along the circumferential direction of the rotary body 311.
여기서, 각각의 제1산부(314)는 및 각각의 제1골부(315)는 동일한 형상으로 형성될 수 있으며, 제1산부(314) 및 제1골부(315)는 각각 두 개가 형성될 수 있다. 또한, 각각의 제1산부(314) 및 제1골부(315)는 서로 대칭되도록 형성될 수 있으며, 제1산부(314) 및 제1골부(315)는 각각의 중심을 기준으로 대칭되도록 형성될 수 있다. 그리고, 제1산부(314)의 가장 높은 부분과 이웃하는 제1골부(315)의 가장 낮은 부분은 회전캠(310)의 중심을 기준으로 90도의 각도 간격을 이룰 수 있다. Here, each of the first mountain portion 314 and each of the first valley portion 315 may be formed in the same shape, and two first mountain portions 314 and the first valley portion 315 may be formed. . In addition, each of the first hill portion 314 and the first valley portion 315 may be formed to be symmetrical with each other, and the first hill portion 314 and the first valley portion 315 may be formed to be symmetric with respect to their respective centers. Can be. The highest portion of the first mountain portion 314 and the lowest portion of the neighboring first valley portion 315 may form an angular interval of 90 degrees with respect to the center of the rotation cam 310.
연장부(312)는 회전몸체(311)와 일체로 형성될 수 있다. 그리고, 연장부(312)는 외측면에 결합면(316)을 가질 수 있다. 결합면(316)은 바닥면이 평평하게 형성될 수 있으며, 브래킷(800)의 제1결합공(810)에 결합될 수 있다. 이때, 브래킷(800)과 연장부(312)의 사이에는 와셔(380)가 더 결합될 수 있다.The extension 312 may be integrally formed with the rotation body 311. In addition, the extension part 312 may have a coupling surface 316 on an outer surface thereof. The coupling surface 316 may have a flat bottom surface and may be coupled to the first coupling hole 810 of the bracket 800. At this time, the washer 380 may be further coupled between the bracket 800 and the extension part 312.
또한, 회전캠(310)의 중앙에는 축 방향으로 제1관통공(317)이 형성될 수 있다.In addition, a first through hole 317 may be formed in the center of the rotary cam 310 in the axial direction.
그리고, 제1축(320)은 제1공간부(211)에 제1하우징(210)의 길이 방향으로 마련될 수 있다. 제1축(320)은 일단부가 회전캠(310)의 제1관통공(317)에 결합될 수 있다. 이를 통해, 제1축(320)은 회전캠(310)과 일체로 회전될 수 있다.The first shaft 320 may be provided in the first space part 211 in the longitudinal direction of the first housing 210. One end of the first shaft 320 may be coupled to the first through hole 317 of the rotary cam 310. Through this, the first shaft 320 may be integrally rotated with the rotary cam 310.
또한, 슬라이딩캠(330)의 중앙에는 축 방향으로 제2관통공(331)이 형성될 수 있으며, 제1축(320)은 제2관통공(331)에 삽입될 수 있다. 제2관통공(331)의 내측지름은 제1축(320)의 외측지름보다 크게 형성될 수 있으며, 이를 통해, 슬라이딩캠(330)은 제1축(320)의 길이 방향으로 슬라이딩될 수 있다. 또한, 제1축(320)은 슬라이딩캠(330)과 독립적으로 회전할 수 있다.In addition, a second through hole 331 may be formed in the center of the sliding cam 330 in the axial direction, and the first shaft 320 may be inserted into the second through hole 331. The inner diameter of the second through hole 331 may be larger than the outer diameter of the first shaft 320, through which the sliding cam 330 may slide in the longitudinal direction of the first shaft 320. . In addition, the first shaft 320 may rotate independently of the sliding cam 330.
그리고, 슬라이딩캠(330)의 외면에는 원주 방향을 따라 미리 정해진 간격으로 슬라이딩 돌기(332)가 제1축(320)의 길이 방향으로 형성될 수 있다. 그리고, 제1공간부(211)의 내측면에는 슬라이딩 돌기(332)에 대응되도록 안내홈(213)이 형성될 수 있다. 슬라이딩 돌기(332)는 안내홈(213)에 결합될 수 있으며, 이에 따라, 슬라이딩캠(330)은 제1공간부(211)에서 회전하지 않으면서 제1축(320)의 길이 방향으로 이동할 수 있게 된다. 또한, 슬라이딩캠(330)은 제1하우징(210)과 연동하여 회전할 수 있게 된다.The sliding protrusion 332 may be formed on the outer surface of the sliding cam 330 at a predetermined interval along the circumferential direction in the longitudinal direction of the first shaft 320. In addition, the guide groove 213 may be formed on the inner surface of the first space 211 to correspond to the sliding protrusion 332. The sliding protrusion 332 may be coupled to the guide groove 213, so that the sliding cam 330 may move in the longitudinal direction of the first shaft 320 without rotating in the first space 211. Will be. In addition, the sliding cam 330 can rotate in conjunction with the first housing 210.
슬라이딩캠(330)은 회전캠(310)에 밀착될 수 있는데, 슬라이딩캠(330)에서 회전캠(310)의 제1캠(313)에 대향되는 일단부에는 제1캠(313)에 대응되는 제2캠(335)이 형성될 수 있다. The sliding cam 330 may be in close contact with the rotary cam 310, and the one end of the sliding cam 330 opposite to the first cam 313 of the rotary cam 310 may correspond to the first cam 313. The second cam 335 may be formed.
제2캠(335)은 제1캠(313)의 제1산부(314) 및 제1골부(315) 각각에 동시에 치합될 수 있는 제2골부(336) 및 제2산부(337)를 가질 수 있다. 이를 위해, 제2캠(335)은 제1캠(313)의 형상에 대응되도록 형성될 수 있다.The second cam 335 may have a second valley portion 336 and a second hill portion 337 that may be simultaneously engaged with each of the first hill portion 314 and the first valley portion 315 of the first cam 313. have. To this end, the second cam 335 may be formed to correspond to the shape of the first cam 313.
탄성부재(340)는 제1축(320)의 외측을 감싸도록 마련될 수 있는데, 예를 들면, 탄성부재(340)는 코일 스프링일 수 있다. 탄성부재(340)는 일단부가 슬라이딩캠(330)의 타단부에 접하도록 마련되고, 타단부는 제1공간부(211)에 형성된 걸림부(214)에 접하도록 마련될 수 있다. 이에 따라, 탄성부재(340)는 슬라이딩캠(330)을 회전캠(310) 방향으로 탄발 지지할 수 있다. The elastic member 340 may be provided to surround the outside of the first shaft 320. For example, the elastic member 340 may be a coil spring. One end of the elastic member 340 is provided to contact the other end of the sliding cam 330, the other end may be provided to contact the engaging portion 214 formed in the first space 211. Accordingly, the elastic member 340 may support the sliding cam 330 in the direction of the rotary cam 310.
그리고, 제1축(320)의 타단부는 제1공간부(211)의 외측으로 연장되어 마련될 수 있으며, 제1축(320)의 타단부는 제1기어(610)에 형성된 제3관통공(611)에 결합될 수 있다. 제1축(320)의 타단부에는 제1핀공(321)이 관통 형성될 수 있고, 제1기어(610)에는 제2핀공(612)이 관통 형성될 수 있으며, 제1핀공(321) 및 제2핀공(612)으로 제1결합핀(650)이 결합됨에 따라, 제1기어(610)는 제1축(320)과 일체로 회전할 수 있다. 즉, 회전캠(310), 제1축(320) 및 제1기어(610)는 일체로 회전할 수 있다.And, the other end of the first shaft 320 may be provided to extend to the outside of the first space 211, the other end of the first shaft 320 through the third through-hole formed in the first gear 610 May be coupled to the ball 611. The other end of the first shaft 320 may be formed through the first pin hole 321, the first gear 610 may be formed through the second pin hole 612, the first pin hole 321 and As the first coupling pin 650 is coupled to the second pin hole 612, the first gear 610 may rotate integrally with the first shaft 320. That is, the rotary cam 310, the first shaft 320 and the first gear 610 may be integrally rotated.
제1하우징(210)이 고정되고 회전캠(310)이 회전하는 경우, 회전캠(310)의 제1캠(313)이 회전되면서 슬라이딩캠(330)을 밀어내게 되는데, 여기서, 슬라이딩캠(330)은 슬라이딩 돌기(332)가 안내홈(213)에 결합되어 회전이 불가능한 상태이기 때문에, 제1축(320)의 길이 방향으로 이동하게 된다. 그리고, 회전캠(310)에 적용된 회전력이 제거되면, 탄성부재(340)의 탄발력에 의해 슬라이딩캠(330)은 회전캠(310) 방향으로 이동하게 되며, 이에 따라, 회전캠(310)은 반대 방향으로 회전할 수 있게 된다.When the first housing 210 is fixed and the rotary cam 310 is rotated, the first cam 313 of the rotary cam 310 is rotated to push the sliding cam 330, where the sliding cam 330 ) Is a sliding protrusion 332 is coupled to the guide groove 213, so that the rotation is impossible, it is moved in the longitudinal direction of the first shaft (320). Then, when the rotational force applied to the rotary cam 310 is removed, the sliding cam 330 is moved in the direction of the rotary cam 310 by the elastic force of the elastic member 340, accordingly, the rotary cam 310 It can be rotated in the opposite direction.
