WO2016061825A1 - 天线系统和处理方法 - Google Patents

天线系统和处理方法 Download PDF

Info

Publication number
WO2016061825A1
WO2016061825A1 PCT/CN2014/089484 CN2014089484W WO2016061825A1 WO 2016061825 A1 WO2016061825 A1 WO 2016061825A1 CN 2014089484 W CN2014089484 W CN 2014089484W WO 2016061825 A1 WO2016061825 A1 WO 2016061825A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna array
frequency band
array
feed
Prior art date
Application number
PCT/CN2014/089484
Other languages
English (en)
French (fr)
Inventor
邹克利
蔡华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/089484 priority Critical patent/WO2016061825A1/zh
Priority to EP14904228.5A priority patent/EP3188311A4/en
Priority to CN201480073601.3A priority patent/CN105917525A/zh
Publication of WO2016061825A1 publication Critical patent/WO2016061825A1/zh
Priority to US15/495,681 priority patent/US20170229786A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/30Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements

Definitions

  • Embodiments of the present invention relate to the field of communications, and more particularly, to an antenna system and processing method.
  • a dual-frequency or multi-frequency antenna refers to an antenna that can operate simultaneously in two or more frequency bands, which can effectively expand the communication bandwidth of the communication system, thereby improving the communication capacity of the communication system.
  • the antennas operating in the X and Ka bands are waveguide slot antennas, wherein the lower frequency, longer wavelength X-band antenna is placed in the lower layer, and the X antenna unit is placed in the gap between the Ka waveguides, The signal is radiated through the slot; a Ka-band antenna with a higher frequency and a shorter wavelength is placed in the upper layer to directly radiate the signal.
  • the frequency ratio of the X and Ka bands is required to be close to an integer multiple.
  • the dual-frequency common aperture antenna scheme based on the X and Ka frequency bands requires that the radiation gap of the low frequency band is located at the gap between the antennas of the high frequency band, and the antenna structure of the two frequency bands is restricted greatly; secondly, for the dual frequency The frequency band ratio is limited; in addition, the antennas of the two frequency bands adopt a waveguide structure. Therefore, the dual-frequency common-caliber antenna solution greatly limits the applicability of the scheme, and it is still difficult to effectively improve the communication capacity.
  • Embodiments of the present invention provide an antenna system and a processing method that can effectively improve communication capacity.
  • the first aspect provides an antenna system, the antenna system comprising:
  • a multi-frequency feed antenna array disposed in a focus area of the focusing device for radiating the first beam, The first beam is directed to the focusing device, and a distance between a boundary point of the focus area and a focus of the focusing device is less than a first threshold;
  • the focusing device is configured to receive the first beam radiated by the multi-frequency feeding antenna array, and output a second beam based on the first beam, where a gain of the second beam is greater than a gain of the first beam;
  • the multi-frequency feed antenna array includes an antenna array of at least two frequency bands, and an antenna array of each of the at least two frequency bands includes a feeding unit for receiving a feeding signal and generating a sub-beam based on the feeding signal, The sub-beams respectively generated by the antenna arrays of the at least two frequency bands constitute the first beam;
  • the antenna array of the at least two frequency bands includes at least an antenna array of a first target frequency band, and the antenna array of the first target frequency band includes a plurality of feeding units arranged by a non-one-dimensional line array.
  • the antenna array of the at least two frequency bands includes at least an antenna array of a second target frequency band and a third target frequency band, and the second target frequency band and the antenna layer The sub-beams generated by the antenna arrays of the third target frequency band at least partially overlap
  • the antenna array of the at least two frequency bands includes at least an antenna array of a fourth target frequency band
  • the antenna array of the fourth target frequency band includes a feeding unit.
  • the at least two frequency bands includes at least an antenna array of a fifth target frequency band, the antenna array of the fifth target frequency band includes a plurality of feeding units, and adjacent feeding units of at least two of the plurality of feeding units The distance between them is less than the second threshold, and the feed signals received by each of the at least two feed units are the same.
  • the at least two frequency bands includes at least an antenna array of a sixth target frequency band, the antenna array of the sixth target frequency band includes a plurality of feeding units, and the plurality of feeding units are configured to sequentially receive the feeding signals according to the timing.
  • the focusing device comprises the following Any of these: elliptical lenses, spherical lenses, extended hemispherical lenses, lenticular lenses, parabolic reflectors, planar lenses, and Cassegrain double-reflecting surface reflectors.
  • the at least two frequency bands includes any one of the following types: a coaxial feed microstrip antenna, a direct feed microstrip antenna, a coupled feed microstrip antenna, a waveguide slot antenna, a Yagi Uda antenna, a planar Yagi antenna, and a substrate. Integrated waveguide slot antenna, rectangular horn antenna and dipole antenna.
  • the first target frequency band includes any one of the following modes: a two-dimensional array and a three-dimensional array.
  • a second aspect provides a processing method of an antenna system, the antenna system comprising a focusing device and a multi-frequency feeding antenna array, the focusing device having a beam focusing function, the multi-frequency feeding antenna array being disposed at a focus of the focusing device a region, a distance between a boundary point of the focus region and a focus of the focusing device is less than a first threshold, the multi-frequency feeding antenna array includes an antenna array of at least two frequency bands, and an antenna of each of the at least two frequency bands
  • the array includes a feed unit for receiving a feed signal and generating a sub-beam based on the feed signal; the method comprising:
  • the multi-frequency feed antenna array is configured to radiate a first beam, the first beam is directed to the focusing device, and a sub-beam generated by each of the antenna arrays of the at least two frequency bands constitutes the first beam;
  • the focusing device is configured to receive the first beam radiated by the multi-frequency feeding antenna array, and output a second beam based on the first beam, where a gain of the second beam is greater than a gain of the first beam;
  • the antenna array of the at least two frequency bands includes at least an antenna array of a first target frequency band, and the antenna array of the first target frequency band includes a plurality of feeding units arranged by a non-one-dimensional line array.
  • the antenna array of the at least two frequency bands includes at least an antenna array of a second target frequency band and a third target frequency band, and the second target frequency band and the antenna The sub-beams respectively generated by the antenna arrays of the third target frequency band at least partially overlap.
  • the antenna array of the at least two frequency bands includes at least an antenna array of a fourth target frequency band
  • the antenna array of the fourth target frequency band includes a feeding unit.
  • the at least two frequency bands includes at least an antenna array of a fifth target frequency band, the antenna array of the fifth target frequency band includes a plurality of feeding units, and adjacent feedings of at least two of the plurality of feeding units The distance between the electrical units is less than a second threshold, and the feed signals received by each of the at least two feed units are the same.
  • the at least two frequency bands includes at least an antenna array of a sixth target frequency band, the antenna array of the sixth target frequency band includes a plurality of feeding units, and the plurality of feeding units sequentially receive the feeding signals according to the timing.
  • the focusing device comprises the following Any of these: elliptical lenses, spherical lenses, extended hemispherical lenses, lenticular lenses, parabolic reflectors, planar lenses, and Cassegrain double-reflecting surface reflectors.
  • the at least two frequency bands includes any one of the following types: a coaxial feed microstrip antenna, a direct feed microstrip antenna, a coupled feed microstrip antenna, a waveguide slot antenna, a Yagi Uda antenna, a planar Yagi antenna, and a substrate. Integrated waveguide slot antenna, rectangular horn antenna and dipole antenna.
  • the first target frequency band includes any one of the following modes: a two-dimensional array and a three-dimensional array.
  • an antenna system and a processing method provide a multi-frequency feed antenna array including an antenna array of at least two frequency bands in a focus area of a focusing device, wherein the multi-frequency feeding In the antenna array, at least an antenna array having a first target frequency band including a plurality of feeding units arranged in a non-one-dimensional line array can effectively extend the coverage of the beam of the first target frequency band, thereby effectively improving the communication capacity.
  • FIG. 1 shows a schematic block diagram of an antenna system of an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a focusing device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an antenna system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the arrangement of the feeding unit in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the arrangement of antenna arrays in different frequency bands in the embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a method of processing an antenna system according to an embodiment of the present invention.
  • FIG. 7 shows another schematic diagram of a method of processing an antenna system according to an embodiment of the present invention.
  • FIG. 8 is still another schematic diagram of a method of processing an antenna system according to an embodiment of the present invention.
  • FIG. 9 is still another schematic diagram of a method of processing an antenna system according to an embodiment of the present invention.
  • An antenna is an electronic device used to transmit or receive radio waves or electromagnetic waves. Physically, an antenna is a combination of one or more conductors that can generate a radiated electromagnetic field due to an applied alternating voltage and associated alternating current, or can be placed in an electromagnetic wave due to field sensing. An alternating current is generated inside the antenna and an alternating voltage is generated at its terminal. The bandwidth of an antenna refers to the frequency range over which it operates.
  • Antenna gain refers to the same input power, the power density ratio of the signal generated by the actual antenna and the ideal radiating element (anisotropic antenna) at the same point in space, which quantitatively describes an antenna that concentrates the input power. degree. That is, the antenna gain is used to measure the ability of the antenna to transmit and receive signals in a specific direction. It is one of the important parameters for selecting a base station antenna.
  • the antenna gain is closely related to the antenna radiation pattern.
  • the narrower the main lobe of the radiation pattern the smaller the side lobes and the higher the antenna gain.
  • the antenna radiation pattern is a graphic description of the relative field strength of the antenna transmitted or received.
  • the antenna radiation pattern may also be referred to as an antenna pattern and a far field pattern.
  • the directionality of a single antenna is limited. For applications suitable for various occasions, two or more single antennas operating at the same frequency are fed and spatially arranged according to certain requirements to form an antenna array, also called an antenna array. .
  • the antenna radiating elements constituting the antenna array are called array elements.
  • the working principle of the antenna array can be regarded as the superposition of electromagnetic waves.
  • the electromagnetic waves will generate a vector superposition.
  • the result of the superposition is related not only to the magnitude of the amplitude of the electromagnetic waves of each column but also to the phase difference between them in the encountering interval.
  • the spatial phase difference caused by the electromagnetic waves emitted by the transmitting antennas located at different positions to the same receiving area will inevitably cause the following two situations in the series of electromagnetic waves: in-phase superposition, total field strength enhancement; anti-phase superposition
  • the total field strength is weakened. If the total field strength enhancement and the weakened area remain relatively fixed in space, it is equivalent to changing the radiation field structure of a single antenna with an antenna array, that is, the antenna array changes the principle of the radiation field size and directivity.
  • the antenna system 100 includes a focusing device 110 and a multi-frequency feeding antenna array 120, wherein:
  • Focusing device 110 having a beam focusing function
  • the multi-frequency feed antenna array 120 is disposed in the focus area 130 of the focusing device 110 for radiating the first beam 150, the first beam 150 is directed to the focusing device 110, the boundary point of the focus area and the focus of the focusing device The distance between them is less than the first threshold;
  • the focusing device 110 is configured to output a second beam 160 according to the first beam 150 radiated by the multi-frequency feeding antenna array, where a gain of the second beam 160 is greater than a gain of the first beam 150;
  • the multi-frequency feed antenna array 120 includes an antenna array of at least two frequency bands, and the antenna array of each of the at least two frequency bands includes a feed for receiving the feed signal 140 and generating a sub-beam based on the feed signal a unit, the sub-beams generated by the antenna arrays of the at least two frequency bands respectively comprise the first beam 150;
  • the antenna array of the at least two frequency bands includes at least an antenna array of a first target frequency band, and the antenna array of the first target frequency band includes a plurality of feeding units arranged by a non-one-dimensional line array.
  • the antenna system provided by the embodiment of the present invention provides a multi-frequency feed antenna array including an antenna array of at least two frequency bands in a focus area of a focusing device, wherein the multi-frequency feeding antenna array has at least The antenna array including the first target frequency band of the plurality of feeding units arranged in the non-one-dimensional line array can effectively extend the coverage of the beam of the first target frequency band, thereby improving the communication capacity.
  • the focusing device comprises any one of the following devices: an ellipsoid Circular Lenses, Spherical Lenses, Extended Hemispherical Lenses, Longbo Lenses, Parabolic Reflectors, Planar Lenses and Cassegrain Double Reflector Reflectors.
  • FIG. 2(a) shows a schematic view of an elliptical lens
  • FIG. 2(b) shows a schematic view of a Longbo lens
  • FIG. 2(c) shows a schematic view of a parabolic reflector
  • FIG. 2 ( d) shows a schematic view of the extended hemispherical lens
  • Fig. 2(e) shows a schematic view of the planar lens.
  • 170 in FIG. 2 is a radiator, and electromagnetic waves or light waves can be emitted to the above various types of focusing devices.
  • Fig. 2 170 in FIG. 2 is a radiator, and electromagnetic waves or light waves can be emitted to the above various types of focusing devices.
  • the radiator 170 emits electromagnetic wave beams to the elliptical lens at the focus position of the elliptical lens, and these beams are emitted in parallel after passing through the elliptical lens.
  • the radiator 170 emits electromagnetic wave beams to the parabolic reflector at the focus position of the parabolic reflector, and these beams are emitted in parallel after being emitted by the parabolic reflector.
  • the radiator 170 emits electromagnetic wave beams to the extended hemispherical lens at the focal position of the extended hemispherical lens, and these beams are emitted in parallel after passing through the optical path of the extended hemispherical lens.
  • the focusing device 110 may also be any other device having an electromagnetic wave beam concentrating function, which is not limited in the embodiment of the present invention.
  • the focus area 130 is an area near the focus of the focusing apparatus 110, and the distance between the boundary point of the focus area 130 and the focus of the focusing apparatus is smaller than a first threshold, which may be adaptively determined according to actual needs. It should be understood that the focus area 130 can be viewed as a spatial area centered on the focus of the focusing device 110. The embodiment of the present invention does not strictly limit the spatial size and shape of the focus area 130, so that the first beam 150 emitted from the focus area 130 can be generated after being illuminated by the focusing apparatus 110 compared to the first beam 150. The second beam 160 of the additional gain is sufficient.
  • the antenna type of the antenna array of the at least two frequency bands includes any one of the following types: a coaxial feed microstrip antenna, a direct feed microstrip antenna, and a coupled feed micro With antenna, waveguide slot antenna, Yagi Uda antenna, planar Yagi antenna, substrate integrated waveguide slot antenna, rectangular horn antenna and dipole antenna.
  • the multi-frequency feed antenna array is taken as a tri-frequency feed antenna array, wherein the antenna type of the antenna array of the frequency band 1 is a coaxial feed microstrip antenna, and the antenna type of the frequency band 2 antenna antenna is a coupled feed.
  • the antenna type of the microstrip antenna and the antenna array of the band 3 is a rectangular horn antenna.
