WO2016064035A1 - Highly conductive transparent electrode using co2 laser and near infrared ray, and manufacturing method therefor - Google Patents

Highly conductive transparent electrode using co2 laser and near infrared ray, and manufacturing method therefor Download PDF

Info

Publication number
WO2016064035A1
WO2016064035A1 PCT/KR2015/001045 KR2015001045W WO2016064035A1 WO 2016064035 A1 WO2016064035 A1 WO 2016064035A1 KR 2015001045 W KR2015001045 W KR 2015001045W WO 2016064035 A1 WO2016064035 A1 WO 2016064035A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
thin film
laser
manufacturing
near infrared
Prior art date
Application number
PCT/KR2015/001045
Other languages
French (fr)
Korean (ko)
Inventor
고중혁
박상욱
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Publication of WO2016064035A1 publication Critical patent/WO2016064035A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a highly conductive transparent electrode and a method for manufacturing the same using a CO 2 laser and near infrared rays, and more particularly, to a transparent electrode manufactured by two-step optical annealing and a method of manufacturing the same.
  • the stress of the thin film or the thick film is increased during the process, thereby increasing the stress of the thin film, thereby deteriorating the electrical and optical properties.
  • annealing to remove the stress on the thin film / thick film.
  • Conventional annealing processes applied to transparent electrodes or electronic materials include a thermal annealing process that applies thermal energy and an optical annealing process that applies optical energy, and optical annealing that applies optical energy is frequently used due to the accuracy and speed of the process. .
  • oxide transparent electrodes such as ITO and ZnO need to be energized at a high temperature during or after the fabrication process, but crystallinity is increased to obtain a thin film having a desired level.
  • the wavelength is determined according to the source to be applied, the depth of penetration is also determined, thereby affecting only a certain thickness, and also the energy is inevitably limited.
  • Korean Patent No. 10-0740124 describes an amorphous silicon formed on a substrate by overlapping scanning of a continuous oscillation laser beam in the red to near infrared region (600 to 900 nm) and a pulsed laser beam in the ultraviolet region (550 to 100 nm) from visible light. The point of changing a thin film into a silicon thin film of a polycrystalline state is disclosed.
  • the present invention proposes a highly conductive transparent electrode using a CO 2 laser and near-infrared rays and a method of manufacturing the same that can grow and stabilize the thin film crystals without high temperature heat treatment. .
  • a method for manufacturing a transparent electrode using a two-step optical annealing comprising: (a) irradiating a CO2 laser to the transparent electrode thin film; And (b) irradiating near infrared rays for a predetermined time after the CO2 laser irradiation, wherein the crystal of the transparent electrode thin film is grown by the CO2 laser irradiation, and the crystal is grown by the near infrared irradiation.
  • a method for manufacturing a transparent electrode wherein the thin film is stabilized.
  • the CO2 laser may be irradiated while moving at a predetermined moving speed.
  • the transparent electrode thin film may be at least one of ITO, ZnO, Al doped ZnO, Ga doped ZnO, In and Al doped ZnO, and preferably at least one of In and Al doped ZnO. have.
  • the near infrared ray may have a wavelength of 750 to 1400 nm.
  • a transparent electrode manufactured by the above method is provided.
  • FIG. 1 is a view for explaining a CO2 laser irradiation process according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a two-step optical annealing process of CO 2 laser irradiation and near infrared irradiation.
  • Figure 3 is a view showing the XRD analysis results according to the optical annealing treatment conditions of In-Al ZnO thin film.
  • FIG. 4 is a diagram illustrating residual stresses according to optical annealing conditions of an In—Al ZnO thin film.
  • FIG 5 is a view showing a surface structure change according to the optical annealing treatment conditions of the In-Al ZnO thin film.
  • FIG. 6 is a view showing the size of the crystal calculated using FIG. 3 and FIG.
  • FIG. 7 is a view showing a change in electrical characteristics according to the optical annealing conditions of the In-Al ZnO thin film.
  • FIG 8 is a view showing a change in transmittance in the visible light region (350 ⁇ 800nm) according to the optical annealing treatment conditions of the In-Al ZnO thin film.
  • FIG. 9 illustrates band gap energy according to optical annealing treatment conditions calculated using the transmittance change of FIG. 8.
  • FIG. 10 is a view showing a figure of merit (figure of merit) for confirming the efficiency of the transparent electrode.
  • Transparent conductive oxide thin film is a material mainly used as an electrode of a display device or a solar cell device.
  • ITO is mainly used, but recently ZnO (AZO) and Ga doped with ZnO and Al are used.
  • ZnO, In and Al doped ZnO has been proposed as a substitute material for ITO.
  • a low annealing temperature is required to manufacture a flexible device, and a low annealing temperature is required for polyethylene naphtahlate (PEN) and polyethylene terephthalate (PET) used as substrates of the device. Therefore, optical annealing is necessary.
  • PEN polyethylene naphtahlate
  • PET polyethylene terephthalate
  • the present invention proposes a two-step optical annealing process that can improve the electro-optical properties while maintaining a low temperature of the transparent electrode.
  • a long wavelength CO 2 laser is irradiated onto the thin film.
  • the transparent electrode according to an embodiment of the present invention may be at least one of ITO, ZnO, ZnO doped with Al, ZnO doped with Ga, ZnO doped with In and Al, preferably In and Al doped ZnO.
  • the CO 2 laser is a laser that emits high power continuous wave (CW) or pulses.
  • the composition of CO 2 , nitrogen, and helium is 1: 1: 8 and has a wavelength of 10600 nm.
  • the CO 2 laser penetrates by the depth of the transparent electrode thin film to greatly increase the size of the grain (grain).
  • the spot diameter, the moving speed, the moving distance and the power of the irradiation device of the CO 2 laser may be preset.
  • near infrared Near Infra-red
  • near infrared Near Infra-red
  • the wavelength of the near infrared ray used in the near infrared irradiation step may be 750 to 1400nm.
  • the surface of the thin film is stabilized by the near-infrared treatment as described above.
  • crystals in the transparent electrode thin film are largely and densely formed to stabilize the transparent electrode thin film.
  • the transparent electrode manufactured according to the present invention has a residual stress, a defect decreases as the crystal grows, electrical characteristics are greatly improved, and a high transmittance characteristic.
  • a ZnO (InAl-ZnO) transparent electrode was prepared by doping a small amount of In and Al onto a glass substrate using a Sol-Gel process.
  • Zinc acetate dihydrate [Zn (CH3COO) 2 ⁇ 2H 2 O], aluminum chloride hexahydrate (AlCl 3 ⁇ 6H 2 O), and indium chloride (InCl 3 ) powder, stabilizer monoethanolamine (MEA) In and Al were respectively doped at a rate of 1.5 wt.% To prepare an InAl-ZnO solution at 60 ° C.
  • the prepared solution was deposited for 20 seconds at 3000 rpm using a spin coationg process and then dried for 15 minutes on a hot plate at 350 ° C. The above process was repeated six times to control the deposition thickness.
  • the manufactured InAl-ZnO transparent electrode was thinned through a sintering process.
  • a two-step optical post-treatment process was introduced. First, a long wavelength CO 2 laser of 10,640 nm was sprayed onto the thin film. The laser spot was sprayed on the film at a fixed distance of 2 mm, moving speed of 1.4 mm / s, moving distance of 40 mm, and laser power of 16 W.
  • the second optical treatment was applied to the surface for 10 minutes using near-infrared light with a short wavelength of 750-1400 nm.
  • FIG. 1 is a view for explaining a CO 2 laser irradiation process according to an embodiment of the present invention.
  • the CO 2 laser irradiation process has a predetermined laser spot and is irradiated at a predetermined moving speed and distance in one axial direction (eg, x-axis direction).
  • the CO 2 laser spot was 2 mm
  • the moving speed was 1.4 mm / s
  • the moving distance was 40 mm by x, y axis and irradiated with the CO 2 laser.
  • FIG. 2 is a view for explaining a two-step optical annealing process of CO 2 laser irradiation and near-infrared irradiation.
  • the CO 2 laser having a long wavelength of 10,640 nm penetrates into the depth of the thin film to grow crystals largely, and the surface of the thin film is stabilized by irradiation of NIR having a short wavelength of 750 to 1400 nm.
  • FIG 3 is a view showing the XRD analysis results according to the optical annealing treatment conditions of the In-Al ZnO thin film.
  • FIG. 3 shows no post-treatment (As grown), and a two-step optical annealing process of CO 2 laser and near-infrared irradiation according to the present embodiment (NIR 80% / CO 2 Laser).
  • NIR 80% / CO 2 Laser a two-step optical annealing process of CO 2 laser and near-infrared irradiation according to the present embodiment
  • FIG. 4 is a diagram illustrating residual stresses according to optical annealing conditions of an In—Al ZnO thin film.
  • FIG. 5 is a view showing a surface structure change according to the optical annealing treatment conditions of In-Al ZnO thin film.
  • the thin film a has a very small crystal size and is not grown.
  • the thin film (b) subjected to near-infrared irradiation only slightly grew in crystal size, and the thin film (c) subjected to CO 2 laser treatment had a large crystal size, but crystals were not densely formed.
  • the thin film (d) subjected to the optical annealing process of the CO 2 laser and near-infrared radiation according to the present embodiment can be seen that the crystal is large and dense.
  • FIG. 6 is a diagram illustrating the size of a crystal calculated using FIGS. 3 and 5.
  • (0.1540 nm) is the x-ray wavelength of the CuK ⁇ source
  • is the Bragg angle
  • K is a fixed value of 0.9 as a constant
  • B is the half-angle width of the XRD diffraction.
  • the size of the crystal calculated using Fig. 3 and Fig. 5 is a two-step optical according to this embodiment, rather than a thin film without any post-treatment and a one-step optical treatment using only one of CO 2 laser and near-infrared irradiation, respectively. It can be seen that the thin film treated was grown larger.
  • FIG. 7 is a view showing a change in electrical characteristics according to the optical annealing treatment conditions of the In-Al ZnO thin film.
  • the mobility and carrier concentration of the thin film subjected to the two-step optical treatment are significantly increased than the thin film to perform the one-step optical annealing treatment, and the sheet resistance value is about 300 ⁇ / sq, which is the minimum value.
  • the two-stage optical annealing process is expected to significantly improve the electrical properties by reducing the residual stress of the thin film and the defects caused by crystal growth.
  • FIG. 8 is a view showing a change in transmittance in the visible light region (350 to 800 nm) according to the optical annealing treatment conditions of the In-Al ZnO thin film. It can be seen that the thin film subjected to the two-stage optical annealing treatment exhibits a high transmittance of about 90% or more. This phenomenon seems to improve the transmittance as the scattering decreases because the crystal growth and the crystal form become stable.
  • FIG. 9 is a diagram illustrating band gap energy according to optical annealing treatment conditions calculated using the transmittance change of FIG. 8.
  • Transmittance and band gap energy can be expressed by the following equation.
  • Eg is the optical band gap
  • hv is the photon energy
  • the absorption coefficient
  • d and T are the thickness and transmittance of the thin film, respectively.
  • the thin film subjected to the two-step optical annealing treatment increased to 3.236 eV, as in this embodiment, rather than the thin film that did not perform any optical treatment or the one-step optical annealing treatment.
  • the increase in band gap energy is related to the increase in transmittance, and the increase in optical band gap energy with increasing carrier density can be interpreted as the Burstein-Moss effect that the transmittance shifts toward shorter wavelengths when the carrier density is large.
  • FIG. 10 is a view showing a figure of merit (figure of merit) for confirming the efficiency of the transparent electrode.
  • the figure of merit may be expressed by the following equation.
  • T 10 is the transmittance in the visible light region
  • R s is the sheet resistance value of the thin film.
  • the efficiency of the transparent electrode using the figure of merit is 1.63 ⁇ 10 ⁇ 3 / W for the thin film subjected to the two-step optical annealing treatment according to the present embodiment, which does not perform any optical annealing treatment or one step. It can be seen that the optically treated thin film can be used as the best transparent electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