한편, 회전캠(310)이 고정되고 제1하우징(210)이 회전하는 경우, 제1하우징(210)과 함께 슬라이딩캠(330)이 회전하게 되는데, 회전캠(310)이 고정된 상태이므로, 슬라이딩캠(330)은 제1축(320)의 길이 방향으로 이동하게 된다. 그리고, 제1하우징(210)에 적용된 회전력이 제거되면, 탄성부재(340)의 탄발력에 의해 슬라이딩캠(330)은 회전캠(310) 방향으로 이동하게 되며, 이에 따라, 제1하우징(210)은 반대 방향으로 회전할 수 있게 된다.On the other hand, when the rotary cam 310 is fixed and the first housing 210 is rotated, the sliding cam 330 is rotated together with the first housing 210, since the rotary cam 310 is fixed, The sliding cam 330 moves in the longitudinal direction of the first shaft 320. Then, when the rotational force applied to the first housing 210 is removed, the sliding cam 330 is moved in the direction of the rotation cam 310 by the elastic force of the elastic member 340, accordingly, the first housing 210 ) Can rotate in the opposite direction.
그리고, 제2축부(500)는 제2축(510), 댐퍼부(520) 및 마개부(540)를 가질 수 있다.The second shaft part 500 may have a second shaft 510, a damper part 520, and a stopper part 540.
제2축(510)은 제2공간부(212)에 제1하우징(210)의 길이 방향으로 마련될 수 있다. 제2축(510)은 제1축(320)과 평행하게 마련될 수 있다. The second shaft 510 may be provided in the second space part 212 in the longitudinal direction of the first housing 210. The second shaft 510 may be provided in parallel with the first shaft 320.
그리고, 제2축(510)의 일단부는 제2공간부(212)의 바닥부에 형성된 결합홈(215)에 결합될 수 있다. 여기서, 결합홈(215)은 제2축(510)의 외측지름보다 큰 내측지름을 가지도록 형성될 수 있으며, 이를 통해, 제2축(510)은 결합홈(215)에 결합된 상태에서 회전이 가능할 수 있다.One end of the second shaft 510 may be coupled to the coupling groove 215 formed at the bottom of the second space 212. Here, the coupling groove 215 may be formed to have an inner diameter larger than the outer diameter of the second shaft 510, through which the second shaft 510 is rotated in a state coupled to the coupling groove 215 This may be possible.
또한, 제2축(510)의 타단부는 제2기어(620)에 형성된 제4관통공(621)에 결합될 수 있다. In addition, the other end of the second shaft 510 may be coupled to the fourth through hole 621 formed in the second gear 620.
그리고, 제2축(510)의 타단부에는 제3핀공(511)이 관통 형성될 수 있고, 제2기어(620)에는 제4핀공(622)이 관통 형성될 수 있으며, 제3핀공(511) 및 제4핀공(622)으로 제2결합핀(651)이 결합됨에 따라, 제2기어(620)는 제2축(510)과 일체로 회전할 수 있다. 즉, 제2축(510)은 제1하우징(210)과 독립적으로 회전이 가능하게 된다.In addition, a third pin hole 511 may be formed through the other end of the second shaft 510, a fourth pin hole 622 may be formed through the second gear 620, and a third pin hole 511 may be formed therethrough. As the second coupling pin 651 is coupled to the fourth pin hole 622, the second gear 620 may rotate integrally with the second shaft 510. That is, the second shaft 510 can be rotated independently of the first housing 210.
그리고, 댐퍼부(520)는 제2축(510)에 결합되어 제2축(510)과 함께 회전할 수 있다.In addition, the damper unit 520 may be coupled to the second shaft 510 to rotate together with the second shaft 510.
상세히, 댐퍼부(520)는 몸체(521) 및 블레이드(531)를 가질 수 있다.In detail, the damper portion 520 may have a body 521 and a blade 531.
몸체(521)는 축 방향으로 형성되는 제5관통공(523)을 가질 수 있다. 몸체(521)는 제5관통공(523)으로 제2축(510)이 결합됨으로써 제2축(510)과 일체로 회전할 수 있다.The body 521 may have a fifth through hole 523 formed in the axial direction. The body 521 may be integrally rotated with the second shaft 510 by coupling the second shaft 510 to the fifth through hole 523.
여기서, 몸체(521)는 밀착홈(524)과 유로홈(525)을 가질 수 있다.Here, the body 521 may have a close groove 524 and a flow path groove 525.
밀착홈(524)은 몸체(521)의 길이 방향으로 연장 형성될 수 있다. 밀착홈(524)은 몸체(521)의 길이 방향으로 형성되는 중앙홈(526)과, 중앙홈(526)의 양측에 각각 형성되는 제1밀착면(527) 및 제2밀착면(528)을 가질 수 있다.The close contact groove 524 may extend in the longitudinal direction of the body 521. The close contact groove 524 has a central groove 526 formed in the longitudinal direction of the body 521 and a first contact surface 527 and a second contact surface 528 respectively formed at both sides of the central groove 526. Can have.
유로홈(525)은 밀착홈(524)의 일부를 포함하도록 형성될 수 있는데, 구체적으로는, 제1밀착면(527)의 일부를 포함하도록 형성될 수 있다. 또한, 유로홈(525)은 밀착홈(524)보다 깊게 형성될 수 있으며, 중앙홈(526)과 연결되도록 형성될 수 있다. 유로홈(525)은 몸체(521)의 길이 방향을 따라 복수개가 형성될 수 있다.The flow path groove 525 may be formed to include a part of the contact groove 524, and specifically, may be formed to include a part of the first contact surface 527. In addition, the flow path groove 525 may be formed deeper than the close groove 524, it may be formed to be connected to the central groove 526. A plurality of flow path grooves 525 may be formed along the length direction of the body 521.
그리고, 블레이드(531)는 몸체(521)의 밀착홈(524)에 결합될 수 있다. In addition, the blade 531 may be coupled to the contact groove 524 of the body 521.
블레이드(531)는 밀착홈(524)의 제1밀착면(527)에 대응되도록 형성되는 제3밀착면(532)과, 제2밀착면(528)에 대응되도록 형성되는 제4밀착면(533)을 가질 수 있다. 제3밀착면(532) 및 제4밀착면(533)은 전체적으로 볼록한 형상으로 형성될 수 있다. 또한, 블레이드(531)는 몸체(521)읠 길이에 대응되는 길이를 가질 수 있다. The blade 531 has a third contact surface 532 formed to correspond to the first contact surface 527 of the contact groove 524 and a fourth contact surface 533 formed to correspond to the second contact surface 528. ) The third contact surface 532 and the fourth contact surface 533 may be formed in a convex shape as a whole. In addition, the blade 531 may have a length corresponding to the length of the body 521.
블레이드(531)는 밀착홈(524)에 결합되어 몸체(521)의 외측과 제2공간부(212)의 내주면 사이에 위치될 수 있으며, 밀착홈(524)에 걸려 몸체(521)와 함께 회전할 수 있다. 이때, 블레이드(531)는 밀착홈(524)과의 여유 공차를 가질 수 있다. 이에 따라, 블레이드(531)는 밀착홈(524)의 내측에서 원주 방향으로 이동하거나, 또는, 블레이드(531)의 길이 방향 축을 중심으로 좌우로 기울어지는 틸팅(Tilting)이 이루어질 수 있다. The blade 531 may be coupled to the tight groove 524 and positioned between the outer side of the body 521 and the inner circumferential surface of the second space part 212, and may be caught by the close groove 524 and rotate together with the body 521. can do. In this case, the blade 531 may have a clearance with the tight groove 524. Accordingly, the blade 531 may move in the circumferential direction from the inner side of the contact groove 524, or tilting may be inclined left and right about the longitudinal axis of the blade 531.
제2축(510)의 회전 시에는 몸체(521)의 밀착홈(524)에 결합된 블레이드(531)도 함께 회전하게 되는데, 이 경우, 블레이드(531)는 회전 방향의 전방에 수용된 점성 유체에 의해 가압될 수 있다. When the second shaft 510 is rotated, the blade 531 coupled to the contact groove 524 of the body 521 is also rotated together. In this case, the blade 531 is attached to the viscous fluid received in the front of the rotation direction. May be pressurized.
전술한 바와 같이 블레이드(531)는 밀착홈(524)과 공차를 가지고, 제3밀착면(532) 및 제4밀착면(533)이 볼록한 형상을 가지기 때문에, 점성 유체의 가압력에 의해 블레이드(531)는 전단부가 회전 방향의 후방으로 들리도록 틸팅될 수 있다. 여기서, 블레이드(531)의 전단부는 블레이드(531)의 회전 방향을 기준으로 블레이드(531)의 전방 부분을 의미한다.As described above, the blade 531 has a tolerance with the contact grooves 524, and the third contact surface 532 and the fourth contact surface 533 have convex shapes, so that the blade 531 is applied by the pressure of the viscous fluid. ) May be tilted such that the front end is lifted rearward in the direction of rotation. Here, the front end of the blade 531 means a front portion of the blade 531 based on the rotation direction of the blade 531.
