WO2016061838A1 - 超高速光采样时钟的多通道失配测量方法及测量补偿装置 - Google Patents

超高速光采样时钟的多通道失配测量方法及测量补偿装置 Download PDF

Info

Publication number
WO2016061838A1
WO2016061838A1 PCT/CN2014/089903 CN2014089903W WO2016061838A1 WO 2016061838 A1 WO2016061838 A1 WO 2016061838A1 CN 2014089903 W CN2014089903 W CN 2014089903W WO 2016061838 A1 WO2016061838 A1 WO 2016061838A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
spectrum analyzer
ultra
optical
spectrum
Prior art date
Application number
PCT/CN2014/089903
Other languages
English (en)
French (fr)
Inventor
邹卫文
杨光
张华杰
陈建平
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to US15/544,188 priority Critical patent/US10209135B2/en
Publication of WO2016061838A1 publication Critical patent/WO2016061838A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/58Photometry, e.g. photographic exposure meter using luminescence generated by light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response

Definitions

  • the invention relates to a method in the field of optical information processing technology, in particular to a channel mismatch measurement and compensation method for an ultra-high speed optical sampling clock.
  • PADC optical analog-to-digital conversion
  • Photonics Technology Letters, IEEE, 1999, 11 (9): 1168-1170. can fully utilize the low jitter characteristics of mode-locked lasers, while also taking advantage of high repetition rate and wide spectrum to produce stable ultra-high-speed optical pulses. sequence. Therefore, time-wavelength interleaving becomes one of the commonly used methods for generating ultra-high speed optical sampling clocks.
  • each channel has a certain degree of mismatch in terms of delay, amplitude, and pulse shape.
  • the dimming delay line and the dimmable attenuator are generally connected in each channel for delay and amplitude mismatch adjustment (Zou Weiwen, Li Xing, et al. An ultra-high speed optical digital-to-analog conversion) Method and device: China, 201410065510.7 [P]. 2014).
  • the object of the present invention is to provide a multi-channel mismatch measurement method and a measurement compensation device for an ultra-high-speed optical sampling clock, which are respectively used for an optical spectrum analyzer and an electrical spectrum analyzer for the deficiencies of the prior art.
  • the optical spectrum and the radio spectrum of the sequence are measured, and the mismatch of each channel is obtained by analyzing the measured frequency domain information, and is further used for effective compensation of mismatch.
  • the time domain expression of the pulse sequence in each channel is:
  • a k is the k-channel pulse amplitude
  • ⁇ k is the delay error of the k- th channel
  • u k (t) is the normalized waveform of the pulse in the k-th channel.
  • the RF power spectrum measured by the electrical spectrum analyzer can be expressed as:
  • E k (f) is the optical spectrum measured by the optical spectrum analyzer in the kth channel.
  • the amplitude a k in each channel can also be calculated from the optical spectrum power:
  • Equation (6) shows that P k is a k .
  • the pulse amplitude a k and the delay error ⁇ k in each channel can be obtained by measuring the pulse sequence spectrum and the radiation spectrum, thereby adjusting the dimmable delay line and the dimmable attenuator as a basis. Compensation for channel mismatch.
  • a multi-channel mismatch measurement method for an ultra-high speed optical sampling clock characterized in that the method comprises the following steps:
  • Step 1 The 1 ⁇ 2 fiber coupler is used to divide the multi-channel optical pulse signal sequence to be divided into 2 channels, one multi-channel optical pulse signal sequence is input to the spectrum analyzer, and the other channel passes the multi-channel optical pulse signal sequence through the photodetector. And inputting to the electric spectrum analyzer, wherein the spectrum analyzer and the electric spectrum analyzer respectively output the measurement results of the input signals to the data analysis and processing module;
  • E k (f) is the optical spectrum measured by the optical spectrum analyzer in the kth channel
  • Step 3 Calculate the delay error ⁇ k .
  • the formula is as follows:
  • P k is the M peaks of the emission spectrum in the interval [0, f s ]:
  • T s is the sampling period
  • f s 1/T s
  • R PD is the responsiveness of the photodetector
  • a multi-channel mismatch measurement and compensation device for ultra-high-speed optical sampling clock comprising: 1 ⁇ 2 fiber coupler, spectrum analyzer, photodetector, electric spectrum analyzer, data analysis and processing module and drive feedback module ;
  • the input end of the 1 ⁇ 2 fiber coupler is connected to the output end of the ultra-high speed time-wavelength interleaved optical pulse generating module with the adjustable fiber delay line and the tunable optical power attenuator, the 1 ⁇ 2 fiber coupling
  • the device divides the multi-channel optical pulse sequence to be tested into two paths, one is connected to the input end of the spectrum analyzer, and the other is connected to the photodetector and the electric spectrum analyzer in turn, and the spectrum analyzer and the electric spectrum analyzer output end are connected.