The present invention discloses a highly conductive transparent electrode formed using a CO2 laser and a near infrared ray, and a manufacturing method therefor. According to the present invention, a method for manufacturing a transparent electrode is provided comprising a method of manufacturing a transparent electrode using two-step optical annealing of steps: (a) illuminating a transparent electrode thin film with a CO2 laser; and (b) after the CO2 laser illumination, illuminating with a near infrared ray for a pre-set time, wherein crystals of the transparent electrode thin film grow due to the CO2 laser illumination, and the thin film having grown crystals is stabilised due to the near infrared ray illumination.

Description

CO2 레이저와 근적외선을 이용한 고전도성 투명전극 및 이의 제조 방법High Conductivity Transparent Electrode Using CO2 Laser and Near Infrared Rays and Manufacturing Method Thereof
본 발명은 CO2 레이저와 근적외선을 이용한 고전도성 투명전극 및 이의 제조 방법에 관한 것으로서, 보다 상세하게는 두 단계 광학 어닐링을 통해 제조된 투명전극 및 이의 제조 방법에 관한 것이다.The present invention relates to a highly conductive transparent electrode and a method for manufacturing the same using a CO 2 laser and near infrared rays, and more particularly, to a transparent electrode manufactured by two-step optical annealing and a method of manufacturing the same.
금속산화물, 투명전극 소재 등, 재료로부터 박막 혹은 후막을 만드는 공정에서는 공정 시 박막 혹은 후막에 가해지는 스트레스로 인해서, 박막의 스트레스가 증가하게 되고, 이로 인해서 전기적, 광학적 특성이 저하되게 된다. In the process of forming a thin film or a thick film from a material such as a metal oxide or a transparent electrode material, the stress of the thin film or the thick film is increased during the process, thereby increasing the stress of the thin film, thereby deteriorating the electrical and optical properties.
이를 해소하기 위해서 많은 연구자들이 어닐링(annealing) 이라는 공정을 도입해서 박막/후막에 가해진 스트레스를 제거하게 된다. To address this, many researchers have introduced a process called annealing to remove the stress on the thin film / thick film.
기존에 투명전극 혹은 전자소재에 가해지는 어닐링 공정은 열에너지를 가한 열 어닐링 공정과 광에너지를 가하는 광학 어닐링 공정이 있으며, 공정의 정확성, 신속성 등으로 인해서 광에너지를 가하는 광학 어닐링이 많이 사용되는 형편이다.Conventional annealing processes applied to transparent electrodes or electronic materials include a thermal annealing process that applies thermal energy and an optical annealing process that applies optical energy, and optical annealing that applies optical energy is frequently used due to the accuracy and speed of the process. .
특히, ITO나 ZnO 등 산화물 투명전극은 제작 공정 시 혹은 공정 후에 높은 온도로 에너지를 가해야지만, 결정성이 증가하여 원하는 수준의 박막을 얻을 수 있다. In particular, oxide transparent electrodes such as ITO and ZnO need to be energized at a high temperature during or after the fabrication process, but crystallinity is increased to obtain a thin film having a desired level.
따라서 500℃ ~ 700℃ 정도의 온도에서 반드시 열처리를 해야 하는 단점이 있다. 그리고 이런 고온의 후열처리 과정은 차세대 주목받고 있는 flexible 기술에 적용할 수 없으므로 이를 대체하기 위한 후처리 공정이 필요한 시점이다.Therefore, there is a disadvantage that the heat treatment must be performed at a temperature of about 500 ~ 700 ℃. And this high temperature post-heating process cannot be applied to the next generation of flexible technology, so it is time for a post-treatment process to replace it.
하지만, 기존의 광학 어닐링의 경우, 가해지는 소스에 따라 파장이 정해져 있어서, 침투깊이도 정해져 있으며, 이로 인해서 일정한 두께까지만 영향을 줄 수 있으며, 또한 그 에너지도 한정될 수밖에 없다. However, in the case of the conventional optical annealing, the wavelength is determined according to the source to be applied, the depth of penetration is also determined, thereby affecting only a certain thickness, and also the energy is inevitably limited.
한국등록특허 제10-0740124호는 적색부터 근적외선 영역(600~900nm)의 연속 발진 레이저 빔과 가시광선에서부터 자외선 영역(550~100nm)의 펄스 레이저 빔을 중첩 주사하여 기판상에 형성된 비정질 상태의 실리콘 박막을 다결정 상태의 실리콘 박막으로 변화시키는 점을 개시하고 있다. Korean Patent No. 10-0740124 describes an amorphous silicon formed on a substrate by overlapping scanning of a continuous oscillation laser beam in the red to near infrared region (600 to 900 nm) and a pulsed laser beam in the ultraviolet region (550 to 100 nm) from visible light. The point of changing a thin film into a silicon thin film of a polycrystalline state is disclosed.
그러나, 상기한 종래기술에서는 박막의 결정을 성장시키는 것과 동시에 이를 안정화시키기 위한 공정을 제시하고 있지 않다.However, the above-described prior art does not propose a process for stabilizing and growing crystals of a thin film.
상기한 종래기술의 문제점을 해결하기 위해, 본 발명은 고온의 열처리 과정 없이 박막의 결정을 성장시키고, 이를 안정화할 수 있는 CO2 레이저와 근적외선을 이용한 고전도성 투명전극 및 이의 제조 방법을 제안하고자 한다.In order to solve the above problems of the prior art, the present invention proposes a highly conductive transparent electrode using a CO 2 laser and near-infrared rays and a method of manufacturing the same that can grow and stabilize the thin film crystals without high temperature heat treatment. .