블레이드(531)의 이러한 틸팅 방향은 제2축(510)의 회전 방향에 따라 반대로 나타날 수 있다. 블레이드(531)의 틸팅에 의해, 블레이드(531)의 제3밀착면(532) 및 제4밀착면(533)은 각각 밀착홈(524)의 제1밀착면(527) 및 제2밀착면(528)에 밀착되면서 점성 유체의 흐름을 차단할 수 있으며, 이를 통해, 제2축(510)의 회전을 방해하는 댐핑력을 제공받을 수 있다. This tilting direction of the blade 531 may be reversed depending on the rotation direction of the second axis 510. By tilting the blade 531, the third contact surface 532 and the fourth contact surface 533 of the blade 531 are respectively the first contact surface 527 and the second contact surface () of the contact groove 524. 528 may be in close contact with the flow of the viscous fluid, and through this, it may be provided with a damping force that prevents rotation of the second shaft 510.
블레이드(531)가 틸팅하여 제4밀착면(533)이 밀착홈(524)의 제2밀착면(528)에 밀착되는 경우, 제4밀착면(533)은 몸체(521)의 길이 방향으로 연속적으로 형성되기 때문에, 블레이드(531)와 몸체(521)의 사이를 통한 점성 유체의 흐름은 차단될 수 있으며, 이를 통해, 큰 댐핑력이 발생할 수 있다.When the blade 531 is tilted so that the fourth contact surface 533 is brought into close contact with the second contact surface 528 of the contact groove 524, the fourth contact surface 533 is continuous in the longitudinal direction of the body 521. Since it is formed as, the flow of the viscous fluid between the blade 531 and the body 521 can be blocked, through which a large damping force can occur.
반면에, 블레이드(531)가 틸팅하여 제3밀착면(532)이 밀착홈(524)의 제1밀착면(527)에 밀착되는 경우에는 점성 유체는 중앙홈(526)과 유로홈(525)을 통해 이동할 수 있기 때문에, 이 경우에는 상대적으로 낮은 댐핑력이 발생할 수 있게 된다.On the other hand, when the blade 531 is tilted so that the third contact surface 532 is in close contact with the first contact surface 527 of the contact groove 524, the viscous fluid is formed in the central groove 526 and the flow path groove 525. In this case, a relatively low damping force can occur.
결과적으로, 블레이드(531)는 회전 방향에 따라 다른 방향으로 틸팅하면서 유로홈(525)을 선택적으로 개폐할 수 있으며, 이를 통해, 크기가 다른 댐핑력이 발생할 수 있다.As a result, the blade 531 can selectively open and close the flow path groove 525 while tilting in a different direction according to the rotational direction, whereby a different damping force may occur.
블레이드(531)는 후술할 도어(920, 도 11 참조)가 개방되는 방향으로 회전 시, 제3밀착면(532)이 제1밀착면(527)에 밀착되도록 틸팅될 수 있으며, 이를 통해, 점성 유체가 유로홈(525)을 통해 이동하도록 할 수 있다. 또한, 블레이드(531)는 상기 도어(920)가 닫히는 방향으로 회전 시에는, 제4밀착면(533)이 제2밀착면(528)에 밀착되도록 틸팅되어 점성 유체의 흐름을 차단할 수 있다. The blade 531 may be tilted such that the third contact surface 532 comes into close contact with the first contact surface 527 when the blade 531 rotates in a direction in which the door 920 (see FIG. 11) to be described later opens. Fluid may be moved through the flow path groove 525. In addition, when the blade 531 rotates in the direction in which the door 920 is closed, the blade 531 may be tilted so that the fourth contact surface 533 is in close contact with the second contact surface 528 to block the flow of the viscous fluid.
그리고, 마개부(540)는 제2축(510)의 타단부에 결합될 수 있는데, 구체적으로는 제2기어(620)와 댐퍼부(520)의 사이에 마련될 수 있다. The stopper 540 may be coupled to the other end of the second shaft 510. Specifically, the stopper 540 may be provided between the second gear 620 and the damper 520.
마개부(540)의 중앙에는 축 방향으로 관통되는 제6관통공(541)이 형성될 수 있으며, 제6관통공(541)에는 제2축(510)이 삽입 결합될 수 있다. 제6관통공(541)의 내측지름은 제2축(510)의 외측지름보다 크게 형성될 수 있으며, 이에 따라, 마개부(540)가 제1하우징(210)에 결합된 상태에서 제2축(510)은 회전이 가능할 수 있다.A sixth through hole 541 penetrating in the axial direction may be formed in the center of the stopper 540, and the second shaft 510 may be inserted into and coupled to the sixth through hole 541. The inner diameter of the sixth through hole 541 may be larger than the outer diameter of the second shaft 510, and thus, the second shaft in the state in which the plug portion 540 is coupled to the first housing 210. 510 may be rotatable.
또한, 마개부(540)는 외측면에 제1나사산(542)을 가질 수 있으며, 제1나사산(542)은 제2공간부(212)의 내측면에 형성되는 제2나사산(216)에 나사 결합될 수 있다. 마개부(540)는 제2공간부(212)에 나사 결합되어 제2공간부(212)를 밀폐할 수 있다.In addition, the plug portion 540 may have a first screw thread 542 on the outer surface, the first screw thread 542 is screwed to the second screw thread 216 formed on the inner surface of the second space portion 212. Can be combined. The stopper 540 may be screwed to the second space 212 to seal the second space 212.
그리고, 마개부(540)에는 원주 방향으로 제1홈(543)이 형성될 수 있으며, 제1홈(543)에는 제1실링부재(544)가 결합될 수 있다. 제1실링부재(544)는 제2공간부(212)의 내측면에 밀착되어 제2공간부(212)에 수용된 점성 유체가 마개부(540)와 제2공간부(212)의 사이로 누출되는 것을 방지할 수 있다. 제1실링부재(544) 및 제1홈(543)은 복수개가 마련될 수 있다.The plug portion 540 may have a first groove 543 in the circumferential direction, and the first sealing member 544 may be coupled to the first groove 543. The first sealing member 544 is in close contact with the inner surface of the second space portion 212 so that the viscous fluid contained in the second space portion 212 leaks between the plug portion 540 and the second space portion 212. Can be prevented. A plurality of first sealing members 544 and first grooves 543 may be provided.
또한, 제2축(510)에서 마개부(540)가 결합되는 부분에는 제2홈(512)이 형성될 수 있으며, 제2홈(512)에는 제2실링부재(513)가 결합될 수 있다. 제2실링부재(513)는 마개부(540)의 제6관통공(541)의 내측면에 밀착될 수 있으며, 이를 통해, 점성 유체가 제6관통공(541)을 통해 누출되는 것을 방지할 수 있다. In addition, a second groove 512 may be formed in a portion of the second shaft 510 to which the stopper 540 is coupled, and a second sealing member 513 may be coupled to the second groove 512. . The second sealing member 513 may be in close contact with the inner surface of the sixth through hole 541 of the stopper 540, thereby preventing the viscous fluid from leaking through the sixth through hole 541. Can be.
마개부(540)의 상면에는 마개부(540)를 회전시키기 위한 회전용 부재(미도시)가 결합결 수 있는 제1체결홈(545)이 더 형성될 수 있다. 제1체결홈(545)은 원주 방향을 따라 일정 간격으로 다수개가 형성될 수 있다. A first fastening groove 545 may be further formed on the top surface of the stopper 540 to which a rotating member (not shown) for rotating the stopper 540 may be coupled. A plurality of first fastening grooves 545 may be formed at predetermined intervals along the circumferential direction.
그리고, 마개부(540)에는 주유홀(546)이 관통 형성될 수 있다. 주유홀(546)은 마개부(540)의 상면 및 하면을 관통하여 형성될 수 있다. 이에 따라, 마개부(540)가 제2공간부(212)에 결합된 후에도, 주유홀(546)을 통해 점성 유체는 제2공간부(212)로 공급될 수 있다.In addition, the plug portion 540 may be formed through the oil hole 546. The oil filling hole 546 may be formed to penetrate the upper and lower surfaces of the stopper 540. Accordingly, even after the plug portion 540 is coupled to the second space portion 212, the viscous fluid may be supplied to the second space portion 212 through the oil filling hole 546.
주유홀(546)에는 마개(547)가 결합될 수 있으며, 마개(547)는 주유홀(546)을 밀폐하여 제2공간부(212)에 수용된 점성 유체가 주유홀(546)을 통해 누출되지 않도록 할 수 있다. 마개(547)와 주유홀(546)은 나사 결합될 수 있으며, 마개(547)의 헤드에는 마개(547)를 회전시키기 위한 공구(미도시)가 결합될 수 있는 제2체결홈(548)이 형성될 수 있다. 여기서, 상기 공구는 렌치 등일 수 있다.A stopper 547 may be coupled to the oil filling hole 546, and the stopper 547 seals the oil filling hole 546 so that the viscous fluid contained in the second space part 212 does not leak through the oil filling hole 546. You can do that. The stopper 547 and the oil filling hole 546 may be screwed, and a second fastening groove 548 may be coupled to the head of the stopper 547 to which a tool (not shown) for rotating the stopper 547 may be coupled. Can be formed. Here, the tool may be a wrench or the like.
