WO2016063983A1 - Fuel-cell porous separator, fuel cell, and method for manufacturing fuel-cell porous separator - Google Patents

Fuel-cell porous separator, fuel cell, and method for manufacturing fuel-cell porous separator Download PDF

Info

Publication number
WO2016063983A1
WO2016063983A1 PCT/JP2015/080013 JP2015080013W WO2016063983A1 WO 2016063983 A1 WO2016063983 A1 WO 2016063983A1 JP 2015080013 W JP2015080013 W JP 2015080013W WO 2016063983 A1 WO2016063983 A1 WO 2016063983A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
porous separator
green sheet
carbonaceous material
fuel
Prior art date
Application number
PCT/JP2015/080013
Other languages
French (fr)
Japanese (ja)
Inventor
善一郎 泉
匡 飯野
雅之 野口
洋志 秋永
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2016555412A priority Critical patent/JPWO2016063983A1/en
Publication of WO2016063983A1 publication Critical patent/WO2016063983A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a porous separator for a fuel cell, a fuel cell, and a method for producing a porous separator for a fuel cell.
  • a fuel cell is a clean power generation device that uses hydrogen and oxygen to generate power through the reverse reaction of water electrolysis, and does not emit any other substances than water. Therefore, it is attracting attention from the viewpoint of environmental issues and energy issues.
  • Fuel cells are classified into several types depending on the type of electrolyte used. Among fuel cells, a polymer electrolyte fuel cell that operates at a low temperature is considered most promising for automobiles and consumer use.
  • This fuel cell is usually a membrane electrode assembly (MEA :) formed by integrating a solid polymer membrane acting as a solid polymer electrolyte and a gas diffusion electrode carrying a pair of catalysts sandwiching the solid polymer membrane.
  • MEA membrane electrode assembly
  • the basic unit is a single cell having a Membrane-Electrode Assembly) and a separator that is sandwiched from the outside of the MEA and separates fuel gas and oxidant gas. Then, by stacking a large number of single cells, high power generation can be achieved in the fuel cell.
  • a fuel gas (hydrogen, etc.) and an oxidant gas (oxygen, etc.) are usually supplied to a separator for partitioning a single cell, and product gas and surplus gas are carried away.
  • Gas flow paths (grooves) are provided. Therefore, the separator is required to have high gas impermeability capable of completely separating these gases and high conductivity in order to reduce the internal resistance. Furthermore, the separator is required to have excellent thermal conductivity, durability, strength, and the like.
  • Fuel cell separators using carbonaceous materials are lighter and have the advantage of not corroding, and are being studied.
  • Fuel cell separators using such carbonaceous materials include solid separators and porous separators.
  • the solid separator is formed by completely sealing a carbonaceous material having conductivity with a resin material, and neither gas nor water permeates. Therefore, the solid separator is mainly used for an external humidification type fuel cell.
  • the porous separator is formed by connecting carbonaceous materials with a small amount of resin binder and having micro pores therein, and is therefore mainly used for an internal humidification type fuel cell.
  • Patent Document 1 describes a porous separator for a fuel cell that includes a resin material containing an epoxy resin having a predetermined porosity and a carbon material powder.
  • Patent Document 2 describes a hydrophilic porous material having a specific pore radius and porosity.
  • Patent Document 3 describes a water moving plate having pores having a size equal to or smaller than a predetermined pore diameter.
  • the porous separator for a fuel cell has a large variation in pore diameter distribution within the surface of one molded body. This is presumably because the porous separator needs to be press-molded at a pressure lower than the pressure for forming the solid separator in order to maintain the porous structure. With this in-plane variation, there is a problem that the conductivity and strength are reduced. In addition, if the pore diameter distribution varies in the plane, gas leakage occurs from the location where the pore diameter is large, so that the gas seal pressure decreases. In addition, water absorption is good where the pore diameter is large, and water absorption is poor where the pore diameter is small, resulting in variations in water absorption within the surface, which reduces power generation performance when used as a fuel cell. Connected.
  • the present invention is intended to solve the above-described problems, and an object of the present invention is to provide a porous separator for a fuel cell that has both conductivity and strength and is highly uniform.
  • the inventors of the present invention have made extensive studies to solve the above problems. As a result, it is possible to provide a porous separator for a fuel cell that achieves both conductivity and strength and has high uniformity by keeping the pore density within a predetermined range and keeping the volume fraction of the carbonaceous material constant. As a result, the inventors have found that the present invention can be accomplished.
  • a porous separator for a fuel cell according to one aspect of the present invention is a porous separator for a fuel cell formed by using a composition containing a resin material and a carbonaceous material, and the carbonaceous material
  • the content of the carbonaceous material in the total mass of the resin material is 80 to 95% by mass
  • the pore diameter is 1.5 to 4.
  • the pore which is 0 ⁇ m is 90 vol% or more.
  • the resin material is poly (1,2-butadiene), epoxy-modified polybutadiene, hydroxyl-modified polybutadiene, maleic acid-modified polybutadiene, acrylic-modified polybutadiene, amine
  • One kind selected from the group consisting of modified polybutadiene and hydrogen-modified polybutadiene may be included.
  • a fuel cell according to an aspect of the present invention includes the porous separator for a fuel cell according to the above (1) or (2).
  • a method for producing a porous separator for a fuel cell according to one aspect of the present invention includes a curable resin composition in which at least a resin material and a carbonaceous material are mixed, and the content of the carbonaceous material is 80 to 95% by mass.
  • a mixing step for preparing a product a sheeting step for converting the composition obtained by mixing into a green sheet having an in-plane variation of the sheet thickness within 10% of the average thickness of the sheet thickness, and sheeting And a pressing step of forming the green sheet obtained in the step.
  • the temperature of the green sheet is equal to or higher than a temperature at which condensation does not occur and the resin is cured. It is good also as below the temperature which does not.
  • the green sheet is heated at a temperature of 150 to 240 ° C. in the pressing step. Also good.
  • the green sheet may be pressurized at a pressure of 2 to 25 MPa in the pressing step. Good.
  • the porous separator for a fuel cell has a carbonaceous material content of 80 to 95% by mass in the total mass of the carbonaceous material and the resin material, and is obtained by a mercury intrusion method.
  • the pores having a pore diameter of 1.5 to 4.0 ⁇ m are 90 vol% or more. Since the ratio of the carbonaceous material in the fuel cell porous separator is large, high conductivity can be maintained. Also, the pore diameters are uniform and in-plane with little variation. Therefore, there are few defects in the interior during molding, and high strength can be realized. Furthermore, since there is little variation in pore diameter, there is little variation in air permeability. When used as a separator for a fuel cell, problems such as a decrease in gas seal pressure and deterioration in water absorption can be suppressed.
  • the fuel cell according to an embodiment of the present invention uses a porous separator for a fuel cell that has both conductivity and strength and high uniformity, a fuel cell having high power generation performance can be realized.
  • a method for producing a porous separator for a fuel cell according to an embodiment of the present invention includes a curable resin composition in which at least a resin material and a carbonaceous material are mixed, and the content of the carbonaceous material is 80 to 95% by mass.
  • FIG. 1 is a porous separator for a fuel cell according to an embodiment of the present invention
  • (a) is a schematic diagram of a configuration of a porous separator for a fuel cell
  • (b) is a surface SEM (scanning) of the porous separator for a fuel cell. Type electron microscope) image ( ⁇ 250 times).
  • the in-plane variation of the air permeability of the porous separator for fuel cells of Example 1 and Comparative Example 1 is shown.
  • the in-plane bending strength and specific resistivity of the porous separator for a fuel cell of Example 1 and Comparative Example 1 are shown.
  • the result of having measured the pore distribution of the porous separator for fuel cells concerning one Embodiment of this invention using the mercury intrusion method is shown. It is the cross-sectional schematic diagram which showed the measuring method of the gas seal pressure typically. The result of the air permeability variation with respect to the green sheet thickness variation in the pressing process is shown. The result of the average pore diameter of the porous separator for fuel cells obtained with respect to the green sheet thickness is shown. The result of the porosity of the porous separator for fuel cells obtained with respect to the green sheet thickness is shown. The result of the air permeability of the porous separator for fuel cells obtained with respect to the green sheet thickness is shown. It is the cross-sectional schematic diagram which showed typically the measuring method of water permeability.
  • FIG. 1 is a schematic cross-sectional view of a fuel cell 100 according to an embodiment of the present invention.
  • the fuel cell 100 includes a power generation unit 20, a gas diffusion layer 30 disposed so as to sandwich the power generation unit 20, and a fuel cell porous separator (separator) 10 disposed so as to sandwich the gas diffusion layer 30.
  • the fuel cell porous separator 10 can supply the water supplied from the cooling water 40 to the gas diffusion layer 30 to humidify the power generation unit 20. Further, since the porous separator 10 for a fuel cell has high in-plane uniformity of the pore diameter, there is no possibility that gas leaks from a specific location within the surface or only a specific location has high water absorption.
  • hydrogen gas and air supplied to the power generation unit 20 can be kept inside the fuel cell 100, and humidification of the power generation unit 20 can be made uniform. That is, since the highly uniform porous separator 10 for fuel cells is used, the fuel cell 100 having high power generation performance can be realized.
  • the gas diffusion layer 30 has functions such as supplying hydrogen or air as a fuel to an electrode (catalyst), collecting electrons generated by a chemical reaction at the electrode, moisturizing the electrolyte membrane, and discharging generated water.
  • the gas diffusion layer 30 is not particularly limited, and commonly used members can be used, and carbon paper, carbon cloth, and the like are preferably used.
  • the power generation unit 20 is not particularly limited, and a structure generally used as a fuel cell can be used. Specifically, a structure in which a solid polymer electrolyte membrane is sandwiched between a fuel electrode and an air electrode can be used. Moreover, what is generally used can be used suitably for a solid polymer electrolyte membrane, a fuel electrode, and an air electrode.
  • FIG. 2 (a) is a schematic view of the porous separator for fuel cells of the present invention
  • FIG. 2 (b) is a surface SEM image ( ⁇ 250 times) of the porous separator for fuel cells of the present invention.
  • the fuel cell porous separator 10 is formed by molding a composition including a resin material (resin component) 1 and a carbonaceous material 2.
  • the carbonaceous materials 2 are bonded together by the resin material 1, and water can pass through these gaps (dotted line arrows). These gaps can also be confirmed from the surface SEM photograph of FIG.
  • the content of the carbonaceous material in the total mass of the carbonaceous material and the resin material is 80 to 95% by mass.
  • the pores having a diameter of 1.5 to 4.0 ⁇ m are 90 vol% or more. Therefore, it is possible to realize the fuel cell porous separator 10 having both conductivity and strength and high uniformity.
  • the content of the carbonaceous material can be calculated from the composition ratio of the carbonaceous material and the resin material and the respective densities.
  • the porous separator 10 for a fuel cell has a pore distribution obtained by mercury porosimetry of 90 vol% or more with a pore diameter of 1.5 to 4.0 ⁇ m.
  • the pores having a diameter of 2.0 to 4.0 ⁇ m are preferably 90 vol% or more, and the pores having a diameter of 2.5 to 4.0 ⁇ m are more preferably 90 vol% or more.
  • the strength of the porous separator for a fuel cell is decreased.
  • the pore distribution obtained by the mercury intrusion method of the fuel cell porous separator 10 if the pores having a pore diameter of 1.5 to 4.0 ⁇ m are 90 vol% or more, the whole is uniform, High strength can be obtained.
  • the air permeability is also less variation in the surface, and when used as a fuel cell separator, problems such as a decrease in gas seal pressure and deterioration in water absorption can be suppressed.
  • the pore distribution obtained by the mercury intrusion method if the pores having a pore diameter of 1.5 to 4.0 ⁇ m are 90 vol% or more, gas leakage occurs from the large pore diameter in the plane. And good gas barrier properties can be secured.
  • the variation in the pore diameter is large, the water absorption variation occurs in the surface, and the humidification of the fuel cell power generation unit varies, resulting in a decrease in power generation performance.
  • the mercury intrusion method uses the high surface tension of mercury to apply pressure to inject mercury into the fine pores of the powder and determine the specific surface area and pore distribution from the pressure and the amount of mercury intruded. It is.
  • the volume ratio of all pores is preferably 12 to 25 vol%, more preferably 15 to 21 vol%, and further preferably 17 to 20 vol%.
  • the volume ratio is 12 vol% or more, sufficient water permeability can be secured.
  • the volume ratio is 25 vol% or less, the gas barrier property is good.
  • the strength of the fuel cell porous separator 10 is sufficiently maintained.
  • the air permeability of the fuel cell porous separator 10 is such that 100 ml of air passes from the front surface to the back surface of the sample in the area of 6.4 cm 2 (diameter 28.6 mm) of the fuel cell porous separator 10. It is obtained by measuring the time required. This measurement can be performed using a Gurley measuring device.
  • the Gurley measuring instrument is mainly composed of a piston member that pushes air into a sample and a device that measures the time for which the pushed air passes through the sample. The air pressure at this time is 1.22 kPaG.
  • a Gurley type densometer manufactured by Toyo Seiki Seisakusho is used as the Gurley measuring instrument.
  • the air permeability when the thickness of the fuel cell porous separator 10 is 2 mm is preferably in the range of 150 to 600 s / 100 ml, more preferably in the range of 200 to 500 s / 100 ml, and 200 to 300 s / 100 ml. More preferably, it is in the range of 100 ml. If the air permeability is in the range of 150 to 600 s / 100 ml, it means that there are so many pores and high water permeability can be obtained. When the water permeability is high, the pores in the fuel cell porous separator are filled with moisture, so that the gas barrier property is improved.
  • the variation in the air permeability of the fuel cell porous separator 10 is preferably within a range of ⁇ 150 s / 100 ml, more preferably within a range of ⁇ 100 s / 100 ml, and within a range of ⁇ 50 s / 100 ml. Further preferred. If the variation in air permeability of the fuel cell porous separator 10 is in the range of ⁇ 150 s / 100 ml, the in-plane variation of the fuel cell porous separator 10 is sufficiently small. If the variation in the in-plane air permeability is small, the in-plane pore distribution approaches a constant value, so that a homogeneous porous separator 10 for a fuel cell can be obtained.
  • the variation in the air permeability depends on the area of the fuel cell porous separator 10, but when there is an area of 200 cm 2 or more, for example, the result of each air permeability measured at any nine points in the plane. It can be expressed by the difference between the maximum value and the minimum value.
  • the resistivity in the thickness direction of the fuel cell porous separator 10 is preferably 30 m ⁇ ⁇ cm or less, more preferably 25 m ⁇ ⁇ cm or less, and further preferably 20 m ⁇ ⁇ cm or less. If the resistivity of the fuel cell porous separator is 30 m ⁇ ⁇ cm or less, sufficient conductivity can be ensured.
  • the bending strength of the fuel cell porous separator 10 is preferably 15 MPa or more, more preferably 20 MPa or more, and further preferably 25 MPa or more. When the bending strength is 15 MPa or more, the porous separator for fuel cells is not easily destroyed and exhibits high strength.
  • the bulk density of the fuel cell the porous separator 10 is preferably 1.4 ⁇ 1.8g / cm 3, more preferably 1.55 ⁇ 1.75g / cm 3. If the density of the fuel cell porous separator is within the above range, the optimum air permeability can be exhibited. Therefore, both water permeability and gas barrier properties are good.
  • the fuel cell porous separator 10 is preferably hydrophilized. More preferably, the inside of the fuel cell porous separator 10 is made hydrophilic. If the absorption performance when 5 ⁇ l of water is absorbed in the fuel cell porous separator 10 having a size of 100 mm ⁇ 200 mm is 0.1 to 15 seconds, it can be considered that it has been sufficiently hydrophilized. If the water absorption of the porous separator 10 for fuel cells is within the above range, the water absorption is sufficiently high, and the gas seal pressure in the water absorption state is also high. That is, both water permeability and gas barrier properties are good.
  • the fact that the inside of the fuel cell porous separator 10 has been hydrophilized means that the fluorine element in the depth direction from the surface of the fuel cell porous separator 10 using X-ray photoelectron spectroscopy (XPS). And it can confirm by measuring the content rate of an oxygen element.
  • Content ratio of fluorine element and oxygen element on the surface of the communication hole in the central portion in the thickness direction of the porous separator for fuel cell 10 when the porous separator 10 for fuel cell is measured by X-ray photoelectron spectroscopy (XPS) Is preferably 10 at% or more.
  • XPS X-ray photoelectron spectroscopy
  • each of the fluorine element content ratio and the oxygen element content ratio is 5 at% or more.
  • the fuel cell porous separator 10 is sufficiently hydrophilized. High water absorption and water permeability can be obtained.
  • the method of hydrophilizing the inside of the fuel cell porous separator 10 is preferably exposed to a fluorine gas and oxygen gas-containing gas atmosphere, and the fuel cell porous separator obtained by the method has its inside.
  • Any of a COF group, a CF group, and a COOH group is formed in the resin material existing on the surface of the pores. More specifically, by exposing to a gas containing fluorine gas and oxygen gas, the gas is introduced into the pores, and a part of the resin material that forms the pore surface is composed of COF groups, CF groups, Substituted by any group of COOH groups.
  • Hydrophilization is realized by these groups, and the amount of fluorine element and the amount of oxygen element derived therefrom can be detected by X-ray photoelectron spectroscopy (XPS).
  • the COF group and the CF group are intermediate products that reach the COOH group, and these groups also contribute to the hydrophilization.
  • As a form of use as a porous separator for a fuel cell since these pores are filled with water, most of the COF groups and CF groups are hydrolyzed and converted to COOH groups during use.
  • the porous separator for the fuel cell is immersed in water, and many COF groups and CF groups are hydrolyzed in advance and replaced with COOH groups. It is preferable to keep it.
  • the CF group means a state in which the H atom of the —C—H bond of the resin material is replaced with an F atom. It may be —CFH 2 , —CF 2 H, —CF 3 or the like. The bonding of these groups can be confirmed by determining the binding energy from X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the porous separator 10 for fuel cells has various impurities such as metal elements, conductive ions, oils and fats as impurities inside.
  • these various impurities may elute and adversely affect the power generation characteristics of the fuel cell. Therefore, it is preferable to suppress as much as possible the elution of impurities from the porous separator for fuel cells into water.
  • Carbonaceous materials The content of the carbonaceous material 2 with respect to the total mass of the carbonaceous material 2 and the resin material 1 is in the range of 80 to 95% by mass. When the carbonaceous material 2 is 80% by mass or more, sufficient conductivity can be secured. Moreover, if it is less than 95% by mass, the fluidity of the green sheet, which is the workpiece in the press working described later, is good, and the plate thickness deviation of the molded fuel cell porous separator can be made sufficiently small. Moreover, since the thickness deviation of the green sheet formed in the sheet forming step described later can be sufficiently reduced, the pore diameter of the formed fuel cell porous separator can be made uniform in the plane. .
  • the green sheet is a predetermined temperature at a temperature at which curing does not start using an extruder, a roll, a calendar, or the like. It means a sheet-like molded product formed into a thickness and a width.
  • the size of the carbonaceous material 2 is preferably 3 ⁇ m to 150 ⁇ m, more preferably 5 ⁇ m to 100 ⁇ m, and even more preferably 10 ⁇ m to 80 ⁇ m.
  • the pore shape and the like of the porous separator for a fuel cell can be changed.
  • the average particle size (d50) of the carbonaceous material is 3 ⁇ m to 150 ⁇ m, the pore diameter distribution of the fuel cell porous separator obtained by the mercury intrusion method can be 1.0 to 5.0 ⁇ m. .
  • a porous separator for a fuel cell having the pore diameter is used for a fuel cell, high performance can be obtained.
  • Carbonaceous materials 2 include carbonaceous materials such as carbon black, carbon fibers (pitch-based, PAN-based), amorphous carbon, expanded graphite, quiche graphite, artificial graphite, natural graphite, vapor grown carbon fiber, carbon nanotube, fullerene, etc. 1 type, or 2 or more types of mixtures chosen from among these are mentioned.
  • carbon black since carbon black has lower conductivity and filling properties than other materials, carbon fiber (pitch-based, PAN-based), amorphous carbon, expanded graphite, quiche graphite, artificial graphite, natural graphite, gas phase method
  • the carbonaceous material contains boron, a material having high conductivity is obtained, and among them, the artificial graphite containing boron can reduce impurities.
  • Carbon black As carbon black which is an example of carbonaceous material, incomplete combustion of natural gas, etc., ketjen black obtained by thermal decomposition of acetylene, acetylene black, furnace carbon obtained by incomplete combustion of hydrocarbon oil or natural gas, Examples thereof include thermal carbon obtained by thermal decomposition of natural gas.
  • Carbon fiber Examples of carbon fibers (pitch-based, PAN-based) that are examples of carbonaceous materials include pitch-based made from heavy oil, by-product oil, coal tar, and the like, and PAN-based made from polyacrylonitrile.
  • the average fiber length of the carbon fibers is obtained by measuring the number average fiber length by image analysis of 100 fiber lengths observed using SEM (manufactured by JEOL Ltd., JSM-5510).
  • the carbon fiber referred to here is one having a ratio of (major axis length / minor axis length) of 10 or more.
  • Amorphous carbon which is an example of a carbonaceous material, is a method in which a phenol resin is cured and baked and pulverized to form a powder, or a method in which a phenol resin is cured in a spherical, indeterminate shape and baked. The thing obtained by etc. is mentioned. In order to obtain highly conductive amorphous carbon, it is preferable to perform a heat treatment at 2000 ° C. or higher.
  • Expanded graphite As expanded graphite, which is an example of a carbonaceous material, for example, graphite having a highly crystalline structure such as natural graphite and pyrolytic graphite is mixed with a mixture of concentrated sulfuric acid and nitric acid, or concentrated sulfuric acid and hydrogen peroxide water. Immersion treatment in a strong oxidative solution such as a mixed solution to form a graphite intercalation compound, which is washed with water and then rapidly heated to expand the C-axis direction of the graphite crystal, and once the sheet Examples thereof include powder obtained by pulverizing a product rolled into a shape.
  • quiche graphite examples include planarly crystallized carbon, etc., in which molten pig iron is precipitated as the temperature is lowered by hot metal pretreatment or the like. Since this quiche graphite is generated as a mixture with slag and iron oxide, powder with high purity quiche graphite separated from slag and iron oxide by beneficiation, recovered and further pulverized to a size suitable for the application is preferable. Used.
  • artificial graphite As the artificial graphite which is an example of the carbonaceous material, for example, graphitized powder obtained by the following method is used. Usually, in order to obtain artificial graphite, coke is produced. Petroleum pitch or coal pitch is used as a raw material for coke. These raw materials are carbonized into coke. In order to obtain graphitized powder from coke, generally, a method of pulverizing coke and then graphitizing, a method of pulverizing coke itself and then pulverizing, or a calcined product formed by adding binder to coke and calcined (coke) In addition, there is a method in which the calcined product is co-graphitized and then pulverized into powder.
  • a heat-treated material at 2000 ° C. or lower, preferably 1200 ° C. or lower is suitable.
  • a method for graphitizing a method using an Atchison furnace in which powder is placed in a graphite crucible and directly energized, a method of heating powder with a graphite heating element, or the like can be used.
  • the carbonaceous material preferably contains 0.1 to 50% by mass of vapor grown carbon fiber and / or carbon nanotube. More preferably, the content is 0.1 to 45% by mass, and still more preferably 0.2 to 40% by mass.
  • vapor grown carbon fiber for example, an organic compound such as benzene, toluene, natural gas, or hydrocarbon gas is used as a raw material, and pyrolysis is performed at 800 to 1300 ° C. together with hydrogen gas in the presence of a transition metal catalyst such as ferrocene.
  • a transition metal catalyst such as ferrocene.
  • Examples thereof include carbon fibers obtained by reacting and having a fiber length of about 0.5 to 10 ⁇ m and a fiber diameter of 200 nm or less. A more preferable size of the fiber diameter is 160 nm or less, and further preferably 120 nm or less. If the fiber diameter is larger than 200 nm, the effect of obtaining high conductivity is reduced, which is not preferable.
  • the carbon fiber obtained by the above method is preferably graphitized at about 2300 to 3200 ° C.
  • the graphitization process here is performed in inert gas atmosphere with graphitization catalysts, such as boron, boron carbide, beryllium, aluminum, and silicon.
  • Carbon nanotube In recent years, not only the mechanical strength of carbon nanotubes but also the field emission function and the hydrogen storage function have attracted industrial attention, and the magnetic function has begun to pay attention.
  • This type of carbon nanotube is also called graphite whisker, filamentous carbon, graphite fiber, ultrafine carbon tube, carbon tube, carbon fibril, carbon microtube, carbon nanofiber, etc., and the fiber diameter is about 0.5-100 nm belongs to.
  • Carbon nanotubes include single-walled carbon nanotubes having a single graphite film forming a tube and multi-walled carbon nanotubes having multiple layers. In the present invention, both single-walled and multi-walled carbon nanotubes can be used.
  • Carbon nanotubes are produced, for example, by the arc discharge method, laser evaporation method, thermal decomposition method, etc. described in “Fundamentals of Carbon Nanotubes” by Saito and Itou (page 23-57, published by Corona, 1998).
  • a hydrothermal method a centrifugal separation method, an ultrafiltration method, an oxidation method or the like.
  • high temperature treatment is performed in an inert gas atmosphere at about 2300 to 3200 ° C. to remove impurities. More preferably, high temperature treatment is performed at about 2300 to 3200 ° C. in an inert gas atmosphere together with a graphitization catalyst such as boron, boron carbide, beryllium, aluminum and silicon.
  • Carbonaceous material containing boron Boron is preferably contained in the carbonaceous material 2 in an amount of 0.05 to 5% by mass, more preferably 0.06 to 4% by mass, and even more preferably 0.06 to 3% by mass.
  • the boron content is less than 0.05% by mass, the intended highly conductive carbonaceous material tends to be difficult to obtain. Further, even if the boron content exceeds 5 mass%, it tends to be difficult to contribute to the improvement of the conductivity of the carbonaceous material, the amount of impurities increases, and other physical properties are deteriorated. A tendency tends to occur.
  • ICP inductive plasma emission spectrometry
  • ICP-Ms induction plasma emission spectroscopic mass spectrometry
  • sulfuric acid and nitric acid are added to a carbonaceous material containing boron as a sample, and it is decomposed by heating to 230 ° C. with microwaves (digester method), and further, perchloric acid (HClO 4 ) is added.
  • a method of diluting the decomposed product with water and applying it to an ICP emission spectrometer and measuring the amount of boron is exemplified.
  • Examples of the method of incorporating boron into the carbonaceous material 2 include carbon such as carbon black, carbon fiber, amorphous carbon, expanded graphite, quiche graphite, artificial graphite, natural graphite, vapor grown carbon fiber, carbon nanotube, and fullerene.
  • a mixture of one or two or more selected from the material 2 and a boron source such as B alone, B 4 C, BN, B 2 O 3 , H 3 BO 3, etc. Examples thereof include a method of graphitizing at 3200 ° C.
  • the carbonaceous material 2 containing boron not only becomes uneven, but also increases the possibility of sintering during graphitization. .
  • the boron source is made into a powder having a particle size of about 50 ⁇ m or less, preferably about 20 ⁇ m or less, and then mixed with the powder of the carbonaceous material. It is preferable.
  • the form of boron contained in the carbonaceous material 2 containing boron is not particularly limited as long as boron and / or boron compounds are mixed in the carbonaceous material 2.
  • the carbonaceous material has a graphite crystal
  • the bond between the boron atom and the carbon atom may be any bonding mode such as a covalent bond or an ionic bond.
  • any method for classifying coke powder, artificial graphite powder, natural graphite powder, etc. any method can be used as long as separation is possible.
  • a sieving method or a forced vortex type centrifugal classifier micron separator, turboplex, turboclassic
  • Airflow classifiers such as fire, super separator
  • inertia classifiers improved virtual impactor, elbow jet
  • a wet sedimentation method or a centrifugal classification method can be used.
  • Resin material 1 examples include a thermosetting resin. If it is a thermosetting resin, a molding cycle can be shortened. Examples of the resin material 1 include poly (1,2-butadiene), epoxidized modified polybutadiene, hydroxyl group modified polybutadiene, maleic acid modified polybutadiene, acrylic modified polybutadiene, amine modified polybutadiene, hydrogen modified polybutadiene, poly (3,4-isoprene). ), One or more components selected from a novolac-type epoxy resin and a novolac-type phenol resin can be used. These resin materials are preferable because they improve the hot water resistance when the fuel cell porous separator is used as a fuel cell separator.
  • the resin material 1 has polarity.
  • the resin material having polarity include modified polybutadiene such as epoxy-modified polybutadiene, hydroxyl group-modified polybutadiene, maleic acid-modified polybutadiene, acrylic-modified polybutadiene, amine-modified polybutadiene, and hydrogen-modified polybutadiene.
  • modified polybutadiene such as epoxy-modified polybutadiene, hydroxyl group-modified polybutadiene, maleic acid-modified polybutadiene, acrylic-modified polybutadiene, amine-modified polybutadiene, and hydrogen-modified polybutadiene.
  • the carbonaceous material causes electrostatic induction due to this polarity, and the adhesive force with the carbonaceous material 2 becomes stronger due to the electric attractive force. That is, by using a resin material having polarity, it is possible to improve the strength of the porous separator for fuel cells while maintaining the molding cycle, releasability and storage
  • the content of the resin material 1 in the total mass of the carbonaceous material 2 and the resin material 1 is preferably in the range of 5 to 20% by mass.
  • the strength of the separator can be sufficiently secured when the fuel cell porous separator is used as a fuel cell separator.
  • the resin material is 20% by mass or less, a sufficient total pore specific surface area is obtained, and the water permeability is improved.
  • a monomer, a reaction initiator, a curing retarder, an elastomer, And a resin modifier etc. can be contained. Furthermore, in order to improve hardness, strength, conductivity, moldability, durability, weather resistance, water resistance, etc., glass fiber, whisker, organic fiber, UV stabilizer, antioxidant, mold release agent, lubricant, increase Additives such as a sticking agent, a low shrinkage agent, and a hydrophilicity imparting agent can be contained as necessary.
  • the manufacturing method of the porous separator 10 for fuel cells of this embodiment is obtained by the mixing process which mixes at least the resin material 1 and the carbonaceous material 2, the sheet forming process which makes the mixed mixture into a sheet, and a sheet forming process. And a pressing process for forming the green sheet.
  • Mating process (Mixing method) First, resin material 1 and carbonaceous material 2 and other additives as necessary are mixed to prepare a resin composition having a carbonaceous material content of 80 to 95% by mass.
  • a generally used mixer or kneader is used and mixed as uniformly as possible while keeping constant at a temperature at which curing does not start.
  • the mixer or kneader include a roll, an extruder, a kneader, a Banbury mixer, a Henschel mixer, and a planetary mixer.
  • all components can be uniformly mixed by adding other components after first adding them to the mixer and melting them. .
  • a green sheet is produced for the purpose of uniform material supply to the molding machine.
  • the composition needs to be pulverized in advance.
  • a homogenizer, a Willet pulverizer, a high-speed rotary pulverizer (hammer mill, pin mill, cage mill, blender) or the like can be used, and it is preferable to pulverize while cooling in order to prevent aggregation of materials.
  • a green sheet having a predetermined thickness and width is once molded at a temperature at which curing does not start using an extruder, a roll, a calendar, or the like.
  • the thickness of the sheet tends to gradually increase from the start to the end of sheet forming.
  • the green sheet having a uniform thickness in order to produce a uniform green sheet, by changing the direction of feeding the green sheet to the roll, and repeating the operation of feeding the roll from the portion where the thickness of the sheet is large, the green sheet having a uniform thickness Can be produced.
  • the roll is heated to obtain a green sheet. When heated, a green sheet having a smaller thickness and a uniform thickness can be obtained.
  • a green sheet having a thickness variation within 10% of the average thickness of the green sheet is used. If the variation in the thickness of the green sheet is larger than 10% of the average thickness of the green sheet, it cannot be uniformly pressurized in the pressing process described later, and the pore distribution in the plane of the fuel cell porous separator Variation may occur. Preferably, it is within 7%, more preferably within 5%, still more preferably within 3%.
  • the temperature of the green sheet is preferably set to a temperature that is not less than the temperature at which condensation does not occur and the resin does not cure.
  • the temperature is preferably 10 ° C. to 100 ° C., more preferably 20 ° C. to 40 ° C.
  • the number of rotations is preferably 1 rpm to 5 rpm, depending on the size of the roll. If the rotation speed of the roll is 1 rpm or more, it is preferable from the viewpoint of productivity. Moreover, the uniformity of the thickness of a green sheet is easy to ensure that the rotation speed of a roll is 5 rpm or less.
  • the gap between the rolls is preferably in the range of 0.5 mm to 2.5 mm.
  • the gap between rolls is 0.5 mm or more, the pore diameter of the porous separator for a fuel cell to be finally formed is appropriately controlled without excessively dense green sheets in the sheeting process, It can maintain its temperament and water permeability.
  • the gap between the rolls is 2.5 mm or less, it is easy to control the thickness of the finally formed porous separator for a fuel cell.
  • rolling using a roll, a calendar, etc. is preferably repeated a plurality of times.
  • the thickness may vary at the beginning and end of introducing the workpiece into the roll. Therefore, by repeating the rolling a plurality of times, thickness variations at the beginning and end of introducing the green sheet into the roll can be further suppressed.
  • the obtained green sheet is cut or punched to a desired size, and the sheets are placed in a mold in one or two or more in parallel, or inserted in layers, and heated and pressed with a compression molding machine.
  • a porous separator for a fuel cell is obtained.
  • the pressing step is preferably performed while heating the green sheet at 150 to 240 ° C.
  • the curing rate can be sufficiently fast to maintain productivity.
  • a time of 0.5 minutes or more is required to obtain a molded product having sufficient strength in the pressing process.
  • the pressurization time is preferably 0.5 minutes to 30 minutes. In the case of a pressurization time shorter than 0.5 minutes or more, curing is sufficiently advanced and good strength can be obtained. Moreover, productivity can be maintained by the pressurization time of 30 minutes or less.
  • the pressing step it is preferable to pressurize the green sheet under conditions of 2 MPa to 25 MPa.
  • a pressure condition of 2 MPa or more the porosity of the molded body can be appropriately controlled, and the strength of the fuel cell porous separator can be maintained. Further, under a pressure condition of 25 MPa or less, a sufficient porosity can be secured and water absorption can be maintained.
  • the green sheet is preferably the same as the porous separator for a fuel cell and slightly smaller in length and width.
  • complete curing may be performed by performing after-curing for 10 minutes to 600 minutes in a temperature range of 150 ° C. to 200 ° C. After-curing makes it easy to suppress warping of the product by applying pressure to 0.3 MPa or higher. Further, when molding is performed by applying a pressure of 15 MPa or less, a sufficient porosity of the fuel cell porous separator can be secured.
  • the thickness of the green sheet introduced into the mold is 1.1 times or more and 2 times or less with respect to the mold thickness in the pressing step.
  • the air permeability of the porous separator for fuel cells obtained can be 600 s / 100 ml or less.
  • the porous separator for a fuel cell obtained by such a method has a high pore distribution with a pore diameter of 1.5 to 4.0 ⁇ m of 90 vol% or more in the pore distribution obtained by the mercury intrusion method.
  • a strong and uniform porous separator for fuel cells can be obtained.
  • Pore distribution cannot be obtained in a method of forming pores by firing a mixed molded body of a resin material and a carbonaceous material and removing the resin material, which has been conventionally used as a method for manufacturing a porous separator for a fuel cell.
  • Hydrophilization process The obtained porous separator for a fuel cell is preferably subjected to a hydrophilic treatment.
  • hydrophilization means making the way of getting wet with water better than the present condition, or making a contact angle small. On the other hand, making water wet worse than the current situation and increasing the contact angle are called water repellency.
  • the hydrophilization treatment it is effective to change the surface to an electrically polarized molecular structure.
  • functional groups such as a highly polar carboxyl group, carbonyl group, hydroxy group, amino group, sulfo group, cyano group, etc.
  • a method of performing high energy treatment such as plasma treatment, corona treatment, ozone treatment and UV treatment in a predetermined atmosphere, a method of contacting with a reactive gas, and immersion in a chemical such as a strong acid.
  • high energy treatment such as plasma treatment, corona treatment, ozone treatment and UV treatment in a predetermined atmosphere
  • a method of contacting with a reactive gas and immersion in a chemical such as a strong acid.
  • Other methods include surface coating with a hydrophilic coating agent and surface modification by sputtering.
  • the surface may be hydrophilized only by roughening the surface by blasting or the like.
  • the hydrophilic treatment is performed to the surface and the inside of the fuel cell porous separator.
  • the porous separator for a fuel cell is exposed to an atmosphere containing fluorine gas and oxygen gas to make the surface and the inside of the pores hydrophilic. It absorbs water more quickly when both the surface and inside are hydrophilized than when only the surface is hydrophilized. Moreover, it can suppress that the hydrophilization performance deteriorates with time.
  • porous separator for fuel cells is sufficiently hydrophilic can be evaluated by dropping a small amount of pure water as described above. Further, it can be confirmed by X-ray photoelectron spectroscopy (XPS) that the hydrophilic treatment has been applied to the inside as described above.
  • XPS X-ray photoelectron spectroscopy
  • the porous separator for a fuel cell that has been subjected to the hydrophilization treatment step is preferably washed. If the porous separator for a fuel cell after the hydrophilization treatment is incorporated into the fuel cell as it is and the power is generated, the output may decrease over time due to the influence of impurities. Therefore, it is necessary to wash water-soluble impurities such as hydrogen fluoride provided by the hydrophilization treatment and metal components contained in the raw material. At this time, it is washed with pure water, but if heated, it can be washed efficiently. Further, by performing the washing step, many COF groups and CF groups can be hydrolyzed in advance and replaced with COOH groups before mounting on the fuel cell. By completing substitution of these groups in advance before mounting, performance inspection and the like can be performed before mounting on the fuel cell, which is preferable in terms of production management.
  • the porous separator for a fuel cell after the washing step preferably has an elution amount of various metal ions of 10 ppm or less when 30 g of the porous separator for a fuel cell is immersed in warm water at 80 ° C. for 4 days. More preferably, it is more preferably 1 ppm or less.
  • Example 1 Spherical artificial graphite SCMG (registered trademark: Showa Denko KK) boron-doped product: SCMG IV was graphitized at 2900 ° C. and used as a carbonaceous material.
  • As a resin material epoxidized polybutadiene (JP200 epoxy equivalent: 210-240 g / eq number average molecular weight 2000-3000, manufactured by Nippon Soda Co., Ltd.) obtained by modifying an epoxy group into poly (1,2-butadiene) was used.
  • a carbonaceous material 13.5 kg (90% by mass) and a resin material 1.5 kg (10% by mass) were introduced into a pressure kneader (TD10-20MDX manufactured by Toshin) and mixed to obtain a uniform mixture. .
  • the obtained mixture was pulverized once using a Willet pulverizer (WM type manufactured by Yoshida Seisakusho Co., Ltd.) and then rolled using a roll to obtain a green sheet.
  • the conditions for rolling with a roll were a temperature of 25 ° C., a rotational speed of 1.5 rpm, and a gap between rolls of 1.2 mm.
  • the number of times of rolling by the roll was 6 times.
  • the obtained green sheet was cut into a size of 123 mm in length ⁇ 180 mm in width, and inserted into a mold having a size of 123 mm in length ⁇ 180 mm in width ⁇ 2.2 mm in thickness with a thickness of 2.7 mm.
  • This green sheet was press-molded under the conditions of a temperature of 186 ° C., a pressure of 5 to 9 MPa, and a time of 20 minutes to obtain a porous separator for a fuel cell. Further, the obtained porous separator for a fuel cell was subjected to after-curing for 30 minutes at 180 ° C. and 0.5 MPa. Furthermore, the hydrophilic treatment was performed using a mixed gas of 4 vol% fluorine gas, 20 vol% oxygen gas, and 76 vol% nitrogen gas, and the porous separator for a fuel cell after the hydrophilic treatment was washed. Washing was performed as follows.
  • the separator was dried at 80 ° C. for 4 hours.
  • the resistivity of the porous separator for a fuel cell obtained at this time was 17 m ⁇ ⁇ cm, and the bending strength was 25 MPa. Each measured value was shown as an average value of nine values measured by the method described later.
  • Example 1 The mixture was directly pressed without rolling with a roll, that is, without forming a green sheet. Other conditions were the same as in Example 1.
  • FIG. 3 shows the in-plane variation in the air permeability of the porous separator for a fuel cell of Example 1 and Comparative Example 1.
  • Example 1 the air permeability was measured at a total of nine locations near the center of the porous separator for fuel cells having a size of 123 mm long ⁇ 180 mm wide, near each vertex, and near the middle point between each vertex.
  • Comparative Example 1 the air permeability was measured at four locations near each vertex. As a result, it can be seen that in Example 1 in which the sheet forming process was performed, the variation in air permeability was very small.
  • FIG. 4 shows the bending strength and specific resistivity with respect to the air permeability measured at 9 points of the porous separator for fuel cells of Example 1, and the air permeability measured at 4 points of the porous separator for fuel cells of Comparative Example 1.
  • the bending strength and the specific resistivity with respect to the degree are shown. It can be seen that the porous separator for a fuel cell of Example 1 has a constant bending strength in the plane and high strength as a whole. It can also be seen that the specific resistivity is constant in the plane and the conductivity is uniform.
  • the bending strength was measured according to JIS K6911. Specifically, a non-measured object was cut to a width of 10 mm using a cutting machine (model RC-150 manufactured by Ritoku) and measured using a tabletop electric tester (model LSC-1 / 30 manufactured by JT Toshi). did. At this time, cutting was performed so that the center portion of each air permeability measurement range becomes a load point in the bending strength measurement so that the correspondence between the air permeability and the bending strength can be understood.
  • the specific resistivity was measured by a four-probe method according to JIS K7194.
  • Example 2 A porous separator for a fuel cell was formed in the same manner as in Example 1 except that the number of rolls was one.
  • the resistivity of the porous separator for a fuel cell obtained at this time was 80 m ⁇ ⁇ cm, and the bending strength was 11 MPa.
  • Example 3 A porous separator for a fuel cell was formed in the same manner as in Example 1 except that the number of rolling of the roll was set to 2.
  • the resistivity of the porous separator for a fuel cell obtained at this time was 60 m ⁇ ⁇ cm, and the bending strength was 13 MPa.
  • FIG. 5 the result of having measured the pore distribution of Example 1, Comparative Example 2, and Comparative Example 3 by the mercury intrusion method is shown.
  • the measurement conditions of the mercury intrusion method were as follows. Measuring instrument: AutoPoreIV 9500 (Company name: micromeritics-shimadzu) Mercury constant: contact angle 130 °, surface tension 485 dyne / cm, density 13.5 g / ml Deaeration: maintained at 50 ⁇ mHg or less for 5 minutes Mercury encapsulation: 1.33 psi Pressure range: 1.5-33000 psi Pressure equilibration: Hold for 10 seconds Stem volume: 0.4120 ml Sample: about 1cm square Stem usage: about 5-16%
  • the fuel cell porous separator of Example 1 showed a sharp peak in the pore distribution as compared with the fuel cell porous separators of Comparative Example 2 and Comparative Example 3. That is, it can be seen that the in-plane pore distribution is uniform.
  • Table 1 shows the variation in the thickness of the green sheets obtained in Example 1 and Comparative Examples 2 and 3, and the performance of the porous separator for a fuel cell formed using these green sheets.
  • the air permeability was set to a sample thickness of 2 mm and a gas permeation area of 6.4 cm 2 (area of 28.6 mm in diameter)
  • the pressure at this time was 1.22 kPaG.
  • the gas seal pressure was evaluated as follows using the evaluation apparatus 50 shown in FIG.
  • the evaluation device 50 mainly includes a water W accommodating portion 51 a, a sample 10 accommodating portion, a structure 51 having a hollow portion, and a means 52 for applying pressure to the sample 10.
  • the container 51a for water W is provided on one side (the upper side in FIG. 7) sandwiching the separator of the container for the sample 10.
  • the hollow portion is provided on the other side (the lower side of FIG. 7) of the accommodating portion of the sample 10.
  • the means 52 for applying pressure is connected to the cavity and is configured to apply pressure to the sample 10 through this cavity.
  • normal temperature purified water was sprinkled on the bat, and a separator was attached as a sample 10 for 1 hour.
  • the sample 10 was set at a predetermined position of the evaluation device 50. Sample 10 was 123 mm ⁇ 180 mm ⁇ 2.2 mm. Next, water was applied on the sample 10.
  • the evaluation device 60 mainly includes a structure 61 having a water W accommodating portion 61 a and a sample 10 accommodating portion, and means 62 for applying pressure to the sample 10.
  • the accommodation part 61a for water W is provided on one side (the upper side in FIG. 8) sandwiching the separator of the accommodation part for the sample 10.
  • the means 62 for applying pressure is connected to the water W accommodating portion 61a, and is configured to apply pressure to the sample 10 through the accommodating portion 61a.
  • the weight of the water W2 that permeated the sample 10 was measured with an electronic balance between 60 seconds after reaching the steady state and 120 seconds after.
  • 5 ⁇ l of ion-exchanged water was dropped using a microsyringe in the center of a 100 mm ⁇ 200 mm ⁇ 2 mm sample, and the time until the droplet was completely absorbed was measured.
  • the volume ratio of pores having a pore diameter of 1.5 to 4.0 ⁇ m to all pores was calculated from the pore distribution measured by the mercury intrusion method shown below.
  • the variation in the thickness of the green sheet and the variation in the air permeability were obtained as a difference between the maximum value and the minimum value by measuring nine samples of 123 mm ⁇ 180 mm.
  • the in-plane variation of the green sheet thickness with respect to the average value of the green sheet thickness was 1% in Example 1, 23% in Comparative Example 2, and 12% in Comparative Example 3.
  • FIG. 7 shows the result of the air permeability variation with respect to the green sheet thickness variation. As a result, it can be seen that when the variation in the thickness of the green sheet is small, the variation in the air permeability is small. That is, the gas leak pressure can be increased, and a fuel cell porous separator with high gas shielding properties can be obtained.
  • Example 2 Next, the relationship between the green sheet thickness and the air permeability when the green sheet was pressed was examined.
  • the obtained green sheet was cut into a size of 123 mm long ⁇ 180 mm wide, and the green sheet thickness was 2.30 mm, 2.50 mm, 2.68 mm, 2.76 mm, and 2.76 mm with respect to a mold having a thickness of 2.2 mm.
  • a porous separator for a fuel cell was formed to be 88 mm.
  • Other conditions were the same as in Example 1.
  • the results are shown in Table 2.
  • the in-plane variation of the green sheet thickness with respect to the average value of the green sheet thickness is 3% in Example 2, 2% in Example 3, 1% in Example 4, 2% in Example 5, and 2% in Example 6. Met.
  • FIG. 8 shows a graph of average pore diameter versus green sheet thickness.
  • the average pore diameter was the peak value of pore distribution measured by mercury porosimetry.
  • the porosity was calculated from the pore distribution measured by the mercury intrusion method.
  • FIG. 9 shows a graph of porosity versus green sheet thickness.
  • FIG. 10 shows a graph of the air permeability with respect to the green sheet thickness.
  • porous separator for fuel cells of the present invention As a separator for fuel cells, a fuel cell having high power generation performance is realized because the porous separator for fuel cells having high strength, conductivity, water permeability and gas barrier properties is used. can do.
  • SYMBOLS 1 Resin material, 2 ... Carbonaceous material, 10 ... Porous separator for fuel cells, DESCRIPTION OF SYMBOLS 10a ... Bottom part, 10b ... Upper part, 20 ... Power generation part, 30 ... Gas diffusion layer, 40 ... Cooling water, 50 ... Evaluation apparatus, 51 ... Structure, 51a ... Water accommodating part, 52 ... Means to apply pressure, 60 ... Evaluation device, 61 ... Structure, 61a ... Water container, 62 ... Means for applying pressure, B ... Bubble, W ... Water, W2 ... Water, 100 ... Fuel cell

Abstract

A fuel-cell porous separator according to the present invention is formed of a composition including a resin material and a carbonaceous material, wherein the content of the carbonaceous material accounts for 80-95 mass% of the total mass of the carbonaceous material and the resin material, and fine pores with a fine-pore diameter of 1.5-4.0 μm account for 90 vol% or more in a fine-pore distribution of the fuel-cell porous separator as measured by the mercury intrusion method.

Description

燃料電池用多孔質セパレータ、燃料電池及び燃料電池用多孔質セパレータの製造方法Porous separator for fuel cell, fuel cell, and method for producing porous separator for fuel cell
 本発明は、燃料電池用多孔質セパレータ、燃料電池及び燃料電池用多孔質セパレータの製造方法に関する。
 本願は、2014年10月23日に、日本に出願された特願2014-216178号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a porous separator for a fuel cell, a fuel cell, and a method for producing a porous separator for a fuel cell.
This application claims priority based on Japanese Patent Application No. 2014-216178 filed in Japan on October 23, 2014, the contents of which are incorporated herein by reference.
 燃料電池は、水素と酸素を利用し、水の電気分解の逆反応で発電し、水以外の排出物が出ないクリーンな発電装置である。そのため、環境問題、エネルギー問題の観点から注目されている。燃料電池は、用いられる電解質の種類に応じて数種類に分類される。燃料電池の中でも、低温で作動する固体高分子型の燃料電池は、自動車や民生用として最も有望とされている。この燃料電池は、通常、固体高分子電解質として作用する固体高分子膜と、固体高分子膜を挟持する一対の触媒を担持させたガス拡散電極とを一体化してなる膜電極接合体(MEA:Membrane-Electrode Assembly)と、MEAの外側から挟持して燃料ガスと酸化剤ガスとを分離するセパレータとを有する単セルを基本単位としている。そして、この単セルを多数個積層することによって、燃料電池において高出力の発電が達成できる。 A fuel cell is a clean power generation device that uses hydrogen and oxygen to generate power through the reverse reaction of water electrolysis, and does not emit any other substances than water. Therefore, it is attracting attention from the viewpoint of environmental issues and energy issues. Fuel cells are classified into several types depending on the type of electrolyte used. Among fuel cells, a polymer electrolyte fuel cell that operates at a low temperature is considered most promising for automobiles and consumer use. This fuel cell is usually a membrane electrode assembly (MEA :) formed by integrating a solid polymer membrane acting as a solid polymer electrolyte and a gas diffusion electrode carrying a pair of catalysts sandwiching the solid polymer membrane. The basic unit is a single cell having a Membrane-Electrode Assembly) and a separator that is sandwiched from the outside of the MEA and separates fuel gas and oxidant gas. Then, by stacking a large number of single cells, high power generation can be achieved in the fuel cell.
 このような構成を有する燃料電池において、単セルを仕切るためのセパレータには、通常、燃料ガス(水素等)と酸化剤ガス(酸素等)を供給し、また生成ガスや余剰ガスを運び去るためのガス流路(溝)が設けられている。それゆえに、セパレータにはこれらのガスを完全に分離できる高い気体不透過性と、内部抵抗を小さくするために高い導電性が要求される。更には、このセパレータには、熱伝導性、耐久性、強度等に優れていることが要求される。 In a fuel cell having such a structure, a fuel gas (hydrogen, etc.) and an oxidant gas (oxygen, etc.) are usually supplied to a separator for partitioning a single cell, and product gas and surplus gas are carried away. Gas flow paths (grooves) are provided. Therefore, the separator is required to have high gas impermeability capable of completely separating these gases and high conductivity in order to reduce the internal resistance. Furthermore, the separator is required to have excellent thermal conductivity, durability, strength, and the like.
 これらの要求を達成する目的で、燃料電池用セパレータとして金属材料を用いたものと炭素質材料を用いたもの両方が検討されてきた。これらの材料のうち金属材料を用いた燃料電池用セパレータは、耐食性の面で問題がある。当該問題を解決するために、表面に貴金属や炭素を被覆させる試みがされてきたが、充分な耐久性が得られず、また被覆にかかるコストが問題になる。 In order to achieve these requirements, both fuel cell separators using metallic materials and carbonaceous materials have been studied. Among these materials, a fuel cell separator using a metal material has a problem in terms of corrosion resistance. In order to solve the problem, attempts have been made to coat the surface with a noble metal or carbon. However, sufficient durability cannot be obtained, and the cost of coating becomes a problem.
 これに対し炭素質材料を用いた燃料電池用セパレータは、軽く、また腐食しない等のメリットがあり、検討が進められている。このような炭素質材料を用いた燃料電池用セパレータには、ソリッドセパレータとポーラスセパレータがある。ソリッドセパレータは、導電性を有する炭素質材料を樹脂材料で完全に封止したものであり、ガスも水も透過しないため、主に外部加湿方式の燃料電池に用いられる。これに対しポーラスセパレータは、少ない樹脂バインダーで炭素質材料同士が連結したものであり、内部にミクロな細孔を有するものであるため、主に内部加湿方式の燃料電池に用いられる。 In contrast, fuel cell separators using carbonaceous materials are lighter and have the advantage of not corroding, and are being studied. Fuel cell separators using such carbonaceous materials include solid separators and porous separators. The solid separator is formed by completely sealing a carbonaceous material having conductivity with a resin material, and neither gas nor water permeates. Therefore, the solid separator is mainly used for an external humidification type fuel cell. On the other hand, the porous separator is formed by connecting carbonaceous materials with a small amount of resin binder and having micro pores therein, and is therefore mainly used for an internal humidification type fuel cell.
 ソリッドセパレータを用いた外部加湿方式の燃料電池では、固体高分子膜を膨潤させてプロトン伝導性を付与するために加湿器を用いて反応ガスを加湿する必要があるのに対し、ポーラスセパレータを用いた内部加湿方式の燃料電池では、セパレータを介して冷却水を発電部に浸透させ、加湿することができる。また、ポーラスセパレータ内部の細孔が冷却水で満たされるため、燃料ガス、酸化剤ガスや生成ガス等に対するガスバリア性も発揮する。そのため、加湿器の設置が不要であり、内部加湿方式の燃料電池の研究が進められている。
 しかしながら、ポーラスセパレータは、炭素質材料同士を樹脂バインダーで接合することにより形を維持しているため、十分な強度を得ることが難しい。また、強度を得るために樹脂バインダーの量を増加させると、高い透水性が得られないという問題がある。そのため、導電性と強度を両立し、さらに均一性の高い燃料電池用多孔質セパレータが求められている。
In external humidification type fuel cells using solid separators, it is necessary to humidify the reaction gas using a humidifier in order to swell the solid polymer membrane and impart proton conductivity. In the internal humidification type fuel cell, the cooling water can be permeated into the power generation unit via the separator and humidified. In addition, since the pores inside the porous separator are filled with cooling water, gas barrier properties against fuel gas, oxidant gas, generated gas and the like are also exhibited. Therefore, it is not necessary to install a humidifier, and research on an internal humidification type fuel cell is underway.
However, since the porous separator maintains its shape by joining carbonaceous materials with a resin binder, it is difficult to obtain sufficient strength. Further, when the amount of the resin binder is increased in order to obtain strength, there is a problem that high water permeability cannot be obtained. Therefore, there is a demand for a porous separator for a fuel cell that has both conductivity and strength and is highly uniform.
 例えば、特許文献1には、所定の気孔率を有するエポキシ樹脂を含む樹脂材料と炭素材料粉末とを含む燃料電池用多孔質セパレータについて記載されている。しかし、全体に対する気孔率については記載されているが、気孔径の分布については記載されておらず、均一性が高いとは言えない。
 また特許文献2には、特定の気孔半径及び気孔率を有する親水性多孔質材について記載されている。
 さらに、特許文献3には、所定の細孔径以下のサイズの細孔を有する水移動プレートについて記載されている。
For example, Patent Document 1 describes a porous separator for a fuel cell that includes a resin material containing an epoxy resin having a predetermined porosity and a carbon material powder. However, although the porosity with respect to the whole is described, the distribution of the pore diameter is not described, and it cannot be said that the uniformity is high.
Patent Document 2 describes a hydrophilic porous material having a specific pore radius and porosity.
Furthermore, Patent Document 3 describes a water moving plate having pores having a size equal to or smaller than a predetermined pore diameter.
特開2013-069605号公報JP2013-0669605A 特開2006-004920号公報JP 2006-004920 A 特表2002-518815号公報Special table 2002-518815 gazette
 しかしながら、従来の燃料電池用多孔質セパレータでは、導電性と強度を両立し、さらに均一性の高い燃料電池用多孔質セパレータを実現することができなかった。 However, conventional porous separators for fuel cells have failed to realize a porous separator for fuel cells that achieves both conductivity and strength and is highly uniform.
 発明者らの鋭意検討の結果、燃料電池用多孔質セパレータは、その細孔直径の分布が成形体1枚の面内で大きくばらついていることがわかった。これは、ポーラスセパレータは、多孔質構造を維持するために、ソリッドセパレータを形成する際の圧力より低圧でプレス成型する必要があるためと考えられる。この面内でのばらつきに伴い、導電性と強度が低下するという課題があった。
 また、細孔直径の分布が面内でばらつくと、細孔直径が大きいところからガスのリークが起こるため、ガスシール圧が低下する。また、細孔直径が大きいところは吸水性が良く、細孔直径が小さいところは吸水性が悪くなるため、面内で吸水性にバラツキが生じ、燃料電池として用いた場合に発電性能の低下につながる。
As a result of the intensive studies by the inventors, it has been found that the porous separator for a fuel cell has a large variation in pore diameter distribution within the surface of one molded body. This is presumably because the porous separator needs to be press-molded at a pressure lower than the pressure for forming the solid separator in order to maintain the porous structure. With this in-plane variation, there is a problem that the conductivity and strength are reduced.
In addition, if the pore diameter distribution varies in the plane, gas leakage occurs from the location where the pore diameter is large, so that the gas seal pressure decreases. In addition, water absorption is good where the pore diameter is large, and water absorption is poor where the pore diameter is small, resulting in variations in water absorption within the surface, which reduces power generation performance when used as a fuel cell. Connected.
 本発明は、上記のような問題を解決しようとするものであり、導電性と強度を両立し、さらに均一性の高い燃料電池用多孔質セパレータを提供することを課題としている。 The present invention is intended to solve the above-described problems, and an object of the present invention is to provide a porous separator for a fuel cell that has both conductivity and strength and is highly uniform.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。
 その結果、細孔密度を所定の範囲内とし、炭素質材料の体積率を一定とすることで、導電性と強度を両立し、さらに均一性の高い燃料電池用多孔質セパレータを提供することができることを見出し、以下に示す本発明を完成するに至った。
The inventors of the present invention have made extensive studies to solve the above problems.
As a result, it is possible to provide a porous separator for a fuel cell that achieves both conductivity and strength and has high uniformity by keeping the pore density within a predetermined range and keeping the volume fraction of the carbonaceous material constant. As a result, the inventors have found that the present invention can be accomplished.
(1)本発明の一態様にかかる燃料電池用多孔質セパレータは、樹脂材料と炭素質材料とを含む組成物を用いて成形されてなる燃料電池用多孔質セパレータであって、前記炭素質材料と前記樹脂材料の総質量における前記炭素質材料の含有量が80~95質量%であり、水銀圧入法によって求められる細孔分布における全細孔のうち、細孔直径が1.5~4.0μmである細孔が90vol%以上である。 (1) A porous separator for a fuel cell according to one aspect of the present invention is a porous separator for a fuel cell formed by using a composition containing a resin material and a carbonaceous material, and the carbonaceous material In addition, the content of the carbonaceous material in the total mass of the resin material is 80 to 95% by mass, and among all the pores in the pore distribution determined by the mercury intrusion method, the pore diameter is 1.5 to 4. The pore which is 0 μm is 90 vol% or more.
(2)上記(1)に記載の燃料電池用多孔質セパレータは、前記樹脂材料が、ポリ(1,2-ブタジエン)、エポキシ変性ポリブタジエン、水酸基変性ポリブタジエン、マレイン酸変性ポリブタジエン、アクリル変性ポリブタジエン、アミン変性ポリブタジエン、水素変性ポリブタジエンからなる群から選択された一種を含んでもよい。 (2) In the porous separator for a fuel cell according to (1), the resin material is poly (1,2-butadiene), epoxy-modified polybutadiene, hydroxyl-modified polybutadiene, maleic acid-modified polybutadiene, acrylic-modified polybutadiene, amine One kind selected from the group consisting of modified polybutadiene and hydrogen-modified polybutadiene may be included.
(3)本発明の一態様にかかる燃料電池は、上記(1)または(2)に記載の燃料電池用多孔質セパレータを備える。 (3) A fuel cell according to an aspect of the present invention includes the porous separator for a fuel cell according to the above (1) or (2).
(4)本発明の一態様にかかる燃料電池用多孔質セパレータの製造方法は、少なくとも樹脂材料と炭素質材料を混合し、炭素質材料の含有量が80~95質量%である硬化性樹脂組成物を調製する混合工程と、混合して得られた組成物をシート厚の面内ばらつきがシート厚の平均厚に対して10%以内であるグリーンシートにシート化するシート化工程と、シート化工程で得られたグリーンシートを成形するプレス工程と、を有する。 (4) A method for producing a porous separator for a fuel cell according to one aspect of the present invention includes a curable resin composition in which at least a resin material and a carbonaceous material are mixed, and the content of the carbonaceous material is 80 to 95% by mass. A mixing step for preparing a product, a sheeting step for converting the composition obtained by mixing into a green sheet having an in-plane variation of the sheet thickness within 10% of the average thickness of the sheet thickness, and sheeting And a pressing step of forming the green sheet obtained in the step.
(5)上記(4)に記載の燃料電池用多孔質セパレータの製造方法では、前記プレス工程時の金型厚みに対して前記グリーンシートの厚みが1.1倍以上2倍以下であってもよい。 (5) In the method for producing a porous separator for a fuel cell according to (4) above, even if the thickness of the green sheet is 1.1 times or more and 2 times or less with respect to the mold thickness during the pressing step. Good.
(6)上記(4)または(5)のいずれかに記載の燃料電池用多孔質セパレータの製造方法では、前記シート化工程において、前記グリーンシートの温度を結露が生じない温度以上かつ樹脂が硬化しない温度以下としてもよい。 (6) In the method for producing a porous separator for a fuel cell according to any one of (4) and (5), in the sheet forming step, the temperature of the green sheet is equal to or higher than a temperature at which condensation does not occur and the resin is cured. It is good also as below the temperature which does not.
(7)上記(4)~(6)のいずれか一つに記載の燃料電池用多孔質セパレータの製造方法では、前記プレス化工程において、前記グリーンシートを150~240℃の温度で加熱してもよい。 (7) In the method for producing a porous separator for a fuel cell according to any one of (4) to (6), the green sheet is heated at a temperature of 150 to 240 ° C. in the pressing step. Also good.
(8)上記(4)~(7)のいずれか一つに記載の燃料電池用多孔質セパレータの製造方法では、前記プレス化工程において、前記グリーンシートを2~25MPaの圧力で加圧してもよい。 (8) In the method for producing a porous separator for a fuel cell according to any one of (4) to (7), the green sheet may be pressurized at a pressure of 2 to 25 MPa in the pressing step. Good.
 本発明の一実施形態にかかる燃料電池用多孔質セパレータは、前記炭素質材料と前記樹脂材料の総質量における炭素質材料の含有量が80~95質量%であり、水銀圧入法によって得られる前記燃料電池用多孔質セパレータの細孔分布において、細孔直径が1.5~4.0μmである細孔が90vol%以上である。燃料電池用多孔質セパレータ中における炭素質材料の割合が大きいため、高い導電性を維持することができる。
 またその細孔直径もばらつきが少なく、面内で均一である。そのため、成形時に内部に欠陥が生じることが少なく高い強度を実現することができる。さらに細孔直径のばらつきが少ないため、透気度のばらつきが少ない。燃料電池用のセパレータとして用いるとガスシール圧の低下や吸水性の悪化という問題を抑制することができる。
The porous separator for a fuel cell according to one embodiment of the present invention has a carbonaceous material content of 80 to 95% by mass in the total mass of the carbonaceous material and the resin material, and is obtained by a mercury intrusion method. In the pore distribution of the fuel cell porous separator, the pores having a pore diameter of 1.5 to 4.0 μm are 90 vol% or more. Since the ratio of the carbonaceous material in the fuel cell porous separator is large, high conductivity can be maintained.
Also, the pore diameters are uniform and in-plane with little variation. Therefore, there are few defects in the interior during molding, and high strength can be realized. Furthermore, since there is little variation in pore diameter, there is little variation in air permeability. When used as a separator for a fuel cell, problems such as a decrease in gas seal pressure and deterioration in water absorption can be suppressed.
 本発明の一実施形態にかかる燃料電池は、導電性と強度を両立し、さらに均一性の高い燃料電池用多孔質セパレータを用いるため、高い発電性能を有する燃料電池を実現することができる。 Since the fuel cell according to an embodiment of the present invention uses a porous separator for a fuel cell that has both conductivity and strength and high uniformity, a fuel cell having high power generation performance can be realized.
 本発明の一実施形態にかかる燃料電池用多孔質セパレータの製造方法は、少なくとも樹脂材料と炭素質材料を混合し、炭素質材料の含有量が80~95質量%である硬化性樹脂組成物を調製する混合工程と、混合して得られた組成物をシート厚の面内ばらつきがシート厚の平均厚に対して10%以内であるグリーンシートにシート化するシート化工程と、を有する。そのため、燃料電池用多孔質セパレータの細孔直径を所定の範囲にすることができ、得られる燃料電池用多孔質セパレータの導電性と強度を両立し、さらに均一性の高い燃料電池用多孔質セパレータを作製することができる。 A method for producing a porous separator for a fuel cell according to an embodiment of the present invention includes a curable resin composition in which at least a resin material and a carbonaceous material are mixed, and the content of the carbonaceous material is 80 to 95% by mass. A mixing step of preparing, and a sheeting step of forming the composition obtained by mixing into a green sheet having an in-plane variation of the sheet thickness within 10% of the average thickness of the sheet. Therefore, the pore diameter of the porous separator for a fuel cell can be set within a predetermined range, and both the conductivity and strength of the obtained porous separator for a fuel cell are compatible, and the porous separator for a fuel cell has higher uniformity. Can be produced.
本発明の一実施形態にかかる燃料電池の断面模式図である。It is a cross-sectional schematic diagram of the fuel cell concerning one Embodiment of this invention. 本発明の一実施形態にかかる燃料電池用多孔質セパレータであり、(a)は燃料電池用多孔質セパレータの構成の模式図であり、(b)は燃料電池用多孔質セパレータの表面SEM(走査型電子顕微鏡)画像(×250倍)である。1 is a porous separator for a fuel cell according to an embodiment of the present invention, (a) is a schematic diagram of a configuration of a porous separator for a fuel cell, and (b) is a surface SEM (scanning) of the porous separator for a fuel cell. Type electron microscope) image (× 250 times). 実施例1と比較例1の燃料電池用多孔質セパレータの透気度の面内ばらつきを示す。The in-plane variation of the air permeability of the porous separator for fuel cells of Example 1 and Comparative Example 1 is shown. 実施例1と比較例1の燃料電池用多孔質セパレータの面内の曲げ強度および固有抵抗率を示す。The in-plane bending strength and specific resistivity of the porous separator for a fuel cell of Example 1 and Comparative Example 1 are shown. 本発明の一実施形態にかかる燃料電池用多孔質セパレータの細孔分布を、水銀圧入法を用いて測定した結果を示す。The result of having measured the pore distribution of the porous separator for fuel cells concerning one Embodiment of this invention using the mercury intrusion method is shown. ガスシール圧の測定方法を模式的に示した断面模式図である。It is the cross-sectional schematic diagram which showed the measuring method of the gas seal pressure typically. プレス化工程におけるグリーンシート厚のばらつきに対する透気度ばらつきの結果を示した。The result of the air permeability variation with respect to the green sheet thickness variation in the pressing process is shown. グリーンシート厚に対して得られる燃料電池用多孔質セパレータの平均気孔径の結果を示す。The result of the average pore diameter of the porous separator for fuel cells obtained with respect to the green sheet thickness is shown. グリーンシート厚に対して得られる燃料電池用多孔質セパレータの気孔率の結果を示す。The result of the porosity of the porous separator for fuel cells obtained with respect to the green sheet thickness is shown. グリーンシート厚に対して得られる燃料電池用多孔質セパレータの透気度の結果を示す。The result of the air permeability of the porous separator for fuel cells obtained with respect to the green sheet thickness is shown. 透水性の測定方法を模式的に示した断面模式図である。It is the cross-sectional schematic diagram which showed typically the measuring method of water permeability.
 以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下に示す例のみに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited only to the example shown below.
 「燃料電池」
 図1は、本発明の一実施形態にかかる燃料電池100の断面模式図である。燃料電池100は、発電部20と、発電部20を挟むように配置されたガス拡散層30と、ガス拡散層30を挟むように配置された燃料電池用多孔質セパレータ(セパレータ)10とからなる。
 燃料電池用多孔質セパレータ10は、冷却水40から供給される水をガス拡散層30に供給し、発電部20を加湿することができる。また燃料電池用多孔質セパレータ10は、細孔直径の面内均一性が高いため、面内の特定の箇所からガスがリークしたり、特定の箇所のみが吸水性が高いということがない。そのため、発電部20に供給される水素ガスや空気を燃料電池100内部に留めることができ、発電部20への加湿を均一にすることができる。
 すなわち、均一性の高い燃料電池用多孔質セパレータ10を用いるため、高い発電性能を有する燃料電池100を実現することができる。
"Fuel cell"
FIG. 1 is a schematic cross-sectional view of a fuel cell 100 according to an embodiment of the present invention. The fuel cell 100 includes a power generation unit 20, a gas diffusion layer 30 disposed so as to sandwich the power generation unit 20, and a fuel cell porous separator (separator) 10 disposed so as to sandwich the gas diffusion layer 30. .
The fuel cell porous separator 10 can supply the water supplied from the cooling water 40 to the gas diffusion layer 30 to humidify the power generation unit 20. Further, since the porous separator 10 for a fuel cell has high in-plane uniformity of the pore diameter, there is no possibility that gas leaks from a specific location within the surface or only a specific location has high water absorption. Therefore, hydrogen gas and air supplied to the power generation unit 20 can be kept inside the fuel cell 100, and humidification of the power generation unit 20 can be made uniform.
That is, since the highly uniform porous separator 10 for fuel cells is used, the fuel cell 100 having high power generation performance can be realized.
 ガス拡散層30は、燃料である水素や空気の電極(触媒)への供給、電極での化学反応により生じた電子の集電、電解質膜の保湿及び生成水の排出等の機能を有する。ガス拡散層30は、特に限定されるものではなく一般に用いる部材を使用することができ、カーボンペーパーやカーボンクロス等が好適に用いられる。 The gas diffusion layer 30 has functions such as supplying hydrogen or air as a fuel to an electrode (catalyst), collecting electrons generated by a chemical reaction at the electrode, moisturizing the electrolyte membrane, and discharging generated water. The gas diffusion layer 30 is not particularly limited, and commonly used members can be used, and carbon paper, carbon cloth, and the like are preferably used.
 また発電部20も特に限定されるものでなく、一般に燃料電池として用いられる構造を用いることができる。具体的には、固体高分子電解質膜を燃料極と空気極で挟む構造等を用いることができる。また、固体高分子電解質膜、燃料極及び空気極は、一般に用いられるものを好適に用いることができる。 Further, the power generation unit 20 is not particularly limited, and a structure generally used as a fuel cell can be used. Specifically, a structure in which a solid polymer electrolyte membrane is sandwiched between a fuel electrode and an air electrode can be used. Moreover, what is generally used can be used suitably for a solid polymer electrolyte membrane, a fuel electrode, and an air electrode.
「燃料電池用多孔質セパレータ」
 図2(a)は本発明の燃料電池用多孔質セパレータの模式図であり、図2(b)は本発明の燃料電池用多孔質セパレータの表面SEM画像(×250倍)である。
 図2(a)に示すように、燃料電池用多孔質セパレータ10は、樹脂材料(樹脂成分)1と、炭素質材料2とを含む組成物を成形してなる。炭素質材料2同士は、樹脂材料1で結合され、これらの隙間を水が通過することができる(点線矢印)。これらの隙間は、図2(b)の表面SEM写真からも確認することができる。また、前記炭素質材料と前記樹脂材料の総質量における炭素質材料の含有量が80~95質量%であり、水銀圧入法によって得られる燃料電池用多孔質セパレータ10の細孔分布において、細孔直径が1.5~4.0μmである細孔が90vol%以上である。そのため、導電性と強度を両立し、さらに均一性の高い燃料電池用多孔質セパレータ10を実現することができる。なお、炭素質材料の含有量は、炭素質材料と樹脂材料の組成比と、それぞれの密度から計算することができる。
"Porous separator for fuel cells"
FIG. 2 (a) is a schematic view of the porous separator for fuel cells of the present invention, and FIG. 2 (b) is a surface SEM image (× 250 times) of the porous separator for fuel cells of the present invention.
As shown in FIG. 2A, the fuel cell porous separator 10 is formed by molding a composition including a resin material (resin component) 1 and a carbonaceous material 2. The carbonaceous materials 2 are bonded together by the resin material 1, and water can pass through these gaps (dotted line arrows). These gaps can also be confirmed from the surface SEM photograph of FIG. In the pore distribution of the fuel cell porous separator 10 obtained by the mercury intrusion method, the content of the carbonaceous material in the total mass of the carbonaceous material and the resin material is 80 to 95% by mass. The pores having a diameter of 1.5 to 4.0 μm are 90 vol% or more. Therefore, it is possible to realize the fuel cell porous separator 10 having both conductivity and strength and high uniformity. The content of the carbonaceous material can be calculated from the composition ratio of the carbonaceous material and the resin material and the respective densities.
 燃料電池用多孔質セパレータ10は、水銀圧入法によって得られる細孔分布において、細孔直径が1.5~4.0μmである細孔が90vol%以上である。また2.0~4.0μmである細孔が90vol%以上であることが好ましく、2.5~4.0μmである細孔が90vol%以上であることがより好ましい。
 一般に導電性を高くするために、炭素質材料の含有量を多くすると、燃料電池用多孔質セパレータの強度が低くなってしまう。しかし、燃料電池用多孔質セパレータ10の水銀圧入法によって得られる細孔分布において、細孔直径が1.5~4.0μmである細孔が90vol%以上であれば、全体が均一であり、高い強度を得ることができる。
 さらに細孔直径のばらつきが少ないため、透気度も面内でばらつきが少なく、燃料電池用のセパレータとして用いた場合にガスシール圧の低下や吸水性の悪化という問題を抑制することができる。水銀圧入法によって得られる細孔分布において、細孔直径が1.5~4.0μmである細孔が90vol%以上であると、面内で細孔直径が大きいところからガスのリークが起こることもなく、良好なガスバリア性を確保できる。また細孔直径のばらつきが大きいと面内で吸水性のバラツキが生じ、燃料電池の発電部への加湿がばらつき、その結果として発電性能の低下につながる。しかしながら、細孔分布が上記の範囲であると、吸水性のばらつきも少なく、発電性能を良好に維持できる。
 水銀圧入法は、水銀の表面張力が大きいことを利用して、粉体の細孔に水銀を浸入させるために圧力を加え、圧力と圧入された水銀量から比表面積や細孔分布を求める方法である。
The porous separator 10 for a fuel cell has a pore distribution obtained by mercury porosimetry of 90 vol% or more with a pore diameter of 1.5 to 4.0 μm. The pores having a diameter of 2.0 to 4.0 μm are preferably 90 vol% or more, and the pores having a diameter of 2.5 to 4.0 μm are more preferably 90 vol% or more.
In general, when the content of the carbonaceous material is increased in order to increase the conductivity, the strength of the porous separator for a fuel cell is decreased. However, in the pore distribution obtained by the mercury intrusion method of the fuel cell porous separator 10, if the pores having a pore diameter of 1.5 to 4.0 μm are 90 vol% or more, the whole is uniform, High strength can be obtained.
Furthermore, since there is little variation in the pore diameter, the air permeability is also less variation in the surface, and when used as a fuel cell separator, problems such as a decrease in gas seal pressure and deterioration in water absorption can be suppressed. In the pore distribution obtained by the mercury intrusion method, if the pores having a pore diameter of 1.5 to 4.0 μm are 90 vol% or more, gas leakage occurs from the large pore diameter in the plane. And good gas barrier properties can be secured. Moreover, if the variation in the pore diameter is large, the water absorption variation occurs in the surface, and the humidification of the fuel cell power generation unit varies, resulting in a decrease in power generation performance. However, when the pore distribution is in the above range, there is little variation in water absorption, and power generation performance can be maintained well.
The mercury intrusion method uses the high surface tension of mercury to apply pressure to inject mercury into the fine pores of the powder and determine the specific surface area and pore distribution from the pressure and the amount of mercury intruded. It is.
 また、燃料電池用多孔質セパレータ10において全細孔の体積率は、12~25vol%であることが好ましく、15~21vol%であることがより好ましく、17~20vol%であることがさらに好ましい。当該体積率が12vol%以上であると、透水性が十分に確保できる。体積率が25vol%以下であると、ガスバリア性が良好となる。また、燃料電池用多孔質セパレータ10の強度も十分に維持される。 In the fuel cell porous separator 10, the volume ratio of all pores is preferably 12 to 25 vol%, more preferably 15 to 21 vol%, and further preferably 17 to 20 vol%. When the volume ratio is 12 vol% or more, sufficient water permeability can be secured. When the volume ratio is 25 vol% or less, the gas barrier property is good. In addition, the strength of the fuel cell porous separator 10 is sufficiently maintained.
 燃料電池用多孔質セパレータ10の透気度は、100mlの空気が、燃料電池用多孔質セパレータ10の、面積6.4cm(直径28.6mm)の領域においてサンプルの表面から裏面へ通り抜けるのに要する時間を測定することによって得られる。この測定は、ガーレー測定器を用いて行うことができる。ガーレー測定器は、主に、サンプルに対して空気を押し込むピストン部材と、押し込まれた空気がサンプル中を通過する時間を測定する機器とで構成されるものである。このときの空気の圧力は1.22kPaGである。後述の実施例では、ガーレー測定器として東洋精機製作所社製のガーレー式デンソメーターを使用している。
燃料電池用多孔質セパレータ10の厚み2mmとしたときの透気度は、150~600s/100mlの範囲であることが好ましく、200~500s/100mlの範囲であることがより好ましく、200~300s/100mlの範囲であることがさらに好ましい。
 透気度が、150~600s/100mlの範囲であれば、それだけ細孔を有していることを意味し、高い透水性を得ることができる。透水性が高ければ、燃料電池用多孔質セパレータ中の細孔に水分が充填されるため、ガスバリア性が向上する。
The air permeability of the fuel cell porous separator 10 is such that 100 ml of air passes from the front surface to the back surface of the sample in the area of 6.4 cm 2 (diameter 28.6 mm) of the fuel cell porous separator 10. It is obtained by measuring the time required. This measurement can be performed using a Gurley measuring device. The Gurley measuring instrument is mainly composed of a piston member that pushes air into a sample and a device that measures the time for which the pushed air passes through the sample. The air pressure at this time is 1.22 kPaG. In the examples described later, a Gurley type densometer manufactured by Toyo Seiki Seisakusho is used as the Gurley measuring instrument.
The air permeability when the thickness of the fuel cell porous separator 10 is 2 mm is preferably in the range of 150 to 600 s / 100 ml, more preferably in the range of 200 to 500 s / 100 ml, and 200 to 300 s / 100 ml. More preferably, it is in the range of 100 ml.
If the air permeability is in the range of 150 to 600 s / 100 ml, it means that there are so many pores and high water permeability can be obtained. When the water permeability is high, the pores in the fuel cell porous separator are filled with moisture, so that the gas barrier property is improved.
 燃料電池用多孔質セパレータ10の透気度のばらつきは、±150s/100mlの範囲であることが好ましく、±100s/100mlの範囲であることがより好ましく、±50s/100mlの範囲であることがさらに好ましい。燃料電池用多孔質セパレータ10の透気度のばらつきが、±150s/100mlの範囲であれば、燃料電池用多孔質セパレータ10の面内ばらつきが十分小さい。面内の透気度のばらつきが小さければ、面内の細孔分布も一定に近づくため、均質な燃料電池用多孔質セパレータ10を得ることができる。透気度のばらつきは、燃料電池用多孔質セパレータ10の面積にもよるが、例えば200cm以上の面積がある場合には、面内の任意の9点で測定したそれぞれの透気度の結果の最大値と最小値の差で表すことができる。 The variation in the air permeability of the fuel cell porous separator 10 is preferably within a range of ± 150 s / 100 ml, more preferably within a range of ± 100 s / 100 ml, and within a range of ± 50 s / 100 ml. Further preferred. If the variation in air permeability of the fuel cell porous separator 10 is in the range of ± 150 s / 100 ml, the in-plane variation of the fuel cell porous separator 10 is sufficiently small. If the variation in the in-plane air permeability is small, the in-plane pore distribution approaches a constant value, so that a homogeneous porous separator 10 for a fuel cell can be obtained. The variation in the air permeability depends on the area of the fuel cell porous separator 10, but when there is an area of 200 cm 2 or more, for example, the result of each air permeability measured at any nine points in the plane. It can be expressed by the difference between the maximum value and the minimum value.
 燃料電池用多孔質セパレータ10の厚さ方向の抵抗率は、30mΩ・cm以下であることが好ましく、25mΩ・cm以下であることがより好ましく、20mΩ・cm以下であることがさらに好ましい。燃料電池用多孔質セパレータの抵抗率が、30mΩ・cm以下であれば、十分な導電性を確保することができる。 The resistivity in the thickness direction of the fuel cell porous separator 10 is preferably 30 mΩ · cm or less, more preferably 25 mΩ · cm or less, and further preferably 20 mΩ · cm or less. If the resistivity of the fuel cell porous separator is 30 mΩ · cm or less, sufficient conductivity can be ensured.
 燃料電池用多孔質セパレータ10の曲げ強度は、15MPa以上であることが好ましく、20MPa以上であることがより好ましく、25MPa以上であることがさらに好ましい。曲げ強度が15MPa以上であれば、燃料電池用多孔質セパレータは十分破壊され難く高い強度を示す。 The bending strength of the fuel cell porous separator 10 is preferably 15 MPa or more, more preferably 20 MPa or more, and further preferably 25 MPa or more. When the bending strength is 15 MPa or more, the porous separator for fuel cells is not easily destroyed and exhibits high strength.
 燃料電池用多孔質セパレータ10の嵩密度は、1.4~1.8g/cmであることが好ましく、1.55~1.75g/cmであることがより好ましい。燃料電池用多孔質セパレータの密度が当該範囲であれば、最適な透気度を示すことができる。そのため、透水性及びガスバリア性がともに良好である。 The bulk density of the fuel cell the porous separator 10 is preferably 1.4 ~ 1.8g / cm 3, more preferably 1.55 ~ 1.75g / cm 3. If the density of the fuel cell porous separator is within the above range, the optimum air permeability can be exhibited. Therefore, both water permeability and gas barrier properties are good.
 燃料電池用多孔質セパレータ10は、親水化処理されていることが好ましい。また、燃料電池用多孔質セパレータ10の内部まで親水化されていることがより好ましい。100mm×200mmの大きさの燃料電池用多孔質セパレータ10に5μlの水を吸収させた際の吸収性能が0.1~15秒であれば、十分親水化処理されているとみなすことができる。燃料電池用多孔質セパレータ10の吸水性が、当該範囲であれば十分吸水性が高く、吸水状態でのガスシール圧も高くなる。すなわち、透水性及びガスバリア性がともに良好である。 The fuel cell porous separator 10 is preferably hydrophilized. More preferably, the inside of the fuel cell porous separator 10 is made hydrophilic. If the absorption performance when 5 μl of water is absorbed in the fuel cell porous separator 10 having a size of 100 mm × 200 mm is 0.1 to 15 seconds, it can be considered that it has been sufficiently hydrophilized. If the water absorption of the porous separator 10 for fuel cells is within the above range, the water absorption is sufficiently high, and the gas seal pressure in the water absorption state is also high. That is, both water permeability and gas barrier properties are good.
 また燃料電池用多孔質セパレータ10の内部まで親水化処理がされていることは、X線光電子分光分析法(XPS)を用いて、燃料電池用多孔質セパレータ10の表面から深さ方向におけるフッ素元素及び酸素元素の含有比率を測定することで確認することができる。この燃料電池用多孔質セパレータ10をX線光電子分光分析法(XPS)で測定した際の、燃料電池用多孔質セパレータ10の厚み方向の中央部における連通孔表面のフッ素元素及び酸素元素の含有比率の合計が10at%以上であることが好ましい。また、フッ素元素の含有比率及び酸素元素の含有比率のそれぞれが、5at%以上であることがより好ましい。燃料電池用多孔質セパレータ10の厚み方向の中央部における連通孔表面のフッ素元素及び酸素元素の含有比率の合計が10at%以上であれば、燃料電池用多孔質セパレータ10内部まで十分親水化処理され、高い吸水性、透水性を得ることができる。 In addition, the fact that the inside of the fuel cell porous separator 10 has been hydrophilized means that the fluorine element in the depth direction from the surface of the fuel cell porous separator 10 using X-ray photoelectron spectroscopy (XPS). And it can confirm by measuring the content rate of an oxygen element. Content ratio of fluorine element and oxygen element on the surface of the communication hole in the central portion in the thickness direction of the porous separator for fuel cell 10 when the porous separator 10 for fuel cell is measured by X-ray photoelectron spectroscopy (XPS) Is preferably 10 at% or more. Moreover, it is more preferable that each of the fluorine element content ratio and the oxygen element content ratio is 5 at% or more. If the total content ratio of fluorine element and oxygen element on the surface of the communication hole in the central portion in the thickness direction of the fuel cell porous separator 10 is 10 at% or more, the fuel cell porous separator 10 is sufficiently hydrophilized. High water absorption and water permeability can be obtained.
 また、燃料電池用多孔質セパレータ10の内部まで親水化処理する方法は、フッ素ガス及び酸素ガス含有ガス雰囲気中に曝露することが好ましく、当該方法で得られる燃料電池用多孔質セパレータは、その内部の細孔表面に存在する樹脂材料にCOF基、CF基、COOH基のいずれかの基が形成される。より具体的には、フッ素ガス及び酸素ガスを含むガス中に曝露することで、そのガスが細孔内部まで導入され、細孔表面を形成する樹脂材料の一部が、COF基、CF基、COOH基のいずれかの基に置換される。これらの基により親水化が実現され、X線光電子分光分析法(XPS)ではこれらに由来するフッ素元素量及び酸素元素量を検出することができる。
 COF基、CF基は、COOH基に至る中間生成体であり、これらの基も親水化に寄与する。また燃料電池用多孔質セパレータとしての利用形態としては、これら細孔内部は水が充填されるため、使用中にCOF基、CF基の多くは加水分解され、COOH基に変換される。なお、燃料電池への実装前に親水化性能等を確認するためには、当該燃料電池用多孔質セパレータを水に浸漬させ、予め多くのCOF基、CF基を加水分解し、COOH基に置換しておくことが好ましい。なお、CF基とは樹脂材料の-C-H結合のH原子がF原子に置換された状態をいう。-CFH、-CFH、-CFなどであってもよい。
 これらの基が結合されていることは、X線光電子分光分析法(XPS)から結合エネルギーを求めることで確認することができる。
Further, the method of hydrophilizing the inside of the fuel cell porous separator 10 is preferably exposed to a fluorine gas and oxygen gas-containing gas atmosphere, and the fuel cell porous separator obtained by the method has its inside. Any of a COF group, a CF group, and a COOH group is formed in the resin material existing on the surface of the pores. More specifically, by exposing to a gas containing fluorine gas and oxygen gas, the gas is introduced into the pores, and a part of the resin material that forms the pore surface is composed of COF groups, CF groups, Substituted by any group of COOH groups. Hydrophilization is realized by these groups, and the amount of fluorine element and the amount of oxygen element derived therefrom can be detected by X-ray photoelectron spectroscopy (XPS).
The COF group and the CF group are intermediate products that reach the COOH group, and these groups also contribute to the hydrophilization. As a form of use as a porous separator for a fuel cell, since these pores are filled with water, most of the COF groups and CF groups are hydrolyzed and converted to COOH groups during use. In order to confirm the hydrophilization performance before mounting on the fuel cell, the porous separator for the fuel cell is immersed in water, and many COF groups and CF groups are hydrolyzed in advance and replaced with COOH groups. It is preferable to keep it. The CF group means a state in which the H atom of the —C—H bond of the resin material is replaced with an F atom. It may be —CFH 2 , —CF 2 H, —CF 3 or the like.
The bonding of these groups can be confirmed by determining the binding energy from X-ray photoelectron spectroscopy (XPS).
 燃料電池用多孔質セパレータ10は、内部に不純物として金属元素、導電性イオン、油脂等の各種不純物を有する。燃料電池用のセパレータとして燃料電池用多孔質セパレータ10を用いた際に、これら各種不純物が、溶出して、燃料電池の発電特性に悪影響を及ぼす場合がある。そのため、燃料電池用多孔質セパレータの不純物の水への溶出をできるだけ抑えることが好ましい。 The porous separator 10 for fuel cells has various impurities such as metal elements, conductive ions, oils and fats as impurities inside. When the fuel cell porous separator 10 is used as a fuel cell separator, these various impurities may elute and adversely affect the power generation characteristics of the fuel cell. Therefore, it is preferable to suppress as much as possible the elution of impurities from the porous separator for fuel cells into water.
「炭素質材料」
 炭素質材料2と樹脂材料1の総質量に対する炭素質材料2の含有量は、80~95質量%の範囲である。炭素質材料2が80質量%以上であると、導電性が十分に確保できる。また、95質量%未満であると、後述するプレス加工における被加工物であるグリーンシートの流動性が良く、成形される燃料電池用多孔質セパレータの板厚偏差を十分に小さくすることができる。また、後述するシート化工程で形成されるグリーンシートの板厚偏差を十分に小さくすることができるため、形成される燃料電池用多孔質セパレータの細孔直径を面内で均一にすることができる。なお、グリーンシートとは、炭素質材料2と樹脂材料1とを含む組成物から厚み精度の良い成形体を得るために、押出機、ロール、カレンダー等を用いて硬化が始まらない温度で所定の厚み、幅に成形されたシート状の成形体を意味する。
"Carbonaceous materials"
The content of the carbonaceous material 2 with respect to the total mass of the carbonaceous material 2 and the resin material 1 is in the range of 80 to 95% by mass. When the carbonaceous material 2 is 80% by mass or more, sufficient conductivity can be secured. Moreover, if it is less than 95% by mass, the fluidity of the green sheet, which is the workpiece in the press working described later, is good, and the plate thickness deviation of the molded fuel cell porous separator can be made sufficiently small. Moreover, since the thickness deviation of the green sheet formed in the sheet forming step described later can be sufficiently reduced, the pore diameter of the formed fuel cell porous separator can be made uniform in the plane. . In addition, in order to obtain a molded body with good thickness accuracy from a composition including the carbonaceous material 2 and the resin material 1, the green sheet is a predetermined temperature at a temperature at which curing does not start using an extruder, a roll, a calendar, or the like. It means a sheet-like molded product formed into a thickness and a width.
 炭素質材料2のサイズは、平均粒径(d50)が3μm~150μmが好ましく、5μm~100μmがより好ましく、10μm~80μmがさらに好ましい。炭素質材料2のサイズを変更すると、燃料電池用多孔質セパレータの細孔形状等を変化させることができる。炭素質材料のサイズを平均粒径(d50)が3μm~150μmとすると、水銀圧入法によって得られる燃料電池用多孔質セパレータの細孔直径の分布を1.0~5.0μmとすることができる。当該細孔直径を有する燃料電池用多孔質セパレータを燃料電池に用いると高い性能を得ることができる。 The size of the carbonaceous material 2 is preferably 3 μm to 150 μm, more preferably 5 μm to 100 μm, and even more preferably 10 μm to 80 μm. When the size of the carbonaceous material 2 is changed, the pore shape and the like of the porous separator for a fuel cell can be changed. When the average particle size (d50) of the carbonaceous material is 3 μm to 150 μm, the pore diameter distribution of the fuel cell porous separator obtained by the mercury intrusion method can be 1.0 to 5.0 μm. . When a porous separator for a fuel cell having the pore diameter is used for a fuel cell, high performance can be obtained.
 炭素質材料2としては、カーボンブラック、炭素繊維(ピッチ系、PAN系)、アモルファスカーボン、膨張黒鉛、キッシュ黒鉛、人造黒鉛、天然黒鉛、気相法炭素繊維、カーボンナノチューブ、フラーレンなどの炭素質材料の中から選ばれる1種または2種類以上の混合物などが挙げられる。これらの中でカーボンブラックは導電性および充填性が他の材料に比べて低いので、炭素繊維(ピッチ系、PAN系)、アモルファスカーボン、膨張黒鉛、キッシュ黒鉛、人造黒鉛、天然黒鉛、気相法炭素繊維、カーボンナノチューブ、フラーレンの中から選ばれる一種又は二種以上の混合物が好ましい。また、炭素質材料は、ホウ素を含有するものであると導電性が高いものが得られ、中でも、ホウ素を含有する人造黒鉛であると不純物を少なくすることができる。 Carbonaceous materials 2 include carbonaceous materials such as carbon black, carbon fibers (pitch-based, PAN-based), amorphous carbon, expanded graphite, quiche graphite, artificial graphite, natural graphite, vapor grown carbon fiber, carbon nanotube, fullerene, etc. 1 type, or 2 or more types of mixtures chosen from among these are mentioned. Among these, since carbon black has lower conductivity and filling properties than other materials, carbon fiber (pitch-based, PAN-based), amorphous carbon, expanded graphite, quiche graphite, artificial graphite, natural graphite, gas phase method One or a mixture of two or more selected from carbon fibers, carbon nanotubes, and fullerenes is preferred. In addition, when the carbonaceous material contains boron, a material having high conductivity is obtained, and among them, the artificial graphite containing boron can reduce impurities.
(カーボンブラック)
 炭素質材料の一例であるカーボンブラックとしては、天然ガス等の不完全燃焼、アセチレンの熱分解により得られるケッチェンブラック、アセチレンブラック、炭化水素油や天然ガスの不完全燃焼により得られるファーネスカーボン、天然ガスの熱分解により得られるサーマルカーボン等が挙げられる。
(Carbon black)
As carbon black which is an example of carbonaceous material, incomplete combustion of natural gas, etc., ketjen black obtained by thermal decomposition of acetylene, acetylene black, furnace carbon obtained by incomplete combustion of hydrocarbon oil or natural gas, Examples thereof include thermal carbon obtained by thermal decomposition of natural gas.
(炭素繊維)
 炭素質材料の一例である炭素繊維(ピッチ系、PAN系)としては、重質油、副生油、コールタール等から作られるピッチ系や、ポリアクリロニトリルから作られるPAN系などが挙げられる。
 炭素繊維の平均繊維長は、SEM(日本電子社製、JSM-5510)を用いて観察した100本の繊維長を画像解析することによって数平均繊維長を測定して得られる。なお、ここで言う炭素繊維とは、(長軸の長さ/短軸の長さ)の比が10以上のものをいう。
(Carbon fiber)
Examples of carbon fibers (pitch-based, PAN-based) that are examples of carbonaceous materials include pitch-based made from heavy oil, by-product oil, coal tar, and the like, and PAN-based made from polyacrylonitrile.
The average fiber length of the carbon fibers is obtained by measuring the number average fiber length by image analysis of 100 fiber lengths observed using SEM (manufactured by JEOL Ltd., JSM-5510). The carbon fiber referred to here is one having a ratio of (major axis length / minor axis length) of 10 or more.
(アモルファスカーボン)
 炭素質材料の一例であるアモルファスカーボンとしては、フェノール樹脂を硬化させて焼成処理し粉砕して粉末とする方法、または、フェノール樹脂を球状、不定形状の粉末の状態で硬化させて焼成処理する方法等によって得られたものなどが挙げられる。導電性の高いアモルファスカーボンを得るためには2000℃以上の加熱処理を行うことが好ましい。
(Amorphous carbon)
Amorphous carbon, which is an example of a carbonaceous material, is a method in which a phenol resin is cured and baked and pulverized to form a powder, or a method in which a phenol resin is cured in a spherical, indeterminate shape and baked. The thing obtained by etc. is mentioned. In order to obtain highly conductive amorphous carbon, it is preferable to perform a heat treatment at 2000 ° C. or higher.
(膨張黒鉛)
 炭素質材料の一例である膨張黒鉛としては、例えば、天然黒鉛、熱分解黒鉛等の高度に結晶構造が発達した黒鉛を、濃硫酸と硝酸との混液や、濃硫酸と過酸化水素水との混液等の強酸化性の溶液に浸漬処理して黒鉛層間化合物を生成させ、水洗してから急速加熱し、黒鉛結晶のC軸方向を膨張処理することによって得られた粉末や、それを一度シート状に圧延したものを粉砕して得られた粉末などが挙げられる。
(Expanded graphite)
As expanded graphite, which is an example of a carbonaceous material, for example, graphite having a highly crystalline structure such as natural graphite and pyrolytic graphite is mixed with a mixture of concentrated sulfuric acid and nitric acid, or concentrated sulfuric acid and hydrogen peroxide water. Immersion treatment in a strong oxidative solution such as a mixed solution to form a graphite intercalation compound, which is washed with water and then rapidly heated to expand the C-axis direction of the graphite crystal, and once the sheet Examples thereof include powder obtained by pulverizing a product rolled into a shape.
(キッシュ黒鉛)
 炭素質材料の一例であるキッシュ黒鉛としては、溶けた銑鉄が、溶銑予備処理等で温度低下するのに伴い析出した、平面的に結晶化した炭素などが挙げられる。このキッシュ黒鉛は、スラグや酸化鉄に混じつたものとして発生するため、選鉱によって純度の高いキッシュ黒鉛をスラグや酸化鉄と分離、回収して更に粉砕して用途に合うサイズに仕上げた粉末が好ましく用いられる。
(Quiche graphite)
Examples of the quiche graphite that is an example of the carbonaceous material include planarly crystallized carbon, etc., in which molten pig iron is precipitated as the temperature is lowered by hot metal pretreatment or the like. Since this quiche graphite is generated as a mixture with slag and iron oxide, powder with high purity quiche graphite separated from slag and iron oxide by beneficiation, recovered and further pulverized to a size suitable for the application is preferable. Used.
(人造黒鉛)
 炭素質材料の一例である人造黒鉛としては、例えば以下に示す方法により得られた黒鉛化粉末などが用いられる。通常、人造黒鉛を得るためには、コークスを製造する。コークスの原料としては、石油系ピッチや石炭系ピッチ等が用いられる。これらの原料を炭化してコークスとする。コークスから黒鉛化粉末を得るには、一般的に、コークスを粉砕した後に黒鉛化処理する方法、コークス自体を黒鉛化した後に粉砕する方法、あるいはコークスにバインダーを加え成形、焼成した焼成品(コークスおよびこの焼成品を合わせてコークス等という)を黒鉛化処理した後に粉砕して粉末とする方法等がある。原料のコークス等は、できるだけ結晶が発達していない方が良いので、2000℃以下、好ましくは1200℃以下で加熱処理したものが適する。また、黒鉛化処理する方法は、粉末を黒鉛ルツボに入れて直接通電するアチソン炉を用いる方法や、黒鉛発熱体により粉末を加熱する方法等を使用することができる。
(Artificial graphite)
As the artificial graphite which is an example of the carbonaceous material, for example, graphitized powder obtained by the following method is used. Usually, in order to obtain artificial graphite, coke is produced. Petroleum pitch or coal pitch is used as a raw material for coke. These raw materials are carbonized into coke. In order to obtain graphitized powder from coke, generally, a method of pulverizing coke and then graphitizing, a method of pulverizing coke itself and then pulverizing, or a calcined product formed by adding binder to coke and calcined (coke) In addition, there is a method in which the calcined product is co-graphitized and then pulverized into powder. Since it is better for the raw material coke or the like to have as little crystals as possible, a heat-treated material at 2000 ° C. or lower, preferably 1200 ° C. or lower is suitable. As a method for graphitizing, a method using an Atchison furnace in which powder is placed in a graphite crucible and directly energized, a method of heating powder with a graphite heating element, or the like can be used.
(気相法炭素繊維、カーボンナノチューブ)
 炭素質材料は、気相法炭素繊維および/またはカーボンナノチューブを0.1~50質量%含むことが好ましい。より好ましくは、0.1~45質量%であり、更に好ましくは、0.2~40質量%である。
(Gas-phase carbon fiber, carbon nanotube)
The carbonaceous material preferably contains 0.1 to 50% by mass of vapor grown carbon fiber and / or carbon nanotube. More preferably, the content is 0.1 to 45% by mass, and still more preferably 0.2 to 40% by mass.
(気相法炭素繊維)
 気相法炭素繊維としては、例えば、ベンゼン、トルエン、天然ガス、炭化水素系ガス等の有機化合物を原料とし、フェロセン等の遷移金属触媒の存在下で、水素ガスとともに800~1300℃で熱分解反応させることによって得られる、繊維長約0.5~10μm、繊維径200nm以下の炭素繊維などが挙げられる。繊維径のより好ましいサイズは160nm以下であり、更に好ましくは120nm以下である。繊維径が200nmよりも大きいと、高い導電性を得る効果が小さくなるので好ましくない。更に、上記の方法によって得られた炭素繊維は、約2300~3200℃で黒鉛化処理されることが好ましい。
 なお、ここでの黒鉛化処理は、ホウ素、炭化ホウ素、ベリリウム、アルミニウム、ケイ素等の黒鉛化触媒とともに、不活性ガス雰囲気中で行われることがより好ましい。
(Vapor grown carbon fiber)
As vapor grown carbon fiber, for example, an organic compound such as benzene, toluene, natural gas, or hydrocarbon gas is used as a raw material, and pyrolysis is performed at 800 to 1300 ° C. together with hydrogen gas in the presence of a transition metal catalyst such as ferrocene. Examples thereof include carbon fibers obtained by reacting and having a fiber length of about 0.5 to 10 μm and a fiber diameter of 200 nm or less. A more preferable size of the fiber diameter is 160 nm or less, and further preferably 120 nm or less. If the fiber diameter is larger than 200 nm, the effect of obtaining high conductivity is reduced, which is not preferable. Further, the carbon fiber obtained by the above method is preferably graphitized at about 2300 to 3200 ° C.
In addition, it is more preferable that the graphitization process here is performed in inert gas atmosphere with graphitization catalysts, such as boron, boron carbide, beryllium, aluminum, and silicon.
(カーボンナノチューブ)
 カーボンナノチューブは、近年その機械的強度のみでなく、電界放出機能や、水素吸蔵機能が産業上注目され、更に磁気機能にも目が向けられ始めている。この種のカーボンナノチューブは、グラファイトウィスカー、フィラメンタスカーボン、グラファイトファイバー、極細炭素チューブ、カーボンチューブ、カーボンフィブリル、カーボンマイクロチューブ、カーボンナノファイバー等とも呼ばれており、繊維径が約0.5~100nmのものである。カーボンナノチューブには、チューブを形成するグラファイト膜が一層である単層カーボンナノチューブと、多層である多層カーボンナノチューブがある。本発明では、単層および多層カーボンナノチューブのいずれも使用可能であるが、単層カーボンナノチューブを用いた方が、より高い導電性や機械的強度の組成物が得られる傾向があるため好ましい。
 カーボンナノチューブは、例えば、斉藤・板東共著「カーボンナノチューブの基礎」(23~57頁、コロナ社出版、1998年発行)に記載のアーク放電法、レーザー蒸発法および熱分解法等により作製し、更に純度を高めるために水熱法、遠心分離法、限外ろ過法、および酸化法等により精製することによって得られる。より好ましくは、不純物を取り除くために約2300~3200℃の不活性ガス雰囲気中で高温処理する。更に好ましくは、ホウ素、炭化ホウ素、ベリリウム、アルミニウム、ケイ素等の黒鉛化触媒とともに、不活性ガス雰囲気中、約2300~3200℃で高温処理する。
(carbon nanotube)
In recent years, not only the mechanical strength of carbon nanotubes but also the field emission function and the hydrogen storage function have attracted industrial attention, and the magnetic function has begun to pay attention. This type of carbon nanotube is also called graphite whisker, filamentous carbon, graphite fiber, ultrafine carbon tube, carbon tube, carbon fibril, carbon microtube, carbon nanofiber, etc., and the fiber diameter is about 0.5-100 nm belongs to. Carbon nanotubes include single-walled carbon nanotubes having a single graphite film forming a tube and multi-walled carbon nanotubes having multiple layers. In the present invention, both single-walled and multi-walled carbon nanotubes can be used. However, it is preferable to use single-walled carbon nanotubes because a composition having higher conductivity and mechanical strength tends to be obtained.
Carbon nanotubes are produced, for example, by the arc discharge method, laser evaporation method, thermal decomposition method, etc. described in “Fundamentals of Carbon Nanotubes” by Saito and Itou (page 23-57, published by Corona, 1998). In order to increase the purity, it is obtained by purification by a hydrothermal method, a centrifugal separation method, an ultrafiltration method, an oxidation method or the like. More preferably, high temperature treatment is performed in an inert gas atmosphere at about 2300 to 3200 ° C. to remove impurities. More preferably, high temperature treatment is performed at about 2300 to 3200 ° C. in an inert gas atmosphere together with a graphitization catalyst such as boron, boron carbide, beryllium, aluminum and silicon.
(ホウ素を含有する炭素質材料)
 ホウ素は、炭素質材料2中に0.05~5質量%含まれることが好ましく、0.06~4質量%含まれることがより好ましく、0.06~3質量%含まれることがさらに好ましい。ホウ素の含有量が0.05質量%未満であると、目的とする高導電性の炭素質材料が得られ難い傾向がある。また、ホウ素の含有量が5質量%を超えて含まれていても、炭素質材料の導電性の向上に寄与し難くなる傾向があるし、不純物量が多くなり、他の物性の低下をもたらす傾向が生じ易くなる。炭素質材料2に含まれるホウ素の合有量の測定方法としては特に制限はない。例えば、誘導型プラズマ発光分光分析法(以下、「ICP」と略記する)や、誘導型プラズマ発光分光質量分析法(以下、「ICP-Ms」と略記する)により測定した値を用いることができる。具体的には、試料であるホウ素を含有する炭素質材料に、硫酸および硝酸を加え、マイクロ波で230℃に加熱して分解(ダイジェスター法)し、更に過塩素酸(HClO)を加えて分解したものを水で希釈し、これをICP発光分析装置にかけて、ホウ素量を測定する方法などが挙げられる。
(Carbonaceous material containing boron)
Boron is preferably contained in the carbonaceous material 2 in an amount of 0.05 to 5% by mass, more preferably 0.06 to 4% by mass, and even more preferably 0.06 to 3% by mass. When the boron content is less than 0.05% by mass, the intended highly conductive carbonaceous material tends to be difficult to obtain. Further, even if the boron content exceeds 5 mass%, it tends to be difficult to contribute to the improvement of the conductivity of the carbonaceous material, the amount of impurities increases, and other physical properties are deteriorated. A tendency tends to occur. There is no restriction | limiting in particular as a measuring method of the total amount of boron contained in the carbonaceous material 2. FIG. For example, a value measured by inductive plasma emission spectrometry (hereinafter abbreviated as “ICP”) or induction plasma emission spectroscopic mass spectrometry (hereinafter abbreviated as “ICP-Ms”) can be used. . Specifically, sulfuric acid and nitric acid are added to a carbonaceous material containing boron as a sample, and it is decomposed by heating to 230 ° C. with microwaves (digester method), and further, perchloric acid (HClO 4 ) is added. A method of diluting the decomposed product with water and applying it to an ICP emission spectrometer and measuring the amount of boron is exemplified.
 炭素質材料2中にホウ素を含有させる方法としては、例えば、カーボンブラック、炭素繊維、アモルファスカーボン、膨張黒鉛、キッシュ黒鉛、人造黒鉛、天然黒鉛、気相法炭素繊維、カーボンナノチューブ、フラーレンなどの炭素質材料2の中から選ばれる1種または2種類以上の混合物と、ホウ素源であるB単体、BC、BN、B、HBO等とを混合して、約2300~3200℃で黒鉛化処理する方法などが挙げられる。炭素質材料2とホウ素源との混合が不均―である場合には、ホウ素を含有する炭素質材料2が不均―になるのみならず、黒鉛化処理時に焼結する可能性が高くなる。炭素質材料とホウ素源とを均―に混合させるためには、上記のホウ素源を50μm以下、好ましくは20μm以下程度の粒径を有する粉末にしてから、上記の炭素質材料の粉末に混合することが好ましい。 Examples of the method of incorporating boron into the carbonaceous material 2 include carbon such as carbon black, carbon fiber, amorphous carbon, expanded graphite, quiche graphite, artificial graphite, natural graphite, vapor grown carbon fiber, carbon nanotube, and fullerene. A mixture of one or two or more selected from the material 2 and a boron source such as B alone, B 4 C, BN, B 2 O 3 , H 3 BO 3, etc. Examples thereof include a method of graphitizing at 3200 ° C. When the mixing of the carbonaceous material 2 and the boron source is uneven, the carbonaceous material 2 containing boron not only becomes uneven, but also increases the possibility of sintering during graphitization. . In order to uniformly mix the carbonaceous material and the boron source, the boron source is made into a powder having a particle size of about 50 μm or less, preferably about 20 μm or less, and then mixed with the powder of the carbonaceous material. It is preferable.
 ホウ素を含有する炭素質材料2中に含まれるホウ素の含有の形態は、ホウ素および/またはホウ素化合物が炭素質材料2中に混合されていればよく特に制限されない。炭素質材料が黒鉛結晶を有する場合、ホウ素および/またはホウ素化合物が黒鉛結晶の層間に存在するものや、黒鉛結晶を形成する炭素原子の一部がホウ素原子に置換されたものであることがより好ましい。炭素原子の一部がホウ素原子に置換されている場合、ホウ素原子と炭素原子との結合は、共有結合、イオン結合等どのような結合様式であっても構わない。 The form of boron contained in the carbonaceous material 2 containing boron is not particularly limited as long as boron and / or boron compounds are mixed in the carbonaceous material 2. When the carbonaceous material has a graphite crystal, it is more preferable that boron and / or a boron compound exist between the layers of the graphite crystal, or that a part of carbon atoms forming the graphite crystal is substituted with a boron atom. preferable. When a part of the carbon atom is substituted with a boron atom, the bond between the boron atom and the carbon atom may be any bonding mode such as a covalent bond or an ionic bond.
 (コークス等の粉砕)
 炭素質材料2の製造に用いられるコークスや、炭素質材料2として用いられる人造黒鉛や天然黒鉛等の粉砕には、高速回転粉砕機(ハンマーミル、ピンミル、ケージミル)や各種ボールミル(転動ミル、振動ミル、遊星ミル)、撹拌ミル(ビーズミル、アトライター、流通管型ミル、アニュラーミル)等の粉砕機が使用できる。また、微粉砕機であるスクリーンミル、ターボミル、スーパーミクロシミル、ジェットミルなども、条件を選定することによって使用可能である。コークスおよび天然黒鉛等は、これらの粉砕機を用いて粉砕し、その際の粉砕条件の選定、および必要により粉末を分級し、平均粒径や粒度分布をコントロールして用いることが好ましい。
(Crushing of coke, etc.)
For pulverization of coke used for the production of carbonaceous material 2 and artificial graphite and natural graphite used as carbonaceous material 2, high-speed rotary pulverizer (hammer mill, pin mill, cage mill) and various ball mills (rolling mill, A crusher such as a vibration mill, a planetary mill) or a stirring mill (bead mill, attritor, distribution pipe mill, annular mill) can be used. Further, a screen mill, a turbo mill, a super micro simil, a jet mill, etc., which are fine pulverizers, can be used by selecting the conditions. Coke, natural graphite, and the like are preferably pulverized using these pulverizers, and the pulverization conditions are selected at that time, and the powder is classified as necessary, and the average particle size and particle size distribution are controlled and used.
 (コークス等の分級)
 コークス粉末、人造黒鉛粉末および天然黒鉛粉末等を分級する方法としては、分離が可能であれば何れでも良いが、例えば、篩分法や強制渦流型遠心分級機(ミクロンセパレーター、ターボプレックス、ターボクラシファイアー、スーパーセパレーター)、慣性分級機(改良型バーチャルインパクター、エルボジェット)等の気流分級機が使用できる。また、湿式の沈降分離法や遠心分級法等も使用できる。
(Classification of coke etc.)
As a method for classifying coke powder, artificial graphite powder, natural graphite powder, etc., any method can be used as long as separation is possible. For example, a sieving method or a forced vortex type centrifugal classifier (micron separator, turboplex, turboclassic) Airflow classifiers such as fire, super separator) and inertia classifiers (improved virtual impactor, elbow jet) can be used. Further, a wet sedimentation method or a centrifugal classification method can be used.
「樹脂材料」
 樹脂材料1としては、例えば、熱硬化性樹脂が挙げられる。熱硬化性樹脂であれば成形サイクルを短くすることができる。
 樹脂材料1としては、例えば、ポリ(1,2-ブタジエン)、エポキシ化変性ポリブタジエン、水酸基変性ポリブタジエン、マレイン酸変性ポリブタジエン、アクリル変性ポリブタジエン、アミン変性ポリブタジエン、水素変性ポリブタジエン、ポリ(3,4-イソプレン)、ノボラック型エポキシ樹脂、ノボラック型フェノール樹脂より選ばれる1成分以上を用いることができる。これらの樹脂材料は、燃料電池用多孔質セパレータを燃料電池用セパレータとして用いた際に耐熱水性を向上させるため好ましい。
 また樹脂材料1が極性を有することがより好ましい。極性を有する樹脂材料としては、例えば、エポキシ変性ポリブタジエン、水酸基変性ポリブタジエン、マレイン酸変性ポリブタジエン、アクリル変性ポリブタジエン、アミン変性ポリブタジエン、水素変性ポリブタジエン等の変性ポリブタジエンが挙げられる。このような樹脂材料が極性を有すると、この極性により炭素質材料が静電誘導を起こし、電気的な引力により炭素質材料2との接着力が強くなる。すなわち、極性を有する樹脂材料を用いることにより、成形サイクルや離型性および保存安定性を維持しつつ燃料電池用多孔質セパレータの強度を向上することができる。
"Resin material"
Examples of the resin material 1 include a thermosetting resin. If it is a thermosetting resin, a molding cycle can be shortened.
Examples of the resin material 1 include poly (1,2-butadiene), epoxidized modified polybutadiene, hydroxyl group modified polybutadiene, maleic acid modified polybutadiene, acrylic modified polybutadiene, amine modified polybutadiene, hydrogen modified polybutadiene, poly (3,4-isoprene). ), One or more components selected from a novolac-type epoxy resin and a novolac-type phenol resin can be used. These resin materials are preferable because they improve the hot water resistance when the fuel cell porous separator is used as a fuel cell separator.
Moreover, it is more preferable that the resin material 1 has polarity. Examples of the resin material having polarity include modified polybutadiene such as epoxy-modified polybutadiene, hydroxyl group-modified polybutadiene, maleic acid-modified polybutadiene, acrylic-modified polybutadiene, amine-modified polybutadiene, and hydrogen-modified polybutadiene. When such a resin material has a polarity, the carbonaceous material causes electrostatic induction due to this polarity, and the adhesive force with the carbonaceous material 2 becomes stronger due to the electric attractive force. That is, by using a resin material having polarity, it is possible to improve the strength of the porous separator for fuel cells while maintaining the molding cycle, releasability and storage stability.
 また炭素質材料2と樹脂材料1の総質量における樹脂材料1の含有量は、5~20質量%の範囲であることが好ましい。樹脂材料が5質量%以上であると、燃料電池用多孔質セパレータを燃料電池用のセパレータとして用いる際に、セパレータの強度を十分に確保できる。また樹脂材料が20質量%以下であると、十分な全細孔比表面積が得られ、透水性が良好となる。また燃料電池用セパレータとして用いる場合の耐久性の観点から、加熱成形後の成形体の融点またはガラス転移温度が120℃以上となる樹脂を用いることが好ましい。 The content of the resin material 1 in the total mass of the carbonaceous material 2 and the resin material 1 is preferably in the range of 5 to 20% by mass. When the resin material is 5% by mass or more, the strength of the separator can be sufficiently secured when the fuel cell porous separator is used as a fuel cell separator. Further, when the resin material is 20% by mass or less, a sufficient total pore specific surface area is obtained, and the water permeability is improved. Further, from the viewpoint of durability when used as a fuel cell separator, it is preferable to use a resin having a melting point or glass transition temperature of 120 ° C. or higher of a molded article after heat molding.
 「他の添加剤」
 燃料電池用多孔質セパレータ10が燃料電池用セパレータとして用いられる場合には、充填材である炭素質材料と、樹脂材料の他に、必要に応じてモノマー、反応開始剤、硬化遅延剤、エラストマー、及び樹脂改質剤などを含有させることができる。さらに、硬度、強度、導電性、成形性、耐久性、耐候性、耐水性等を改良する目的で、ガラスファイバー、ウィスカー、有機繊維、紫外線安定剤、酸化防止剤、離型剤、滑剤、増粘剤、低収縮剤、親水性付与剤等の添加剤を、必要に応じて含有させることができる。
"Other additives"
When the fuel cell porous separator 10 is used as a fuel cell separator, in addition to the carbonaceous material as a filler and the resin material, if necessary, a monomer, a reaction initiator, a curing retarder, an elastomer, And a resin modifier etc. can be contained. Furthermore, in order to improve hardness, strength, conductivity, moldability, durability, weather resistance, water resistance, etc., glass fiber, whisker, organic fiber, UV stabilizer, antioxidant, mold release agent, lubricant, increase Additives such as a sticking agent, a low shrinkage agent, and a hydrophilicity imparting agent can be contained as necessary.
「燃料電池用多孔質セパレータの製造方法」
 本実施形態の燃料電池用多孔質セパレータ10の製造方法は、少なくとも樹脂材料1と炭素質材料2を混合する混合工程と、混合された混合物をシート化するシート化工程と、シート化工程で得られたグリーンシートを成形するプレス工程とを有する。
"Production method of porous separator for fuel cell"
The manufacturing method of the porous separator 10 for fuel cells of this embodiment is obtained by the mixing process which mixes at least the resin material 1 and the carbonaceous material 2, the sheet forming process which makes the mixed mixture into a sheet, and a sheet forming process. And a pressing process for forming the green sheet.
 「混合工程」
(混合方法)
 まず、樹脂材料1と炭素質材料2と必要に応じてその他の添加剤を混合し、炭素質材料の含有量が80~95質量%である樹脂組成物を調製する。
 混合工程は、一般的に用いられている混合機、又は混練機を使用し、硬化が開始しない温度で一定に保ちながら、なるべく均一に混合させる。上記混合機、又は混練機としては、ロール、押出機、ニーダー、バンバリーミキサー、ヘンシェルミキサー、プラネタリーミキサー等が挙げられる。
 なお、他の添加剤のうちの硬化開始剤を添加する場合は、その他の全ての成分を均一に混合してから、最後に硬化開始剤を加えて混合するのがよい。また、樹脂材料のうち融点が高く、常温で固体のものを添加する場合には、混合機にはじめに添加し融解させてから他の成分を加えると、全ての成分を均一に混合することができる。
"Mixing process"
(Mixing method)
First, resin material 1 and carbonaceous material 2 and other additives as necessary are mixed to prepare a resin composition having a carbonaceous material content of 80 to 95% by mass.
In the mixing step, a generally used mixer or kneader is used and mixed as uniformly as possible while keeping constant at a temperature at which curing does not start. Examples of the mixer or kneader include a roll, an extruder, a kneader, a Banbury mixer, a Henschel mixer, and a planetary mixer.
In addition, when adding a curing initiator among other additives, it is preferable to mix all other components uniformly and then add and mix the curing initiator at the end. In addition, when adding a resin material having a high melting point and solid at room temperature, all components can be uniformly mixed by adding other components after first adding them to the mixer and melting them. .
(粉砕方法)
 上記混合工程における混合物である組成物を得た後、モールド成形機への材料供給を均一にする目的でグリーンシートを作製する。このグリーンシートの厚み・比重を均一にするためには、前記組成物を予め粉砕しておく必要がある。粉砕には、ホモジナイザー、ウィレー粉砕機、高速回転粉砕機(ハンマーミル、ピンミル、ケージミル、ブレンダー)等が使用でき、材料同士の凝集を防ぐため冷却しながら粉砕することが好ましい。
(Crushing method)
After obtaining the composition which is a mixture in the mixing step, a green sheet is produced for the purpose of uniform material supply to the molding machine. In order to make the thickness and specific gravity of the green sheet uniform, the composition needs to be pulverized in advance. For pulverization, a homogenizer, a Willet pulverizer, a high-speed rotary pulverizer (hammer mill, pin mill, cage mill, blender) or the like can be used, and it is preferable to pulverize while cooling in order to prevent aggregation of materials.
「シート化工程」
 上記の粉砕した組成物から厚み精度の良い成形体を得るために、押出機、ロール、カレンダー等を用いて硬化が始まらない温度で所定の厚み、幅のグリーンシートを一度成形する。より厚みを精度良く成形するためには、押出機で成形後、ロールやカレンダーで圧延することが好ましい。グリーンシート中の不要なボイドやエアーをなくすためには、真空状態で押出成形することが好ましい。またロールを用いてシートを成形すると、シート成形の開始から終了に向けて、シートの厚みが徐々に大きくなる傾向がみられる場合がある。その場合、均一なグリーンシートを作製するためには、ロールに対するグリーンシートの投入方向を変えて、シートの厚みが大きい部分からロールに投入する操作を複数回繰り返すことにより、厚みの均一なグリーンシートを作製することができる。場合によってはロールを加温しグリーンシートを得る。加温を行うとより薄く、厚みの均一なグリーンシートを得ることができる。
"Sheet making process"
In order to obtain a molded body with good thickness accuracy from the above pulverized composition, a green sheet having a predetermined thickness and width is once molded at a temperature at which curing does not start using an extruder, a roll, a calendar, or the like. In order to form the thickness more accurately, it is preferable to roll with a roll or a calender after forming with an extruder. In order to eliminate unnecessary voids and air in the green sheet, it is preferable to perform extrusion molding in a vacuum state. In addition, when a sheet is formed using a roll, the thickness of the sheet tends to gradually increase from the start to the end of sheet forming. In that case, in order to produce a uniform green sheet, by changing the direction of feeding the green sheet to the roll, and repeating the operation of feeding the roll from the portion where the thickness of the sheet is large, the green sheet having a uniform thickness Can be produced. In some cases, the roll is heated to obtain a green sheet. When heated, a green sheet having a smaller thickness and a uniform thickness can be obtained.
 本発明では、グリーンシートの厚みのばらつきが、グリーンシート厚の平均厚に対して10%以内のものを使用する。グリーンシートの厚みのばらつきが、グリーンシート厚の平均厚に対して10%より大きいと、後述するプレス工程で均一に加圧することができず、燃料電池用多孔質セパレータの面内で細孔分布のばらつきを生じることがある。好ましくは7%以内であり、より好ましくは5%以内であり、さらに好ましくは3%以内である。 In the present invention, a green sheet having a thickness variation within 10% of the average thickness of the green sheet is used. If the variation in the thickness of the green sheet is larger than 10% of the average thickness of the green sheet, it cannot be uniformly pressurized in the pressing process described later, and the pore distribution in the plane of the fuel cell porous separator Variation may occur. Preferably, it is within 7%, more preferably within 5%, still more preferably within 3%.
 シート化工程における、グリーンシートの温度は、結露が生じない温度以上でかつ樹脂の硬化が生じない温度とすることが好ましい。例えば、樹脂材料1として、エポキシ化ポリブタジエンを用いた場合、10℃~100℃の温度とすることが好ましく、20℃~40℃とすることがより好ましい。結露が生じる温度でシート化工程を行うと、その水分によりグリーンシートがもろくなるという問題がある。また、硬化が生じる温度でシート化を行うと、後述するプレス工程で本来生じるはずの硬化反応がシート化工程でも生じることとなり、均一なグリーンシートを得ることができなくなる。 In the sheet forming step, the temperature of the green sheet is preferably set to a temperature that is not less than the temperature at which condensation does not occur and the resin does not cure. For example, when epoxidized polybutadiene is used as the resin material 1, the temperature is preferably 10 ° C. to 100 ° C., more preferably 20 ° C. to 40 ° C. When the sheet forming process is performed at a temperature at which condensation occurs, there is a problem that the green sheet becomes brittle due to moisture. Further, when sheeting is performed at a temperature at which curing occurs, a curing reaction that should originally occur in the press process described later also occurs in the sheeting process, and a uniform green sheet cannot be obtained.
 またシート化工程において、ロールを用いてグリーンシートを成形する場合、ロールの大きさにもよるが、回転数は1rpm~5rpmが好ましい。ロールの回転数が1rpm以上であれば、生産性の観点において好ましい。またロールの回転数が5rpm以下であると、グリーンシートの厚みの均一性が担保しやすい。 In the sheet forming step, when a green sheet is formed using a roll, the number of rotations is preferably 1 rpm to 5 rpm, depending on the size of the roll. If the rotation speed of the roll is 1 rpm or more, it is preferable from the viewpoint of productivity. Moreover, the uniformity of the thickness of a green sheet is easy to ensure that the rotation speed of a roll is 5 rpm or less.
 またシート化工程において、ロールを用いてグリーンシートを成形する場合、ロール間のギャップは0.5mm~2.5mmの範囲とすることが好ましい。ロール間のギャップが0.5mm以上であるとシート化工程においてグリーンシートが過剰に密になることなく、最終的に形成される燃料電池用多孔質セパレータの細孔直径を適度にコントロールし、透気度や透水性を維持することができる。ロール間のギャップが2.5mm以下であると、最終的に形成される燃料電池用多孔質セパレータの厚みをコントロールしやすい。 In the sheet forming step, when a green sheet is formed using a roll, the gap between the rolls is preferably in the range of 0.5 mm to 2.5 mm. When the gap between rolls is 0.5 mm or more, the pore diameter of the porous separator for a fuel cell to be finally formed is appropriately controlled without excessively dense green sheets in the sheeting process, It can maintain its temperament and water permeability. When the gap between the rolls is 2.5 mm or less, it is easy to control the thickness of the finally formed porous separator for a fuel cell.
 またシート化工程において、ロール、カレンダー等を用いた圧延は複数回繰り返すことが好ましい。例えば、ロールの間を1回のみ通過させて圧延させた場合、ロールに被加工物を導入した始めと終わりで厚みにばらつきが残る場合がある。そのため、複数回圧延を繰り返すことで、ロールにグリーンシートを導入した始めと終わりの厚みばらつきをより抑制することができる。また複数回行う場合、ロールに導入するグリーンシートの始めと終わりの向きを変えながら行うことがより好ましい。 In the sheet forming step, rolling using a roll, a calendar, etc. is preferably repeated a plurality of times. For example, when rolling between the rolls only once, the thickness may vary at the beginning and end of introducing the workpiece into the roll. Therefore, by repeating the rolling a plurality of times, thickness variations at the beginning and end of introducing the green sheet into the roll can be further suppressed. Moreover, when performing it multiple times, it is more preferable to carry out, changing the direction of the start and end of the green sheet introduced into a roll.
 「プレス工程」
 得られたグリーンシートは、目的の大きさにカット又は打ち抜き、そのシートを金型内に1枚、又は2枚以上並列に並べるか、重ねて挿入し、圧縮成形機で加熱プレスすることによって、燃料電池用多孔質セパレータを得る。
"Pressing process"
The obtained green sheet is cut or punched to a desired size, and the sheets are placed in a mold in one or two or more in parallel, or inserted in layers, and heated and pressed with a compression molding machine. A porous separator for a fuel cell is obtained.
 プレス工程は、前記グリーンシートを150~240℃の加熱下で行うことが好ましい。150℃以上でプレス工程を行うと硬化速度が十分に早く生産性を維持できる。具体的には、プレス工程で十分な強度の成形品を得るために0.5分以上の時間が必要となる。また240℃以下で加熱すると樹脂材料の酸化劣化を防ぎ成形品の強度を維持できる。
 また、加圧時間は0.5分~30分であることが好ましい。0.5分以上より短い加圧時間の場合、硬化が十分に進み良好な強度を得ることができる。また30分以下の加圧時間により、生産性を維持できる。
 さらに、プレス工程は、前記グリーンシートを2MPa~25MPaの条件で加圧することが好ましい。2MPa以上の加圧条件では、成形体の気孔率を適度にコントロールし、燃料電池用多孔質セパレータの強度も維持できる。また25MPa以下の加圧条件では、気孔率を十分に確保し、吸水性を維持することができる。
The pressing step is preferably performed while heating the green sheet at 150 to 240 ° C. When the pressing process is performed at 150 ° C. or higher, the curing rate can be sufficiently fast to maintain productivity. Specifically, a time of 0.5 minutes or more is required to obtain a molded product having sufficient strength in the pressing process. Moreover, if it heats at 240 degrees C or less, the oxidation deterioration of the resin material can be prevented and the intensity | strength of a molded article can be maintained.
The pressurization time is preferably 0.5 minutes to 30 minutes. In the case of a pressurization time shorter than 0.5 minutes or more, curing is sufficiently advanced and good strength can be obtained. Moreover, productivity can be maintained by the pressurization time of 30 minutes or less.
Further, in the pressing step, it is preferable to pressurize the green sheet under conditions of 2 MPa to 25 MPa. Under a pressure condition of 2 MPa or more, the porosity of the molded body can be appropriately controlled, and the strength of the fuel cell porous separator can be maintained. Further, under a pressure condition of 25 MPa or less, a sufficient porosity can be secured and water absorption can be maintained.
 グリーンシートは燃料電池用多孔質セパレータ寸法とほぼ同じでわずかに長さと幅が小さいものが好ましい。成形後は150℃~200℃の温度範囲で10分間~600分間アフターキュアーを施すことによって完全な硬化を行ってもよい。アフターキュアーは0.3MPa以上に加圧して行うことによって製品の反りを抑制を容易にする。また15MPa以下の圧力を加えて成形すると燃料電池用多孔質セパレータの細孔率を十分に確保することができる。 The green sheet is preferably the same as the porous separator for a fuel cell and slightly smaller in length and width. After molding, complete curing may be performed by performing after-curing for 10 minutes to 600 minutes in a temperature range of 150 ° C. to 200 ° C. After-curing makes it easy to suppress warping of the product by applying pressure to 0.3 MPa or higher. Further, when molding is performed by applying a pressure of 15 MPa or less, a sufficient porosity of the fuel cell porous separator can be secured.
 また、プレス工程時の金型厚みに対して金型に導入するグリーンシートの厚みが1.1倍以上2倍以内であることが好ましい。当該範囲とすることで、得られる燃料電池用多孔質セパレータの透気度を600s/100ml以下とすることができる。
 燃料電池用多孔質セパレータを製造するにあたり、欠陥のない良品を得るためには、成形の際にキャビティ内を真空にすることが好ましい。
Moreover, it is preferable that the thickness of the green sheet introduced into the mold is 1.1 times or more and 2 times or less with respect to the mold thickness in the pressing step. By setting it as the said range, the air permeability of the porous separator for fuel cells obtained can be 600 s / 100 ml or less.
In producing a porous separator for a fuel cell, in order to obtain a good product having no defects, it is preferable to evacuate the cavity during molding.
 このような方法で得られた燃料電池用多孔質セパレータは、水銀圧入法によって得られる細孔分布において、細孔直径が1.5~4.0μmである細孔が90vol%以上であり、高い強度で均一な燃料電池用多孔質セパレータを得ることができる。燃料電池用多孔質セパレータの製造方法として従来用いられてきた、樹脂材料と炭素質材料の混合成形体を焼成し、樹脂材料を除去することで細孔を形成するような方法では、このような細孔分布を得ることはできない。 The porous separator for a fuel cell obtained by such a method has a high pore distribution with a pore diameter of 1.5 to 4.0 μm of 90 vol% or more in the pore distribution obtained by the mercury intrusion method. A strong and uniform porous separator for fuel cells can be obtained. In a method of forming pores by firing a mixed molded body of a resin material and a carbonaceous material and removing the resin material, which has been conventionally used as a method for manufacturing a porous separator for a fuel cell, Pore distribution cannot be obtained.
 「親水化工程」
 また得られた燃料電池用多孔質セパレータは、親水化処理することが好ましい。なお、親水化とは、水に対する濡れ方を現状よりも良くすること、または、接触角を小さくすることである。逆に、水に対する濡れ方を現状より悪くすること、接触角を大きくすることを撥水化という。
 親水化処理は、表面を電気的に分極した分子構造に変えることが有効であり、そのためには、極性が高いカルボキシル基、カルボニル基、ヒドロキシ基、アミノ基、スルホ基、シアノ基などの官能基や、電気陰性度が高い元素をバランス良く導入することが好ましい。その方法としては、所定の雰囲気下でプラズマ処理、コロナ処理、オゾン処理、UV処理などの高エネルギー処理を行う方法と、反応性のガスと接触させる方法、また、強酸などの化学薬品に浸漬する方法などがある。その他、親水性のコーティング剤を表面コートする方法、スパッタリングにより表面改質する方法などがある。
 また、もともと極性基が存在する素材や、表面の静的接触角が80°以下の素材などの場合、表面をブラスト加工などによって粗面化処理することだけで親水化される場合もある。
 また親水化処理は、燃料電池用多孔質セパレータの表面及び内部まで親水化処理されていることがより好ましい。具体的には、フッ素ガス及び酸素ガス含有雰囲気で燃料電池用多孔質セパレータを曝露することにより表面および細孔内部まで親水化することが好ましい。表面のみが親水化されている場合より、表面・内部ともに親水化されている場合には迅速に吸水する。またその親水化性能が時間と共に劣化することを抑制することができる。
"Hydrophilization process"
The obtained porous separator for a fuel cell is preferably subjected to a hydrophilic treatment. In addition, hydrophilization means making the way of getting wet with water better than the present condition, or making a contact angle small. On the other hand, making water wet worse than the current situation and increasing the contact angle are called water repellency.
In the hydrophilization treatment, it is effective to change the surface to an electrically polarized molecular structure. To that end, functional groups such as a highly polar carboxyl group, carbonyl group, hydroxy group, amino group, sulfo group, cyano group, etc. In addition, it is preferable to introduce elements having high electronegativity in a balanced manner. As a method thereof, a method of performing high energy treatment such as plasma treatment, corona treatment, ozone treatment and UV treatment in a predetermined atmosphere, a method of contacting with a reactive gas, and immersion in a chemical such as a strong acid. There are methods. Other methods include surface coating with a hydrophilic coating agent and surface modification by sputtering.
Further, in the case of a material that originally has a polar group or a material having a static contact angle of 80 ° or less on the surface, the surface may be hydrophilized only by roughening the surface by blasting or the like.
Moreover, it is more preferable that the hydrophilic treatment is performed to the surface and the inside of the fuel cell porous separator. Specifically, it is preferable that the porous separator for a fuel cell is exposed to an atmosphere containing fluorine gas and oxygen gas to make the surface and the inside of the pores hydrophilic. It absorbs water more quickly when both the surface and inside are hydrophilized than when only the surface is hydrophilized. Moreover, it can suppress that the hydrophilization performance deteriorates with time.
 燃料電池用多孔質セパレータが十分に親水化されているか否かは、前述のように少量の純水を滴下することで評価できる。また内部まで親水化処理されていることも、前述のようにX線光電子分光分析法(XPS)で確認することができる。 Whether the porous separator for fuel cells is sufficiently hydrophilic can be evaluated by dropping a small amount of pure water as described above. Further, it can be confirmed by X-ray photoelectron spectroscopy (XPS) that the hydrophilic treatment has been applied to the inside as described above.
 「洗浄工程」
 親水化処理工程を行った燃料電池用多孔質セパレータは、洗浄することが好ましい。親水化処理後の燃料電池用多孔質セパレータをそのまま燃料電池に組み込み発電させると不純物の影響で、時間を経るごとに出力が低下することがある。そのため親水化処理で付与したフッ化水素等の水溶性不純物や原料に含まれる金属成分などを洗浄する必要がある。このとき純水で洗浄するが、加温すると効率よく洗浄することが可能である。また洗浄工程を行うことで、燃料電池への実装前に、予め多くのCOF基、CF基を加水分解し、COOH基に置換することができる。実装前に予めこれらの基の置換を完了させておくことで、燃料電池への実装前に性能検査等を行うことができ、生産管理の面で好ましい。
"Washing process"
The porous separator for a fuel cell that has been subjected to the hydrophilization treatment step is preferably washed. If the porous separator for a fuel cell after the hydrophilization treatment is incorporated into the fuel cell as it is and the power is generated, the output may decrease over time due to the influence of impurities. Therefore, it is necessary to wash water-soluble impurities such as hydrogen fluoride provided by the hydrophilization treatment and metal components contained in the raw material. At this time, it is washed with pure water, but if heated, it can be washed efficiently. Further, by performing the washing step, many COF groups and CF groups can be hydrolyzed in advance and replaced with COOH groups before mounting on the fuel cell. By completing substitution of these groups in advance before mounting, performance inspection and the like can be performed before mounting on the fuel cell, which is preferable in terms of production management.
 洗浄工程後の燃料電池用多孔質セパレータは、燃料電池用多孔質セパレータ30gを80℃の温水中に4日間浸漬させた際の各種金属イオンの溶出量がそれぞれ10ppm以下であることが好ましく、5ppm以下であることがより好ましく、1ppm以下であることがさらに好ましい。 The porous separator for a fuel cell after the washing step preferably has an elution amount of various metal ions of 10 ppm or less when 30 g of the porous separator for a fuel cell is immersed in warm water at 80 ° C. for 4 days. More preferably, it is more preferably 1 ppm or less.
 以下、本発明の実施例について説明する。なお、本発明は以下の実施例のみに限定されるものではない。 Hereinafter, examples of the present invention will be described. In addition, this invention is not limited only to a following example.
 (実施例1)
 球状人造黒鉛SCMG(登録商標:昭和電工株式会社)のホウ素ドープ品:SCMG IVを2900℃で黒鉛化して炭素質材料として用いた。このときの炭素質材料の累積分布径(質量基準)はD10=7μm、D50=26μm、D90=49μmであった。樹脂材料としてポリ(1、2-ブタジエン)にエポキシ基を変性したエポキシ化ポリブタジエン(日本曹達社製 JP200 エポキシ当量:210-240g/eq 数平均分子量2000-3000)を用いた。炭素質材料13.5kg(90質量%)と、樹脂材料1.5kg(10質量%)とを、加圧式ニーダー(トーシン社製 TD10-20MDX)に投入して混合し、均一な混合物を得た。
(Example 1)
Spherical artificial graphite SCMG (registered trademark: Showa Denko KK) boron-doped product: SCMG IV was graphitized at 2900 ° C. and used as a carbonaceous material. The cumulative distribution diameter (mass basis) of the carbonaceous material at this time was D10 = 7 μm, D50 = 26 μm, and D90 = 49 μm. As a resin material, epoxidized polybutadiene (JP200 epoxy equivalent: 210-240 g / eq number average molecular weight 2000-3000, manufactured by Nippon Soda Co., Ltd.) obtained by modifying an epoxy group into poly (1,2-butadiene) was used. A carbonaceous material 13.5 kg (90% by mass) and a resin material 1.5 kg (10% by mass) were introduced into a pressure kneader (TD10-20MDX manufactured by Toshin) and mixed to obtain a uniform mixture. .
 得られた混合物を、ウィレー式粉砕機(吉田製作所社製 WM型)を用いて一度粉砕した後、ロールを用いた圧延を行い、グリーンシートを得た。このとき、ロールによる圧延の条件は、温度が25℃、回転数が1.5rpm、ロール間ギャップを1.2mmとした。またロールによる圧延の回数は、6回とした。
 最後に、得られたグリーンシートを、縦123mm×横180mmのサイズでカットし、縦123mm×横180mm×厚み2.2mmの金型に対し、グリーンシートの厚み2.7mmで挿入した。このグリーンシートを、温度186℃、圧力5~9MPa、時間20分間の条件下でプレス成形し、燃料電池用多孔質セパレータを得た。また得られた燃料電池用多孔質セパレータを180℃、0.5MPaの条件下で30分間アフターキュアーを施した。さらに、親水化処理をフッ素ガス4vol%及び酸素ガス20vol%と窒素ガス76vol%との混合ガスを用いて行い、親水化処理後の燃料電池用多孔質セパレータを洗浄した。
 洗浄は、次のようにして行った。まず、PP製容器(178×251×t91mm)中に、精製水1800mlと中性洗剤200ml(クリーンエース(製品名):アズワン(メーカー名))を入れた。続いて、同容器の中にセパレータ(123×180×t2.2mm)を3枚入れた。そして、同容器を45℃の恒温槽に24時間入れた。その後、同容器を取り出し、中に入っている洗浄液を捨てた上で、精製水を2000ml入れ、同容器を45℃の恒温槽に24時間入れた。前記容器の取り出しから恒温槽保管までの処理をもう一度繰り返した。最後に、恒温槽から容器を取り出し、中に入っている洗浄液を捨てた。セパレータについては、80℃、4時間の乾燥を行った。
 このとき得られた燃料電池用多孔質セパレータの抵抗率は17mΩ・cmで、かつ曲げ強度は25MPaであった。各測定値は、後述の方法で測定した9点の値の平均値として示した。
The obtained mixture was pulverized once using a Willet pulverizer (WM type manufactured by Yoshida Seisakusho Co., Ltd.) and then rolled using a roll to obtain a green sheet. At this time, the conditions for rolling with a roll were a temperature of 25 ° C., a rotational speed of 1.5 rpm, and a gap between rolls of 1.2 mm. In addition, the number of times of rolling by the roll was 6 times.
Finally, the obtained green sheet was cut into a size of 123 mm in length × 180 mm in width, and inserted into a mold having a size of 123 mm in length × 180 mm in width × 2.2 mm in thickness with a thickness of 2.7 mm. This green sheet was press-molded under the conditions of a temperature of 186 ° C., a pressure of 5 to 9 MPa, and a time of 20 minutes to obtain a porous separator for a fuel cell. Further, the obtained porous separator for a fuel cell was subjected to after-curing for 30 minutes at 180 ° C. and 0.5 MPa. Furthermore, the hydrophilic treatment was performed using a mixed gas of 4 vol% fluorine gas, 20 vol% oxygen gas, and 76 vol% nitrogen gas, and the porous separator for a fuel cell after the hydrophilic treatment was washed.
Washing was performed as follows. First, in a PP container (178 × 251 × t91 mm), 1800 ml of purified water and 200 ml of a neutral detergent (Clean Ace (product name): ASONE (manufacturer name)) were placed. Subsequently, three separators (123 × 180 × t2.2 mm) were placed in the container. And the container was put into a 45 degreeC thermostat for 24 hours. Thereafter, the container was taken out, the cleaning liquid contained therein was discarded, 2000 ml of purified water was added, and the container was placed in a 45 ° C. constant temperature bath for 24 hours. The process from taking out the container to storing in a thermostatic chamber was repeated once more. Finally, the container was taken out from the thermostatic bath, and the cleaning liquid contained therein was discarded. The separator was dried at 80 ° C. for 4 hours.
The resistivity of the porous separator for a fuel cell obtained at this time was 17 mΩ · cm, and the bending strength was 25 MPa. Each measured value was shown as an average value of nine values measured by the method described later.
 (比較例1)
 ロールによる圧延を行わず、すなわちグリーンシートを形成せずに、混合物を直接プレス加工した。その他の条件は実施例1と同様とした。
(Comparative Example 1)
The mixture was directly pressed without rolling with a roll, that is, without forming a green sheet. Other conditions were the same as in Example 1.
 図3は、実施例1と比較例1の燃料電池用多孔質セパレータの透気度の面内ばらつきを示す。実施例1では、縦123mm×横180mmサイズの燃料電池用多孔質セパレータの中心付近、各頂点付近、各頂点同士の中点付近の計9か所で透気度を測定した。また比較例1では、各頂点付近の4か所で透気度を測定した。その結果、シート化工程を行った実施例1では、透気度のばらつきが非常に少ないことがわかる。 FIG. 3 shows the in-plane variation in the air permeability of the porous separator for a fuel cell of Example 1 and Comparative Example 1. In Example 1, the air permeability was measured at a total of nine locations near the center of the porous separator for fuel cells having a size of 123 mm long × 180 mm wide, near each vertex, and near the middle point between each vertex. In Comparative Example 1, the air permeability was measured at four locations near each vertex. As a result, it can be seen that in Example 1 in which the sheet forming process was performed, the variation in air permeability was very small.
 図4は、実施例1の燃料電池用多孔質セパレータの9点で測定した透気度に対する曲げ強度および固有抵抗率と、比較例1の燃料電池用多孔質セパレータの4点で測定した透気度に対する曲げ強度および固有抵抗率とを示している。実施例1の燃料電池用多孔質セパレータは、面内で曲げ強度が一定であり、全体として高い強度が得られることがわかる。また、面内で固有抵抗率も一定であり、導電性も均一となっていることがわかる。 FIG. 4 shows the bending strength and specific resistivity with respect to the air permeability measured at 9 points of the porous separator for fuel cells of Example 1, and the air permeability measured at 4 points of the porous separator for fuel cells of Comparative Example 1. The bending strength and the specific resistivity with respect to the degree are shown. It can be seen that the porous separator for a fuel cell of Example 1 has a constant bending strength in the plane and high strength as a whole. It can also be seen that the specific resistivity is constant in the plane and the conductivity is uniform.
 曲げ強度は、JIS K6911に準拠し測定した。具体的には、非測定物をカッティングマシーン(リトク社製 型式RC-150)を用いて10mm幅に切削して、卓上電動試験機(JTトーシ社製 型式LSC-1/30)を用いて測定した。このときに透気度と曲げ強度の対応が分かるように各透気度測定範囲の中央部分が曲げ強度測定の際の荷重点となるように切削した。
 また固有抵抗率は、JIS K7194に準拠した四探針法によって測定した。具体的には低抵抗率計(三菱化学アナリテック社 ロレスタ(登録商標)FP)を用いて、縦123mm×横180mmサイズの燃料電池用多孔質セパレータの中心付近、各頂点付近、各頂点同士の中点付近の計9か所で測定し、その平均値を測定した。
The bending strength was measured according to JIS K6911. Specifically, a non-measured object was cut to a width of 10 mm using a cutting machine (model RC-150 manufactured by Ritoku) and measured using a tabletop electric tester (model LSC-1 / 30 manufactured by JT Toshi). did. At this time, cutting was performed so that the center portion of each air permeability measurement range becomes a load point in the bending strength measurement so that the correspondence between the air permeability and the bending strength can be understood.
The specific resistivity was measured by a four-probe method according to JIS K7194. Specifically, using a low resistivity meter (Mitsubishi Chemical Analytech Loresta (registered trademark) FP), the vicinity of the center of the porous separator for fuel cells of size 123 mm x 180 mm, each apex, each apex Measurements were made at a total of nine locations near the midpoint, and the average value was measured.
 (比較例2)
 ロールの圧延回数を1回にした以外は、実施例1と同様の方法で燃料電池用多孔質セパレータを形成した。このとき得られた燃料電池用多孔質セパレータの抵抗率は80mΩ・cmで、かつ曲げ強度は11MPaであった。
(Comparative Example 2)
A porous separator for a fuel cell was formed in the same manner as in Example 1 except that the number of rolls was one. The resistivity of the porous separator for a fuel cell obtained at this time was 80 mΩ · cm, and the bending strength was 11 MPa.
 (比較例3)
 ロールの圧延回数を2回にした以外は、実施例1と同様の方法で燃料電池用多孔質セパレータを形成した。このとき得られた燃料電池用多孔質セパレータの抵抗率は60mΩ・cmで、かつ曲げ強度は13MPaであった。
(Comparative Example 3)
A porous separator for a fuel cell was formed in the same manner as in Example 1 except that the number of rolling of the roll was set to 2. The resistivity of the porous separator for a fuel cell obtained at this time was 60 mΩ · cm, and the bending strength was 13 MPa.
 図5に、実施例1及び比較例2および比較例3の細孔分布を水銀圧入法で測定した結果を示す。水銀圧入法の測定条件は以下とした。
 測定機器:AutoPoreIV 9500(会社名:micromeritics-shimadzu)
 水銀定数:接触角130°、表面張力485dyne/cm、密度13.5g/ml
 脱気:50μmHg以下で5分間維持
 水銀封入:1.33psi
 加圧範囲:1.5~33000psi
 加圧平衡:10秒保持
 ステム体積:0.4120ml
 サンプル:約1cm角
 ステム使用量:約5~16%
In FIG. 5, the result of having measured the pore distribution of Example 1, Comparative Example 2, and Comparative Example 3 by the mercury intrusion method is shown. The measurement conditions of the mercury intrusion method were as follows.
Measuring instrument: AutoPoreIV 9500 (Company name: micromeritics-shimadzu)
Mercury constant: contact angle 130 °, surface tension 485 dyne / cm, density 13.5 g / ml
Deaeration: maintained at 50 μmHg or less for 5 minutes Mercury encapsulation: 1.33 psi
Pressure range: 1.5-33000 psi
Pressure equilibration: Hold for 10 seconds Stem volume: 0.4120 ml
Sample: about 1cm square Stem usage: about 5-16%
 その結果、実施例1の燃料電池用多孔質セパレータは比較例2および比較例3の燃料電池用多孔質セパレータと比較して、細孔分布にシャープなピークが見られた。すなわち、面内における細孔分布が均一であることがわかる。 As a result, the fuel cell porous separator of Example 1 showed a sharp peak in the pore distribution as compared with the fuel cell porous separators of Comparative Example 2 and Comparative Example 3. That is, it can be seen that the in-plane pore distribution is uniform.
 実施例1、比較例2及び3で得られたグリーンシートの厚さのばらつき、およびそれらのグリーンシートを用いて形成された燃料電池用多孔質セパレータの性能を表1に示す。
 透気度は、サンプル厚み2mm、気体透過面積6.4cm(直径28.6mmの面積)とした際に、100mlの気体がサンプルを通過する時間を測定した。この際の圧力は1.22kPaGであった。
 ガスシール圧は、図6に示す評価装置50を用いて、次のようにして評価した。評価装置50は、主に、水Wの収容部51aと、サンプル10の収容部と、空洞部を有する構造体51と、サンプル10に対して圧力を加える手段52と、を備えている。水Wの収容部51aは、サンプル10の収容部のセパレータを挟んだ一方の側(図7の上側)に設けられている。空洞部は、サンプル10の収容部の他方の側(図7の下側)に設けられている。圧力を加える手段52は、空洞部に接続されており、この空洞部を介してサンプル10に圧力をかけられるように構成されている。
 まず、バットに常温の精製水を張り、これにサンプル10としてセパレータを1時間付け込んだ。次に、図6に示すように、サンプル10を評価装置50の所定の位置にセットした。サンプル10としては、123mm×180mm×2.2mmのものを用いた。次に、サンプル10の上に水を張った。次に、圧力を加える手段52から空洞部を経由して圧縮された空気を供給し、サンプル10に対して底部10a側から圧力をかけた。かける圧力は0から徐々に上げて行き、気泡Bがサンプル10から発生し始めたときの圧力を、ガスシール圧として評価した。
 透水性は、図11に示す評価装置60を用いて、次のようにして評価した。評価装置60は、主に、水Wの収容部61aと、サンプル10の収容部とを有する構造体61と、サンプル10に対して圧力を加える手段62と、を備えている。水Wの収容部61aは、サンプル10の収容部のセパレータを挟んだ一方の側(図8の上側)に設けられている。圧力を加える手段62は、水Wの収容部61aに接続されており、この収容部61aを介してサンプル10に圧力をかけられるように構成されている。
 まず、バットに常温の精製水を張り、これにサンプル10としてセパレータを1時間付け込んだ。次に、図11に示すように、サンプル10を評価装置60の所定の位置にセットした。サンプル10としては、123mm×180mm×2.2mmのものを用いた。次に、サンプル10の上に水を張った。次に、圧力を加える手段62から収容部61a内に圧縮された空気を供給し、収容部61a内の水を介し、サンプル10に対して上部10b側から圧力をかけた。かける圧力が14kPaとなるように、レギュレータを用いて調整した。定常状態に達してから60秒経過後から120秒経過後までの間、サンプル10を透過した水W2の重量を電子天秤で測定した。
 吸水性は、100mm×200mm×2mmサイズのサンプル中央にマイクロシリンジを用いてイオン交換水5μlを滴下し、液滴が完全に吸収されるまでの時間を測定した。
 細孔直径が1.5~4.0μmである細孔の全細孔に対する体積率は、以下で示す水銀圧入法で測定した細孔分布から算出した。100mm×200mm×2mmサイズのサンプルから10mm×10mm×2mmサイズのサンプルを6個切り出し, 水銀圧入法で細孔直径とその細孔直径での占有体積の関係のグラフを求めた。グラフから細孔直径が1.5~4.0μmである細孔の全細孔に対する体積率を求め、6個のデータの平均値をそのサンプル体積率とした。体積率は図5より1.5μmと4.0μmの間の面積を表計算ソフトより区分求積法により求めた。
Table 1 shows the variation in the thickness of the green sheets obtained in Example 1 and Comparative Examples 2 and 3, and the performance of the porous separator for a fuel cell formed using these green sheets.
When the air permeability was set to a sample thickness of 2 mm and a gas permeation area of 6.4 cm 2 (area of 28.6 mm in diameter), the time required for 100 ml of gas to pass through the sample was measured. The pressure at this time was 1.22 kPaG.
The gas seal pressure was evaluated as follows using the evaluation apparatus 50 shown in FIG. The evaluation device 50 mainly includes a water W accommodating portion 51 a, a sample 10 accommodating portion, a structure 51 having a hollow portion, and a means 52 for applying pressure to the sample 10. The container 51a for water W is provided on one side (the upper side in FIG. 7) sandwiching the separator of the container for the sample 10. The hollow portion is provided on the other side (the lower side of FIG. 7) of the accommodating portion of the sample 10. The means 52 for applying pressure is connected to the cavity and is configured to apply pressure to the sample 10 through this cavity.
First, normal temperature purified water was sprinkled on the bat, and a separator was attached as a sample 10 for 1 hour. Next, as shown in FIG. 6, the sample 10 was set at a predetermined position of the evaluation device 50. Sample 10 was 123 mm × 180 mm × 2.2 mm. Next, water was applied on the sample 10. Next, compressed air was supplied from the means 52 for applying pressure via the cavity, and pressure was applied to the sample 10 from the bottom 10a side. The applied pressure gradually increased from 0, and the pressure when the bubble B started to be generated from the sample 10 was evaluated as the gas seal pressure.
The water permeability was evaluated as follows using the evaluation apparatus 60 shown in FIG. The evaluation device 60 mainly includes a structure 61 having a water W accommodating portion 61 a and a sample 10 accommodating portion, and means 62 for applying pressure to the sample 10. The accommodation part 61a for water W is provided on one side (the upper side in FIG. 8) sandwiching the separator of the accommodation part for the sample 10. The means 62 for applying pressure is connected to the water W accommodating portion 61a, and is configured to apply pressure to the sample 10 through the accommodating portion 61a.
First, normal temperature purified water was sprinkled on the bat, and a separator was attached as a sample 10 for 1 hour. Next, as shown in FIG. 11, the sample 10 was set at a predetermined position of the evaluation device 60. Sample 10 was 123 mm × 180 mm × 2.2 mm. Next, water was applied on the sample 10. Next, compressed air was supplied into the accommodating part 61a from the means 62 for applying pressure, and pressure was applied to the sample 10 from the upper part 10b side through the water in the accommodating part 61a. It adjusted using the regulator so that the applied pressure might be set to 14 kPa. The weight of the water W2 that permeated the sample 10 was measured with an electronic balance between 60 seconds after reaching the steady state and 120 seconds after.
For water absorption, 5 μl of ion-exchanged water was dropped using a microsyringe in the center of a 100 mm × 200 mm × 2 mm sample, and the time until the droplet was completely absorbed was measured.
The volume ratio of pores having a pore diameter of 1.5 to 4.0 μm to all pores was calculated from the pore distribution measured by the mercury intrusion method shown below. Six 10 mm × 10 mm × 2 mm sized samples were cut out from 100 mm × 200 mm × 2 mm sized samples, and a graph of the relationship between the pore diameter and the occupied volume at the pore diameter was obtained by mercury porosimetry. From the graph, the volume ratio of the pores having a pore diameter of 1.5 to 4.0 μm with respect to all the pores was obtained, and the average value of the six data was taken as the sample volume ratio. The volume ratio was obtained from the area between 1.5 μm and 4.0 μm from FIG.
Figure JPOXMLDOC01-appb-T000001
                  
Figure JPOXMLDOC01-appb-T000001
                  
 このとき、グリーンシート厚のばらつき、透気度のばらつきは、123mm×180mmのサンプルを9カ所測定して最大値と最小値の差として求めた。グリーンシート厚の平均値に対するグリーンシート厚の面内ばらつきは、実施例1で1%、比較例2で23%、比較例3で12%であった。図7には、グリーンシート厚のばらつきに対する透気度ばらつきの結果を示した。
 その結果、グリーンシート厚のばらつきが小さいと、透気度のばらつきが小さくなることが分かる。すなわち、ガスリーク圧を大きくすることができ、ガスシールド性の高い燃料電池用多孔質セパレータを得ることができる。
At this time, the variation in the thickness of the green sheet and the variation in the air permeability were obtained as a difference between the maximum value and the minimum value by measuring nine samples of 123 mm × 180 mm. The in-plane variation of the green sheet thickness with respect to the average value of the green sheet thickness was 1% in Example 1, 23% in Comparative Example 2, and 12% in Comparative Example 3. FIG. 7 shows the result of the air permeability variation with respect to the green sheet thickness variation.
As a result, it can be seen that when the variation in the thickness of the green sheet is small, the variation in the air permeability is small. That is, the gas leak pressure can be increased, and a fuel cell porous separator with high gas shielding properties can be obtained.
 (実施例2~6)
 次に、グリーンシートをプレス加工する際のグリーンシート厚と透気度の関係を調べた。得られたグリーンシートを、縦123mm×横180mmのサイズでカットし、厚み2.2mmの金型に対し、グリーンシート厚を2.30mm、2.50mm、2.68mm、2.76mm、2.88mmとして燃料電池用多孔質セパレータを形成した。その他の条件は実施例1と同様に行った。その結果を表2に示す。グリーンシート厚の平均値に対するグリーンシート厚の面内ばらつきは、実施例2で3%、実施例3で2%、実施例4で1%、実施例5で2%、実施例6で2%であった。
(Examples 2 to 6)
Next, the relationship between the green sheet thickness and the air permeability when the green sheet was pressed was examined. The obtained green sheet was cut into a size of 123 mm long × 180 mm wide, and the green sheet thickness was 2.30 mm, 2.50 mm, 2.68 mm, 2.76 mm, and 2.76 mm with respect to a mold having a thickness of 2.2 mm. A porous separator for a fuel cell was formed to be 88 mm. Other conditions were the same as in Example 1. The results are shown in Table 2. The in-plane variation of the green sheet thickness with respect to the average value of the green sheet thickness is 3% in Example 2, 2% in Example 3, 1% in Example 4, 2% in Example 5, and 2% in Example 6. Met.
Figure JPOXMLDOC01-appb-T000002
                  
Figure JPOXMLDOC01-appb-T000002
                  
 図8には、グリーンシート厚に対する平均気孔径のグラフを示す。平均気孔径は水銀圧入法で測定した細孔分布のピーク値とした。気孔率は、水銀圧入法で測定した細孔分布から算出した。図9には、グリーンシート厚に対する気孔率のグラフを示す。また図10には、グリーンシート厚に対する透気度のグラフを示す。
 その結果、プレス加工するグリーンシートの厚みを厚くすると、透気度が高くなっていることがわかる。これはプレス加工する材料の量が多いと、プレス成型後の燃料電池用多孔質セパレータが密になるためと考えられる。特に実施例2~5では透気度が600s/100ml以下であり好ましい。
FIG. 8 shows a graph of average pore diameter versus green sheet thickness. The average pore diameter was the peak value of pore distribution measured by mercury porosimetry. The porosity was calculated from the pore distribution measured by the mercury intrusion method. FIG. 9 shows a graph of porosity versus green sheet thickness. FIG. 10 shows a graph of the air permeability with respect to the green sheet thickness.
As a result, it can be seen that when the thickness of the green sheet to be pressed is increased, the air permeability increases. This is presumably because if the amount of material to be pressed is large, the porous separator for fuel cells after press molding becomes dense. Particularly in Examples 2 to 5, the air permeability is preferably 600 s / 100 ml or less.
 本発明の燃料電池用多孔質セパレータを燃料電池用セパレータとして用いることにより、強度、導電性、透水性、ガスバリア性の高い燃料電池用多孔質セパレータを用いるため、高い発電性能を有する燃料電池を実現することができる。 By using the porous separator for fuel cells of the present invention as a separator for fuel cells, a fuel cell having high power generation performance is realized because the porous separator for fuel cells having high strength, conductivity, water permeability and gas barrier properties is used. can do.
 1…樹脂材料、2…炭素質材料、10…燃料電池用多孔質セパレータ、
10a…底部、10b…上部、20…発電部、30…ガス拡散層、40…冷却水、50…評価装置、51…構造体、51a…水の収容部、52…圧力を加える手段、60…評価装置、61…構造体、61a…水の収容部、62…圧力を加える手段、B…気泡、W…水、W2…水、100…燃料電池
DESCRIPTION OF SYMBOLS 1 ... Resin material, 2 ... Carbonaceous material, 10 ... Porous separator for fuel cells,
DESCRIPTION OF SYMBOLS 10a ... Bottom part, 10b ... Upper part, 20 ... Power generation part, 30 ... Gas diffusion layer, 40 ... Cooling water, 50 ... Evaluation apparatus, 51 ... Structure, 51a ... Water accommodating part, 52 ... Means to apply pressure, 60 ... Evaluation device, 61 ... Structure, 61a ... Water container, 62 ... Means for applying pressure, B ... Bubble, W ... Water, W2 ... Water, 100 ... Fuel cell

Claims (8)

  1.  樹脂材料と炭素質材料とを含む組成物を用いて成形されてなる燃料電池用多孔質セパレータであって、
     前記炭素質材料と前記樹脂材料の総質量における前記炭素質材料の含有量が80~95質量%であり、
     水銀圧入法によって求められる細孔分布における全細孔のうち、細孔直径が1.5~4.0μmである細孔が90vol%以上である燃料電池用多孔質セパレータ。
    A porous separator for a fuel cell formed by using a composition containing a resin material and a carbonaceous material,
    The content of the carbonaceous material in the total mass of the carbonaceous material and the resin material is 80 to 95% by mass,
    A porous separator for a fuel cell, wherein a pore having a pore diameter of 1.5 to 4.0 μm among all pores in a pore distribution determined by a mercury intrusion method is 90 vol% or more.
  2.  前記樹脂材料が、ポリ(1,2-ブタジエン)、エポキシ変性ポリブタジエン、水酸基変性ポリブタジエン、マレイン酸変性ポリブタジエン、アクリル変性ポリブタジエン、アミン変性ポリブタジエン、水素変性ポリブタジエンからなる群から選択された一種を含む請求項1に記載の燃料電池用多孔質セパレータ。 The resin material includes one selected from the group consisting of poly (1,2-butadiene), epoxy-modified polybutadiene, hydroxyl group-modified polybutadiene, maleic acid-modified polybutadiene, acrylic-modified polybutadiene, amine-modified polybutadiene, and hydrogen-modified polybutadiene. 2. A porous separator for a fuel cell according to 1.
  3.  請求項1または2に記載の燃料電池用多孔質セパレータを備えた燃料電池。 A fuel cell comprising the porous separator for a fuel cell according to claim 1 or 2.
  4.  少なくとも樹脂材料と炭素質材料を混合し、炭素質材料の含有量が80~95質量%である硬化性樹脂組成物を調製する混合工程と、
     混合して得られた組成物をシート厚の面内ばらつきがシート厚の平均厚に対して10%以内であるグリーンシートにシート化するシート化工程と、
     シート化工程で得られたグリーンシートを成形するプレス工程と、を有する燃料電池用多孔質セパレータの製造方法。
    A mixing step of mixing at least a resin material and a carbonaceous material to prepare a curable resin composition having a carbonaceous material content of 80 to 95% by mass;
    A sheeting step of forming the composition obtained by mixing into a green sheet having an in-plane variation of the sheet thickness within 10% of the average thickness of the sheet,
    And a pressing step for forming the green sheet obtained in the sheet forming step.
  5.  前記プレス工程時の金型厚みに対して前記グリーンシートの厚みが1.1倍以上2倍以下である請求項4に記載の燃料電池用多孔質セパレータの製造方法。 The method for producing a porous separator for a fuel cell according to claim 4, wherein the thickness of the green sheet is 1.1 times or more and 2 times or less with respect to the mold thickness at the time of the pressing step.
  6.  前記シート化工程において、前記グリーンシートの温度を結露が生じない温度以上かつ樹脂が硬化しない温度以下とすることを特徴とする請求項4または5のいずれかに記載の
    燃料電池用多孔質セパレータの製造方法。
    6. The fuel cell porous separator according to claim 4, wherein, in the sheet forming step, the temperature of the green sheet is not less than a temperature at which condensation does not occur and not more than a temperature at which the resin does not cure. Production method.
  7.  前記プレス化工程において、前記グリーンシートを150~240℃の温度で加熱する請求項4~6のいずれか一項に記載の燃料電池用多孔質セパレータの製造方法。 The method for producing a porous separator for a fuel cell according to any one of claims 4 to 6, wherein in the pressing step, the green sheet is heated at a temperature of 150 to 240 ° C.
  8.  前記プレス化工程において、前記グリーンシートを2~25MPaの圧力で加圧する請求項4~7のいずれか一項に記載の燃料電池用多孔質セパレータの製造方法。 The method for producing a porous separator for a fuel cell according to any one of claims 4 to 7, wherein the green sheet is pressurized at a pressure of 2 to 25 MPa in the pressing step.
PCT/JP2015/080013 2014-10-23 2015-10-23 Fuel-cell porous separator, fuel cell, and method for manufacturing fuel-cell porous separator WO2016063983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016555412A JPWO2016063983A1 (en) 2014-10-23 2015-10-23 Porous separator for fuel cell, fuel cell, and method for producing porous separator for fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-216178 2014-10-23
JP2014216178 2014-10-23

Publications (1)

Publication Number Publication Date
WO2016063983A1 true WO2016063983A1 (en) 2016-04-28

Family

ID=55761013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080013 WO2016063983A1 (en) 2014-10-23 2015-10-23 Fuel-cell porous separator, fuel cell, and method for manufacturing fuel-cell porous separator

Country Status (2)

Country Link
JP (1) JPWO2016063983A1 (en)
WO (1) WO2016063983A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184510A (en) * 1989-01-10 1990-07-19 Showa Denko Kk Production of carbon plate
JP2006143478A (en) * 2003-09-26 2006-06-08 Toray Ind Inc Porous carbon base material, gas-diffusing material using the same, film-electrode jointed article and fuel cell
JP2010129299A (en) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd Fuel cell separator, and manufacturing method thereof
WO2010116674A1 (en) * 2009-03-30 2010-10-14 昭和電工株式会社 Sheet press molding method and method for manufacturing separator for fuel cell
WO2010116620A1 (en) * 2009-03-30 2010-10-14 昭和電工株式会社 Sheet press molding method and method of fabricating fuel cell separators
JP2013069605A (en) * 2011-09-26 2013-04-18 Nisshinbo Chemical Inc Porous separator for fuel cell
JP2013179098A (en) * 2008-03-14 2013-09-09 Showa Denko Kk Fuel cell separator and method of producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184510A (en) * 1989-01-10 1990-07-19 Showa Denko Kk Production of carbon plate
JP2006143478A (en) * 2003-09-26 2006-06-08 Toray Ind Inc Porous carbon base material, gas-diffusing material using the same, film-electrode jointed article and fuel cell
JP2013179098A (en) * 2008-03-14 2013-09-09 Showa Denko Kk Fuel cell separator and method of producing the same
JP2010129299A (en) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd Fuel cell separator, and manufacturing method thereof
WO2010116674A1 (en) * 2009-03-30 2010-10-14 昭和電工株式会社 Sheet press molding method and method for manufacturing separator for fuel cell
WO2010116620A1 (en) * 2009-03-30 2010-10-14 昭和電工株式会社 Sheet press molding method and method of fabricating fuel cell separators
JP2013069605A (en) * 2011-09-26 2013-04-18 Nisshinbo Chemical Inc Porous separator for fuel cell

Also Published As

Publication number Publication date
JPWO2016063983A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
KR101230807B1 (en) Sheet press molding method and method for manufacturing separator for fuel cell
KR101820566B1 (en) Gas diffusion layer with improved electrical conductivity and gas permeability
US7674402B2 (en) Electroconductive resin composition and molded product thereof
TWI273118B (en) Electroconductive curable composition, cured product thereof and process for producing the same
EP2264817A1 (en) Fuel cell separator and method of manufacturing the same
WO2010116620A1 (en) Sheet press molding method and method of fabricating fuel cell separators
KR100785752B1 (en) Fuel cell separator and production process thereof
JP4628143B2 (en) Conductive resin composition and molded body thereof
Liao et al. One-step functionalization of carbon nanotubes by free-radical modification for the preparation of nanocomposite bipolar plates in polymer electrolyte membrane fuel cells
JP4937529B2 (en) Conductive resin composition for fuel cell separator and fuel cell separator
KR100615105B1 (en) Conductive curable resin composition and separator for fuel cell
JP5025079B2 (en) Conductive resin composition and molded body thereof
WO2016063983A1 (en) Fuel-cell porous separator, fuel cell, and method for manufacturing fuel-cell porous separator
WO2016063982A1 (en) Fuel-cell porous separator, fuel cell, and method for manufacturing fuel-cell porous separator
Vrankovic et al. Void-shell silicon/carbon/SiCN nanostructures: toward stable silicon-based electrodes
JP2005129507A (en) Graphitic powder for fuel cell separator, and fuel cell separator
WO2005117178A1 (en) Conductive resin composition for fuel cell separator and fuel cell separator
KR102572352B1 (en) Carbon nanoparticle coating method
WO2024048654A1 (en) Composite conductive filler particles, conductive resin composition, and conductive resin molded article
JP2006073334A (en) Separator for fuel cell
WO2005086177A1 (en) Electroconductive resin composition and molded product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852254

Country of ref document: EP

Kind code of ref document: A1