상기한 기술적 과제를 해결하기 위해, 본 발명의 바람직한 일 실시예에 따르면, 두 단계 광학 어닐링을 이용하여 투명전극을 제조하는 방법으로서, (a) 투명전극 박막에 CO2 레이저를 조사하는 단계; 및 (b) 상기 CO2 레이저 조사 이후, 미리 설정된 시간 동안 근적외선을 조사하는 단계를 포함하되, 상기 CO2 레이저 조사에 의해, 상기 투명전극 박막의 결정이 성장하며, 상기 근적외선 조사에 의해 상기 결정이 성장된 박막이 안정화되는 것을 특징으로 하는 투명전극 제조 방법이 제공된다. In order to solve the above technical problem, according to a preferred embodiment of the present invention, a method for manufacturing a transparent electrode using a two-step optical annealing, comprising: (a) irradiating a CO2 laser to the transparent electrode thin film; And (b) irradiating near infrared rays for a predetermined time after the CO2 laser irradiation, wherein the crystal of the transparent electrode thin film is grown by the CO2 laser irradiation, and the crystal is grown by the near infrared irradiation. Provided is a method for manufacturing a transparent electrode, wherein the thin film is stabilized.
상기 (a) 단계는, 상기 CO2 레이저를 미리 설정된 이동 속도로 이동시키면서 조사할 수 있다. In the step (a), the CO2 laser may be irradiated while moving at a predetermined moving speed.
상기 투명전극 박막은 ITO, ZnO, Al이 도핑된 ZnO, Ga이 도핑된 ZnO, In과 Al이 도핑된 ZnO 중 적어도 하나일 수 있으며, 바람직하게는 In과 Al이 도핑된 ZnO 중 적어도 하나일 수 있다. The transparent electrode thin film may be at least one of ITO, ZnO, Al doped ZnO, Ga doped ZnO, In and Al doped ZnO, and preferably at least one of In and Al doped ZnO. have.
상기 근적외선은 750~1400 nm 파장을 가질 수 있다. The near infrared ray may have a wavelength of 750 to 1400 nm.
본 발명의 다른 실시예에 따르면, 상기한 방법에 의해 제조된 투명전극이 제공된다. According to another embodiment of the present invention, a transparent electrode manufactured by the above method is provided.
본 발명에 따르면, 공정속도를 높여 생산속도를 증가시킬 수 있으며 고온의 열처리 공정이 없기 때문에 생산 단가를 낮출 수 있는 장점이 있다. According to the present invention, it is possible to increase the production speed by increasing the process speed and there is an advantage that can lower the production cost because there is no high temperature heat treatment process.
도 1은 본 발명의 일 실시예에 따른 CO2 레이저 조사 과정을 설명하기 위한 도면.1 is a view for explaining a CO2 laser irradiation process according to an embodiment of the present invention.
도 2는 CO2 레이저 조사와 근적외선 조사의 두 단계 광학 어닐링 공정을 설명하기 위한 도면.2 is a view for explaining a two-step optical annealing process of CO 2 laser irradiation and near infrared irradiation.
도 3은 In-Al ZnO 박막의 광학 어닐링 처리 조건에 따른 XRD 분석 결과를 나타낸 도면.Figure 3 is a view showing the XRD analysis results according to the optical annealing treatment conditions of In-Al ZnO thin film.
도 4는 In-Al ZnO 박막의 광학 어닐링 처리 조건에 따른 잔류응력을 도시한 도면.4 is a diagram illustrating residual stresses according to optical annealing conditions of an In—Al ZnO thin film.
도 5는 In-Al ZnO 박막의 광학 어닐링 처리 조건에 따른 표면구조 변화를 나타낸 도면.5 is a view showing a surface structure change according to the optical annealing treatment conditions of the In-Al ZnO thin film.
도 6은 도 3과 도 5를 이용하여 계산한 결정의 크기를 나타낸 도면.6 is a view showing the size of the crystal calculated using FIG. 3 and FIG.
도 7은 In-Al ZnO 박막의 광학 어닐링 처리 조건에 따른 전기적 특성 변화를 나타낸 도면.7 is a view showing a change in electrical characteristics according to the optical annealing conditions of the In-Al ZnO thin film.
도 8은 In-Al ZnO 박막의 광학 어닐링 처리 조건에 따른 가시광선 영역(350~800nm)에서의 투과도 변화를 나타낸 도면.8 is a view showing a change in transmittance in the visible light region (350 ~ 800nm) according to the optical annealing treatment conditions of the In-Al ZnO thin film.
도 9는 도 8의 투과도 변화를 이용하여 계산된 광학 어닐링 처리 조건에 따른 밴드 갭 에너지를 도시한 도면.FIG. 9 illustrates band gap energy according to optical annealing treatment conditions calculated using the transmittance change of FIG. 8. FIG.
도 10은 투명전극의 효율을 확인하기 위한 성능지수(figure of merit)를 나타낸 도면.10 is a view showing a figure of merit (figure of merit) for confirming the efficiency of the transparent electrode.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. As the present invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
투명 전도성 산화 박막(Transparent Conductive oxide thin film)은 디스플레이 소자 또는 태양전지 소자의 전극으로 주로 사용되는 소재로서, 일반적으로 ITO가 주로 사용되었으나, 최근에는 ZnO, Al이 도핑된 ZnO(AZO), Ga이 도핑된 ZnO, In과 Al이 도핑된 ZnO(In-Al ZnO)이 ITO를 대체하는 소재로 제안되고 있다. Transparent conductive oxide thin film is a material mainly used as an electrode of a display device or a solar cell device. Generally, ITO is mainly used, but recently ZnO (AZO) and Ga doped with ZnO and Al are used. Doped ZnO, In and Al doped ZnO (In-Al ZnO) has been proposed as a substitute material for ITO.
이러한 소재를 이용하여 투명전극을 제조하는 경우, 특히 플렉서블 소자를 제조하기 위해서는 낮은 어닐링 온도가 요구되고, 소자의 기판으로 사용되는 PEN(Polyethylene naphtahlate) 및 PET(Polyethylene terephthalate)의 경우 낮은 어닐링 온도를 필요로 하기 때문에 광학 어닐링이 필요하다. In the case of manufacturing a transparent electrode using such a material, a low annealing temperature is required to manufacture a flexible device, and a low annealing temperature is required for polyethylene naphtahlate (PEN) and polyethylene terephthalate (PET) used as substrates of the device. Therefore, optical annealing is necessary.
본 발명은 투명전극의 낮은 온도를 유지하면서도 전기적 광학적 특성을 개선할 수 있는 두 단계 광학 어닐링 공정을 제안한다. The present invention proposes a two-step optical annealing process that can improve the electro-optical properties while maintaining a low temperature of the transparent electrode.