  • the antenna types of the antenna arrays of the three frequency bands are all coaxial feed microstrip antennas.
  • the antenna type of the antenna arrays of the frequency bands 1 and 2 is a waveguide slot antenna
  • the antenna type of the frequency band 3 antenna antenna is a dipole antenna.
  • the antenna types of the antenna arrays of different frequency bands may be identical, partially identical, or completely different. The embodiment of the invention is not limited thereto.
  • the antenna type of the antenna array of the at least two frequency bands may be any other device having the function of radiating electromagnetic wave beams in addition to the types described above, which is not limited in this embodiment of the present invention.
  • the antenna array of each frequency band in the multi-frequency feeding antenna array 120 includes a feeding unit for receiving a feeding signal and generating a sub-beam based on the feeding signal, and the feeding unit is also called It is an antenna unit. It should be understood that the multi-frequency feed antenna array 120 includes the sub-beams generated by the respective antenna arrays of the respective frequency bands to the first beam 150 of the focusing device 110 (corresponding to the sub-beams generated by the feeding units included in the antenna array).
  • the multi-frequency feed antenna array 120 is placed in the focus area 130 near the focus of the focusing device 110, while the radiation beam main lobe of the first beam 150 radiated by the multi-frequency feed antenna array 120 is directed to the focusing device 110, and the focusing device 110 can be utilized.
  • the electromagnetic beam beam convergence function obtains a higher gain electromagnetic wave beam (second beam 160).
  • the focusing device 110 is an elliptical lens 111
  • the multi-frequency feeding antenna array 120 is an example of a three-frequency feeding antenna array 121 including an antenna array of three frequency bands.
  • the tri-frequency feed antenna array 121 is placed in the focus area 131 of the elliptical lens 111.
  • the antenna arrays of the three frequency bands in the three-frequency feed antenna array 121 radiate the radiation sub-beam a of the frequency band 1, respectively, and the frequency band 2
  • the radiation sub-beam b and the radiation sub-beam c of the band 3, and the sub-beams a, b and c illuminate the elliptical lens 111, and the beam beam focusing principle of the elliptical lens 111 is used to generate the sub-beam a' on the other side of the elliptical lens 111.
  • the gains of the sub-beams a', b' and c' are respectively greater than the gains of the radiation sub-beams a, b and c, ie the sub-beams a', b' and c' are respectively relative to the sub-beams a, b and c have additional gain.
  • the sub-beams a, b, and c emitted by the antenna array of the three frequency bands in the three-frequency feeding antenna array 121 constitute the third-frequency feeding antenna array 121.
  • a beam 150 correspondingly, the sub-beams a', b', c' generated by the elliptical lens 111 constitute a second beam 160 of the elliptical lens 111 (focusing device 110).
  • the gain of the second beam 160 is greater than the gain of the first beam 150.
  • the sub-beams a', b', and c' are respectively relative to the sub-beam a, b and c have additional gain.
  • various gains required by the antenna system can be realized by adjusting the performance of the focusing device 110.
  • the antenna system of the embodiment of the present invention places the multi-frequency feed antenna array in focus by The focus area of the device, using the beam convergence function of the focusing device, can obtain additional antenna gain, and can meet different gain requirements of the antenna system by selecting different types of focusing devices or by adjusting the design of the focusing device.
  • the antenna system provided by the embodiments of the present invention does not limit the frequency ratio between different frequency bands, and does not strictly limit different in the multi-frequency feeding antenna array.
  • the antenna type of the antenna array of the frequency band can further improve the applicability of the antenna system.
  • the antenna system provided by the embodiment of the present invention does not strictly limit the arrangement between antenna arrays in different frequency bands, as long as the antenna arrays of multiple frequency bands are all disposed in the focus area 130. Therefore, the present invention is implemented.
  • the antenna system provided by the example has higher adaptability than the existing multi-frequency antenna system.
  • the feed signal 140 shown in FIG. 1 is a schematic feed signal including a feed signal received by a feed unit of an antenna array for each frequency band in the multi-frequency feed antenna array 120.
  • the gain of the second beam 160 mentioned above is greater than the gain of the first beam 150, where the gain refers to the "2) antenna gain mentioned above, ie the same input power, the actual antenna and the ideal The power density ratio of the signal generated by the radiating element (anisotropic antenna) at the same point in space, which quantitatively describes the degree to which an antenna concentrates the input power.
  • the antenna array of the first target frequency band includes a plurality of feeding units (or antenna units), and the multiple feeding units are arranged in at least two-dimensional manner, that is, the first target
  • the antenna array of the frequency band covers at least a two-dimensional array, rather than a one-dimensional array.
  • the arrangement manner of the multiple feeding units included in the antenna array of the first target frequency band includes any one of the following modes: a two-dimensional array and a three-dimensional array.
  • the two-dimensional array may specifically include a two-dimensional rectangular array, a two-dimensional triangular array, or other planar array of any shape, as shown in FIG. 4, wherein FIG. 4(a) shows that 9 feeding units are included.
  • FIG. 4(b) shows a schematic diagram of a two-dimensional triangular area array of an antenna array including seven feeding units.
  • the three-dimensional array means that the arrangement of the plurality of feeding units occupies a three-dimensional space, and the antenna array of the first target frequency band includes a plurality of feeding units arranged in a three-dimensional object, for example, covered in The surface of the cuboid.
  • the arrangement manner of the plurality of feeding units included in the antenna array of the first target frequency band is a two-dimensional area array
  • the coverage areas of the plurality of beams generated by the plurality of feeding units according to the respective received feeding signals It is also two-dimensional, that is, at least one surface covered by the sub-beams radiated by the antenna array of the first target frequency band, instead of the one-dimensional linear array, which can enhance the coverage of the antenna.
  • the arrangement manner of the plurality of feeding units included in the antenna array of the first target frequency band is three-dimensional, the plurality of feeding units
  • the coverage areas of the plurality of beams generated according to the respective received feed signals form a three-dimensional space, which expands the coverage of the antenna electromagnetic wave beams.
  • the antenna system provided by the embodiment of the present invention has at least an antenna array including a first target frequency band of a plurality of feeding units arranged in a non-one-dimensional line array in the multi-frequency feeding antenna array, which can effectively expand the antenna array.
  • the multi-frequency feed antenna array may include one or more antenna arrays of the first target frequency band.
  • the antenna array of each frequency band in the antenna array of the at least two frequency bands included in the multi-frequency feeding antenna array includes a plurality of feeding units, and the plurality of feeding units are arranged in a non-one-dimensional line.
  • the coverage area of the beam of each frequency band generated by the antenna system is at least a two-dimensional area array, which effectively improves the communication capacity of the antenna system.
  • one or more feeding units may be included in the antenna array of the other frequency bands except the first target frequency band in the at least two frequency bands, and in the case of including multiple feeding units, the multiple The feeding unit may be arranged in any of the following manners: a one-dimensional line array, a two-dimensional area array, and a three-dimensional array.
  • the antenna array of the at least two frequency bands includes at least an antenna array of a fourth target frequency band, and the antenna array of the fourth target frequency band includes a feeding unit.
  • the antenna array of the fourth target frequency band may be an antenna array of any one or more of the antenna arrays of the at least two frequency bands except for the first target frequency band.
  • the gain of a single antenna unit (corresponding to the feeding unit in the embodiment of the present invention) is small.
  • an antenna array including multiple antenna units must be used, and the antenna Each antenna element in the array needs to be fed, that is, all the feeding units in the antenna array generate beams to obtain sufficient gain.
  • the antenna device based on the focusing device provided by the embodiment of the present invention since the focusing device can generate any additional gain greater than zero for the beam from the focus region, any of the multi-frequency feeding antenna arrays disposed in the focus region For a single band antenna array, feeding a single feed unit achieves the desired beam and desired gain.
  • the antenna array of the at least two frequency bands does not need to include multiple feeding units in each frequency band, and even if the antenna array of one frequency band includes multiple The feed unit does not need to feed each feed unit when in use. It can be understood that the antenna system provided by the embodiment of the present invention has higher integration degree than the conventional antenna system, thereby simplifying the structure and complexity of the antenna array.
  • the arrangement of the feeding unit in the antenna array of different frequency bands may be identical, partially identical, or completely different, and are not limited by the embodiments of the present invention.
  • the multi-frequency feed antenna array 110 is a tri-frequency feed antenna array.
  • the antenna arrays of the three frequency bands each include a plurality of feed units, wherein the antenna arrays of the three frequency bands each include multiple feed units.
  • the arrangement mode is a two-dimensional area array; or, the arrangement manner of the plurality of feeding units in the antenna array of the frequency band 1 is one-dimensional line array, and the arrangement manner of the plurality of feeding units in the antenna array of the frequency band 2 is two In the antenna array, the arrangement of the plurality of feeding units in the antenna array of the frequency band 3 is a three-dimensional array; or the arrangement of the plurality of feeding units included in the antenna arrays of the frequency band 1 and the frequency band 2 are two In the dimension array, the arrangement of the plurality of feeding units in the antenna array of the band 3 is a one-dimensional line array.
  • the arrangement manner between the antenna arrays of the at least two frequency bands in the multi-frequency feed antenna array includes any one of the following manners: partition arrangement, partial overlap Arrange and completely overlap the arrangement.
  • the multi-frequency feed antenna array is taken as an example of a three-frequency feed antenna array including three frequency bands (such as the frequency bands 1, 2, and 3 shown in FIG. 5), and FIG. 5(a)
  • the arrangement of the antenna arrays of the three frequency bands is shown as a schematic diagram of the partition arrangement.
  • the coverage space areas of the electromagnetic wave beams of the three frequency bands do not overlap.
  • FIG. 5(b) is a schematic diagram showing the arrangement of the antenna arrays of the three frequency bands in a partially overlapping arrangement. Specifically, as shown in FIG.
  • FIG. 5(c) is a schematic diagram showing the arrangement of the antenna arrays of the three frequency bands in a completely overlapping arrangement, that is, the arrangement areas of the antenna arrays of the three frequency bands overlap, correspondingly, the three The coverage space areas of the electromagnetic wave beams of the frequency band also overlap each other.
  • the coverage area of the electromagnetic wave beam emitted in the overlapping region of the antenna array of the frequency band 1 and the frequency band 2 is also covered, and the antenna signal coverage of two different frequency bands is realized.
  • the communication bandwidth of the same space area can be increased, and the communication capacity of this space area can be improved.
  • the coverage areas of the electromagnetic wave beams emitted in the regions where the antenna arrays of the frequency band 1, the frequency band 2, and the frequency band 3 overlap each other also overlap, and three different frequency bands are realized.
  • the antenna signal covers the same space, the communication bandwidth of the same space area can be increased, and the communication capacity of the space area can be improved.
  • antenna arrays that do not define different frequency bands are absolutely disposed on the same plane, for example, the three arrangements shown in FIG. 5 are perpendicular to the axis of the focusing device.
  • the arrangement between the antenna arrays of the three frequency bands observed on the plane.
  • the antenna arrays of Band 1 and Band 2 may be located on different planes, but from the observation position shown in Figure 5(b), Band 1 and Band
  • the arrangement area of the antenna array of 2 is partially overlapped.
  • the antenna array 110 may include antenna arrays of more frequency bands, and the arrangement of the antenna arrays of the respective frequency bands may be arbitrarily changed, and the present invention is not particularly limited.
  • the antenna device based on the focusing device provided by the embodiment of the present invention has no arrangement between the antenna arrays of different frequency bands in the multi-frequency feeding antenna array compared to the current dual-frequency common-caliber antennas of the X and Ka bands. Strict dependence and restriction, only need to set the antenna arrays of different frequency bands in the focus area 130 of the focusing device 110. In other words, the arrangement between the antenna arrays of different frequency bands is only related to the spatial extent of the focus area 130, and is not constrained by the working frequency band of the antenna. Therefore, the antenna system provided by the embodiment of the present invention is flexible in design. Greater degree, can improve the applicability of the antenna system.
  • the antenna array of the at least two frequency bands includes at least an antenna array of a second target frequency band and a third target frequency band, and the antenna arrays of the second target frequency band and the third target frequency band are respectively The generated sub-beams at least partially overlap.
  • the sub-beams generated by the antenna arrays of the second target frequency band and the third target frequency band at least partially overlap, specifically, the sub-generated by the antenna arrays of the second target frequency band and the third target frequency band.
  • the areas covered by the beams at least partially overlap.
  • the second target frequency band is equivalent to the frequency band 1
  • the third target frequency band is equivalent to the frequency band 2.
  • the second target frequency band and the third target frequency band may respectively correspond to any two different frequency bands of the frequency bands 1, 2, and 3.
  • the antenna signal having two different frequency bands covers the area A, and the area A can be improved.
  • the communication bandwidth can further increase the communication capacity of the area A.
  • the antenna device based on the focusing device provided by the embodiment of the present invention at least The antenna signals of the two different frequency bands cover the same spatial area, so that the communication bandwidth of the same spatial area can be improved, and the communication capacity of the spatial area can be improved.
  • the arrangement manner between the antenna array of the second target frequency band and the antenna array of the third target frequency band includes, but is not limited to, the arrangement manner shown in FIG. 5(b) or FIG. 5(c).
  • the arrangement between the second target frequency band and the antenna array of the third target frequency band is only required to ensure that the coverage areas of the beams generated by the antenna arrays of the second target frequency band and the third target frequency band at least partially overlap.
  • a plurality of possible configurations are available, which are not limited in the embodiment of the present invention.
  • the antenna system can obtain an additional antenna gain by using a beam focusing function of the focusing device by setting a multi-frequency feeding antenna array including an antenna array of at least two frequency bands in a focus area of the focusing device.
  • the antenna array having at least a first target frequency band including a plurality of feeding units arranged in a non-one-dimensional line array can effectively extend the coverage of the beam of the first target frequency band in the multi-frequency feeding antenna array.
  • the communication capacity can be improved.
  • the multi-frequency feed antenna array there are at least two frequency band antenna arrays overlapping each other in the beam coverage area, so that beams of different frequency bands can be covered to cover the same spatial area, thereby effectively communicating communication bandwidth of the same spatial area.
  • the frequency ratio between different frequency bands in the multi-frequency feeding antenna array is not strictly limited, and the arrangement manner between the antenna arrays in different frequency bands is not strict. The limitation can effectively improve the applicability of the antenna system.
  • the antenna system provided by the embodiment of the present invention can flexibly implement multiple beams in each of a plurality of frequency bands that are operated.
