WO2016063569A1 - Sample analysis device - Google Patents

Sample analysis device Download PDF

Info

Publication number
WO2016063569A1
WO2016063569A1 PCT/JP2015/067492 JP2015067492W WO2016063569A1 WO 2016063569 A1 WO2016063569 A1 WO 2016063569A1 JP 2015067492 W JP2015067492 W JP 2015067492W WO 2016063569 A1 WO2016063569 A1 WO 2016063569A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement
chamber
unit
sample
Prior art date
Application number
PCT/JP2015/067492
Other languages
French (fr)
Japanese (ja)
Inventor
啓 綱澤
中村 篤
大河 藤田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016063569A1 publication Critical patent/WO2016063569A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes

Definitions

  • the present invention relates to a sample analyzer, and more particularly to a sample analyzer suitable for analyzing soil components.
  • a soil analyzer injects each soil extract into a plurality of test tubes while measuring with a graduated dropper, and then adds the reagent and diluent determined for each soil component to the test tubes. Inject and develop color. And it is measured by converting into a numerical value using a colorimetric table, a turbidimetric table, an absorptiometric method or the like.
  • the measurement method described above needs to mix a reagent with each soil extract, which increases the number of repetitive operations. Moreover, it is necessary to prepare a reagent according to the soil component to be measured, and the complexity is high.
  • FIG. 11 shows a reagent mixing and soil analysis apparatus disclosed in Patent Document 1.
  • FIG. 11 (a) is a schematic diagram of a conventional soil analysis apparatus
  • FIG. 11 (b) is a schematic diagram showing the fitting between the storage cartridge provided in the conventional soil analyzer and the extract cartridge.
  • the soil analysis apparatus described in Patent Document 1 includes a light emitting unit 7, a light receiving unit 8, and a storage cartridge 9, as shown in FIG.
  • the storage cartridge 9 is made of a transparent material, and is provided with a plurality of cells 11 for storing a mixture of a soil extract and a reagent extracted from soil.
  • light emitted from the light emitting unit 7 passes through the mixed solution in the storage cartridge 9 and is detected by the light receiving unit 8 to measure the absorbance of the mixed solution.
  • the concentration of soil components is measured by the method.
  • each cell 16 of the extraction liquid cartridge 14 has a dredging function as measurement, and contains a soil component liquid.
  • the extract cartridge 14 is pushed into the storage cartridge 9 in the direction indicated by the arrows in FIGS. 11B and 11C, so that the storage cartridge 9 and the extract cartridge 14 are fitted. Thereafter, the bottom surface of the extraction liquid cartridge 14 is penetrated, and the extraction liquid is injected into the cell 11 of the storage cartridge 9 to prepare a mixed liquid.
  • Patent Document 2 discloses an analysis device and an analysis apparatus in which a microchannel is formed.
  • centrifugal force acts on the analysis device by rotationally driving the analysis device in which the microchannel is formed.
  • the sample and the reagent held in the analytical device are moved to the reaction tank, and a mixed solution of the sample and the reagent is created by a simple method.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2007-46922 (published on February 22, 2007)” Japanese Patent Publication “JP 2009-210564 A (published on September 17, 2009)”
  • the soil extract itself may be colored depending on the state of the soil.
  • the concentration of the soil component by the absorptiometry using the analyzers described in the cited references 1 and 2 for such a soil extract, there is a problem that the measurement accuracy decreases. .
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a sample analyzer that is simple and efficient in measurement work and can perform accurate measurement. .
  • a sample analyzer includes a reference chamber that stores a sample and a measurement chamber that stores a measurement liquid based on the sample.
  • a container formed above, a light emitting part that is arranged at a position corresponding to the same circumference and emits light toward the container, a light receiving part that receives light transmitted through the container, the container and the container
  • a rotation driving unit that rotates at least one of the light emitting unit and the light receiving unit around the rotation axis, a reference transmitted light amount of light transmitted through the reference chamber and received by the light receiving unit, and transmitted through the measurement chamber.
  • a measuring unit for analyzing the components contained in the sample based on the measured transmitted light amount of the light received by the light receiving unit.
  • the reference chamber containing the sample and the measurement chamber containing the measurement liquid based on the sample are formed in the container on the same circumference around the rotation axis. Therefore, the measurement can be performed simply and efficiently by rotating the container and performing the measurement.
  • the component contained in the sample is analyzed based on the reference transmitted light amount of the light transmitted through the reference chamber and received by the light receiving unit and the measured transmitted light amount of the light transmitted through the measurement chamber and received by the light receiving unit. Therefore, accurate measurement can be performed.
  • FIG. 1 is a schematic configuration diagram of a sample analyzer according to Embodiment 1 of the present invention. It is the structure schematic of the light emission part with which the sample analyzer shown in FIG. 1 is equipped.
  • FIG. 3 is a schematic configuration diagram of a filter array provided in the light emitting unit shown in FIG. 2.
  • FIG. 2 is a schematic configuration diagram of a chip provided in the sample analyzer shown in FIG. 1, (a) is a front view of the chip as viewed from above, and (b) and (c) are the shapes of cells provided in the chip.
  • FIG. (A) is a top view of the chip at the time of measurement, and (b) is a cross-sectional view of the chip taken along line BB in (a), and the sample analyzer shown in FIG.
  • FIG. 1 schematically shows a filter array and a light receiving section.
  • the measurement is performed by rotating the chip shown in FIG. 4A at a constant speed and scanning it with the light emitted from the light emitting unit, the circumferential position of the chip and the amount of transmitted light received by the light receiving unit It is a graph which shows the relationship.
  • FIG. 5 is a view showing a portion where a light shielding portion is provided in the chip shown in FIG. It is the structure schematic of the light emission part with which the sample analyzer based on Embodiment 2 of this invention is provided. It is the schematic which showed the filter array with which the light emission part shown in FIG.
  • (a) is the front view seen from upper direction
  • (b) is an enlarged view of the reference
  • (A) is a schematic diagram of a conventionally used soil analyzer, and (b) and (c) show the fitting between the storage cartridge provided in the soil analyzer shown in (a) and the extract cartridge. It is a schematic diagram shown.
  • FIG. 1 shows a schematic configuration diagram of a sample analyzer 100 according to Embodiment 1 of the present invention.
  • a sample analyzer 100 according to Embodiment 1 of the present invention is a sample analyzer that performs measurement by an absorptiometry.
  • a light emitting unit 101 As shown in FIG. 1, a light emitting unit 101, a chip (container) 102, a light receiving unit 103, and the like. , A reference light receiving unit 104, a half mirror 108, a rotation driving unit 106, a measuring unit 109, and a control unit 111.
  • FIG. 2 is a schematic configuration diagram of the light emitting unit 101.
  • the light emitting unit 101 includes a plurality of light sources 201a, 201b, and 201c having different emission wavelengths, collimating lenses 202a, 202b, and 202c corresponding to the plurality of light sources 201a, 201b, and 201c, and a dichroic.
  • Mirrors 203a and 203b, an aperture 204, and a filter array 205 are provided.
  • the light emitting unit 101 is connected to the control unit 111, and each of the light sources 201a to 201c is controlled in light emission, extinction, and light emission intensity by a signal from the control unit 111.
  • a white LED Light Emitting Diode
  • a blue LED is used as the light source 201b
  • a red LED is used as the light source 201c.
  • the dichroic mirrors 203a and 203b are mirrors that transmit light in a specific wavelength band and reflect light in another specific wavelength band.
  • a dichroic mirror 203a that transmits light in the wavelength band of 470 nm to 1600 nm and reflects light in the wavelength band of 350 nm to 430 nm is used.
  • the dichroic mirror 203b is a mirror that transmits light having a wavelength band of 400 nm to 630 nm and reflects light having a wavelength band of 675 nm to 850 nm.
  • FIG. 3 is a front view of the filter array 205 shown in FIG. 2 as viewed from above.
  • the filter array 205 includes a plurality of interference filters 301 to 306 having different transmission wavelength bands, arranged on the same circumference around the rotation axis 210.
  • interference filters having transmission wavelength bands of 420 nm, 520 nm, 570 nm, 610 nm, 710 nm, and 720 nm are used as the interference filters 301 to 306, respectively.
  • a plurality of light sources 201a to 201c emit light in response to a signal from the control unit 111.
  • Light emitted from the light sources 201a to 201c is directed by collimating lenses 202a to 202c corresponding to the light sources 201a to 201c, and their optical paths are combined by dichroic mirrors 203a and 203b.
  • the beam diameter is adjusted by the aperture 204 and guided to the filter array 205.
  • the filter array 205 is controlled to rotate around a rotation axis 210 parallel to the traveling direction of light in synchronization with the control of the plurality of light sources 201a to 201c, and has a specific wavelength from the light that has passed through the aperture 204 Select only transparent.
  • the light transmitted through the filter array 205 is emitted from the light emitting unit 101 as light 300.
  • the half mirror 108 branches the light 300 emitted from the light emitting unit 101 into the chip 102 side and the reference light receiving unit 104 side.
  • the reference light receiving unit 104 receives the light branched by the half mirror 108 and supplies a signal based on the received light to the measuring unit 109.
  • FIG. 4 is a schematic view showing the chip 102
  • FIG. 4A is a front view of the chip 102 as viewed from above
  • FIG. 4B is an example of the shape of the cell 400 provided in the chip 102
  • FIG. 4C is a schematic diagram showing the shape of the cell 410 provided in the chip 102.
  • the chip 102 has a disk shape, and a plurality of cells 400 and cells 410 are formed radially around the rotation shaft 450.
  • a plurality of cells 400 and cells 410 are formed radially around the rotation shaft 450.
  • six cells 400 and one cell 410 are formed on the chip 102.
  • the cells 400 and 410 are formed at equal intervals with respect to the circumferential direction of the chip 102.
  • the chip 102 is preferably made of, for example, a transparent material such as silicone, glass, or plastic so as to transmit the light 300 emitted from the light emitting unit 101 and passed through the half mirror 108.
  • the chip 102 is more preferably made of a highly transparent synthetic resin in order to make the chip 102 inexpensive, and in this embodiment, the chip 102 is a low-density polypropylene that also has chemical resistance. It is made with.
  • the cell 400 and the cell 410 are not formed exposed on the surface of the chip 102, but are shown by solid lines so that the internal structure can be easily understood.
  • a flow path 405 is formed between the reagent chamber 403, the sample chamber 401, the reagent chamber 402, and the measurement chamber 404.
  • the reagent chamber 403, the sample chamber 401, the reagent chamber 402, and the measurement chamber 404 communicate with each other. ing.
  • the cell 410 does not include a reagent chamber, and a sample chamber 411 and a reference chamber 414 are formed. Further, a flow path 415 is formed between the sample chamber 411 and the reference chamber 414, and the sample chamber 411 and the reference chamber 414 communicate with each other.
  • the measurement chamber 404 of the cell 400 and the reference chamber 414 of the cell 410 are formed on the same circumference as indicated by a one-dot chain line A in FIG.
  • the size of the chip 102 is, for example, about 20 cm in diameter, and the size of each of the cell 400 and the cell 410 is 4 to 5 cm in the longitudinal direction in FIGS. 4B and 4C and 2 in the short direction. The size is about 3 cm.
  • the light receiving unit 103 receives the light 300 emitted from the light emitting unit 101 and transmitted through the region on the same circumference indicated by the alternate long and short dash line A in FIG.
  • the measuring unit 109 is connected to the reference light receiving unit 104 and the light receiving unit 103.
  • the measuring unit 109 measures the intensity of the light received by each of the reference light receiving unit 104 and the light receiving unit 103 and calculates various data (soil component concentration, pH, etc.) based on the measurement result.
  • the rotation driving unit 106 is provided below the chip 102 and drives the chip 102 to rotate.
  • a stepping motor capable of pulse control is used as the rotation drive unit 106.
  • the configuration in which the rotation drive unit 106 drives the chip 102 to rotate is shown, but the present invention is not limited to this, and the chip 102, the light emitting unit 101, and the light receiving unit 103 move relatively. do it.
  • the rotation driving unit 106 may be configured to rotationally drive the light emitting unit 101 and the light receiving unit 103 around the rotation axis 450, or to rotationally drive both the chip 102 and the light emitting unit 101 and the light receiving unit 103. It may be configured to.
  • the control unit 111 is connected to the light emitting unit 101, the measuring unit 109, and the rotation driving unit 106, and controls the operation of each unit.
  • FIG. 5A shows a top view of the chip 102 at the time of measurement.
  • FIG. 5B schematically shows a cross-sectional view taken along the line BB of the chip 102 in FIG. 5A, and the filter array 205 and the light receiving unit 103.
  • reference numerals 400-a to 400-f are given, and when not distinguished, 400 reference signs are given.
  • the sample chamber 401, the reagent chamber 402, the reagent chamber 403, the measurement chamber 404, and the flow path 405 formed in the cell 400 are distinguished from each other, 401-a to 401-f, 402-a, respectively.
  • Reference numerals of .about.402-f, 403-a to 403-f, 404-a to 404-f, and 405-a to 405-f are attached.
  • reagent chamber 402-a of the cell 400-a 0.4 ml of 5 wt% salicylic acid-sulfuric acid aqueous solution is injected into the reagent chamber 402-a of the cell 400-a, and 10 ml of 2 mol / l sodium hydroxide (NaOH) aqueous solution is injected into the reagent chamber 403-a in advance. .
  • the reagent is previously injected into the reagent chambers 402-b to 402-f and the reagent chambers 403-b to 403-f.
  • Table 1 shows the types and amounts of the reagents previously injected into each of the reagent chambers 402-a to 402-f and the reagent chambers 403-a to 403-f. The column indicated by “ ⁇ ” in Table 1 indicates that no reagent has been injected.
  • the rotation driving unit 106 When the measurement is started after injecting the soil extract into the sample chamber 401 and the sample chamber 411, the rotation driving unit 106 is first rotated. The rotation of the rotation drive unit 106 causes the chip 102 to rotate about the rotation axis 450, and the cells 400 and 410 are respectively moved in the directions indicated by the arrows F in FIG. 4B and FIG. 4C. Centrifugal force (inertial force) acts.
  • the soil extract injected into the sample chamber 411 of the cell 410 moves to the reference chamber 414 through the flow path 415 by centrifugal force.
  • the soil extract in the sample chamber 401 of the cell 400 and the reagent in the reagent chamber 402 move to the reagent chamber 403 through the flow path 405.
  • a mixed liquid (measurement liquid) of the sample to be measured and the reagent is generated in the reagent chamber 403.
  • the sample analyzer 100 may include a translation drive unit (not shown) that can be driven in one axis, and may be configured to perform stirring by a reciprocating motion of the translation drive unit.
  • the rotation drive unit 106 and the translation drive unit may be used. It may be a configuration in which stirring is performed by driving in combination.
  • the structure which stirs by driving each of the rotation drive part 106 and the translation drive part with a time difference separately may be sufficient.
  • the structure may be such that the rotation drive unit 106 rotates at a constant speed during agitation, a structure that rotates with acceleration, or a structure that rotates in reverse, or a combination of these. May be configured to rotate.
  • the open / close valve provided in the flow path 405 between the reagent chamber 403 and the measurement chamber 404 is opened, and the rotation driving unit 106 is rotated again, so that the mixed solution is mixed by centrifugal force. Is moved to the measurement chamber 404.
  • stirring of the above-mentioned liquid mixture may be performed in the reagent chamber 403, it may be performed in the measurement chamber 404.
  • the mixed liquid is generated and stirred in the cells 400-a to 400-f by the rotation of the rotation driving unit 106.
  • the present invention is not limited to this. Instead, it may be configured to be performed individually for each of the cells 400-a to 400-f. However, from the viewpoint of shortening the processing time, it is preferable that the cell 400-a to 400-f be configured to be performed collectively.
  • the rotation of the rotation driving unit 106 causes the chip 102 to rotate at one uniform speed and the light from the light emitting unit 101 to the light 300. Is emitted, the light 300 scans the chip 102, and the light 300 transmitted through the chip 102 is incident on the light receiving unit 103.
  • the light 300 emitted from the light emitting unit 101 is branched by the half mirror 108 into the chip 102 side and the reference light receiving unit 104 side.
  • the measurement unit 109 measures and compares the intensity of the light incident on the reference light receiving unit 104 and the intensity of the light transmitted through the measurement chamber 404 and incident on the light receiving unit 103, thereby comparing the absorbance of the mixed liquid. (Transmittance) is calculated. Further, since the intensity of light before being incident on the chip 102 is measured by the reference light receiving unit 104, even if the output from the light emitting unit 101 fluctuates due to the influence of heat, light source deterioration, or the like, the mixture liquid can be transmitted. It is possible to accurately determine the rate.
  • FIG. 6 shows the position in the circumferential direction of the chip 102 and the intensity (transmission) of the light received by the light receiving unit 103 when the measurement is performed by rotating the chip 102 at a constant speed and scanning with the light 300 described above. It is a graph which shows the relationship with light quantity.
  • the measuring unit 109 rotates the chip 102 at a uniform speed around the circumference and scans it with the light 300, thereby receiving light from the light receiving unit 103.
  • the position of the reference chamber 414 can be specified from the intensity of the light.
  • the amount of transmitted light shows the lowest value. This is because the chip 102 exhibits high absorbance due to the thickness of the structure constituting the chip 102.
  • the measurement unit 109 sets the wrong position to the measurement chambers 404-a to 404-f.
  • the position of the reference chamber 414 may be specified. Therefore, the measurement unit 109 can more clearly determine whether the light 300 is incident on the measurement chambers 404-a to 404-f and the reference chamber 414 or is incident on other locations. It is preferable.
  • locations other than the measurement chambers 404-a to 404-f and the reference chamber 414 are previously shaded 460 ( It may be light-shielded (coated) by a light-absorbing material.
  • the structure of the filter array 205 shown in FIG. 3 may be made of a material having high light absorption.
  • the measurement chambers 404-a to 404-f of the cells 400-a to 400-f and the reference chamber 414 of the cell 410 are formed at equal intervals on the same circumference. Therefore, the measurement unit 109 first identifies the position of the reference chamber 414 and determines the position of the identified reference chamber 414 as the origin, so that the position of a predetermined angle from the origin can be determined based on the relative positional relationship. Assuming that the positions are 404-a to 404-f, the positions of the measurement chambers 404-a to 404-f can be automatically determined.
  • the rotation drive unit 106 determines a predetermined pulse value based on the origin.
  • the chip 102 is rotated, and the amount of light transmitted through each of the measurement chambers 404-a to 404-f is measured.
  • the sample analyzer 100 can smoothly measure the amount of transmitted light.
  • the mixed solution stored in the measurement chamber 404-a has an absorption band depending on nitrate nitrogen in the vicinity of the wavelength band of 410 nm to 420 nm. Therefore, the blue LED of the light source 201b of the light emitting unit 101 is caused to emit light, and the filter array 205 measures the amount of transmitted light using the interference filter 301 of 420 nm. At that time, similarly, the blue LED of the light source 201b is caused to emit light with respect to the soil extract stored in the reference chamber 414, and the amount of light transmitted through the interference filter 301 is measured.
  • the other measurement chambers 404-b to 404-f are used to measure the amount of transmitted light using the interference filters 301 to 306 and the light sources 201a to 201c corresponding to the mixed liquids stored therein, respectively. The same measurement is performed on the soil extract stored in the chamber 414.
  • the measurement unit 109 compares the amount of light transmitted through the measurement chambers 404-a to 404-f with the amount of light transmitted through the reference chamber 414 via the corresponding interference filter, obtains a difference, and determines each measurement chamber 404-a. Calculate the absorbance of ⁇ 404-f.
  • the sample analyzer 100 transmits the transmitted light amount (reference transmitted light amount) transmitted through the reference chamber 414 and received by the light receiving unit 103 and the measurement chambers 404-a to 404-f, Since the measurement is performed based on the comparison with the transmitted light amount (measured transmitted light amount) received by the light receiving unit 103, the soil component concentration and the like can be measured with high accuracy.
  • the stepping motor capable of positioning by pulse control is used as the rotation driving unit 106, but the present invention is not limited to this.
  • the rotation time may be measured together with the amount of transmitted light when the chip 102 is rotated once at a constant speed.
  • the position of the reference chamber 414 is specified, and the time required for moving from the reference chamber 414 to each of the measurement chambers 404-a to 404-f based on the relationship between the amount of transmitted light and the required rotation time. Can be requested. Therefore, by controlling the time during which the chip 102 is rotated, it is possible to measure soil components at the positions of the respective measurement chambers 404-a to 404-f.
  • a brushless motor or the like can be used as the rotation drive unit 106, and the sample analyzer 100 can be configured at a lower cost.
  • FIG. 5B in the present embodiment, an example in which the measurement chamber 404 and the flow path 405 are sealed is shown, but the present invention is not limited to this, and as necessary.
  • an air hole may be formed in the measurement chamber 404, the flow path 405, or the like.
  • the chip 102 in which one reference chamber 414 and six measurement chambers 404-a to 404-f are formed is used as the chip 102.
  • the reference chamber 414 is included in the chip 102. A plurality of may be formed.
  • a reference measurement chamber containing a soil extract ⁇ obtained by extracting a soil component with a neutral solution and a reference measurement chamber containing a soil extract ⁇ obtained by extracting a soil component with an acidic solution are formed.
  • the reagent according to the soil component of a measuring object is mixed with said 2 types of soil extract, and it measures.
  • the reference transmitted light amount is measured for each of the different extracts by using a chip in which a plurality of reference chambers are formed. be able to. Therefore, the soil component can be measured with higher accuracy.
  • the present invention is not limited to this.
  • the present invention is also applied to a configuration in which a reference chamber and a measurement chamber are formed in a container other than a chip as long as it has a function of storing a soil extract (sample solution) and a mixed solution.
  • a configuration is shown in which the concentration of a component is measured by absorbance using a reagent showing a color reaction, but the present invention is not limited to this.
  • a configuration in which a fluorescent reagent is used as a reagent and the amount of components is measured by measuring the emission intensity with a fluorescence detector may be used.
  • a measuring object is not restricted to this.
  • a part of a crop body such as fruits and vegetables is extracted, water is added, an extract is prepared, shaken and filtered, and used as a sample.
  • the sample analyzer 100 can also be used as a water quality measuring device that measures a plurality of components at once.
  • the sample analyzer when the sample analyzer automatically performs measurement, as a method of automatically recognizing the positional relationship of the cells, the sample analyzer is equipped with a detection unit such as a marker and the sample analyzer detects it.
  • a detection unit such as a marker
  • the sample analyzer is required to be inexpensive.
  • the method (1) or (2) described above is employed, the problem that the sample analyzer becomes expensive, and restrictions on the work of mounting the analysis device on the analyzer increase, thereby increasing the work load. There is a problem of doing so.
  • the reference chamber 414 is provided in the chip 102, the chip 102 is scanned with the light 300, and the measurement unit 109 specifies the amount of light transmitted through the reference chamber 414.
  • the relative positions of the reference chamber 414 and the measurement chamber 404 on the chip 102 are specified.
  • a detection unit such as a marker is provided on the chip 102
  • a detection mechanism is provided on the sample analyzer 100, or a direction in which the chip 102 is attached to the sample analyzer 100 is determined in advance. It is no longer necessary to recognize the position of the measurement chamber 404 with a pulse value of an encoder or the like provided in the rotation drive unit 106, the sample analyzer 100 can be configured at a low cost, and measurement can be performed easily. it can.
  • the sample analyzer 100 includes a light emitting unit 101 'different from the sample analyzer according to the first embodiment.
  • FIG. 8 is a schematic configuration diagram of the light emitting unit 101 ′ according to the present embodiment.
  • FIG. 9 is a schematic view showing a filter array 215 provided in the light emitting unit 101 ′
  • FIG. 9A is a front view of the filter array 215 viewed from above
  • FIG. 9B is a filter array. It is the enlarged view which looked at the reference
  • the light emitting unit 101 ′ has the same configuration as the light emitting unit 101 provided in the sample analyzer 100 according to the first embodiment, except that the light emitting unit 101 ′ includes a filter array 215 instead of the filter array 205.
  • the filter array 215 includes six interference filters (measurement chamber filter, transmission region, and other transmission region) 311 at equal intervals on the same circumference around the rotation axis 310. 316 and a reference chamber filter 317 are provided.
  • Interference filters 311 to 316 and reference chamber filter 317 correspond to measurement chambers 404-a to 404-f and reference chamber 414 formed in chip 102, respectively. Therefore, the filter array 215 causes the light 300 to pass through the respective interference filters 311 to 316 and the reference chamber filter 317 when the measurement chambers 404-a to 404-f and the reference chamber 414 are scanned by the light 300. The measurement chambers 404-a to 404-f and the reference chamber 414 are controlled to pass through.
  • the interference filter 311 is in the measurement chamber 404-a
  • the interference filter 312 is in the measurement chamber 404-b
  • the interference filter 313 is in the measurement chamber 404-c
  • the interference filter 314 is in the measurement chamber 404-d.
  • the filter 315 corresponds to the measurement chamber 404-e
  • the interference filter 316 corresponds to the measurement chamber 404-f
  • the reference chamber filter 317 corresponds to the reference chamber 414.
  • an interference filter having a central wavelength band of 420 nm, an interference filter 312, an interference filter having a central wavelength band of 610 nm, and an interference filter 313 having a central wavelength band of 720 nm are used.
  • an interference filter having a central wavelength band of 570 nm was used, and as the interference filter 316, an interference filter having a central wavelength band of 520 nm was used.
  • the reference chamber filter 317 includes five interference filters (reference chamber transmission region, other reference chamber transmission region) 317a to 317e, and the five interference filters 317a to 317e are provided. It arrange
  • the interference filter 317a is the interference filter 311 and the interference filter 314, the interference filter 317b is the interference filter 312, the interference filter 317c is the interference filter 313, and the interference filter 317d is the interference filter 315.
  • the interference filter 317e is an interference filter having the same center wavelength band as that of the interference filter 316.
  • a mixed solution is first prepared and stirred in the same procedure as in the first embodiment, and then mixed. Transfer of liquid and soil extract is performed. And the position of the reference
  • the amount of transmitted light (reference transmitted light amount) transmitted through the reference chamber 414 via each of the five types of interference filters 317a to 317e included in the reference chamber filter 317 during the scanning is characterized by performing measurements.
  • the light emitting unit 101 includes a white LED as the light source 201a, a blue LED as the light source 201b, and a red LED as the light source 201c, as in the first embodiment.
  • the controller 111 controls the light source 201a, the light source 201b, and the light source 201c to emit light sequentially when the light 300 is transmitted through the reference chamber 414.
  • the light emission switching period of the light source 201a, the light source 201b, and the light source 201c is determined from the rotation speed of the chip 102 by the rotation driving unit 106 and the widths of the five types of interference filters 317a to 317e included in the reference chamber filter 317.
  • the light source 201a, the light source 201b, and the light source 201c are all turned on when passing through the interference filters 317a to 317e.
  • the lighting cycle is such that the amount of light transmitted through the reference chamber 414 through each of the five types of interference filters 317a to 317e can be measured for all three light sources 201a to 201c. Is preferred.
  • the chip 102 is then rotated by a predetermined amount, and any one of the predetermined light sources 201a to 201c is used for each of the measurement chambers 404-a to 404-f.
  • the amount of transmitted light (measured transmitted light amount) is measured.
  • the measured amount of light transmitted through the measurement chambers 404-a to 404-f and the amount of light transmitted through the reference chamber 414 through the corresponding interference filter at the corresponding light source are compared, a difference is obtained, and each measurement is performed.
  • the absorbance of the chambers 404-a to 404-f is calculated.
  • the amount of transmitted light of the soil extract stored in the reference chamber 414 can be measured at a time for each wavelength, and the measurement can be performed very quickly. be able to. Moreover, it becomes possible to measure a soil component density
  • the sample analyzer 100 according to the third embodiment of the present invention differs from the sample analyzer according to the second embodiment described above in the operation of each unit during measurement.
  • the light amount transmitted through the reference chamber 414 through each of the five types of interference filters 317a to 317e of the reference chamber filter 317 is measured again.
  • the light source 201b and the light source 201c are specified.
  • the measurement is preferably performed while rotating the chip 102 at a rotation speed slower than the rotation speed of the constant speed rotation of the chip 102 performed when the position of the reference chamber 414 is specified.
  • the measurement may be performed continuously while rotating the chip 102 as described above, but once the rotation of the chip 102 is stopped at each of the five types of interference filters 317a to 317e of the reference chamber filter 317.
  • the measurement may be performed by sequentially turning on the light source 201a, the light source 201b, and the light source 201c.
  • the amount of transmitted light of the soil extract stored in the reference chamber 414 can be measured more accurately.
  • each of the stored amounts in the measurement chambers 404-a to 404-f can be measured. It becomes possible to further improve the measurement accuracy of the component concentration of the mixed liquid.
  • the sample analyzer 100 according to the present embodiment differs from the sample analyzer 100 according to the second embodiment described above in the operation of each unit during measurement.
  • the liquid mixture is re-stirred immediately before measuring the absorbance in the measurement chamber 404-e.
  • the absorbance turbidity
  • the absorbance returns to the value immediately after stirring.
  • FIG. 10 is a graph showing the relationship between the component concentration and the absorbance when the absorbance was measured in advance using a soil extract with a clear component concentration.
  • the plot indicated by the diamonds in FIG. This is data obtained by measuring the absorbance of the liquid without re-stirring, and the plot shown by a rectangle in FIG. 10 shows that the prepared liquid mixture is re-stirred before measurement and the absorbance is measured. It is the data performed.
  • the rotation drive unit 106 rotates the chip 102 one round at a constant speed, and scanning with the light 300 is performed. By doing so, the position of the reference chamber 414 is specified. Next, the amount of light transmitted through the reference chamber 414 is measured through each of the five types of interference filters provided in the reference chamber filter 317.
  • the absorbance is measured for each of the mixed solutions stored in the respective measurement chambers 404-a to 404-f by using predetermined light sources 201a to 201c.
  • the mixture is re-stirred before measuring the absorbance in the measurement chamber 404-e.
  • the re-stirring of the mixed liquid is performed by the rotary drive unit 106 reciprocating the tip 102 in the circumferential direction. As a result, the measurement accuracy of absorbance can be remarkably improved.
  • the sample analyzer 100 re-stirs the mixed solution immediately before measuring the mixed solution in which the color development reaction or dispersion state of the mixed solution becomes unstable with respect to the lapse of time after mixing. As a result, the measurement accuracy of the absorbance, that is, the component concentration can be improved.
  • the reference chamber 414 containing the sample and the measurement chambers 404, 404a to 404f containing the measurement liquid (mixed liquid) based on the sample are identical around the rotation axis 450.
  • the light-receiving unit 103 that receives the light 300, the rotation driving unit 106 that rotates at least one of the container (chip 102), the light-emitting unit 101, and the light-receiving unit 103 around the rotation axis 450, and the reference chamber 414 are transmitted. Based on the reference transmitted light amount of the light received by the light receiving unit 103 and the measured transmitted light amount of the light 300 transmitted through the measurement chambers 404 and 404a to 404f and received by the light receiving unit 103 And a measurement unit 109 for analyzing components contained.
  • the reference chamber 414 containing the sample and the measurement chambers 404, 404a to 404f containing the measurement liquid (mixed liquid) based on the sample are disposed on the same circumference around the rotation shaft 450. (Chip 102). Therefore, the measurement can be performed simply and efficiently by rotating the container (chip 102).
  • the reference chamber 414 contains only the sample liquid (soil extract) of the sample, and the measurement liquid (mixed liquid) is included in the sample. Is a mixed solution of a reagent and a sample corresponding to.
  • the sample analyzer 100 which concerns on aspect 2 of this invention compares the reference
  • the measurement unit 109 continuously measures the transmitted light amount of the light 300 received by the light receiving unit 103 along the same circumference, and the measured transmission Based on the amount of light, at least one position on the same circumference of the reference chamber 414 and the measurement chambers 404, 404a to 404f is specified.
  • the measuring unit 109 specifies at least one position on the same circumference of the reference chamber 414 and the measurement chambers 404, 404a to 404f based on the measured transmitted light amount. Thereby, it becomes possible to measure efficiently.
  • the measurement unit 109 has the same circle in the reference chamber 414 depending on the position on the same circumference where the transmitted light amount of the light 300 received by the light receiving unit 103 is the largest. Specify the position on the circumference.
  • the measurement unit 109 identifies the position on the same circumference of the reference chamber 414 based on the position on the same circumference where the amount of transmitted light is the largest, so that the sample analyzer 100 can store the container (chip 102). The position of the upper reference chamber 414 can be recognized. Thereby, the sample analyzer 100 can automatically perform the measurement.
  • the sample analyzer 100 corresponds to the part corresponding to the reference chamber 414 and the measurement chambers 404 and 404a to 404f among the parts of the container (chip 102) on the same circumference in the aspect 1 described above. It further includes a light shielding unit that shields light from the light emitting unit 101 that is incident on the part other than the part.
  • the light transmitted through the portion of the container (chip 102) excluding the portion corresponding to the reference chamber 414 and the portions corresponding to the measurement chambers 404, 404a to 404f can be blocked.
  • the measurement unit 109 can clearly specify the reference transmitted light amount and the measured transmitted light amount.
  • the other measurement chambers 404, 404a to 404f in which the other measurement liquid (mixed liquid) based on the sample is stored in the container (chip 102) are rotated.
  • the measurement unit 109 is formed on the same circumference around the shaft 450, and the measurement unit 109 measures the measurement chamber based on the specified position of the reference chamber 414 and the relative positional relationship of the measurement chambers 404 and 404a to 404f with respect to the reference chamber 414.
  • 404, 404a to 404f are located on the same circumference, and based on the position of the identified reference chamber 414 and the relative positional relationship of the other measurement chambers 404, 404a to 404f with respect to the reference chamber 414, The positions on the same circumference of the measurement chambers 404, 404a to 404f are specified.
  • the position of the reference chamber 414 is first specified, and the positions of the measurement chambers 404, 404a to 404f are specified based on the relative positions from the specified position of the reference chamber 414.
  • the respective measurement chambers 404, 404a to 404f Even if the measured transmitted light amount in 404f is a close value, the positions of the measurement chambers 404, 404a to 404f can be reliably specified.
  • the light emitting unit 101 has a wavelength corresponding to the measurement liquid (mixed liquid) in the measurement chambers 404 and 404a to 404f whose positions are specified by the measurement part 109.
  • the light sources 201a to 201c that emit the light 300 and the light 300 having other wavelengths corresponding to other measurement liquids (mixed liquids) of the other measurement chambers 404 and 404a to 404f whose positions are specified by the measurement unit 109 are emitted.
  • the light sources 201a to 201c emit the light 300 having the wavelength toward the measurement chambers 404 and 404a to 404f, and the other light sources 201a to 201c include the other measurement chambers 404 and 404a.
  • the light 300 having the other wavelength is emitted toward .about.404f.
  • the light emitting unit 101 ′ corresponds to one of the measurement chambers 404, 404a to 404f (of the interference filters 311 to 316). ), Another measurement chamber filter corresponding to the other one of the other measurement chambers 404, 404a to 404f (the other one of the interference filters 311 to 316), and a reference chamber 414 And a measurement chamber filter (one of the interference filters 311 to 316) emitted from one of the light sources 201a to 201c to emit light from the measurement chambers 404 and 404a to 404f.
  • It includes a transmission region that transmits light of a wavelength corresponding to one of the measurement liquids (mixed liquid), and other measurement chamber filters (out of the interference filters 311 to 316)
  • the other one emits light from the other one of the other light sources 201a to 201c and corresponds to another measurement liquid (mixed liquid) of the other one of the other measurement chambers 404 and 404a to 404f.
  • the reference chamber filter 317 emits light from one of the light sources 201a to 201c to measure one of the measurement chambers 404 and 404a to 404f.
  • the reference chamber transmission region (one of the interference filters 317a to 317e) that transmits light of the wavelength corresponding to the (mixed liquid) and the other one of the other light sources 201a to 201c are used to emit light.
  • Other reference chamber transmission regions (other interference filters 317a to 317e) that transmit light of other wavelengths corresponding to the other measurement liquid (mixed liquid) of the other one of the measurement chambers 404 and 404a to 404f.
  • the light emitting unit 101 ′ includes a measurement chamber filter (one of the interference filters 311 to 316), another measurement chamber filter (the other one of the interference filters 311 to 316),
  • the reference chamber filter 317 By having the reference chamber filter 317, the measured transmitted light quantity through the measurement chamber filter (one of the interference filters 311 to 316) and the corresponding reference chamber transmission region (interference filter) of the reference chamber filter 317 are obtained.
  • the components contained in the sample can be analyzed for each measurement chamber 404, 404a to 404f.
  • the reference chamber transmission region one of the interference filters 317a to 317e
  • the other reference chamber transmission region the other one of the interference filters 317a to 317e
  • the transmitted light amount of the light received by the light receiving unit 103 is continuously measured along the same circumference in the above-described aspect 8, and the same transmitted light amount is the same on the same circumference.
  • the measurement unit 109 specifies the position on the same circumference of the reference chamber 414 based on the position of the reference chamber 414
  • the rotation driving unit 106 rotates the container (chip 102) at the first rotation speed, and the light source 201a to 201c is rotated.
  • Light having a wavelength corresponding to one measurement liquid (mixed liquid) in one of the measurement chambers 404 and 404a to 404f is transmitted through the reference chamber transmission region (one of the interference filters 317a to 317e).
  • the rotation drive unit 106 rotates motion at a slower second rotational speed than the container (tip 102) first speed of rotation.
  • the reference transmitted light amount can be accurately measured. This makes it possible to analyze the components of the sample with higher accuracy.
  • the transmitted light amount of the light received by the light receiving unit 103 while the rotation driving unit 106 rotates the container (chip 102) at the first rotation speed in the eighth mode The measurement unit 109 continuously measures along the same circumference, the measurement unit 109 specifies the position on the same circumference of the reference chamber 414 based on the position on the same circumference where the transmitted light amount is the largest, and the light emitting unit 101 ′.
  • the rotation drive unit 106 rotates the container (chip 102) around a predetermined angle rotation axis 450 from a position where the light emitted by the light passes through the reference chamber 414, and one of the measurement chambers 404, 404a to 404f.
  • the container (chip 102) In order to stir two measurement liquids (mixed liquids), the container (chip 102) is swung around the rotation shaft 450, and then emitted from the light emitting unit 101 ′ to be emitted from the measurement chambers 404, 404a to 404f. Through the Chino one, the measurement amount of light transmitted through the light receiving unit 103 has received the measurement unit 109 measures.
  • the measurement liquid is obtained by peristating the container (chip 102) around the rotation axis 450 when performing measurement on one of the predetermined measurement chambers 404, 404a to 404f.
  • Re-stir (mixture) Therefore, even when measuring the measurement liquid (mixture) in which the color development reaction or dispersion state of the measurement liquid (mixture) becomes unstable over time after mixing, by re-stirring, The measurement accuracy of the component concentration can be improved.
  • the present invention can be used for a sample analyzer, particularly a sample analyzer suitable for analyzing soil components.