보다 상세하게는, 박막화된 투명전극을 제조한 이후, 장파장의 CO2 레이저를 박막에 조사한다. More specifically, after the thinned transparent electrode is manufactured, a long wavelength CO 2 laser is irradiated onto the thin film.
본 발명의 일 실시예에 따른 투명전극은 ITO, ZnO, Al이 도핑된 ZnO, Ga이 도핑된 ZnO, In과 Al이 도핑된 ZnO 중 적어도 하나일 수 있으며, 바람직하게는 In과 Al이 도핑된 ZnO일 수 있다. The transparent electrode according to an embodiment of the present invention may be at least one of ITO, ZnO, ZnO doped with Al, ZnO doped with Ga, ZnO doped with In and Al, preferably In and Al doped ZnO.
CO2 레이저는 고출력의 지속파(CW) 또는 펄스를 방출하는 레이저로써, CO2와 질소, 헬륨의 조성을 1:1:8로 하며, 10600nm의 파장을 갖는다. The CO 2 laser is a laser that emits high power continuous wave (CW) or pulses. The composition of CO 2 , nitrogen, and helium is 1: 1: 8 and has a wavelength of 10600 nm.
본 발명의 일 실시예에 따르면, CO2 레이저가 투명전극 박막의 깊이별로 침투하여 결정(grain)의 크기를 크게 증가시킨다. According to one embodiment of the present invention, the CO 2 laser penetrates by the depth of the transparent electrode thin film to greatly increase the size of the grain (grain).
CO2 레이저 조사 과정에서 CO2 레이저의 조사 장치의 spot 직경, 이동 속도, 이동 거리 및 파워는 미리 설정될 수 있다. In the CO 2 laser irradiation process, the spot diameter, the moving speed, the moving distance and the power of the irradiation device of the CO 2 laser may be preset.
상기한 조건에 따라 CO2 레이저를 조사한 이후, 단파장을 갖는 근적외선(Near Infra-red)을 미리 설정된 시간 동안 조사한다.After irradiating the CO 2 laser according to the above conditions, near infrared (Near Infra-red) having a short wavelength is irradiated for a predetermined time.
여기서, 근적외선 조사 단계에서 사용되는 근적외선의 파장은 750 내지 1400nm일 수 있다. Here, the wavelength of the near infrared ray used in the near infrared irradiation step may be 750 to 1400nm.
상기와 같은 근적외선 처리에 의해 박막 표면이 안정화된다. The surface of the thin film is stabilized by the near-infrared treatment as described above.
본 발명의 일 실시예에 따르면, CO2 레이저를 조사하고, 이후 근적외선 처리를 하는 경우, 투명전극 박막 내의 결정들이 크고 조밀하게 형성되어 투명전극 박막이 안정화된다. According to one embodiment of the present invention, when irradiating with a CO 2 laser and then performing a near infrared ray treatment, crystals in the transparent electrode thin film are largely and densely formed to stabilize the transparent electrode thin film.
나아가, 본 발명과 같이 제조된 투명전극은 잔류응력이 감소하며, 결정 성장에 따라 결함이 감소하고 전기적 특성이 크게 향상되며, 높은 투과율 특성을 가지게 된다. Furthermore, the transparent electrode manufactured according to the present invention has a residual stress, a defect decreases as the crystal grows, electrical characteristics are greatly improved, and a high transmittance characteristic.
이하에서는 도면을 참조하여 본 발명의 일 실시예에 따른 두 단계 광학 어닐링 과정 및 이를 통해 투명전극 박막의 특성이 개선되는 점을 상세하게 설명한다. Hereinafter, a two-step optical annealing process according to an embodiment of the present invention and the characteristics of the transparent electrode thin film are improved in detail with reference to the drawings.
실시예Example
Sol-Gel 공정을 이용하여 유리기판에 소량의 In과 Al을 도핑한 ZnO(InAl-ZnO) 투명전극을 제조하였다. A ZnO (InAl-ZnO) transparent electrode was prepared by doping a small amount of In and Al onto a glass substrate using a Sol-Gel process.
Zinc acetate dihydrate[Zn(CH3COO)2·2H2O], aluminum chloride hexahydrate (AlCl3·6H2O), andindium chloride(InCl3) 의 powder를 가지고 안정제인 Monoethanolamine (MEA) 와 solvent 재료로 2-methoxyethanol를 첨가하였고, In과 Al은 각각 1.5 wt.% 비율로 도핑하여 60℃에서 InAl-ZnO 솔루션을 제조하였다. Zinc acetate dihydrate [Zn (CH3COO) 2 · 2H 2 O], aluminum chloride hexahydrate (AlCl 3 · 6H 2 O), and indium chloride (InCl 3 ) powder, stabilizer monoethanolamine (MEA) In and Al were respectively doped at a rate of 1.5 wt.% To prepare an InAl-ZnO solution at 60 ° C.
제조된 솔루션을 spin coationg 공정을 이용하여 3000rpm 으로 20초 동안 증착시킨 후 350°C의 hot plate 위에서 15분 동안 dry 하였다. 증착 두께를 조절하기 위해 위 공정을 6회 반복하였다. The prepared solution was deposited for 20 seconds at 3000 rpm using a spin coationg process and then dried for 15 minutes on a hot plate at 350 ° C. The above process was repeated six times to control the deposition thickness.
제작된 InAl-ZnO 투명전극은 소결 과정을 거쳐서 박막화 하였다. The manufactured InAl-ZnO transparent electrode was thinned through a sintering process.
전기적 광학적 특성을 개선하기 위해 두 단계의 광학적 후처리 공정을 도입하였다. 먼저 10,640 nm 의 장파장의 CO2레이저를 박막에 분사시켰다. 레이저 spot의 직격은 2mm, 이동속도는 1.4 mm/s, 이동거리는 40 mm, 그리고 레이저 파워는 16 W로 고정하여 박막에 분사시켜 주었다.To improve the electro-optical properties, a two-step optical post-treatment process was introduced. First, a long wavelength CO 2 laser of 10,640 nm was sprayed onto the thin film. The laser spot was sprayed on the film at a fixed distance of 2 mm, moving speed of 1.4 mm / s, moving distance of 40 mm, and laser power of 16 W.
두 번째 광학 처리로는 750~1400 nm 짧은 파장을 가지는 근적외선을 이용하여 10분간 표면에 후처리 공정을 가해 주었다.The second optical treatment was applied to the surface for 10 minutes using near-infrared light with a short wavelength of 750-1400 nm.
도 1은 본 발명의 일 실시예에 따른 CO2 레이저 조사 과정을 설명하기 위한 도면이다. 1 is a view for explaining a CO 2 laser irradiation process according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 실시예에 따른 CO2 레이저 조사 과정은 미리 설정된 레이저 spot을 가지면서 하나의 축 방향(예를 들어, x축 방향)으로 소정 이동 속도 및 거리로 조사된다. As shown in FIG. 1, the CO 2 laser irradiation process according to the present embodiment has a predetermined laser spot and is irradiated at a predetermined moving speed and distance in one axial direction (eg, x-axis direction).
