WO2016061957A1 - 一种lte网络业务流量评估方法及装置 - Google Patents

一种lte网络业务流量评估方法及装置 Download PDF

Info

Publication number
WO2016061957A1
WO2016061957A1 PCT/CN2015/072797 CN2015072797W WO2016061957A1 WO 2016061957 A1 WO2016061957 A1 WO 2016061957A1 CN 2015072797 W CN2015072797 W CN 2015072797W WO 2016061957 A1 WO2016061957 A1 WO 2016061957A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
traffic
bottleneck node
service
topology
Prior art date
Application number
PCT/CN2015/072797
Other languages
English (en)
French (fr)
Inventor
郑颖
喻红
王雪怀
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016061957A1 publication Critical patent/WO2016061957A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present invention relates to the field of communication network technologies, and in particular, to an LTE (Long Term Evolution) network service traffic evaluation method and apparatus.
  • LTE Long Term Evolution
  • the embodiment of the present invention provides an LTE network service traffic evaluation method and device, which intelligently pre-evaluates whether the new service traffic may exceed the service traffic of the key nodes in the network, and improves the accuracy and security of the expansion of the existing network service. Avoid business anomalies caused by improper business traffic expansion.
  • an embodiment of the present invention provides an LTE network service traffic evaluation method, including:
  • the configuration parameter is configuration data of the pre-increment service access point
  • the impact of the pre-incremented traffic on the traffic of the nodes in the live network is evaluated according to the traffic of the bottleneck node and the available bandwidth of the physical link of the access layer side of the bottleneck node.
  • the steps for obtaining network attributes of the live network include:
  • the network attributes include: a network hierarchy, a network topology shape, a relationship between the network topologies, and an intersection between the network topologies.
  • the step of determining a bottleneck node in the network topology path from the pre-increment service access point to the aggregation layer according to the network attribute of the live network, the specified pre-increment service access point, and the configuration parameter includes:
  • the pre-increment service access point belongs to the access layer, traverse the network topology connected to the pre-increased service access point until the traversal to the intersection of the convergence layer where the network topology intersects the convergence layer, and the traversal ends. ;
  • the basic data includes a physical link rate between network elements
  • the steps of determining the bottleneck node include:
  • the configuration parameters include: a service traffic of a pre-increment service, a time period for querying service traffic, a convergence coefficient of an access layer service traffic, and a physical link usage rate;
  • the steps of obtaining the capacity of the bottleneck node and the physical link available bandwidth of the access layer side of the bottleneck node include:
  • the physical link rate of the access layer side topology and the physical link usage rate are obtained, and the physical link available bandwidth traffic of the access layer side topology of the bottleneck node is obtained.
  • the step of evaluating the impact of the pre-incremented traffic on the traffic of the nodes in the live network according to the bandwidth of the traffic of the bottleneck node and the bandwidth of the physical link of the access layer side of the bottleneck node includes:
  • the service flow is abnormal after the bottleneck node is expanded; after the expansion, the traffic is less than or equal to the access layer side topology.
  • the physical link is available for bandwidth traffic, it is determined that the service flow is normal after the bottleneck node is expanded.
  • the step of obtaining the pre-expansion traffic of the bottleneck node according to the bandwidth utilization of the physical port of the access layer of the bottleneck node and the physical link rate of the topology of the access layer of the bottleneck node includes:
  • N is a preset value
  • the pre-expansion flow rate the peak value of the bandwidth utilization of the physical port on the access layer side * the physical link rate of the topology on the access layer side, and the pre-expansion flow rate of the bottleneck node is obtained.
  • the step of obtaining the traffic after the expansion of the bottleneck node according to the sum of the traffic of the access layer of the bottleneck node and the traffic before the expansion of the bottleneck node includes:
  • the traffic after capacity expansion the sum of the pre-increased traffic of the access layer + the traffic before the capacity expansion, the traffic after the expansion of the bottleneck node is obtained;
  • the pre-expansion flow includes the pre-expansion flow of the bottleneck node itself and the pre-expansion flow of the bottleneck node of the bottleneck node corresponding protection method.
  • the configuration parameter includes: a service traffic of a pre-increased service, a time period for querying service traffic, a convergence coefficient of an access layer service traffic, and a physical link usage rate; and the basic data includes a physical link rate between the network elements;
  • the method further includes:
  • the pre-increased service access point belongs to the aggregation layer and is not an isolated node
  • the uplink bandwidth utilization rate and the downlink bandwidth utilization rate of the physical port of the source point are obtained; wherein the source point refers to the membership of the pre-increased service access point.
  • Any endpoint of each link of the topology, and the adjacent two links take different endpoints;
  • the step of obtaining the uplink payload capacity and the downlink payload capacity of the link according to the uplink bandwidth utilization rate and the downlink bandwidth utilization rate and the physical link rate of the source link member link includes:
  • the method further includes:
  • Generating a network topology layer traffic report of the pre-increased service access point where the network topology layer includes: an access layer and an aggregation layer.
  • the embodiment of the present invention further provides an LTE network service traffic evaluation apparatus, including:
  • a first obtaining module configured to acquire a network attribute of the existing network, a specified pre-increment service access point, and a configuration parameter, where the configuration parameter is configuration data of the pre-added service access point;
  • a bottleneck node determining module configured to determine a bottleneck node in the network topology path from the pre-increased service access point to the aggregation layer according to the network attribute of the live network, the specified pre-increment service access point, and the configuration parameter;
  • a second obtaining module configured to obtain the bandwidth of the physical link available after the capacity expansion of the bottleneck node and the access layer side topology of the bottleneck node;
  • the traffic evaluation module is configured to estimate the impact of the pre-incremented traffic on the traffic of the nodes in the live network according to the traffic of the bottleneck node and the available bandwidth of the physical link of the access layer side of the bottleneck node.
  • the first obtaining module includes:
  • the data collection sub-module is configured to collect basic data of the packet transmission network device of the existing network element management system
  • the network attribute analysis sub-module is configured to analyze and identify network attributes of the appearance network according to the basic data; wherein the network attributes include: a network hierarchy, a network topology shape, a relationship between the network topologies, and an intersection between the network topologies.
  • the bottleneck node determining module includes:
  • a network topology traversal sub-module configured to traverse a network topology connected to the pre-increment service access point when the pre-increment service access point belongs to an access layer, until traversing to the network topology intersecting the convergence layer At the intersection of the convergence layer, the traversal ends;
  • An identifier submodule configured to identify a network topology path between the pre-increment service access point and the convergence layer intersection, and a network topology path intersection point in the network topology path; wherein the network topology path The intersection includes the intersection of the convergence layer;
  • the bottleneck node determines the sub-module, and is set to determine the bottleneck node according to the intersection point of the network topology path.
  • the LTE network service traffic evaluation method of the embodiment of the present invention first obtains the network attribute of the existing network, the specified pre-increased service access point, and the configuration parameter (the configuration data parameter of the pre-increased service access point), and then according to The data information determines the bottleneck node in the network topology path from the pre-increased service access point to the aggregation layer. After the bottleneck node is determined, the traffic of the bottleneck node and the available bandwidth of the physical link of the access layer side topology are obtained. Based on these two data, the impact of pre-increased traffic on the traffic of nodes in the live network can be evaluated.
  • the impact of the new service traffic on the traffic of the nodes in the live network can be calculated, which facilitates the operation and maintenance personnel to adjust the capacity expansion plan based on the evaluation result and implement the service expansion of the existing network to improve the accuracy and security of the expansion of the existing network service. Avoid business anomalies caused by improper business traffic expansion.
  • FIG. 1 is a schematic flowchart diagram of an LTE network service traffic evaluation method according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart 1 of a specific step of an LTE network service traffic evaluation method according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart 2 of a specific step of an LTE network service traffic evaluation method according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart 3 of a specific step of an LTE network service traffic evaluation method according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart 4 of a specific step of an LTE network service traffic evaluation method according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram showing a specific application of an LTE network service traffic evaluation method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an LTE network service traffic evaluation apparatus according to an embodiment of the present invention.
  • the embodiment of the present invention is directed to the current mode of monitoring the current traffic of the network node by the existing operator to grasp the current traffic status of the network.
  • the operator cannot know in advance whether the new service has traffic to the existing network.
  • the problem of over-limitation provides an LTE network service traffic assessment method to improve the accuracy and security of the expansion of the existing network services and avoid business anomalies caused by improper service traffic expansion.
  • an LTE network service traffic evaluation method includes:
  • Step 11 Obtain a network attribute of the current network, a specified pre-added service access point, and a configuration parameter, where the configuration parameter is a parameter of each configuration data of the pre-added service access point;
  • Step 12 Determine a bottleneck node in the network topology path from the pre-increment service access point to the aggregation layer according to the network attribute of the live network, the specified pre-increment service access point, and the configuration parameter.
  • Step 13 Obtain the expanded bandwidth of the bottleneck node and the available bandwidth of the physical link of the access layer side topology of the bottleneck node;
  • Step 14 According to the bandwidth of the bottleneck node and the available bandwidth of the physical link of the access layer side of the bottleneck node, the impact of the pre-incremented traffic on the traffic of the node in the live network is evaluated.
  • the network attribute of the existing network, the specified pre-increment service access point, and the configuration parameter (the configuration data parameters of the pre-increased service access point) are first obtained, and then the pre-added service is determined according to the data information.
  • the bottleneck node in the network topology path from the access point to the aggregation layer obtains the bottleneck node and obtains the bandwidth of the physical link available for the traffic of the bottleneck node and the topology of the access layer side.
  • the step of obtaining the network attribute of the live network in step 11 includes:
  • Step 111 Collect basic data of a packet transmission network device of the network element management system of the current network;
  • Step 112 Analyze and identify network attributes of the appearance network according to the basic data.
  • the network attributes include: a network hierarchy, a network topology shape, a relationship between network topologies, and an intersection between network topologies.
  • the collected data After collecting the basic data of the packet transmission network device of the current network element management system, the collected data can be saved in the database, and can be extracted and used when the related data is subsequently used.
  • the basic data may be a device type, a network element name, and a network element level. It can be known from the above steps that a bottleneck node needs to be found in the network topology path.
  • the network layer of the current network for example, identifying the access layer, the aggregation layer, the core layer, etc.
  • the network topology shape eg, Identify network attributes such as rings, chains, networks, etc., relationships between network topologies (such as intersecting, tangent, connected, etc.) and intersections between network topologies, and network attributes can be analyzed through the basic data collected in step 111. It is recognized that analysis and identification can be achieved by preset rules. Of course, this network property can also be saved to the database.
  • step 12 includes:
  • Step 121 When the pre-increment service access point belongs to the access layer, traverse the network topology connected to the pre-increased service access point until traversing to the intersection of the convergence layer and the convergence layer of the network layer The traversal ends;
  • Step 122 Identify a network topology path between the pre-increment service access point and the convergence layer intersection point, and a network topology path intersection point in the network topology path; where the network topology path intersection point includes Said convergence point;
  • step 123 the bottleneck node is determined according to the intersection point of the network topology path.