Abstract

A sample analysis device (100) is provided with a chip (102) in which a reference chamber (414) accommodating a sample and a measurement chamber (404) accommodating a measurement liquid are formed on the same circumference of an axis of rotation (450) and with a measurement unit (109) for analyzing a component included in the sample on the basis of the amount of transmitted reference light that has passed through the reference chamber (414) and the amount of transmitted measurement light that has passed through the measurement chamber (404).

Description

試料分析装置Sample analyzer
 本発明は試料分析装置に関し、土壌成分の分析に好適な試料分析装置に関する。 The present invention relates to a sample analyzer, and more particularly to a sample analyzer suitable for analyzing soil components.
 農業の分野において、農作物の育成状態の管理のため、農作物の生育環境における土壌成分の分析が広く行われている。 In the field of agriculture, analysis of soil components in the growing environment of crops is widely performed to manage the growing state of the crops.
 一般的に、土壌分析装置は、それぞれの土壌抽出液をその都度複数の試験管に目盛り付のスポイトで計量しながら注入し、その後、土壌成分毎に決められた試薬および希釈液を試験管に注入し発色させる。そして、比色表、比濁表、または、吸光光度法等を用いて数値換算することで測定が行われている。 Generally, a soil analyzer injects each soil extract into a plurality of test tubes while measuring with a graduated dropper, and then adds the reagent and diluent determined for each soil component to the test tubes. Inject and develop color. And it is measured by converting into a numerical value using a colorimetric table, a turbidimetric table, an absorptiometric method or the like.
 しかしながら、上述の測定方法は、それぞれの土壌抽出液に試薬を混合する必要があり、そのために繰り返し作業が多くなる。また、測定したい土壌成分に応じた試薬を準備する必要もあり、煩雑性が高い。 However, the measurement method described above needs to mix a reagent with each soil extract, which increases the number of repetitive operations. Moreover, it is necessary to prepare a reagent according to the soil component to be measured, and the complexity is high.
 土壌分析を頻繁に行うことにより、圃場ごとの細かい分析や、作付けごとの分析を行うことができる。そのため、前作の影響を考慮した施肥設計を行うことができ、また、成育期間の長い作物についてはより短いスパンで定期的に分析を行うことで、追肥のタイミングや量を最適化することができ、結果として収穫量の増加や品質の安定化が望める。 By performing soil analysis frequently, it is possible to perform detailed analysis for each field and analysis for each planting. Therefore, it is possible to design a fertilizer application that takes into account the effects of the previous crop, and it is possible to optimize the timing and amount of additional fertilization by periodically analyzing the crops with a long growth period in a shorter span. As a result, an increase in yield and stabilization of quality can be expected.
 しかしながら、上述した煩雑性の高さから分析の頻度を高めることは困難である。 However, it is difficult to increase the frequency of analysis due to the high complexity described above.
 近年では、このような問題点に鑑みて、簡易な方法で土壌抽出液と試薬等とを混合し、土壌成分を分析する手法が提案されている。 In recent years, in view of such problems, a method for analyzing soil components by mixing a soil extract and a reagent by a simple method has been proposed.
 図11は、特許文献1に開示されている試薬混合および土壌分析装置を示したものであり、図11の(a)は、従来の土壌分析装置の模式図であり、図11の(b)および(c)は、従来の土壌分析装置に備えられる収納カートリッジと、抽出液カートリッジとの嵌合を示す模式図である。 FIG. 11 shows a reagent mixing and soil analysis apparatus disclosed in Patent Document 1. FIG. 11 (a) is a schematic diagram of a conventional soil analysis apparatus, and FIG. 11 (b). And (c) is a schematic diagram showing the fitting between the storage cartridge provided in the conventional soil analyzer and the extract cartridge.
 特許文献1に記載の土壌分析装置は、図11の(a)に示すように、発光部7、受光部8および収納カートリッジ9を備えている。収納カートリッジ9は、透明材からなり、土壌から抽出した土壌抽出液と試薬との混合液を収納するセル11が複数設けられている。特許文献1に記載の土壌分析装置は、発光部7から出射された光が収納カートリッジ9内の混合液を透過し、受光部8により検出されることにより混合液の吸光度を測定し、吸光光度法により土壌成分の濃度を測定している。 The soil analysis apparatus described in Patent Document 1 includes a light emitting unit 7, a light receiving unit 8, and a storage cartridge 9, as shown in FIG. The storage cartridge 9 is made of a transparent material, and is provided with a plurality of cells 11 for storing a mixture of a soil extract and a reagent extracted from soil. In the soil analyzer described in Patent Document 1, light emitted from the light emitting unit 7 passes through the mixed solution in the storage cartridge 9 and is detected by the light receiving unit 8 to measure the absorbance of the mixed solution. The concentration of soil components is measured by the method.
 図11の(b)に示すように、収納カートリッジ9のセル11には、所定量の試薬が予め収納されており、シール紙15により密閉されている。抽出液カートリッジ14の各セル16は、計量としての枡機能を有しており、土壌成分液が収納されている。測定前に図11の(b)および(c)に矢印で示す方向に抽出液カートリッジ14を収納カートリッジ9に押し込むことで、収納カートリッジ9と抽出液カートリッジ14とを嵌合する。その後、抽出液カートリッジ14の底面を貫通させ、抽出液を収納カートリッジ9のセル11に注入し、混合液を作成する。 As shown in FIG. 11B, a predetermined amount of reagent is previously stored in the cell 11 of the storage cartridge 9 and is sealed with a seal paper 15. Each cell 16 of the extraction liquid cartridge 14 has a dredging function as measurement, and contains a soil component liquid. Before the measurement, the extract cartridge 14 is pushed into the storage cartridge 9 in the direction indicated by the arrows in FIGS. 11B and 11C, so that the storage cartridge 9 and the extract cartridge 14 are fitted. Thereafter, the bottom surface of the extraction liquid cartridge 14 is penetrated, and the extraction liquid is injected into the cell 11 of the storage cartridge 9 to prepare a mixed liquid.
 このように、特許文献1に記載の土壌分析装置においては、混合液の作成が容易であり、また、吸光光度法によって土壌成分の濃度の測定を行うため、精度のよい測定を行うことができる。 Thus, in the soil analyzer described in Patent Document 1, it is easy to create a mixed solution, and the concentration of soil components is measured by the absorptiometric method, so that accurate measurement can be performed. .
 また、特許文献2には、マイクロ流路が形成された分析用デバイスおよび分析装置が開示されている。特許文献2に記載の分析装置は、マイクロ流路が形成された分析用デバイスを回転駆動させることで、分析用デバイスに遠心力が作用する。これにより、分析用デバイス内に保持された試料および試薬を反応槽まで移動させ、簡易な方法で試料と試薬との混合液を作成している。 Further, Patent Document 2 discloses an analysis device and an analysis apparatus in which a microchannel is formed. In the analysis apparatus described in Patent Document 2, centrifugal force acts on the analysis device by rotationally driving the analysis device in which the microchannel is formed. Thereby, the sample and the reagent held in the analytical device are moved to the reaction tank, and a mixed solution of the sample and the reagent is created by a simple method.
日本国公開特許公報「特開2007-46922号公報(2007年2月22日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2007-46922 (published on February 22, 2007)” 日本国公開特許公報「特開2009-210564号公報(2009年9月17日公開)」Japanese Patent Publication “JP 2009-210564 A (published on September 17, 2009)”
 ここで、試料に含まれる成分の分析を行う際に、土壌の状態によっては、土壌抽出液自体が着色している場合がある。このような土壌抽出液に対して、引用文献1および2に記載されている分析装置を用いて吸光光度法による土壌成分の濃度の測定を行うと、測定精度が低下してしまうという問題がある。 Here, when analyzing components contained in the sample, the soil extract itself may be colored depending on the state of the soil. When measuring the concentration of the soil component by the absorptiometry using the analyzers described in the cited references 1 and 2 for such a soil extract, there is a problem that the measurement accuracy decreases. .
 また、生産者自らが土壌成分を測定するためには、測定作業が簡便で効率的であることが求められる。 Also, in order for producers to measure soil components themselves, the measurement work is required to be simple and efficient.
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、測定作業が簡便で効率的であり、さらに、精度の良い測定を行うことができる試料分析装置を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a sample analyzer that is simple and efficient in measurement work and can perform accurate measurement. .
 上記の課題を解決するために、本発明の一態様に係る試料分析装置は、試料を収容した基準室と、前記試料に基づく測定液を収容した測定室とを回転軸の周りの同一円周上に形成した容器と、前記同一円周上に対応する位置に配置されて前記容器に向かって光を発光する発光部と、前記容器を透過した光を受光する受光部と、前記容器と前記発光部および前記受光部との少なくとも一方を前記回転軸の周りに回転運動させる回転駆動部と、前記基準室を透過して受光部が受光した光の基準透過光量と、前記測定室を透過して受光部が受光した光の測定透過光量とに基づいて、前記試料に含まれる成分を分析する計測部とを備える。 In order to solve the above-described problem, a sample analyzer according to one aspect of the present invention includes a reference chamber that stores a sample and a measurement chamber that stores a measurement liquid based on the sample. A container formed above, a light emitting part that is arranged at a position corresponding to the same circumference and emits light toward the container, a light receiving part that receives light transmitted through the container, the container and the container A rotation driving unit that rotates at least one of the light emitting unit and the light receiving unit around the rotation axis, a reference transmitted light amount of light transmitted through the reference chamber and received by the light receiving unit, and transmitted through the measurement chamber. And a measuring unit for analyzing the components contained in the sample based on the measured transmitted light amount of the light received by the light receiving unit.
 本発明の一態様によれば、回転軸の周りの同一円周上に、試料を収容した基準室と、前記試料に基づく測定液を収容した測定室とが容器に形成されている。そのため、容器を回転させて測定を行うことで、測定を簡便で効率的に行うことができる。 According to one aspect of the present invention, the reference chamber containing the sample and the measurement chamber containing the measurement liquid based on the sample are formed in the container on the same circumference around the rotation axis. Therefore, the measurement can be performed simply and efficiently by rotating the container and performing the measurement.
 さらに、基準室を透過して受光部が受光した光の基準透過光量と、測定室を透過して受光部が受光した光の測定透過光量とに基づいて、試料に含まれる成分を分析する。そのため、精度のよい測定を行うことができる。 Further, the component contained in the sample is analyzed based on the reference transmitted light amount of the light transmitted through the reference chamber and received by the light receiving unit and the measured transmitted light amount of the light transmitted through the measurement chamber and received by the light receiving unit. Therefore, accurate measurement can be performed.
本発明の実施形態1に係る試料分析装置の構成概略図である。1 is a schematic configuration diagram of a sample analyzer according to Embodiment 1 of the present invention. 図1に示す試料分析装置に備えられる発光部の構成概略図である。It is the structure schematic of the light emission part with which the sample analyzer shown in FIG. 1 is equipped. 図2に示す発光部に備えられるフィルターアレイの構成概略図である。FIG. 3 is a schematic configuration diagram of a filter array provided in the light emitting unit shown in FIG. 2. 図1に示す試料分析装置に備えられるチップの構成概略図であり、(a)は、チップを上方からみた正面図であり、(b)および(c)は、チップに備えられるセルの形状を示す概略図である。FIG. 2 is a schematic configuration diagram of a chip provided in the sample analyzer shown in FIG. 1, (a) is a front view of the chip as viewed from above, and (b) and (c) are the shapes of cells provided in the chip. FIG. (a)は、測定時におけるチップの上面図を示したものであり、(b)は、(a)におけるチップのB-B線矢視断面図、並びに、図1に示す試料分析装置に備えられるフィルターアレイおよび受光部を模式的に示したものである。(A) is a top view of the chip at the time of measurement, and (b) is a cross-sectional view of the chip taken along line BB in (a), and the sample analyzer shown in FIG. 1 schematically shows a filter array and a light receiving section. 図4の(a)に示すチップを1周等速回転させ、発光部から射出された光により走査することで測定を行った場合における、チップの周方向位置と、受光部が受光した透過光量との関係を示すグラフである。When the measurement is performed by rotating the chip shown in FIG. 4A at a constant speed and scanning it with the light emitted from the light emitting unit, the circumferential position of the chip and the amount of transmitted light received by the light receiving unit It is a graph which shows the relationship. 図4の(a)に示すチップにおいて、遮光部が備えられる部位を示す図である。FIG. 5 is a view showing a portion where a light shielding portion is provided in the chip shown in FIG. 本発明の実施形態2に係る、試料分析装置が備える発光部の構成概略図である。It is the structure schematic of the light emission part with which the sample analyzer based on Embodiment 2 of this invention is provided. 図8に示す発光部が備えるフィルターアレイを示した概略図であり、(a)は上方からみた正面図であり、(b)は、フィルターアレイに備えられる基準フィルターの拡大図である。It is the schematic which showed the filter array with which the light emission part shown in FIG. 8 is provided, (a) is the front view seen from upper direction, (b) is an enlarged view of the reference | standard filter with which a filter array is equipped. 予め成分濃度の明らかな土壌抽出液を用いて吸光度の測定を行った場合における、成分濃度と吸光度との関係を示すグラフである。It is a graph which shows the relationship between a component density | concentration and a light absorbency in the case of measuring an absorbance previously using the soil extract whose component density | concentration is clear. (a)は従来用いられている土壌分析装置の模式図であり、(b)および(c)は、(a)に示す土壌分析装置に備えられる収納カートリッジと、抽出液カートリッジとの嵌合を示す模式図である。(A) is a schematic diagram of a conventionally used soil analyzer, and (b) and (c) show the fitting between the storage cartridge provided in the soil analyzer shown in (a) and the extract cartridge. It is a schematic diagram shown.
 〔実施形態1〕
 以下、図面を参照しながら、本発明に係る試料分析装置の実施の形態について説明する。また、図面におけるそれぞれの構成部材の厚みや長さ等は、本発明の理解を助けるために示したものであり、本発明は、図示される構成に限定されるものではない。
[Embodiment 1]
Hereinafter, an embodiment of a sample analyzer according to the present invention will be described with reference to the drawings. In addition, the thickness, length, and the like of each constituent member in the drawings are shown to assist the understanding of the present invention, and the present invention is not limited to the illustrated configuration.
 図1に、本発明の実施形態1に係る試料分析装置100の構成概略図を示す。本発明の実施形態1に係る試料分析装置100は、吸光光度法により測定を行う試料分析装置であり、図1に示すように、発光部101と、チップ(容器)102と、受光部103と、参照用受光部104と、ハーフミラー108と、回転駆動部106と、計測部109と、制御部111とを備える。 FIG. 1 shows a schematic configuration diagram of a sample analyzer 100 according to Embodiment 1 of the present invention. A sample analyzer 100 according to Embodiment 1 of the present invention is a sample analyzer that performs measurement by an absorptiometry. As shown in FIG. 1, a light emitting unit 101, a chip (container) 102, a light receiving unit 103, and the like. , A reference light receiving unit 104, a half mirror 108, a rotation driving unit 106, a measuring unit 109, and a control unit 111.
 以下に各部の構成について詳細に説明する。 The configuration of each part will be described in detail below.
 図2は、発光部101の構成概略図である。図2に示すように、発光部101は、発光波長がそれぞれ異なる複数の光源201a、201b、201cと、複数の光源201a、201b、201cのそれぞれに対応するコリメートレンズ202a、202b、202cと、ダイクロイックミラー203a、203bと、アパーチャー204と、フィルターアレイ205とを備える。 FIG. 2 is a schematic configuration diagram of the light emitting unit 101. As shown in FIG. 2, the light emitting unit 101 includes a plurality of light sources 201a, 201b, and 201c having different emission wavelengths, collimating lenses 202a, 202b, and 202c corresponding to the plurality of light sources 201a, 201b, and 201c, and a dichroic. Mirrors 203a and 203b, an aperture 204, and a filter array 205 are provided.
 発光部101は、制御部111と接続しており、複数の光源201a~201cのそれぞれは、制御部111からの信号により発光、消灯および発光強度が制御されている。本実施形態においては、光源201aとして白色LED(Light Emitting Diode)を、光源201bとして青色LEDを、光源201cとして赤色LEDを用いた。 The light emitting unit 101 is connected to the control unit 111, and each of the light sources 201a to 201c is controlled in light emission, extinction, and light emission intensity by a signal from the control unit 111. In the present embodiment, a white LED (Light Emitting Diode) is used as the light source 201a, a blue LED is used as the light source 201b, and a red LED is used as the light source 201c.
 ダイクロイックミラー203a、203bは、特定の波長帯の光を透過させ、別の特定の波長帯の光を反射する鏡である。本実施形態においては、ダイクロイックミラー203aは、470nm~1600nmの波長帯の光を透過させ、350nm~430nmの波長帯の光を反射させるものを用いた。また、ダイクロイックミラー203bは400nm~630nmの波長帯の光を透過させ、675nm~850nmの波長帯の光を反射させるものを用いた。 The dichroic mirrors 203a and 203b are mirrors that transmit light in a specific wavelength band and reflect light in another specific wavelength band. In the present embodiment, a dichroic mirror 203a that transmits light in the wavelength band of 470 nm to 1600 nm and reflects light in the wavelength band of 350 nm to 430 nm is used. The dichroic mirror 203b is a mirror that transmits light having a wavelength band of 400 nm to 630 nm and reflects light having a wavelength band of 675 nm to 850 nm.
 図3は、図2に示すフィルターアレイ205を上方から見た正面図である。図3に示すようにフィルターアレイ205は、回転軸210を中心として、同一円周上に配置された、透過波長帯域の異なる複数の干渉フィルター301~306を備えている。本実施形態においては、干渉フィルター301~306としてそれぞれ透過波長帯域が420nm、520nm、570nm、610nm、710nm、720nmの干渉フィルターを用いた。 FIG. 3 is a front view of the filter array 205 shown in FIG. 2 as viewed from above. As shown in FIG. 3, the filter array 205 includes a plurality of interference filters 301 to 306 having different transmission wavelength bands, arranged on the same circumference around the rotation axis 210. In this embodiment, interference filters having transmission wavelength bands of 420 nm, 520 nm, 570 nm, 610 nm, 710 nm, and 720 nm are used as the interference filters 301 to 306, respectively.
 発光部101は、制御部111からの信号に応じて、複数の光源201a~201cが発光する。光源201a~201cから射出された光は、各光源201a~201cに対応するコリメートレンズ202a~202cにより指向され、ダイクロイックミラー203a、203bにより光路が合される。そして、アパーチャー204によりビーム径が調整され、フィルターアレイ205へと導かれる。フィルターアレイ205は、複数の光源201a~201cの制御と同期して、光の進行方向に平行な回転軸210を中心として回転するように制御されており、アパーチャー204を通過した光から特定の波長のみを選択して透過させる。フィルターアレイ205を透過した光は、光300として発光部101から射出される。 In the light emitting unit 101, a plurality of light sources 201a to 201c emit light in response to a signal from the control unit 111. Light emitted from the light sources 201a to 201c is directed by collimating lenses 202a to 202c corresponding to the light sources 201a to 201c, and their optical paths are combined by dichroic mirrors 203a and 203b. Then, the beam diameter is adjusted by the aperture 204 and guided to the filter array 205. The filter array 205 is controlled to rotate around a rotation axis 210 parallel to the traveling direction of light in synchronization with the control of the plurality of light sources 201a to 201c, and has a specific wavelength from the light that has passed through the aperture 204 Select only transparent. The light transmitted through the filter array 205 is emitted from the light emitting unit 101 as light 300.