  • the output end of the data analysis and processing module is connected to the input end of the driving feedback module, and the output end of the driving feedback module is respectively connected to the adjustable optical fiber delay line And a dimmable power attenuator.
  • the ultra-high-speed time-wavelength interleaved optical pulse generating module to be tested may adopt a high-repetition frequency active mode-locked fiber laser or a passive mode-locked fiber laser as a laser light source. Then, the wave decomposition multiplexing technique is used to perform multi-channel and multi-wavelength cutting, and the method of time and amplitude adjustment based on delay and light amplitude is implemented.
  • the spectrum analyzer is used to measure the optical spectrum of different channels of an ultra-high speed time-wavelength interleaved optical pulse sequence.
  • the photodetector is configured to convert an ultra-high speed time-wavelength interlaced optical pulse sequence into a radio frequency signal and measure the radio frequency power spectrum thereof by the electrical spectrum analyzer.
  • the data analysis and processing module is configured to perform analysis processing on measurement data of the spectrum analyzer and the electrical spectrum analyzer, including but not limited to analog signal processing circuits, digital signal processors, or computer software.
  • the driving feedback module is configured to adjust the amplitude and delay of the optical signal according to the mismatch information, including but not limited to mechanical structures, electronic circuits, and the like.
  • the present invention has the following advantages:
  • the channel mismatch information can be used as the basis for channel mismatch compensation and correction, the results are more accurate than the direct observation method in the time domain.
  • Figure 1 is a diagram of an embodiment of the present invention
  • Figure 2(a) shows the spectrum measured by the optical spectrum analyzer, and (b) shows the measured spectrum of the spectrum by the electrical spectrum analyzer.
  • Figure 3(a) shows the spectrum of the spectrum obtained by analyzing the mismatch information, and (b) the spectrum of the spectrum after the channel mismatch compensation.
  • the high-rate pulse laser in the ultra-high-speed time-wavelength interleaved optical pulse generating module 1 to be tested uses an active mode-locked laser 1-1, and its output repetition frequency is 10 GHz, and its spectrum 6 passes through the wave.
  • the sub-multiplexer 1-2 is cut into four channels 7 of different wavelengths.
  • Each output 8 passes through a corresponding tunable fiber delay line 1-3, and then passes through a tunable optical attenuator 1-4; respectively, and then the sampling clocks on each wavelength division path enter a wave decomposition multiplexer 1- 5.
  • the output of the optical pulse sequence 9 is divided into two channels by a 1 ⁇ 2 fiber coupler 2, one input is input to the spectrum analysis module 3 for measurement, and the spectral data 3-2 of the four channels is obtained by the spectrum analyzer 3-1; The other path is input to the spectrum analysis module 4.
  • the optical pulse sequence 9 is first converted into a radio frequency signal by a photodetector 4-1, and then input to the electric spectrum analyzer 4-2 for measurement to obtain radio frequency power spectrum data 4-3.
  • the data analysis and processing module 5 uses a numerical calculation method to obtain four channels in accordance with equations (4) and (5). And amplitude a k :
  • Figure 3(a) shows the results of numerical simulation of the RF power spectrum based on the mismatch information. Comparing with the experimental results in Figure 2(b), it can be seen that the two are exactly matched, which indicates that the present invention gives The mismatch measurement method is accurate and reliable.
  • Figure 3(b) shows the RF power spectrum after compensation. It can be seen that the clutter is significantly suppressed.
  • the spectral and radio spectrum measurements of the 4-channel, 40 GHz time-wavelength interleaved optical pulse sequence are performed, and the mismatch information between the channels is obtained by numerical analysis and compared.
  • the experimental results and simulation results based on mismatch information verify the effectiveness of the proposed method.
  • the adjustable fiber delay line 1-3 and the dimmable power attenuator 1-4 can be further adjusted to compensate and correct the mismatch phenomenon.
  • the invention is based on the frequency domain measurement of the pulse, overcomes the bottleneck of insufficient sampling rate in the time domain measurement method, and can accurately obtain the channel mismatch information from the frequency domain measurement result and has the advantages of being simple and easy.
  • the invention can be widely used for measuring, compensating and correcting channel mismatch phenomena in a pulse sequence generating system of ultra-high speed multi-channel time-wavelength interleaving.

Abstract

一种超高速时间-波长交织光脉冲序列通道失配测量补偿装置及其方法,包括待测超高速时间-波长交织光脉冲产生模块(1),光谱分析模块(3),电频谱分析模块(4)以及数据分析与处理模块(5)。通过对超高速时间-波长交织光脉冲序列的频域测量与分析,得到了各个通道脉冲序列的失配信息,克服了通过示波器进行时域观测方法中采样率不足的瓶颈。得到的通道失配信息可进一步作为超高速时间-波长交织光脉冲序列通道失配补偿和校正的依据。

Description

超高速光采样时钟的多通道失配测量方法及测量补偿装置 技术领域
本发明涉及一种光信息处理技术领域的方法,具体是超高速光采样时钟的通道失配测量及补偿方法。
背景技术
近年来光学模数转换技术(PADC)发展迅速并成为目前光电子领域的一大研究热门。由于PADC的性能很大程度上依赖于其采样时钟的性能,因此如何产生高速且稳定的光脉冲序列作为采样时钟成为这一领域的重要课题。作为一种实现超高重复频率光脉冲序列的有效方法,时间-波长交织(Clark T R,Kang J U,Esman R D.Performance of a time-and wavelength-interleaved photonic sampler for analog-digital conversion[J].Photonics Technology Letters,IEEE,1999,11(9):1168-1170.)能够充分发挥锁模激光器的低抖动特点,同时还可以利用重复频率高和频谱宽等优势产生稳定的超高速光脉冲序列。因此,时间-波长交织成为超高速光采样时钟产生的常用方法之一。
对于时间-波长交织方法产生的超高速光采样时钟,其各通道在延时、幅度以及脉冲形状方面均存在一定程度的失配。在实际系统中,一般在每个通道中接入可调光延时线和可调光衰减器进行延时和幅度失配的调节(邹卫文,李杏,等.一种超高速光学数模转换方法和装置:中国,201410065510.7[P].2014)。对于通道失配的补偿,我们需要在实验中对各个通道中的脉冲序列进行实时测量,根据测得的幅值和时延信息对可调光延时线和可调光衰减器进行调节从而实现通道间的匹配。对于较低重复频率的光脉冲序列,我们可以简单地通过示波器进行时域观测以获得幅值和时延信息。然而对于超高速光脉冲序列,其时域测量因示波器采样率限制无法实施。因此,我们必须寻求其他方法对超高速时间-波长交织光脉冲序列的通道失配现象进行测量。
发明内容
本发明的目的在于针对现有技术的不足,提出一种超高速光采样时钟的多通道失配测量方法及测量补偿装置,采用光频谱分析仪和电频谱分析仪分别对脉冲 序列的光频谱和射频谱进行测量,通过对测得的频域信息进行数据分析得出各通道的失配情况,并进一步用于失配的有效补偿。
本发明的技术原理如下:
对于通道总数为M,采样周期为Ts时间-波长交织脉冲序列,其每一通道中脉冲序列的时域表达式为:
Figure PCTCN2014089903-appb-000001
式(1)中ak为第k通道脉冲幅度,τk为第k通道的延时误差,uk(t)为第k通道中脉冲的归一化波形。经过响应度为RPD的光电探测器得到的信号为:
Figure PCTCN2014089903-appb-000002
电频谱分析仪测得的射频功率谱可表达为:
Figure PCTCN2014089903-appb-000003
式(3)中fs=1/Ts
Figure PCTCN2014089903-appb-000004
为uk(t)的傅里叶变换,可根据测得的光频谱计算得到:
Figure PCTCN2014089903-appb-000005
Ek(f)为第k通道中光频谱仪测得的光频谱。每一通道中的幅值ak同样可以根据光频谱功率计算得到:
Figure PCTCN2014089903-appb-000006
根据式(3),射频谱在[0,fs]区间上有M个峰值Pk,k=1,2,…,M,其表达式为:
Figure PCTCN2014089903-appb-000007
式(6)表明,Pk是ak,
Figure PCTCN2014089903-appb-000008
与τk,k=1,2,…,M的函数,可表达为:
Figure PCTCN2014089903-appb-000009
电频谱仪测得的M个频谱峰值Ck,k=1,2,…,M与Pk存在对应关系:
10log10Pk=Ck k=1,2,…,M            (8)
对于延时误差,不失一般性,可假设τ1=0作为参考起始点,对式(8)进行整理,可以得到如下M个独立方程:
Figure PCTCN2014089903-appb-000010
由于
Figure PCTCN2014089903-appb-000011
与ak可以通过式(4)和式(5)的计算得到,将计算结果带入式(9),根据式(7)中的函数关系,Pk化为自变量仅为延时误差τk的函数,而式(9)也化为仅关于延时误差τk的方程组:
Figure PCTCN2014089903-appb-000012
采用数值方法对式(10)进行求解即可以得到全部M个延时误差τk,k=1,2,…,M。
综上,通过对脉冲序列光谱和射频谱的测量可以得到每一通道中的脉冲幅度ak和延时误差τk,以此作为依据调节可调光延时线与可调光衰减器即可实现通道失配的补偿。
本发明的技术解决方案如下:
一种超高速光采样时钟的多通道失配测量方法,其特点在于,该方法包括如下步骤:
步骤1、利用1×2光纤耦合器将待测多通道光脉冲信号序列分为2路,一路多通道光脉冲信号序列输入至光谱分析仪,另一路将多通道光脉冲信号序列通过光电探测器和输入至电频谱分析仪,所述的光谱分析仪和电频谱分析仪将输入信号的测量结果分别输出至数据分析与处理模块;
步骤2、计算各通道中的幅值ak,k=1,2,…,M,M为通道总数,公式如下:
Figure PCTCN2014089903-appb-000013
其中,Ek(f)为第k通道中光频谱仪测得的光频谱;
计算各通道中的
Figure PCTCN2014089903-appb-000014
其为uk(t)的傅里叶变换,uk(t)为第k通道中脉冲的归一化波形,公式如下:
Figure PCTCN2014089903-appb-000015
步骤3、计算延时误差τk,公式如下:
Figure PCTCN2014089903-appb-000016
其中Ck,k=1,2,…,M为电频谱仪测得的M个频谱峰值,Pk为射频谱在[0,fs]区间上M个峰:
Figure PCTCN2014089903-appb-000017
其中,M为通道总数,Ts为采样周期,fs=1/Ts,RPD为光电探测器的响应度;
一种超高速光采样时钟的多通道失配测量补偿装置,其特点在于,包括1×2光纤耦合器、光谱分析仪、光电探测器、电频谱分析仪、数据分析与处理模块和驱动反馈模块;
所述的1×2光纤耦合器的输入端与具有可调光纤延迟线与可调光功率衰减器的待测超高速时间-波长交织光脉冲产生模块的输出端相连,该1×2光纤耦合器将待测多通道光脉冲序列分为2路,一路与光谱分析仪的输入端连接,另一路依次连接光电探测器和电频谱分析仪,所述的光谱分析仪和电频谱分析仪输出端分别与数据分析与处理模块的输入端相连,该数据分析与处理模块的输出端与所述的驱动反馈模块的输入端相连,该驱动反馈模块的输出端分别连接所述的可调光纤延迟线和可调光功率衰减器。
所述的待测超高速时间-波长交织光脉冲产生模块,可采用高重复频率的主动锁模光纤激光器或被动锁模光纤激光器作为激光光源。然后采用波分解复用技术进行多通道、多波长切割,基于延时和光幅度进行时间和幅度调整的方法实现。
所述的光谱分析仪用于测量超高速时间-波长交织光脉冲序列不同通道的光频谱。
所述的光电探测器用于将超高速时间-波长交织光脉冲序列转化为射频信号并通过所述的电频谱分析仪对其射频功率谱进行测量。
所述的数据分析与处理模块用于通过对光谱分析仪和电频谱分析仪的测量数据进行分析处理,包括但不限于模拟信号处理电路、数字信号处理器或计算机软件。
所述的驱动反馈模块用于根据失配信息进行光信号幅度和时延的调节,包括但不限于机械结构、电子电路等实现方式。
与现有技术相比,本发明具有以下优点:
1、通过对超高速时间-波长交织光脉冲序列进行频域测量和数值分析,克服了时域测量方法中采样率不足的瓶颈,准确地通过从频域测量结果中得出通道失配信息。
2、简单易行,得出的通道失配信息可作为通道失配补偿和校正的依据,其结果较时域直接观测方法更为精确。
附图说明
图1为本发明的一个实施例图
图2(a)为光频谱仪测得光谱,(b)为电频谱仪测得射频谱
图3(a)为根据分析处理得到失配信息进行计算得到的射频谱,(b)为进行通道失配补偿后测得射频谱
具体实施方式
下面结合附图给出本发明的一个具体实施例子。本实施例以本发明的技术方案为前提进行实施,给出了详细的实施方式和过程,但本发明的保护范围不限于下述的实施例。
如图1所示,本实施例中,待测超高速时间-波长交织光脉冲产生模块1中高速率脉冲激光器使用主动锁模激光器1-1,其输出重复频率为10GHz,其频谱6经过波分复用器1-2被切割为4路不同波长的频谱7。每一路输出8经过对应的可调光纤延迟线1-3后,分别再通过一个可调光功率衰减器1-4;然后各波分路径上的采样时钟分别进入一个波分解复用器1-5,合并成1路重复频率为40GHz的光脉冲序列9。光脉冲序列9输出后通过一个1×2光纤耦合器2等分为 2路,一路输入至光谱分析模块3进行测量,通过光谱分析仪3-1得到4个通道中的光谱数据3-2;另一路则输入至电谱分析模块4。在电谱分析模块中,光脉冲序列9先通过一个光电探测器4-1转化为射频信号,再输入电频谱分析仪4-2进行测量,得到射频功率谱数据4-3。数据分析与处理模块5采用数值计算方法,根据式(4)和式(5)得到4通道中的
Figure PCTCN2014089903-appb-000018
和幅值ak:
Figure PCTCN2014089903-appb-000019
式中Ek(f),k=1,2,3,4为第k通道中光频谱仪测得的光频谱。
数据分析与处理模块5根据式(9)和射频功率谱数据4-3中的峰值Ck,k=1,2,3,4可以得到如下方程组:
Figure PCTCN2014089903-appb-000020
将式(11)代入式(12)中进行数值求解,得到各通道中的幅值ak和延时误差τk,k=1,2,3,4,即得出了各通道间的延时与幅度失配信息10。数据分析与处理模块5将得到的延时与幅度失配信息10输入至驱动反馈模块11,驱动反馈模块11根据各通道延时和幅值的数值的相对大小,输出相应的调节信号驱动可调光纤延迟线1-3与可调光功率衰减器1-4的调节,增大数值相对较小的延时与幅度,减小数值相对较大的延时与幅度,最终使得各通道延时和幅值趋于均匀,即实现了通道失配的补偿。图3(a)给出了根据失配信息对射频功率谱进行数值仿真的结果,与实验结果图2(b)之间进行比较,可以看出两者精确吻合,这表明本发明给出的失配测量方法是准确可靠的。图3(b)给出了进行补偿后的射频功率谱,可以看出,杂波得到了明显的抑制。
在上述过程中,通过对4通道,40GHz的时间-波长交织光脉冲序列进行光谱和射频谱测量,通过数值分析方法得出了各个通道之间的失配信息并通过比较 实验结果与基于失配信息的仿真结果验证了方法的有效性。此外以失配信息为根据,可进一步调节可调光纤延迟线1-3与可调光功率衰减器1-4对失配现象进行补偿和校正。本发明基于对脉冲的频域测量,克服了时域测量方法中采样率不足的瓶颈,可以准确地通过从频域测量结果中得出通道失配信息并具有简单易行的优点。本发明可广泛用于超高速多通道时间-波长交织的脉冲序列产生系统中通道失配现象的测量、补偿与校正。

Claims (2)

  1. 一种超高速光采样时钟的多通道失配测量方法,其特征在于,该方法包括如下步骤:
    步骤1、利用1×2光纤耦合器(2)将待测多通道光脉冲信号序列分为2路,一路多通道光脉冲信号序列输入至光谱分析仪(3-1),另一路将多通道光脉冲信号序列通过光电探测器(4-1)和输入至电频谱分析仪(4-2),所述的光谱分析仪(3-1)和电频谱分析仪(4-2)将输入信号的测量结果分别输出至数据分析与处理模块(5);
    步骤2、计算各通道中的幅值ak,k=1,2,…,M,M为通道总数,公式如下:
    Figure PCTCN2014089903-appb-100001
    其中,Ek(f)为第k通道中光频谱仪测得的光频谱;
    计算各通道中的
    Figure PCTCN2014089903-appb-100002
    其为uk(t)的傅里叶变换,uk(t)为第k通道中脉冲的归一化波形,公式如下:
    Figure PCTCN2014089903-appb-100003
    步骤3、计算延时误差τk,公式如下:
    Figure PCTCN2014089903-appb-100004
    其中Ck,k=1,2,…,M为电频谱仪测得的M个频谱峰值,Pk为射频谱在[0,fs]区间上M个峰:
    Figure PCTCN2014089903-appb-100005
    其中,M为通道总数,Ts为采样周期,fs=1/Ts,RPD为光电探测器的响应度。
  2. 一种超高速光采样时钟的多通道失配测量补偿装置,其特征在于,包括 1×2光纤耦合器(2)、光谱分析仪(3-1)、光电探测器(4-1)、电频谱分析仪(4-2)、数据分析与处理模块(5)和驱动反馈模块(11);
    所述的1×2光纤耦合器(2)的输入端与具有可调光纤延迟线(1-3)与可调光功率衰减器(1-4)的待测超高速时间-波长交织光脉冲产生模块(1)的输出端相连,该1×2光纤耦合器(2)将待测多通道光脉冲序列分为2路,一路与光谱分析仪(3-1)的输入端连接,另一路依次连接光电探测器(4-1)和电频谱分析仪(4-2),所述的光谱分析仪(3-1)和电频谱分析仪(4-2)输出端分别与数据分析与处理模块(5)的输入端相连,该数据分析与处理模块(5)的输出端与所述的驱动反馈模块(11)的输入端相连,该驱动反馈模块(11)的输出端分别连接所述的可调光纤延迟线(1-3)和可调光功率衰减器(1-4)。
PCT/CN2014/089903 2014-10-22 2014-10-30 超高速光采样时钟的多通道失配测量方法及测量补偿装置 WO2016061838A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/544,188 US10209135B2 (en) 2014-10-22 2014-10-30 Method for measuring multi-channel mismatch of ultra-high speed photonic sampler and measurement compensation device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410567490.3A CN104296884B (zh) 2014-10-22 2014-10-22 超高速光采样时钟的多通道失配测量方法及测量补偿装置
CN201410567490.3 2014-10-22

Publications (1)

Publication Number Publication Date
WO2016061838A1 true WO2016061838A1 (zh) 2016-04-28

Family

ID=52316714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089903 WO2016061838A1 (zh) 2014-10-22 2014-10-30 超高速光采样时钟的多通道失配测量方法及测量补偿装置

Country Status (3)

Country Link
US (1) US10209135B2 (zh)
CN (1) CN104296884B (zh)
WO (1) WO2016061838A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046425A (zh) * 2017-04-18 2017-08-15 中国电子科技集团公司第二十四研究所 基于采样间隔差值统计的采样时间误差检测系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104864961B (zh) * 2015-05-15 2017-08-29 西北核技术研究所 一种基于光纤阵列的多通道脉冲光谱测量装置及方法
CN106444216B (zh) * 2016-08-31 2019-07-30 上海交通大学 多通道光模数转换系统中宽带信号采集通道失配校正方法
CN109039466B (zh) * 2018-08-07 2020-12-01 吉林大学 一种基于掺铒光纤激光器的高稳定度光孤子产生器
KR102272597B1 (ko) * 2019-10-24 2021-07-06 한국표준과학연구원 광자 검출 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909659A (en) * 1996-03-08 1999-06-01 Advantest Corporation Measurement method for optical short-pulse waveform
CN101701852A (zh) * 2009-09-18 2010-05-05 深圳大学 一种用于测量太赫兹光脉冲的电光取样装置及测量方法
CN101718562A (zh) * 2009-11-20 2010-06-02 电子科技大学 一种多通道高速并行交替采集系统的误差实时校正方法
US20100288928A1 (en) * 2008-01-18 2010-11-18 Canon Kabushiki Kaisha Apparatus and method for measuring terahertz wave
CN103809346A (zh) * 2014-02-26 2014-05-21 上海交通大学 一种超高速光学模数转换装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026363A1 (en) * 1997-11-18 1999-05-27 California Institute Of Technology Sampling of electronic signals using optical pulses
US7016421B2 (en) * 2001-11-15 2006-03-21 Hrl Laboratories, Llc Time-interleaved delta sigma analog to digital modulator
US7409117B2 (en) * 2004-02-11 2008-08-05 American Air Liquide, Inc. Dynamic laser power control for gas species monitoring
US7570851B2 (en) * 2004-07-21 2009-08-04 Purdue Research Foundation Ultrashort photonic waveform measurement using quasi-phase-matched non-linear optics
GB0619616D0 (en) * 2006-10-05 2006-11-15 Oti Ophthalmic Technologies Optical imaging apparatus with spectral detector
US8902095B2 (en) * 2011-09-12 2014-12-02 Nucript LLC Photonic assisted optical under-sampling with non-uniform sample intervals
US9250128B2 (en) * 2012-03-02 2016-02-02 Beihang University Method and apparatus for optical asynchronous sampling signal measurements
CN102830569B (zh) * 2012-09-06 2015-05-20 上海交通大学 一种时间波长交织光采样时钟产生装置
US10610846B2 (en) * 2013-06-19 2020-04-07 Omega Optics, Inc. Two-dimensional photonic crystal microarray measurement method and apparatus for highly-sensitive label-free multiple analyte sensing, biosensing, and diagnostic assay
CN103488023B (zh) * 2013-09-18 2016-04-06 上海交通大学 高精度光学模数转换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909659A (en) * 1996-03-08 1999-06-01 Advantest Corporation Measurement method for optical short-pulse waveform
US20100288928A1 (en) * 2008-01-18 2010-11-18 Canon Kabushiki Kaisha Apparatus and method for measuring terahertz wave
CN101701852A (zh) * 2009-09-18 2010-05-05 深圳大学 一种用于测量太赫兹光脉冲的电光取样装置及测量方法
CN101718562A (zh) * 2009-11-20 2010-06-02 电子科技大学 一种多通道高速并行交替采集系统的误差实时校正方法
CN103809346A (zh) * 2014-02-26 2014-05-21 上海交通大学 一种超高速光学模数转换装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046425A (zh) * 2017-04-18 2017-08-15 中国电子科技集团公司第二十四研究所 基于采样间隔差值统计的采样时间误差检测系统
CN107046425B (zh) * 2017-04-18 2020-09-01 中国电子科技集团公司第二十四研究所 基于采样间隔差值统计的采样时间误差检测系统