한편, 제2공간부(212)에는 밀착부(217)가 돌출 형성될 수 있다. 밀착부(217)는 제2공간부(212)의 원주 방향을 따라 미리 정해진 길이로 형성될 수 있다. 또한, 밀착부(217)의 외측면(218)은 댐퍼부(520)의 몸체(521)에 접하도록 형성될 수 있다. 즉, 밀착부(217)의 외측면(218)은 댐퍼부(520)의 몸체(521)의 외주 면에 대응되는 곡면을 가지도록 형성될 수 있다. 이에 따라, 밀착부(217)와 댐퍼부(520)의 몸체(521)의 사이를 통한 점성 유체의 이동이 제한될 수 있다.Meanwhile, the close contact portion 217 may protrude from the second space portion 212. The close contact portion 217 may be formed to have a predetermined length along the circumferential direction of the second space portion 212. In addition, the outer surface 218 of the contact portion 217 may be formed to contact the body 521 of the damper portion 520. That is, the outer surface 218 of the contact portion 217 may be formed to have a curved surface corresponding to the outer peripheral surface of the body 521 of the damper portion 520. Accordingly, the movement of the viscous fluid through the contact portion 217 and the body 521 of the damper portion 520 may be limited.
댐퍼부(520)의 블레이드(531)는 제2축(510)이 회전함에 따라, 제2공간부(212)에서 밀착부(217)가 형성되지 않은 공간에서 회전할 수 있게 된다. 밀착부(217)는 제2공간부(212)의 부피를 감소시켜 제2공간부(212)에 수용되는 점성 유체의 양을 줄일 수 있으며, 회전하는 블레이드(531)에 의해 가압되는 점성 유체에 의한 가압력이 블레이드(531)에 더욱 효율적으로 전달되도록 도울 수 있다.As the second shaft 510 rotates, the blade 531 of the damper portion 520 may rotate in a space where the close contact portion 217 is not formed in the second space portion 212. The adhesion part 217 may reduce the volume of the viscous fluid accommodated in the second space part 212 by reducing the volume of the second space part 212, and may be applied to the viscous fluid pressurized by the rotating blade 531. Pressure may help to be delivered to the blade 531 more efficiently.
그리고, 제2공간부(212)의 내주면에는 속도조절홈(219)이 형성될 수 있다. 속도조절홈(219)은 밀착부(217)에 대향되어 형성될 수 있는데, 속도조절홈(219)은 제2축(510)의 회전 방향을 따라 형성될 수 있다. 또한, 속도조절홈(219)은 미리 정해진 길이 및 폭을 가지도록 형성될 수 있다. 속도조절홈(219)은 내측에 공간을 형성하며, 따라서, 블레이드(531)의 외측면과의 사이에 공간을 형성하기 때문에, 속도조절홈(219)을 통해 점성 유체가 이동될 수 있다. In addition, a speed control groove 219 may be formed on the inner circumferential surface of the second space part 212. The speed adjusting groove 219 may be formed to face the contact portion 217, and the speed adjusting groove 219 may be formed along the rotation direction of the second shaft 510. In addition, the speed adjusting groove 219 may be formed to have a predetermined length and width. The speed adjusting groove 219 forms a space therein, and therefore, forms a space between the outer surface of the blade 531 and thus the viscous fluid can be moved through the speed adjusting groove 219.
속도조절홈(219)의 공간이 클수록 많은 양의 점성 유체가 이동 가능하므로, 댐퍼부(520)의 회전 속도가 빨라질 수 있다. 반대로, 속도조절홈(219)의 공간이 작을수록 댐퍼부(520)의 회전 속도가 느려질 수 있다. As the space of the speed control groove 219 is larger, a large amount of viscous fluid is movable, so that the rotational speed of the damper part 520 may be increased. On the contrary, the smaller the space of the speed adjusting groove 219, the slower the rotational speed of the damper portion 520.
댐퍼부(520)의 회전 속도는 속도조절홈(219)의 깊이 및 너비와, 댐퍼부(520)의 몸체(521)에 형성되는 유로홈(525)의 깊이 및 너비에 의해 조절될 수 있다. 더하여, 댐퍼부(520)의 회전 속도는 속도조절홈(219)의 길이에 따라 각도 구간별로 회전 속도가 다르게 조절될 수 있다.The rotational speed of the damper part 520 may be controlled by the depth and width of the speed control groove 219 and the depth and width of the flow path groove 525 formed in the body 521 of the damper part 520. In addition, the rotational speed of the damper unit 520 may be adjusted differently for each angular section according to the length of the speed control groove 219.
이하에서는 도어 회전장치의 작동예를 설명한다.Hereinafter, an operation example of the door rotating device will be described.
도 7 및 도 8은 본 발명의 일실시예에 따른 도어 회전장치의 제2축부의 작동예를 나타낸 평면예시도이고, 도 9는 본 발명의 일실시예에 따른 도어 회전장치의 제1축부의 작동예를 나타낸 정면예시도이고, 도 10은 본 발명의 일실시예에 따른 도어 회전장치와 브래킷이 결합 상태를 나타낸 분해사시도이고, 도 11은 본 발명의 일실시예에 따른 도어 회전장치가 냉장고에 결합된 상태를 나타낸 예시도이다. 여기서, 도 9는 도 7의 각 작동 상태에서 제1축부의 작동예를 나타낸 것이다.7 and 8 are planar views showing an operation example of the second shaft portion of the door rotating apparatus according to an embodiment of the present invention, Figure 9 is a first shaft portion of the door rotating apparatus according to an embodiment of the present invention 10 is an exploded perspective view showing an operation example, Figure 10 is an exploded perspective view showing a state in which the door rotating device and the bracket is coupled, Figure 11 is a refrigerator door rotating device according to an embodiment of the present invention Exemplary diagram showing a state coupled to. Here, FIG. 9 shows an operation example of the first shaft portion in each operating state of FIG.
도어 회전장치(100)는 도어가 구비된 모든 물품에 장착될 수 있으나, 이하에서는 편의상, 냉장고에 도어 회전장치(100)가 장착된 예로 설명한다.The door rotating apparatus 100 may be mounted on all articles provided with doors, but for convenience, the door rotating apparatus 100 is described as an example in which the door rotating apparatus 100 is mounted in the refrigerator.
먼저, 도 10 및 도 11에서 보는 바와 같이, 회전캠(310, 도 9 참조)의 연장부(312)가 브래킷(800)에 형성되는 제1결합공(810)에 결합됨에 따라, 도어 회전장치(100)는 브래킷(800)과 결합될 수 있다. First, as shown in FIGS. 10 and 11, as the extension part 312 of the rotary cam 310 (see FIG. 9) is coupled to the first coupling hole 810 formed in the bracket 800, the door rotating apparatus 100 may be coupled to the bracket 800.
브래킷(800)에는 제2결합공(820)이 형성될 수 있으며, 제2결합공(820)에 결합되는 체결부재(미도시)가 냉장고(900)의 본체(910)에 결합됨에 따라, 브래킷(800)은 냉장고(900)의 본체(910)에 고정된 상태로 유지될 수 있다.The bracket 800 may be formed with a second coupling hole 820, and as the coupling member (not shown) coupled to the second coupling hole 820 is coupled to the main body 910 of the refrigerator 900, the bracket The 800 may be fixed to the main body 910 of the refrigerator 900.
이때, 회전캠(310)의 연장부(312)는 브래킷(800)의 제1결합공(810)에 회전이 불가능하도록 결합된 상태이기 때문에, 회전캠(310), 제1축(320) 및 제1기어(610, 도 7 참조)는 고정된 상태를 유지하게 된다.At this time, since the extension portion 312 of the rotary cam 310 is coupled to the first coupling hole 810 of the bracket 800 so as not to rotate, the rotary cam 310, the first shaft 320 and The first gear 610 (see FIG. 7) is to be kept in a fixed state.
그리고, 하우징부(200)는 도어(920)의 내측에 결합될 수 있으며, 도어(920)가 회전함에 따라 연동하여 회전할 수 있다. 이때, 도어(920) 및 하우징부(200)는 제1축(320, 도 9 참조)을 중심으로 회전하게 된다.The housing 200 may be coupled to the inside of the door 920, and may rotate in conjunction with the door 920. In this case, the door 920 and the housing 200 are rotated about the first shaft 320 (see FIG. 9).