 ハーフミラー108は、発光部101から射出された光300をチップ102側と参照用受光部104側とに分岐させる。 The half mirror 108 branches the light 300 emitted from the light emitting unit 101 into the chip 102 side and the reference light receiving unit 104 side.
 参照用受光部104は、ハーフミラー108により分岐された光を受光すると共に、受光した光に基づく信号を計測部109に供給する。 The reference light receiving unit 104 receives the light branched by the half mirror 108 and supplies a signal based on the received light to the measuring unit 109.
 図4はチップ102を示す概略図であり、図4の(a)は、チップ102を上方からみた正面図であり、図4の(b)は、チップ102に備えられるセル400の形状の一例を示す概略図であり、図4の(c)は、チップ102に備えられるセル410の形状を示す概略図である。 FIG. 4 is a schematic view showing the chip 102, FIG. 4A is a front view of the chip 102 as viewed from above, and FIG. 4B is an example of the shape of the cell 400 provided in the chip 102. FIG. 4C is a schematic diagram showing the shape of the cell 410 provided in the chip 102.
 図4の(a)に示すように、チップ102は円盤状であり、回転軸450を中心に、放射状に複数のセル400およびセル410が形成されている。なお、本実施形態においては、チップ102には、セル400が6つ、および、セル410が1つ形成されている。セル400およびセル410は、チップ102の円周方向に対して等間隔で形成されている。 As shown in FIG. 4A, the chip 102 has a disk shape, and a plurality of cells 400 and cells 410 are formed radially around the rotation shaft 450. In the present embodiment, six cells 400 and one cell 410 are formed on the chip 102. The cells 400 and 410 are formed at equal intervals with respect to the circumferential direction of the chip 102.
 チップ102は、発光部101から射出されてハーフミラー108を通過した光300を透過するように、例えば、シリコーン、ガラス、プラスチック等の透明材で作製されていることが好ましい。チップ102は、チップ102を安価な構成とするために、透明性の高い合成樹脂で作製されていることがより好ましく、本実施形態においては、チップ102は、耐薬品性も兼ね備えた低密度ポリプロピレンで作製されている。 The chip 102 is preferably made of, for example, a transparent material such as silicone, glass, or plastic so as to transmit the light 300 emitted from the light emitting unit 101 and passed through the half mirror 108. The chip 102 is more preferably made of a highly transparent synthetic resin in order to make the chip 102 inexpensive, and in this embodiment, the chip 102 is a low-density polypropylene that also has chemical resistance. It is made with.
 また、セル400およびセル410は、チップ102の表面に露出して形成されるものではないが、内部構造を理解しやすいように実線で示している。 The cell 400 and the cell 410 are not formed exposed on the surface of the chip 102, but are shown by solid lines so that the internal structure can be easily understood.
 図4の(b)に示すように、セル400のそれぞれには、土壌から抽出した土壌抽出液(試料)を注入する試料室401と、試薬を格納する試薬室402、403と、測定室404とが形成されている。試薬室403と、試料室401、試薬室402および測定室404との間には流路405が形成されており、試薬室403と、試料室401、試薬室402および測定室404とは連通している。 As shown in FIG. 4B, in each cell 400, a sample chamber 401 into which a soil extract (sample) extracted from soil is injected, reagent chambers 402 and 403 for storing reagents, and a measurement chamber 404 are stored. And are formed. A flow path 405 is formed between the reagent chamber 403, the sample chamber 401, the reagent chamber 402, and the measurement chamber 404. The reagent chamber 403, the sample chamber 401, the reagent chamber 402, and the measurement chamber 404 communicate with each other. ing.
 図4の(c)に示すように、セル410は、試薬室を備えておらず、試料室411および基準室414が形成されている。また、試料室411と基準室414との間は流路415が形成されており、試料室411と基準室414とは連通している。 As shown in FIG. 4C, the cell 410 does not include a reagent chamber, and a sample chamber 411 and a reference chamber 414 are formed. Further, a flow path 415 is formed between the sample chamber 411 and the reference chamber 414, and the sample chamber 411 and the reference chamber 414 communicate with each other.
 また、セル400の測定室404、および、セル410の基準室414は、図4の(a)に一点鎖線Aで示すように、同一円周上に形成されている。 Further, the measurement chamber 404 of the cell 400 and the reference chamber 414 of the cell 410 are formed on the same circumference as indicated by a one-dot chain line A in FIG.
 チップ102の大きさは、例えば直径が20cm程度であり、セル400およびセル410のそれぞれの大きさは、図4の(b)および(c)の長手方向が4~5cm、短手方向が2~3cm程度の大きさである。 The size of the chip 102 is, for example, about 20 cm in diameter, and the size of each of the cell 400 and the cell 410 is 4 to 5 cm in the longitudinal direction in FIGS. 4B and 4C and 2 in the short direction. The size is about 3 cm.
 受光部103は、発光部101から射出され、チップ102の、図4の(a)において一点鎖線Aで示す同一円周上の領域を透過した光300を受光する。 The light receiving unit 103 receives the light 300 emitted from the light emitting unit 101 and transmitted through the region on the same circumference indicated by the alternate long and short dash line A in FIG.
 計測部109は、参照用受光部104および受光部103と接続している。計測部109は、参照用受光部104および受光部103のそれぞれが受光した光の強度を測定するとともに、測定結果に基づいて各種データ(土壌成分濃度、pH等)を算出する。 The measuring unit 109 is connected to the reference light receiving unit 104 and the light receiving unit 103. The measuring unit 109 measures the intensity of the light received by each of the reference light receiving unit 104 and the light receiving unit 103 and calculates various data (soil component concentration, pH, etc.) based on the measurement result.
 回転駆動部106は、チップ102の下方に備えられ、チップ102を回転駆動する。本実施形態においては、回転駆動部106としてパルス制御可能なステッピングモーターを用いた。なお、本実施形態においては、回転駆動部106がチップ102を回転駆動する構成を示したが、これに限られるものではなく、チップ102と、発光部101および受光部103とが相対的に移動すればよい。例えば、回転駆動部106が、発光部101および受光部103を回転軸450の周りで回転駆動する構成であってもよいし、チップ102と、発光部101および受光部103との双方を回転駆動する構成であってもよい。 The rotation driving unit 106 is provided below the chip 102 and drives the chip 102 to rotate. In this embodiment, a stepping motor capable of pulse control is used as the rotation drive unit 106. In the present embodiment, the configuration in which the rotation drive unit 106 drives the chip 102 to rotate is shown, but the present invention is not limited to this, and the chip 102, the light emitting unit 101, and the light receiving unit 103 move relatively. do it. For example, the rotation driving unit 106 may be configured to rotationally drive the light emitting unit 101 and the light receiving unit 103 around the rotation axis 450, or to rotationally drive both the chip 102 and the light emitting unit 101 and the light receiving unit 103. It may be configured to.
 制御部111は、発光部101、計測部109および回転駆動部106と接続しており、各部の動作を制御する。 The control unit 111 is connected to the light emitting unit 101, the measuring unit 109, and the rotation driving unit 106, and controls the operation of each unit.
 次に、測定時の各部の動作について説明する。 Next, the operation of each part during measurement will be described.
 図5の(a)は、測定時におけるチップ102の上面図を示したものである。図5の(b)は、図5の(a)におけるチップ102のB-B線矢視断面図、並びに、フィルターアレイ205および受光部103を模式的に示したものである。 5A shows a top view of the chip 102 at the time of measurement. FIG. 5B schematically shows a cross-sectional view taken along the line BB of the chip 102 in FIG. 5A, and the filter array 205 and the light receiving unit 103.
 以下では説明の便宜上6つのセル400のそれぞれを区別するときは、400-a~400-fの参照符号を付し、区別しない場合には400の参照符号を付す。また同様に、セル400に形成された試料室401、試薬室402、試薬室403、測定室404および流路405についても、それぞれを区別するときには、それぞれ401-a~401-f、402-a~402-f、403-a~403-f、404-a~404-f、405-a~405-fの参照符号を付す。 Hereinafter, when distinguishing each of the six cells 400 for convenience of explanation, reference numerals 400-a to 400-f are given, and when not distinguished, 400 reference signs are given. Similarly, when the sample chamber 401, the reagent chamber 402, the reagent chamber 403, the measurement chamber 404, and the flow path 405 formed in the cell 400 are distinguished from each other, 401-a to 401-f, 402-a, respectively. Reference numerals of .about.402-f, 403-a to 403-f, 404-a to 404-f, and 405-a to 405-f are attached.
 セル400-aの試薬室402-aには、5wt%サリチル酸-硫酸水溶液が0.4ml、試薬室403-aには、2mol/lの水酸化ナトリウム(NaOH)水溶液が10ml予め注入されている。また同様に、試薬室402-b~402-f、試薬室403-b~403-fにも試薬が予め注入されている。試薬室402-a~402-f、試薬室403-a~403-fのそれぞれに予め注入されている試薬の種類および量を表1に示す。表1において「-」で示されている欄は、試薬が何も注入されていないことを示す。 0.4 ml of 5 wt% salicylic acid-sulfuric acid aqueous solution is injected into the reagent chamber 402-a of the cell 400-a, and 10 ml of 2 mol / l sodium hydroxide (NaOH) aqueous solution is injected into the reagent chamber 403-a in advance. . Similarly, the reagent is previously injected into the reagent chambers 402-b to 402-f and the reagent chambers 403-b to 403-f. Table 1 shows the types and amounts of the reagents previously injected into each of the reagent chambers 402-a to 402-f and the reagent chambers 403-a to 403-f. The column indicated by “−” in Table 1 indicates that no reagent has been injected.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、セル400の試薬室402および試薬室403には、それぞれ異なる試薬が注入されている。これは、測定したい土壌成分に応じた試料が注入されているからであり、セル400-aでは硝酸態窒素(NO-N)を、セル400-bではアンモニア態窒素(NH-N)を、セル400-cでは可吸態リン酸(P)を、セル400-dでは交換性カリウム(KO)を、セル400-eでは交換性カルシウム(CaO)を、セル400-fでは交換性マグネシウム(MgO)を測定対象の土壌成分としている。 As shown in Table 1, different reagents are injected into the reagent chamber 402 and the reagent chamber 403 of the cell 400, respectively. This is because the sample according to the soil component to be measured is injected, nitrate nitrogen (NO 3 -N) is used in the cell 400-a, and ammonia nitrogen (NH 4 -N) is used in the cell 400-b. In the cell 400-c, absorbable phosphoric acid (P 2 O 5 ), in the cell 400-d exchangeable potassium (K 2 O), in the cell 400-e exchangeable calcium (CaO), In -f, exchangeable magnesium (MgO) is used as the soil component to be measured.
 土壌抽出液としては、土壌0.4gに水100mlを加え、振とうした後、ろ過し、ろ液を試料室401および試料室411へ注入した。また、試薬室403と測定室404との間の流路405には、開閉式の弁が設けられており、弁は閉じられた状態となっている。 As a soil extract, 100 ml of water was added to 0.4 g of soil, shaken, filtered, and the filtrate was poured into the sample chamber 401 and the sample chamber 411. In addition, an open / close valve is provided in the flow path 405 between the reagent chamber 403 and the measurement chamber 404, and the valve is in a closed state.
 土壌抽出液を試料室401および試料室411に注入後、測定が開始すると、まず回転駆動部106が回転する。回転駆動部106の回転により、チップ102は、回転軸450を中心として回転し、セル400およびセル410には、それぞれ図4の(b)および図4の(c)に矢印Fで示す方向に遠心力(慣性力)が作用する。 When the measurement is started after injecting the soil extract into the sample chamber 401 and the sample chamber 411, the rotation driving unit 106 is first rotated. The rotation of the rotation drive unit 106 causes the chip 102 to rotate about the rotation axis 450, and the cells 400 and 410 are respectively moved in the directions indicated by the arrows F in FIG. 4B and FIG. 4C. Centrifugal force (inertial force) acts.
 セル410の試料室411に注入された土壌抽出液は、遠心力によって流路415を通って基準室414へと移動する。 The soil extract injected into the sample chamber 411 of the cell 410 moves to the reference chamber 414 through the flow path 415 by centrifugal force.
 また、セル400の試料室401の土壌抽出液および試薬室402の試薬は、流路405を通り試薬室403へと移動する。これにより、試薬室403内に測定対象となる試料と試薬との混合液(測定液)が生成される。 Further, the soil extract in the sample chamber 401 of the cell 400 and the reagent in the reagent chamber 402 move to the reagent chamber 403 through the flow path 405. As a result, a mixed liquid (measurement liquid) of the sample to be measured and the reagent is generated in the reagent chamber 403.
 次に回転駆動部106の回転により、セル400の試薬室403内に生成された混合液の攪拌が行われる。混合液の攪拌は、本実施形態では、回転駆動部106の回転により行われる構成としたが、これに限られるものでは無い。試料分析装置100が1軸駆動可能な並進駆動部(図示せず)を備えており、並進駆動部の往復運動によって攪拌が行われる構成であってもよいし、回転駆動部106と並進駆動部とを組み合わせて駆動させることによって攪拌が行われる構成であってもよい。また、回転駆動部106と並進駆動部とのそれぞれを個別に時間差を空けて駆動することで攪拌を行う構成であってもよい。さらには、攪拌の際に、回転駆動部106を一定の速度で回転する構成であってもよいし、加速度を付けて回転する構成や、逆回転する構成であっても、また、これらを組み合わせて回転する構成であってもよい。 Next, the liquid mixture generated in the reagent chamber 403 of the cell 400 is stirred by the rotation of the rotation driving unit 106. In this embodiment, the stirring of the mixed liquid is performed by the rotation of the rotation driving unit 106, but is not limited thereto. The sample analyzer 100 may include a translation drive unit (not shown) that can be driven in one axis, and may be configured to perform stirring by a reciprocating motion of the translation drive unit. Alternatively, the rotation drive unit 106 and the translation drive unit may be used. It may be a configuration in which stirring is performed by driving in combination. Moreover, the structure which stirs by driving each of the rotation drive part 106 and the translation drive part with a time difference separately may be sufficient. Furthermore, the structure may be such that the rotation drive unit 106 rotates at a constant speed during agitation, a structure that rotates with acceleration, or a structure that rotates in reverse, or a combination of these. May be configured to rotate.
 混合液の攪拌が終了すると、試薬室403と測定室404との間の流路405に設けられた開閉式の弁を開放し、再び回転駆動部106を回転させることで、遠心力により混合液を測定室404へと移動させる。 When the stirring of the mixed solution is completed, the open / close valve provided in the flow path 405 between the reagent chamber 403 and the measurement chamber 404 is opened, and the rotation driving unit 106 is rotated again, so that the mixed solution is mixed by centrifugal force. Is moved to the measurement chamber 404.
 なお、上述の混合液の攪拌は、試薬室403で行ってもよいが、測定室404で行ってもよい。また、本実施形態においては、回転駆動部106の回転により、混合液の生成および攪拌が、セル400-a~400-fに対して一括に行われる構成であったが、これに限られるものでは無く、それぞれのセル400-a~400-fに対して個別に行われる構成であってもよい。しかしながら、処理時間の短縮という観点から見れば、セル400-a~400-fに対して一括で行われる構成であることが好ましい。 In addition, although stirring of the above-mentioned liquid mixture may be performed in the reagent chamber 403, it may be performed in the measurement chamber 404. Further, in the present embodiment, the mixed liquid is generated and stirred in the cells 400-a to 400-f by the rotation of the rotation driving unit 106. However, the present invention is not limited to this. Instead, it may be configured to be performed individually for each of the cells 400-a to 400-f. However, from the viewpoint of shortening the processing time, it is preferable that the cell 400-a to 400-f be configured to be performed collectively.
 図5の(a)および(b)に示すように、混合液の攪拌が終了すると、次に、回転駆動部106の回転によりチップ102が1周等速回転すると共に、発光部101から光300が射出され、光300がチップ102を走査し、チップ102を透過した光300は、受光部103へと入射される。 As shown in FIGS. 5A and 5B, when the stirring of the mixed solution is completed, the rotation of the rotation driving unit 106 causes the chip 102 to rotate at one uniform speed and the light from the light emitting unit 101 to the light 300. Is emitted, the light 300 scans the chip 102, and the light 300 transmitted through the chip 102 is incident on the light receiving unit 103.
 ここで、発光部101から射出された光300は、ハーフミラー108によって、チップ102側と、参照用受光部104側に分岐される。参照用受光部104に入射された光の強度と、測定室404を透過し、受光部103へと入射される光の強度とを計測部109が測定し、比較することで、混合液の吸光度(透過率)が算出される。また、参照用受光部104により、チップ102に入射前の光の強度を測定しているため、熱や光源の劣化等による影響で発光部101からの出力が変動したとしても、混合液の透過率を正確に求めることが可能である。 Here, the light 300 emitted from the light emitting unit 101 is branched by the half mirror 108 into the chip 102 side and the reference light receiving unit 104 side. The measurement unit 109 measures and compares the intensity of the light incident on the reference light receiving unit 104 and the intensity of the light transmitted through the measurement chamber 404 and incident on the light receiving unit 103, thereby comparing the absorbance of the mixed liquid. (Transmittance) is calculated. Further, since the intensity of light before being incident on the chip 102 is measured by the reference light receiving unit 104, even if the output from the light emitting unit 101 fluctuates due to the influence of heat, light source deterioration, or the like, the mixture liquid can be transmitted. It is possible to accurately determine the rate.
 図6は、上述した、チップ102を1周等速回転させ、光300により走査することで測定を行った場合における、チップ102の周方向位置と、受光部103が受光した光の強度(透過光量)との関係を示すグラフである。 FIG. 6 shows the position in the circumferential direction of the chip 102 and the intensity (transmission) of the light received by the light receiving unit 103 when the measurement is performed by rotating the chip 102 at a constant speed and scanning with the light 300 described above. It is a graph which shows the relationship with light quantity.
 図6に示すように、光300が、測定室404-a~404-fおよび基準室414を透過する際には、透過光量は大きくなる。また、測定室404-a~404-fに格納された混合液は、試薬により呈色反応を示しており、各土壌成分の濃度に依存した光吸収が生じる。一方で、基準室414には、土壌抽出液のみが格納されているため、測定室404-a~404-fと比較して、生じる光吸収は少ない。そのため、図6において、透過光量が一番高くなっている位置が基準室414に対応していることが判る。 As shown in FIG. 6, when the light 300 passes through the measurement chambers 404-a to 404-f and the reference chamber 414, the amount of transmitted light increases. In addition, the mixed solution stored in the measurement chambers 404-a to 404-f exhibits a color reaction due to the reagent, and light absorption depending on the concentration of each soil component occurs. On the other hand, since only the soil extract is stored in the reference chamber 414, less light absorption occurs compared to the measurement chambers 404-a to 404-f. Therefore, in FIG. 6, it can be seen that the position where the amount of transmitted light is highest corresponds to the reference chamber 414.
 このように、チップ102に土壌抽出液のみが格納されるセル410を設けることで、計測部109は、チップ102を1周等速回転させ、光300により走査することで、受光部103の受光した光の強度から基準室414の位置を特定することができる。 Thus, by providing the cell 410 in which only the soil extract is stored in the chip 102, the measuring unit 109 rotates the chip 102 at a uniform speed around the circumference and scans it with the light 300, thereby receiving light from the light receiving unit 103. The position of the reference chamber 414 can be specified from the intensity of the light.
 また、図6に示すように、光300が測定室404-a~404-fおよび基準室414以外の場所を透過する際に透過光量は最低の値を示す。これは、チップ102を構成している構造体の厚みの影響により、チップ102が高い吸光度を示すからである。 As shown in FIG. 6, when the light 300 passes through a place other than the measurement chambers 404-a to 404-f and the reference chamber 414, the amount of transmitted light shows the lowest value. This is because the chip 102 exhibits high absorbance due to the thickness of the structure constituting the chip 102.