Also Published As

Publication number Publication date
US20180024009A1 (en) 2018-01-25
CN104296884A (zh) 2015-01-21
CN104296884B (zh) 2017-12-12
US10209135B2 (en) 2019-02-19

Similar Documents

Publication Publication Date Title
WO2016061838A1 (zh) 超高速光采样时钟的多通道失配测量方法及测量补偿装置
CN103809346B (zh) 一种超高速光学模数转换装置
CN107219002B (zh) 一种超高分辨率光谱测量方法及系统
CN105445575B (zh) 一种光器件s参数测量中的光路去嵌入方法
US10746630B2 (en) Single-shot network analyzer (SINA)
CN109828421B (zh) 一种基于强度调节和差分编码技术的光子模数转换方法及系统
CN106444216B (zh) 多通道光模数转换系统中宽带信号采集通道失配校正方法
CN105548036A (zh) 一种自适应双光梳光谱系统
CN109100029A (zh) 飞秒激光脉冲时空参数单发测量装置
CN108287132A (zh) 一种太赫兹异步高速扫描系统触发信号产生装置及方法
Valley et al. Sensing RF signals with the optical wideband converter
US20230011819A1 (en) Intelligent real-time full-field measurement method and system for high-repetition-rate femtosecond pulse
CN104089709B (zh) 一种飞焦级纳秒脉冲激光波形处理方法
WO2023284679A1 (zh) 一种取样示波器复频响应校准装置和方法
CN111693143B (zh) 一种具有大动态范围的实时脉冲激光光谱测量方法和系统
Bai et al. Time-stretch network analyzer for single-shot characterization of electronic devices
Kalinin et al. Diagnostic system commissioning of the EMMA NS-FFAG facility at Daresbury Laboratory
CN112763083B (zh) 一种皮秒级脉冲产生器波形参数测量装置及方法
US20240133922A1 (en) Electrical signal sampling device
Pierno et al. Optical switching matrix as time domain demultiplexer in photonic ADC
RU2450282C1 (ru) Способ измерения пространственно-частотного распределения систематической ошибки пеленгования
US11300502B1 (en) Time-wavelength optical sampling systems and methods for determining composition of a sample based on detected pulses of different durations
CN111693157B (zh) 基于时频复用的大泵浦带宽超快脉冲时域测量方法和系统
Wang et al. Analysis of electro-optical intensity modulator for bunch arrival-time monitor at SXFEL
Zhang et al. Experimental demonstration of a real-time hybrid optoelectronic analog-to-digital converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15544188

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14904564

Country of ref document: EP

Kind code of ref document: A1