  • the network topology connected to the pre-increased service access point is traversed until the intersection of the convergence layer and the convergence layer where the network topology intersects with the convergence layer, and the traversal ends.
  • the network topology path between the pre-increment service access point and the convergence layer intersection point, and the network topology path intersection point in the network topology path can be identified, and the network topology path intersection point can be determined.
  • Bottleneck node
  • the service path is searched. Specifically, the bottleneck node is identified by traversing all service paths from the service access point to the aggregation layer.
  • the link rate mode is adopted.
  • the basic data includes a physical link rate between network elements;
  • Step 123 includes:
  • Step 1231a in the network topology path intersection, determining that the convergence layer intersection is a bottleneck node;
  • step 1231b the physical link rate of the adjacent two segments is compared according to the physical link rate between the network elements of the pre-increased service access point and the convergence layer, and the comparison results indicate the current two-segment topology.
  • the intersection point between the current two-segment topology and the topology on the adjacent aggregation layer side is obtained as the bottleneck node.
  • the bottleneck node Due to the nature of the bottleneck node, the default is the intersection point of the network topology path, the intersection point of the aggregation layer is the bottleneck node, and the other bottleneck node is confirmed by the link rate. Since the intersection of the network topology path has been traversed, the related information is also obtainable, and the bottleneck node is determined in the intersection of the network topology paths, as in step 1231b, according to the network between the pre-added service access point and the convergence layer intersection point. The physical link rate of the two sub-topologies is compared with the physical link rate of the two adjacent sub-topologies.
  • the current two-segment topology is intersected with the topology of the adjacent aggregation layer.
  • the intersection point is the bottleneck node.
  • the intersection point of the current two-segment topology intersects with the topology of the adjacent aggregation layer side is the bottleneck node; when the comparison result indicates that the physical link rates of the current two-stage topology are the same, the traversal to the adjacent aggregation layer side is continued.
  • the comparison process is repeated until it traverses to the intersection with the aggregation layer, and the traversal ends, which is also the bottleneck node.
  • step 13 can be performed.
  • the specific step of step 13 extracts the configuration parameters that have been acquired, that is, the configuration data parameters of the pre-increased service access point.
  • the configuration parameters include: service traffic of pre-increasing service, time period for querying service traffic, and access layer service. Traffic convergence coefficient and physical link usage rate;
  • Step 13 includes:
  • Step 131 Obtain a bandwidth utilization rate of the physical port of the access layer side of the bottleneck node, where the physical port is a physical port with a service;
  • Step 132 Obtain a pre-expansion flow of the bottleneck node according to the bandwidth utilization rate and a physical link rate of the access layer side topology of the bottleneck node.
  • Step 133 Acquire, according to the service traffic of the pre-increment service and the convergence coefficient of the access layer service traffic, a total sum of traffic of the access layer of the bottleneck node.
  • Step 134 Obtain a traffic after the expansion of the bottleneck node according to the sum of the traffic of the access layer and the traffic before the expansion.
  • Step 135 Obtain a physical link rate of the access layer side topology and the physical link usage rate, and obtain a physical link available bandwidth traffic of the access layer side topology of the bottleneck node.
  • the bandwidth utilization of the physical port of the access layer side of the bottleneck node is first obtained, and the bandwidth utilization is combined with the physical chain of the access layer side topology of the bottleneck node.
  • the path rate is used to obtain the pre-expansion flow of the bottleneck node.
  • the sum of the traffic of the access layer of the bottleneck node is obtained.
  • the traffic after the expansion of the bottleneck node is obtained.
  • the physical link rate and the physical link usage rate of the access layer side topology in the configuration parameter are obtained, and the physical link available bandwidth traffic of the access layer side topology of the bottleneck node is obtained.
  • step 132 includes:
  • Step 1321 Obtain N maximum values of bandwidth utilization of the physical port of the access layer side of the bottleneck node in the period of the query service traffic; where N is a preset value;
  • Step 1322 Obtain an average value of the maximum bandwidth utilization ratios of the physical ports of the access layer on the N access layer, and obtain a peak value of the bandwidth utilization ratio of the physical port of the access layer side of the bottleneck node.
  • Step 1323 Obtain a physical link rate of the access layer side topology of the bottleneck node.
  • the specific obtaining steps of the traffic before the capacity expansion are as above. Since the bandwidth utilization rate of the physical ports of the access layer side of the bottleneck node can be extracted in the time period of the predefined query service traffic in the configuration parameter, the first one is selected. The N maximum values are then taken as the average of the N maximum values to obtain the peak value of the bandwidth utilization of the access layer side physical port of the bottleneck node. It should be noted that the physical link rate of the access layer side topology of the bottleneck node can be obtained by including the physical link rate between the network elements in the basic parameters. The calculation formula of the pre-expansion flow is shown in step 1324.
  • the pre-expansion flow rate the peak value of the bandwidth utilization of the physical port on the access layer side * the physical link rate of the access layer side topology. After that, only the bottleneck that has been acquired is obtained.
  • the pre-expansion traffic of the bottleneck node can be obtained by substituting the peak value of the bandwidth utilization of the physical port of the access layer of the node and the physical link rate of the topology of the access layer.
  • the next step is to obtain the sum of the access layer pre-increasing traffic of the access bottleneck node according to the service traffic of the pre-increment service and the convergence coefficient of the access layer service traffic according to step 133.
  • Substituting the service traffic of the pre-added service and the convergence coefficient of the access layer service traffic into the formula: the sum of the pre-increased traffic available at the access layer of the bottleneck node ( ⁇ (pre-increasing traffic 1, pre-increasing traffic 1, ..., pre-increasing traffic) n)) * Access layer convergence coefficient, available.
  • n is the number of services that are pre-increased.
  • step 134 After obtaining the sum of the access layer pre-increasing traffic of the path bottleneck node, in the next step, step 134 includes:
  • the pre-expansion flow includes the pre-expansion flow of the bottleneck node itself and the pre-expansion flow of the bottleneck node of the bottleneck node corresponding protection method.
  • the capacity after capacity expansion the sum of the pre-increased traffic of the access layer + the traffic before the capacity expansion, and the flow of the pre-incremented traffic of the bottleneck node and the traffic before the capacity expansion are substituted, and the traffic after the capacity expansion can be obtained. Since the network structure of the existing network also includes a ring, the bottleneck node, especially the bottleneck node of the access layer side network topology and the convergence layer intersection point, may have two corresponding bottleneck nodes, and the two bottleneck nodes protect each other.
  • the traffic before the expansion of the bottleneck node includes not only the pre-expansion traffic of the bottleneck node itself, but also the pre-expansion traffic of the bottleneck node corresponding to the protection method of the bottleneck node, in order to obtain more accurate traffic after expansion. .
  • step 135 is required to obtain the physical link available bandwidth traffic of the access layer side topology of the bottleneck node.
  • the physical link available bandwidth of the topology of the access layer side of the bottleneck node the physical link rate of the topology of the access layer side * the physical link usage rate, and the physicality of the access layer side topology of the bottleneck node is obtained.
  • the link rate and physical link usage can be substituted into the formula.
  • the access layer side topology of the bottleneck node refers to the topology of the access layer side to which the bottleneck node belongs.
  • step 14 After obtaining the bandwidth of the physical link of the bottleneck node and the available bandwidth of the physical link of the access layer side, according to step 14, the impact of the pre-increased traffic on the traffic of the nodes in the live network can be evaluated.
  • step 14 includes:
  • Step 141 Compare the expanded traffic of the bottleneck node with the available bandwidth of the physical link of the access layer side topology
  • Step 142 After the capacity expansion is greater than the available bandwidth of the physical link of the access layer side topology, the service flow is abnormal after the bottleneck node is expanded; after the expansion, the traffic is less than or equal to the access When the physical link of the layer-side topology is available, the service traffic is normal after the bottleneck node is expanded.
  • the capacity of the bottleneck node is greater than the available bandwidth of the physical link of the access layer side topology, If the service flow of the bottleneck node is exceeded, the traffic of the bottleneck node is abnormal after the capacity expansion of the bottleneck node. If the traffic of the bottleneck node is less than or equal to the available bandwidth of the physical link of the access layer side topology, The service flow of the bottleneck node is not exceeded. It can be determined that the service flow is normal after the bottleneck node is expanded.
  • the configuration parameter includes: a service traffic of a pre-increased service, a time period for querying service traffic, a convergence coefficient of an access layer service traffic, and a physical link usage rate; and the basic data includes between network elements. Physical link rate;
  • the method further includes:
  • Step 15 When the pre-increased service access point belongs to the aggregation layer, and is not an isolated node, the uplink bandwidth utilization rate and the downlink bandwidth utilization rate of the physical port of the source point are obtained; where the source point refers to the pre-added service connection.
  • the entry point belongs to any end of each link of the topology, and the adjacent two links take different endpoints;
  • Step 16 Obtain uplink payload capacity and downlink payload capacity of the link according to the uplink bandwidth utilization and downlink bandwidth utilization and the physical link rate of the source link.
  • step 16 includes:
  • Step 161 Obtain M maximum values of the uplink bandwidth utilization and the downlink bandwidth utilization of the physical port of the source point, where M is a preset value;
  • Step 162 Obtain an average value of the maximum values of the M uplink bandwidth utilization and the M downlink bandwidth utilization, respectively, and obtain an average value of the peak bandwidth utilization peak value and the downlink bandwidth utilization peak value;
  • the source point refers to any endpoint of each link of the pre-increment service access point membership topology, and the adjacent two links take different endpoints. Assuming that the endpoints of link L are H and G, and G is also the endpoint of the next link R, endpoint H can be taken as the source of link L, and endpoint G is the source of link R. Take the source point H of the link L as an example to obtain the upstream bandwidth utilization (H to G direction) and downlink bandwidth utilization (G to H direction) of the physical port H source port in the configuration parameters due to the configuration parameters. During the period of the predefined traffic query traffic, multiple uplink bandwidth utilization and downlink bandwidth utilization are obtained.
  • the uplink payload capacity and the downlink payload capacity of each link of the pre-increment service access point membership topology are obtained.
  • the O&M personnel can understand the impact of the pre-increased service traffic on the live network, adjust the capacity expansion plan, and implement the service expansion of the live network.
  • the method further includes:
  • Generating a network topology layer traffic report of the pre-increased service access point where the network topology layer includes: an access layer and an aggregation layer.
  • the pre-increment service access point belongs to the access layer, and generates an access layer traffic report.
  • the report can display the bottleneck node, the pre-bottle node expansion capacity, the pre-increased traffic, and the topology full path and bottleneck of the access layer side to which the bottleneck node belongs.
  • the information such as the bandwidth of the topology physical link on the access layer of the node is differentiated from the traffic that exceeds the capacity after the capacity expansion.
  • the pre-increased service access point belongs to the aggregation layer, and the aggregation layer traffic report is generated.
  • the report shows the data of each link end point, the uplink payload capacity of the source point, and the downlink payload capacity.
  • a GE (Gigabit Ethernet) rate access link is connected to a GE rate access ring, and the access ring is connected to a 10GE aggregation ring topology as an example to illustrate the LTE network in the embodiment of the present invention.
  • Application of business traffic assessment methods Specify an access node (P) to be pre-incremented on the GE rate access chain and Pre-increase traffic (X).
  • P access node
  • X Pre-increase traffic
  • the GE rate access ring in the topology intersects the 10GE rate convergence ring at A (in the east) and B (in the west).
  • S601 Collect basic data of a packet transmission network device of the network element management system of the current network, data information such as a physical connection rate, a device type, a connection location relationship, and a network element level between the network elements, and save the data to the database.
  • S602 Analyze and identify that the current network is a GE rate access link connected to a GE rate access ring according to the basic data, and the access ring is connected to a 10GE aggregation ring, and the GE rate access ring intersects with the 10GE rate convergence ring.
  • A in the east
  • B in the west