 しかしながら、測定室404-a~404-fおよび基準室414以外を透過した光300が、受光部103に入射されると、計測部109は、誤った位置を測定室404-a~404-fおよび基準室414の位置であると特定してしまう可能性がある。そのため、計測部109が、光300が測定室404-a~404-fおよび基準室414へ入射しているか、それ以外の場所へ入射しているかをより明確に判別することができる構成であることが好ましい。 However, when the light 300 transmitted through other than the measurement chambers 404-a to 404-f and the reference chamber 414 is incident on the light receiving unit 103, the measurement unit 109 sets the wrong position to the measurement chambers 404-a to 404-f. In addition, the position of the reference chamber 414 may be specified. Therefore, the measurement unit 109 can more clearly determine whether the light 300 is incident on the measurement chambers 404-a to 404-f and the reference chamber 414 or is incident on other locations. It is preferable.
 具体的には、図7に示すように、チップ102において、光300が走査(透過)する部位のうち、測定室404-a~404-fおよび基準室414以外の場所が予め遮光部460(吸光材)により遮光(コーティング)されていてもよい。また、図3に示すフィルターアレイ205の構造体を光吸収の高い材料で作製していてもよい。 Specifically, as shown in FIG. 7, in the portion of the chip 102 where the light 300 is scanned (transmitted), locations other than the measurement chambers 404-a to 404-f and the reference chamber 414 are previously shaded 460 ( It may be light-shielded (coated) by a light-absorbing material. Further, the structure of the filter array 205 shown in FIG. 3 may be made of a material having high light absorption.
 ここで、上述したように、セル400-a~400-fの測定室404-a~404-f、および、セル410の基準室414は同一円周上に等間隔で形成されている。そのため、計測部109が基準室414の位置をまず特定し、特定した基準室414の位置を原点と定めることで、相対的な位置関係に基づいて、原点から所定の角度の位置を、測定室404-a~404-fの位置であるとして、測定室404-a~404-fの位置を自動で決定することができる。 Here, as described above, the measurement chambers 404-a to 404-f of the cells 400-a to 400-f and the reference chamber 414 of the cell 410 are formed at equal intervals on the same circumference. Therefore, the measurement unit 109 first identifies the position of the reference chamber 414 and determines the position of the identified reference chamber 414 as the origin, so that the position of a predetermined angle from the origin can be determined based on the relative positional relationship. Assuming that the positions are 404-a to 404-f, the positions of the measurement chambers 404-a to 404-f can be automatically determined.
 上述の方法で、計測部109が、基準室414および測定室404-a~404-fの位置を特定すると、次に、原点に基づいて、回転駆動部106が予め定められたパルス値分だけチップ102を回転させ、それぞれの測定室404-a~404-fの透過光量の測定を行う。このように、基準室414および測定室404-a~404-fの位置を特定することで、試料分析装置100は円滑に透過光量の測定を行うことが可能となる。 When the measurement unit 109 specifies the positions of the reference chamber 414 and the measurement chambers 404-a to 404-f by the above-described method, the rotation drive unit 106 then determines a predetermined pulse value based on the origin. The chip 102 is rotated, and the amount of light transmitted through each of the measurement chambers 404-a to 404-f is measured. Thus, by specifying the positions of the reference chamber 414 and the measurement chambers 404-a to 404-f, the sample analyzer 100 can smoothly measure the amount of transmitted light.
 測定室404-aに格納された混合液は、410nm~420nmの波長帯の付近に硝酸態窒素に依存した吸収帯域を持つ。そのため、発光部101の光源201bの青色LEDを発光させ、フィルターアレイ205は420nmの干渉フィルター301を用いて透過光量の測定を行う。その際、基準室414に格納された土壌抽出液に対しても同様に、光源201bの青色LEDを発光させ、干渉フィルター301を介した透過光量の測定を行う。 The mixed solution stored in the measurement chamber 404-a has an absorption band depending on nitrate nitrogen in the vicinity of the wavelength band of 410 nm to 420 nm. Therefore, the blue LED of the light source 201b of the light emitting unit 101 is caused to emit light, and the filter array 205 measures the amount of transmitted light using the interference filter 301 of 420 nm. At that time, similarly, the blue LED of the light source 201b is caused to emit light with respect to the soil extract stored in the reference chamber 414, and the amount of light transmitted through the interference filter 301 is measured.
 他の測定室404-b~404-fに対しても、同様にそれぞれに格納された混合液に対応する干渉フィルター301~306および光源201a~201cを用いて透過光量の測定を行うと共に、基準室414に格納された土壌抽出液に対しても、同様の測定を行う。 Similarly, the other measurement chambers 404-b to 404-f are used to measure the amount of transmitted light using the interference filters 301 to 306 and the light sources 201a to 201c corresponding to the mixed liquids stored therein, respectively. The same measurement is performed on the soil extract stored in the chamber 414.
 計測部109は、測定室404-a~404-fを透過した光量と、対応する干渉フィルターを介して基準室414を透過した光量とを比較し、差分を取り、それぞれの測定室404-a~404-fの吸光度を算出する。 The measurement unit 109 compares the amount of light transmitted through the measurement chambers 404-a to 404-f with the amount of light transmitted through the reference chamber 414 via the corresponding interference filter, obtains a difference, and determines each measurement chamber 404-a. Calculate the absorbance of ~ 404-f.
 このように、本実施形態に係る試料分析装置100は、基準室414を透過し、受光部103が受光した透過光量(基準透過光量)と、測定室404-a~404-fを透過し、受光部103が受光した透過光量(測定透過光量)との比較に基づいて測定を行うため、土壌成分濃度等を高精度に測定することが可能となる。 As described above, the sample analyzer 100 according to the present embodiment transmits the transmitted light amount (reference transmitted light amount) transmitted through the reference chamber 414 and received by the light receiving unit 103 and the measurement chambers 404-a to 404-f, Since the measurement is performed based on the comparison with the transmitted light amount (measured transmitted light amount) received by the light receiving unit 103, the soil component concentration and the like can be measured with high accuracy.
 また、本実施形態においては、回転駆動部106として、パルス制御による位置決めが可能なステッピングモーターを用いる構成を示したが、これに限られるものでは無い。 In the present embodiment, the stepping motor capable of positioning by pulse control is used as the rotation driving unit 106, but the present invention is not limited to this.
 例えば、基準室414の位置を特定するために、チップ102を1周等速回転させる際に、透過光量と共に、回転所要時間の測定を行う構成であってもよい。このような構成とすることで、基準室414の位置を特定すると共に、透過光量と回転所要時間との関係から、基準室414からそれぞれの測定室404-a~404-fへの移動所要時間を求めることができる。そのため、チップ102を回転させる時間を制御することで、それぞれの測定室404-a~404-fの位置に対しての土壌成分の測定を行うことが可能となる。試料分析装置100をこのような構成とすることで、回転駆動部106としてブラシレスモーター等を用いることが可能となり、試料分析装置100をより安価な構成とすることができる。 For example, in order to specify the position of the reference chamber 414, the rotation time may be measured together with the amount of transmitted light when the chip 102 is rotated once at a constant speed. With this configuration, the position of the reference chamber 414 is specified, and the time required for moving from the reference chamber 414 to each of the measurement chambers 404-a to 404-f based on the relationship between the amount of transmitted light and the required rotation time. Can be requested. Therefore, by controlling the time during which the chip 102 is rotated, it is possible to measure soil components at the positions of the respective measurement chambers 404-a to 404-f. By configuring the sample analyzer 100 as described above, a brushless motor or the like can be used as the rotation drive unit 106, and the sample analyzer 100 can be configured at a lower cost.
 さらに、図5の(b)に示したように、本実施形態においては、測定室404や流路405が密閉されている例を示したが、これに限られるものではなく、必要に応じて、空気の抜け穴が測定室404や流路405等に形成されていてもよい。 Furthermore, as shown in FIG. 5B, in the present embodiment, an example in which the measurement chamber 404 and the flow path 405 are sealed is shown, but the present invention is not limited to this, and as necessary. In addition, an air hole may be formed in the measurement chamber 404, the flow path 405, or the like.
 また、本実施形態においては、チップ102として、1つの基準室414と6つの測定室404-a~404-fとが形成されているチップ102を用いたが、チップ102には、基準室414が複数形成されていてもよい。 In this embodiment, the chip 102 in which one reference chamber 414 and six measurement chambers 404-a to 404-f are formed is used as the chip 102. However, the reference chamber 414 is included in the chip 102. A plurality of may be formed.
 ここで、測定対象の土壌成分によっては、中性の溶液ではほとんど抽出することができないため、酸性の溶液で抽出する必要がある。その際には、中性の溶液で土壌成分を抽出した土壌抽出液αを収容した基準測定室と、酸性の溶液で土壌成分を抽出した土壌抽出液βを収容した基準測定室とを形成する。そして、上記2種類の土壌抽出液に対して測定対象の土壌成分に応じた試薬を混合し、測定を行う。 Here, depending on the soil component to be measured, it is almost impossible to extract with a neutral solution, so it is necessary to extract with an acidic solution. In that case, a reference measurement chamber containing a soil extract α obtained by extracting a soil component with a neutral solution and a reference measurement chamber containing a soil extract β obtained by extracting a soil component with an acidic solution are formed. . And the reagent according to the soil component of a measuring object is mixed with said 2 types of soil extract, and it measures.
 このように、対象となる土壌成分に応じて異なる抽出液を作製する必要がある場合には、基準室が複数形成されたチップを用いることで、異なる抽出液のそれぞれで基準透過光量を測定することができる。そのため、より精度よく土壌成分の測定を行うことができる。 As described above, when it is necessary to prepare different extracts according to the target soil component, the reference transmitted light amount is measured for each of the different extracts by using a chip in which a plurality of reference chambers are formed. be able to. Therefore, the soil component can be measured with higher accuracy.
 また、上述の実施形態においては、チップ102に基準室414、測定室404を形成する例を示したが、本発明はこれに限定されない。土壌抽出液(試料液)、混合液を収容する機能を有していれば、チップ以外の容器に基準室、測定室を形成する構成にも本発明が適用される。 In the above-described embodiment, an example in which the reference chamber 414 and the measurement chamber 404 are formed in the chip 102 has been described, but the present invention is not limited to this. The present invention is also applied to a configuration in which a reference chamber and a measurement chamber are formed in a container other than a chip as long as it has a function of storing a soil extract (sample solution) and a mixed solution.
 また、本実施形態においては、呈色反応を示す試薬を用い、吸光度により成分の濃度の測定を行う構成を示したがこれに限られるものでは無い。例えば、試薬として、蛍光試薬を用い、蛍光検出器で発光強度を測定することで成分量の測定を行う構成であってもよい。 Further, in the present embodiment, a configuration is shown in which the concentration of a component is measured by absorbance using a reagent showing a color reaction, but the present invention is not limited to this. For example, a configuration in which a fluorescent reagent is used as a reagent and the amount of components is measured by measuring the emission intensity with a fluorescence detector may be used.
 また、本実施形態においては、測定対象の試料として、土壌から抽出した土壌抽出液を用いる例を示したが、測定対象はこれに限られるものでは無い。例えば、果物や野菜等の作物体の一部を搾取し、水を加え、抽出液を作成し、振とう・ろ過を行い試料とする。このように作製した試料を上述の方法と同様に測定することで、果物や野菜等の作物体に含有されている各種成分量を測定することができる。さらに、本実施形態に係る試料分析装置100は、複数の成分を一括して計測する水質計測装置として使用することもできる。 Moreover, in this embodiment, although the example which uses the soil extract extracted from soil as a sample of a measuring object was shown, a measuring object is not restricted to this. For example, a part of a crop body such as fruits and vegetables is extracted, water is added, an extract is prepared, shaken and filtered, and used as a sample. By measuring the sample thus prepared in the same manner as described above, the amounts of various components contained in crops such as fruits and vegetables can be measured. Furthermore, the sample analyzer 100 according to the present embodiment can also be used as a water quality measuring device that measures a plurality of components at once.
 (従来技術との対比)
 従来、試料分析装置に測定を自動で行わせる際に、セルの位置関係を試料分析装置に自動で認識させる方法として、(1)分析デバイスにマーカー等の検出部を設け、試料分析装置に検出機構を設ける方法や、(2)分析デバイスを試料分析装置に装着する方向を予め定めておき、試料分析装置の駆動機構が備えるエンコーダー等のパルス値で測定セルの位置を認識する方法が採られている。
(Contrast with conventional technology)
Conventionally, when the sample analyzer automatically performs measurement, as a method of automatically recognizing the positional relationship of the cells, the sample analyzer is equipped with a detection unit such as a marker and the sample analyzer detects it. A method of providing a mechanism, or (2) a method in which a direction in which an analysis device is attached to a sample analyzer is determined in advance and a position of a measurement cell is recognized by a pulse value of an encoder or the like provided in a drive mechanism of the sample analyzer. ing.
 ここで、生産者自らが測定を行うためには、測定作業が簡便であることに加えて、試料分析装置が安価であることが求められる。しかしながら、上述の(1)または(2)の方法を採用すると、試料分析装置が高価になってしまうという問題や、分析デバイスを分析装置に装着する作業において制約が増えることで、作業負担が増大してしまうという問題が有る。 Here, in order for the producer himself to perform the measurement, in addition to simple measurement work, the sample analyzer is required to be inexpensive. However, if the method (1) or (2) described above is employed, the problem that the sample analyzer becomes expensive, and restrictions on the work of mounting the analysis device on the analyzer increase, thereby increasing the work load. There is a problem of doing so.
 これに対して、本実施形態に係る試料分析装置100は、チップ102に基準室414が設けられており、光300によりチップ102を走査し、基準室414を透過した光量を計測部109が特定することにより、チップ102上における基準室414および測定室404の相対的な位置を特定する。 In contrast, in the sample analyzer 100 according to the present embodiment, the reference chamber 414 is provided in the chip 102, the chip 102 is scanned with the light 300, and the measurement unit 109 specifies the amount of light transmitted through the reference chamber 414. As a result, the relative positions of the reference chamber 414 and the measurement chamber 404 on the chip 102 are specified.
 そのため、従来のように、チップ102にマーカー等の検出部を設け、試料分析装置100に検出機構を設けたり、チップ102を試料分析装置100に装着する方向を予め定めておき、試料分析装置100の回転駆動部106が備えるエンコーダー等のパルス値で測定室404の位置を認識したりする必要が無くなり、試料分析装置100を安価な構成とすることができ、また、測定を簡便に行うことができる。 Therefore, as in the prior art, a detection unit such as a marker is provided on the chip 102, a detection mechanism is provided on the sample analyzer 100, or a direction in which the chip 102 is attached to the sample analyzer 100 is determined in advance. It is no longer necessary to recognize the position of the measurement chamber 404 with a pulse value of an encoder or the like provided in the rotation drive unit 106, the sample analyzer 100 can be configured at a low cost, and measurement can be performed easily. it can.
 〔実施形態2〕
 本発明の他の実施形態について説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
Another embodiment of the present invention will be described. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 本実施形態に係る試料分析装置100は、第1の実施形態に係る試料分析装置は異なる発光部101’を備える。 The sample analyzer 100 according to the present embodiment includes a light emitting unit 101 'different from the sample analyzer according to the first embodiment.
 図8は、本実施形態に係る発光部101’の構成概略図である。図9は、発光部101’に備えられるフィルターアレイ215を示す概略図であり、図9の(a)はフィルターアレイ215を上方からみた正面図であり、図9の(b)は、フィルターアレイ215に備えられる基準室フィルター317を上方から見た拡大図である。 FIG. 8 is a schematic configuration diagram of the light emitting unit 101 ′ according to the present embodiment. FIG. 9 is a schematic view showing a filter array 215 provided in the light emitting unit 101 ′, FIG. 9A is a front view of the filter array 215 viewed from above, and FIG. 9B is a filter array. It is the enlarged view which looked at the reference | standard chamber filter 317 with which 215 is equipped from the upper direction.
 発光部101’は、フィルターアレイ205の代わりにフィルターアレイ215を備えていること以外は、第1の実施形態に係る試料分析装置100が備える発光部101と同一の構成である。 The light emitting unit 101 ′ has the same configuration as the light emitting unit 101 provided in the sample analyzer 100 according to the first embodiment, except that the light emitting unit 101 ′ includes a filter array 215 instead of the filter array 205.
 図9の(a)に示すように、フィルターアレイ215は、回転軸310を中心とする同一円周上に等間隔に、6つの干渉フィルター(測定室フィルター、透過領域、他の透過領域)311~316、および、基準室フィルター317を備えている。 As shown in FIG. 9A, the filter array 215 includes six interference filters (measurement chamber filter, transmission region, and other transmission region) 311 at equal intervals on the same circumference around the rotation axis 310. 316 and a reference chamber filter 317 are provided.
 干渉フィルター311~316および基準室フィルター317は、それぞれチップ102に形成された測定室404-a~404-f、および、基準室414と対応している。そのため、フィルターアレイ215は、光300によってそれぞれの測定室404-a~404-f、および、基準室414が走査される際に、光300がそれぞれの干渉フィルター311~316および基準室フィルター317を介して測定室404-a~404-f、および、基準室414透過するように制御される。 Interference filters 311 to 316 and reference chamber filter 317 correspond to measurement chambers 404-a to 404-f and reference chamber 414 formed in chip 102, respectively. Therefore, the filter array 215 causes the light 300 to pass through the respective interference filters 311 to 316 and the reference chamber filter 317 when the measurement chambers 404-a to 404-f and the reference chamber 414 are scanned by the light 300. The measurement chambers 404-a to 404-f and the reference chamber 414 are controlled to pass through.
 具体的には、干渉フィルター311が測定室404-aと、干渉フィルター312が測定室404-bと、干渉フィルター313が測定室404-cと、干渉フィルター314が測定室404-dと、干渉フィルター315が測定室404-eと、干渉フィルター316が測定室404-fと、基準室フィルター317が基準室414と対応している。 Specifically, the interference filter 311 is in the measurement chamber 404-a, the interference filter 312 is in the measurement chamber 404-b, the interference filter 313 is in the measurement chamber 404-c, and the interference filter 314 is in the measurement chamber 404-d. The filter 315 corresponds to the measurement chamber 404-e, the interference filter 316 corresponds to the measurement chamber 404-f, and the reference chamber filter 317 corresponds to the reference chamber 414.
 本実施形態においては、干渉フィルター311および干渉フィルター314として、中心波長帯が420nmの干渉フィルターを、干渉フィルター312として、中心波長帯が610nmの干渉フィルターを、干渉フィルター313として、中心波長帯が720nmの干渉フィルターを、干渉フィルター315として、中心波長帯が570nmの干渉フィルターを、干渉フィルター316として、中心波長帯が520nmの干渉フィルターを用いた。 In the present embodiment, as the interference filter 311 and the interference filter 314, an interference filter having a central wavelength band of 420 nm, an interference filter 312, an interference filter having a central wavelength band of 610 nm, and an interference filter 313 having a central wavelength band of 720 nm are used. As the interference filter 315, an interference filter having a central wavelength band of 570 nm was used, and as the interference filter 316, an interference filter having a central wavelength band of 520 nm was used.