  • the method for implementing multiple beams in each frequency band includes two methods based on feeding of a single feeding unit and feeding based on a feeding unit sub-array.
  • the antenna array of the at least two frequency bands includes at least an antenna array of a fifth target frequency band
  • the antenna array of the fifth target frequency band includes multiple feeding units
  • the multiple feeding units At least one of the feeding units of the unit is configured to receive a feeding signal and generate a sub-beam according to the feeding signal.
  • FIGS. 6(a), (b) and (c) show an antenna system implemented based on the extended hemispherical lens 112, for convenience of display and description, FIG. 6 ( Only the antenna array of the single frequency band F in the multi-frequency feed antenna array 120 is shown in a), (b) and (c), and it is assumed that the antenna array of the frequency band F includes six feed units. It should be understood that the frequency band F shown in FIG. 6 may correspond to the fifth target frequency band.
  • a single feed unit can generate a beam with the desired gain, that is, one feed unit corresponds to one beam.
  • the first and sixth feeding units are respectively excited by the feeding signals 1 and 2 to realize the beam 1 and the beam 2, specifically, the feeding signal 1 generates a beam. 1.
  • Feed signal 2 produces beam 2.
  • the desired beam is generated by inputting the feed signal by selecting the number and location of the feed units.
  • FIG. 6(b) only schematically shows an example of generating two beams by inputting a feeding signal to two feeding units, and the actual application is not limited thereto, for example, it may be respectively
  • the six feeding units included in the antenna array of the band 1 input the feeding signals, thereby generating the beams 1 to 6.
  • different numbers and different positions of the feeding unit can be selected to excite the feed signal to generate the desired beam.
  • a scheme based on a single feed unit feed to achieve multiple beams is described above in connection with FIG. 6(b), and multiple beams can also be implemented based on feed unit sub-array feeds. Specifically, when the distance between two adjacent feeding units is less than a preset threshold, the corresponding two beams are also gradually approached and overlapped to be combined into one beam.
  • the antenna array of at least two frequency bands includes at least an antenna array of a fifth target frequency band
  • the antenna array of the fifth target frequency band includes multiple feeding units
  • the multiple feedings A distance between adjacent feed units of at least two feed units in the unit is less than a second threshold, and each of the at least two feed units receives the same feed signal.
  • the first and second feeding units are simultaneously excited by the feed signal 3 to generate a combined beam 3; the fourth, fifth and sixth feeds are simultaneously excited by the feed signal 4.
  • the electrical unit produces a combined beam 4.
  • the spacing between the first and second feeding units is smaller than the second threshold, and between the fourth feeding unit and the fifth feeding unit.
  • the distance between the fifth feeding unit and the sixth feeding unit is also smaller than the second threshold, that is, if the distance is less than the second threshold according to the scheme shown in FIG. 6(b), respectively, the first signal is excited by the feeding signal.
  • the beams produced by the 1st and 2nd feed units will overlap, and the beams produced by the 4th and 5th feed units will overlap.
  • the beams produced by the 5th and 6th feed units will also overlap. It is also possible that the beams generated by the fourth, fifth and sixth feed units respectively overlap each other. Therefore, according to the method shown in FIG. 6(c), when the first and second feeding units are simultaneously excited by the feed signal 3, the combined beam 3 can be generated, and the fourth and fifth are simultaneously excited by the feed signal 4. With 6 feed units, the combined beam 4 can be generated.
  • the antenna system provided by the embodiment of the present invention can be designed to control the spacing of adjacent feeding units within a predetermined threshold to ensure that the corresponding beams of the adjacent feeding units overlap, so that the two phases can be
  • the adjacent feed unit acts as a sub-array of the feed unit, so that the feed unit sub-array is excited by a feed signal, and a combined beam with a wider beam width can be generated.
  • the sub-array of the feeding unit mentioned in the embodiment of the present invention is not limited to including two adjacent feeding units as shown in FIG. 6(c), or includes three feeding units, for example.
  • the distance between the six feeding units included in the antenna array of the frequency band 1 shown in FIG. 6(c) is smaller than the second threshold value, that is, when the six feeding units are separately fed separately, the corresponding generated beam
  • the six feeding units can be regarded as a sub-array of feeding units, so that the six feeding units can be simultaneously excited by one feeding signal, thereby generating a wider combined beam of one beam. .
  • the antenna system provided by the embodiment of the present invention can overlap the beams formed by the adjacent feeding units by controlling the distance between the adjacent feeding units. Thereby a beam of any width can be realized. That is, the beam width can be controlled by selecting the array size of the feed unit sub-array excited by the feed signal, thereby realizing the tunable beam width antenna system.
  • a feed signal excitation for a smaller-scale feeder sub-array is selected to achieve a narrow beam high gain characteristic; for wide angle coverage is required
  • the feed signal excitation of the larger-scale feeder sub-array is selected to achieve wide beam wide-angle coverage characteristics.
  • FIG. 7 is a schematic diagram showing a method for performing different feeding mode switching in different application scenarios, and is also only shown in FIG. 7 for convenience of display and description.
  • An antenna array of a single frequency band F in the multi-frequency feed antenna array 120 is assumed to include six feed units in the antenna array of the frequency band F.
  • scenario 1 where high gain is required
  • the second feed unit is excited by the feed signal 5 to generate a narrow-width beam 5; and the feed signal 6 can also be excited simultaneously. 3 and 4th feed units to produce a narrow width beam 6. If in scene 2 where wide angle coverage is required, since the left side diagram of FIG.
  • the second to fourth feeding units may be considered to consider the second to fourth feeding units as a subunit of the feeding unit, such as As shown in the schematic diagram on the right side of FIG. 7, the second to fourth feeding units are simultaneously excited by the feed signal 7 to generate a beam 7 having a relatively wide width, which is equivalent to the combination of the beam 5 and the beam 6 into the beam 7, and the broadening of the beam 7. It is roughly the combined width or envelope width of beam 5 and beam 6.
  • the antenna system provided by the embodiment of the present invention controls the antenna array in a single frequency band.
  • the tunable beamwidth can be achieved by the spacing of adjacent feed cells.
  • This switching process can be implemented using switches when it is desired to switch from feeding a single feed unit to feeding a sub-array of feed units comprising two or more feed units.
  • the switch can be in the form of a diode switch, or a MEMS switch, as well as other devices that can perform this function. If each feed unit is connected to a transceiver, the feed mode can be switched by means of DSP or FPGA.
  • continuous beam scanning can also be implemented in each of a plurality of frequency bands that are operated.
  • the antenna array of the at least two frequency bands includes at least an antenna array of a sixth target frequency band
  • the antenna array of the sixth target frequency band includes multiple feed units
  • the multiple feeds The electrical unit is configured to sequentially receive the feed signal according to the timing.
  • FIG. 8 shows a schematic diagram of implementing beam scanning according to a time series. Also for ease of display and description, only the antenna array of the single frequency band F in the multi-frequency feed antenna array 120 is shown in FIG. 8, and it is assumed that the antenna array of the frequency band F includes six feed units.
  • the beam scanning can be realized by sequentially energizing the feeding signals of the first to sixth feeding units in time series [T1 T2...T6].
  • FIG. 8 illustrates a method of performing beam scanning based on a single feeding unit, and similarly, beam scanning based on a sub-array of feeding units can be implemented.
  • the antenna array of the single frequency band F in the multi-frequency feeding antenna array 120 is taken as an example for the description, and the other components included in the multi-frequency feeding antenna array 120 are illustrated.
  • the antenna array of the frequency band is processed similarly to the method shown in FIG. 6 to FIG. 8. For brevity, no further details are provided herein.
  • the antenna system can obtain an additional antenna gain by using a beam focusing function of the focusing device by setting a multi-frequency feeding antenna array including an antenna array of at least two frequency bands in a focus area of the focusing device.
  • the antenna array having at least a first target frequency band including a plurality of feeding units arranged in a non-one-dimensional line array can effectively extend the coverage of the beam of the first target frequency band in the multi-frequency feeding antenna array.
  • the communication capacity can be improved.
  • at least two antenna bands having overlapping frequency bands of the beam coverage areas are provided, so that beams of different frequency bands can be covered to cover the same spatial area, thereby being effective.
  • the frequency ratio between different frequency bands in the multi-frequency feeding antenna array is not strictly limited, and the arrangement manner between the antenna arrays in different frequency bands is not strict.
  • the limitation can effectively improve the applicability of the antenna system.
  • each of the multiple frequency bands in operation can flexibly implement multiple beams, which further enhances the applicability of the antenna system.
  • Continuous beam scanning can also be implemented in each of a plurality of frequency bands in operation, enabling continuous tracking of the target or communication with the target.
  • the method 200 can be performed, for example, by an antenna system 100 including a focusing device and a multi-frequency feeding antenna array having beam focusing Functionally, the multi-frequency feed antenna array is disposed in a focus area of the focusing device, a distance between a boundary point of the focus area and a focus of the focusing device is less than a first threshold, and the multi-frequency feeding antenna array includes at least two An antenna array of frequency bands, the antenna array of each of the at least two frequency bands includes a feeding unit for receiving a feeding signal and generating a sub beam based on the feeding signal; the processing method 200 includes:
  • the multi-frequency feed antenna array is configured to radiate a first beam, where the first beam is directed to the focusing device, and a sub-beam generated by each of the antenna arrays of the at least two frequency bands constitutes the first beam;
  • the focusing device is configured to receive the first beam radiated by the multi-frequency feeding antenna array, and output a second beam based on the first beam, where a gain of the second beam is greater than a gain of the first beam;
  • the antenna array of the at least two frequency bands includes at least an antenna array of a first target frequency band, and the antenna array of the first target frequency band includes a plurality of feeding units arranged by a non-one-dimensional line array.
  • the processing method of the antenna system provided by the embodiment of the present invention is to set a multi-frequency feed antenna array including an antenna array of at least two frequency bands in a focus area of a focusing device, wherein in the multi-frequency feeding antenna array
  • the antenna array having at least the first target frequency band including the plurality of feeding units arranged in the non-one-dimensional line array can effectively extend the coverage of the beam of the first target frequency band, thereby improving the communication capacity.
  • the frequency ratio between different frequency bands in the multi-frequency feeding antenna array is not strictly limited, and the arrangement manner between the antenna arrays in different frequency bands is not strict. The limitation can effectively improve the applicability of the antenna system.
  • the antenna array of the at least two frequency bands includes at least an antenna array of a second target frequency band and a third target frequency band, and the second target frequency band and the third target frequency band The sub-beams generated by each of the antenna arrays at least partially overlap.
  • the antenna array of the at least two frequency bands includes at least an antenna array of a fourth target frequency band, and the antenna array of the fourth target frequency band includes a feeding unit.
  • the antenna array of the at least two frequency bands includes at least an antenna array of a fifth target frequency band
  • the antenna array of the fifth target frequency band includes multiple feeding units
  • the multiple feeding A distance between adjacent feeding units of at least two feeding units in the electrical unit is less than a second threshold, and each of the at least two feeding units receives the same feeding signal.
  • a feed signal excitation for a smaller-scale feeder sub-array is selected to achieve a narrow beam high gain characteristic; for wide angle coverage is required
  • the feed signal excitation of the larger-scale feeder sub-array is selected to achieve wide beam wide-angle coverage characteristics.
  • FIG. 7 is a schematic diagram showing a method for performing different feeding mode switching in different application scenarios, and is also only shown in FIG. 7 for convenience of display and description.
  • An antenna array of a single frequency band F in the multi-frequency feed antenna array 120 is assumed to include six feed units in the antenna array of the frequency band F.
  • the second feed unit is excited by the feed signal 5 to generate a narrow-width beam 5; and the feed signal 6 can also be excited simultaneously. 3 and 4th feed units to produce a narrow width beam 6. If in the second scene where wide angle coverage is required, since the left side diagram of FIG.
  • the second to ground four feeding units are simultaneously excited by the feed signal 7 to generate a beam 7 having a relatively wide width, which is equivalent to the combination of the beam 5 and the beam 6 into the beam 7, and the broadening of the beam 7. It is roughly the envelope of beam 5 and beam 6.
  • the beam width can be adjusted by controlling the spacing of adjacent feeding units in the antenna array of a single frequency band.
  • This switching process can be implemented using switches when it is desired to switch from feeding a single feed unit to feeding a sub-array of feed units comprising two or more feed units.
  • the switch can be in the form of a diode switch, or a MEMS switch, as well as other devices that can perform this function. If each feed unit is connected to a transceiver, the feed mode can be switched by means of DSP or FPGA.
  • the antenna system provided by the embodiment of the present invention can also be used in each of a plurality of frequency bands that are operated. Multiple bands enable continuous beam scanning.
  • the antenna array of the at least two frequency bands includes at least an antenna array of a sixth target frequency band
  • the antenna array of the sixth target frequency band includes multiple feed units
  • the multiple feeds The electrical unit sequentially receives the feed signal according to the timing.
  • the focusing device comprises any one of the following: an elliptical lens, a spherical lens, an extended hemispherical lens, a lenticular lens, a parabolic reflector, a planar lens, and a Cassegrain double reflection. Face reflector.
  • the antenna type of the antenna array of the at least two frequency bands includes any one of the following types: a coaxial feed microstrip antenna, a direct feed microstrip antenna, and a coupled feed micro With antenna, waveguide slot antenna, Yagi Uda antenna, planar Yagi antenna, substrate integrated waveguide slot antenna, rectangular horn antenna and dipole antenna.
  • the arrangement manner of the multiple feeding units included in the antenna array of the first target frequency band includes any one of the following modes: a two-dimensional array and a three-dimensional array.
  • the processing method of the antenna system can obtain an additional by using a beam focusing function of the focusing device by setting a multi-frequency feeding antenna array including an antenna array of at least two frequency bands in a focus area of the focusing device. Antenna gain.
  • the antenna array having at least a first target frequency band including a plurality of feeding units arranged in a non-one-dimensional line array can effectively extend the coverage of the beam of the first target frequency band in the multi-frequency feeding antenna array. Thereby, the communication capacity can be improved.
  • the multi-frequency feed antenna array there are at least two frequency band antenna arrays overlapping each other in the beam coverage area, so that beams of different frequency bands can be covered to cover the same spatial area, thereby effectively communicating communication bandwidth of the same spatial area. And communication capacity.
  • the frequency ratio between different frequency bands in the multi-frequency feeding antenna array is not strictly limited, and the arrangement manner between the antenna arrays in different frequency bands is not strict. The limitation can effectively improve the applicability of the antenna system.
  • each of the multiple frequency bands in operation can flexibly implement multiple beams, which further enhances the applicability of the antenna system. Continuous beam scanning can also be implemented in each of a plurality of frequency bands in operation, enabling continuous tracking of the target or communication with the target.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