상기한 바와 같이 본 실시예에서, CO2 레이저 spot은 2mm, 이동 속도는 1.4 mm/s, 이동 거리는 40 mm씩 x, y축으로 움직임이면서 CO2 레이저를 조사하였다. As described above, in the present embodiment, the CO 2 laser spot was 2 mm, the moving speed was 1.4 mm / s, the moving distance was 40 mm by x, y axis and irradiated with the CO 2 laser.
도 2는 CO2 레이저 조사와 근적외선 조사의 두 단계 광학 어닐링 공정을 설명하기 위한 도면이다. 2 is a view for explaining a two-step optical annealing process of CO 2 laser irradiation and near-infrared irradiation.
도 2를 참조하면, 10,640 nm의 장파장을 가진 CO2 레이저가 박막의 깊이별로 침투하여 결정들을 크게 성장시켜 주며, 750~1400 nm 짧은 파장의 NIR의 조사에 의해 박막 표면이 안정화된다. Referring to FIG. 2, the CO 2 laser having a long wavelength of 10,640 nm penetrates into the depth of the thin film to grow crystals largely, and the surface of the thin film is stabilized by irradiation of NIR having a short wavelength of 750 to 1400 nm.
도 3은 In-Al ZnO 박막의 광학 어닐링 처리 조건에 따른 XRD 분석 결과를 나타낸 도면이다. 3 is a view showing the XRD analysis results according to the optical annealing treatment conditions of the In-Al ZnO thin film.
보다 상세하게, 도 3은 아무런 후처리를 하지 않은 것(As grown)과, 본 실시예에 따른 CO2 레이저와 근적외선 조사의 두 단계 광학 어닐링 공정을 수행하는 것(NIR 80%/CO2 Laser), CO2 레이저와 근적외선 각각을 이용하여 한 단계 광학 어닐링을 수행하는 경우의 In-Al ZnO 박막의 XRD 분석 결과를 도시한다. More specifically, FIG. 3 shows no post-treatment (As grown), and a two-step optical annealing process of CO 2 laser and near-infrared irradiation according to the present embodiment (NIR 80% / CO 2 Laser). , XRD analysis results of the In-Al ZnO thin film when one-step optical annealing is performed using a CO 2 laser and a near infrared ray, respectively.
도 3을 참조하면, 모든 박막은 후처리 조건에 관계없이 wurtzite 구조를 보이며, CO2 레이저와 근적외선 각각을 단독으로 조사하는 것이 비해, CO2 레이저와 근적외선 조사의 두 단계 광학 어닐링 공정을 수행하는 경우, 박막이 c축 방향으로 크게 성장한 것을 확인할 수 있다. Referring to Figure 3, in the case of all films showed a wurtzite structure, regardless of the post-treatment conditions, as compared to irradiation of CO 2 laser and a near infrared ray, each independently, carried out a two-stage optical annealing process of CO 2 laser and a near-infrared irradiation , It can be seen that the thin film is largely grown in the c-axis direction.
도 4는 In-Al ZnO 박막의 광학 어닐링 처리 조건에 따른 잔류응력을 도시한 도면이다 4 is a diagram illustrating residual stresses according to optical annealing conditions of an In—Al ZnO thin film.
도 4를 참조하면, 근적외선 또는 CO2 레이저 중 하나를 이용하여 광학 어닐링 처리를 한 박막보다, CO2 레이저와 근적외선 조사의 두 단계 광학 어닐링 공정을 수행한 박막의 잔류응력이 크게 감소한 것을 볼 수 있다. 도 3의 XRD 분석 결과에서 결정 성장의 원인이 두 단계 광학 처리를 통한 잔류응력의 감소로 인한 것을 알 수 있다.Referring to FIG. 4, it can be seen that the residual stress of the thin film subjected to the two-step optical annealing process of the CO 2 laser and the near-infrared irradiation is significantly reduced than the thin film subjected to the optical annealing using either the near infrared or the CO 2 laser. . It can be seen from the XRD analysis results of FIG. 3 that the cause of crystal growth is due to the reduction of residual stress through two-stage optical treatment.
도 5는 In-Al ZnO 박막의 광학 어닐링 처리 조건에 따른 표면구조 변화를 나타낸 도면이다. 5 is a view showing a surface structure change according to the optical annealing treatment conditions of In-Al ZnO thin film.
도 5를 참조하면, 아무런 후처리를 하지 않는 경우의 박막(a)은 결정 크기가 매우 작고 성장이 되지 않는 상태이다. Referring to FIG. 5, when no post-treatment is performed, the thin film a has a very small crystal size and is not grown.
근적외선 조사만 수행한 박막(b)은 결정 크기가 약간 성장하였고, CO2 레이저 처리를 한 박막(c)은 결정 크기가 큰 것을 확인할 수 있으나, 결정이 조밀하게 형성되지는 않는다. The thin film (b) subjected to near-infrared irradiation only slightly grew in crystal size, and the thin film (c) subjected to CO 2 laser treatment had a large crystal size, but crystals were not densely formed.
반면, 본 실시예에 따른 CO2 레이저와 근적외선 조사의 광학 어닐링 공정을 수행한 박막(d)은 결정이 크고 조밀하게 형성된 것을 확인할 수 있다. On the other hand, the thin film (d) subjected to the optical annealing process of the CO 2 laser and near-infrared radiation according to the present embodiment can be seen that the crystal is large and dense.
도 6은 도 3과 도 5를 이용하여 계산한 결정의 크기를 나타낸 도면이다. FIG. 6 is a diagram illustrating the size of a crystal calculated using FIGS. 3 and 5.
도 3과 같이, XRD 분석 결과를 통한 결정의 크기는 아래의 Scherrer formula 식을 이용하여 계산되었다. As shown in Figure 3, the size of the crystal through the XRD analysis results was calculated using the Scherrer formula equation below.
D = Kλ/BcosθD = Kλ / Bcosθ
여기서, λ(0.1540 nm)는 CuKα 소스의 x-ray 파장이고 θ는 Bragg 각도이며, K는 상수로 0.9로 고정된 값이며 B는 XRD 회절의 반각폭이다.Where λ (0.1540 nm) is the x-ray wavelength of the CuKα source, θ is the Bragg angle, K is a fixed value of 0.9 as a constant, and B is the half-angle width of the XRD diffraction.