 また、図9の(b)に示すように、基準室フィルター317は、5つの干渉フィルター(基準室透過領域、他の基準室透過領域)317a~317eを備え、5つの干渉フィルター317a~317eが同一円周の円周方向に並ぶように配置されている。 Further, as shown in FIG. 9B, the reference chamber filter 317 includes five interference filters (reference chamber transmission region, other reference chamber transmission region) 317a to 317e, and the five interference filters 317a to 317e are provided. It arrange | positions so that it may rank with the circumference direction of the same periphery.
 上記の5つの干渉フィルター317a~eはそれぞれ、干渉フィルター317aが干渉フィルター311および干渉フィルター314と、干渉フィルター317bが干渉フィルター312と、干渉フィルター317cが干渉フィルター313と、干渉フィルター317dが干渉フィルター315と、干渉フィルター317eが干渉フィルター316と同じ中心波長帯を有する干渉フィルターである。 In the five interference filters 317a to 317e, the interference filter 317a is the interference filter 311 and the interference filter 314, the interference filter 317b is the interference filter 312, the interference filter 317c is the interference filter 313, and the interference filter 317d is the interference filter 315. The interference filter 317e is an interference filter having the same center wavelength band as that of the interference filter 316.
 本発明の第2の実施形態に係る試料分析装置100は、測定の際には、上述の第1の実施形態と同様の手順でまず、混合液の作成および攪拌が行われ、次に、混合液および土壌抽出液の移動が行われる。そして、回転駆動部106によりチップ102を1周等速回転させ、光300による走査を行うことで基準室414の位置が特定される。 In the sample analyzer 100 according to the second embodiment of the present invention, in the measurement, a mixed solution is first prepared and stirred in the same procedure as in the first embodiment, and then mixed. Transfer of liquid and soil extract is performed. And the position of the reference | standard chamber 414 is pinpointed by rotating the chip | tip 102 by the rotation drive part 106 1 round at equal speed, and scanning with the light 300.
 本実施形態に係る試料分析装置100は、当該走査の際に、基準室フィルター317が備える5種類の干渉フィルター317a~317eのそれぞれを介して、基準室414を透過した透過光量(基準透過光量)の計測を行うことを特徴としている。 In the sample analyzer 100 according to the present embodiment, the amount of transmitted light (reference transmitted light amount) transmitted through the reference chamber 414 via each of the five types of interference filters 317a to 317e included in the reference chamber filter 317 during the scanning. It is characterized by performing measurements.
 なお、本実施形態において、発光部101は、第1の実施形態と同様に、光源201aとして白色LEDを、光源201bとして青色LEDを、光源201cとして赤色LEDを備えており、上述の走査の際に、基準室414を光300が透過する時に光源201a、光源201bおよび光源201cが順次発光するように、制御部111に制御される。光源201a、光源201bおよび光源201cの発光の切り替え周期は、回転駆動部106によるチップ102の回転速度と、基準室フィルター317が備える5種類の干渉フィルター317a~317eの幅から決定され、5種類の干渉フィルター317a~317eのそれぞれを通過する際に、光源201a、光源201bおよび光源201cのすべてが点灯される周期であることが好ましい。換言すれば、5種類の干渉フィルター317a~317eのそれぞれを介して基準室414を透過した透過光量を、3つの光源201a~201cのすべてに対して計測することができるような点灯周期であることが好ましい。 In the present embodiment, the light emitting unit 101 includes a white LED as the light source 201a, a blue LED as the light source 201b, and a red LED as the light source 201c, as in the first embodiment. In addition, the controller 111 controls the light source 201a, the light source 201b, and the light source 201c to emit light sequentially when the light 300 is transmitted through the reference chamber 414. The light emission switching period of the light source 201a, the light source 201b, and the light source 201c is determined from the rotation speed of the chip 102 by the rotation driving unit 106 and the widths of the five types of interference filters 317a to 317e included in the reference chamber filter 317. It is preferable that the light source 201a, the light source 201b, and the light source 201c are all turned on when passing through the interference filters 317a to 317e. In other words, the lighting cycle is such that the amount of light transmitted through the reference chamber 414 through each of the five types of interference filters 317a to 317e can be measured for all three light sources 201a to 201c. Is preferred.
 当該走査が終了すると、次に、チップ102を予め定められた量回転させ、測定室404-a~404-fのそれぞれに対して、予め定められた光源201a~201cの何れかを用いて、透過光量(測定透過光量)の計測を行う。 When the scanning is completed, the chip 102 is then rotated by a predetermined amount, and any one of the predetermined light sources 201a to 201c is used for each of the measurement chambers 404-a to 404-f. The amount of transmitted light (measured transmitted light amount) is measured.
 そして、計測した測定室404-a~404-fを透過した光量と、対応する光源において、対応する干渉フィルターを介して基準室414を透過した光量とを比較し、差分を取り、それぞれの測定室404-a~404-fの吸光度を算出する。 Then, the measured amount of light transmitted through the measurement chambers 404-a to 404-f and the amount of light transmitted through the reference chamber 414 through the corresponding interference filter at the corresponding light source are compared, a difference is obtained, and each measurement is performed. The absorbance of the chambers 404-a to 404-f is calculated.
 試料分析装置100をこのような構成とすることで、基準室414に格納された土壌抽出液の透過光量を、それぞれの波長に対して一括で計測を行うことができ、極めて迅速に測定を行うことができる。また、土壌抽出液に対する透過光量と、混合液に対する透過光量との差分を取ることで、土壌成分濃度等を高精度に測定することが可能となる。 By configuring the sample analyzer 100 as described above, the amount of transmitted light of the soil extract stored in the reference chamber 414 can be measured at a time for each wavelength, and the measurement can be performed very quickly. be able to. Moreover, it becomes possible to measure a soil component density | concentration etc. with high precision by taking the difference of the transmitted light quantity with respect to a soil extract, and the transmitted light quantity with respect to a liquid mixture.
 〔実施形態3〕
 本発明のさらに他の実施形態について説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
Still another embodiment of the present invention will be described. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 本発明の第3の実施形態に係る試料分析装置100は、上述の第2の実施形態に係る試料分析装置と、測定時における各部の動作が異なる。 The sample analyzer 100 according to the third embodiment of the present invention differs from the sample analyzer according to the second embodiment described above in the operation of each unit during measurement.
 具体的には、基準室414の位置が特定された後、さらにもう一度、基準室フィルター317の5種類の干渉フィルター317a~317eのそれぞれを介して基準室414を透過した光量の測定を、光源201a、光源201bおよび光源201cのそれぞれに対して行う。 Specifically, after the position of the reference chamber 414 is specified, the light amount transmitted through the reference chamber 414 through each of the five types of interference filters 317a to 317e of the reference chamber filter 317 is measured again. , For each of the light source 201b and the light source 201c.
 当該測定は、基準室414の位置を特定する際に行った、チップ102の等速回転の回転速度よりも遅い回転速度でチップ102を回転させながら行うことが好ましい。 The measurement is preferably performed while rotating the chip 102 at a rotation speed slower than the rotation speed of the constant speed rotation of the chip 102 performed when the position of the reference chamber 414 is specified.
 また、当該測定は、上述したようにチップ102を回転させながら連続的に行ってもよいが、基準室フィルター317の5種類の干渉フィルター317a~317eのそれぞれの位置でチップ102の回転を一度停止させ、光源201a、光源201bおよび光源201cを順次点灯させることで測定を行う構成であってもよい。 The measurement may be performed continuously while rotating the chip 102 as described above, but once the rotation of the chip 102 is stopped at each of the five types of interference filters 317a to 317e of the reference chamber filter 317. The measurement may be performed by sequentially turning on the light source 201a, the light source 201b, and the light source 201c.
 このような構成とすることで、基準室414に格納された土壌抽出液の透過光量をより正確に測定することができ、結果として、測定室404-a~404-fに格納されたそれぞれの混合液の成分濃度の計測精度をより一層向上させることが可能となる。 With such a configuration, the amount of transmitted light of the soil extract stored in the reference chamber 414 can be measured more accurately. As a result, each of the stored amounts in the measurement chambers 404-a to 404-f can be measured. It becomes possible to further improve the measurement accuracy of the component concentration of the mixed liquid.
 〔実施形態4〕
 本発明のさらに他の実施形態について説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
Still another embodiment of the present invention will be described. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 本実施形態に係る試料分析装置100は、上述の第2の実施形態に係る試料分析装置100と、測定時における各部の動作が異なる。 The sample analyzer 100 according to the present embodiment differs from the sample analyzer 100 according to the second embodiment described above in the operation of each unit during measurement.
 具体的には、本実施形態においては、測定室404-eに対して吸光度の測定を行う直前に、混合液の再攪拌を行う。これは、セル400-eの試薬室403-eに格納されているジエタノールアミン混合溶液と、土壌抽出液との混合液の吸光度(濁度)が攪拌直後から時間経過と共に変化するが、再攪拌を行うことによって、吸光度が攪拌直後の値に戻ることを本願発明者が見出したことに基づく。 Specifically, in the present embodiment, the liquid mixture is re-stirred immediately before measuring the absorbance in the measurement chamber 404-e. This is because the absorbance (turbidity) of the mixed solution of the diethanolamine mixed solution stored in the reagent chamber 403-e of the cell 400-e and the soil extract changes with time from immediately after stirring. This is based on what the present inventor found that the absorbance returns to the value immediately after stirring.
 図10は、予め成分濃度の明らかな土壌抽出液を用いて吸光度の測定を行った場合における、成分濃度と吸光度との関係を示すグラフであり、図10にひし形で示すプロットは、作成した混合液に対して、再攪拌を行わずに吸光度の測定を行ったデータであり、図10に長方形で示すプロットは、作成した混合液に対して、測定前に再攪拌を行い、吸光度の測定を行ったデータである。 FIG. 10 is a graph showing the relationship between the component concentration and the absorbance when the absorbance was measured in advance using a soil extract with a clear component concentration. The plot indicated by the diamonds in FIG. This is data obtained by measuring the absorbance of the liquid without re-stirring, and the plot shown by a rectangle in FIG. 10 shows that the prepared liquid mixture is re-stirred before measurement and the absorbance is measured. It is the data performed.
 図10に示すように、再攪拌を行わなかったひし形のプロットは、近似曲線から大きく乖離しており、成分濃度と吸光度との間の相関関係は低いという結果が得られた。これに対し、測定前に再攪拌を行った長方形のプロットは、成分濃度と吸光度との間に高い相関を示すという結果が得られた。 As shown in FIG. 10, the rhombus plots that were not re-stirred were greatly deviated from the approximate curve, and the correlation between the component concentration and the absorbance was low. On the other hand, a rectangular plot obtained by re-stirring before measurement showed a high correlation between the component concentration and the absorbance.
 以下に、本実施形態に係る試料分析装置100の測定時の動作について説明する。 Hereinafter, the operation at the time of measurement of the sample analyzer 100 according to the present embodiment will be described.
 本実施形態に係る試料分析装置100は、まず、第2の実施形態に係る試料分析装置100と同様に、まず、回転駆動部106によりチップ102を1周等速回転させ、光300による走査を行うことで基準室414の位置の特定を行う。次に、基準室フィルター317が備える5種類の干渉フィルターのそれぞれを介して、基準室414を透過した光量の計測を行う。 In the sample analyzer 100 according to the present embodiment, first, similarly to the sample analyzer 100 according to the second embodiment, first, the rotation drive unit 106 rotates the chip 102 one round at a constant speed, and scanning with the light 300 is performed. By doing so, the position of the reference chamber 414 is specified. Next, the amount of light transmitted through the reference chamber 414 is measured through each of the five types of interference filters provided in the reference chamber filter 317.
 その後、それぞれの測定室404-a~404-fに格納された混合液に対してそれぞれ予め定められた光源201a~201cを用いて、吸光度の測定を行う。 Thereafter, the absorbance is measured for each of the mixed solutions stored in the respective measurement chambers 404-a to 404-f by using predetermined light sources 201a to 201c.
 その際、測定室404-eの吸光度の測定行う前に、混合液の再攪拌を行う。当該混合液の再攪拌は、回転駆動部106がチップ102を円周方向に対して往復運動することによって行われる。これにより、吸光度の測定精度を著しく向上させることが可能となった。 At that time, the mixture is re-stirred before measuring the absorbance in the measurement chamber 404-e. The re-stirring of the mixed liquid is performed by the rotary drive unit 106 reciprocating the tip 102 in the circumferential direction. As a result, the measurement accuracy of absorbance can be remarkably improved.
 さらに、セル400-bの測定室404-bの吸光度の測定を行う際にも、同様に、測定直前に再攪拌を行うことで吸光度の測定精度が大幅に向上するという結果が得られた。 Furthermore, when measuring the absorbance in the measurement chamber 404-b of the cell 400-b, similarly, the result that the measurement accuracy of the absorbance was greatly improved by re-stirring immediately before the measurement was obtained.
 このように、試薬と土壌抽出液との混合液の発色反応あるいは分散状態が、混合後の時間経過に伴って不安定になる溶液においては、測定直前に混合液の再攪拌を行うことで、精度よく吸光度の測定を行うことができる。 In this way, in a solution in which the color development reaction or dispersion state of the mixed solution of the reagent and the soil extract becomes unstable with the lapse of time after mixing, by re-stirring the mixed solution immediately before measurement, Absorbance can be measured with high accuracy.
 一方、混合液の発色反応あるいは分散状態が、混合後の時間経過に対して安定的である混合液もあり、このような混合液が格納されている測定室404の吸光度を測定する際には、測定直前に混合液の再攪拌を行う必要は無い。 On the other hand, there are mixed liquids in which the color development reaction or dispersion state of the mixed liquid is stable over time after mixing. When measuring the absorbance of the measurement chamber 404 in which such mixed liquid is stored, It is not necessary to re-stir the mixture immediately before the measurement.
 このように、本実施形態に係る試料分析装置100は、混合液の発色反応あるいは分散状態が混合後の時間経過に対して不安定となる混合液の測定を行う直前に、混合液の再攪拌を行うことで、吸光度、つまり、成分濃度の測定精度を向上させることができる。 As described above, the sample analyzer 100 according to the present embodiment re-stirs the mixed solution immediately before measuring the mixed solution in which the color development reaction or dispersion state of the mixed solution becomes unstable with respect to the lapse of time after mixing. As a result, the measurement accuracy of the absorbance, that is, the component concentration can be improved.
 さらに、混合後の時間経過に対して発色反応あるいは分散状態が安定的である混合液の測定を行う際には、再攪拌を行わない。これにより。計測時間を大幅に短縮することができる。 Furthermore, re-stirring is not performed when measuring a mixed solution in which the color development reaction or the dispersion state is stable over time after mixing. By this. Measurement time can be greatly reduced.
 〔まとめ〕
 本発明の態様1に係る試料分析装置100は、試料を収容した基準室414と、試料に基づく測定液(混合液)を収容した測定室404、404a~404fとを回転軸450の周りの同一円周上に形成した容器(チップ102)と同一円周上に対応する位置に配置されて容器(チップ102)に向かって光300を発光する発光部101と、容器(チップ102)を透過した光300を受光する受光部103と、容器(チップ102)と発光部101および受光部103との少なくとも一方を回転軸450の周りに回転運動させる回転駆動部106と、基準室414を透過して受光部103が受光した光の基準透過光量と、測定室404、404a~404fを透過して受光部103が受光した光300の測定透過光量とに基づいて、試料に含まれる成分を分析する計測部109とを備える。
[Summary]
In the sample analyzer 100 according to the aspect 1 of the present invention, the reference chamber 414 containing the sample and the measurement chambers 404, 404a to 404f containing the measurement liquid (mixed liquid) based on the sample are identical around the rotation axis 450. A light emitting unit 101 that emits light 300 toward the container (chip 102) and is disposed at a position corresponding to the same circumference as the container (chip 102) formed on the circumference, and transmitted through the container (chip 102). The light-receiving unit 103 that receives the light 300, the rotation driving unit 106 that rotates at least one of the container (chip 102), the light-emitting unit 101, and the light-receiving unit 103 around the rotation axis 450, and the reference chamber 414 are transmitted. Based on the reference transmitted light amount of the light received by the light receiving unit 103 and the measured transmitted light amount of the light 300 transmitted through the measurement chambers 404 and 404a to 404f and received by the light receiving unit 103 And a measurement unit 109 for analyzing components contained.
 上記の構成によれば、回転軸450の周りの同一円周上に、試料を収容した基準室414と、試料に基づく測定液(混合液)を収容した測定室404、404a~404fとが容器(チップ102)に形成されている。そのため、容器(チップ102)を回転させて測定を行うことで、測定を簡便で効率的に行うことができる。 According to the above configuration, the reference chamber 414 containing the sample and the measurement chambers 404, 404a to 404f containing the measurement liquid (mixed liquid) based on the sample are disposed on the same circumference around the rotation shaft 450. (Chip 102). Therefore, the measurement can be performed simply and efficiently by rotating the container (chip 102).
 さらに、基準室414を透過して受光部103が受光した光300の基準透過光量と、測定室404、404a~404fを透過して受光部103が受光した光300の測定透過光量とに基づいて、試料に含まれる成分を分析する。そのため、精度のよい測定を行うことができる。 Further, based on the reference transmitted light amount of the light 300 transmitted through the reference chamber 414 and received by the light receiving unit 103 and the measured transmitted light amount of the light 300 transmitted through the measurement chambers 404 and 404a to 404f and received by the light receiving unit 103. Analyze the components contained in the sample. Therefore, accurate measurement can be performed.
 本発明の態様2に係る試料分析装置100は、上記態様1において、基準室414が、試料の試料液(土壌抽出液)のみを収容し、測定液(混合液)が、試料に含まれる成分に対応する試薬と試料との混合液である。 In the sample analyzer 100 according to the second aspect of the present invention, in the first aspect, the reference chamber 414 contains only the sample liquid (soil extract) of the sample, and the measurement liquid (mixed liquid) is included in the sample. Is a mixed solution of a reagent and a sample corresponding to.
 上記の構成によれば、本発明の態様2に係る試料分析装置100は、試料液(土壌抽出液)を透過する基準透過光量と、測定液(混合液)を透過する測定透過光量とを比較して分析を行う。そのため、試料液が着色している場合であったとしても、試料液の基準透過光量をベースラインとすることができ、高精度の測定が可能となる。 According to said structure, the sample analyzer 100 which concerns on aspect 2 of this invention compares the reference | standard transmitted light amount which permeate | transmits a sample liquid (soil extract), and the measured transmitted light amount which permeate | transmits a measurement liquid (mixed liquid). And analyze. Therefore, even if the sample liquid is colored, the reference transmitted light amount of the sample liquid can be used as a baseline, and high-precision measurement is possible.