提供一种天线系统和处理方法,该天线系统(100)包括聚焦设备(110)和设置于聚焦设备(110)的焦点区域(130)的多频馈电天线阵列(120),该多频馈电天线阵列(120)包括至少两个频段的天线阵列,该至少两个频段的天线阵列至少包括第一目标频段的天线阵列,该第一目标频段的天线阵列包括非一维线阵排布的多个馈电单元;该多频馈电天线阵列(120)用于辐射第一波束(150),该第一波束(150)指向该聚焦设备(110),该至少两个频段的天线阵列各自生成的子波束组成该第一波束(150);聚焦设备(110)用于根据该第一波束(150),输出第二波束(160),该第二波束(160)的增益大于该第一波束(150)的增益。本发明的天线系统和处理方法,能够有效提高通信容量。

Description

天线系统和处理方法 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种天线系统和处理方法。
背景技术
随着新兴应用的发展,人们对信息业务的需求越来越高,如从传统的语音通信发展到高清视频通信,再例如万联网的概念提出等,从而使得对通信系统的通信容量的需求呈爆炸式增长。
限制通信容量的因素有很多:例如天线增益,辐射功率,射频失真,调制阶数,以及通信带宽等。其中,通信容量与通信带宽呈线性关系,因此,通信带宽为限制通信容量的一个关键因素,相应地,通过扩展通信带宽是提高通信容量的一个非常重要的途径。
双频或多频天线是指可以在两个或两个以上频段同时工作的天线,可以有效地扩展通信系统的通信带宽,进而提高通信系统的通信容量。
目前公开一种基于X和Ka频段的双频共口径天线方案。在该方案中,工作在X和Ka频段的天线均为波导缝隙天线,其中,频率较低、波长较长的X频段天线置于下层,且X天线单元置于Ka波导之间的缝隙处,通过该缝隙辐射信号;频率较高、波长较短的Ka频段天线置于上层,直接向外辐射信号。此外,在该方案中,需要X和Ka频段的频段比接近整数倍。可知,该基于X和Ka频段的双频共口径天线方案,需要低频段的辐射缝隙位于高频段的天线之间的缝隙处,对两个频段的天线结构限制较大;其次,对双频的频带比有限制;此外,两个频段的天线均采用波导结构,因此,该双频共口径天线方案,较大地限制了该方案的适用性,仍难以有效的提高通信容量。
发明内容
本发明实施例提供一种能有效提高通信容量的天线系统和处理方法。
第一方面提供了一种天线系统,该天线系统包括:
聚焦设备,具有波束聚焦功能;
多频馈电天线阵列,设置于该聚焦设备的焦点区域,用于辐射第一波束, 该第一波束指向该聚焦设备,该焦点区域的边界点与该聚焦设备的焦点之间的距离小于第一阈值;
该聚焦设备,用于接收该多频馈电天线阵列辐射的该第一波束,并基于该第一波束,输出第二波束,该第二波束的增益大于该第一波束的增益;
该多频馈电天线阵列,包括至少两个频段的天线阵列,该至少两个频段中每个频段的天线阵列包括用于接收馈电信号、并基于馈电信号生成子波束的馈电单元,该至少两个频段的天线阵列各自生成的子波束组成该第一波束;
其中,该至少两个频段的天线阵列中至少包括第一目标频段的天线阵列,该第一目标频段的天线阵列包括非一维线阵排布的多个馈电单元。
结合第一方面,在第一方面的第一种可能的实现方式中,该至少两个频段的天线阵列中至少包括第二目标频段和第三目标频段的天线阵列,该第二目标频段和该第三目标频段的天线阵列各自生成的子波束至少部分交叠
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,该至少两个频段的天线阵列中至少包括第四目标频段的天线阵列,该第四目标频段的天线阵包括一个馈电单元。
结合第一方面和第一方面的第一种和第二种可能的实现方式中的任一种可能的实现方式,在第一方面的第三种可能的实现方式中,该至少两个频段的天线阵列中至少包括第五目标频段的天线阵列,该第五目标频段的天线阵列包括多个馈电单元,且该多个馈电单元中的至少两个馈电单元的相邻馈电单元之间的距离小于第二阈值,该至少两个馈电单元中每个馈电单元接收的馈电信号相同。
结合第一方面和第一方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第一方面的第四种可能的实现方式中,该至少两个频段的天线阵列中至少包括第六目标频段的天线阵列,该第六目标频段的天线阵列包括多个馈电单元,且该多个馈电单元用于根据时序依次接收馈电信号。
结合第一方面和第一方面的第一种至第四种可能的实现方式中的任一种可能的实现方式,在第一方面的第五种可能的实现方式中,该聚焦设备包括下列设备中的任一种:椭圆透镜、球形透镜、扩展半球透镜、龙勃透镜、抛物面反射器、平面透镜和卡塞格伦双反射面反射器。
结合第一方面和第一方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,该至少两个频段的天线阵列的天线类型包括下列类型中的任一种:同轴馈电微带天线、直接馈电微带天线、耦合馈电微带天线,波导缝隙天线、八木宇田天线、平面八木天线、基片集成波导缝隙天线、矩形喇叭天线和偶极子天线。
结合第一方面和第一方面的第一种至第六种可能的实现方式中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,该第一目标频段的天线阵列包括的该多个馈电单元的排布方式包括下列方式中的任一种:二维面阵和三维立体阵。
第二方面提供了一种天线系统的处理方法,该天线系统包括聚焦设备和多频馈电天线阵列,该聚焦设备具有波束聚焦功能,该多频馈电天线阵列,设置于该聚焦设备的焦点区域,该焦点区域的边界点与该聚焦设备的焦点之间的距离小于第一阈值,该多频馈电天线阵列包括至少两个频段的天线阵列,该至少两个频段中每个频段的天线阵列包括用于接收馈电信号、并基于馈电信号生成子波束的馈电单元;该方法包括:
该多频馈电天线阵列,用于辐射第一波束,该第一波束指向该聚焦设备,该至少两个频段的天线阵列各自生成的子波束组成该第一波束;
该聚焦设备,用于接收该多频馈电天线阵列辐射的该第一波束,并基于该第一波束,输出第二波束,该第二波束的增益大于该第一波束的增益;
其中,该至少两个频段的天线阵列中至少包括第一目标频段的天线阵列,该第一目标频段的天线阵列包括非一维线阵排布的多个馈电单元。
结合第二方面,在第二方面的第一种可能的实现方式中,该至少两个频段的天线阵列中至少包括第二目标频段和第三目标频段的天线阵列,该第二目标频段和该第三目标频段的天线阵列各自生成的子波束至少部分交叠。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,该至少两个频段的天线阵列中至少包括第四目标频段的天线阵列,该第四目标频段的天线阵包括一个馈电单元。
结合第二方面和第二方面的第一种和第二种可能的实现方式中的任一种可能的实现方式,在第二方面的第三种可能的实现方式中,该至少两个频段的天线阵列中至少包括第五目标频段的天线阵列,该第五目标频段的天线阵列包括多个馈电单元,且该多个馈电单元中的至少两个馈电单元的相邻馈 电单元之间的距离小于第二阈值,该至少两个馈电单元中每个馈电单元接收的馈电信号相同。
结合第二方面和第二方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第二方面的第四种可能的实现方式中,该至少两个频段的天线阵列中至少包括第六目标频段的天线阵列,该第六目标频段的天线阵列包括多个馈电单元,且该多个馈电单元根据时序依次接收馈电信号。
结合第二方面和第二方面的第一种至第四种可能的实现方式中的任一种可能的实现方式,在第二方面的第五种可能的实现方式中,该聚焦设备包括下列设备中的任一种:椭圆透镜、球形透镜、扩展半球透镜、龙勃透镜、抛物面反射器、平面透镜和卡塞格伦双反射面反射器。
结合第二方面和第二方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第二方面的第六种可能的实现方式中,该至少两个频段的天线阵列的天线类型包括下列类型中的任一种:同轴馈电微带天线、直接馈电微带天线、耦合馈电微带天线,波导缝隙天线、八木宇田天线、平面八木天线、基片集成波导缝隙天线、矩形喇叭天线和偶极子天线。
结合第二方面和第二方面的第一种至第六种可能的实现方式中的任一种可能的实现方式,在第二方面的第七种可能的实现方式中,该第一目标频段的天线阵列包括的该多个馈电单元的排布方式包括下列方式中的任一种:二维面阵和三维立体阵。
基于上述技术方案,本发明实施例提供的天线系统和处理方法,通过将包括至少两个频段的天线阵列的多频馈电天线阵列设置在聚焦设备的焦点区域,其中,在该多频馈电天线阵列中,至少具有包括非一维线阵排布的多个馈电单元的第一目标频段的天线阵列,能够有效扩展第一目标频段的波束的覆盖范围,从而能够有效提高通信容量。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例的天线系统的示意性框图。
图2示出了本发明实施例提供的聚焦设备的示意图。
图3示出了本发明实施例提供的一种天线系统的示意图。
图4示出了本发明实施例中馈电单元的排布方式的示意图。
图5示出了本发明实施例中不同频段的天线阵列的排布方式的示意图。
图6示出了本发明实施例的天线系统处理方法的示意图。
图7示出了本发明实施例的天线系统处理方法的另一示意图。
图8示出了本发明实施例的天线系统处理方法的再一示意图。
图9示出了本发明实施例的天线系统处理方法的再一示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行较为清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了方便理解本发明实施例中的技术方案,首先在此介绍几个相关的概念;
1)天线
天线是一种用来发射或接收无线电波或电磁波的电子器件。从物理上将,天线是一个或多个导体的组合,由它可因施加的交变电压和相关联交变电流而产生辐射的电磁场,或者可以将它放置在电磁波中,由于场的感应而在天线内部产生交变电流并在其终端产生交变电压。天线的带宽是指它有效工作的频率范围。
2)天线增益
天线增益指的是,相同的输入功率,实际天线与理想的辐射单元(无向性天线)分别在空间同一点处所产生的信号的功率密度比值,它定量地描述一个天线把输入功率集中辐射的程度。即天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线的一个重要参数之一。
天线增益与天线辐射方向图有密切关系。辐射方向图主瓣越窄,副瓣越小,天线增益越高。其中,天线辐射方向图是天线发射或接收相对场强度的图形描述,该天线辐射方向图也可称之为天线方向图、远场方向图。
3)天线阵列
单一天线的方向性是有限的,为适合各种场合的应用,将工作在同一频率的两个或多个单个天线,按照一定的要求进行馈电和空间排列,构成天线阵列,也叫天线阵。构成天线阵的天线辐射单元称为阵元。
天线阵列的工作原理:可以看作是电磁波的叠加,对几列电磁波来讲,当它们传到同一区域时,按照叠加原理,电磁波将产生矢量叠加。叠加的结果,不仅与各列电磁波的振幅大小有关,而与它们在相遇区间内相互之间的相位差有关。位于不同位置上的发射天线所发出的电磁波传到同一接收区域造成的空间相位出现差别,必然引起几列电磁波在相遇区域出现下列两种情况:同相位叠加,总场强增强;反相位叠加,总场强削弱。若总场强的增强和削弱区域在空间保持相对固定,就相当于用天线阵改变了单个天线的辐射场结构,即天线阵改变了辐射场大小和方向性的原理。
图1是本发明实施例的天线系统的示意性框图。如图1所示,天线系统100包括聚焦设备110和多频馈电天线阵列120,其中:
聚焦设备110,具有波束聚焦功能;
多频馈电天线阵列120,设置于该聚焦设备110的焦点区域130,用于辐射第一波束150,该第一波束150指向该聚焦设备110,该焦点区域的边界点与该聚焦设备的焦点之间的距离小于第一阈值;
该聚焦设备110,用于根据该多频馈电天线阵列辐射的该第一波束150,输出第二波束160,该第二波束160的增益大于该第一波束150的增益;