도 3과 도 5를 이용하여 계산한 결정의 크기는 각각 아무런 후처리를 하지 않는 박막과 CO2 레이저와 근적외선 조사 중 하나만 이용하는 한 단계 광학 처리만 수행한 박막보다, 본 실시예에 따른 두 단계 광학 처리를 수행한 박막이 더 크게 성장한 것을 확인할 수 있다. The size of the crystal calculated using Fig. 3 and Fig. 5 is a two-step optical according to this embodiment, rather than a thin film without any post-treatment and a one-step optical treatment using only one of CO 2 laser and near-infrared irradiation, respectively. It can be seen that the thin film treated was grown larger.
도 7은 In-Al ZnO 박막의 광학 어닐링 처리 조건에 따른 전기적 특성 변화를 나타낸 도면이다. 7 is a view showing a change in electrical characteristics according to the optical annealing treatment conditions of the In-Al ZnO thin film.
도 7을 참조하면 한 단계 광학 어닐링 처리를 수행하는 박막보다 두 단계 광학 처리를 한 박막의 mobility와 캐리어 농도가 크게 증가하는 것을 확인할 수 있으며, 면 저항 값은 최소의 값인 약 300Ω/sq를 보인다. Referring to FIG. 7, it can be seen that the mobility and carrier concentration of the thin film subjected to the two-step optical treatment are significantly increased than the thin film to perform the one-step optical annealing treatment, and the sheet resistance value is about 300Ω / sq, which is the minimum value.
두 단계 광학 어닐링 공정에 의해 박막의 잔류응력 감소와 결정 성장에 따른 결함이 감소함으로써 전기적 특성이 크게 향상된 것으로 예측된다. The two-stage optical annealing process is expected to significantly improve the electrical properties by reducing the residual stress of the thin film and the defects caused by crystal growth.
도 8은 In-Al ZnO 박막의 광학 어닐링 처리 조건에 따른 가시광선 영역(350~800nm)에서의 투과도 변화를 나타낸 도면이다. 두 단계 광학 어닐링 처리를 수행한 박막이 약 90% 이상의 높은 투과율을 보이는 것을 확인할 수 이러한 현상은 결정 성장과 결정의 형태가 안정적으로 됨으로써 산란의 감소에 따라 투과율이 크게 향상된 것으로 보인다. FIG. 8 is a view showing a change in transmittance in the visible light region (350 to 800 nm) according to the optical annealing treatment conditions of the In-Al ZnO thin film. It can be seen that the thin film subjected to the two-stage optical annealing treatment exhibits a high transmittance of about 90% or more. This phenomenon seems to improve the transmittance as the scattering decreases because the crystal growth and the crystal form become stable.
도 9는 도 8의 투과도 변화를 이용하여 계산된 광학 어닐링 처리 조건에 따른 밴드 갭 에너지를 도시한 도면이다. FIG. 9 is a diagram illustrating band gap energy according to optical annealing treatment conditions calculated using the transmittance change of FIG. 8.
투과도와 밴드 갭 에너지는 아래의 수식으로 표현될 수 있다. Transmittance and band gap energy can be expressed by the following equation.
αhv = (hv - Eg)1/2 αhv = (hv-Eg) 1/2
Eg는 광학적 밴드 갭이고 hv는 광자 에너지이며, 흡수계수인 α는 α = (1/d)ln(1/T) 식을 이용하여 투과율로부터 구할 수 있다. Eg is the optical band gap, hv is the photon energy, and α, the absorption coefficient, can be obtained from the transmittance using the equation α = (1 / d) ln (1 / T).
여기서 d와 T는 각각 박막의 두께와 투과율이다. Where d and T are the thickness and transmittance of the thin film, respectively.
밴드 갭 에너지는 아무런 광학 처리를 하지 않거나, 한 단계 광학 어닐링 처리만 수행한 박막보다 본 실시예에서와 같이, 두 단계 광학 어닐링 처리를 수행한 박막이 3.236eV로 증가한 것을 확인할 수 있다. As for the band gap energy, the thin film subjected to the two-step optical annealing treatment increased to 3.236 eV, as in this embodiment, rather than the thin film that did not perform any optical treatment or the one-step optical annealing treatment.
밴드 갭 에너지의 증가는 투과율의 증가와 관련이 있으며, 캐리어 밀도가 증가하면서 광학적 밴드 갭 에너지가 늘어나는 것은 캐리어 밀도가 클 때 단파장 쪽으로 투과도가 시프트(shift)된다는 Burstein-Moss effect로 해석될 수 있다. The increase in band gap energy is related to the increase in transmittance, and the increase in optical band gap energy with increasing carrier density can be interpreted as the Burstein-Moss effect that the transmittance shifts toward shorter wavelengths when the carrier density is large.
도 10은 투명전극의 효율을 확인하기 위한 성능지수(figure of merit)를 나타낸 도면이다. 10 is a view showing a figure of merit (figure of merit) for confirming the efficiency of the transparent electrode.
성능 지수는 아래와 같은 수식으로 표현될 수 있다. The figure of merit may be expressed by the following equation.
ΦTC = T10/Rs Φ TC = T 10 / R s
여기서, T10는 가시광선 영역에서의 투과율이며, Rs는 박막의 면 저항 값이다. 성능 지수(Figure of merit)를 이용한 투명전극의 효율은 본 실시예에 따른 두 단계 광학 어닐링 처리를 한 박막이 1.63×10-3/W의 효율을 보이며, 이는 아무런 광학 어닐링 처리를 하지 않거나 한 단계 광학 처리를 한 박막에 비해 가장 우수한 투명전극으로 사용될 수 있음을 확인할 수 있다. Here, T 10 is the transmittance in the visible light region, and R s is the sheet resistance value of the thin film. The efficiency of the transparent electrode using the figure of merit is 1.63 × 10 −3 / W for the thin film subjected to the two-step optical annealing treatment according to the present embodiment, which does not perform any optical annealing treatment or one step. It can be seen that the optically treated thin film can be used as the best transparent electrode.
상기한 본 발명의 바람직한 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대해 통상의 지식을 가진 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.Preferred embodiments of the present invention described above are disclosed for purposes of illustration, and those skilled in the art will be able to make various modifications, changes, and additions within the spirit and scope of the present invention. Additions should be considered to be within the scope of the following claims.