  • other network properties and save the data to the database.
  • S606. Determine a bottleneck node. After S605, the intersection of the identified network topology paths has been traversed, and the related information is used to compare the adjacent two segments according to the physical link rate between the network elements of the pre-increment service access point to the convergence layer intersection point. The physical link rate of the topology, when the comparison result indicates that the physical link rates of the current two segments are different, obtain the intersection point of the current two-segment topology and the topology of the adjacent aggregation layer side as the bottleneck node, and determine the intersection point of the network topology path. In the middle, the points A and B at the intersection with the convergence layer are the bottleneck nodes. Certainly, the step may also be a specific step of the S605.
  • the comparison result indicates the current two-segment topology.
  • the physical link rate is different, the intersection of the current two-segment topology and the topology of the adjacent aggregation layer is the bottleneck node.
  • Side topology traversal The comparison process is repeated until the two points of intersections A and B with the convergence layer are traversed, and the traversal ends, and the two points A and B are also bottleneck nodes. Save the bottleneck node data to the database.
  • a bottleneck node (hereinafter referred to as A) as an example.
  • the bandwidth utilization rate of the physical port of the access layer is obtained within 15 minutes of the predefined query service traffic, and N is the maximum value, and N is 3.
  • the physical port is a physical port with a service. Since A and B are bottleneck nodes that are mutually protective directions, A (eastward) and B (westward), it is necessary to acquire B data, and the specific steps are the same as A's data acquisition.
  • S608 which takes the average of the bandwidth utilization rates of the physical interfaces of the three access layer sides that have been acquired by A and B respectively, and obtains the peak value of the bandwidth utilization of the physical ports of the access layer side of A and B.
  • traffic before capacity expansion peak value of bandwidth utilization of the physical port on the access layer side * physical link rate of the topology on the access layer side, and traffic before expansion of A and B is obtained.
  • S611 Calculate the traffic after the expansion. Through S609, the pre-expansion traffic of A and B is obtained, and the sum of the pre-increased traffic of the access layer of the path bottleneck node is obtained through S610, then the traffic of the capacity expansion of A is the sum of the pre-increased traffic of the access layer + (the traffic before the expansion of A) B before the expansion of the flow).
  • the basic data of the S601 is stored in the database, and the physical link rate of the A-affiliated and access layer-side topology is obtained from the database.
  • Obtain data from the database show the bottleneck node, the traffic before the bottleneck node expansion, the pre-increasing traffic, the topology full path of the access layer side to which the bottleneck node belongs, and the access of the bottleneck node
  • the information such as the bandwidth of the topology physical link on the layer side is differentiated from the case where the traffic exceeds the limit and the traffic is normal after the capacity expansion.
  • the LTE network service traffic evaluation method acquires one or more pre-added service access points and pre-added services specified by the user on the basis of the collected data by acquiring the data of the existing network.
  • Traffic and other related information identify the bottleneck node in the live network, calculate the capacity of the bottleneck node after the capacity expansion, and evaluate whether the bottleneck node in the network will exceed the traffic limit after the service expansion, and display the traffic report so that the operation and maintenance personnel can evaluate the result according to the assessment. Adjusting the capacity expansion plan to improve the accuracy and security of the expansion of the existing network services, avoiding business anomalies caused by the expansion of service traffic, and significantly reducing the labor cost of business expansion.
  • an embodiment of the present invention further provides an LTE network service traffic evaluation apparatus, including:
  • the first obtaining module 10 is configured to acquire the network attribute of the existing network, the specified pre-increment service access point, and the configuration parameter, where the configuration parameter is configuration data of the pre-increment service access point;
  • the bottleneck node determining module 20 is configured to determine a bottleneck node in the network topology path from the pre-increased service access point to the aggregation layer according to the network attribute of the live network, the specified pre-increment service access point, and the configuration parameter. ;
  • the second obtaining module 30 is configured to acquire the expanded bandwidth of the bottleneck node and the available bandwidth of the physical link of the access layer side topology of the bottleneck node;
  • the traffic evaluation module 40 is configured to estimate the impact of the pre-incremented traffic on the traffic of the nodes in the live network according to the traffic of the bottleneck node and the available bandwidth of the physical link of the access layer side of the bottleneck node.
  • the first obtaining module includes:
  • the data collection sub-module is configured to collect basic data of the packet transmission network device of the existing network element management system
  • the network attribute analysis sub-module is configured to analyze and identify network attributes of the appearance network according to the basic data; wherein the network attributes include: a network hierarchy, a network topology shape, a relationship between the network topologies, and an intersection between the network topologies.
  • the bottleneck node determining module includes:
  • a network topology traversal sub-module configured to traverse a network topology connected to the pre-increment service access point when the pre-increment service access point belongs to an access layer, until traversing to the network topology intersecting the convergence layer At the intersection of the convergence layer, the traversal ends;
  • An identifier submodule configured to identify a network topology path between the pre-increment service access point and the convergence layer intersection, and a network topology path intersection point in the network topology path; wherein the network topology path The intersection includes the intersection of the convergence layer;
  • the bottleneck node determines the sub-module, and is set to determine the bottleneck node according to the intersection point of the network topology path.
  • the basic data includes a physical link rate between network elements
  • the bottleneck node determining submodule includes:
  • a first determining unit configured to determine, in the network topology path intersection, that the convergence layer intersection is a bottleneck node
  • the second determining unit is configured to compare the physical link rates of the adjacent two segments according to the physical link rate between the network elements of the pre-increment service access point to the convergence layer, and compare the results of the comparison.
  • the intersection point between the current two-segment topology and the topology on the adjacent aggregation layer side is obtained as the bottleneck node.
  • the configuration parameters include: a service traffic of a pre-increment service, a time period for querying service traffic, a convergence coefficient of an access layer service traffic, and a physical link usage rate;
  • the second obtaining module includes:
  • a first obtaining sub-module configured to acquire a bandwidth utilization rate of the physical port of the access layer side of the bottleneck node, where the physical port is a physical port with a service
  • a second obtaining sub-module configured to obtain a pre-expansion flow of the bottleneck node according to the bandwidth utilization rate and a physical link rate of the access layer side topology of the bottleneck node;
  • a third obtaining sub-module configured to acquire, according to the service traffic of the pre-increment service and the convergence coefficient of the access layer service traffic, a total sum of traffic of the access layer of the bottleneck node;
  • the fourth obtaining sub-module is configured to obtain the expanded traffic of the bottleneck node according to the sum of the traffic of the access layer and the traffic before the expansion;
  • the fifth obtaining sub-module is configured to obtain the physical link rate of the access layer side topology and the physical link usage rate, and obtain the physical link available bandwidth traffic of the access layer side topology of the bottleneck node.
  • the traffic assessment module includes:
  • the method is configured to compare the expanded traffic of the bottleneck node with a physical link available bandwidth traffic of the access layer side topology;
  • the evaluation sub-module is configured to determine that the service flow of the bottleneck node is abnormal after the capacity expansion is greater than the available bandwidth of the physical link of the access layer side topology; and the traffic is less than or equal to the traffic after the expansion When the bandwidth of the physical link of the access layer side is available, it is determined that the service flow is normal after the bottleneck is expanded.
  • the second obtaining submodule includes:
  • the first obtaining unit is configured to acquire N maximum values of bandwidth utilization of the physical port of the access layer side of the bottleneck node in the period of the query service traffic; where N is a preset value;
  • the second obtaining unit is configured to obtain an average value of the maximum value of the bandwidth utilization of the physical ports of the N access layer side, and obtain a peak value of the bandwidth utilization ratio of the physical port of the access layer side of the bottleneck node;
  • a third acquiring unit configured to acquire a physical link rate of the access layer side topology of the bottleneck node
  • the fourth obtaining submodule includes:
  • the pre-expansion flow includes the pre-expansion flow of the bottleneck node itself and the pre-expansion flow of the bottleneck node of the bottleneck node corresponding protection method.
  • the configuration parameter includes: a service traffic of a pre-increased service, a time period for querying service traffic, a convergence coefficient of an access layer service traffic, and a physical link usage rate; and the basic data includes a physical link rate between the network elements;
  • the device also includes:
  • the third obtaining module is configured to obtain an uplink bandwidth utilization rate and a downlink bandwidth utilization rate of the physical port of the source point when the pre-increment service access point belongs to the aggregation layer, and is not an isolated node, where the source point refers to the The pre-increment service access point belongs to any end of each link of the topology, and the adjacent two links take different end points;
  • the fourth obtaining module is configured to obtain an uplink real load capacity and a downlink real load capacity of the link according to the uplink bandwidth utilization rate and the downlink bandwidth utilization rate and the physical link rate of the source point membership link.
  • the fourth obtaining module includes:
  • the sixth obtaining sub-module is configured to obtain M maximum values of the uplink bandwidth utilization and the downlink bandwidth utilization of the physical port of the source point during the time period of querying the service traffic, where M is a preset value ;
  • the seventh obtaining submodule is configured to obtain an average value of the maximum values of the M uplink bandwidth utilization rate and the M downlink bandwidth utilization rates respectively, and obtain an average value of the peak bandwidth utilization peak value and the downlink bandwidth utilization peak value;
  • the device further comprises:
  • the report generation module is configured to generate a network topology layer traffic report of the pre-increased service access point, where the network topology layer includes: an access layer and an aggregation layer.
  • the LTE network service traffic evaluation apparatus acquires one or more pre-added service access points and pre-added services specified by the user on the basis of the collected data by acquiring the existing network data.
  • Traffic and other related information identify the bottleneck node in the live network, calculate the capacity of the bottleneck node after the capacity expansion, and evaluate whether the bottleneck node in the network will exceed the traffic limit after the service expansion, and display the traffic report so that the operation and maintenance personnel can evaluate the result according to the assessment. Adjusting the capacity expansion plan to improve the accuracy and security of the expansion of the existing network services, avoiding business anomalies caused by the expansion of service traffic, and significantly reducing the labor cost of business expansion.
  • the device is a device to which the foregoing LTE network service traffic evaluation method is applied, and the implementation manner of the foregoing LTE network service traffic assessment method is applicable to the device, and the same technical effect can be achieved.
  • the LTE network service traffic evaluation method and apparatus have the following beneficial effects: the LTE network service traffic evaluation method in the embodiment of the present invention first obtains the network attributes of the current network, and the specified pre- Adding service access points and configuration parameters (the configuration data parameters of the pre-increased service access point), and then determining bottleneck nodes in the network topology path from the pre-increased service access point to the aggregation layer according to the data information, After the bottleneck node is determined, the traffic of the bottleneck node and the available bandwidth of the physical link of the access layer side topology are obtained, and the flow of the pre-increased traffic to the node in the live network can be estimated according to the two data. Quantity impact.
  • the impact of the new service traffic on the traffic of the nodes in the live network can be calculated, which facilitates the operation and maintenance personnel to adjust the capacity expansion plan based on the evaluation result and implement the service expansion of the existing network to improve the accuracy and security of the expansion of the existing network service. Avoid business anomalies caused by improper business traffic expansion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明提供一种LTE网络业务流量评估方法及装置。该方法包括:获取现网的网络属性、指定的预增业务接入点及配置参数;其中,配置参数是预增业务接入点的配置数据;根据现网的网络属性、指定的预增业务接入点及配置参数,确定从预增业务接入点到汇聚层的网络拓扑路径中的瓶颈节点;获取瓶颈节点的扩容后流量和瓶颈节点的接入层侧拓扑的物理链路可用带宽流量;根据瓶颈节点的扩容后流量和瓶颈节点的接入层侧拓扑的物理链路可用带宽流量,评估出预增业务流量对现网中节点的流量影响。本发明的通过智能预先评估新增业务流量是否会使网络中关键节点的业务流量超限,提升现网业务扩容的准确性、安全性,避免因不当的业务流量扩容引发的业务异常。

Description

一种LTE网络业务流量评估方法及装置 技术领域
本发明涉及通讯网络技术领域,特别是指一种LTE(Long Term Evolution,长期演进)网络业务流量评估方法及装置。
背景技术
目前,随着通讯业务需求的增加,运营商的网络越来越庞大,而对现网进行业务流量扩容也变得越来越复杂。大多数运营商采用实时监控网络节点当前流量的方式,来掌握网络当前流量状况。
但是,这种方式在现网业务流量扩容时,无法让运营商预先知道新增业务对现网是否有流量超限的影响。
发明内容
本发明实施例提供了一种LTE网络业务流量评估方法及装置,通过智能预先评估新增业务流量是否会使网络中关键节点的业务流量超限,提升现网业务扩容的准确性、安全性,避免因不当的业务流量扩容引发的业务异常。
为达到上述目的,本发明的实施例提供了一种LTE网络业务流量评估方法,包括:
获取现网的网络属性、指定的预增业务接入点及配置参数;其中,所述配置参数是所述预增业务接入点的配置数据;
根据所述现网的网络属性、指定的预增业务接入点及配置参数,确定从所述预增业务接入点到汇聚层的网络拓扑路径中的瓶颈节点;
获取所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量;
根据所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量,评估出预增业务流量对现网中节点的流量影响。
其中,获取现网的网络属性的步骤包括:
采集现网网元管理系统的分组传输网设备基础数据;
根据所述基础数据,分析并识别出现网的网络属性;其中所述网络属性包括:网络层次、网络拓扑形状、网络拓扑间的关系和网络拓扑间的交点。
其中,根据所述现网的网络属性、指定的预增业务接入点及配置参数,确定从所述预增业务接入点到汇聚层的网络拓扑路径的中的瓶颈节点的步骤包括:
在所述预增业务接入点属于接入层时,遍历与所述预增业务接入点相连接的网络拓扑,直至遍历到所述网络拓扑与汇聚层相交的汇聚层交点处,遍历结束;
标识出从所述预增业务接入点到所述汇聚层交点之间的网络拓扑路径,以及所述网络拓扑路径中的网络拓扑路径交点;其中,所述网络拓扑路径交点包括所述汇聚层交点;
根据网络拓扑路径交点,确定瓶颈节点。
其中,所述基础数据包括网元间的物理链路速率;
根据网络拓扑路径交点,确定瓶颈节点的步骤包括:
在所述网络拓扑路径交点中,确定所述汇聚层交点为瓶颈节点;和/或
根据所述预增业务接入点到所述汇聚层交点之间各网元间的物理链路速率,比较相邻两段拓扑的物理链路速率,在比较结果指示当前两段拓扑的物理链路速率不同时,获取当前两段拓扑与相邻汇聚层侧的拓扑相交的交点为瓶颈节点。
其中,所述配置参数包括:预增业务的业务流量,查询业务流量的时间段,接入层业务流量收敛系数和物理链路使用率;
获取所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量的步骤包括:
在所述查询业务流量的时间段内,获取所述瓶颈节点的接入层侧物理端口的带宽利用率;其中,所述物理端口是配有业务的物理端口;
根据所述带宽利用率和所述瓶颈节点的接入层侧拓扑的物理链路速率,获得所述瓶颈节点的扩容前流量;
根据所述预增业务的业务流量以及所述接入层业务流量收敛系数,获取途径所述瓶颈节点的接入层预增流量总和;
根据所述接入层预增流量总和以及所述扩容前流量,得到所述瓶颈节点的扩容后流量;
获取所述接入层侧拓扑的物理链路速率以及所述物理链路使用率,得到所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量。
其中,根据所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量,评估出预增业务流量对现网中节点的流量影响的步骤包括:
将所述瓶颈节点的所述扩容后流量和所述接入层侧拓扑的物理链路可用带宽流量比较;
在所述扩容后流量大于所述接入层侧拓扑的物理链路可用带宽流量时,确定所述瓶颈节点扩容后业务流量异常;在所述扩容后流量小于或等于所述接入层侧拓扑的物理链路可用带宽流量时,确定所述瓶颈节点扩容后业务流量正常。
其中,根据所述瓶颈节点接入层侧物理端口的带宽利用率和所述瓶颈节点接入层侧的拓扑的物理链路速率,获得所述瓶颈节点扩容前流量的步骤包括:
在所述查询业务流量的时间段内,获取所述瓶颈节点的接入层侧物理端口的带宽利用率的N个最大值;其中,N为预设数值;
获取N个接入层侧物理端口的带宽利用率的最大值的平均值,得到所述瓶颈节点的接入层侧物理端口的带宽利用率峰值均值;
获取所述瓶颈节点的接入层侧拓扑的物理链路速率;
根据公式:扩容前流量=接入层侧物理端口的带宽利用率峰值均值*接入层侧拓扑的物理链路速率,得到所述瓶颈节点的扩容前流量。
其中,根据所述瓶颈节点的接入层预增流量总和以及所述瓶颈节点的扩容前流量,得到所述瓶颈节点的扩容后流量的步骤包括:
通过公式:扩容后流量=接入层预增流量总和+扩容前流量,得到所述瓶颈节点的扩容后流量;其中
若所述瓶颈节点对应有一保护方向的瓶颈节点,所述扩容前流量包括所述瓶颈节点本身的扩容前流量和所述瓶颈节点对应保护方法的瓶颈节点的扩容前流量。
其中,所述配置参数包括:预增业务的业务流量,查询业务流量的时间段,接入层业务流量收敛系数和物理链路使用率;所述基础数据包括网元间的物理链路速率;
所述方法还包括:
在预增业务接入点属于汇聚层,且不是孤立节点时,获取源点物理端口的上行带宽利用率和下行带宽利用率;其中,所述源点是指所述预增业务接入点隶属拓扑的每段链路的任一端点,且相邻两条链路取不同的端点;
根据所述上行带宽利用率和下行带宽利用率以及所述源点隶属链路的物理链路速率,得到所述链路的上行实载容量和下行实载容量。
其中,根据所述上行带宽利用率和下行带宽利用率以及所述源点隶属链路的物理链路速率,得到所述链路的上行实载容量和下行实载容量的步骤包括:
在所述查询业务流量的时间段内,分别获取所述源点物理端口的上行带宽利用率和下行带宽利用率的M个最大值;其中,M为预设数值;
分别获取M个上行带宽利用率和M个下行带宽利用率的最大值的平均值,得到上行带宽利用率峰值均值和下行带宽利用率峰值均值;
通过公式:实载容量=带宽利用率峰值均值*物理链路速率,得到所述链路的上行实载容量和下行实载容量。
其中,所述方法还包括:
生成所述预增业务接入点所在网络拓扑层流量报表;其中,所述网络拓扑层包括:接入层和汇聚层。
为达到上述目的,本发明实施例还提供了一种LTE网络业务流量评估装置,包括:
第一获取模块,设置为获取现网的网络属性、指定的预增业务接入点及配置参数;其中,所述配置参数是所述预增业务接入点的配置数据;
瓶颈节点确定模块,设置为根据所述现网的网络属性、指定的预增业务接入点及配置参数,确定从所述预增业务接入点到汇聚层的网络拓扑路径中的瓶颈节点;
第二获取模块,设置为获取所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量;
流量评估模块,设置为根据所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量,评估出预增业务流量对现网中节点的流量影响。
其中,所述第一获取模块包括:
数据采集子模块,设置为采集现网网元管理系统的分组传输网设备基础数据;
网络属性分析子模块,设置为根据所述基础数据,分析并识别出现网的网络属性;其中所述网络属性包括:网络层次、网络拓扑形状、网络拓扑间的关系和网络拓扑间的交点。
其中,所述瓶颈节点确定模块包括:
网络拓扑遍历子模块,设置为在所述预增业务接入点属于接入层时,遍历与所述预增业务接入点相连接的网络拓扑,直至遍历到所述网络拓扑与汇聚层相交的汇聚层交点处,遍历结束;
标识子模块,设置为标识出从所述预增业务接入点到所述汇聚层交点之间的网络拓扑路径,以及所述网络拓扑路径中的网络拓扑路径交点;其中,所述网络拓扑路径交点包括所述汇聚层交点;
瓶颈节点确定子模块,设置为根据网络拓扑路径交点,确定瓶颈节点。
本发明实施例的上述技术方案的有益效果如下:
本发明实施例的LTE网络业务流量评估方法,首先获取到现网的网络属性、指定的预增业务接入点及配置参数(该预增业务接入点的各项配置数据参数),然后根据这些数据信息确定从预增业务接入点到汇聚层的网络拓扑路径中的瓶颈节点,在确定瓶颈节点后,获取该瓶颈节点的扩容后流量和接入层侧拓扑的物理链路可用带宽流量,就可根据这两项数据评估出预增业务流量对现网中节点的流量影响。这样,可推算出新增业务流量对现网中节点的流量影响,方便了运维人员根据评估结果调整扩容方案、实施现网的业务扩容工作,提升现网业务扩容的准确性、安全性,避免因不当的业务流量扩容引发的业务异常。
附图说明
图1表示本发明实施例的LTE网络业务流量评估方法的流程示意图;
图2表示本发明实施例的LTE网络业务流量评估方法的具体步骤流程示意图一;
图3表示本发明实施例的LTE网络业务流量评估方法的具体步骤流程示意图二;
图4表示本发明实施例的LTE网络业务流量评估方法的具体步骤流程示意图三;
图5表示本发明实施例的LTE网络业务流量评估方法的具体步骤流程示意图四;
图6表示本发明实施例的LTE网络业务流量评估方法的具体应用示意图;
图7表示本发明实施例的LTE网络业务流量评估装置的结构示意图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明实施例针对现有的运营商采用实时监控网络节点当前流量的方式,来掌握网络当前流量状况,在现网业务流量扩容时,无法让运营商预先知道新增业务对现网是否有流量超限的问题,提供一种LTE网络业务流量评估方法,提升现网业务扩容的准确性、安全性,避免因不当的业务流量扩容引发的业务异常。
如图1所示,本发明实施例的一种LTE网络业务流量评估方法,包括:
步骤11,获取现网的网络属性、指定的预增业务接入点及配置参数;其中,所述配置参数是所述预增业务接入点的各项配置数据参数;
步骤12,根据所述现网的网络属性、指定的预增业务接入点及配置参数,确定从所述预增业务接入点到汇聚层的网络拓扑路径中的瓶颈节点;
步骤13,获取所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量;
步骤14,根据所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量,评估出预增业务流量对现网中节点的流量影响。
通过上述步骤,首先获取到现网的网络属性、指定的预增业务接入点及配置参数(该预增业务接入点的各项配置数据参数),然后根据这些数据信息确定从预增业务接入点到汇聚层的网络拓扑路径中的瓶颈节点,在确定瓶颈节点后,获取该瓶颈节点的扩容后流量和接入层侧拓扑的物理链路可用带宽流量,就可根据这两项数据评估出预增业务流量对现网中节点的流量影响。这样,执行步骤11-14后,即可推算出新增业务流量对现网中节点的流量影响,方便了运维人员根据评估结果调整扩容方案、实施现网的业务扩容工作,提升现网业务扩容的准确性、安全性,避免因不当的业务流量扩容引发的业务异常。
其中,步骤11中获取现网的网络属性的步骤包括:
步骤111,采集现网网元管理系统的分组传输网设备基础数据;
步骤112,根据所述基础数据,分析并识别出现网的网络属性;其中所述网络属性包括:网络层次、网络拓扑形状、网络拓扑间的关系和网络拓扑间的交点。
采集到现网网元管理系统的分组传输网设备基础数据后,可将采集到的数据保存在数据库中,在后续使用到相关数据时,就能够提取使用。其中,基础数据可以是设备类型、网元名称和网元层级等。由上述步骤可知,需要在网络拓扑路径中找到瓶颈节点,那么在此之前就需要了解现网的网络层次(如,识别出接入层、汇聚层、核心层等)、网络拓扑形状(如,识别出环、链、网等)、网络拓扑间的关系(如相交、相切、相连等)和网络拓扑间的交点等网络属性,而网络属性就可通过步骤111采集的基础数据中分析并识别出,分析与识别可通过预设规则实现。当然,该网络属性也可保存到数据库中。
网络属性是通过分析和识别基础数据获得的,指定的预增业务接入点及配置参数是由用户预定的,了解了现网的网络属性、指定的预增业务接入点及配置参数之后,如图2所示,在本发明上述实施例的基础上,步骤12包括:
步骤121,在所述预增业务接入点属于接入层时,遍历与所述预增业务接入点相连接的网络拓扑,直至遍历到所述网络拓扑与汇聚层相交的汇聚层交点处,遍历结束;
步骤122,标识出从所述预增业务接入点到所述汇聚层交点之间的网络拓扑路径,以及所述网络拓扑路径中的网络拓扑路径交点;其中,所述网络拓扑路径交点包括所述汇聚层交点;
步骤123,根据网络拓扑路径交点,确定瓶颈节点。
在预增业务接入点属于接入层时,开始遍历与预增业务接入点相连接的网络拓扑,直至遍历到网络拓扑与汇聚层相交的汇聚层交点处,遍历结束。在编历同时或者完成后,能够标识出从预增业务接入点到汇聚层交点之间的网络拓扑路径,以及网络拓扑路径中的网络拓扑路径交点,在这些网络拓扑路径交点中就可确定瓶颈节点。
应该了解的是,在寻找瓶颈节点有两种方式,一种是链路速率方式进行查找,也可按业务路径方式进行查找。按业务路径方式查找,具体来说,采用从业务接入点向汇聚层方向遍历所有的业务路径方式识别瓶颈节点。但是,按业务路径方式查找,数据获取复杂度较高,数据处理速率却更低,因此,在本发明实施例中,采用链路速率方式。其中,所述基础数据包括网元间的物理链路速率;
步骤123包括:
步骤1231a,在所述网络拓扑路径交点中,确定所述汇聚层交点为瓶颈节点;和/或
步骤1231b,根据所述预增业务接入点到所述汇聚层交点之间各网元间的物理链路速率,比较相邻两段拓扑的物理链路速率,在比较结果指示当前两段拓扑的物理链路速率不同时,获取当前两段拓扑与相邻汇聚层侧的拓扑相交的交点为瓶颈节点。
由于瓶颈节点的性质,往往默认在网络拓扑路径交点中,汇聚层交点为瓶颈节点,而另一种瓶颈节点,通过链路速率的方式去确认。由于已经遍历标识出了网络拓扑路径交点,相关信息也是能够获取到的,在这些网络拓扑路径交点中确定出瓶颈节点,如步骤1231b,根据预增业务接入点到汇聚层交点之间各网元间的物理链路速率,比较相邻两段拓扑的物理链路速率,在比较结果指示当前两段拓扑的物理链路速率不同时,获取当前两段拓扑与相邻汇聚层侧的拓扑相交的交点为瓶颈节点。当然,也可以是从预增业务接入点开始,遍历过程中,在接入层侧比较相邻两段拓扑的物理链路速率,在比较结果指示当前两段拓扑的物理链路速率不同时,获取当前两段拓扑与相邻汇聚层侧的拓扑相交的交点为瓶颈节点;在比较结果指示当前两段拓扑的物理链路速率相同时,继续向临近汇聚层一侧拓扑遍历。重复比较过程,直至遍历到与汇聚层的交点,遍历结束,该交点也为瓶颈节点。
在确定了瓶颈节点后,就可以执行步骤13。步骤13的具体步骤会提取到已经获取到的配置参数即预增业务接入点的各项配置数据参数。如图3所示,本发明实施例的LTE网络业务流量评估方法,在上述实施例的基础上,所述配置参数包括:预增业务的业务流量,查询业务流量的时间段,接入层业务流量收敛系数和物理链路使用率;
步骤13包括:
步骤131,在所述查询业务流量的时间段内,获取所述瓶颈节点的接入层侧物理端口的带宽利用率;其中,所述物理端口是配有业务的物理端口;
步骤132,根据所述带宽利用率和所述瓶颈节点的接入层侧拓扑的物理链路速率,获得所述瓶颈节点的扩容前流量;
步骤133,根据所述预增业务的业务流量以及所述接入层业务流量收敛系数,获取途径所述瓶颈节点的接入层预增流量总和;
步骤134,根据所述接入层预增流量总和以及所述扩容前流量,得到所述瓶颈节点的扩容后流量;
步骤135,获取所述接入层侧拓扑的物理链路速率以及所述物理链路使用率,得到所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量。
在配置参数中预定义的查询业务流量的时间段内,首先要获取瓶颈节点的接入层侧物理端口的带宽利用率,将该带宽利用率结合该瓶颈节点的接入层侧拓扑的物理链路速率来获得该瓶颈节点的扩容前流量。同时,会根据预增业务的业务流量以及接入层业务流量收敛系数,获取途径该瓶颈节点的接入层预增流量总和。然后,可根据该接入层预增流量总和以及该扩容前流量,得到该瓶颈节点的扩容后流量。最后,获取配置参数中接入层侧拓扑的物理链路速率以及物理链路使用率,得到所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量。
其中,如图4所示,步骤132包括:
步骤1321,在所述查询业务流量的时间段内,获取所述瓶颈节点的接入层侧物理端口的带宽利用率的N个最大值;其中,N为预设数值;
步骤1322,获取N个接入层侧物理端口的带宽利用率的最大值的平均值,得到所述瓶颈节点的接入层侧物理端口的带宽利用率峰值均值;
步骤1323,获取所述瓶颈节点的接入层侧拓扑的物理链路速率;
步骤1324,根据公式:扩容前流量=接入层侧物理端口的带宽利用率峰值均值*接入层侧拓扑的物理链路速率,得到所述瓶颈节点的扩容前流量。
扩容前流量的具体获得步骤如上,由于在配置参数中预定义的查询业务流量的时间段内能够提取到瓶颈节点的多个接入层侧物理端口的带宽利用率,所以,首先会选其中的N个最大值,然后取这N个最大值的平均值得到该瓶颈节点的接入层侧物理端口的带宽利用率峰值均值。应该知道的是,在基础参数中包括网元间物理链路速率,就可以获取到瓶颈节点的接入层侧拓扑的物理链路速率。扩容前流量的计算公式步骤1324中所示,扩容前流量=接入层侧物理端口的带宽利用率峰值均值*接入层侧拓扑的物理链路速率,之后,只需将已经获取的该瓶颈节点的接入层侧物理端口的带宽利用率峰值均值和接入层侧拓扑的物理链路速率代入即可得到该瓶颈节点的扩容前流量。
知道了扩容前流量,下一步,按照步骤133要根据预增业务的业务流量以及接入层业务流量收敛系数,获取途径瓶颈节点的接入层预增流量总和。将预增业务的业务流量以及接入层业务流量收敛系数,代入公式:途径瓶颈节点的接入层可用预增流量总和=(∑(预增流量1,预增流量1,…,预增流量n))*接入层收敛系数,就可得到。其中n是指预增业务的业务个数。
得到途径瓶颈节点的接入层预增流量总和之后,下一步,步骤134包括:
步骤1341,通过公式:扩容后流量=接入层预增流量总和+扩容前流量,得到所述瓶颈节点的扩容后流量;其中
若所述瓶颈节点对应有一保护方向的瓶颈节点,所述扩容前流量包括所述瓶颈节点本身的扩容前流量和所述瓶颈节点对应保护方法的瓶颈节点的扩容前流量。
参照步骤1341的公式:扩容后流量=接入层预增流量总和+扩容前流量,将瓶颈节点的接入层预增流量总和扩容前流量代入,就可以得到扩容后流量了。由于现网的网络结构中还包括有环,所以瓶颈节点,尤其是接入层侧网络拓扑与汇聚层交点的瓶颈节点,可能有两个对应的瓶颈节点,这两个瓶颈节点互为对方保护方向的节点,那么,此时,瓶颈节点的扩容前流量不只包括该瓶颈节点本身的扩容前流量,还包括该瓶颈节点对应保护方法的瓶颈节点的扩容前流量,才能获得更加准确的扩容后流量。
在评估时,需要根据瓶颈节点扩容后流量和接入层侧拓扑的物理链路可用带宽流量来完成,因此,需要步骤135得到瓶颈节点的接入层侧拓扑的物理链路可用带宽流量。根据公式:瓶颈节点的接入层侧的拓扑的物理链路可用带宽=接入层侧的拓扑的物理链路速率*物理链路使用率,获取到该瓶颈节点的接入层侧拓扑的物理链路速率以及物理链路使用率,代入公式即可。众所周知的是,瓶颈节点的接入层侧拓扑,是指该瓶颈节点隶属的、接入层侧的拓扑。
获取到瓶颈节点的扩容后流量和接入层侧拓扑的物理链路可用带宽流量后,按照步骤14,就能够评估出预增业务流量对现网中节点的流量影响。在本发明实施例中,步骤14包括:
步骤141,将所述瓶颈节点的所述扩容后流量和所述接入层侧拓扑的物理链路可用带宽流量比较;
步骤142,在所述扩容后流量大于所述接入层侧拓扑的物理链路可用带宽流量时,确定所述瓶颈节点扩容后业务流量异常;在所述扩容后流量小于或等于所述接入层侧拓扑的物理链路可用带宽流量时,确定所述瓶颈节点扩容后业务流量正常。
比较该瓶颈节点的扩容后流量和接入层侧拓扑的物理链路可用带宽流量,如果该瓶颈节点的扩容后流量大于接入层侧拓扑的物理链路可用带宽流量,则说明预增业务后该瓶颈节点业务流量超限,可确定该瓶颈节点扩容后业务流量异常;如果该瓶颈节点的扩容后流量小于或等于接入层侧拓扑的物理链路可用带宽流量,则说明预增流量后该瓶颈节点业务流量没有超限,可确定该瓶颈节点扩容后业务流量正常。
然而,也会有预增业务接入点不属于接入层,属于汇聚层且不是孤立节点的情况,当然,也有在预增业务接入点不属于接入层也不属于汇聚层或者属于汇聚层但是孤立节点的情况,此时不做讨论。在本发明实施例中,所述配置参数包括:预增业务的业务流量,查询业务流量的时间段,接入层业务流量收敛系数和物理链路使用率;所述基础数据包括网元间的物理链路速率;
所述方法还包括:
步骤15,在预增业务接入点属于汇聚层,且不是孤立节点时,获取源点物理端口的上行带宽利用率和下行带宽利用率;其中,所述源点是指所述预增业务接入点隶属拓扑的每段链路的任一端点,且相邻两条链路取不同的端点;
步骤16,根据所述上行带宽利用率和下行带宽利用率以及所述源点隶属链路的物理链路速率,得到所述链路的上行实载容量和下行实载容量。
其中,如图5所示,步骤16包括:
步骤161,在所述查询业务流量的时间段内,分别获取所述源点物理端口的上行带宽利用率和下行带宽利用率的M个最大值;其中,M为预设数值;
步骤162,分别获取M个上行带宽利用率和M个下行带宽利用率的最大值的平均值,得到上行带宽利用率峰值均值和下行带宽利用率峰值均值;
步骤163,通过公式:实载容量=带宽利用率峰值均值*物理链路速率,得到所述链路的上行实载容量和下行实载容量。
源点是指预增业务接入点隶属拓扑的每段链路的任一端点,且相邻两条链路取不同的端点。假设链路L的端点是H和G,G也是下一段链路R的端点,那么可以取端点H作为链路L的源点,端点G作为链路R的源点。以链路L的源点H为例说明,获取配置参数中源点H物理端口的上行带宽利用率(H到G方向的)和下行带宽利用率(G到H方向的),由于在配置参数中预定义的查询业务流量的时间段内,会获取到多个上行带宽利用率和下行带宽利用率,首先分别获取源点H物理端口的上行带宽利用率和下行带宽利用率的M个最大值即M个最大的上行带宽利用率和M个最大的下行带宽利用率,然后分别取其均值得到上行带宽利用率峰值均值和下行带宽利用率峰值均值,通过公示:实载容量=带宽利用率峰值均值*物理链路速率,代入上行带宽利用率峰值均值和物理链路速率得到链路的上行实载容量(HG实载容量),代入上行带宽利用率峰值均值和物理链路速率得到链路的下行实载容量(GH实载容量)。按照同样的方法,获取预增业务接入点隶属拓扑每段链路的上行实载容量和下行实载容量。
了解到预增业务流量后链路的上行实载容量和下行实载容量,即可方便运维人员了解预增业务流量对现网的影响,调整扩容方案、实施现网的业务扩容工作。
要使得运维人员更清晰的了解到预增业务流量对现网的影响,在本发明实施例中,所述方法还包括:
生成所述预增业务接入点所在网络拓扑层流量报表;其中,所述网络拓扑层包括:接入层和汇聚层。
在预增业务接入点属于接入层,生成接入层流量报表,报表能够展示出瓶颈节点、瓶颈节点扩容前流量、预增流量、瓶颈节点隶属的接入层侧的拓扑全路径、瓶颈节点隶属的接入层侧的拓扑物理链路带宽等信息,将扩容后流量超限和扩容后流量正常的情况区分标识。在预增业务接入点属于汇聚层,生成汇聚层流量报表,报表展示每段链路端点,源点的上行实载容量、下行实载容量等数据。
下面,如图6所示,以一个GE(Gigabit Ethernet)速率接入链连接一个GE速率接入环,此接入环又交于一个10GE汇聚环拓扑为例,说明本发明实施例的LTE网络业务流量评估方法的应用。在GE速率接入链上指定一个要预增业务的接入节点(P)及 预增业务流量(X),拓扑中GE速率接入环与10GE速率汇聚环相交于A(在环东向)、B(在环西向)两点。
S601,采集现网网元管理系统的分组传输网设备基础数据,网元间物理连接速率、设备类型、连接位置关系和网元层级等数据信息,并将数据保存到数据库中。
S602,根据基础数据,分析并识别现网是一个GE速率接入链连接一个GE速率接入环,此接入环又交于一个10GE汇聚环,GE速率接入环与10GE速率汇聚环相交于A(在环东向)、B(在环西向)两点,以及其他网络属性,并将数据保存到数据库中。
S603,获取用户预定义数据确定用户在GE速率接入链上指定一个预增业务接入点(P)及预增业务的业务流量(X),查询业务流量的时间段(15分钟),接入层业务流量收敛系数(Q)和物理链路使用率(W)等,并将数据保存到数据库中。
S604,由S603确定预增业务接入点是属于接入层。
S605,开始遍历与预增业务接入点相连接的网络拓扑,直至遍历到网络拓扑与汇聚层相交的汇聚层交点A、B两点处,遍历结束。在编历同时或者完成后,识出从预增业务接入点到汇聚层交点之间的网络拓扑路径,以及网络拓扑路径中的网络拓扑路径交点,在这些网络拓扑路径交点中就可确定瓶颈节点。
S606,确定瓶颈节点。可以在S605之后,在已经遍历标识出的网络拓扑路径交点,利用获取到相关信息,根据预增业务接入点到汇聚层交点之间各网元间的物理链路速率,比较相邻两段拓扑的物理链路速率,在比较结果指示当前两段拓扑的物理链路速率不同时,获取当前两段拓扑与相邻汇聚层侧的拓扑相交的交点为瓶颈节点,以及确定在网络拓扑路径交点中,与汇聚层交点A、B两点为瓶颈节点。当然,该步骤也可以是S605的具体步骤,从预增业务接入点开始,遍历过程中,在接入层侧比较相邻两段拓扑的物理链路速率,在比较结果指示当前两段拓扑的物理链路速率不同时,获取当前两段拓扑与相邻汇聚层侧的拓扑相交的交点为瓶颈节点;在比较结果指示当前两段拓扑的物理链路速率相同时,继续向临近汇聚层一侧拓扑遍历。重复比较过程,直至遍历到与汇聚层的交点A、B两点,遍历结束,A、B两点也为瓶颈节点。并将瓶颈节点数据保存到数据库中。
假设通过上述步骤只确定了A、B两个瓶颈节点,下面继续以A瓶颈节点(下面简称A)为例说明后续步骤。
S607,获取A在预定义的查询业务流量的时间段15分钟内,接入层侧物理端口的带宽利用率,取N个最大值,N为3。其中物理端口是配有业务的物理端口。由于A、B是互为对方的保护方向的瓶颈节点,A(东向)、B(西向),所以需要获取B的数据,具体步骤同A的数据获取。
S608,分别取A、B已经获取到的3个接入层侧物理端口的带宽利用率的平均值,得到A、B的接入层侧物理端口的带宽利用率峰值均值。
S609,计算扩容前流量。将已知数据代入公式:扩容前流量=接入层侧物理端口的带宽利用率峰值均值*接入层侧拓扑的物理链路速率,得到A、B的扩容前流量。
S610,计算途径瓶颈节点的接入层可用预增流量总和。在S603中已知预增业务接入点只有一个P点,预增业务流量是X,只需代入公式:途径瓶颈节点的接入层可用预增流量总和=(∑(预增流量1,预增流量2,…,预增流量n))*接入层收敛系数,此时n=1。
S611,计算扩容后流量。通过S609,得到A、B的扩容前流量,通过S610得到途径瓶颈节点的接入层可用预增流量总和,那么A的扩容后流量=接入层预增流量总和+(A的扩容前流量+B的扩容前流量)。
S612,由S601的基础数据存入数据库,可从数据库中获取A隶属的、接入层侧的拓扑的物理链路速率。
S613,计算A的接入层侧拓扑的物理链路可用带宽流量。将已知数据代入公式:瓶颈节点的接入层侧的拓扑的物理链路可用带宽=接入层侧的拓扑的物理链路速率*物理链路使用率,得到A的接入层侧拓扑的物理链路可用带宽流量。
S614,将A的所述扩容后流量和接入层侧拓扑的物理链路可用带宽流量比较,在扩容后流量大于接入层侧拓扑的物理链路可用带宽流量时,确定A扩容后业务流量异常;在扩容后流量小于或等于接入层侧拓扑的物理链路可用带宽流量时,确定A扩容后业务流量正常。
在对A评估完成后,还需对B评估,完成现网中所有瓶颈节点的评估。
S615,使用“途径网元”字段标识出瓶颈节点隶属的接入层侧的拓扑的全路径。
S616,输出接入层流量报表。从数据库获取数据,展示出瓶颈节点、瓶颈节点扩容前流量、预增流量、瓶颈节点隶属的接入层侧的拓扑全路径、瓶颈节点隶属的接入 层侧的拓扑物理链路带宽等信息,将扩容后流量超限、和扩容后流量正常的情况区分标识。
综上所述,本发明实施例的LTE网络业务流量评估方法,通过获取到现网数据,在采集到的数据基础上,根据用户指定的一个或多个预增业务接入点及预增业务流量等相关信息,在现网中识别出瓶颈节点,计算瓶颈节点的扩容后流量,评估业务扩容后网络中瓶颈节点是否会流量超限,同时展示出流量报表,使运维人员可以根据评估结果调整扩容方案,提升现网业务扩容的准确性、安全性,避免了因业务流量扩容引发的业务异常,大幅缩减业务扩容的人力成本投入。
如图7所示,本发明实施例还提供了一种LTE网络业务流量评估装置,包括:
第一获取模块10,设置为获取现网的网络属性、指定的预增业务接入点及配置参数;其中,所述配置参数是所述预增业务接入点的配置数据;
瓶颈节点确定模块20,设置为根据所述现网的网络属性、指定的预增业务接入点及配置参数,确定从所述预增业务接入点到汇聚层的网络拓扑路径中的瓶颈节点;
第二获取模块30,设置为获取所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量;
流量评估模块40,设置为根据所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量,评估出预增业务流量对现网中节点的流量影响。
其中,所述第一获取模块包括:
数据采集子模块,设置为采集现网网元管理系统的分组传输网设备基础数据;
网络属性分析子模块,设置为根据所述基础数据,分析并识别出现网的网络属性;其中所述网络属性包括:网络层次、网络拓扑形状、网络拓扑间的关系和网络拓扑间的交点。
其中,所述瓶颈节点确定模块包括:
网络拓扑遍历子模块,设置为在所述预增业务接入点属于接入层时,遍历与所述预增业务接入点相连接的网络拓扑,直至遍历到所述网络拓扑与汇聚层相交的汇聚层交点处,遍历结束;
标识子模块,设置为标识出从所述预增业务接入点到所述汇聚层交点之间的网络拓扑路径,以及所述网络拓扑路径中的网络拓扑路径交点;其中,所述网络拓扑路径交点包括所述汇聚层交点;
瓶颈节点确定子模块,设置为根据网络拓扑路径交点,确定瓶颈节点。
其中,所述基础数据包括网元间的物理链路速率;
所述瓶颈节点确定子模块包括:
第一确定单元,设置为在所述网络拓扑路径交点中,确定所述汇聚层交点为瓶颈节点;
第二确定单元,设置为根据所述预增业务接入点到所述汇聚层交点之间各网元间的物理链路速率,比较相邻两段拓扑的物理链路速率,在比较结果指示当前两段拓扑的物理链路速率不同时,获取当前两段拓扑与相邻汇聚层侧的拓扑相交的交点为瓶颈节点。
其中,所述配置参数包括:预增业务的业务流量,查询业务流量的时间段,接入层业务流量收敛系数和物理链路使用率;
所述第二获取模块包括:
第一获取子模块,设置为在所述查询业务流量的时间段内,获取所述瓶颈节点的接入层侧物理端口的带宽利用率;其中,所述物理端口是配有业务的物理端口;
第二获取子模块,设置为根据所述带宽利用率和所述瓶颈节点的接入层侧拓扑的物理链路速率,获得所述瓶颈节点的扩容前流量;
第三获取子模块,设置为根据所述预增业务的业务流量以及所述接入层业务流量收敛系数,获取途径所述瓶颈节点的接入层预增流量总和;
第四获取子模块,设置为根据所述接入层预增流量总和以及所述扩容前流量,得到所述瓶颈节点的扩容后流量;
第五获取子模块,设置为获取所述接入层侧拓扑的物理链路速率以及所述物理链路使用率,得到所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量。
其中,所述流量评估模块包括:
比较子模块,设置为将所述瓶颈节点的所述扩容后流量和所述接入层侧拓扑的物理链路可用带宽流量比较;
评估子模块,设置为在所述扩容后流量大于所述接入层侧拓扑的物理链路可用带宽流量时,确定所述瓶颈节点扩容后业务流量异常;在所述扩容后流量小于或等于所述接入层侧拓扑的物理链路可用带宽流量时,确定所述瓶颈节点扩容后业务流量正常。
其中,所述第二获取子模块包括:
第一获取单元,设置为在所述查询业务流量的时间段内,获取所述瓶颈节点的接入层侧物理端口的带宽利用率的N个最大值;其中,N为预设数值;
第二获取单元,设置为获取N个接入层侧物理端口的带宽利用率的最大值的平均值,得到所述瓶颈节点的接入层侧物理端口的带宽利用率峰值均值;
第三获取单元,设置为获取所述瓶颈节点的接入层侧拓扑的物理链路速率;
第一处理单元,设置为根据公式:扩容前流量=接入层侧物理端口的带宽利用率峰值均值*接入层侧拓扑的物理链路速率,得到所述瓶颈节点的扩容前流量。
其中,所述第四获取子模块包括:
第二处理单元,设置为通过公式:扩容后流量=接入层预增流量总和+扩容前流量,得到所述瓶颈节点的扩容后流量;其中
若所述瓶颈节点对应有一保护方向的瓶颈节点,所述扩容前流量包括所述瓶颈节点本身的扩容前流量和所述瓶颈节点对应保护方法的瓶颈节点的扩容前流量。
其中,所述配置参数包括:预增业务的业务流量,查询业务流量的时间段,接入层业务流量收敛系数和物理链路使用率;所述基础数据包括网元间的物理链路速率;
所述装置还包括:
第三获取模块,设置为在预增业务接入点属于汇聚层,且不是孤立节点时,获取源点物理端口的上行带宽利用率和下行带宽利用率;其中,所述源点是指所述预增业务接入点隶属拓扑的每段链路的任一端点,且相邻两条链路取不同的端点;
第四获取模块,设置为根据所述上行带宽利用率和下行带宽利用率以及所述源点隶属链路的物理链路速率,得到所述链路的上行实载容量和下行实载容量。
其中,所述第四获取模块包括:
第六获取子模块,设置为在所述查询业务流量的时间段内,分别获取所述源点物理端口的上行带宽利用率和下行带宽利用率的M个最大值;其中,M为预设数值;
第七获取子模块,设置为分别获取M个上行带宽利用率和M个下行带宽利用率的最大值的平均值,得到上行带宽利用率峰值均值和下行带宽利用率峰值均值;
处理子模块,设置为通过公式:实载容量=带宽利用率峰值均值*物理链路速率,得到所述链路的上行实载容量和下行实载容量。
其中,所述装置还包括:
报表生成模块,设置为生成所述预增业务接入点所在网络拓扑层流量报表;其中,所述网络拓扑层包括:接入层和汇聚层。
综上所述,本发明实施例的LTE网络业务流量评估装置,通过获取到现网数据,在采集到的数据基础上,根据用户指定的一个或多个预增业务接入点及预增业务流量等相关信息,在现网中识别出瓶颈节点,计算瓶颈节点的扩容后流量,评估业务扩容后网络中瓶颈节点是否会流量超限,同时展示出流量报表,使运维人员可以根据评估结果调整扩容方案,提升现网业务扩容的准确性、安全性,避免了因业务流量扩容引发的业务异常,大幅缩减业务扩容的人力成本投入。
需要说明的是,该装置是应用了上述LTE网络业务流量评估方法的装置,上述LTE网络业务流量评估方法的实现方式适用于该装置,也能达到相同的技术效果。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
如上所述,本发明实施例提供的一种LTE网络业务流量评估方法及装置,具有以下有益效果:本发明实施例的LTE网络业务流量评估方法,首先获取到现网的网络属性、指定的预增业务接入点及配置参数(该预增业务接入点的各项配置数据参数),然后根据这些数据信息确定从预增业务接入点到汇聚层的网络拓扑路径中的瓶颈节点,在确定瓶颈节点后,获取该瓶颈节点的扩容后流量和接入层侧拓扑的物理链路可用带宽流量,就可根据这两项数据评估出预增业务流量对现网中节点的流 量影响。这样,可推算出新增业务流量对现网中节点的流量影响,方便了运维人员根据评估结果调整扩容方案、实施现网的业务扩容工作,提升现网业务扩容的准确性、安全性,避免因不当的业务流量扩容引发的业务异常。

Claims (14)

  1. 一种LTE网络业务流量评估方法,包括:
    获取现网的网络属性、指定的预增业务接入点及配置参数;其中,所述配置参数是所述预增业务接入点的配置数据;
    根据所述现网的网络属性、指定的预增业务接入点及配置参数,确定从所述预增业务接入点到汇聚层的网络拓扑路径中的瓶颈节点;
    获取所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量;
    根据所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量,评估出预增业务流量对现网中节点的流量影响。
  2. 根据权利要求1所述的LTE网络业务流量评估方法,其中,获取现网的网络属性的步骤包括:
    采集现网网元管理系统的分组传输网设备基础数据;
    根据所述基础数据,分析并识别出现网的网络属性;其中所述网络属性包括:网络层次、网络拓扑形状、网络拓扑间的关系和网络拓扑间的交点。
  3. 根据权利要求2所述的LTE网络业务流量评估方法,其中,根据所述现网的网络属性、指定的预增业务接入点及配置参数,确定从所述预增业务接入点到汇聚层的网络拓扑路径的中的瓶颈节点的步骤包括:
    在所述预增业务接入点属于接入层时,遍历与所述预增业务接入点相连接的网络拓扑,直至遍历到所述网络拓扑与汇聚层相交的汇聚层交点处,遍历结束;
    标识出从所述预增业务接入点到所述汇聚层交点之间的网络拓扑路径,以及所述网络拓扑路径中的网络拓扑路径交点;其中,所述网络拓扑路径交点包括所述汇聚层交点;
    根据网络拓扑路径交点,确定瓶颈节点。
  4. 根据权利要求3所述的LTE网络业务流量评估方法,其中,所述基础数据包括网元间的物理链路速率;
    根据网络拓扑路径交点,确定瓶颈节点的步骤包括:
    在所述网络拓扑路径交点中,确定所述汇聚层交点为瓶颈节点;和/或
    根据所述预增业务接入点到所述汇聚层交点之间各网元间的物理链路速率,比较相邻两段拓扑的物理链路速率,在比较结果指示当前两段拓扑的物理链路速率不同时,获取当前两段拓扑与相邻汇聚层侧的拓扑相交的交点为瓶颈节点。
  5. 根据权利要求1所述的LTE网络业务流量评估方法,其中,所述配置参数包括:预增业务的业务流量,查询业务流量的时间段,接入层业务流量收敛系数和物理链路使用率;
    获取所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量的步骤包括:
    在所述查询业务流量的时间段内,获取所述瓶颈节点的接入层侧物理端口的带宽利用率;其中,所述物理端口是配有业务的物理端口;
    根据所述带宽利用率和所述瓶颈节点的接入层侧拓扑的物理链路速率,获得所述瓶颈节点的扩容前流量;
    根据所述预增业务的业务流量以及所述接入层业务流量收敛系数,获取途径所述瓶颈节点的接入层预增流量总和;
    根据所述接入层预增流量总和以及所述扩容前流量,得到所述瓶颈节点的扩容后流量;
    获取所述接入层侧拓扑的物理链路速率以及所述物理链路使用率,得到所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量。
  6. 根据权利要求5所述的LTE网络业务流量评估方法,其中,根据所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量,评估出预增业务流量对现网中节点的流量影响的步骤包括:
    将所述瓶颈节点的所述扩容后流量和所述接入层侧拓扑的物理链路可用带宽流量比较;
    在所述扩容后流量大于所述接入层侧拓扑的物理链路可用带宽流量时,确定所述瓶颈节点扩容后业务流量异常;在所述扩容后流量小于或等于所述接入层侧拓扑的物理链路可用带宽流量时,确定所述瓶颈节点扩容后业务流量正常。
  7. 根据权利要求5所述的LTE网络业务流量评估方法,其中,根据所述瓶颈节点接入层侧物理端口的带宽利用率和所述瓶颈节点接入层侧的拓扑的物理链路速率,获得所述瓶颈节点扩容前流量的步骤包括:
    在所述查询业务流量的时间段内,获取所述瓶颈节点的接入层侧物理端口的带宽利用率的N个最大值;其中,N为预设数值;
    获取N个接入层侧物理端口的带宽利用率的最大值的平均值,得到所述瓶颈节点的接入层侧物理端口的带宽利用率峰值均值;
    获取所述瓶颈节点的接入层侧拓扑的物理链路速率;
    根据公式:扩容前流量=接入层侧物理端口的带宽利用率峰值均值*接入层侧拓扑的物理链路速率,得到所述瓶颈节点的扩容前流量。
  8. 根据权利要求5所述的LTE网络业务流量评估方法,其中,根据所述瓶颈节点的接入层预增流量总和以及所述瓶颈节点的扩容前流量,得到所述瓶颈节点的扩容后流量的步骤包括:
    通过公式:扩容后流量=接入层预增流量总和+扩容前流量,得到所述瓶颈节点的扩容后流量;其中
    若所述瓶颈节点对应有一保护方向的瓶颈节点,所述扩容前流量包括所述瓶颈节点本身的扩容前流量和所述瓶颈节点对应保护方法的瓶颈节点的扩容前流量。
  9. 根据权利要求1所述的LTE网络业务流量评估方法,其中,所述配置参数包括:预增业务的业务流量,查询业务流量的时间段,接入层业务流量收敛系数和物理链路使用率;所述基础数据包括网元间的物理链路速率;
    所述方法还包括:
    在预增业务接入点属于汇聚层,且不是孤立节点时,获取源点物理端口的上行带宽利用率和下行带宽利用率;其中,所述源点是指所述预增业务接入点隶属拓扑的每段链路的任一端点,且相邻两条链路取不同的端点;
    根据所述上行带宽利用率和下行带宽利用率以及所述源点隶属链路的物理链路速率,得到所述链路的上行实载容量和下行实载容量。
  10. 根据权利要求9所述的LTE网络业务流量评估方法,其中,根据所述上行带宽利用率和下行带宽利用率以及所述源点隶属链路的物理链路速率,得到所述链路的上行实载容量和下行实载容量的步骤包括:
    在所述查询业务流量的时间段内,分别获取所述源点物理端口的上行带宽利用率和下行带宽利用率的M个最大值;其中,M为预设数值;
    分别获取M个上行带宽利用率和M个下行带宽利用率的最大值的平均值,得到上行带宽利用率峰值均值和下行带宽利用率峰值均值;
    通过公式:实载容量=带宽利用率峰值均值*物理链路速率,得到所述链路的上行实载容量和下行实载容量。
  11. 根据权利要求1或10所述的LTE网络业务流量评估方法,其中,所述方法还包括:
    生成所述预增业务接入点所在网络拓扑层流量报表;其中,所述网络拓扑层包括:接入层和汇聚层。
  12. 一种LTE网络业务流量评估装置,包括:
    第一获取模块,设置为获取现网的网络属性、指定的预增业务接入点及配置参数;其中,所述配置参数是所述预增业务接入点的配置数据;
    瓶颈节点确定模块,设置为根据所述现网的网络属性、指定的预增业务接入点及配置参数,确定从所述预增业务接入点到汇聚层的网络拓扑路径中的瓶颈节点;
    第二获取模块,设置为获取所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量;
    流量评估模块,设置为根据所述瓶颈节点的扩容后流量和所述瓶颈节点的接入层侧拓扑的物理链路可用带宽流量,评估出预增业务流量对现网中节点的流量影响。
  13. 根据权利要求12所述的LTE网络业务流量评估装置,其中,所述第一获取模块包括:
    数据采集子模块,设置为采集现网网元管理系统的分组传输网设备基础数据;
    网络属性分析子模块,设置为根据所述基础数据,分析并识别出现网的网络属性;其中所述网络属性包括:网络层次、网络拓扑形状、网络拓扑间的关系和网络拓扑间的交点。
  14. 根据权利要求13所述的LTE网络业务流量评估装置,其中,所述瓶颈节点确定模块包括:
    网络拓扑遍历子模块,设置为在所述预增业务接入点属于接入层时,遍历与所述预增业务接入点相连接的网络拓扑,直至遍历到所述网络拓扑与汇聚层相交的汇聚层交点处,遍历结束;
    标识子模块,设置为标识出从所述预增业务接入点到所述汇聚层交点之间的网络拓扑路径,以及所述网络拓扑路径中的网络拓扑路径交点;其中,所述网络拓扑路径交点包括所述汇聚层交点;
    瓶颈节点确定子模块,设置为根据网络拓扑路径交点,确定瓶颈节点。
PCT/CN2015/072797 2014-10-22 2015-02-11 一种lte网络业务流量评估方法及装置 WO2016061957A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410566343.4 2014-10-22
CN201410566343.4A CN105592487B (zh) 2014-10-22 2014-10-22 一种lte网络业务流量评估方法及装置

Publications (1)

Publication Number Publication Date
WO2016061957A1 true WO2016061957A1 (zh) 2016-04-28

Family

ID=55760141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072797 WO2016061957A1 (zh) 2014-10-22 2015-02-11 一种lte网络业务流量评估方法及装置

Country Status (2)

Country Link
CN (1) CN105592487B (zh)
WO (1) WO2016061957A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865627A (zh) * 2019-04-25 2020-10-30 中国移动通信集团河北有限公司 传输组网评估方法、装置、计算设备及计算机存储介质
CN112910670A (zh) * 2019-12-03 2021-06-04 中盈优创资讯科技有限公司 城域网网络扩容方法及装置
CN113127404A (zh) * 2021-04-21 2021-07-16 中国科学院计算技术研究所 一种对cpu互连系统的网络拓扑结构进行重构的方法及装置
CN113762421A (zh) * 2021-10-22 2021-12-07 中国联合网络通信集团有限公司 分类模型的训练方法、流量分析方法、装置及设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108271198B (zh) * 2016-12-30 2020-11-17 华为技术有限公司 一种流量仿真方法及装置
CN108055147B (zh) * 2017-12-07 2020-11-03 国家电网公司 通信数据网络业务性能分析方法
CN111130950A (zh) * 2019-12-31 2020-05-08 中国联合网络通信集团有限公司 网络流量的评估方法及装置
CN114173369A (zh) * 2021-12-29 2022-03-11 中国电信股份有限公司 一种网络质量评估方法、装置、电子设备及存储介质
CN115037642B (zh) * 2022-03-30 2023-11-21 武汉烽火技术服务有限公司 一种识别流量瓶颈的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107558A1 (en) * 2009-03-20 2010-09-23 Citrix Systems, Inc. Systems and methods for using end point auditing in connection with traffic management
CN102143022A (zh) * 2011-03-16 2011-08-03 北京邮电大学 用于ip网络的云测量装置和测量方法
CN102695204A (zh) * 2012-04-24 2012-09-26 北京讯风光通信技术开发有限责任公司 一种用于工业无线网络的业务控制方法及系统
CN103685054A (zh) * 2013-12-18 2014-03-26 武汉烽火网络有限责任公司 基于业务感知的多路径负载均衡方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630314B2 (en) * 2006-12-05 2009-12-08 Latitue Broadband, Inc. Methods and systems for dynamic bandwidth management for quality of service in IP Core and access networks
CN101127713B (zh) * 2007-09-05 2011-04-06 华为技术有限公司 通用流量控制装置及流量控制方法
WO2010083660A1 (en) * 2009-01-24 2010-07-29 Huawei Technologies Co., Ltd. Method, device and system for assigning channels in wireless mesh networks
US9094326B2 (en) * 2010-11-02 2015-07-28 Qualcomm Incorporated Systems and methods for communicating in a network
EP2847948A1 (en) * 2012-05-08 2015-03-18 Telefonaktiebolaget L M Ericsson (Publ) Dynamic profiling for transport networks
CN103888435B (zh) * 2012-12-24 2017-06-23 中国电信股份有限公司 用于业务接纳控制的方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107558A1 (en) * 2009-03-20 2010-09-23 Citrix Systems, Inc. Systems and methods for using end point auditing in connection with traffic management
CN102143022A (zh) * 2011-03-16 2011-08-03 北京邮电大学 用于ip网络的云测量装置和测量方法
CN102695204A (zh) * 2012-04-24 2012-09-26 北京讯风光通信技术开发有限责任公司 一种用于工业无线网络的业务控制方法及系统
CN103685054A (zh) * 2013-12-18 2014-03-26 武汉烽火网络有限责任公司 基于业务感知的多路径负载均衡方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865627A (zh) * 2019-04-25 2020-10-30 中国移动通信集团河北有限公司 传输组网评估方法、装置、计算设备及计算机存储介质
CN111865627B (zh) * 2019-04-25 2023-07-25 中国移动通信集团河北有限公司 传输组网评估方法、装置、计算设备及计算机存储介质
CN112910670A (zh) * 2019-12-03 2021-06-04 中盈优创资讯科技有限公司 城域网网络扩容方法及装置
CN112910670B (zh) * 2019-12-03 2023-04-28 中盈优创资讯科技有限公司 城域网网络扩容方法及装置
CN113127404A (zh) * 2021-04-21 2021-07-16 中国科学院计算技术研究所 一种对cpu互连系统的网络拓扑结构进行重构的方法及装置
CN113127404B (zh) * 2021-04-21 2024-03-08 中国科学院计算技术研究所 一种对cpu互连系统的网络拓扑结构进行重构的方法及装置
CN113762421A (zh) * 2021-10-22 2021-12-07 中国联合网络通信集团有限公司 分类模型的训练方法、流量分析方法、装置及设备
CN113762421B (zh) * 2021-10-22 2024-03-15 中国联合网络通信集团有限公司 分类模型的训练方法、流量分析方法、装置及设备

Also Published As

Publication number Publication date
CN105592487B (zh) 2020-04-03
CN105592487A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
WO2016061957A1 (zh) 一种lte网络业务流量评估方法及装置
EP1583281B1 (en) High-speed traffic measurement and analysis methodologies and protocols
CN102315974B (zh) 基于层次化特征分析的tcp、udp流量在线识别方法和装置
CN105337951B (zh) 对系统攻击进行路径回溯的方法与装置
DE60024908T2 (de) Aggregationsverfahren für globale Flussinformationen
WO2021093692A1 (zh) 网络质量检测方法、装置、服务器和计算机可读介质
CN106059830B (zh) 一种ptn环网流量性能的自动分析方法
US8775352B2 (en) Methods and apparatus to model end-to-end class of service policies in networks
CN104320278B (zh) 基于软件定义网络sdn的广域网络实现方法及设备
CN104935476B (zh) 一种基于sdn的网络流量矩阵测量方法
WO2015139533A1 (zh) 一种网管对混合组网业务的反算方法
EP3900269A1 (en) Hardware-friendly mechanisms for in-band oam processing
CN107113191A (zh) 数据中心结构网络中的内联数据包追踪
CN112866042A (zh) 网络质量检测方法、装置、计算机设备和计算机可读介质
CN111934866B (zh) 量子通信网络的多层路径自动还原方法及其系统
CN102427445A (zh) It仿真基础架构离线合规性安全审计方法
CN107566236A (zh) 用于获取客户专线端到端业务路径的方法、装置和系统
EP3041170B1 (en) Network planning method and device
CN109327401A (zh) 一种sdn网络的流量调度方法与系统
CN109088756B (zh) 一种基于网络设备识别的网络拓扑补全方法
Li et al. Bound-based network tomography for inferring interesting link metrics
EP2789126A1 (en) Assigning one or more network service templates to an existing network service model
CN116319353A (zh) 一种网络拓扑结构的检测方法、装置、设备及介质
CN115473825A (zh) 业务服务等级协议保障方法和系统、控制器和存储介质
US11438237B1 (en) Systems and methods for determining physical links between network devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853024

Country of ref document: EP

Kind code of ref document: A1