该多频馈电天线阵列120,包括至少两个频段的天线阵列,该至少两个频段中每个频段的天线阵列包括用于接收馈电信号140、并基于馈电信号生成子波束的馈电单元,该至少两个频段的天线阵列各自生成的子波束组成该第一波束150;
其中,该至少两个频段的天线阵列中至少包括第一目标频段的天线阵列,该第一目标频段的天线阵列包括非一维线阵排布的多个馈电单元。
因此,本发明实施例提供的天线系统,通过将包括至少两个频段的天线阵列的多频馈电天线阵列设置在聚焦设备的焦点区域,其中,在该多频馈电天线阵列中,至少具有包括非一维线阵排布的多个馈电单元的第一目标频段的天线阵列,能够有效扩展第一目标频段的波束的覆盖范围,从而能够提高通信容量。
可选地,在本发明实施例中,该聚焦设备包括下列设备中的任一种:椭 圆透镜、球形透镜、扩展半球透镜、龙勃透镜、抛物面反射器、平面透镜和卡塞格伦双反射面反射器。
具体地,如图2所示,图2(a)示出椭圆透镜的示意图,图2(b)示出龙勃透镜的示意图,图2(c)示出抛物面反射器的示意图,图2(d)示出扩展半球透镜的示意图,图2(e)示出平面透镜的示意图。其中,图2中170为辐射器,可以向上述各类聚焦设备发射电磁波或光波。如图2(a)所示,辐射器170在椭圆透镜的焦点位置向该椭圆透镜发射电磁波波束,这些波束经过椭圆透镜后平行射出。如图2(c)所示,辐射器170在抛物面反射器的焦点位置向该抛物面反射器发射电磁波波束,这些波束经过抛物面反射器的发射后平行射出。如图2(d)所示,辐射器170在扩展半球透镜的焦点位置向该扩展半球透镜发射电磁波波束,这些波束经过扩展半球透镜的光路后平行射出。
应理解,该聚焦设备110还可以是其他任意的具备电磁波波束汇聚功能的装置,本发明实施例对此不作限定。
焦点区域130为该聚焦设备110的焦点附近的区域,焦点区域130的边界点与该聚焦设备的焦点之间的距离小于第一阈值,该第一阈值可以根据实际需要适应性地确定。应理解,该焦点区域130可以看作是以聚焦设备110的焦点为中心的空间区域。本发明实施例并不严格限定该焦点区域130的空间大小和形状,只要使得从该焦点区域130发射出的第一波束150,经照射该聚焦设备110后能够产生相比于第一波束150具有附加增益的第二波束160即可。
可选地,在本发明实施例中,该至少两个频段的天线阵列的天线类型包括下列类型中的任一种:同轴馈电微带天线、直接馈电微带天线、耦合馈电微带天线,波导缝隙天线、八木宇田天线、平面八木天线、基片集成波导缝隙天线、矩形喇叭天线和偶极子天线。
具体地,以多频馈电天线阵列为三频馈电天线阵列为例,其中频段1的天线阵列的天线类型为同轴馈电微带天线,频段2的天线阵列的天线类型为耦合馈电微带天线,频段3的天线阵列的天线类型为矩形喇叭天线。再例如,三个频段的天线阵列的天线型均为同轴馈电微带天线。或者再例如,频段1和2的天线阵列的天线类型为波导缝隙天线,频段3的天线阵列的天线类型为偶极子天线。换句话说,在本发明实施例提供的天线系统中,不同频段的天线阵列的天线类型可以完全相同,也可以部分相同,还可以完全不同,本 发明实施例对此不作限定。
还应理解,该至少两个频段的天线阵列的天线类型除了上述描述类型外,还可以是其他任意的具备辐射电磁波波束功能的设备,本发明实施例对此不作限定。
在本发明实施例中,多频馈电天线阵列120中每个频段的天线阵列包括用于接收馈电信号、并基于馈电信号生成子波束的馈电单元,该馈电单元也可称之为天线单元。应理解,多频馈电天线阵列120向聚焦设备110的第一波束150包括各个频段的天线阵列各自生成的子波束(相当于该天线阵列包括的馈电单元生成的子波束)。
多频馈电天线阵列120放置于聚焦设备110的焦点附近的焦点区域130内,同时多频馈电天线阵列120辐射的第一波束150的辐射波束主瓣指向聚焦设备110,可以利用聚焦设备110的电磁波波束汇聚功能,获得增益更高的电磁波波束(第二波束160)。
具体地,如图3所示,以聚焦设备110为椭圆透镜111为例,以多频馈电天线阵列120为包括3个频段的天线阵列的三频馈电天线阵列121为例。如图3所示,三频馈电天线阵列121放置在椭圆透镜111的焦点区域131,例如三频馈电天线阵列121中3个频段的天线阵列分别辐射频段1的辐射子波束a,频段2的辐射子波束b和频段3的辐射子波束c,且子波束a,b和c均照射椭圆透镜111,利用椭圆透镜111的波束聚焦原理,在椭圆透镜111的另一侧产生子波束a’、b’、c’,且子波束a’、b’和c’的增益各自分别大于辐射子波束a、b和c的增益,即子波束a’、b’和c’分别相对于子波束a、b和c具有附加增益。
应理解,对比图1和图3,在图3中,三频馈电天线阵列121中3个频段的天线阵列发射出的子波束a,b和c组成该三频馈电天线阵列121的第一波束150,对应地,经过椭圆透镜111产生的子波束a’、b’、c’组成该椭圆透镜111(聚焦设备110)的第二波束160。相应地,该第二波束160的增益大于该第一波束150的增益,在图3所示的例子中,具体指的是,子波束a’、b’和c’分别相对于子波束a、b和c具有附加增益。
在本发明实施例提供的天线系统中,可以通过调整聚焦设备110的性能来实现天线系统所需的各种增益。
因此,本发明实施例的天线系统,通过将多频馈电天线阵列放置在聚焦 设备的焦点区域,利用聚焦设备的波束汇聚功能,能够获得附加的天线增益,同时可以通过选择不同类型的聚焦设备或者通过调整聚焦设备的设计,能够满足天线系统的不同增益需求。相比于当前技术中的X和Ka频段的双频共口径天线,本发明实施例提供的天线系统,并不限定不同频段之间的频段比,也不严格限制多频馈电天线阵列中不同频段的天线阵列的天线类型,能够进一步提高天线系统的适用性。此外,本发明实施例提供的天线系统,对不同频段的天线阵列之间的排布方式也没有严格限制,只要保证多个频段的天线阵列均设置在焦点区域130即可,因此,本发明实施例提供的天线系统,相比于现有的多频天线系统,具有更高的适应性。
应理解,图1所示的馈电信号140为示意性的馈电信号,包括该多频馈电天线阵列120中每个频段的天线阵列的馈电单元所接收的馈电信号。
还应理解,上述提到的第二波束160的增益大于第一波束150的增益,这里的增益指的是上文提到的“2)天线增益”,即相同的输入功率,实际天线与理想的辐射单元(无向性天线)分别在空间同一点处所产生的信号的功率密度比值,它定量地描述一个天线把输入功率集中辐射的程度。
在本发明实施例中,该第一目标频段的天线阵列包括多个馈电单元(或称为天线单元),该多个馈电单元的排布方式至少是二维的,即该第一目标频段的天线阵列至少覆盖二维的面阵,而非一维线阵。
可选地,在本发明实施例中,该第一目标频段的天线阵列包括的该多个馈电单元的排布方式包括下列方式中的任一种:二维面阵和三维立体阵。
其中,二维面阵具体地可以包括二维矩形面阵、二维三角形面阵或其他任意形状的平面阵,如图4所示,其中图4(a)示出包括9个馈电单元的天线阵列的二维矩形面阵,图4(b)示出包括7个馈电单元的天线阵列的二维三角形面阵的示意图。三维立体阵,指的是,多个馈电单元的排布方式占据一个三维立体空间,第一目标频段的天线阵列包括的多个馈电单元排布在一个三维立体物体的表明,例如覆盖在长方体的表面。
应理解,当第一目标频段的天线阵列包括的多个馈电单元的排布方式为二维面阵时,该多个馈电单元根据各自接收的馈电信号生成的多个波束的覆盖区域也是二维的,即该第一目标频段的天线阵列辐射的子波束覆盖的至少一个面,而非一维线阵,这样能够增强天线的覆盖性。如果该第一目标频段的天线阵列包括的多个馈电单元的排布方式为三维立体时,该多个馈电单元 根据各自接收的馈电信号生成的多个波束的覆盖区域构成三维立体空间,扩展了天线电磁波波束的覆盖范围。
因此,本发明实施例提供的天线系统,在该多频馈电天线阵列中,至少具有包括非一维线阵排布的多个馈电单元的第一目标频段的天线阵列,能够有效扩展第一目标频段的波束的覆盖范围,从而能够提高通信容量。
应理解,该多频馈电天线阵列中可以包括一个或多个该第一目标频段的天线阵列。例如,该多频馈电天线阵列中包括的至少两个频段的天线阵列中每个频段的天线阵列均包括多个馈电单元,且该多个馈电单元的排布方式为非一维线阵,则,该天线系统生成的每个频段的波束的覆盖区域都是至少为二维面阵,有效提高了该天线系统的通信容量。
还应理解,在该至少两个频段中除第一目标频段之外的其他频段的天线阵列中可以包括一个或多个馈电单元,且在包含多个馈电单元的情况下,该多个馈电单元的排布方式可以是下列方式中的任一种:一维线阵、二维面阵和三维立体阵。
可选地,在本发明实施例中,该至少两个频段的天线阵列中至少包括第四目标频段的天线阵列,该第四目标频段的天线阵包括一个馈电单元。该第四目标频段的天线阵列可以为该至少两个频段中除第一目标频段之外的其他频段的天线阵列中任一个或多个频段的天线阵列。
传统天线系统中,受限于单个天线单元(相当于本发明实施例中的馈电单元)的增益较小,对于增益较大的场景,必须要使用包括多个天线单元的天线阵列,且天线阵列中的每个天线单元均需馈电,即天线阵列中所有馈电单元都生成波束,才能获得足够的增益。而在本发明实施例提供的基于聚焦设备的天线系统中,由于聚焦设备针对来自焦点区域的波束,能够产生大于零的任意额外增益,对于设置于焦点区域的多频馈电天线阵列中的任意单个频段的天线阵列来说,对单个馈电单元馈电就可实现所需波束和所需增益。因此,在本发明实施例提供的天线系统中,该至少两个频段的天线阵列中并不需要每个频段的天线阵列都包括多个馈电单元,而且,即使一个频段的天线阵列包括多个馈电单元,在使用时,也无需对每个馈电单元都馈电。可以理解,本发明实施例提供的天线系统相比于传统天线系统,其天线阵列具备更高的集成度,进而能够精简天线阵列的结构和复杂度。
应理解,在本发明实施例中,不同频段的天线阵列中馈电单元的排布方 式可以完全相同,也可以部分相同,还可以完全不同,本发明实施例对此不作限定。以多频馈电天线阵列110为三频馈电天线阵列为例,例如3个频段的天线阵列各自包括多个馈电单元,其中,3个频段的天线阵列各自包括的多个馈电单元的排布方式均为二维面阵;或者,频段1的天线阵列中多个馈电单元的排布方式为一维线阵、频段2的天线阵列中多个馈电单元的排布方式为二维面阵,频段3的天线阵列中多个馈电单元的排布方式为三维立体阵;又或者,频段1和频段2的天线阵列各自包括的多个馈电单元的排布方式均为二维面阵,频段3的天线阵列中多个馈电单元的排布方式为一维线阵。
可选地,在本发明实施例中,该多频馈电天线阵列中的该至少两个频段的天线阵列之间的排布方式包括下列方式中的任一种:分区排布、部分交叠排布和完全交叠排布。
具体地,如图5所示,以多频馈电天线阵列为包括三个频段(如图5所示的频段1,2和3)的三频馈电天线阵列为例,图5(a)示出了3个频段的天线阵列的排布方式为分区排布的示意图,对应地,这3个频段的电磁波波束的覆盖空间区域没有交叠。图5(b)示出了3个频段的天线阵列的排布方式为部分交叠排布的示意图,具体地,如图5(b)所示,频段1和频段2的天线阵列的排布区域部分交叠,频段3的天线阵列分别与频段1和频段2的天线阵列的排布区域没有交叠,也就是分区排布,对应地,频段1和频段2的电磁波波束的覆盖空间区域部分交叠,频段3分别与频段1和频段2的电磁波波束的覆盖空间区域没有交叠。图5(c)示出了3个频段的天线阵列的排布方式为完全交叠排布的示意图,也就是3个频段的天线阵列的排布区域均发生交叠,对应地,这3个频段的电磁波波束的覆盖空间区域也彼此交叠。
其中,在图5(b)所示的方案中,在频段1和频段2的天线阵列的交叠区域内发射的电磁波波束的覆盖区域也存在覆盖,则实现了两个不同频段的天线信号覆盖同一片空间区域,则可以提高同一空间区域的通信带宽,进而能够提高这一空间区域的通信容量。在图5(c)所示的方案中,在频段1、频段2和频段3的天线阵列彼此交叠的区域内发射的电磁波波束的覆盖区域也发生交叠,则实现了3个不同频段的天线信号覆盖了同一片空间,则可以提高同一空间区域的通信带宽,进而能够提高这一空间区域的通信容量。
应理解,在本发明实施例中,并没有限定不同频段的天线阵列绝对设置在同一平面上,例如图5所示的三种排列方式,是从与聚焦设备的轴线垂直 的平面上观测到的3个频段的天线阵列之间的排布方式。以图5(b)所示情形为例,实际情况中,频段1和频段2的天线阵列可能位于不同的平面上,但是从图5(b)所示的观测方位来看,频段1和频段2的天线阵列的排布区域是部分交叠的。或者换句话说,只要保证频段1和频段2的天线阵列指向聚焦设备110各自发射的波束的覆盖范围存在交叠即可,可以采用多种可行的方法设置频段1和频段2的天线阵列之间的相对排布方式,本发明实施例对比不作限定。