Claims (5)

  1. 두 단계 광학 어닐링을 이용하여 투명전극을 제조하는 방법으로서, A method of manufacturing a transparent electrode using two-step optical annealing,
    (a) 투명전극 박막에 CO2 레이저를 조사하는 단계; 및(a) irradiating a CO 2 laser on the transparent electrode thin film; And
    (b) 상기 CO2 레이저 조사 이후, 미리 설정된 시간 동안 근적외선을 조사하는 단계를 포함하되, (b) irradiating near infrared rays for a predetermined time after the CO 2 laser irradiation,
    상기 CO2 레이저 조사에 의해, 상기 투명전극 박막의 결정이 성장하며, 상기 근적외선 조사에 의해 상기 결정이 성장된 박막이 안정화되는 것을 특징으로 하는 투명전극 제조 방법. Crystals of the transparent electrode thin film is grown by the CO 2 laser irradiation, the transparent electrode manufacturing method characterized in that the thin film on which the crystal is grown by the near-infrared irradiation is stabilized.
  2. 제1항에 있어서, The method of claim 1,
    상기 (a) 단계는, 상기 CO2 레이저를 미리 설정된 이동 속도로 이동시키면서 조사하는 것을 특징으로 하는 투명전극 제조 방법. In the step (a), the method of manufacturing a transparent electrode, characterized in that for irradiating while moving the CO 2 laser at a predetermined moving speed.
  3. 제1항에 있어서, The method of claim 1,
    상기 투명전극 박막은 ITO, ZnO, Al이 도핑된 ZnO, Ga이 도핑된 ZnO, In과 Al이 도핑된 ZnO 중 적어도 하나일 수 있으며, 바람직하게는 In과 Al이 도핑된 ZnO 중 적어도 하나인 것을 특징으로 하는 투명전극 제조 방법. The transparent electrode thin film may be at least one of ITO, ZnO, Al doped ZnO, Ga doped ZnO, In and Al doped ZnO, preferably In and Al doped ZnO Transparent electrode manufacturing method characterized in that.
  4. 제1항에 있어서, The method of claim 1,
    상기 근적외선은 750~1400 nm 파장을 갖는 투명전극 제조 방법. The near infrared ray is a transparent electrode manufacturing method having a wavelength of 750 ~ 1400 nm.
  5. 제1항에 따른 방법에 의해 제조된 투명전극. Transparent electrode produced by the method according to claim 1.
PCT/KR2015/001045 2014-10-20 2015-01-30 Highly conductive transparent electrode using co2 laser and near infrared ray, and manufacturing method therefor WO2016064035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140141991A KR20160046991A (en) 2014-10-20 2014-10-20 Highly conductive transparent electrode using co2 laser and near intra red and manufacturing method the same
KR10-2014-0141991 2014-10-20

Publications (1)

Publication Number Publication Date
WO2016064035A1 true WO2016064035A1 (en) 2016-04-28

Family

ID=55761060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001045 WO2016064035A1 (en) 2014-10-20 2015-01-30 Highly conductive transparent electrode using co2 laser and near infrared ray, and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20160046991A (en)
WO (1) WO2016064035A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252174A (en) * 2000-12-08 2002-09-06 Sony Corp Method of forming semiconductor film, method of manufacturing semiconductor device and electro-optical device, and apparatus used for executing the methods, and the semiconductor device and electron-optical device
KR20040076751A (en) * 2003-02-26 2004-09-03 삼성에스디아이 주식회사 Method for manufacturing polycrystalline silicon thin film and thin film transistor using polycrystalline silicon thin film thereby
KR20050109846A (en) * 2004-05-17 2005-11-22 주식회사 케이티 Method for fabricating a transparent thin film and target for the transparent thin film
KR100740124B1 (en) * 2006-10-13 2007-07-16 삼성에스디아이 주식회사 Poly silicon thin film transistor and the method therefor
JP2008300617A (en) * 2007-05-31 2008-12-11 Ihi Corp Laser annealing method and laser annealing device
JP2009267110A (en) * 2008-04-25 2009-11-12 Japan Steel Works Ltd:The Crystallizing method and apparatus for thin film material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252174A (en) * 2000-12-08 2002-09-06 Sony Corp Method of forming semiconductor film, method of manufacturing semiconductor device and electro-optical device, and apparatus used for executing the methods, and the semiconductor device and electron-optical device
KR20040076751A (en) * 2003-02-26 2004-09-03 삼성에스디아이 주식회사 Method for manufacturing polycrystalline silicon thin film and thin film transistor using polycrystalline silicon thin film thereby
KR20050109846A (en) * 2004-05-17 2005-11-22 주식회사 케이티 Method for fabricating a transparent thin film and target for the transparent thin film
KR100740124B1 (en) * 2006-10-13 2007-07-16 삼성에스디아이 주식회사 Poly silicon thin film transistor and the method therefor
JP2008300617A (en) * 2007-05-31 2008-12-11 Ihi Corp Laser annealing method and laser annealing device
JP2009267110A (en) * 2008-04-25 2009-11-12 Japan Steel Works Ltd:The Crystallizing method and apparatus for thin film material

Also Published As

Publication number Publication date
KR20160046991A (en) 2016-05-02

Similar Documents

Publication Publication Date Title
JP4083396B2 (en) Ultraviolet transparent conductive film and manufacturing method thereof
Saleem et al. Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method
Li et al. Zinc oxide films prepared by sol–gel method
Yıldırım et al. Influence of films thickness and structure on the photo-response of ZnO films
Illy et al. Electrodeposition of ZnO layers for photovoltaic applications: controlling film thickness and orientation
CN107068872B (en) It is a kind of to prepare perovskite Cs3Bi2I9The method of hull cell
CN102001857A (en) Zinc oxide type base plate and its manufacture method
JP5263750B2 (en) Method for producing nano acicular anatase TiO2 crystal aggregated particles and porous anatase TiO2 crystal film
Ding et al. Preparation and characterization of pulsed laser deposited CdTe thin films at higher FTO substrate temperature and in Ar+ O2 atmosphere
CN111009582B (en) Photoelectric programming multi-state memory based on thin film transistor structure and preparation method thereof
Manoj et al. Growth and characterization of indium oxide thin films prepared by spray pyrolysis
WO2019098477A1 (en) Oxide semiconductor phototransistor having improved visible light absorption rate, and manufacturing method therefor
Asakuma et al. Low-temperature synthesis of ITO thin films using an ultraviolet laser for conductive coating on organic polymer substrates
Pawlicka et al. Synthesis of Nb2O5 thin films for electrochromic devices
CN103617831A (en) High-mobility ratio aluminum-doped zinc oxide transparent conductive thin film and preparation method thereof
WO2017176038A1 (en) Basno3 thin film and low-temperature preparation method therefor
CN107118110B (en) A method of perovskite CH3NH3PbI3 film is prepared with transverse current
WO2016064035A1 (en) Highly conductive transparent electrode using co2 laser and near infrared ray, and manufacturing method therefor
JP2013251411A (en) ZINC OXIDE (ZnO)-BASED SINGLE CRYSTAL NANOSTRUCTURE, METHOD FOR PRODUCING ZnO-BASED THIN FILM AND ZnO-BASED SINGLE CRYSTAL THIN FILM, ZnO-BASED SINGLE CRYSTAL THIN FILM, AND ZnO-BASED MATERIAL COMPRISING ZnO-BASED SINGLE CRYSTAL THIN FILM
WO2019124743A1 (en) Method for manufacturing transparent conductive film
KR20200020346A (en) The method for forming perovskite photoactive layer by in-line continuously coating and the apparatus for roll in-line continuously coating
KR101559102B1 (en) Method of manufacturimg of CZTS-based thin film solar cell and CZTS-based thin film solar cell thereby
KR101912735B1 (en) BaSnO3 film, and method of low- temperature manufacturing the same
WO2023038251A1 (en) Method for crystallization of metal oxide thin film by using thermal dissipation annealing
Patil et al. Electrochromic properties of vanadium oxide thin films prepared by PSPT: Effect of substrate temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853160

Country of ref document: EP

Kind code of ref document: A1