한편, 도 7의 (a) 및 도 9의 (a)를 포함하여 보는 바와 같이, 도어(920)가 본체(910)를 닫은 상태일 때, 제2공간부(212)에 수용된 점성 유체는 압력이 평형을 이루고 있다. 이 경우, 블레이드(531)는 밀착홈(524)에 틸팅이 되지 않은 상태일 수 있다. 여기서, 블레이드(531)가 틸팅되지 않은 상태란 블레이드(531)의 제3밀착면(532) 및 제4밀착면(533)이 밀착홈(524)의 제1밀착면(527) 및 제2밀착면(528)에 밀착되지 않은 상태를 의미할 수 있다. 그리고, 이 경우, 회전캠(310)의 제1캠(313)과 슬라이딩캠(330)의 제2캠(335)은 최대로 밀착되도록 치합된 상태일 수 있다. Meanwhile, as shown in FIGS. 7A and 9A, when the door 920 is in the state in which the main body 910 is closed, the viscous fluid contained in the second space part 212 is pressurized. This is in equilibrium. In this case, the blade 531 may not be tilted in the close contact groove 524. Here, the state where the blade 531 is not tilted means that the third contact surface 532 and the fourth contact surface 533 of the blade 531 adhere to the first contact surface 527 and the second contact surface of the contact groove 524. It may mean a state that is not in close contact with the surface 528. In this case, the first cam 313 of the rotary cam 310 and the second cam 335 of the sliding cam 330 may be in a state of being in close contact with each other.
그리고, 도어(920)가 본체(910)를 개방하도록 회전하게 되면, 하우징부(200)도 회전하게 된다. 도 7의 (b)에서 보는 바와 같이, 하우징부(200)가 일 방향으로 회전하게 되면 제2축부(500, 도 4 참조)는 하우징부(200)와 연동하여 회전 이동하기 때문에, 제1기어(610)와 결합된 제2기어(620)는 제1축(320)을 중심으로 회전 이동하게 된다. When the door 920 rotates to open the main body 910, the housing part 200 also rotates. As shown in FIG. 7B, when the housing part 200 rotates in one direction, since the second shaft part 500 (see FIG. 4) rotates in association with the housing part 200, the first gear The second gear 620 coupled to the 610 is rotated about the first shaft 320.
그리고, 제2기어(620)가 회전 이동됨에 따라, 제2축(510)도 회전하기 때문에 댐퍼부(520)는 제2축(510)을 중심으로 회전하게 된다. 즉, 하우징부(200)가 제1축(320)을 중심으로 회전하게 되면, 상기 제2축부는 제1축(320)을 중심으로 하는 회전 이동과 제2축(510)을 중심으로 하는 회전을 동시에 하게 된다.As the second gear 620 is rotated, the damper part 520 rotates about the second shaft 510 because the second shaft 510 also rotates. That is, when the housing part 200 rotates about the first axis 320, the second axis part rotates about the first axis 320 and rotates about the second axis 510. At the same time.
본 발명의 일실시예에서, 제1기어(610)와 제2기어(620)의 기어비(Gear Ratio)는 1일 수 있다. 즉, 제1기어(610) 및 제2기어(620)는 동일한 것일 수 있다. 기어비가 1인 경우, 하우징부(200)가 제1축(320)을 중심으로 일 방향으로 45도 회전하면, 제2기어(620)는 일 방향으로 45도 회전된 위치에서 제2축(510)을 중심으로 90도 회전될 수 있다. 그리고 이때, 댐퍼부(520)의 블레이드(531)는 속도조절홈(219)의 일단부 부근에 위치할 수 있다. In one embodiment of the present invention, the gear ratio of the first gear 610 and the second gear 620 may be one. That is, the first gear 610 and the second gear 620 may be the same. When the gear ratio is 1, when the housing part 200 rotates 45 degrees in one direction about the first shaft 320, the second gear 620 is rotated by 45 degrees in one direction. Can be rotated about 90 degrees. In this case, the blade 531 of the damper unit 520 may be located near one end of the speed control groove 219.
댐퍼부(520)가 회전하는 동안에 블레이드(531)의 회전 이동 방향의 전방 공간에 수용된 점성 유체에 의해 블레이드(531)의 제4밀착면(533)이 가압될 수 있다. 그리고, 점성 유체에 의해 제4밀착면(533)에 가해지는 가압력에 의해 블레이드(531)는 전단부가 상측으로 들리도록 틸팅될 수 있다. 이에 따라, 블레이드(531)의 제3밀착면(532)은 밀착홈(524)의 제1밀착면(527)에 밀착될 수 있으며, 제3밀착면(532)과 제1밀착면(527)의 사이를 통한 점성 유체의 이동은 차단될 수 있다. 그러나, 이 상태에서 유로홈(525)은 블레이드(531)에 의해 차단되지 않고 개방되기 때문에, 점성 유체는 유로홈(525)을 통해 블레이드(531)의 회전 이동 방향의 후방 공간으로 이동될 수 있다. 이에 따라, 댐퍼부(520)에 가해지는 댐핑력은 상대적으로 작게 적용되므로, 댐퍼부(520)는 비교적 수월하게 회전될 수 있다.While the damper part 520 is rotated, the fourth contact surface 533 of the blade 531 may be pressed by the viscous fluid accommodated in the front space in the rotational movement direction of the blade 531. In addition, the blade 531 may be tilted so that the front end portion is lifted by the pressing force applied to the fourth contact surface 533 by the viscous fluid. Accordingly, the third contact surface 532 of the blade 531 may be in close contact with the first contact surface 527 of the contact groove 524, the third contact surface 532 and the first contact surface 527. Movement of the viscous fluid through may be blocked. However, in this state, since the flow path groove 525 is opened without being blocked by the blade 531, the viscous fluid can be moved to the rear space in the rotational movement direction of the blade 531 through the flow path groove 525. . Accordingly, since the damping force applied to the damper portion 520 is applied relatively small, the damper portion 520 can be rotated relatively easily.
이 경우, 도 9의 (b)에서 보는 바와 같이, 슬라이딩캠(330)도 연동하여 제1축(320)을 중심으로 일 방향으로 회전하게 된다. 이때, 회전캠(310) 및 제1축(320)은 고정된 상태이므로, 하우징부(200)가 회전 시에 연동하여 회전하는 슬라이딩캠(330)은 제2캠(335)이 제1캠(313)과 슬라이딩됨에 따라 상측으로 이동하게 된다.In this case, as shown in FIG. 9B, the sliding cam 330 is also interlocked to rotate in one direction about the first axis 320. At this time, since the rotary cam 310 and the first shaft 320 is fixed, the sliding cam 330 that rotates in conjunction with the housing 200 when the rotation is rotated, the second cam 335 is the first cam ( 313 and the sliding is moved upward.
또한, 전술한 바와 같이, 제1캠(313)과 제2캠(335)의 산부 및 골부는 각각 90도의 각도 간격으로 형성되기 때문에, 이때 탄성부재(340)는 압축된 상태이게 된다.In addition, as described above, since the peaks and valleys of the first cam 313 and the second cam 335 are each formed at an angular interval of 90 degrees, the elastic member 340 is in a compressed state at this time.
한편, 상기 상태에서 하우징부(200)를 회전시키는 외력이 제거되면, 즉, 사용자가 도어(920)에서 손을 놓게 되면 탄성부재(340)의 탄성력이 슬라이딩캠(330)을 밀어 슬라이딩캠(330)은 하향 이동하게 된다. 따라서, 하우징부(200)는 제1축(320)을 중심으로 일 방향의 반대 방향으로 회전하게 되며, 따라서, 도어(920)는 닫히게 된다.On the other hand, when the external force for rotating the housing 200 in the above state is removed, that is, when the user releases the hand from the door 920, the elastic force of the elastic member 340 pushes the sliding cam 330 sliding cam 330 ) Will move downward. Therefore, the housing part 200 rotates in the opposite direction in one direction about the first shaft 320, and thus the door 920 is closed.
그리고, 도 7의 (c)에서 보는 바와 같이, 하우징부(200)가 최초 상태(도어가 닫힌 상태)에서 일 방향으로 90도 회전하게 되면, 제2기어(620)는 최초 상태를 기준으로 180도 회전하게 된다. 그리고, 이때, 댐퍼부(520)의 블레이드(531)는 속도조절홈(219)이 형성된 구간에서 회전할 수 있다. 따라서, 블레이드(531)의 회전 방향 전방에 수용된 점성 유체는 유로홈(525) 뿐만 아니라, 속도조절홈(219)을 통해서도 블레이드(531)의 회전 방향의 후방으로 이동할 수 있게 된다. 이에 따라, 댐핑력은 앞선 상태에서 보다 작게 발생되며, 댐퍼부(520)는 더욱 용이하게 회전이 가능해진다. And, as shown in Figure 7 (c), when the housing 200 is rotated 90 degrees in one direction in the initial state (door closed), the second gear 620 is 180 based on the initial state Will also rotate. In this case, the blade 531 of the damper unit 520 may rotate in a section in which the speed adjusting groove 219 is formed. Therefore, the viscous fluid accommodated in the front of the rotation direction of the blade 531 can move to the rear of the rotation direction of the blade 531 not only through the flow path groove 525, but also through the speed adjusting groove 219. Accordingly, the damping force is generated smaller than in the previous state, and the damper portion 520 can be more easily rotated.
또한, 도 9의 (c)에서 보는 바와 같이, 이때의 슬라이딩캠(330)은 최초 상태를 기준으로 90도 회전한 상태이다. 따라서, 이 상태에서 하우징부(200)가 어느 한 방향으로 회전이 되면 이후에는 사용자에 의한 외력이 제거되더라도 압축된 탄성부재(340)의 탄성력에 의해 슬라이딩캠(330)이 하향 이동하게 되어 하우징부(200)가 회전할 수 있게 된다.In addition, as shown in (c) of FIG. 9, the sliding cam 330 at this time is rotated 90 degrees with respect to the initial state. Therefore, when the housing 200 is rotated in one direction in this state, the sliding cam 330 is moved downward by the elastic force of the compressed elastic member 340 even after the external force is removed by the user. 200 may be rotated.