需要说明的是,图5所示的三频馈电天线阵列中3个频段的天线阵列之间的排布方式仅为示例性说明,本发明并不限定于此,例如,该多频馈电天线阵列110中可包括更多个频段的天线阵列,以及各个频段的天线阵列彼此之间的排布方式可以任意变更,本发明并未特别限定。
因此,本发明实施例提供的基于聚焦设备的天线系统,相比当前的X和Ka频段的双频共口径天线,多频馈电天线阵列中不同的频段的天线阵列之间的排布方式没有严格的依赖性和制约性,只需将该不同频段的天线阵列均设置于聚焦设备110的焦点区域130内即可。换句话说,不同的频段的天线阵列之间的排布方式只与该焦点区域130的空间范围大小有关,并不受天线工作频段的约束,因此,本发明实施例提供的天线系统的设计灵活度更大,能够提高天线系统的适用性。
可选地,在本发明实施例中,该至少两个频段的天线阵列中至少包括第二目标频段和第三目标频段的天线阵列,该第二目标频段和该第三目标频段的天线阵列各自生成的子波束至少部分交叠。
应理解,该第二目标频段和该第三目标频段的天线阵列各自生成的子波束至少部分交叠,具体指的是,该第二目标频段和该第三目标频段的天线阵列各自生成的子波束所覆盖的区域至少部分交叠。
具体地,如图5(b)所示,第二目标频段相当于频段1,第三目标频段相当于频段2。或者如图5(c)所示,第二目标频段和第三目标频段可以分别相当于频段1、2、3中任意两个不同的频段。
应理解,在第一目标频段和第二目标频段的天线阵列发射的波束的覆盖区域相互交叠的区域A,相当于有两个不同频段的天线信号覆盖了区域A,则可以提高区域A的通信带宽,进而能够提高区域A的通信容量。
因此,在本发明实施例提供的基于聚焦设备的天线系统中,至少能够实 现两种不同频段的天线信号覆盖同一空间区域,从而可以提高同一空间区域的通信带宽,进而能够提高这一空间区域的通信容量。
应理解,第二目标频段的天线阵列与第三目标频段的天线阵列之间的排布方式包括但不限定于图5(b)或图5(c)所示的排布方式。只要保证该第二目标频段和该第三目标频段的天线阵列各自生成的波束的覆盖区域至少部分交叠即可,该第二目标频段与该第三目标频段的天线阵列之间的排布方式可以采用多种可行的设置方式,本发明实施例对此不作限定。
因此,本发明实施例提供的天线系统,通过将包括至少两个频段的天线阵列的多频馈电天线阵列设置在聚焦设备的焦点区域,利用聚焦设备的波束聚焦功能,能够获得附加天线增益。其中,在该多频馈电天线阵列中,至少具有包括非一维线阵排布的多个馈电单元的第一目标频段的天线阵列,能够有效扩展第一目标频段的波束的覆盖范围,从而能够提高通信容量。同时,在该多频馈电天线阵列中,至少具有彼此波束覆盖区域有交叠的两个频段的天线阵列,从而能够实现不同频段的波束覆盖同一空间区域,从而能够有效同一空间区域的通信带宽及通信容量。此外,在本发明实施例提供的天线系统和处理方法中,对多频馈电天线阵列中不同频段之间的频段比没有严格限制,对不同频段的天线阵列之间的排布方式也没有严格限制,能够有效提高该天线系统的适用性。
本发明实施例提供的天线系统在所工作的多个频段中的每一个频段均可以灵活实现多波束。其中,每个频段实现多波束的方法包括基于单个馈电单元馈电和基于馈电单元子阵馈电两种方式。
可选地,在本发明实施例中,该至少两个频段的天线阵列中至少包括第五目标频段的天线阵列,该第五目标频段的天线阵列包括多个馈电单元,该多个馈电单元中至少一个馈电单元用于接收馈电信号,并根据该馈电信号生成子波束。
具体地,以聚焦设备110为扩展半球透镜112为例,图6(a)、(b)和(c)示出了基于扩展半球透镜112实现的天线系统,为了便于显示和描述,图6(a)、(b)和(c)中只画出了多频馈电天线阵列120中的单个频段F的天线阵列,并假设该频段F的天线阵列中包括6个馈电单元。应理解,图6所示的频段F可以对应于该第五目标频段。
由于聚焦设备110(图6中的扩展半球透镜112)的波束汇聚作用,通 过单个馈电单元即可生成一个所需增益的波束,即一个馈电单元对应一个波束。具体地,如图6(b)所示,通过馈电信号1和2同时分别对第1个和第6个馈电单元激励,实现波束1和波束2,具体地,馈电信号1产生波束1,馈电信号2产生波束2。
通过选择馈电单元的数目和位置,通过输入馈电信号,从而产生所需的波束。应理解,图6(b)只是示意性地给出一种通过给两个馈电单元输入馈电信号从而产生两个波束的例子,实际应用中并非局限于此,例如,还可以分别以对频段1的天线阵列所包括的6个馈电单元输入馈电信号,从而产生波束1至波束6。实际应用中根据具体需求,对于单个频段的天线阵列,可以选择不同数目和不同位置的馈电单元,激励以馈电信号,以产生所需的波束。
上文结合图6(b)描述了基于单个馈电单元馈电以实现多波束的方案,还可以基于馈电单元子阵馈电以实现多波束。具体地,当两个相邻馈电单元间距小于预设阈值时,对应生成的两个波束也会逐渐靠近,并交叠在一起,合并为一个波束。
可选地,在本发明实施例中,至少两个频段的天线阵列中至少包括第五目标频段的天线阵列,该第五目标频段的天线阵列包括多个馈电单元,且该多个馈电单元中的至少两个馈电单元的相邻馈电单元之间的距离小于第二阈值,该至少两个馈电单元中每个馈电单元接收的馈电信号相同。
具体地,如图6(c)所示,通过馈电信号3同时激励第1个和第2个馈电单元,产生合并波束3;通过馈电信号4同时激励第4、5和6个馈电单元,产生合并波束4。
应理解,图6(c)所示的例子中,第1个和第2个馈电单元之间的间距小于该第二阈值,第4个馈电单元和第5个馈电单元之间的距离小于第二阈值,第5个馈电单元与第6个馈电单元之间的距离也小于第二阈值,即如果按照图6(b)所示的方案,分别通过馈电信号激励第1、2、4、5和6个馈电单元时,第1和第2的馈电单元产生的波束将交叠在一起,第4和第5个的馈电单元产生的波束将交叠在一起,第5和第6个馈电单元产生的波束也将交叠在一起。还有可能第4、5和6个馈电单元分别产生的波束互相交叠在一起。因此,按照图6(c)所示的方法,即通过馈电信号3同时激励第1个和第2个馈电单元时,能够产生合并波束3,通过馈电信号4同时激励第4、5和6个馈电单元时,能够产生合并波束4。
因此,本发明实施例提供的天线系统在设计时,可以将相邻馈电单元间距控制在预定阈值内,以保证所述相邻馈电单元对应的波束交叠,这样,可以将该两相邻馈电单元作为一个馈电单元子阵,从而采用一个馈电信号对该馈电单元子阵进行激励,可以产生一个波束宽度更宽的合并波束。
还应理解,本发明实施例中提到的馈电单元子阵,并不限定于图6(c)所示的包括2个相邻馈电单元,或者包括3个馈电单元,例如,图6(c)所示的频段1的天线阵列所包括的6个馈电单元彼此之间的距离均小于第二阈值,即当分别对该6个馈电单元单独馈电时,对应产生的波束彼此都有交叠时,可以将该6个馈电单元看作一个馈电单元子阵,从而可以通过一个馈电信号同时激励该6个馈电单元,进而能够产生一个波束更宽的合并波束。
因此,本发明实施例提供的天线系统,可以通过控制相邻馈电单元之间的距离,使得相邻馈电单元各自形成的波束交叠。从而可以实现任意宽度的波束。即可以通过选择馈电信号激励的馈电单元子阵的阵列规模,来实现波束宽度的控制,进而实现可调波束宽度的天线系统。
在实际应用中,如果需要高增益的场景(对应于窄波束角度覆盖),则选择对较小规模的馈电单元子阵进行馈电信号激励以实现窄波束高增益特性;对于需要宽角度覆盖的场景,则选择对较大规模的馈电单元子阵进行馈电信号激励以实现宽波束宽角覆盖特性。
具体地,还以基于扩展半球透镜112的天线系统为例,图7示出了在不同应用场景下进行不同馈电方式切换的方法的示意图,同样为了便于显示和描述,图7中只画出了多频馈电天线阵列120中的单个频段F的天线阵列,并假设该频段F的天线阵列中包括6个馈电单元。例如在需要高增益的场景一中,如图7中左边示意图所示,通过馈电信号5激励第2个馈电单元,以产生窄宽度的波束5;还可以通过馈电信号6同时激励第3个和第4个馈电单元,以产生窄宽度的波束6。如果在需要宽角度覆盖的场景二中,因为图7的左边示意图显示波束5和波束6有交叠,可以考虑将第2个至第4个馈电单元看作为一个馈电单元子阵,如图7右边示意图所示,通过馈电信号7同时激励第2至第4个馈电单元,以产生宽度相对较宽的波束7,相当于波束5和波束6合并为波束7,波束7的展宽大致为波束5和波束6的合并宽度或者包络宽度。
因此,本发明实施例提供的天线系统,通过控制单个频段的天线阵列中 相邻馈电单元的间距,可以实现可调波束宽度。
当需要从对单个馈电单元馈电切换到对包括两个或多个馈电单元的馈电单元子阵进行馈电时,可以采用开关实现这一切换过程。
具体地,开关的形式可以为二极管开关,或MEMS开关以及其他一些可以实现该功能的装置。如果每个馈电单元均与一个收发机相连,则可以通过DSP或者FPGA的方式实现馈电方式的切换。
在本发明实施例提供的天线系统,还可以在所工作的多个频段中的每一个频段实现连续波束扫描。
可选地,在本发明实施例中,该至少两个频段的天线阵列中至少包括第六目标频段的天线阵列,该第六目标频段的天线阵列包括多个馈电单元,且该多个馈电单元用于根据时序依次接收馈电信号。
具体地,还以基于扩展半球透镜112的天线系统为例,图8示出根据时间序列实现波束扫描的示意图。同样为了便于显示和描述,图8中只画出了多频馈电天线阵列120中的单个频段F的天线阵列,并假设该频段F的天线阵列中包括6个馈电单元。按时间序列[T1 T2…T6]依次对第1个至第6个馈电单元进行馈电信号激励,即可实现波束扫描。
同时还可以控制相邻馈电单元的间距实现波束连续扫描,以便实现对用户或目标的连续跟踪及通信。
图8示出了基于单个馈电单元进行波束扫描的方法,类似地,可以实现基于馈电单元子阵进行波束扫描。
应理解,上述结合图6至图8描述的方案中,均以多频馈电天线阵列120中的单个频段F的天线阵列为例,进行阐述,对于多频馈电天线阵列120中包括的其他频段的天线阵列,处理方法类似于图6至图8所示的方法,为了简洁,这里不再赘述。
因此,本发明实施例提供的天线系统,通过将包括至少两个频段的天线阵列的多频馈电天线阵列设置在聚焦设备的焦点区域,利用聚焦设备的波束聚焦功能,能够获得附加天线增益。其中,在该多频馈电天线阵列中,至少具有包括非一维线阵排布的多个馈电单元的第一目标频段的天线阵列,能够有效扩展第一目标频段的波束的覆盖范围,从而能够提高通信容量。同时,在该多频馈电天线阵列中,至少具有彼此波束覆盖区域有交叠的两个频段的天线阵列,从而能够实现不同频段的波束覆盖同一空间区域,从而能够有效 同一空间区域的通信带宽及通信容量。此外,在本发明实施例提供的天线系统和处理方法中,对多频馈电天线阵列中不同频段之间的频段比没有严格限制,对不同频段的天线阵列之间的排布方式也没有严格限制,能够有效提高该天线系统的适用性。此外,在所工作的多个频段中的每一个频段均可以灵活实现多波束,更加增强了该天线系统的适用性。还可以在所工作的多个频段中的每一个频段实现连续波束扫描,可以实现对目标进行连续跟踪或者与目标进行通信。
图9示出了本发明实施的天线系统处理方法的示意性流程图,该方法200例如可以由天线系统100,该天线系统100包括聚焦设备和多频馈电天线阵列,该聚焦设备具有波束聚焦功能,该多频馈电天线阵列,设置于该聚焦设备的焦点区域,该焦点区域的边界点与该聚焦设备的焦点之间的距离小于第一阈值,该多频馈电天线阵列包括至少两个频段的天线阵列,该至少两个频段中每个频段的天线阵列包括用于接收馈电信号、并基于馈电信号生成子波束的馈电单元;该处理方法200包括:
S210,该多频馈电天线阵列,用于辐射第一波束,该第一波束指向该聚焦设备,该至少两个频段的天线阵列各自生成的子波束组成该第一波束;
S220,该聚焦设备,用于接收该多频馈电天线阵列辐射的该第一波束,并基于该第一波束,输出第二波束,该第二波束的增益大于该第一波束的增益;
其中,该至少两个频段的天线阵列中至少包括第一目标频段的天线阵列,该第一目标频段的天线阵列包括非一维线阵排布的多个馈电单元。