 本発明の態様3に係る試料分析装置100は、上記態様1において、計測部109が、受光部103が受光した光300の透過光量を同一円周に沿って連続的に測定し、測定した透過光量に基づいて、基準室414と測定室404、404a~404fとの少なくとも一つの同一円周上の位置を特定する。 In the sample analyzer 100 according to the aspect 3 of the present invention, in the aspect 1, the measurement unit 109 continuously measures the transmitted light amount of the light 300 received by the light receiving unit 103 along the same circumference, and the measured transmission Based on the amount of light, at least one position on the same circumference of the reference chamber 414 and the measurement chambers 404, 404a to 404f is specified.
 上記の構成によれば、計測部109が、測定した透過光量に基づいて、基準室414と測定室404、404a~404fとの少なくとも一つの同一円周上の位置を特定する。これにより、効率的に測定を行うことが可能となる。 According to the above configuration, the measuring unit 109 specifies at least one position on the same circumference of the reference chamber 414 and the measurement chambers 404, 404a to 404f based on the measured transmitted light amount. Thereby, it becomes possible to measure efficiently.
 本発明の態様4に係る試料分析装置100は、上記態様3において、計測部109が、受光部103が受光した光300の透過光量が最も大きい同一円周上の位置により基準室414の同一円周上の位置を特定する。 In the sample analyzer 100 according to Aspect 4 of the present invention, in the Aspect 3, the measurement unit 109 has the same circle in the reference chamber 414 depending on the position on the same circumference where the transmitted light amount of the light 300 received by the light receiving unit 103 is the largest. Specify the position on the circumference.
 上記の構成によれば、計測部109が、透過光量が最も大きい同一円周上の位置により基準室414の同一円周上の位置を特定することで、試料分析装置100が容器(チップ102)上の基準室414の位置を認識することができる。これにより、試料分析装置100が測定を自動で行うことができる。 According to the above configuration, the measurement unit 109 identifies the position on the same circumference of the reference chamber 414 based on the position on the same circumference where the amount of transmitted light is the largest, so that the sample analyzer 100 can store the container (chip 102). The position of the upper reference chamber 414 can be recognized. Thereby, the sample analyzer 100 can automatically perform the measurement.
 本発明の態様5に係る試料分析装置100は、上記態様1において、同一円周上の容器(チップ102)の部位のうち基準室414に対応する部位および測定室404、404a~404fに対応する部位を除いた部位に入射する発光部101からの光を遮光する遮光部をさらに備える。 The sample analyzer 100 according to the aspect 5 of the present invention corresponds to the part corresponding to the reference chamber 414 and the measurement chambers 404 and 404a to 404f among the parts of the container (chip 102) on the same circumference in the aspect 1 described above. It further includes a light shielding unit that shields light from the light emitting unit 101 that is incident on the part other than the part.
 上記の構成によれば、容器(チップ102)の部位のうち、基準室414に対応する部位および測定室404、404a~404fに対応する部位を除いた部位を透過した光を遮ることができ、計測部109が基準透過光量と、測定透過光量とを明確に特定することが可能となる。 According to the above configuration, the light transmitted through the portion of the container (chip 102) excluding the portion corresponding to the reference chamber 414 and the portions corresponding to the measurement chambers 404, 404a to 404f can be blocked. The measurement unit 109 can clearly specify the reference transmitted light amount and the measured transmitted light amount.
 本発明の態様6に係る試料分析装置100は、上記態様4において、容器(チップ102)に、試料に基づく他の測定液(混合液)を収容した他の測定室404、404a~404fが回転軸450の周りの同一円周上に形成され、計測部109は、特定した基準室414の位置と、測定室404、404a~404fの基準室414に対する相対的な位置関係とに基づいて測定室404、404a~404fの同一円周上の位置を特定し、特定した基準室414の位置と、他の測定室404、404a~404fの基準室414に対する相対的な位置関係とに基づいて他の測定室404、404a~404fの同一円周上の位置を特定する。 In the sample analyzer 100 according to the sixth aspect of the present invention, in the fourth aspect, the other measurement chambers 404, 404a to 404f in which the other measurement liquid (mixed liquid) based on the sample is stored in the container (chip 102) are rotated. The measurement unit 109 is formed on the same circumference around the shaft 450, and the measurement unit 109 measures the measurement chamber based on the specified position of the reference chamber 414 and the relative positional relationship of the measurement chambers 404 and 404a to 404f with respect to the reference chamber 414. 404, 404a to 404f are located on the same circumference, and based on the position of the identified reference chamber 414 and the relative positional relationship of the other measurement chambers 404, 404a to 404f with respect to the reference chamber 414, The positions on the same circumference of the measurement chambers 404, 404a to 404f are specified.
 上記の構成によれば、基準室414の位置をまず特定し、特定した基準室414の位置からの相対的な位置により測定室404、404a~404fの位置を特定する。これにより、測定室404、404a~404fが複数ある場合においても、特定した基準室414の位置に基づいて測定室404、404a~404fの位置を特定することで、それぞれの測定室404、404a~404fにおける測定透過光量が近い値であったとしても、確実に測定室404、404a~404fの位置を特定することが可能となる。 According to the above configuration, the position of the reference chamber 414 is first specified, and the positions of the measurement chambers 404, 404a to 404f are specified based on the relative positions from the specified position of the reference chamber 414. As a result, even when there are a plurality of measurement chambers 404, 404a to 404f, by specifying the positions of the measurement chambers 404, 404a to 404f based on the specified positions of the reference chamber 414, the respective measurement chambers 404, 404a to 404f Even if the measured transmitted light amount in 404f is a close value, the positions of the measurement chambers 404, 404a to 404f can be reliably specified.
 本発明の態様7に係る試料分析装置100は、上記態様6において、発光部101が、計測部109により位置が特定された測定室404、404a~404fの測定液(混合液)に対応する波長の光300を発光する光源201a~201cと、計測部109により位置が特定された他の測定室404、404a~404fの他の測定液(混合液)に対応する他の波長の光300を発光する他の光源201a~201cとを有し、光源201a~201cは測定室404、404a~404fに向かって前記波長の光300を発光し、他の光源201a~201cは他の測定室404、404a~404fに向かって前記他の波長の光300を発光する。 In the sample analyzer 100 according to aspect 7 of the present invention, in the aspect 6, the light emitting unit 101 has a wavelength corresponding to the measurement liquid (mixed liquid) in the measurement chambers 404 and 404a to 404f whose positions are specified by the measurement part 109. The light sources 201a to 201c that emit the light 300 and the light 300 having other wavelengths corresponding to other measurement liquids (mixed liquids) of the other measurement chambers 404 and 404a to 404f whose positions are specified by the measurement unit 109 are emitted. The light sources 201a to 201c emit the light 300 having the wavelength toward the measurement chambers 404 and 404a to 404f, and the other light sources 201a to 201c include the other measurement chambers 404 and 404a. The light 300 having the other wavelength is emitted toward .about.404f.
 上記の構成によれば、測定液(混合液)が複数ある場合において、特定した測定室404、404a~404fの位置に応じて、それぞれに対応する波長の光300を発光することができる。そのため、容器(チップ102)に複数の測定液(混合液)が格納されていたとしても、測定を自動で行うことが可能となる。 According to the above configuration, when there are a plurality of measurement liquids (mixed liquids), it is possible to emit light 300 having wavelengths corresponding to the positions of the specified measurement chambers 404 and 404a to 404f. Therefore, even if a plurality of measurement liquids (mixed liquids) are stored in the container (chip 102), the measurement can be automatically performed.
 本発明の態様8に係る試料分析装置100は、上記態様7において、発光部101’が、測定室404、404a~404fのうちの1つに対応する測定室フィルター(干渉フィルター311~316のうちの1つ)と、前記他の測定室404、404a~404fのうちの他の1つに対応する他の測定室フィルター(干渉フィルター311~316のうちの他の1つ)と、基準室414に対応する基準室フィルター317とを有し、測定室フィルター(干渉フィルター311~316のうちの1つ)が、光源201a~201cのうちの1つから発光されて測定室404、404a~404fのうちの1つの測定液(混合液)に対応する波長の光を透過する透過領域を含み、他の測定室フィルター(干渉フィルター311~316のうちの他の1つ)が、他の光源201a~201cのうちの他の1つから発光されて他の測定室404、404a~404fのうちの他の1つの他の測定液(混合液)に対応する他の波長の光を透過する他の透過領域を含み、基準室フィルター317が、光源201a~201cのうちの1つから発光されて測定室404、404a~404fののうちの1つ測定液(混合液)に対応する波長の光を透過する基準室透過領域(干渉フィルター317a~317eのうちの1つ)と、他の光源201a~201cのうちの他の1つから発光されて他の測定室404、404a~404fのうちの他の1つの他の測定液(混合液)に対応する他の波長の光を透過する他の基準室透過領域(干渉フィルター317a~317eのうちの他の1つ)とを有し、基準室透過領域(干渉フィルター317a~317eのうちの1つ)と他の基準室透過領域(干渉フィルター317a~317eのうちの他の1つ)とが同一円上に配置されている。 In the sample analyzer 100 according to Aspect 8 of the present invention, in the Aspect 7, the light emitting unit 101 ′ corresponds to one of the measurement chambers 404, 404a to 404f (of the interference filters 311 to 316). ), Another measurement chamber filter corresponding to the other one of the other measurement chambers 404, 404a to 404f (the other one of the interference filters 311 to 316), and a reference chamber 414 And a measurement chamber filter (one of the interference filters 311 to 316) emitted from one of the light sources 201a to 201c to emit light from the measurement chambers 404 and 404a to 404f. It includes a transmission region that transmits light of a wavelength corresponding to one of the measurement liquids (mixed liquid), and other measurement chamber filters (out of the interference filters 311 to 316) The other one) emits light from the other one of the other light sources 201a to 201c and corresponds to another measurement liquid (mixed liquid) of the other one of the other measurement chambers 404 and 404a to 404f. The reference chamber filter 317 emits light from one of the light sources 201a to 201c to measure one of the measurement chambers 404 and 404a to 404f. The reference chamber transmission region (one of the interference filters 317a to 317e) that transmits light of the wavelength corresponding to the (mixed liquid) and the other one of the other light sources 201a to 201c are used to emit light. Other reference chamber transmission regions (other interference filters 317a to 317e) that transmit light of other wavelengths corresponding to the other measurement liquid (mixed liquid) of the other one of the measurement chambers 404 and 404a to 404f. One) , (One of the interference filter 317a ~ 317e) reference chamber transmissive region and (another one of the interference filters 317a ~ 317e) other criteria chamber transmissive region and are arranged on the same circle.
 上記の構成によれば、発光部101’が測定室フィルター(干渉フィルター311~316のうちの1つ)と、他の測定室フィルター(干渉フィルター311~316のうちの他の1つ)と、基準室フィルター317とを有していることにより、測定室フィルター(干渉フィルター311~316のうちの1つ)を介した測定透過光量と、基準室フィルター317の対応する基準室透過領域(干渉フィルター317a~317eのうちの1つ)を介した基準透過光量とに基づいて、それぞれの測定室404、404a~404fに対して試料に含まれる成分を分析することができる。また、基準室透過領域(干渉フィルター317a~317eのうちの1つ)と他の基準室透過領域(干渉フィルター317a~317eのうちの他の1つ)とが同一円上に配置されていることにより、それぞれの測定室404、404a~404fに対応する基準透過光量を一度に測定することが可能となる。これにより、分析を高精度かつ効率的に行うことが可能となる。 According to the above configuration, the light emitting unit 101 ′ includes a measurement chamber filter (one of the interference filters 311 to 316), another measurement chamber filter (the other one of the interference filters 311 to 316), By having the reference chamber filter 317, the measured transmitted light quantity through the measurement chamber filter (one of the interference filters 311 to 316) and the corresponding reference chamber transmission region (interference filter) of the reference chamber filter 317 are obtained. Based on the reference transmitted light quantity via one of 317a to 317e), the components contained in the sample can be analyzed for each measurement chamber 404, 404a to 404f. Further, the reference chamber transmission region (one of the interference filters 317a to 317e) and the other reference chamber transmission region (the other one of the interference filters 317a to 317e) are arranged on the same circle. Accordingly, it is possible to measure the reference transmitted light amount corresponding to each of the measurement chambers 404 and 404a to 404f at a time. Thereby, analysis can be performed with high accuracy and efficiency.
 本発明の態様9に係る試料分析装置100は、上記態様8において、受光部103が受光した光の透過光量を同一円周に沿って連続的に測定し、透過光量が最も大きい同一円周上の位置により基準室414の同一円周上の位置を計測部109が特定するときに、回転駆動部106は容器(チップ102)を第1回転速度で回転運動させ、光源201a~201cのうちの1つから発光されて測定室404、404a~404fののうちの1つ測定液(混合液)に対応する波長の光が基準室透過領域(干渉フィルター317a~317eのうちの1つ)を透過し、他の光源201a~201cのうちの1つから発光されて他の測定室404、404a~404fのうちの他の1つの他の測定液(混合液)に対応する他の波長の光が他の基準室透過領域(干渉フィルター317a~317eのうちの他の1つ)を透過するときに、回転駆動部106は容器(チップ102)を第1回転速度よりも遅い第2回転速度で回転運動させる。 In the sample analyzer 100 according to the ninth aspect of the present invention, the transmitted light amount of the light received by the light receiving unit 103 is continuously measured along the same circumference in the above-described aspect 8, and the same transmitted light amount is the same on the same circumference. When the measurement unit 109 specifies the position on the same circumference of the reference chamber 414 based on the position of the reference chamber 414, the rotation driving unit 106 rotates the container (chip 102) at the first rotation speed, and the light source 201a to 201c is rotated. Light having a wavelength corresponding to one measurement liquid (mixed liquid) in one of the measurement chambers 404 and 404a to 404f is transmitted through the reference chamber transmission region (one of the interference filters 317a to 317e). Then, light of another wavelength corresponding to another measurement liquid (mixed liquid) of the other measurement chambers 404 and 404a to 404f emitted from one of the other light sources 201a to 201c is emitted. Other reference rooms When passing through the (other one of the interference filters 317a ~ 317e) over the region, the rotation drive unit 106 rotates motion at a slower second rotational speed than the container (tip 102) first speed of rotation.
 上記の構成によれば、基準室414の同一円周上の位置を計測部109が特定するときよりも遅い速度で容器(チップ102)を回転運動させながら、基準透過光量を測定することで、基準透過光量の測定を正確に行うことができる。これにより、試料の成分の分析をより高精度に行うことが可能となる。 According to the above configuration, by measuring the reference transmitted light amount while rotating the container (chip 102) at a slower speed than when the measurement unit 109 specifies the position on the same circumference of the reference chamber 414, The reference transmitted light amount can be accurately measured. This makes it possible to analyze the components of the sample with higher accuracy.
 本発明の態様10に係る試料分析装置100は、上記態様8において、回転駆動部106が容器(チップ102)を第1回転速度で回転運動させながら、受光部103が受光した光の透過光量を同一円周に沿って連続的に計測部109が測定し、透過光量が最も大きい同一円周上の位置により基準室414の同一円周上の位置を計測部109が特定し、発光部101’により発光された光が基準室414を透過する位置から容器(チップ102)を予め定められた角度回転軸450の周りに回転駆動部106が回転させ、測定室404、404a~404fのうちの1つの測定液(混合液)を攪拌するために容器(チップ102)を回転軸450の周りに搖動させた後、発光部101’から発光されて測定室404、404a~404fのうちの1つを透過し、受光部103が受光した光の測定透過光量を計測部109が測定する。 In the sample analyzer 100 according to the tenth aspect of the present invention, the transmitted light amount of the light received by the light receiving unit 103 while the rotation driving unit 106 rotates the container (chip 102) at the first rotation speed in the eighth mode. The measurement unit 109 continuously measures along the same circumference, the measurement unit 109 specifies the position on the same circumference of the reference chamber 414 based on the position on the same circumference where the transmitted light amount is the largest, and the light emitting unit 101 ′. The rotation drive unit 106 rotates the container (chip 102) around a predetermined angle rotation axis 450 from a position where the light emitted by the light passes through the reference chamber 414, and one of the measurement chambers 404, 404a to 404f. In order to stir two measurement liquids (mixed liquids), the container (chip 102) is swung around the rotation shaft 450, and then emitted from the light emitting unit 101 ′ to be emitted from the measurement chambers 404, 404a to 404f. Through the Chino one, the measurement amount of light transmitted through the light receiving unit 103 has received the measurement unit 109 measures.
 上記の構成によれば、予め定められた測定室404、404a~404fのうちの1つに対して測定を行う際に、容器(チップ102)を回転軸450の周りに搖動させることで測定液(混合液)の再攪拌を行う。そのため、測定液(混合液)の発色反応あるいは分散状態が混合後の時間経過に対して不安定となる測定液(混合液)の測定を行う場合であっても、再攪拌を行うことにより、成分濃度の測定精度を向上させることができる。 According to the above configuration, the measurement liquid is obtained by peristating the container (chip 102) around the rotation axis 450 when performing measurement on one of the predetermined measurement chambers 404, 404a to 404f. Re-stir (mixture). Therefore, even when measuring the measurement liquid (mixture) in which the color development reaction or dispersion state of the measurement liquid (mixture) becomes unstable over time after mixing, by re-stirring, The measurement accuracy of the component concentration can be improved.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、試料分析装置、特に土壌成分の分析に好適な試料分析装置に利用することができる。 The present invention can be used for a sample analyzer, particularly a sample analyzer suitable for analyzing soil components.
 100 試料分析装置
 101、101’ 発光部
 102 チップ(容器)
 103 受光部
 106 回転駆動部
 109 計測部
 201a~201c 光源
 205、215 フィルターアレイ
 300 光
 301~306 干渉フィルター
 311~316 干渉フィルター(測定室フィルター、透過領域、他の透過領域)
 317 基準室フィルター
 317a~317e 干渉フィルター(基準室透過領域、他の基準室透過領域)
 404、404a~404f 測定室
 414 基準室
 450 回転軸
100 Sample analyzer 101, 101 ′ Light emitting unit 102 Chip (container)
DESCRIPTION OF SYMBOLS 103 Light receiving part 106 Rotation drive part 109 Measuring part 201a- 201c Light source 205, 215 Filter array 300 Light 301-306 Interference filter 311-316 Interference filter (measurement room filter, transmission area, other transmission area)
317 Reference room filter 317a to 317e Interference filter (reference room transmission area, other reference room transmission area)
404, 404a to 404f Measurement chamber 414 Reference chamber 450 Rotating shaft

Claims (10)

  1.  試料を収容した基準室と、前記試料に基づく測定液を収容した測定室とを回転軸の周りの同一円周上に形成した容器と、
     前記同一円周上に対応する位置に配置されて前記容器に向かって光を発光する発光部と、
     前記容器を透過した光を受光する受光部と、
     前記容器と前記発光部および前記受光部との少なくとも一方を前記回転軸の周りに回転運動させる回転駆動部と、
     前記基準室を透過して受光部が受光した光の基準透過光量と、前記測定室を透過して受光部が受光した光の測定透過光量とに基づいて、前記試料に含まれる成分を分析する計測部とを備えたことを特徴とする試料分析装置。
    A container in which a reference chamber containing a sample and a measurement chamber containing a measurement liquid based on the sample are formed on the same circumference around a rotation axis;
    A light emitting unit that emits light toward the container and is disposed at a position corresponding to the same circumference;
    A light receiving portion for receiving light transmitted through the container;
    A rotation driving unit that rotates at least one of the container, the light emitting unit, and the light receiving unit around the rotation axis;
    Analyzing components contained in the sample based on a reference transmitted light amount of light transmitted through the reference chamber and received by the light receiving unit and a measured transmitted light amount of light transmitted through the measurement chamber and received by the light receiving unit. A sample analyzer comprising a measurement unit.
  2.  前記基準室が、前記試料の試料液のみを収容し、
     前記測定液が、前記試料に含まれる成分に対応する試薬と前記試料との混合液である請求項1に記載の試料分析装置。
    The reference chamber contains only the sample liquid of the sample,
    The sample analyzer according to claim 1, wherein the measurement liquid is a mixed liquid of a reagent corresponding to a component contained in the sample and the sample.
  3.  前記計測部は、前記受光部が受光した光の透過光量を前記同一円周に沿って連続的に測定し、前記測定した透過光量に基づいて、前記基準室と前記測定室との少なくとも一つの前記同一円周上の位置を特定する請求項1に記載の試料分析装置。 The measurement unit continuously measures the amount of transmitted light received by the light receiving unit along the same circumference, and based on the measured amount of transmitted light, at least one of the reference chamber and the measurement chamber The sample analyzer according to claim 1, wherein a position on the same circumference is specified.
  4.  前記計測部は、前記受光部が受光した光の透過光量が最も大きい前記同一円周上の位置により前記基準室の前記同一円周上の位置を特定する請求項3に記載の試料分析装置。 4. The sample analyzer according to claim 3, wherein the measurement unit specifies the position on the same circumference of the reference chamber based on the position on the same circumference where the amount of transmitted light received by the light receiving unit is the largest.
  5.  前記同一円周上の容器の部位のうち前記基準室に対応する部位および前記測定室に対応する部位を除いた部位に入射する前記発光部からの光を遮光する遮光部をさらに備える請求項1に記載の試料分析装置。 The light shielding part which shields the light from the said light emission part which injects into the site | part except the site | part corresponding to the said reference | standard chamber and the site | part corresponding to the said measurement chamber among the site | parts of the container on the said same periphery is further provided. The sample analyzer described in 1.
  6.  前記容器に、前記試料に基づく他の測定液を収容した他の測定室が前記回転軸の周りの同一円周上に形成され、
     前記計測部は、前記特定した基準室の位置と、前記測定室の前記基準室に対する相対的な位置関係とに基づいて前記測定室の前記同一円周上の位置を特定し、前記特定した基準室の位置と、前記他の測定室の前記基準室に対する相対的な位置関係とに基づいて前記他の測定室の前記同一円周上の位置を特定する請求項4に記載の試料分析装置。
    In the container, another measurement chamber containing another measurement liquid based on the sample is formed on the same circumference around the rotation axis,
    The measurement unit identifies the position of the measurement chamber on the same circumference based on the position of the identified reference chamber and the relative positional relationship of the measurement chamber with respect to the reference chamber, and the identified reference The sample analyzer according to claim 4, wherein a position of the other measurement chamber on the same circumference is specified based on a position of the chamber and a relative positional relationship of the other measurement chamber with respect to the reference chamber.
  7.  前記発光部は、前記計測部により位置が特定された測定室の測定液に対応する波長の光を発光する光源と、前記計測部により位置が特定された他の測定室の他の測定液に対応する他の波長の光を発光する他の光源とを有し、
     前記光源は前記測定室に向かって前記波長の光を発光し、前記他の光源は前記他の測定室に向かって前記他の波長の光を発光する請求項6に記載の試料分析装置。
    The light emitting unit includes a light source that emits light having a wavelength corresponding to the measurement liquid in the measurement chamber whose position is specified by the measurement unit, and another measurement liquid in another measurement chamber whose position is specified by the measurement unit. Other light sources that emit corresponding wavelengths of light,
    The sample analyzer according to claim 6, wherein the light source emits light of the wavelength toward the measurement chamber, and the other light source emits light of the other wavelength toward the other measurement chamber.
  8.  前記発光部が、前記測定室に対応する測定室フィルターと、
     前記他の測定室に対応する他の測定室フィルターと、
     前記基準室に対応する基準室フィルターとを有し、
     前記測定室フィルターが、前記光源から発光されて前記測定室の測定液に対応する波長の光を透過する透過領域を含み、
     前記他の測定室フィルターが、前記他の光源から発光されて前記他の測定室の他の測定液に対応する他の波長の光を透過する他の透過領域を含み、
     前記基準室フィルターが、前記光源から発光されて前記測定室の測定液に対応する波長の光を透過する基準室透過領域と、前記他の光源から発光されて前記他の測定室の他の測定液に対応する他の波長の光を透過する他の基準室透過領域とを有し、
     前記基準室透過領域と前記他の基準室透過領域とが前記同一円上に配置されている請求項7に記載の試料分析装置。
    The light emitting unit, a measurement chamber filter corresponding to the measurement chamber;
    Another measurement chamber filter corresponding to the other measurement chamber;
    A reference chamber filter corresponding to the reference chamber;
    The measurement chamber filter includes a transmission region that transmits light having a wavelength corresponding to the measurement liquid in the measurement chamber emitted from the light source;
    The other measurement chamber filter includes another transmission region that emits light from the other light source and transmits light of another wavelength corresponding to the other measurement liquid of the other measurement chamber,
    The reference chamber filter emits light from the light source and transmits light having a wavelength corresponding to the measurement liquid in the measurement chamber, and another measurement of the other measurement chamber emitted from the other light source. Another reference chamber transmission region that transmits light of another wavelength corresponding to the liquid,
    The sample analyzer according to claim 7, wherein the reference chamber transmission region and the other reference chamber transmission region are arranged on the same circle.
  9.  前記受光部が受光した光の透過光量を前記同一円周に沿って連続的に測定し、前記透過光量が最も大きい前記同一円周上の位置により前記基準室の前記同一円周上の位置を前記計測部が特定するときに、前記回転駆動部は前記容器を第1回転速度で回転運動させ、
     前記光源から発光されて前記測定室の測定液に対応する波長の光が前記基準室透過領域を透過し、前記他の光源から発光されて前記他の測定室の他の測定液に対応する他の波長の光が前記他の基準室透過領域を透過するときに、前記回転駆動部は前記容器を前記第1回転速度よりも遅い第2回転速度で回転運動させる請求項8に記載の試料分析装置。
    The transmitted light quantity of the light received by the light receiving unit is continuously measured along the same circumference, and the position of the reference chamber on the same circumference is determined by the position on the same circumference where the transmitted light quantity is the largest. When the measurement unit specifies, the rotation drive unit rotates the container at a first rotation speed,
    Light emitted from the light source and having a wavelength corresponding to the measurement liquid in the measurement chamber passes through the reference chamber transmission region, and is emitted from the other light source and corresponds to another measurement liquid in the other measurement chamber. 9. The sample analysis according to claim 8, wherein when the light having the wavelength of the second light passes through the transmission region of the other reference chamber, the rotation driving unit rotates the container at a second rotation speed lower than the first rotation speed. apparatus.
  10.  前記回転駆動部が前記容器を第1回転速度で回転運動させながら、前記受光部が受光した光の透過光量を前記同一円周に沿って連続的に前記計測部が測定し、前記透過光量が最も大きい前記同一円周上の位置により前記基準室の前記同一円周上の位置を前記計測部が特定し、
     前記発光部により発光された光が前記基準室を透過する位置から前記容器を予め定められた角度前記回転軸の周りに前記回転駆動部が回転させ、前記測定室の測定液を攪拌するために前記容器を前記回転軸の周りに搖動させた後、前記発光部から発光されて前記測定室を透過し、前記受光部が受光した光の測定透過光量を前記計測部が測定する請求項8に記載の試料分析装置。
    While the rotation drive unit rotates the container at the first rotation speed, the measurement unit continuously measures the transmitted light amount of the light received by the light receiving unit along the same circumference, and the transmitted light amount is The measurement unit identifies the position on the same circumference of the reference chamber by the largest position on the same circumference,
    In order to stir the measurement liquid in the measurement chamber by rotating the container around the rotation axis by a predetermined angle from the position where the light emitted from the light-emitting unit passes through the reference chamber. The measurement unit measures the measured transmitted light amount of the light emitted from the light emitting unit and transmitted through the measurement chamber after the container is swung around the rotation axis and received by the light receiving unit. The sample analyzer described.
PCT/JP2015/067492 2014-10-23 2015-06-17 Sample analysis device WO2016063569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014216621A JP5964388B2 (en) 2014-10-23 2014-10-23 Sample analyzer
JP2014-216621 2014-10-23

Publications (1)

Publication Number Publication Date
WO2016063569A1 true WO2016063569A1 (en) 2016-04-28

Family

ID=55760620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067492 WO2016063569A1 (en) 2014-10-23 2015-06-17 Sample analysis device

Country Status (2)

Country Link
JP (1) JP5964388B2 (en)
WO (1) WO2016063569A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7171373B2 (en) * 2018-11-05 2022-11-15 株式会社クボタ Reaction vessel for soil analysis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206744A (en) * 1983-04-06 1984-11-22 ベ−カ−・インストルメンツ・コ−ポレ−シヨン Centrifugal analyzer
JPS6398544A (en) * 1986-10-15 1988-04-30 Toshiba Corp Reaction container
JPH11190684A (en) * 1997-12-26 1999-07-13 Shimadzu Corp Measuring device provided with automatic sample changing function
WO2009091039A1 (en) * 2008-01-16 2009-07-23 Nippon Telegraph And Telephone Corporation Surface plasmon resonance measuring device, sample cell, and measuring method
JP2009210564A (en) * 2008-02-05 2009-09-17 Panasonic Corp Analyzing device, analyzing apparatus using the same, and analyzing method
JP2013210351A (en) * 2012-03-30 2013-10-10 Wako Pure Chem Ind Ltd Measuring apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9424218D0 (en) * 1994-11-30 1995-01-18 Zynocyte Ltd Apparatus for analysing blood and other samples
JP6100587B2 (en) * 2013-04-08 2017-03-22 株式会社堀場製作所 Analysis equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206744A (en) * 1983-04-06 1984-11-22 ベ−カ−・インストルメンツ・コ−ポレ−シヨン Centrifugal analyzer
JPS6398544A (en) * 1986-10-15 1988-04-30 Toshiba Corp Reaction container
JPH11190684A (en) * 1997-12-26 1999-07-13 Shimadzu Corp Measuring device provided with automatic sample changing function
WO2009091039A1 (en) * 2008-01-16 2009-07-23 Nippon Telegraph And Telephone Corporation Surface plasmon resonance measuring device, sample cell, and measuring method
JP2009210564A (en) * 2008-02-05 2009-09-17 Panasonic Corp Analyzing device, analyzing apparatus using the same, and analyzing method
JP2013210351A (en) * 2012-03-30 2013-10-10 Wako Pure Chem Ind Ltd Measuring apparatus

Also Published As

Publication number Publication date
JP2016085078A (en) 2016-05-19
JP5964388B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
US10670454B2 (en) System for optically monitoring operating conditions in a sample analyzing apparatus
US9285311B2 (en) System for performing scattering and absorbance assays
CN105277727A (en) In-vitro diagnostic analysis method and system
JP5964388B2 (en) Sample analyzer
US20220252513A1 (en) Filter Device for an Optical Module for a Lab-on-a-Chip Analysis Device, Optical Module for a Lab-on-a-Chip Analysis Device and Method for Operating an Optical Module for a Lab-on-a-Chip Analysis Device
EP2607883A1 (en) System for photometric measurement of liquids
JP2017032318A (en) Liquid sample analyzer
EP3449241B1 (en) Methods and systems for optical-based measurement with selectable excitation light paths
JP2016070671A (en) Measuring apparatus
US7419836B2 (en) Device and method for observing reactions in samples
JP6030676B2 (en) Sample analyzer and sample analysis method
JP2017198623A (en) Measuring apparatus and measuring method
WO2017057083A1 (en) Measurement device and measurement method
JP2005291726A (en) Biochemical analyzer
EP4141417A1 (en) Sample analysis device and sample analysis method
JP2016218020A (en) Fluid component analysis device
JP5932077B1 (en) Component analysis container
JP4410644B2 (en) Biochemical automatic analyzer
JP2014066592A (en) Automatic analyzer
JP2017072579A (en) Measuring apparatus and measuring method
JP6635286B2 (en) Measuring device with measuring container
US20100053620A1 (en) Automatic analyzer
CN110383041A (en) Optical measuring system, optical unit and method of optically measuring
JP2017009525A (en) Stirring container and stirring device
JP2009047647A (en) Automatic analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853003

Country of ref document: EP

Kind code of ref document: A1