즉, 현 시점에서 사용자가 도어(920)를 닫는 방향으로 조금만 회전시키면 사용자가 도어(920)에서 손을 떼더라도, 도어(920)가 회전하여 닫힐 수 있게 된다. 또는, 현 시점에서 사용자가 도어(920)를 더욱 개방하는 방향으로 조금만 회전시키면 사용자가 도어(920)에서 손을 떼더라도, 도어(920)는 완전 개방(180도 회전)때까지 회전될 수 있다.That is, if the user rotates the door 920 a little in the direction of closing the present time, the door 920 may be rotated and closed even if the user releases the door 920. Alternatively, if the user rotates the door 920 slightly in the direction of opening at this point, even if the user releases the door 920, the door 920 may be rotated until it is fully opened (rotated 180 degrees). .
그리고, 도 7의 (d)에서 보는 바와 같이, 하우징부(200)가 최초 상태에서 일 방향으로 135도 회전하게 되면, 제2기어(620)는 270도 회전하게 된다. 그리고, 이때 댐퍼부(520)의 블레이드(531)는 속도조절홈(219)의 타단부 부분에 위치될 수 있다. 본 발명의 일실시예에서, 속도조절홈(219)은 하우징부(200)가 45~135도의 각도 범위에서 회전될 때, 블레이드(531)가 속도조절홈(219)의 범위 내에 위치되도록 형성될 수 있다. 이를 통해, 도어(920)가 45~135도 범위에 있을 때, 사용자는 도어를 보다 용이하게 회전시킬 수가 있다. 또한, 도어의 회전속도도 빨라질 수 있어 고급스러운 사용감을 제공할 수 있다.As shown in FIG. 7D, when the housing part 200 rotates 135 degrees in one direction in the initial state, the second gear 620 rotates 270 degrees. In this case, the blade 531 of the damper unit 520 may be located at the other end portion of the speed control groove 219. In one embodiment of the present invention, the speed adjusting groove 219 is formed so that the blade 531 is located within the range of the speed adjusting groove 219 when the housing 200 is rotated in an angle range of 45 ~ 135 degrees. Can be. This allows the user to rotate the door more easily when the door 920 is in the 45 to 135 degree range. In addition, the rotational speed of the door can also be increased to provide a luxurious feel.
원주 방향으로 형성되는 속도조절홈(219)의 길이는 다양하게 설계가 가능하며, 이를 통해, 도어의 개방 각도에 따라 도어의 회전 속도를 구간별로 조절할 수 있다. The length of the speed control groove 219 formed in the circumferential direction can be designed in various ways, through which the rotational speed of the door can be adjusted for each section according to the opening angle of the door.
이때, 도 9의 (d)에서 보는 바와 같이, 슬라이딩캠(330)은 탄성부재(340)의 탄발력에 의해 하향 이동되기 때문에, 사용자가 도어(920)에서 손을 떼더라도 도어(920)는 자동으로 회전될 수 있다.At this time, as shown in (d) of FIG. 9, since the sliding cam 330 is moved downward by the elastic force of the elastic member 340, even if the user releases the door 920, the door 920 is It can be rotated automatically.
한편, 도 8의 (a)에서 보는 바와 같이, 도어(920)가 본체(910)를 개방한 상태일 때, 제2공간부(212)에 수용된 점성 유체는 압력이 평형을 이루게 되며, 블레이드(531)는 밀착홈(524)에 틸팅이 되지 않은 상태로 있게 된다.On the other hand, as shown in (a) of FIG. 8, when the door 920 is in the open state of the main body 910, the viscous fluid accommodated in the second space part 212 is in equilibrium with the pressure, and the blade ( 531 is in a state that is not tilted in the tight groove 524.
그리고, 도 8의 (b) 및 (c)에서 보는 바와 같이, 도어(920)가 본체(910)를 닫는 방향으로 회전하게 되면 댐퍼부(520)가 제2축(510)을 중심으로 회전하게 되며, 블레이드(531)의 회전 이동 방향의 전방 공간에 수용된 점성 유체에 의해 블레이드(531)의 제3밀착면(532)이 가압될 수 있다. As shown in FIGS. 8B and 8C, when the door 920 rotates in the direction of closing the main body 910, the damper part 520 rotates about the second shaft 510. The third contact surface 532 of the blade 531 may be pressed by the viscous fluid accommodated in the front space in the rotational movement direction of the blade 531.
그리고, 점성 유체에 의해 제3밀착면(532)에 가해지는 가압력에 의해 블레이드(531)는 전단부가 상측으로 들리도록 틸팅될 수 있다. 이에 따라, 블레이드(531)의 제4밀착면(533)은 밀착홈(524)의 제2밀착면(528)에 밀착될 수 있으며, 제4밀착면(533)과 제2밀착면(528)의 사이를 통한 점성 유체의 이동은 차단될 수 있다. 그리고, 이 상태에서는 유로홈(525)을 통한 점성 유체의 이동도 차단되기 때문에, 댐퍼부(520)의 몸체와 블레이드(531)의 사이를 통한 점성 유체의 이동은 발생하지 않게 된다. In addition, the blade 531 may be tilted so that the front end portion is lifted by the pressing force applied to the third contact surface 532 by the viscous fluid. Accordingly, the fourth contact surface 533 of the blade 531 may be in close contact with the second contact surface 528 of the contact groove 524, the fourth contact surface 533 and the second contact surface 528. Movement of the viscous fluid through may be blocked. In this state, since the movement of the viscous fluid through the flow path groove 525 is also blocked, the movement of the viscous fluid between the body of the damper portion 520 and the blade 531 does not occur.
한편, 이 경우, 블레이드(531)는 속도조절홈(219)이 형성된 구간에서 회전하기 때문에, 블레이드(531)의 회전 방향 전방에 수용된 점성 유체는 속도조절홈(219)을 통해서 블레이드(531)의 회전 방향의 후방으로 이동할 수 있게 된다. On the other hand, in this case, since the blade 531 rotates in the section in which the speed adjusting groove 219 is formed, the viscous fluid received in the front of the rotation direction of the blade 531 passes through the speed adjusting groove 219 of the blade 531. It is possible to move backward in the direction of rotation.
그리고, 도 8의 (d)에서 보는 바와 같이 도어(920)가 본체(910)를 밀폐하도록 회전하는 45도 각도 구간에서는 블레이드(531)가 속도조절홈(219)이 형성되지 않은 구간에서 회전하게 된다. 따라서, 이 구간에서는 블레이드(531)의 회전 이동 방향의 전방 공간에 수용된 점성 유체는 블레이드(531)의 외주면과 제2공간부(212)의 내측면과의 사이로만 이동할 수 있게 된다. 이때, 블레이드(531)의 외주면과 제2공간부(212)의 내측면과의 사이 틈새는 미세하기 때문에 점성 유체의 유량이 적게 되므로, 제2축(510)의 회전은 천천히 이루어지게 된다.In addition, as shown in (d) of FIG. 8, the blade 531 rotates in the section in which the speed adjusting groove 219 is not formed in the 45 degree angle section in which the door 920 rotates to seal the main body 910. do. Therefore, in this section, the viscous fluid contained in the front space in the rotational movement direction of the blade 531 can move only between the outer circumferential surface of the blade 531 and the inner surface of the second space portion 212. At this time, since the clearance between the outer circumferential surface of the blade 531 and the inner surface of the second space portion 212 is minute, the flow rate of the viscous fluid is reduced, so that the rotation of the second shaft 510 is made slowly.
즉, 도어(920)가 본체(910)를 개방하도록 회전하는 경우보다 밀폐하도록 회전하는 경우에 상대적으로 큰 댐핑력이 발생하게 되며, 이는, 도어(920)의 급격한 회전을 방지함으로써 안전성이 개선될 수 있다. 반면에, 도어(920)가 열리는 방향으로 회전할 때는 점성 유체에 의한 댐핑력이 작아지기 때문에, 도어(920)를 빨리 개방할 수 있어 사용자 편의성을 개선할 수 있다.That is, a relatively large damping force is generated when the door 920 is rotated to be closed than when the door 920 is rotated to open the main body 910, which may improve safety by preventing sudden rotation of the door 920. Can be. On the other hand, when the door 920 rotates in the open direction, the damping force due to the viscous fluid is reduced, so that the door 920 can be opened quickly, thereby improving user convenience.
뿐만 아니라, 도어(920)의 회전 각도 구간에 따라 댐핑력이 다르게 발생할 수 있기 때문에, 도어의 회전 속도가 회전 구간별로 조절될 수 있다.In addition, since the damping force may be generated differently according to the rotation angle section of the door 920, the rotation speed of the door may be adjusted for each rotation section.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is represented by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention.

Claims (12)

  1. 제1공간부와, 상기 제1공간부와 분리 형성되고 내측에 점성 유체가 수용되는 제2공간부를 가지는 하우징부; A housing part having a first space part and a second space part formed separately from the first space part and accommodating viscous fluid therein;
    상기 제1공간부에 마련되고, 상기 하우징부의 회전중심을 이루며, 상기 하우징부와 독립적으로 회전하는 제1축부; A first shaft part provided in the first space part, forming a center of rotation of the housing part, and rotating independently of the housing part;
    상기 제2공간부에 마련되고, 상기 하우징부와 독립적으로 회전하며 상기 점성 유체에 의한 댐핑력을 제공받는 제2축부; 그리고 A second shaft part provided in the second space part and rotating independently of the housing part and provided with a damping force by the viscous fluid; And
    상기 제1축부에 결합되는 제1기어와, 상기 제2축부에 결합되고 상기 제1기어와 기어 결합되어 상기 제2축부에 회전력을 전달하는 제2기어를 가지는 기어부를 포함하는 도어 회전장치.And a gear portion having a first gear coupled to the first shaft portion, and a second gear coupled to the second shaft portion and gear-coupled with the first gear to transmit rotational force to the second shaft portion.
  2. 제1항에 있어서, The method of claim 1,
    상기 제1축부는 The first shaft portion
    일단부는 상기 하우징부의 외측으로 연장되고, 상기 제1공간부에 위치되는 타단부에는 제1캠이 형성되며, 상기 하우징부와 독립적으로 회전되도록 마련되는 회전캠과, One end portion is extended to the outside of the housing portion, the other end is located on the first space portion is formed with a first cam, the rotary cam is provided to rotate independently of the housing portion,
    상기 제1공간부에 상기 하우징부의 길이 방향으로 마련되고, 일단부는 상기 회전캠에 결합되고 타단부는 상기 제1기어에 결합되는 제1축과, A first shaft provided in the first space in the longitudinal direction of the housing part, one end of which is coupled to the rotary cam and the other end of which is coupled to the first gear;
    상기 제1축에 결합되어 상기 제1축의 길이 방향으로 슬라이딩되고, 상기 제1캠에 대향되는 일단부에는 상기 제1캠에 대응되는 제2캠이 형성되는 슬라이딩캠과, A sliding cam coupled to the first shaft and sliding in a longitudinal direction of the first shaft, and having a second cam corresponding to the first cam at one end thereof facing the first cam;
    상기 제1축의 외측을 감싸도록 마련되고, 일단부는 상기 슬라이딩캠의 타단부에 접하고 타단부는 상기 제1공간부에 형성된 걸림부에 접하여 상기 슬라이딩캠을 상기 회전캠 방향으로 탄발 지지하는 탄성부재를 가지는 것인 도어 회전장치.An elastic member provided to surround the outer side of the first shaft, one end of which is in contact with the other end of the sliding cam, and the other end of which is in contact with the engaging portion formed in the first space, to elastically support the sliding cam in the direction of the rotation cam; Door rotator to have.
  3. 제2항에 있어서, The method of claim 2,
    상기 슬라이딩캠의 외면에는 원주 방향을 따라 미리 정해진 간격으로 슬라이딩 돌기가 상기 제1축의 길이방향으로 형성되고, 상기 제1공간부의 내측면에는 상기 슬라이딩 돌기가 결합되는 안내홈이 형성되는 것인 도어 회전장치.Door rotation is formed on the outer surface of the sliding cam at a predetermined interval along the circumferential direction in the longitudinal direction of the first axis, the guide groove coupled to the sliding projection is formed on the inner surface of the first space portion. Device.
  4. 제2항에 있어서, The method of claim 2,
    상기 제1캠은 원주 방향을 따라 교대로 형성되는 복수의 제1산부 및 제1골부를 가지는 것인 도어 회전장치.The first cam has a plurality of first hill and the first valley formed alternately along the circumferential direction door rotating apparatus.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제2캠은 상기 제1산부 및 상기 제1골부 각각에 동시에 치합되는 제2골부 및 제2산부를 가지는 것인 도어 회전장치.And the second cam has a second valley and a second hill that are simultaneously engaged with each of the first hill and the first valley.
  6. 제1항에 있어서, The method of claim 1,
    상기 제2축부는 The second shaft portion
    상기 제2공간부에 상기 하우징부의 길이 방향으로 마련되되 일단부는 상기 제2공간부의 바닥부에 형성된 결합홈에 결합되고, 타단부는 상기 제2기어에 결합되어 상기 하우징부와 독립적으로 회전되는 제2축과, The second space is provided in the longitudinal direction of the housing portion, one end is coupled to the coupling groove formed in the bottom portion of the second space portion, the other end is coupled to the second gear is rotated independently of the housing portion With 2 axes,
    상기 제2축에 결합되어 상기 제2축과 연동하여 회전하면서 상기 제2공간부에 수용된 점성 유체를 가압하는 댐퍼부와, A damper unit coupled to the second shaft to pressurize the viscous fluid contained in the second space while rotating in association with the second shaft;
    상기 제2축의 타단부에 결합되어 상기 점성 유체가 누출되지 않도록 상기 제2공간부를 막는 마개부를 가지는 것인 도어 회전장치.And a stopper coupled to the other end of the second shaft to close the second space so that the viscous fluid does not leak.
  7. 제6항에 있어서, The method of claim 6,
    상기 댐퍼부는 The damper part
    상기 제2축에 결합되어 상기 제2축과 함께 회전하고, 상기 제2축의 길이 방향으로 연장 형성되는 밀착홈 및 상기 밀착홈의 일부를 포함하고 상기 밀착홈보다 깊게 형성되어 상기 점성 유체가 이동하도록 유로를 형성하는 유로홈을 가지는 몸체와, It is coupled to the second axis and rotates together with the second axis, including a close contact groove and a portion formed in the longitudinal direction of the second axis and formed deeper than the close contact groove to move the viscous fluid A body having a flow path groove forming a flow path,
    상기 밀착홈에 결합되고, 상기 몸체의 회전 시에 상기 점성 유체에 의해 가압되어 상기 몸체의 회전 방향의 후방으로 전단부가 들리도록 틸팅(Tilting)되면서 상기 유로홈을 선택적으로 개폐하는 블레이드를 가지는 것인 도어 회전장치.It is coupled to the close groove, having a blade that is pressed by the viscous fluid during the rotation of the body to selectively open and close the flow path groove while tilting (tilting) to hear the front end portion in the rear of the rotation direction of the body Door rotator.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 밀착홈은 The close contact groove
    상기 몸체의 길이 방향으로 형성되는 중앙홈과, 상기 중앙홈의 양측에 각각 형성되는 제1밀착면 및 제2밀착면을 가지고, 상기 유로홈은 상기 제1밀착면의 일부를 포함하고 상기 중앙홈과 연결되도록 형성되는 것인 도어 회전장치.It has a central groove formed in the longitudinal direction of the body, and the first contact surface and the second contact surface respectively formed on both sides of the central groove, the flow path groove includes a portion of the first contact surface and the center groove Door rotating device is formed to be connected to.
  9. 제8항에 있어서, The method of claim 8,
    상기 블레이드는 The blade is
    상기 블레이드가 일방향으로 틸팅 시 상기 제1밀착면에 밀착되는 제3밀착면과, 타방향으로 틸팅 시 상기 제2밀착면에 밀착되는 제4밀착면을 가지는 것인 도어 회전장치.And a third contact surface closely contacting the first contact surface when the blade is tilted in one direction and a fourth contact surface closely contact the second contact surface when the blade is tilted in the other direction.
  10. 제7항에 있어서, The method of claim 7, wherein
    상기 제2공간부에는 상기 제2공간부의 원주방향을 따라 미리 정해진 길이를 가지고, 외측면은 상기 몸체에 접하도록 형성되는 밀착부가 돌출 형성되는 것인 도어 회전장치.The second space portion has a predetermined length along the circumferential direction of the second space portion, the outer surface is a door rotating device is formed in contact with the protruding portion formed to contact the body.
  11. 제10항에 있어서, The method of claim 10,
    상기 제2공간부의 내주면에는 상기 제2축의 회전방향을 따라 미리 정해진 길이 및 폭을 가지는 속도조절홈이 상기 밀착부에 대향되어 형성되는 것인 도어 회전장치.The inner circumferential surface of the second space portion is a door rotating device having a speed adjusting groove having a predetermined length and width in the rotational direction of the second axis facing the close contact portion.
  12. 제1항에 있어서, The method of claim 1,
    상기 하우징부는 상기 제1공간부 및 상기 제2공간부를 가지는 제1하우징과, 내측에 상기 기어부가 마련되도록 상기 제1하우징에 결합되는 제2하우징을 가지는 것인 도어 회전장치.And the housing part has a first housing having the first space part and the second space part, and a second housing coupled to the first housing so that the gear part is provided inside.
PCT/KR2015/002637 2014-10-21 2015-03-18 Door rotating apparatus WO2016064047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0142939 2014-10-21
KR20140142939 2014-10-21

Publications (1)

Publication Number Publication Date
WO2016064047A1 true WO2016064047A1 (en) 2016-04-28

Family

ID=55761064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002637 WO2016064047A1 (en) 2014-10-21 2015-03-18 Door rotating apparatus

Country Status (2)

Country Link
KR (1) KR101643768B1 (en)
WO (1) WO2016064047A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111583483A (en) * 2020-05-22 2020-08-25 袁贵军 Intelligent access control system of unattended substation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102241983B1 (en) * 2019-10-16 2021-04-20 피에이치에이 주식회사 Damper type auto door closure device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452459B1 (en) * 2001-12-31 2004-10-12 세원정밀주식회사 Rotary type oil damper
JP2006028917A (en) * 2004-07-16 2006-02-02 Nifco Inc Pull-in lock mechanism in stop position of opening/closing operation body
KR100915101B1 (en) * 2009-01-19 2009-09-03 주식회사 에이오텍 Hinge with rotary damper
KR101249742B1 (en) * 2011-12-07 2013-04-02 신병철 Hinge equipped with fluid pressure damper
KR101343915B1 (en) * 2012-02-02 2013-12-20 동우정밀(주) A single hinge damping device for a door of electric home appliances

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610395Y2 (en) 1987-05-06 1994-03-16 ヤマハ株式会社 Keyboard lid open / close device for keyboard instruments
JPH06659Y2 (en) * 1988-02-23 1994-01-05 株式会社ニフコ Damper
KR100414520B1 (en) 2001-05-07 2004-01-07 세원정밀주식회사 Rotary type oil damper
KR20090112007A (en) * 2008-04-23 2009-10-28 주식회사 엠티엑스하이브리드 Hinge
KR20100006762A (en) * 2008-07-10 2010-01-21 주식회사 엠티엑스하이브리드 Hinge and door assembly using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452459B1 (en) * 2001-12-31 2004-10-12 세원정밀주식회사 Rotary type oil damper
JP2006028917A (en) * 2004-07-16 2006-02-02 Nifco Inc Pull-in lock mechanism in stop position of opening/closing operation body
KR100915101B1 (en) * 2009-01-19 2009-09-03 주식회사 에이오텍 Hinge with rotary damper
KR101249742B1 (en) * 2011-12-07 2013-04-02 신병철 Hinge equipped with fluid pressure damper
KR101343915B1 (en) * 2012-02-02 2013-12-20 동우정밀(주) A single hinge damping device for a door of electric home appliances

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111583483A (en) * 2020-05-22 2020-08-25 袁贵军 Intelligent access control system of unattended substation

Also Published As

Publication number Publication date
KR101643768B1 (en) 2016-07-29
KR20160046692A (en) 2016-04-29

Similar Documents

Publication Publication Date Title
WO2012153953A2 (en) Rotary type damper
CN106312669B (en) Chuck apparatus
US7107649B2 (en) Hinge device
WO2019172592A1 (en) Damping hinge module for refrigerator door
WO2018084654A1 (en) Refrigerator
WO2015072793A1 (en) Refrigerator
WO2016064047A1 (en) Door rotating apparatus
WO2011065597A1 (en) Hinge apparatus for a door
WO2017111352A1 (en) Washing machine
WO2013109005A1 (en) Electronic control valve for variable capacity compressor
WO2015008916A2 (en) Flow path switching valve
WO2017007063A1 (en) Multiway switch valve
WO2016017949A1 (en) Drum assembly having pulp discharge control device, and juicer including same
WO2016178530A1 (en) Structure of non-interference front-surface opening/closing-type frame
WO2013154332A1 (en) Door hinge device
KR102137234B1 (en) Communication cable multi-fixing device
WO2021149873A1 (en) Window/door assembly having ventilation function and horizontal sealing function
WO2021133070A1 (en) Roll joint
WO2013122317A1 (en) Check valve driving device for injecting gas
WO2015144034A1 (en) Damping rotating-shaft mechanism with auto compensation
WO2017196113A1 (en) Closer apparatus
WO2013118924A1 (en) Free-stop hinge module of folder type portable terminal
WO2018143551A1 (en) Door closer
WO2020214014A1 (en) Home appliance including knob assembly
WO2021261738A1 (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851948

Country of ref document: EP

Kind code of ref document: A1