因此,本发明实施例提供的天线系统的处理方法,通过将包括至少两个频段的天线阵列的多频馈电天线阵列设置在聚焦设备的焦点区域,其中,在该多频馈电天线阵列中,至少具有包括非一维线阵排布的多个馈电单元的第一目标频段的天线阵列,能够有效扩展第一目标频段的波束的覆盖范围,从而能够提高通信容量。此外,在本发明实施例提供的天线系统和处理方法中,对多频馈电天线阵列中不同频段之间的频段比没有严格限制,对不同频段的天线阵列之间的排布方式也没有严格限制,能够有效提高该天线系统的适用性。
可选地,在本发明实施例中,该至少两个频段的天线阵列中至少包括第二目标频段和第三目标频段的天线阵列,该第二目标频段和该第三目标频段 的天线阵列各自生成的子波束至少部分交叠。
可选地,在本发明实施例中,该至少两个频段的天线阵列中至少包括第四目标频段的天线阵列,该第四目标频段的天线阵包括一个馈电单元。
可选地,在本发明实施例中,该至少两个频段的天线阵列中至少包括第五目标频段的天线阵列,该第五目标频段的天线阵列包括多个馈电单元,且该多个馈电单元中的至少两个馈电单元的相邻馈电单元之间的距离小于第二阈值,该至少两个馈电单元中每个馈电单元接收的馈电信号相同。
具体地,如上文结合图6的描述,为了简洁,这里不再赘述。
在实际应用中,如果需要高增益的场景(对应于窄波束角度覆盖),则选择对较小规模的馈电单元子阵进行馈电信号激励以实现窄波束高增益特性;对于需要宽角度覆盖的场景,则选择对较大规模的馈电单元子阵进行馈电信号激励以实现宽波束宽角覆盖特性。
具体地,还以基于扩展半球透镜112的天线系统为例,图7示出了在不同应用场景下进行不同馈电方式切换的方法的示意图,同样为了便于显示和描述,图7中只画出了多频馈电天线阵列120中的单个频段F的天线阵列,并假设该频段F的天线阵列中包括6个馈电单元。例如在需要高增益的场景一中,如图7中左边示意图所示,通过馈电信号5激励第2个馈电单元,以产生窄宽度的波束5;还可以通过馈电信号6同时激励第3个和第4个馈电单元,以产生窄宽度的波束6。如果在需要宽角度覆盖的场景二中,因为图7的左边示意图显示波束5和波束6有交叠,可以考虑将第2个至地4个馈电单元看作为一个馈电单元子阵,如图7右边示意图所示,通过馈电信号7同时激励第2至第4个馈电单元,以产生宽度相对较宽的波束7,相当于波束5和波束6合并为波束7,波束7的展宽大致为波束5和波束6的包络。
因此,本发明实施例提供的天线系统的处理方法,通过控制单个频段的天线阵列中相邻馈电单元的间距,可以实现对波束宽度的调节。
当需要从对单个馈电单元馈电切换到对包括两个或多个馈电单元的馈电单元子阵进行馈电时,可以采用开关实现这一切换过程。
具体地,开关的形式可以为二极管开关,或MEMS开关以及其他一些可以实现该功能的装置。如果每个馈电单元均与一个收发机相连,则可以通过DSP或者FPGA的方式实现馈电方式的切换。
在本发明实施例提供的天线系统,还可以在所工作的多个频段中的每一 个频段实现连续波束扫描。
可选地,在本发明实施例中,该至少两个频段的天线阵列中至少包括第六目标频段的天线阵列,该第六目标频段的天线阵列包括多个馈电单元,且该多个馈电单元根据时序依次接收馈电信号。
具体地,如上文结合图8的描述,为了简洁,这里不再赘述。
可选地,在本发明实施例中,该聚焦设备包括下列设备中的任一种:椭圆透镜、球形透镜、扩展半球透镜、龙勃透镜、抛物面反射器、平面透镜和卡塞格伦双反射面反射器。
可选地,在本发明实施例中,该至少两个频段的天线阵列的天线类型包括下列类型中的任一种:同轴馈电微带天线、直接馈电微带天线、耦合馈电微带天线,波导缝隙天线、八木宇田天线、平面八木天线、基片集成波导缝隙天线、矩形喇叭天线和偶极子天线。
可选地,在本发明实施例中,该第一目标频段的天线阵列包括的该多个馈电单元的排布方式包括下列方式中的任一种:二维面阵和三维立体阵。
因此,本发明实施例提供的天线系统的处理方法,通过将包括至少两个频段的天线阵列的多频馈电天线阵列设置在聚焦设备的焦点区域,利用聚焦设备的波束聚焦功能,能够获得附加天线增益。其中,在该多频馈电天线阵列中,至少具有包括非一维线阵排布的多个馈电单元的第一目标频段的天线阵列,能够有效扩展第一目标频段的波束的覆盖范围,从而能够提高通信容量。同时,在该多频馈电天线阵列中,至少具有彼此波束覆盖区域有交叠的两个频段的天线阵列,从而能够实现不同频段的波束覆盖同一空间区域,从而能够有效同一空间区域的通信带宽及通信容量。此外,在本发明实施例提供的天线系统和处理方法中,对多频馈电天线阵列中不同频段之间的频段比没有严格限制,对不同频段的天线阵列之间的排布方式也没有严格限制,能够有效提高该天线系统的适用性。此外,在所工作的多个频段中的每一个频段均可以灵活实现多波束,更加增强了该天线系统的适用性。还可以在所工作的多个频段中的每一个频段实现连续波束扫描,可以实现对目标进行连续跟踪或者与目标进行通信。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种天线系统,其特征在于,包括:
    聚焦设备,具有波束聚焦功能;
    多频馈电天线阵列,设置于所述聚焦设备的焦点区域,用于辐射第一波束,所述第一波束指向所述聚焦设备,所述焦点区域的边界点与所述聚焦设备的焦点之间的距离小于第一阈值;
    所述聚焦设备,用于接收所述多频馈电天线阵列辐射的所述第一波束,并基于所述第一波束,输出第二波束,所述第二波束的增益大于所述第一波束的增益;
    所述多频馈电天线阵列,包括至少两个频段的天线阵列,所述至少两个频段中每个频段的天线阵列包括用于接收馈电信号、并基于馈电信号生成子波束的馈电单元,所述至少两个频段的天线阵列各自生成的子波束组成所述第一波束;
    其中,所述至少两个频段的天线阵列中至少包括第一目标频段的天线阵列,所述第一目标频段的天线阵列包括非一维线阵排布的多个馈电单元。
  2. 根据权利要求1所述的天线系统,其特征在于,所述至少两个频段的天线阵列中至少包括第二目标频段和第三目标频段的天线阵列,所述第二目标频段和所述第三目标频段的天线阵列各自生成的子波束至少部分交叠。
  3. 根据权利要求1或2所述的天线系统,其特征在于,所述至少两个频段的天线阵列中至少包括第四目标频段的天线阵列,所述第四目标频段的天线阵包括一个馈电单元。
  4. 根据权利要求1至3中任一项所述的天线系统,其特征在于,所述至少两个频段的天线阵列中至少包括第五目标频段的天线阵列,所述第五目标频段的天线阵列包括多个馈电单元,且所述多个馈电单元中的至少两个馈电单元的相邻馈电单元之间的距离小于第二阈值,所述至少两个馈电单元中每个馈电单元接收的馈电信号相同。
  5. 根据权利要求1至4中任一项所述的天线系统,其特征在于,所述至少两个频段的天线阵列中至少包括第六目标频段的天线阵列,所述第六目标频段的天线阵列包括多个馈电单元,且所述多个馈电单元用于根据时序依次接收馈电信号。
  6. 根据权利要求1至5中任一项所述的天线系统,其特征在于,所述 聚焦设备包括下列设备中的任一种:椭圆透镜、球形透镜、扩展半球透镜、龙勃透镜、抛物面反射器、平面透镜和卡塞格伦双反射面反射器。
  7. 根据权利要求1至6中任一项所述的天线系统,其特征在于,所述至少两个频段的天线阵列的天线类型包括下列类型中的任一种:同轴馈电微带天线、直接馈电微带天线、耦合馈电微带天线,波导缝隙天线、八木宇田天线、平面八木天线、基片集成波导缝隙天线、矩形喇叭天线和偶极子天线。
  8. 根据权利要求1至7中任一项所述的天线系统,其特征在于,所述第一目标频段的天线阵列包括的所述多个馈电单元的排布方式包括下列方式中的任一种:二维面阵和三维立体阵。
  9. 一种天线系统的处理方法,其特征在于,所述天线系统包括聚焦设备和多频馈电天线阵列,所述聚焦设备具有波束聚焦功能,所述多频馈电天线阵列,设置于所述聚焦设备的焦点区域,所述焦点区域的边界点与所述聚焦设备的焦点之间的距离小于第一阈值,所述多频馈电天线阵列包括至少两个频段的天线阵列,所述至少两个频段中每个频段的天线阵列包括用于接收馈电信号、并基于馈电信号生成子波束的馈电单元;所述方法包括:
    所述多频馈电天线阵列,用于辐射第一波束,所述第一波束指向所述聚焦设备,所述至少两个频段的天线阵列各自生成的子波束组成所述第一波束;
    所述聚焦设备,用于接收所述多频馈电天线阵列辐射的所述第一波束,并基于所述第一波束,输出第二波束,所述第二波束的增益大于所述第一波束的增益;
    其中,所述至少两个频段的天线阵列中至少包括第一目标频段的天线阵列,所述第一目标频段的天线阵列包括非一维线阵排布的多个馈电单元。
  10. 根据权利要求9所述的方法,其特征在于,所述至少两个频段的天线阵列中至少包括第二目标频段和第三目标频段的天线阵列,所述第二目标频段和所述第三目标频段的天线阵列各自生成的子波束至少部分交叠。
  11. 根据权利要求9或10所述的方法,其特征在于,所述至少两个频段的天线阵列中至少包括第四目标频段的天线阵列,所述第四目标频段的天线阵包括一个馈电单元。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述至少两个频段的天线阵列中至少包括第五目标频段的天线阵列,所述第五目标 频段的天线阵列包括多个馈电单元,且所述多个馈电单元中的至少两个馈电单元的相邻馈电单元之间的距离小于第二阈值,所述至少两个馈电单元中每个馈电单元接收的馈电信号相同。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述至少两个频段的天线阵列中至少包括第六目标频段的天线阵列,所述第六目标频段的天线阵列包括多个馈电单元,且所述多个馈电单元根据时序依次接收馈电信号。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述聚焦设备包括下列设备中的任一种:椭圆透镜、球形透镜、扩展半球透镜、龙勃透镜、抛物面反射器、平面透镜和卡塞格伦双反射面反射器。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所述至少两个频段的天线阵列的天线类型包括下列类型中的任一种:同轴馈电微带天线、直接馈电微带天线、耦合馈电微带天线,波导缝隙天线、八木宇田天线、平面八木天线、基片集成波导缝隙天线、矩形喇叭天线和偶极子天线。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,所述第一目标频段的天线阵列包括的所述多个馈电单元的排布方式包括下列方式中的任一种:二维面阵和三维立体阵。
PCT/CN2014/089484 2014-10-24 2014-10-24 天线系统和处理方法 WO2016061825A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/089484 WO2016061825A1 (zh) 2014-10-24 2014-10-24 天线系统和处理方法
EP14904228.5A EP3188311A4 (en) 2014-10-24 2014-10-24 Antenna system and processing method
CN201480073601.3A CN105917525A (zh) 2014-10-24 2014-10-24 天线系统和处理方法
US15/495,681 US20170229786A1 (en) 2014-10-24 2017-04-24 Antenna System and Processing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/089484 WO2016061825A1 (zh) 2014-10-24 2014-10-24 天线系统和处理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/495,681 Continuation US20170229786A1 (en) 2014-10-24 2017-04-24 Antenna System and Processing Method

Publications (1)

Publication Number Publication Date
WO2016061825A1 true WO2016061825A1 (zh) 2016-04-28

Family

ID=55760106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089484 WO2016061825A1 (zh) 2014-10-24 2014-10-24 天线系统和处理方法

Country Status (4)

Country Link
US (1) US20170229786A1 (zh)
EP (1) EP3188311A4 (zh)
CN (1) CN105917525A (zh)
WO (1) WO2016061825A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3471202A4 (en) * 2016-07-14 2019-07-03 Huawei Technologies Co., Ltd. DIELECTRIC LENS AND DIVISION ANTENNA

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102486588B1 (ko) * 2017-12-19 2023-01-10 삼성전자 주식회사 렌즈를 포함하는 빔포밍 안테나 모듈
USD863268S1 (en) 2018-05-04 2019-10-15 Scott R. Archer Yagi-uda antenna with triangle loop
EP3758148A1 (en) * 2019-06-25 2020-12-30 Nokia Solutions and Networks Oy An antenna having controlled directivity
CN112563761B (zh) * 2019-09-25 2022-07-22 上海华为技术有限公司 一种天线装置及信号处理方法
CN113206550A (zh) * 2021-05-20 2021-08-03 维沃移动通信有限公司 无线充电设备及充电方法
CN113451787B (zh) * 2021-06-29 2023-04-07 中国电信股份有限公司 天线装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451969A (en) * 1993-03-22 1995-09-19 Raytheon Company Dual polarized dual band antenna
US6320553B1 (en) * 1999-12-14 2001-11-20 Harris Corporation Multiple frequency reflector antenna with multiple feeds
CN103094715A (zh) * 2012-01-13 2013-05-08 京信通信系统(中国)有限公司 天线控制系统和多频共用天线
CN203218457U (zh) * 2013-04-23 2013-09-25 零八一电子集团有限公司 双波段双圆极化共口径反射面天线
CN103594789A (zh) * 2013-11-08 2014-02-19 深圳光启创新技术有限公司 超材料板、透镜天线系统及电磁波透射调节方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649391A (en) * 1984-02-01 1987-03-10 Hughes Aircraft Company Monopulse cavity-backed multipole antenna system
US5001493A (en) * 1989-05-16 1991-03-19 Hughes Aircraft Company Multiband gridded focal plane array antenna
KR100561630B1 (ko) * 2003-12-27 2006-03-20 한국전자통신연구원 성형 반사판을 이용한 삼중 대역 하이브리드 안테나

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451969A (en) * 1993-03-22 1995-09-19 Raytheon Company Dual polarized dual band antenna
US6320553B1 (en) * 1999-12-14 2001-11-20 Harris Corporation Multiple frequency reflector antenna with multiple feeds
CN103094715A (zh) * 2012-01-13 2013-05-08 京信通信系统(中国)有限公司 天线控制系统和多频共用天线
CN203218457U (zh) * 2013-04-23 2013-09-25 零八一电子集团有限公司 双波段双圆极化共口径反射面天线
CN103594789A (zh) * 2013-11-08 2014-02-19 深圳光启创新技术有限公司 超材料板、透镜天线系统及电磁波透射调节方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3188311A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3471202A4 (en) * 2016-07-14 2019-07-03 Huawei Technologies Co., Ltd. DIELECTRIC LENS AND DIVISION ANTENNA
US11139583B2 (en) 2016-07-14 2021-10-05 Huawei Technologies Co., Ltd. Dielectric lens and multi-beam antenna

Also Published As

Publication number Publication date
CN105917525A (zh) 2016-08-31
US20170229786A1 (en) 2017-08-10
EP3188311A1 (en) 2017-07-05
EP3188311A4 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
WO2016061825A1 (zh) 天线系统和处理方法
EP3382800B1 (en) Luneburg lens antenna device
EP2724418B1 (en) Beam shaping of rf feed energy for reflector-based antennas
JP6127067B2 (ja) 二次元マルチビームフォーマ、そのようなマルチビームフォーマを備えるアンテナおよびそのようなアンテナを備える衛星通信システム
US7656358B2 (en) Antenna operable at two frequency bands simultaneously
TW443004B (en) Bual mode switched beam antenna
US7656359B2 (en) Apparatus and method for antenna RF feed
Vashist et al. A review on the development of Rotman lens antenna
US20080117113A1 (en) Integrated waveguide cavity antenna and reflector rf feed
JP2009538561A (ja) 一体型導波管アンテナ及びアレイ
JP2019507357A (ja) 偏波フェーズドアレイレーダシステム及びその動作方法
EP3231037B1 (en) High coverage antenna array and method using grating lobe layers
US12088018B2 (en) 5G dual port beamforming antenna
US6690333B2 (en) Cylindrical ray imaging steered beam array (CRISBA) antenna
US11329388B2 (en) Antenna for transmitting and/or receiving an electromagnetic wave, and system comprising this antenna
CN113851856B (zh) 一种基于四脊波导的宽带高增益金属透镜天线
US10236589B2 (en) Active antenna architecture with reconfigurable hybrid beamforming
WO2016172823A1 (zh) 天线阵列
JP2011010081A (ja) アンテナ装置
KR101859867B1 (ko) 밀리미터파 안테나 장치 및 렌즈를 이용하여 빔을 생성하는 방법
WO2018096307A1 (en) A frequency scanned array antenna
Jokanovic et al. Advanced antennas for next generation wireless access
RU2583869C2 (ru) Планарная линейная фазированная антенная решетка с расширенным сканированием луча
KR102209380B1 (ko) 안테나 어레이의 지향성을 개선하는 rf 렌즈 장치 및 그를 포함하는 송수신 안테나 시스템
Ghate et al. Quasi-optical beamforming approach using vertically oriented dielectric wedges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904228

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014904228

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014904228

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE