WO2016059950A1 - Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy - Google Patents

Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy Download PDF

Info

Publication number
WO2016059950A1
WO2016059950A1 PCT/JP2015/076885 JP2015076885W WO2016059950A1 WO 2016059950 A1 WO2016059950 A1 WO 2016059950A1 JP 2015076885 W JP2015076885 W JP 2015076885W WO 2016059950 A1 WO2016059950 A1 WO 2016059950A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
less
compound
particles
plate
Prior art date
Application number
PCT/JP2015/076885
Other languages
French (fr)
Japanese (ja)
Inventor
大石 幸広
河部 望
宮永 倫正
栄介 弘
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP15851242.6A priority Critical patent/EP3208356B1/en
Priority to CN201580049782.0A priority patent/CN106715736A/en
Priority to US15/506,622 priority patent/US20170283915A1/en
Priority to KR1020177004623A priority patent/KR20170068431A/en
Publication of WO2016059950A1 publication Critical patent/WO2016059950A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a magnesium alloy suitable for a constituent material such as a casing or various parts, a magnesium alloy plate suitable for a material of a secondary processing material (primary processed material) such as a casing or various parts, a casing,
  • the present invention relates to a magnesium alloy member suitable for secondary processing materials such as various parts, and a method for manufacturing a magnesium alloy.
  • the present invention relates to a magnesium alloy, a magnesium alloy plate, and a magnesium alloy member that are excellent in impact resistance, mechanical properties, plastic workability, and productivity.
  • Magnesium alloys that are lightweight and have excellent specific strength and specific rigidity have been used as constituent materials for various parts such as casings for portable electronic and electrical devices such as mobile phones and notebook personal computers and automobile parts.
  • Patent Document 1 discloses a magnesium alloy plate made of a magnesium alloy containing Al and Mn (manganese) and having excellent impact resistance and mechanical properties not only at room temperature but also at low temperature.
  • This magnesium alloy sheet is very fine and contains very little, preferably substantially, a compound containing Al and Mn (mainly crystallized product, hereinafter sometimes referred to as Al-Mn crystallized product). do not do. For this reason, this magnesium alloy sheet is hardly cracked due to coarse Al—Mn crystallized matter, and is excellent in impact resistance and mechanical properties, and also in plastic workability such as press working.
  • magnesium alloy that is excellent in impact resistance, mechanical properties such as strength and proof stress, elongation, and workability of plastic working such as rolling and pressing, and also excellent in productivity.
  • the magnesium alloy sheet disclosed in Patent Document 1 is excellent in impact resistance as described above, the molten metal temperature is raised to 700 ° C. in order to reduce Al—Mn crystallized matter.
  • the Al—Mn crystallized product is theoretically generated or grown most when the temperature of the molten magnesium alloy containing Al and Mn is around 630 ° C., particularly below 630 ° C. . Therefore, by making the temperature of the molten metal sufficiently higher than 630 ° C., preferably over 690 ° C., generation and growth of Al—Mn crystallized substances can be effectively prevented.
  • one of the objects of the present invention is to provide a magnesium alloy that is excellent in impact resistance, mechanical properties, and plastic workability and also in productivity.
  • Another object of the present invention is to provide a magnesium alloy member that is excellent in impact resistance and mechanical properties and also in productivity.
  • the magnesium alloy according to one embodiment of the present invention contains, by mass%, Al 1% or more and 12% or less, Mn 0.1% or more and 5% or less, and a structure in which particles of a compound containing Al and Mn are dispersed.
  • the average particle size of the particles of the compound is 0.3 ⁇ m or more and 1 ⁇ m or less, and the area ratio of the particles of the compound is 3.5% or more and 25% or less.
  • FIG. 4 is a histogram showing the Mn concentration (Mn count number), the frequency of each concentration, and the cumulative frequency created using the composition mapping by FE-EPMA (15 kV) shown in FIG. 3.
  • the left figure shows the composition mapping by FE-EPMA when the acceleration voltage of the electron gun is 5 kV for the cross section of the magnesium alloy plate (sample No. 1-1) of the embodiment, showing the Mn concentration distribution,
  • the figure is a micrograph (backscattered electron image) obtained by observing the same region as the region where composition mapping has been performed with an SEM.
  • 6 is a histogram showing the Mn concentration (Mn count number), the frequency of each concentration, and the cumulative frequency created using the composition mapping by FE-EPMA (5 kV) shown in FIG. 5. It is explanatory drawing explaining the test method of an impact resistance test.
  • a magnesium alloy according to an embodiment of the present invention is composed of mass%, containing 1% to 12% Al, 0.1% to 5% Mn, and particles of a compound containing Al and Mn. Provide a distributed organization.
  • the average particle size of the particles of the compound is 0.3 ⁇ m or more and 1 ⁇ m or less, and the area ratio of the particles of the compound is 3.5% or more and 25% or less.
  • the average particle diameter of the particles of the above compound is measured using an observation image of an optical microscope.
  • the area ratio of the particles of the compound is measured for the cross section of the magnesium alloy using composition mapping by FE-EPMA when the acceleration voltage of the electron gun is 5 kV or 15 kV. Details of the measurement method will be described later.
  • the above-mentioned form is less likely to cause cracks starting from coarse compound particles, and is excellent in impact resistance, mechanical properties such as strength and proof stress, elongation, and plastic workability.
  • the above-described form is less likely to cause cracks starting from coarse crystal grains, and is excellent in impact resistance, mechanical properties such as strength and proof stress, elongation, and plastic workability.
  • a magnesium alloy member according to one aspect of the present invention is made of a magnesium alloy according to any one of the above (1) to (3), and has a plastic working portion at least partially subjected to plastic working. .
  • the magnesium alloy member which is an example of the magnesium alloy, is composed of the magnesium alloy having the specific structure described above, it has excellent mechanical properties such as impact resistance, strength, proof stress, and elongation. Excellent productivity.
  • the magnesium alloy member is also excellent in productivity from the viewpoint that cracks and the like are not easily generated when plastic working such as press working is performed.
  • a method for producing a magnesium alloy according to an embodiment of the present invention is a method of continuously casting a molten magnesium alloy containing 1% to 12% Al and 0.1% to 5% Mn by mass%. A process is provided. In this manufacturing method, the temperature of the molten metal immediately before contacting the mold is set to 630 ° C. or higher and 690 ° C. or lower, and the cooling rate of the molten metal is set to 560 ° C./second or higher.
  • the magnesium alloy production method described above can produce a magnesium alloy having excellent strength and corrosion resistance by using a molten magnesium alloy containing Al and Mn in a specific range.
  • the temperature of the molten metal is made lower than before, and the cooling rate is very high while maintaining a temperature at which a compound containing Al and Mn (Al-Mn crystallized product) is easily generated. By making it faster, the time during which the material in the solidification process is held at around 630 ° C. can be shortened.
  • the above-mentioned magnesium alloy manufacturing method has improved mechanical properties such as strength and proof strength and impact resistance by dispersion strengthening of Al-Mn crystallized particles, which are usually harder than the parent phase magnesium alloy. Excellent magnesium alloy can be manufactured.
  • the magnesium alloy production method described above can make Al—Mn crystallized particles fine, and the fine particles are unlikely to become the starting point of cracking, etc., it has improved toughness such as elongation, impact resistance, and plastic workability. Excellent magnesium alloy can be produced.
  • the magnesium alloy of the embodiment is characterized by having a composition containing at least both Al and Mn as additive elements. If a specific amount of a compound (Al—Mn crystallized product) containing Al and Mn having a specific size can be generated in the manufacturing process, it may contain a second additive element described later in addition to the composition containing Al and Mn. it can. In any composition, the balance is Mg and inevitable impurities, and the Mg content is more than 50%.
  • ⁇ Al content is 1% or more and 12% or less.
  • mechanical properties such as strength and corrosion resistance are particularly excellent.
  • the more the Al content is in the above range the better the strength and corrosion resistance. Therefore, the Al content can be 3% or more, 5% or more, 5.5% or more, or 7% or more.
  • a magnesium alloy having an Al content of not less than 8.3% and not more than 9.5%, for example, an ASTM standard AZ91 alloy is compared with a magnesium alloy having an Al content of about 3%, for example, an ASTM standard AZ31 alloy. Therefore, it is further excellent in mechanical properties and corrosion resistance.
  • the Al content tends to be easier to perform plastic working such as bending as the content is smaller in the above range, and can be 7% or less, and further 4% or less.
  • Examples of the Al content that is excellent in balance between strength and workability include 5.5% to 12%.
  • a part of Al in the alloy typically exists as a compound such as a compound containing Al and Mn, an intermetallic compound such as a compound containing Al and Mg, and the other part exists as a solid solution in Mg. .
  • Mn content is 0.1% or more and 5% or less. By containing Mn in this range, the corrosion resistance is excellent.
  • the Mn content can be set to 0.15% or more because the corrosion resistance increases as the content increases in the above range. As the Mn content increases, a compound containing Al and Mn is more likely to be produced, or it is easier to grow, so that the solid solution amount of Al is reduced or coarse compound particles are likely to exist. 2% or less, 1.5% or less, and further 1% or less. If the Mn content is 0.2% or more and 0.5% or less, it is expected that the excessive production and growth of the compound can be effectively suppressed.
  • Sr is 0.2% to 7.0%
  • Y is 1.0% to 6.0%
  • Ag is 0.5% to 3.0%
  • Sn is 0.01% or more and 2.0% or less
  • Zr is 0.1% or more and 1.0% or less
  • Ce is 0.05% or more and 1.0% or less
  • rare earth elements are 1.0%. % Or less and 3.5% or less.
  • the element group can contain only one element or a combination of two or more elements.
  • mechanical properties such as strength and elongation (for example, Zn, Zr, etc.), high temperature strength and creep resistance (for example, Si, rare earth elements, Ag, etc.), flame retardancy (for example, , Ca, etc.) and the like are excellent, and effects such as refinement of crystals and suppression of hot cracking (eg, Zr) can be achieved.
  • Al and Mn are contained in the specific range described above, and in particular, the specific size including Al and Mn is manufactured under the specific manufacturing conditions described later. And a magnesium alloy in which particles of these compounds are uniformly dispersed.
  • AM-based alloys AM60 alloy, AM100 alloy, etc.
  • ASTM standards -ASTM standard AZ alloys AZ61 alloy, AZ80 alloy, AZ81 alloy, AZ91 alloy, etc.
  • composition of Compound Examples of the compound containing Al and Mn include an intermetallic compound containing only Al and Mn, and an intermetallic compound further containing iron (Fe) in addition to Al and Mn. Fe contained in the latter intermetallic compound is an inevitable impurity.
  • the composition of these compounds can be confirmed by performing component analysis by, for example, energy dispersive X-ray analysis (EDX) or Auger electron spectroscopy (AES).
  • EDX energy dispersive X-ray analysis
  • AES Auger electron spectroscopy
  • a compound containing Al and Mn exists as particles in the matrix of the magnesium alloy of the embodiment.
  • the average particle size of the particles of this compound is 0.3 ⁇ m or more and 1 ⁇ m or less. When the average particle diameter is within this range, the compound particles function well as a structure-strengthening dispersion material and are unlikely to become a starting point of cracking, and are excellent in impact resistance, mechanical properties, and plastic workability.
  • the average particle diameter can be 0.3 ⁇ m or more and 0.9 ⁇ m or less, and further 0.35 ⁇ m or more and 0.8 ⁇ m or less.
  • the maximum diameter of the compound containing Al and Mn is preferably less than 2.5 ⁇ m. Due to the absence of coarse particles of 2.5 ⁇ m or more, cracks and the like starting from such coarse particles are unlikely to occur, and the deterioration of impact resistance, mechanical properties, and plastic workability caused by these coarse particles can be suppressed. . Moreover, the fall of content of the fine grain by presence of the said coarse grain can be suppressed, and a fine grain can be included appropriately. From these things, it can be set as the magnesium alloy excellent in impact resistance, mechanical characteristics, and plastic workability. The smaller the compound is, the smaller the coarse particles that become the starting point of cracks and the like, and the fine particles tend to be appropriately present.
  • the maximum diameter is 2 ⁇ m or less, further 1.5 ⁇ m or less, 1.2 ⁇ m or less, further 1 ⁇ m or less Is preferred.
  • the average particle diameter of the compound is in the above-mentioned range and the maximum diameter of the compound is less than 2.5 ⁇ m, preferably 2 ⁇ m or less, the variation in the size of the compound is small and it can be said that the compound has a uniform size. Therefore, this form can also suppress variation in characteristics due to variation in size of the compound, and can have favorable characteristics.
  • the content of the compound containing Al and Mn takes a cross section of the magnesium alloy and is defined by the area ratio of the compound in the cross section, and is 3.5% or more and 25% or less.
  • the area ratio is 3.5% or more, the compound is sufficiently present in the magnesium alloy, and the dispersion strengthening effect by the particles of the compound can be favorably obtained.
  • the area ratio is 25% or less, the above-described compound is appropriately present, and the brittleness of the alloy due to the presence of the above-described compound is suppressed, and the corrosion resistance is decreased due to the decrease in the amount of Al solid solution. Excellent in impact resistance, mechanical properties, and plastic workability.
  • the area ratio is measured as follows. A cross section of the magnesium alloy is taken, and the following observation visual field (for example, a square region of 195 ⁇ m ⁇ 195 ⁇ m) is taken from this cross section, and composition mapping by FE-EPMA is performed on this observation visual field to obtain a concentration distribution of Mn. Then, it is estimated that Mn in the observation field substantially exists as a compound containing Al and Mn, and the area ratio of Mn with respect to the observation field is regarded as the area ratio of the compound containing Al and Mn. That is, the area ratio of the compound is determined using the concentration distribution of Mn by the composition mapping. A specific calculation method will be described later.
  • the observation field of view is selected from the surface layer region, which is a region up to 30% of the thickness of the magnesium alloy from the surface of the magnesium alloy to the inside.
  • the reason for selecting the observation visual field from the surface layer region is that a region where a crack or the like occurs or a region which receives an impact such as a drop directly is usually considered to be the surface layer region.
  • the Mn concentration distribution changes depending on the acceleration voltage of the electron gun used for FE-EPMA, and the greater the acceleration voltage, the larger the amount of information to be acquired, and the higher the Mn concentration (level). That is, the size of the area ratio can be changed depending on the size of the acceleration voltage. Therefore, in measuring the area ratio, the acceleration voltage of the electron gun is set to 15 kV or less. For example, when the electron gun acceleration voltage is 15 kV and the composition mapping is performed by FE-EPMA on the observation field of the cross section, the area ratio is 9.5% or more, more preferably 10% or more and 25% or less, and 15% or more and 24%. % Or less.
  • a form having a fine crystal structure may be mentioned.
  • a structure satisfying an average crystal grain size of 10 ⁇ m or less can be given. If the average crystal grain size is 10 ⁇ m or less, coarse crystal grains are substantially absent, and cracks due to coarse crystal grains can be reduced. Accordingly, this form is superior in impact resistance, mechanical properties such as strength and elongation, and plastic workability.
  • the smaller the crystal grain the more effectively the cracks caused by the coarse crystal grain can be reduced.
  • the average crystal grain size can be 6 ⁇ m or less, particularly 4 ⁇ m or less.
  • the lower limit of the average crystal grain size is, for example, 2 ⁇ m, and further 1 ⁇ m.
  • typical examples of the magnesium alloy having a fine crystal structure include a rolled plate and a pressed material obtained by pressing the rolled plate.
  • the cooling rate in the casting process is increased (560 ° C./second or more, further 600 ° C./second or more) or the second additive element described above is included, it is expected that the crystal grain size can be made finer. Is done.
  • the secondary processed material has a form (for example, a press-worked material having a curved portion) in which only a part of the material is subjected to plastic working, and a form in which plastic working is performed over the entire material (for example, a processed material bent into a cylindrical shape or the like.
  • a plate material (a magnesium alloy plate of the embodiment) provided with a pair of parallel one surface and the other surface may be mentioned.
  • the one surface and the other surface are typically flat surfaces, but can be curved by applying a process such as bending.
  • the planar shape of the plate material is typically a rectangular shape, but can be circular or other shapes by punching or the like.
  • the plate material is distinguished from the above manufacturing process, (1) cast material, (2) primary processed material (rolled plate, etc.), (3) treated material, (4) secondary processed material, (5) surface treated material. Either of these can be taken.
  • Specific examples of the shape of the secondary processed material include a cross-sectional member (a member having a plate portion) including a bottom surface portion and a side wall portion erected from the bottom surface portion.
  • the magnesium alloy of the embodiment is a plate material (magnesium alloy plate of the embodiment), or a member (magnesium alloy member of the embodiment) in which plastic working such as pressing is performed on at least a part of the plate material
  • the form whose thickness is 5 mm or less is mentioned.
  • the thickness of the plate means the average distance between the one surface and the other surface.
  • plastic working such as rolling
  • the thickness is likely to be uniform throughout, and the thickness is further reduced. Easy to do.
  • the form whose thickness is about 3 mm or less and also 2.5 mm or less is mentioned. The thicker the plate, the better the strength and rigidity.
  • the thickness of the plate material is thinner (preferably 2 mm or less, further 1.5 mm or less, and further 1.2 mm or less), a thin and light primary processed material or secondary processed material can be obtained.
  • the lower limit of the thickness of the plate material is 0.1 mm or more, and further 0.3 mm or more.
  • the thickness of the finally obtained plate material may be selected by adjusting casting conditions, rolling conditions, and the like according to the desired application.
  • a form having a portion having a different thickness for example, a form having a through-hole, a form having a groove or a protrusion.
  • the magnesium alloy of the embodiment is difficult to dent when subjected to impact such as dropping. For example, when the impact resistance test described later is performed, the amount of dents is small and satisfies less than 0.63 mm. When the magnesium alloy of the embodiment has undergone plastic working such as rolling as described above, that is, when it is a primary work material or a secondary work material, the amount of dent is further reduced to 0.6 mm or less, and further to 0.55 mm. Satisfies the following:
  • the method for producing a magnesium alloy according to the embodiment includes a specific casting step in order to form a structure having a specific size and a specific amount of a compound having a specific composition called a compound containing Al and Mn.
  • This casting process has three conditions: (1) continuous casting, (2) a relatively low temperature of the molten metal, and (3) a very high cooling rate of the molten metal. .
  • the casting process will be described in detail, and then the processes after casting will be described.
  • a molten magnesium alloy having a specific composition containing Al and Mn in the specific range described above is prepared and continuous casting is performed.
  • Continuous casting is capable of rapid solidification, which can reduce oxides, segregation, etc., easily reduce the formation of coarse crystals, and control the compound containing Al and Mn to the specific size described above. easy.
  • Specific examples of the continuous casting method include a twin roll method.
  • the twin roll method is suitable for the production of cast plates. In the twin roll method, the cooling rate is reduced by reducing the thickness of the cast plate (preferably 5 mm or less), lowering the roll temperature (preferably 100 ° C. or less), adjusting the material of the roll, etc. Speeded up.
  • the temperature of the molten metal immediately before coming into contact with the mold is 630 ° C. or higher and 690 ° C. or lower.
  • the reason for defining the lower limit is that when the temperature of the molten metal is lower than 630 ° C., a compound containing Al and Mn is very easily generated.
  • the reason for defining the upper limit is that if the temperature exceeds 690 ° C., the molten metal temperature is too high, leading to a decrease in productivity.
  • the temperature of the molten metal is preferably as low as possible, preferably 685 ° C. or lower, more preferably 680 ° C. or lower, and further 675 ° C. or lower.
  • the temperature of the molten metal is 635 ° C. or higher, further 640 ° C. or higher, and further 645 ° C. or higher, excessive formation and coarsening of the compound can be easily suppressed, and the content and size of the compound can be easily controlled. From this point, productivity is expected to be improved. Since the melting temperature tends to increase as the Al content decreases, the temperature of the molten metal is adjusted within the above range according to the composition.
  • the above-mentioned relatively low-temperature molten metal is rapidly cooled at a cooling rate of 560 ° C./second or more.
  • a cooling rate of 560 ° C./second or more.
  • the cooling rate can be 600 ° C./second or more, 620 ° C./second or more, and further 650 ° C./second or more.
  • the cast material obtained by performing such rapid solidification has a dispersion strengthened structure in which at least the surface layer region is uniformly dispersed with the above-mentioned compound having the above-mentioned specific size, and the crystal has a fine structure. .
  • the cooling rate is calculated using DAS (dendrite arm spacing).
  • DAS dexedrite arm spacing
  • V ° C./second
  • d ⁇ ⁇ V ⁇
  • Examples of methods for realizing a cooling rate of 560 ° C./second or more include the following. (1) Lower the surface temperature of the mold (for example, 100 ° C. or lower, and further 80 ° C. or lower). For example, by using a mold capable of forced cooling such as water cooling, the surface temperature of the mold can be kept low. (2) Reduce the size of the cast material. For example, in a cast plate, the thickness is 5 mm or less, further 4.5 mm or less, and further 4 mm or less. (3) A mold made of a material having a high cooling capacity is used. For example, if a mold made of a material having high thermal conductivity is used, the cooling rate can be increased because of excellent heat dissipation.
  • the casting process (including the cooling process) is preferably performed in an inert gas atmosphere in order to prevent oxidation of the magnesium alloy.
  • the magnesium alloy of the embodiment is used as a rolled material (typically a rolled plate)
  • the above-mentioned cast material (typically a cast plate) is subjected to a rolling process of at least one pass.
  • a rolling process of at least one pass.
  • At least one pass is preferably warm rolling at a rolling temperature of 200 ° C. or higher and 400 ° C. or lower.
  • the number of passes in the rolling process, the rolling reduction per pass, the total rolling reduction, and the like can be appropriately selected so as to obtain a rolled sheet having a desired thickness.
  • a rolled structure typically a recrystallized structure
  • a fine structure with an average crystal grain size of 20 ⁇ m or less, more preferably 10 ⁇ m or less is easily obtained, (2) internal defects such as segregation, shrinkage nests and voids (pores) during casting, surface It is also possible to expect the effect that excellent surface properties can be obtained by reducing defects and the like, and (3) the strength and corrosion resistance can be further improved by forming a fine recrystallized structure.
  • a rolled sheet that has undergone such a rolling process has at least a surface region having a finer crystal structure and the above-mentioned specific size, and a compound containing Al and Mn is uniformly dispersed. Has a dispersion strengthened organization.
  • After the rolling step it can be provided with a step of performing at least one additional processing such as the above-described polishing, correction, anticorrosion treatment, painting, decoration processing, heat treatment for distortion removal and the like.
  • Specific plastic processing includes press processing (deep drawing processing, punching processing, upsetting, etc.), forging processing, bending processing, and the like. If this plastic working is warm working at a working temperature of 200 ° C. or higher and 280 ° C. or lower, the plastic workability of the material (typically, the rolled sheet) is improved and the plastic working (secondary work) can be performed with high accuracy. It is preferable. Moreover, when it is set as warm processing, it can reduce that a structure
  • -AZ91 shown in Table 1 is a magnesium alloy containing Al, Mn, Zn corresponding to ASTM standard AZ91 alloy. Here, 9.1% of Al, 0.16% of Mn, and 0.72% of Zn are contained.
  • AZX911 shown in Table 1 is a magnesium alloy containing Al, Mn, Zn corresponding to ASTM standard AZ91 alloy and further containing Ca. Here, 9.0% Al, 0.16% Mn, 0.74% Zn, and 1.0% Ca are included.
  • -AZ61 shown in Table 1 is a magnesium alloy containing Al, Mn, Zn corresponding to ASTM standard AZ61 alloy. Here, 6.1% Al, 0.22% Mn, and 0.70% Zn are included.
  • -AM60 shown in Table 1 is a magnesium alloy containing Al and Mn corresponding to ASTM standard AM60 alloy. Here, 6.2% Al and 0.20% Mn are included.
  • magnesium alloy plate magnesium alloy plate
  • rolled plate magnesium alloy plate
  • pressed material magnesium alloy member
  • Table 1 shows the temperature of the molten metal immediately before contact with the mold (hereinafter referred to as hot water temperature, ° C.).
  • the temperature of the molten metal in the transfer unit is referred to as the “hot water temperature”.
  • the temperature of the molten metal in the transfer section is the set temperature of the equipment. This molten metal is brought into contact with a mold (roll) and solidified to produce a cast plate having a thickness of 5.0 mm.
  • Table 1 shows the cooling rate (° C./sec) in the casting process.
  • Sample No. 1-1-No. 1-5, No. 1 In 1-101, casting is performed using a water-cooled mold while cooling the roll so that the roll temperature is 100 ° C. or lower.
  • Each of the obtained cast plates is subjected to multiple passes of warm rolling to produce a rolled plate having a thickness of 0.7 mm.
  • the conditions for warm rolling are a rolling temperature of 200 ° C. or more and 400 ° C. or less, a rolling reduction per pass of 5% or more and 20% or less, and a total rolling reduction of 86%.
  • Each obtained rolled plate is cut into 200 mm ⁇ 30 mm to be used as a press material.
  • This material is subjected to press processing (square drawing), and includes a top plate portion and leg portions extending from the top plate portion.
  • a shaped press-work material is produced.
  • the pressing conditions are a heating temperature of 250 ° C. and an angle R connecting the top plate and the leg is 2 mm.
  • the cast plate after continuous casting is subjected to a heat treatment (solution treatment) or an aging treatment for homogenizing the composition, an intermediate heat treatment during the rolling, or a final heat treatment after the final rolling.
  • a heat treatment solution treatment
  • an aging treatment for homogenizing the composition
  • an intermediate heat treatment during the rolling or a final heat treatment after the final rolling.
  • the flatness can be improved by correcting the rolled plate, or the surface can be smoothed by polishing.
  • a section (longitudinal section) is taken by cutting along a plane parallel to the thickness direction of the rolled sheet.
  • This cross section is a CP cross section performed using a commercially available cross section polisher (CP) processing apparatus.
  • CP cross section polisher
  • FIG. 2 shows a backscattered electron image obtained by observing a selected observation field with an SEM.
  • the rolled plate 1-1 has a relatively small amount of a compound containing Al and Mn (Al—Mn crystallized product), but it is present in a certain amount and is uniformly dispersed. I understand.
  • Sample No. 1-2 to No. The rolled plate of 1-5 is also sample no.
  • Sample No. The rolled sheet of 1-101 has very little compound containing Al and Mn (Al-Mn crystallized product).
  • Sample No. The rolled plate of 1-201 has very few compounds containing Al and Mn, but has coarse particles.
  • the average crystal grain size was measured using the observation image of an optical microscope with respect to the rolling plate of each obtained sample. The results are shown in Table 1.
  • the measurement of the average crystal grain size was performed based on “steel—microscopic test method of crystal grain size JIS G 0551 (2005), cutting method using linear test line”. When a straight line was drawn in the observed image in parallel with the thickness direction of the rolled plate and the line segment that cuts the straight line in the crystal grain was examined as the grain size, Sample No. 1-1-No.
  • the average crystal grain size of the 1-5 rolled sheet is 10 ⁇ m or less. From this, sample no. 1-1-No. It can be seen that all the 1-5 rolled sheets have fine crystal grains.
  • the average particle diameter ( ⁇ m) and maximum diameter ( ⁇ m) of the extracted Al—Mn crystallized particles were examined.
  • the results are shown in Table 1.
  • the particle diameter of the Al—Mn crystallized product is the diameter of all particles present in the observation field (here, a 195 ⁇ m ⁇ 195 ⁇ m square region selected from the above-mentioned surface layer region), where the equivalent circle of the extracted particles is the diameter. Is the average particle size of the Al—Mn crystallized product. Further, among all the above-mentioned particle diameters, the largest value is the maximum diameter of the Al—Mn crystallized product.
  • composition mapping by FE-EPMA was created for the observation visual field selected from the CP cross section described above, and the Mn concentration distribution was examined.
  • concentration of Mn was analyzed under two conditions with different acceleration voltages of the electron gun. The conditions are shown below.
  • FIG. FIG. 5 is a composition mapping of Mn by FE-EPMA when the condition (1) with an acceleration voltage of 15 kV is used for the rolled sheet of 1-1.
  • the color scale is shown on the right side of FIG.
  • This composition mapping expresses the density of Mn by white, pink, red, orange, yellow, green, light blue, blue, black, and the closer the color is to white, the higher the Mn concentration. The closer the color is to black, the lower the Mn concentration.
  • the Mn level at the point showing the highest concentration of Mn is set to 135, the Mn level at the point not containing Mn is set to 0, and the Mn concentration at each point is expressed as a relative value with respect to the highest concentration, that is, Level: 135. .
  • the ratio of each Level is shown as an area ratio (AreaA%).
  • AreaA% area ratio
  • the composition mapping of FIG. 3 it can be seen that there are many regions in which a red to blue color is solidified in a black background.
  • the red to blue granular regions shown in the composition mapping are included in the compound containing Al and Mn (Al—Mn crystallized product). From this, sample no. It is considered that Mn in the 1-1 rolled sheet exists as an Al-Mn crystallized product. Therefore, here, all Mn is treated as existing as a compound with Al.
  • FIG. 4 is a graph showing the frequency and cumulative frequency of each level (Mn count number) of Mn created using the Mn composition mapping (15 kV) shown in FIG.
  • the horizontal axis indicates the level of Mn (0 to 135; up to 110 is displayed in FIG. 4)
  • the left vertical axis indicates the frequency of each level of Mn
  • the right vertical axis indicates the accumulation of each level of Mn. Indicates the frequency (%).
  • the cumulative frequency can be said to be equivalent to the area ratio (Area%) of each level of Mn.
  • S Level is taken, S Level ⁇ 10, and it can be seen that the Mn concentration is very low as a whole.
  • the left figure in FIG. 1-1 is Mn composition mapping by FE-EPMA when the condition (2) with an acceleration voltage of 5 kV is used for the rolled plate 1-1, and the right figure shows an SEM image (reflection electron image) in the same observation field. Show.
  • the composition mapping of FIG. 5 also shows the Mn concentration by color as in FIG.
  • the Mn Level at the point showing the highest concentration of Mn is 55
  • the Mn Level at the point not containing Mn is 0, and the presence ratio of each Level is shown as an area ratio (Area%).
  • the information amount of Mn collected is smaller than that in the condition (1).
  • the density of Mn can be grasped, and that red to blue are solidified in the same manner as the composition mapping of FIG.
  • the existence position of the red to blue granular region shown in the composition mapping in the left diagram of FIG. 5 is compared with the existence position of the white particle shown in the SEM image (reflection electron image) in the right diagram of FIG. It can be said that the red to blue granular region shown in the composition mapping is a compound containing Al and Mn (Al-Mn crystallized product).
  • the top plate portion to which bending or the like is not substantially given is observed in the same manner as the rolled plate.
  • the crystal structure is as fine as the rolled plate. It had a structure in which a compound containing Al and Mn (Al-Mn crystallized product) was dispersed.
  • the average crystal grain size of the top plate part, the average grain size, the maximum diameter, and the area ratio of the above compound are the same values as those of the rolled plate, and can be said to substantially have a rolled plate structure. .
  • the central axis of the circular hole 21 is coaxial.
  • the cylindrical bar 10 is freely dropped from the arrangement point (height 200 mm) toward the test piece 1, and then the dent amount of the test piece 1 is measured.
  • the dent amount (mm) was a straight line connecting both opposing sides of the test piece 1, and the distance from this straight line to the most recessed part was measured using a point micrometer. The results are shown in Table 2.
  • sample No. 1-1-No. As shown in Table 1, the average particle diameter of the particles of the compound containing Al and Mn is 0.3 ⁇ m or more and 1 ⁇ m or less, and the area ratio of the particles of the compound is 3.5% or more and 25 or more in the FE-EPMA analysis.
  • % of sample No. 1-1-No. In each of samples 1-5, sample Nos. It has the same strength, proof stress, elongation, and plastic workability as 1-101, and it has high strength, high toughness and excellent plastic workability regardless of the composition. In this test, sample no. 1-1-No. 1-5 has a tensile strength of 300 MPa or more, a 0.2% proof stress of 230 MPa or more, and a breaking elongation of more than 6%. Such sample No.
  • sample no. 1-1-No. The following can be seen for 1-5.
  • the maximum diameter of the compound is 1.2 ⁇ m or less. From this, it is thought that the crack etc. which originated from the said compound were able to be suppressed more effectively.
  • the crystal is also fine, and the average crystal grain size is 10 ⁇ m or less. From this fact, it is considered that the impact resistance, mechanical properties, and plastic workability are excellent because cracks and the like starting from coarse crystal grains can be effectively suppressed.
  • the temperature of the molten metal is low, so that thermal deterioration of the equipment can be suppressed. From this, it can be said that productivity is also excellent.
  • the sample No. 1-1-No. Sample No. 1-5 when the acceleration voltage of the electron gun was 5 kV or 15 kV, the sample No. 1-1-No. Sample No. 1-5 It can be seen that the area ratio is higher than those of 1-101 and 1-201, and a compound containing Al and Mn is sufficiently present. In this test, the sample No. 1-1-No. Sample No. 1-5 having an area ratio of 5% or more and less than 3.5%. It is higher than 1-101, 1-201. In this test, the sample No. 1-1-No. Sample No. 1-5 having an area ratio of 10% or more and 9.4% or less. It is higher than 1-101, 1-201.
  • such a magnesium alloy excellent in impact resistance, mechanical properties, plastic workability, and productivity is compared with the temperature of the molten metal immediately before contacting the mold as described above between 630 ° C. and 690 ° C. It can be seen that it can be produced by lowering the cooling rate of the molten metal and quenching the molten metal at 560 ° C./second or more. Also, from this test, by adjusting the temperature and cooling rate of the molten metal within the above range, even if the composition is changed, the compound containing Al and Mn satisfies the above specific amount and the specific average particle size. It can be seen that a magnesium alloy having impact resistance, mechanical properties, and plastic workability can be produced with high productivity.
  • the sample No. 1-201 is Sample No. It can be seen that although there are few compounds containing Al and Mn compared to 1-1, there are coarse particles (2.5 ⁇ m or more in this case). In addition, this sample No. 1-201 is a sample No. 1 having the same composition. It can be seen that the impact resistance, mechanical properties, and plastic workability are inferior to those of 1-1. The reason for this result is considered to be that the time during which the above compound is maintained at around 630 ° C., which is a temperature range in which the compound is easily generated and grown, is increased. In addition, the coarse particles of the above-mentioned grown compounds may become the starting point of cracking, and the dispersion strengthening effect due to fine compounds may be insufficient, resulting in impact resistance, mechanical properties, plastic workability. Is thought to have decreased.
  • sample no. In 1-101 it can be seen that the compound containing Al and Mn is extremely reduced by increasing the temperature of the molten metal and increasing the cooling rate.
  • Sample No. 1-101 is a sample No. 1 having the same composition. Compared with 1-1, it is particularly inferior in impact resistance. The reason for this is considered that the dispersion strengthening by the fine compound was insufficient.
  • the present invention is not limited to the above-described examples, but is defined by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
  • the composition type of additive element, content
  • the shape, size thickness, length, width, etc.
  • manufacturing conditions in the casting conditions, the specifications of the mold, the mold The temperature, the hot water temperature, the cooling rate, the thickness of the cast plate, etc.
  • the magnesium alloy and magnesium alloy plate of the present invention can be suitably used as a material for plastic working members (magnesium alloy members) subjected to various plastic workings such as press working, bending and forging.
  • this magnesium alloy plate is a member that is desired to have characteristics such as light weight, thinness, high strength, vibration damping, such as various electronic / electrical devices (personal computer (PC), tablet PC, smartphone, folding type). It can be suitably used for materials such as casings of mobile phones such as mobile phones, digital cameras, etc., exterior members such as covers, components of transportation equipment such as automobiles and aircraft, skeleton members, bags, and various protective cases.
  • the magnesium alloy and magnesium alloy member of the present invention can be suitably used for, for example, exterior members such as the above-described casing, constituent members of the above transportation equipment, skeleton members, bags, protective cases, and the like.
  • the manufacturing method of the magnesium alloy of this invention can be utilized suitably for manufacture of magnesium alloys, such as the said magnesium alloy plate and the said magnesium alloy member.
  • Test piece 10 Cylindrical rod 20 Support stand 21 Circular hole

Abstract

A magnesium alloy which contains, in mass%, from 1% to 12% (inclusive) of Al and from 0.1% to 5% (inclusive) of Mn, and which is provided with a structure wherein particles of a compound containing Al and Mn are dispersed. The average particle diameter of the particles of the compound is from 0.3 μm to 1 μm (inclusive), and the area ratio of the particles of the compound is from 3.5% to 25% (inclusive).

Description

マグネシウム合金、マグネシウム合金板、マグネシウム合金部材、及びマグネシウム合金の製造方法Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy
  本発明は、筐体や各種の部品などの構成材料に適したマグネシウム合金、筐体や各種の部品などの2次加工材の素材(1次加工材)に適したマグネシウム合金板、筐体や各種の部品などの2次加工材に適したマグネシウム合金部材、及びマグネシウム合金の製造方法に関する。特に、耐衝撃性、機械的特性、塑性加工性に優れる上に生産性にも優れるマグネシウム合金、マグネシウム合金板、マグネシウム合金部材に関するものである。 The present invention relates to a magnesium alloy suitable for a constituent material such as a casing or various parts, a magnesium alloy plate suitable for a material of a secondary processing material (primary processed material) such as a casing or various parts, a casing, The present invention relates to a magnesium alloy member suitable for secondary processing materials such as various parts, and a method for manufacturing a magnesium alloy. In particular, the present invention relates to a magnesium alloy, a magnesium alloy plate, and a magnesium alloy member that are excellent in impact resistance, mechanical properties, plastic workability, and productivity.
  軽量で比強度、比剛性に優れるマグネシウム合金が、携帯電話やノート型パーソナルコンピュータといった携帯用電子・電気機器類の筐体や自動車部品などの各種の部品の構成材料に利用されてきている。 Magnesium alloys that are lightweight and have excellent specific strength and specific rigidity have been used as constituent materials for various parts such as casings for portable electronic and electrical devices such as mobile phones and notebook personal computers and automobile parts.
  マグネシウム合金は、金属のなかでも軽量で比強度が高く、優れた衝撃吸収性を有する上に、活性なMg(マグネシウム)に種々の元素が添加されていることで耐食性にも優れており、上記各種の部品の構成材料に好ましい。特に、Al(アルミニウム)を含有するMg-Al系合金は、マグネシウム合金のなかでも強度及び耐食性に優れており、上記構成材料に好ましい。 Magnesium alloy is light and high in specific strength among metals, has excellent shock absorption, and has excellent corrosion resistance by adding various elements to active Mg (magnesium). It is preferable for the constituent materials of various parts. In particular, an Mg—Al-based alloy containing Al (aluminum) is excellent in strength and corrosion resistance among magnesium alloys, and is preferable for the above constituent materials.
  特許文献1は、AlとMn(マンガン)とを含有するマグネシウム合金からなり、常温だけでなく低温でも耐衝撃性、機械的特性に優れるマグネシウム合金板を開示している。
このマグネシウム合金板は、AlとMnとを含む化合物(主として晶出物。以下、Al-Mn晶出物と呼ぶことがある。)が非常に微細でかつ非常に少なく、好ましくは実質的に存在しない。そのため、このマグネシウム合金板は、粗大なAl-Mn晶出物に起因する割れなどが生じ難く、耐衝撃性、機械的特性に優れる上に、プレス加工などの塑性加工性にも優れる。
Patent Document 1 discloses a magnesium alloy plate made of a magnesium alloy containing Al and Mn (manganese) and having excellent impact resistance and mechanical properties not only at room temperature but also at low temperature.
This magnesium alloy sheet is very fine and contains very little, preferably substantially, a compound containing Al and Mn (mainly crystallized product, hereinafter sometimes referred to as Al-Mn crystallized product). do not do. For this reason, this magnesium alloy sheet is hardly cracked due to coarse Al—Mn crystallized matter, and is excellent in impact resistance and mechanical properties, and also in plastic workability such as press working.
特開2011-006754号公報JP 2011-006754 A
  耐衝撃性、強度や耐力、伸びといった機械的特性、圧延やプレス加工といった塑性加工の加工性に優れるマグネシウム合金であって、生産性にも優れるマグネシウム合金の開発が望まれている。 マ グ ネ シ ウ ム It is desired to develop a magnesium alloy that is excellent in impact resistance, mechanical properties such as strength and proof stress, elongation, and workability of plastic working such as rolling and pressing, and also excellent in productivity.
  特許文献1に開示されるマグネシウム合金板は、上述のように耐衝撃性などに優れるものの、Al-Mn晶出物を低減するために、溶湯温度を700℃と高めにしている。ここで、Al-Mn晶出物は、理論上、AlとMnとを含むマグネシウム合金の溶湯の温度が630℃近傍、特に630℃を下回る温度である場合に最も生成したり、成長したりする。そのため、上記溶湯の温度を630℃よりも十分に高くすることで、好ましくは690℃超とすることで、Al-Mn晶出物の生成及び成長を効果的に防止できる。しかし、溶湯の温度を高くすると、(α)溶湯が酸化され易くなり、酸化物の生成や混入による歩留まりの低下を招く、(β)酸化防止のために雰囲気を高真空などとすると、Mgは蒸気圧が高いために溶湯が取り扱い難くなり、作業性の低下を招く、(γ)溶湯を高温に維持するためのエネルギーが多くなる、(δ)溶湯が高温であることによる設備の熱劣化が早まる、などの点から、生産性を向上することが難しい。また、上記(α)~(δ)の点は、コストの増大をも招き得る。 Although the magnesium alloy sheet disclosed in Patent Document 1 is excellent in impact resistance as described above, the molten metal temperature is raised to 700 ° C. in order to reduce Al—Mn crystallized matter. Here, the Al—Mn crystallized product is theoretically generated or grown most when the temperature of the molten magnesium alloy containing Al and Mn is around 630 ° C., particularly below 630 ° C. . Therefore, by making the temperature of the molten metal sufficiently higher than 630 ° C., preferably over 690 ° C., generation and growth of Al—Mn crystallized substances can be effectively prevented. However, when the temperature of the molten metal is increased, (α) the molten metal is likely to be oxidized, resulting in a decrease in yield due to the formation and mixing of oxides. (Β) When the atmosphere is set to a high vacuum to prevent oxidation, Mg becomes High vapor pressure makes it difficult to handle the molten metal, resulting in reduced workability. (Γ) Increases energy to maintain the molten metal at a high temperature. (Δ) Thermal degradation of equipment due to the high temperature of the molten metal. It is difficult to improve productivity from the viewpoint of speed. In addition, the points (α) to (δ) may increase the cost.
  そこで、本発明の目的の一つは、耐衝撃性、機械的特性、塑性加工性に優れる上に、生産性にも優れるマグネシウム合金を提供することにある。 Therefore, one of the objects of the present invention is to provide a magnesium alloy that is excellent in impact resistance, mechanical properties, and plastic workability and also in productivity.
  本発明の他の目的は、耐衝撃性、機械的特性、塑性加工性に優れる上に、生産性にも優れるマグネシウム合金板を提供することにある。 Another object of the present invention is to provide a magnesium alloy sheet that is excellent in impact resistance, mechanical properties, and plastic workability, and also in productivity.
  本発明の他の目的は、耐衝撃性、機械的特性に優れる上に、生産性にも優れるマグネシウム合金部材を提供することにある。 Another object of the present invention is to provide a magnesium alloy member that is excellent in impact resistance and mechanical properties and also in productivity.
  本発明の他の目的は、耐衝撃性、機械的特性、塑性加工性に優れるマグネシウム合金を生産性よく製造することができるマグネシウム合金の製造方法を提供することにある。 Another object of the present invention is to provide a method for producing a magnesium alloy, which can produce a magnesium alloy excellent in impact resistance, mechanical properties and plastic workability with high productivity.
  本発明の一態様に係るマグネシウム合金は、質量%で、Alを1%以上12%以下、Mnを0.1%以上5%以下含有し、AlとMnとを含む化合物の粒子が分散した組織を備え、前記化合物の粒子の平均粒径が0.3μm以上1μm以下であり、前記化合物の粒子の面積割合が3.5%以上25%以下である。 The magnesium alloy according to one embodiment of the present invention contains, by mass%, Al 1% or more and 12% or less, Mn 0.1% or more and 5% or less, and a structure in which particles of a compound containing Al and Mn are dispersed. The average particle size of the particles of the compound is 0.3 μm or more and 1 μm or less, and the area ratio of the particles of the compound is 3.5% or more and 25% or less.
  本発明の一態様に係るマグネシウム合金の製造方法は、質量%で、Alを1%以上12%以下、Mnを0.1%以上5%以下含有するマグネシウム合金の溶湯を連続鋳造する工程を備える。この製造方法では、鋳型に接触する直前の前記溶湯の温度を630℃以上690℃以下とし、前記溶湯の冷却速度を560℃/秒以上とする。 A method for producing a magnesium alloy according to one embodiment of the present invention includes a step of continuously casting a molten magnesium alloy containing, by mass%, Al in a range of 1% to 12% and Mn in a range of 0.1% to 5%. . In this manufacturing method, the temperature of the molten metal immediately before contacting the mold is set to 630 ° C. or higher and 690 ° C. or lower, and the cooling rate of the molten metal is set to 560 ° C./second or higher.
  上記のマグネシウム合金は、耐衝撃性、機械的特性、塑性加工性に優れる上に、生産性にも優れる。上記のマグネシウム合金の製造方法は、耐衝撃性、機械的特性、塑性加工性に優れるマグネシウム合金を生産性よく製造することができる。 マ グ ネ シ ウ ム The magnesium alloy described above is excellent in impact resistance, mechanical properties, plastic workability and productivity. The above magnesium alloy production method can produce a magnesium alloy excellent in impact resistance, mechanical properties, and plastic workability with high productivity.
上図は、実施形態のマグネシウム合金板(試料No.1-1)の断面を走査型電子顕微鏡(SEM)で観察した顕微鏡写真(二次電子像)であり、下図は、この二次電子像のコントラストを変換した二値化画像である。The upper figure is a micrograph (secondary electron image) obtained by observing the cross section of the magnesium alloy plate (sample No. 1-1) of the embodiment with a scanning electron microscope (SEM), and the lower figure is the secondary electron image. It is the binarized image which converted the contrast of the. 実施形態のマグネシウム合金板(試料No.1-1)の断面をSEMで観察した顕微鏡写真(反射電子像)である。2 is a micrograph (reflection electron image) obtained by observing a cross section of the magnesium alloy plate (Sample No. 1-1) of the embodiment with an SEM. 実施形態のマグネシウム合金板(試料No.1-1)の断面について、電子銃の加速電圧を15kVとしたときの電界放出型電子線マイクロアナライザ(FE-EPMA)による組成マッピングであり、Mnの濃度分布を示す。FIG. 4 is a composition mapping by a field emission electron microanalyzer (FE-EPMA) when the acceleration voltage of the electron gun is 15 kV for the cross section of the magnesium alloy plate (Sample No. 1-1) of the embodiment, and the concentration of Mn Show the distribution. 図3に示すFE-EPMA(15kV)による組成マッピングを用いて作成したMnの濃度(Mnカウント数)と各濃度の頻度及び累積頻度とを示すヒストグラムである。4 is a histogram showing the Mn concentration (Mn count number), the frequency of each concentration, and the cumulative frequency created using the composition mapping by FE-EPMA (15 kV) shown in FIG. 3. 左図は、実施形態のマグネシウム合金板(試料No.1-1)の断面について、電子銃の加速電圧を5kVとしたときのFE-EPMAによる組成マッピングであり、Mnの濃度分布を示し、右図は、組成マッピングを行った領域と同じ領域をSEMで観察した顕微鏡写真(反射電子像)である。The left figure shows the composition mapping by FE-EPMA when the acceleration voltage of the electron gun is 5 kV for the cross section of the magnesium alloy plate (sample No. 1-1) of the embodiment, showing the Mn concentration distribution, The figure is a micrograph (backscattered electron image) obtained by observing the same region as the region where composition mapping has been performed with an SEM. 図5に示すFE-EPMA(5kV)による組成マッピングを用いて作成したMnの濃度(Mnカウント数)と各濃度の頻度及び累積頻度とを示すヒストグラムである。6 is a histogram showing the Mn concentration (Mn count number), the frequency of each concentration, and the cumulative frequency created using the composition mapping by FE-EPMA (5 kV) shown in FIG. 5. 耐衝撃試験の試験方法を説明する説明図である。It is explanatory drawing explaining the test method of an impact resistance test.
  本発明者らは、特に強度と耐食性とに優れる組成としてAlとMnとを含むマグネシウム合金を対象として、種々の製造条件でこのマグネシウム合金を製造して、耐衝撃性、機械的特性、塑性加工性に優れるマグネシウム合金の組織を検討した。その結果、AlとMnとを含む化合物(Al-Mn晶出物)が特定の範囲で存在して、かつ上記化合物が特定の範囲の大きさである組織であれば、上記化合物が非常に少ない又は実質的に存在しないマグネシウム合金と同等程度の耐衝撃性、機械的特性、塑性加工性を有する、という知見を得た。つまり、上記化合物が比較的微細であり、均一的に分散していて、ある程度の量含む組織であれば、上記化合物が非常に少ない又は実質的に存在しないマグネシウム合金と同等程度の耐衝撃性、機械的特性、塑性加工性を有する、といえる。また、このような特定の組織を有するマグネシウム合金は、連続鋳造を行うと共に、鋳型に接するまでの溶湯の温度をできるだけ低めにし、かつ冷却速度を非常に速くするという特定の鋳造工程を経ることで製造できる、との知見を得た。この製造方法は、溶湯を比較的低温にすることで、溶湯が高温の場合に生じ得る上述の(α)~(δ)の不具合などを低減できることから、耐衝撃性、機械的特性、塑性加工性に優れるマグネシウム合金の生産性を向上できる、といえる。本発明は、これらの知見に基づくものである。最初に本発明の実施形態の内容を列記して説明する。 The inventors have produced a magnesium alloy under various production conditions, particularly for a magnesium alloy containing Al and Mn as a composition excellent in strength and corrosion resistance, and have impact resistance, mechanical properties, and plastic working. The structure of magnesium alloy with excellent properties was investigated. As a result, if the compound containing Al and Mn (Al-Mn crystallized product) is present in a specific range and the compound has a size in a specific range, the amount of the compound is very small. In addition, the inventors have found that it has impact resistance, mechanical properties, and plastic workability comparable to those of a magnesium alloy that does not substantially exist. In other words, if the structure is relatively fine, uniformly dispersed, and contains a certain amount, the impact resistance of the same level as a magnesium alloy with very little or substantially no compound, It can be said that it has mechanical properties and plastic workability. In addition, the magnesium alloy having such a specific structure is subjected to a specific casting process in which continuous casting is performed, the temperature of the molten metal until it contacts the mold is as low as possible, and the cooling rate is extremely high. The knowledge that it can manufacture was acquired. This manufacturing method can reduce the above-mentioned problems (α) to (δ) that may occur when the molten metal is at a high temperature, thereby reducing impact resistance, mechanical properties, plastic working. It can be said that productivity of a magnesium alloy having excellent properties can be improved. The present invention is based on these findings. First, the contents of the embodiment of the present invention will be listed and described.
  (1)  本発明の一態様に係るマグネシウム合金は、質量%で、Alを1%以上12%以下、Mnを0.1%以上5%以下含有し、AlとMnとを含む化合物の粒子が分散した組織を備える。このマグネシウム合金は、上記化合物の粒子の平均粒径が0.3μm以上1μm以下であり、上記化合物の粒子の面積割合が3.5%以上25%以下である。 (1) A magnesium alloy according to an embodiment of the present invention is composed of mass%, containing 1% to 12% Al, 0.1% to 5% Mn, and particles of a compound containing Al and Mn. Provide a distributed organization. In this magnesium alloy, the average particle size of the particles of the compound is 0.3 μm or more and 1 μm or less, and the area ratio of the particles of the compound is 3.5% or more and 25% or less.
  上記化合物の粒子の平均粒径は、光学顕微鏡の観察像を用いて測定する。
  上記化合物の粒子の面積割合は、マグネシウム合金の断面について、電子銃の加速電圧を5kV又は15kVとしたときのFE-EPMAによる組成マッピングを用いて測定する。測定方法の詳細は後述する。
The average particle diameter of the particles of the above compound is measured using an observation image of an optical microscope.
The area ratio of the particles of the compound is measured for the cross section of the magnesium alloy using composition mapping by FE-EPMA when the acceleration voltage of the electron gun is 5 kV or 15 kV. Details of the measurement method will be described later.
  上記のマグネシウム合金は、Al及びMnを特定の範囲で含有することで強度に優れる上に耐食性にも優れる。特に、上記のマグネシウム合金は、AlとMnとを含む化合物の粒子が特定の範囲である程度存在するものの微細である。そのため、上記のマグネシウム合金は、落下などの衝撃が加わったり、圧延やプレス加工などの塑性加工を行ったりした場合に、上記粒子が割れなどの起点になり難く、強度、耐力、伸びといった機械的特性、耐衝撃性及び塑性加工性に優れる。また、上記のマグネシウム合金は、上述の微細な化合物の粒子が分散した分散強化組織を有するといえ、この分散強化組織によって耐力が高められることで、上記衝撃によって凹み難いことからも耐衝撃性に優れる。そして、上記の特定の組成及び組織を有する上記のマグネシウム合金は、例えば、後述する特定の鋳造工程を経て製造できることで、生産性にも優れる。 マ グ ネ シ ウ ム The above magnesium alloy has excellent strength and corrosion resistance by containing Al and Mn in a specific range. In particular, the above magnesium alloy is fine although particles of a compound containing Al and Mn are present to some extent within a specific range. For this reason, the above magnesium alloy is unlikely to be a starting point for cracks when subjected to impacts such as dropping, or plastic processing such as rolling or pressing, and mechanical properties such as strength, proof stress, and elongation. Excellent properties, impact resistance and plastic workability. In addition, it can be said that the magnesium alloy has a dispersion strengthened structure in which particles of the fine compound are dispersed. By increasing the yield strength by the dispersion strengthened structure, it is difficult to dent due to the impact. Excellent. And said magnesium alloy which has said specific composition and structure | tissue is excellent also in productivity by being able to manufacture through the specific casting process mentioned later, for example.
  (2)  上記のマグネシウム合金の一例として、上記化合物の粒子の最大径が2.5μm未満である形態が挙げられる。 (2) As an example of the magnesium alloy, a form in which the maximum diameter of the particles of the compound is less than 2.5 μm can be given.
  上記形態は、AlとMnとを含む化合物の粒子がある程度存在していても、いずれの粒子も十分に小さい。従って、上記形態は、粗大な化合物粒子を起点とする割れなどが生じ難く、耐衝撃性、強度や耐力、伸びなどの機械的特性、塑性加工性により優れる。 In the above form, even if there are some particles of a compound containing Al and Mn, all the particles are sufficiently small. Therefore, the above-mentioned form is less likely to cause cracks starting from coarse compound particles, and is excellent in impact resistance, mechanical properties such as strength and proof stress, elongation, and plastic workability.
  (3)  上記のマグネシウム合金の一例として、上記マグネシウム合金の平均結晶粒径が10μm以下である形態が挙げられる。 (3) の 一 As an example of the magnesium alloy, there is a form in which the average crystal grain size of the magnesium alloy is 10 μm or less.
  上記形態は、結晶自体が微細であるため、粗大な結晶粒を起点とする割れなども生じ難く、耐衝撃性、強度や耐力、伸びなどの機械的特性、塑性加工性により優れる。 Since the crystal itself is fine, the above-described form is less likely to cause cracks starting from coarse crystal grains, and is excellent in impact resistance, mechanical properties such as strength and proof stress, elongation, and plastic workability.
  (4)  本発明の一態様に係るマグネシウム合金板は、上記(1)~(3)のいずれか1つに係るマグネシウム合金からなる。 (4) A magnesium alloy sheet according to an aspect of the present invention is made of the magnesium alloy according to any one of the above (1) to (3).
  上記のマグネシウム合金の一例である上記のマグネシウム合金板は、上述の特定の組織を有するマグネシウム合金で構成されていることから、耐衝撃性、強度や耐力、伸びといった機械的特性、プレス加工などの塑性加工に対する加工性に優れる上に、生産性にも優れる。このような上記のマグネシウム合金板は、プレス加工などの塑性加工が施される2次加工材(例えば、後述のマグネシウム合金部材など)の素材に好適に利用できる。 Since the magnesium alloy plate, which is an example of the magnesium alloy, is composed of the magnesium alloy having the specific structure described above, the mechanical properties such as impact resistance, strength, proof stress, and elongation, press working, etc. In addition to excellent workability for plastic working, it also excels in productivity. Such a magnesium alloy plate as described above can be suitably used as a material for a secondary processed material (for example, a magnesium alloy member described later) subjected to plastic processing such as press processing.
  (5)  本発明の一態様に係るマグネシウム合金部材は、上記(1)~(3)のいずれか1つに係るマグネシウム合金からなり、少なくとも一部に塑性加工が施された塑性加工部を有する。 (5) A magnesium alloy member according to one aspect of the present invention is made of a magnesium alloy according to any one of the above (1) to (3), and has a plastic working portion at least partially subjected to plastic working. .
  上記のマグネシウム合金の一例である上記のマグネシウム合金部材は、上述の特定の組織を有するマグネシウム合金で構成されていることから、耐衝撃性、強度や耐力、伸びといった機械的特性に優れる上に、生産性にも優れる。また、上記のマグネシウム合金部材は、プレス加工などの塑性加工を施す際に割れなどが生じ難い点からも生産性に優れる。 Since the magnesium alloy member, which is an example of the magnesium alloy, is composed of the magnesium alloy having the specific structure described above, it has excellent mechanical properties such as impact resistance, strength, proof stress, and elongation. Excellent productivity. The magnesium alloy member is also excellent in productivity from the viewpoint that cracks and the like are not easily generated when plastic working such as press working is performed.
  (6)  本発明の一態様に係るマグネシウム合金の製造方法は、質量%で、Alを1%以上12%以下、Mnを0.1%以上5%以下含有するマグネシウム合金の溶湯を連続鋳造する工程を備える。この製造方法では、鋳型に接触する直前の上記溶湯の温度を630℃以上690℃以下とし、上記溶湯の冷却速度を560℃/秒以上とする。 (6) A method for producing a magnesium alloy according to an embodiment of the present invention is a method of continuously casting a molten magnesium alloy containing 1% to 12% Al and 0.1% to 5% Mn by mass%. A process is provided. In this manufacturing method, the temperature of the molten metal immediately before contacting the mold is set to 630 ° C. or higher and 690 ° C. or lower, and the cooling rate of the molten metal is set to 560 ° C./second or higher.
  上記のマグネシウム合金の製造方法は、Al及びMnを特定の範囲で含有するマグネシウム合金の溶湯を用いることで、強度と耐食性とに優れるマグネシウム合金を製造できる。特に、上記のマグネシウム合金の製造方法では、従来よりも溶湯の温度を低めにして、AlとMnとを含む化合物(Al-Mn晶出物)を生成し易い温度にしながらも、冷却速度を非常に速くすることで、凝固過程にある材料が630℃近傍に保持される時間を短くできる。その結果、上記のマグネシウム合金の製造方法は、合金中にAl-Mn晶出物を適切な量だけ生成できると共に、Al-Mn晶出物の粒子の成長を抑制して、比較的微細なAl-Mn晶出物の粒子、代表的には平均粒径が1μm以下のAl-Mn晶出物の粒子とすることができる。また、上記のマグネシウム合金の製造方法では、このような微細なAl-Mn晶出物の粒子を均一的に分散させられる。 は The magnesium alloy production method described above can produce a magnesium alloy having excellent strength and corrosion resistance by using a molten magnesium alloy containing Al and Mn in a specific range. In particular, in the above-described magnesium alloy manufacturing method, the temperature of the molten metal is made lower than before, and the cooling rate is very high while maintaining a temperature at which a compound containing Al and Mn (Al-Mn crystallized product) is easily generated. By making it faster, the time during which the material in the solidification process is held at around 630 ° C. can be shortened. As a result, the above-described method for producing a magnesium alloy can generate an appropriate amount of Al-Mn crystallized material in the alloy, and suppress the growth of Al-Mn crystallized particles, so that relatively fine Al-Mn crystallized material can be produced. —Mn crystallized particles, typically Al—Mn crystallized particles having an average particle size of 1 μm or less. Further, in the above magnesium alloy manufacturing method, such fine Al—Mn crystallized particles can be uniformly dispersed.
  ここで、溶湯の温度が高くても、冷却速度が遅いと、Al-Mn晶出物の粒子が成長して、例えば、最大径が2.5μm以上の粗大粒が偏在する組織となる。この粗大粒が割れなどの起点となり得る。また、Al及びMnが粗大粒に含まれることで、微細粒に必要なAl量及びMn量を確保できず、微細粒を十分に存在させられない結果、微細なAl-Mn晶出物の分散強化効果を適切に得られないと考えられる。従って、このような粗大なAl-Mn晶出物が局所的に存在するマグネシウム合金では、耐衝撃性、機械的特性、塑性加工性の低下を招き得る。これに対して、上記のマグネシウム合金の製造方法は、通常母相のマグネシウム合金よりも高硬度であるAl-Mn晶出物の粒子の分散強化によって強度や耐力といった機械的特性、耐衝撃性に優れるマグネシウム合金を製造できる。また、上記のマグネシウム合金の製造方法は、Al-Mn晶出物の粒子を微細にでき、微細粒が割れなどの起点になり難いことから、伸びなどの靭性、耐衝撃性、塑性加工性にも優れるマグネシウム合金を製造できる。 Here, even if the temperature of the molten metal is high, if the cooling rate is slow, the Al—Mn crystallized particles grow, resulting in a structure in which coarse grains having a maximum diameter of 2.5 μm or more are unevenly distributed. This coarse grain can be a starting point for cracks and the like. In addition, since Al and Mn are contained in coarse particles, the amount of Al and Mn necessary for the fine particles cannot be secured, and the fine particles cannot be sufficiently present. It is thought that the strengthening effect cannot be obtained properly. Therefore, a magnesium alloy in which such coarse Al—Mn crystallized substances are present locally can cause a decrease in impact resistance, mechanical properties, and plastic workability. On the other hand, the above-mentioned magnesium alloy manufacturing method has improved mechanical properties such as strength and proof strength and impact resistance by dispersion strengthening of Al-Mn crystallized particles, which are usually harder than the parent phase magnesium alloy. Excellent magnesium alloy can be manufactured. In addition, since the magnesium alloy production method described above can make Al—Mn crystallized particles fine, and the fine particles are unlikely to become the starting point of cracking, etc., it has improved toughness such as elongation, impact resistance, and plastic workability. Excellent magnesium alloy can be produced.
  更に、上記のマグネシウム合金の製造方法は、溶湯の温度が比較的低めであることで、(α’)溶湯の酸化を抑制し易く酸化物による歩留まりの低下を低減できる、(β’)作業性に優れる、(γ’)溶湯の保温に必要なエネルギーを低減できる、(δ’)製造設備の熱劣化を低減できる。加えて、上記のマグネシウム合金の製造方法は、連続鋳造を行うことからマグネシウム合金を量産できる上に、冷却速度を速くして微細な結晶組織にし易いことからも、耐衝撃性、機械的特性、塑性加工性に優れるマグネシウム合金を製造し易い。これらの点から、上記のマグネシウム合金の製造方法は、耐衝撃性、機械的特性、塑性加工性に優れるマグネシウム合金を生産性よく製造できるといえる。 Further, the above-described magnesium alloy manufacturing method is such that the temperature of the molten metal is relatively low, so that (α ′) the oxidation of the molten metal can be easily suppressed, and the decrease in yield due to the oxide can be reduced. (Γ ′) can reduce energy required for heat insulation of the molten metal, and (δ ′) can reduce thermal deterioration of the production equipment. In addition, the magnesium alloy production method described above is capable of mass production of magnesium alloys because continuous casting is performed, and also because it is easy to make a fine crystal structure by increasing the cooling rate, impact resistance, mechanical properties, It is easy to produce a magnesium alloy excellent in plastic workability. From these points, it can be said that the above magnesium alloy production method can produce a magnesium alloy excellent in impact resistance, mechanical properties, and plastic workability with high productivity.
  [本発明の実施形態の詳細]
  以下、本発明の実施形態に係るマグネシウム合金、マグネシウム合金板、マグネシウム合金部材、及びマグネシウム合金の製造方法を順に説明する。以下、元素の含有量の単位は、質量%とする。
[Details of the embodiment of the present invention]
Hereinafter, a magnesium alloy, a magnesium alloy plate, a magnesium alloy member, and a method for producing a magnesium alloy according to embodiments of the present invention will be described in order. Hereinafter, the unit of element content is mass%.
  (マグネシウム合金、マグネシウム合金板、マグネシウム合金部材)
  ・組成
  実施形態のマグネシウム合金は、添加元素として少なくともAlとMnとの双方を含有する組成とすることを特徴の一つとする。製造過程で特定の大きさのAlとMnとを含む化合物(Al-Mn晶出物)を特定量生成できれば、Al及びMnを含む組成に加えて、後述する第二の添加元素を含むことができる。いずれの組成も、残部はMg及び不可避不純物とし、Mgの含有量を50%超とする。
(Magnesium alloy, magnesium alloy plate, magnesium alloy member)
-Composition The magnesium alloy of the embodiment is characterized by having a composition containing at least both Al and Mn as additive elements. If a specific amount of a compound (Al—Mn crystallized product) containing Al and Mn having a specific size can be generated in the manufacturing process, it may contain a second additive element described later in addition to the composition containing Al and Mn. it can. In any composition, the balance is Mg and inevitable impurities, and the Mg content is more than 50%.
  Alの含有量は1%以上12%以下とする。Alをこの範囲で含有することで、特に強度といった機械的特性及び耐食性に優れる。Alの含有量は、上記範囲で多いほど強度や耐食性に優れることから、3%以上、5%以上、5.5%以上、7%以上とすることができる。Alの含有量が8.3%以上9.5%以下であるマグネシウム合金、例えば、ASTM規格のAZ91合金は、Alの含有量が3%程度のマグネシウム合金、例えば、ASTM規格のAZ31合金と比較して機械的特性及び耐食性に更に優れる。一方、Alの含有量は、上記範囲で少ないほど曲げなどの塑性加工を行い易い傾向にあることから、7%以下、更に4%以下とすることができる。強度と加工性とのバランスに優れるAlの含有量としては、5.5%以上12%以下が挙げられる。合金中のAlの一部は、代表的にはAlとMnとを含む化合物、AlとMgとを含む化合物といった金属間化合物などの化合物として存在し、他部はMgに固溶して存在する。 含有 Al content is 1% or more and 12% or less. By containing Al in this range, mechanical properties such as strength and corrosion resistance are particularly excellent. The more the Al content is in the above range, the better the strength and corrosion resistance. Therefore, the Al content can be 3% or more, 5% or more, 5.5% or more, or 7% or more. A magnesium alloy having an Al content of not less than 8.3% and not more than 9.5%, for example, an ASTM standard AZ91 alloy is compared with a magnesium alloy having an Al content of about 3%, for example, an ASTM standard AZ31 alloy. Therefore, it is further excellent in mechanical properties and corrosion resistance. On the other hand, the Al content tends to be easier to perform plastic working such as bending as the content is smaller in the above range, and can be 7% or less, and further 4% or less. Examples of the Al content that is excellent in balance between strength and workability include 5.5% to 12%. A part of Al in the alloy typically exists as a compound such as a compound containing Al and Mn, an intermetallic compound such as a compound containing Al and Mg, and the other part exists as a solid solution in Mg. .
  Mnの含有量は0.1%以上5%以下とする。Mnをこの範囲で含有することで、耐食性に優れる。Mnの含有量は、上記範囲で多いほど耐食性に優れることから、0.15%以上とすることができる。Mnの含有量は、多いほどAlとMnとを含む化合物が生成され易くなったり、成長し易くなったりしてAlの固溶量が低減したり、粗大な化合物粒子が存在し易くなることから、2%以下、1.5%以下、更に1%以下とすることができる。Mnの含有量が0.2%以上0.5%以下であると、上記化合物の過剰生成や成長を効果的に抑制できると期待される。 Mn content is 0.1% or more and 5% or less. By containing Mn in this range, the corrosion resistance is excellent. The Mn content can be set to 0.15% or more because the corrosion resistance increases as the content increases in the above range. As the Mn content increases, a compound containing Al and Mn is more likely to be produced, or it is easier to grow, so that the solid solution amount of Al is reduced or coarse compound particles are likely to exist. 2% or less, 1.5% or less, and further 1% or less. If the Mn content is 0.2% or more and 0.5% or less, it is expected that the excessive production and growth of the compound can be effectively suppressed.
  第二の添加元素としては、Zn(亜鉛),Ca(カルシウム),Si(ケイ素),Be(ベリリウム),Sr(ストロンチウム),Y(イットリウム),Ag(銀),Sn(錫),Zr(ジルコニウム),Ce(セリウム),Au(金)及び希土類元素(Y,Ceを除く)から選択された1種以上の元素が挙げられる。具体的な含有量は、Znは0.2%以上7.0%以下、Caは0.2%以上6.0%以下、Siは0.2%以上1.0%以下、Beは0.0001%以上0.002%以下、Srは0.2%以上7.0%以下、Yは1.0%以上6.0%以下、Agは0.5%以上3.0%以下、Snは0.01%以上2.0%以下、Zrは0.1%以上1.0%以下、Ceは0.05%以上1.0%以下、希土類元素(Y,Ceを除く)は1.0%以下3.5%以下が挙げられる。 As the second additive element, Zn (zinc), Ca (calcium), Si (silicon), Be (beryllium), Sr (strontium), Y (yttrium), Ag (silver), Sn (tin), Zr ( Examples thereof include one or more elements selected from zirconium), Ce (cerium), Au (gold), and rare earth elements (excluding Y and Ce). Specifically, the contents of Zn are 0.2% to 7.0%, Ca is 0.2% to 6.0%, Si is 0.2% to 1.0%, and Be is 0.00%. 0001% to 0.002%, Sr is 0.2% to 7.0%, Y is 1.0% to 6.0%, Ag is 0.5% to 3.0%, Sn is 0.01% or more and 2.0% or less, Zr is 0.1% or more and 1.0% or less, Ce is 0.05% or more and 1.0% or less, and rare earth elements (excluding Y and Ce) are 1.0%. % Or less and 3.5% or less.
  上記第二の添加元素を含有する場合には、列挙した元素群のうち、1種の元素のみを含有する、又は2種以上の元素を組み合わせて含有することができる。第二の添加元素を含有するすると、強度や伸びなどの機械的特性(例えば、Zn,Zrなど)、高温強度や耐クリープ性(例えば、Si、希土類元素、Agなど)、難燃性(例えば、Caなど)などの種々の特性に優れる、結晶の微細化や熱間割れの抑制(例えば、Zrなど)といった効果を奏することができる。第二の添加元素を含有する組成であっても、Al及びMnを上述の特定の範囲で含有し、特に後述の特定の製造条件で製造することで、AlとMnとを含む特定の大きさの化合物を特定量含み、かつこれら化合物の粒子が均一的に分散したマグネシウム合金とすることができる。 場合 When the second additive element is contained, the element group can contain only one element or a combination of two or more elements. When the second additive element is contained, mechanical properties such as strength and elongation (for example, Zn, Zr, etc.), high temperature strength and creep resistance (for example, Si, rare earth elements, Ag, etc.), flame retardancy (for example, , Ca, etc.) and the like are excellent, and effects such as refinement of crystals and suppression of hot cracking (eg, Zr) can be achieved. Even in the composition containing the second additive element, Al and Mn are contained in the specific range described above, and in particular, the specific size including Al and Mn is manufactured under the specific manufacturing conditions described later. And a magnesium alloy in which particles of these compounds are uniformly dispersed.
  AlとMnとを含むマグネシウム合金のより具体的な組成として、例えば、以下が挙げられる。
・ASTM規格におけるAM系合金(AM60合金、AM100合金など)
・ASTM規格におけるAZ系合金(AZ61合金、AZ80合金、AZ81合金、AZ91合金など)
As a more specific composition of the magnesium alloy containing Al and Mn, for example, the following may be mentioned.
・ AM-based alloys (AM60 alloy, AM100 alloy, etc.) according to ASTM standards
-ASTM standard AZ alloys (AZ61 alloy, AZ80 alloy, AZ81 alloy, AZ91 alloy, etc.)
  AZ系合金は、Al及びMnに加えて、第二の添加元素としてZnを0.2%以上1.5%以下含む。AZ系合金は、Alの含有量が多いほど、強度や耐力といった機械的特性、耐食性に優れる傾向にあり、Alの含有量が少ないほど、塑性加工性に優れる傾向にある。 The AZ alloy contains 0.2% or more and 1.5% or less of Zn as a second additive element in addition to Al and Mn. The AZ-based alloy tends to have excellent mechanical properties such as strength and proof stress and corrosion resistance as the Al content increases, and the plastic workability tends to improve as the Al content decreases.
  ・組織
  実施形態のマグネシウム合金は、AlとMnとを含む化合物からなり、比較的微細な粒子が均一的に分散した組織を有することを特徴の一つとする。AlとMnとを含む化合物は、主として鋳造時に生成される晶出物である。この晶出物は、高硬度であり、一旦生成されると、その後の製造過程で大きさや含有量を変化させることが困難である。そこで、実施形態のマグネシウム合金は、例えば、後述する特定の鋳造条件とすることで、上記化合物(晶出物)の大きさ及び含有量を制御する。
Structure The magnesium alloy according to the embodiment is made of a compound containing Al and Mn, and has a structure in which relatively fine particles are uniformly dispersed. A compound containing Al and Mn is a crystallized product produced mainly during casting. This crystallized product has high hardness, and once produced, it is difficult to change the size and content in the subsequent manufacturing process. Then, the magnesium alloy of embodiment controls the magnitude | size and content of the said compound (crystallized substance) by setting it as the specific casting conditions mentioned later, for example.
  ・・化合物の組成
  AlとMnとを含む化合物は、Al及びMnのみの金属間化合物、Al及びMnに加えて鉄(Fe)などを更に含む金属間化合物が挙げられる。後者の金属間化合物に含まれるFeは、不可避不純物である。これらの化合物の組成は、例えば、エネルギー分散X線分析法(EDX)や、オージェ電子分光法(AES)などによって成分分析を行うことで確認できる。
.. Composition of Compound Examples of the compound containing Al and Mn include an intermetallic compound containing only Al and Mn, and an intermetallic compound further containing iron (Fe) in addition to Al and Mn. Fe contained in the latter intermetallic compound is an inevitable impurity. The composition of these compounds can be confirmed by performing component analysis by, for example, energy dispersive X-ray analysis (EDX) or Auger electron spectroscopy (AES).
  ・・化合物の大きさ
  AlとMnとを含む化合物は、実施形態のマグネシウム合金のマトリクス中に粒子として存在する。この化合物の粒子の平均粒径は0.3μm以上1μm以下とする。上記平均粒径がこの範囲であることで、上記化合物の粒子が組織の分散強化材として良好に機能すると共に割れの起点などになり難く、耐衝撃性、機械的特性、塑性加工性に優れる。上記平均粒径は、0.3μm以上0.9μm以下、更に0.35μm以上0.8μm以下とすることができる。
.. Compound size A compound containing Al and Mn exists as particles in the matrix of the magnesium alloy of the embodiment. The average particle size of the particles of this compound is 0.3 μm or more and 1 μm or less. When the average particle diameter is within this range, the compound particles function well as a structure-strengthening dispersion material and are unlikely to become a starting point of cracking, and are excellent in impact resistance, mechanical properties, and plastic workability. The average particle diameter can be 0.3 μm or more and 0.9 μm or less, and further 0.35 μm or more and 0.8 μm or less.
  AlとMnとを含む化合物の最大径は2.5μm未満が好ましい。2.5μm以上の粗大粒が存在しないことで、このような粗大粒を起点とする割れなどが生じ難く、この粗大粒を起因する耐衝撃性、機械的特性、塑性加工性の低下を抑制できる。また、上記粗大粒が存在することによる微細粒の含有量の低下を抑制でき、微細粒を適切に含むことができる。これらのことから、耐衝撃性、機械的特性、塑性加工性に優れるマグネシウム合金とすることができる。上記化合物が小さいほど割れなどの起点となる粗大粒が少なく、微細粒が適切に存在する組織となり易いため、上記最大径は2μm以下、更に1.5μm以下、1.2μm以下、更には1μm以下が好ましい。上記化合物の平均粒径が上述の範囲で、かつ上記化合物の最大径が2.5μm未満、好ましくは2μm以下であると、上記化合物の大きさのばらつきが小さく、均一的な大きさといえる。そのため、この形態は、上記化合物の大きさのばらつきに起因する特性のばらつきをも抑制でき、良好な特性を有することができる。 The maximum diameter of the compound containing Al and Mn is preferably less than 2.5 μm. Due to the absence of coarse particles of 2.5 μm or more, cracks and the like starting from such coarse particles are unlikely to occur, and the deterioration of impact resistance, mechanical properties, and plastic workability caused by these coarse particles can be suppressed. . Moreover, the fall of content of the fine grain by presence of the said coarse grain can be suppressed, and a fine grain can be included appropriately. From these things, it can be set as the magnesium alloy excellent in impact resistance, mechanical characteristics, and plastic workability. The smaller the compound is, the smaller the coarse particles that become the starting point of cracks and the like, and the fine particles tend to be appropriately present. Therefore, the maximum diameter is 2 μm or less, further 1.5 μm or less, 1.2 μm or less, further 1 μm or less Is preferred. When the average particle diameter of the compound is in the above-mentioned range and the maximum diameter of the compound is less than 2.5 μm, preferably 2 μm or less, the variation in the size of the compound is small and it can be said that the compound has a uniform size. Therefore, this form can also suppress variation in characteristics due to variation in size of the compound, and can have favorable characteristics.
  ・・化合物の含有量
  AlとMnとを含む化合物の含有量は、マグネシウム合金の断面をとり、この断面における上記化合物の面積割合で規定し、3.5%以上25%以下とする。面積割合が3.5%以上であることで、上記化合物がマグネシウム合金中に十分に存在して、上記化合物の粒子による分散強化効果を良好に得られる。面積割合が25%以下であることで、上記化合物が適切に存在し、上記化合物が過剰に存在することに起因する合金の脆化、Al固溶量の低下による耐食性の低下などを抑制して、耐衝撃性、機械的特性、塑性加工性に優れる。
-Content of compound The content of the compound containing Al and Mn takes a cross section of the magnesium alloy and is defined by the area ratio of the compound in the cross section, and is 3.5% or more and 25% or less. When the area ratio is 3.5% or more, the compound is sufficiently present in the magnesium alloy, and the dispersion strengthening effect by the particles of the compound can be favorably obtained. When the area ratio is 25% or less, the above-described compound is appropriately present, and the brittleness of the alloy due to the presence of the above-described compound is suppressed, and the corrosion resistance is decreased due to the decrease in the amount of Al solid solution. Excellent in impact resistance, mechanical properties, and plastic workability.
  上記面積割合は、以下のように測定する。マグネシウム合金の断面をとり、この断面から以下の観察視野(例えば、195μm×195μmの正方形状の領域)をとり、この観察視野についてFE-EPMAによる組成マッピングを行ってMnの濃度分布をとる。そして、観察視野内のMnは実質的に全てがAlとMnとを含む化合物として存在すると推定して、上記観察視野に対するMnの面積割合をAlとMnとを含む化合物の面積割合とみなす。つまり、上記組成マッピングによるMnの濃度分布を利用して、上記化合物の面積割合を求める。具体的な算出方法は後述する。 The area ratio is measured as follows. A cross section of the magnesium alloy is taken, and the following observation visual field (for example, a square region of 195 μm × 195 μm) is taken from this cross section, and composition mapping by FE-EPMA is performed on this observation visual field to obtain a concentration distribution of Mn. Then, it is estimated that Mn in the observation field substantially exists as a compound containing Al and Mn, and the area ratio of Mn with respect to the observation field is regarded as the area ratio of the compound containing Al and Mn. That is, the area ratio of the compound is determined using the concentration distribution of Mn by the composition mapping. A specific calculation method will be described later.
  上記観察視野は、マグネシウム合金の表面から内部に向かって、マグネシウム合金の厚さの30%までの領域を表層領域とし、この表層領域から選択する。観察視野を表層領域から選択する理由は、割れなどが生じる領域や落下などの衝撃を直接受ける領域などは、通常、上記表層領域であると考えられるからである。 The observation field of view is selected from the surface layer region, which is a region up to 30% of the thickness of the magnesium alloy from the surface of the magnesium alloy to the inside. The reason for selecting the observation visual field from the surface layer region is that a region where a crack or the like occurs or a region which receives an impact such as a drop directly is usually considered to be the surface layer region.
  上記Mnの濃度分布は、FE-EPMAに利用する電子銃の加速電圧によって変化し、上記加速電圧が大きいほど取得する情報量が多くなり、Mnの濃度(レベル)が大きくなる傾向にある。つまり、上記加速電圧の大小によって、上記面積割合の大小も変化し得る。そこで、上記面積割合の測定にあたり、電子銃の加速電圧は、15kV以下とする。
  例えば、電子銃の加速電圧を15kVとして上記断面の観察視野についてFE-EPMAによる組成マッピングを行ったときの上記面積割合は、9.5%以上、更に10%以上25%以下、15%以上24%以下が挙げられる。
  例えば、電子銃の加速電圧を5kVとして上記断面の観察視野についてFE-EPMAによる組成マッピングを行ったときの上記面積割合は、3.5%以上15%以下、更に4.0%以上12%以下、5.0%以上10%以下が挙げられる。
The Mn concentration distribution changes depending on the acceleration voltage of the electron gun used for FE-EPMA, and the greater the acceleration voltage, the larger the amount of information to be acquired, and the higher the Mn concentration (level). That is, the size of the area ratio can be changed depending on the size of the acceleration voltage. Therefore, in measuring the area ratio, the acceleration voltage of the electron gun is set to 15 kV or less.
For example, when the electron gun acceleration voltage is 15 kV and the composition mapping is performed by FE-EPMA on the observation field of the cross section, the area ratio is 9.5% or more, more preferably 10% or more and 25% or less, and 15% or more and 24%. % Or less.
For example, when the accelerating voltage of the electron gun is 5 kV and the composition mapping by FE-EPMA is performed on the observation field of the cross section, the area ratio is 3.5% or more and 15% or less, and further 4.0% or more and 12% or less. 5.0% or more and 10% or less.
  ・・結晶粒径
  実施形態のマグネシウム合金の一例として、微細な結晶組織を有する形態が挙げられる。例えば、平均結晶粒径が10μm以下を満たす組織が挙げられる。平均結晶粒径が10μm以下であれば、粗大な結晶粒が実質的に存在せず、粗大な結晶粒に起因する割れをも低減できる。従って、この形態は、耐衝撃性、強度や伸びなどの機械的特性、塑性加工性により優れる。結晶粒が小さいほど、粗大な結晶粒に起因する割れを効果的に低減でき、例えば、平均結晶粒径は6μm以下、特に4μm以下とすることができる。平均結晶粒径の下限は、例えば、2μm、更に1μmが挙げられる。結晶粒径を微細にするには、鋳造以降に圧延などの塑性加工を行うことが効果的である。即ち、微細な結晶組織を有するマグネシウム合金として、代表的には圧延板、この圧延板をプレス加工したプレス加工材などが挙げられる。その他、鋳造工程での冷却速度を速くしたり(560℃/秒以上、更には600℃/秒以上)、上述の第二の添加元素を含んだりすると、結晶粒径を更に微細にし易いと期待される。
..Crystal grain size As an example of the magnesium alloy of the embodiment, a form having a fine crystal structure may be mentioned. For example, a structure satisfying an average crystal grain size of 10 μm or less can be given. If the average crystal grain size is 10 μm or less, coarse crystal grains are substantially absent, and cracks due to coarse crystal grains can be reduced. Accordingly, this form is superior in impact resistance, mechanical properties such as strength and elongation, and plastic workability. The smaller the crystal grain, the more effectively the cracks caused by the coarse crystal grain can be reduced. For example, the average crystal grain size can be 6 μm or less, particularly 4 μm or less. The lower limit of the average crystal grain size is, for example, 2 μm, and further 1 μm. In order to reduce the crystal grain size, it is effective to perform plastic working such as rolling after casting. That is, typical examples of the magnesium alloy having a fine crystal structure include a rolled plate and a pressed material obtained by pressing the rolled plate. In addition, if the cooling rate in the casting process is increased (560 ° C./second or more, further 600 ° C./second or more) or the second additive element described above is included, it is expected that the crystal grain size can be made finer. Is done.
  ・製造過程から区別した仕様
  実施形態のマグネシウム合金の具体的な仕様を製造過程から区別すると、(1)鋳造材、(2)鋳造材に圧延などの塑性加工(1次加工)を施した1次加工材(圧延材など)、(3)1次加工材に各種の処理を施した処理材、例えば、研磨、矯正、歪み取りなどを目的とした熱処理、防食処理(化成処理、陽極酸化処理)、装飾用加工処理(ダイヤカットやヘアラインといった切削加工やエッチング、ショットブラストなど)、塗装処理、(4)1次加工材や上記処理材にプレス加工などの塑性加工(2次加工)を施した2次加工材(実施形態のマグネシウム合金部材)、(5)2次加工材に防食処理、塗装、装飾用加工などの表面処理を施した表面処理材(実施形態のマグネシウム合金部材)などが挙げられる。圧延材などの1次加工材や上記処理材は、上述のように平均結晶粒径が鋳造材よりも小さく、割れなどが生じ難いことから、プレス加工材などの2次加工材の素材に好適に利用できる。1次加工材は、代表的にはその全体に塑性加工が施されており、その全体が塑性加工部といえる。2次加工材は、素材の一部のみに塑性加工が施された塑性加工部を備える形態(例えば、湾曲部などを有するプレス加工材)、素材全体に亘って塑性加工が施された形態(例えば、円筒状に曲げられた加工材など)が挙げられる。
Specification differentiated from manufacturing process Specific specifications of the magnesium alloy of the embodiment are distinguished from the manufacturing process. (1) Cast material, (2) Cast material subjected to plastic processing (primary processing) such as rolling 1 Next processed materials (rolled materials, etc.), (3) Treated materials obtained by subjecting the primary processed materials to various treatments, such as heat treatment and anticorrosion treatment (chemical conversion treatment, anodizing treatment) for polishing, straightening, distortion removal, etc. ), Decorative processing (cutting and etching such as diamond cutting and hairline, shot blasting, etc.), painting processing, and (4) plastic processing (secondary processing) such as press processing on the primary processing material and the above processing materials. Secondary processed material (magnesium alloy member of the embodiment), (5) surface treatment material (magnesium alloy member of the embodiment) obtained by subjecting the secondary processed material to surface treatment such as anticorrosion treatment, painting, and decoration processing. Cited . Primary processed materials such as rolled materials and the above-mentioned treated materials are suitable for materials of secondary processed materials such as press-worked materials because the average crystal grain size is smaller than that of cast materials and cracks are less likely to occur as described above. Available to: The primary work material is typically subjected to plastic working on the whole, and the whole can be said to be a plastic working portion. The secondary processed material has a form (for example, a press-worked material having a curved portion) in which only a part of the material is subjected to plastic working, and a form in which plastic working is performed over the entire material ( For example, a processed material bent into a cylindrical shape or the like.
  ・形状
  実施形態のマグネシウム合金の具体的な形状として、例えば、平行な一対の一面及び他面を備える板材(実施形態のマグネシウム合金板)が挙げられる。上記一面及び他面は、平面が代表的であるが、曲げなどの加工を加えることで曲面とすることができる。板材の平面形状は、矩形状が代表的であるが、打ち抜きなどすることで円形、その他の形状とすることができる。板材は、上述の製造過程から区別すると、(1)鋳造材、(2)1次加工材(圧延板など)、(3)処理材、(4)2次加工材、(5)表面処理材のいずれもとり得る。2次加工材の具体的な形状として、例えば、底面部と底面部から立設される側壁部とを備える断面]状の部材(板部分を有する部材)などが挙げられる。
-Shape As a specific shape of the magnesium alloy of the embodiment, for example, a plate material (a magnesium alloy plate of the embodiment) provided with a pair of parallel one surface and the other surface may be mentioned. The one surface and the other surface are typically flat surfaces, but can be curved by applying a process such as bending. The planar shape of the plate material is typically a rectangular shape, but can be circular or other shapes by punching or the like. When the plate material is distinguished from the above manufacturing process, (1) cast material, (2) primary processed material (rolled plate, etc.), (3) treated material, (4) secondary processed material, (5) surface treated material. Either of these can be taken. Specific examples of the shape of the secondary processed material include a cross-sectional member (a member having a plate portion) including a bottom surface portion and a side wall portion erected from the bottom surface portion.
  ・大きさ
  実施形態のマグネシウム合金が板材(実施形態のマグネシウム合金板)や、この板材の少なくとも一部にプレス加工などの塑性加工が施された部材(実施形態のマグネシウム合金部材)である場合、厚さが5mm以下である形態が挙げられる。板材の厚さとは、上記一面と他面との間の平均距離をいう。板材が圧延などの塑性加工を経た場合には、つまり1次加工材や2次加工材などである場合には、全体に亘って厚さが一様になり易い上に、厚さを更に薄くし易い。例えば、厚さが3mm以下程度、更に2.5mm以下である形態が挙げられる。板材の厚さが厚いほど、強度や剛性に優れる。板材の厚さが薄いほど(好ましくは2mm以下、更に1.5mm以下、更には1.2mm以下)、薄型、軽量の1次加工材や2次加工材などとすることができる。板材の厚さの下限は、0.1mm以上、更に0.3mm以上が挙げられる。所望の用途に応じて鋳造条件や圧延条件などを調整して、最終的に得られる板材の厚さを選択するとよい。板材や部材の全体に亘って厚さが一様な形態の他、厚さが異なる部分を有する形態(例えば、貫通孔を有する形態、溝又は突起を有する形態など)とすることができる。
-When the magnesium alloy of the embodiment is a plate material (magnesium alloy plate of the embodiment), or a member (magnesium alloy member of the embodiment) in which plastic working such as pressing is performed on at least a part of the plate material, The form whose thickness is 5 mm or less is mentioned. The thickness of the plate means the average distance between the one surface and the other surface. When the plate material undergoes plastic working such as rolling, that is, when it is a primary work material or a secondary work material, the thickness is likely to be uniform throughout, and the thickness is further reduced. Easy to do. For example, the form whose thickness is about 3 mm or less and also 2.5 mm or less is mentioned. The thicker the plate, the better the strength and rigidity. As the thickness of the plate material is thinner (preferably 2 mm or less, further 1.5 mm or less, and further 1.2 mm or less), a thin and light primary processed material or secondary processed material can be obtained. The lower limit of the thickness of the plate material is 0.1 mm or more, and further 0.3 mm or more. The thickness of the finally obtained plate material may be selected by adjusting casting conditions, rolling conditions, and the like according to the desired application. In addition to a form having a uniform thickness over the entire plate material or member, a form having a portion having a different thickness (for example, a form having a through-hole, a form having a groove or a protrusion) can be used.
  ・特性
  実施形態のマグネシウム合金は、強度、耐力、伸びといった機械的特性に優れる。例えば、実施形態のマグネシウム合金の一例として、引張強さ(室温)が270MPa以上、0.2%耐力(室温)が200MPa以上、破断伸び(室温)が5%以上の少なくとも一つ、好ましくは三つ全てを満たす形態が挙げられる。このような形態として、上述の圧延などの塑性加工を経たもの、つまり1次加工材や2次加工材などが挙げられる。組成や製造過程などにもよるが、Alを5%以上含有したり、圧延などの塑性加工を経たりすることで、引張強さが280MPa以上450MPa以下、0.2%耐力が230MPa以上350MPa以下、破断伸びが5%以上15%以下の少なくとも一つ、好ましくは三つ全てを満たすことができる。
-Characteristics The magnesium alloy of the embodiment is excellent in mechanical characteristics such as strength, yield strength, and elongation. For example, as an example of the magnesium alloy of the embodiment, at least one, preferably three, having a tensile strength (room temperature) of 270 MPa or more, a 0.2% proof stress (room temperature) of 200 MPa or more, and a breaking elongation (room temperature) of 5% or more. A form that satisfies all three conditions can be mentioned. Examples of such a form include those subjected to plastic processing such as rolling as described above, that is, primary processed materials and secondary processed materials. Although it depends on the composition and manufacturing process, the tensile strength is 280 MPa to 450 MPa and the 0.2% proof stress is 230 MPa to 350 MPa by containing 5% or more of Al or undergoing plastic processing such as rolling. The elongation at break can satisfy at least one, preferably all three, of 5% or more and 15% or less.
  実施形態のマグネシウム合金は、落下などの衝撃を受けた際に凹み難い。例えば、後述する耐衝撃試験を行った場合に凹み量が少なく、0.63mm未満を満たす。実施形態のマグネシウム合金が上述の圧延などの塑性加工を経た場合には、つまり1次加工材や2次加工材などである場合には、凹み量が更に少なく0.6mm以下、更に0.55mm以下を満たす。 The magnesium alloy of the embodiment is difficult to dent when subjected to impact such as dropping. For example, when the impact resistance test described later is performed, the amount of dents is small and satisfies less than 0.63 mm. When the magnesium alloy of the embodiment has undergone plastic working such as rolling as described above, that is, when it is a primary work material or a secondary work material, the amount of dent is further reduced to 0.6 mm or less, and further to 0.55 mm. Satisfies the following:
  (マグネシウム合金の製造方法)
  実施形態のマグネシウム合金の製造方法は、AlとMnとを含む化合物という特定の組成の化合物を特定の大きさとし、かつ特定の量含有する組織を形成するために、特定の鋳造工程を備えることを特徴の一つとする。具体的には、この鋳造工程は、(1)連続鋳造を行う、(2)溶湯の温度を比較的低めにする、(3)溶湯の冷却速度を非常に速くする、という三つの条件を備える。以下、鋳造工程を詳細に説明し、次に鋳造以降の工程を説明する。
(Manufacturing method of magnesium alloy)
The method for producing a magnesium alloy according to the embodiment includes a specific casting step in order to form a structure having a specific size and a specific amount of a compound having a specific composition called a compound containing Al and Mn. One of the features. Specifically, this casting process has three conditions: (1) continuous casting, (2) a relatively low temperature of the molten metal, and (3) a very high cooling rate of the molten metal. . Hereinafter, the casting process will be described in detail, and then the processes after casting will be described.
  ・鋳造工程
  ・・連続鋳造
  実施形態のマグネシウム合金の製造方法では、AlとMnとを上述の特定の範囲で含む特定の組成のマグネシウム合金の溶湯を準備して、連続鋳造を行う。連続鋳造は、急冷凝固が可能であり、酸化物や偏析などを低減できる上に粗大な晶出物の生成を低減し易く、AlとMnとを含む化合物を上述の特定の大きさに制御し易い。具体的な連続鋳造法としては、双ロール法などが挙げられる。双ロール法は、鋳造板の製造に適している。双ロール法は、鋳造板の厚さを薄くしたり(好ましくは5mm以下)、ロール温度を低くしたり(好ましくは100℃以下)、ロールの材質を調整したりなどすることで、冷却速度を速められる。
-Casting process-Continuous casting In the magnesium alloy manufacturing method of the embodiment, a molten magnesium alloy having a specific composition containing Al and Mn in the specific range described above is prepared and continuous casting is performed. Continuous casting is capable of rapid solidification, which can reduce oxides, segregation, etc., easily reduce the formation of coarse crystals, and control the compound containing Al and Mn to the specific size described above. easy. Specific examples of the continuous casting method include a twin roll method. The twin roll method is suitable for the production of cast plates. In the twin roll method, the cooling rate is reduced by reducing the thickness of the cast plate (preferably 5 mm or less), lowering the roll temperature (preferably 100 ° C. or less), adjusting the material of the roll, etc. Speeded up.
  ・・溶湯の温度
  鋳型に接触する直前の溶湯の温度は630℃以上690℃以下とする。下限の規定理由は、上記溶湯の温度が630℃を下回ると、AlとMnとを含む化合物が非常に生成され易くなるからである。上限の規定理由は、690℃を上回る温度にすると、溶湯温度が高過ぎて、生産性の低下を招くからである。上記溶湯の温度を上記の範囲とすることで、凝固過程でAlとMnとを含む化合物を良好に生成でき、適切な量(上述の特定の含有量)にできる。上記化合物を十分に生成するためには、上記溶湯の温度はできるだけ低いことが好ましく、685℃以下、更に680℃以下、更には675℃以下が好ましい。上記溶湯の温度を635℃以上、更に640℃以上、更には645℃以上とすると、上記化合物の過剰生成や粗大化を抑制し易く、上記化合物の含有量や大きさを制御し易い。この点から、生産性を高められると期待される。Alの含有量が少なくなるほど溶解温度が高くなる傾向にあることから、組成に応じて、上述の範囲内で上記溶湯の温度を調整する。
.. Molten metal temperature The temperature of the molten metal immediately before coming into contact with the mold is 630 ° C. or higher and 690 ° C. or lower. The reason for defining the lower limit is that when the temperature of the molten metal is lower than 630 ° C., a compound containing Al and Mn is very easily generated. The reason for defining the upper limit is that if the temperature exceeds 690 ° C., the molten metal temperature is too high, leading to a decrease in productivity. By setting the temperature of the molten metal within the above range, a compound containing Al and Mn can be satisfactorily produced during the solidification process, and an appropriate amount (the above-mentioned specific content) can be obtained. In order to sufficiently produce the compound, the temperature of the molten metal is preferably as low as possible, preferably 685 ° C. or lower, more preferably 680 ° C. or lower, and further 675 ° C. or lower. When the temperature of the molten metal is 635 ° C. or higher, further 640 ° C. or higher, and further 645 ° C. or higher, excessive formation and coarsening of the compound can be easily suppressed, and the content and size of the compound can be easily controlled. From this point, productivity is expected to be improved. Since the melting temperature tends to increase as the Al content decreases, the temperature of the molten metal is adjusted within the above range according to the composition.
  鋳型に接触するまでに溶湯は、溶解炉、移送樋、保持炉などの設備に保持される。これら溶湯を保持する設備における溶湯の温度を均一的にする、つまり630℃以上690℃以下の範囲から選択される温度とすると、温度制御が行い易い。また、この温度範囲は従来よりも低めであることから、設備の熱損傷を抑制し易く、設備の長寿命化を図ることができる。この点から、生産性の向上、コストの削減などを期待できる。 The molten metal is held in facilities such as a melting furnace, a transfer rod, and a holding furnace until it comes into contact with the casting mold. If the temperature of the molten metal in the facility for holding the molten metal is made uniform, that is, a temperature selected from a range of 630 ° C. or higher and 690 ° C. or lower, temperature control is easy to perform. In addition, since this temperature range is lower than that in the prior art, it is easy to suppress thermal damage to the equipment, and the life of the equipment can be extended. From this point, improvement in productivity and cost reduction can be expected.
  ・・冷却速度
  上述の比較的低温の溶湯を560℃/秒以上の冷却速度で急冷する。このような急冷を行うことで、凝固過程において、AlとMnとを含む化合物が生成され易い温度域である630℃近傍の保持時間を十分に短くして、上記化合物の過剰生成や粗大化を効果的に抑制して、比較的微細な上記化合物がある程度存在する組織を良好に形成できる。冷却速度は速いほど好ましく、600℃/秒以上、更に620℃/秒以上、更には650℃/秒以上とすることができる。このような急冷凝固を行って得られた鋳造材は、少なくともその表層領域が、上述の特定の大きさを有する上記化合物が均一的に分散した分散強化組織、更には結晶も微細な組織を有する。
..Cooling rate The above-mentioned relatively low-temperature molten metal is rapidly cooled at a cooling rate of 560 ° C./second or more. By performing such rapid cooling, in the solidification process, the retention time in the vicinity of 630 ° C., which is a temperature range in which a compound containing Al and Mn is likely to be generated, is sufficiently shortened, so that excessive generation and coarsening of the compound can be achieved. It can suppress effectively and can form the structure | tissue in which the said comparatively fine said compound exists to some extent favorably. The higher the cooling rate, the better. The cooling rate can be 600 ° C./second or more, 620 ° C./second or more, and further 650 ° C./second or more. The cast material obtained by performing such rapid solidification has a dispersion strengthened structure in which at least the surface layer region is uniformly dispersed with the above-mentioned compound having the above-mentioned specific size, and the crystal has a fine structure. .
  冷却速度は、DAS(dendrite  arm  spacing)を用いて算出する。ここで、マグネシウム合金について、α、βを組成に基づく定数、d(μm)をDAS、V(℃/秒)を冷却速度とするとき、以下の関係式(1)が利用できる。
                d=α×V-β…関係式(1)
  例えば、ASTM規格のAZ系合金では、上記関係式(1)におけるα=35.5、β=0.31であり、冷却速度VAZは、DASをdAZで表し、以下のように表わされる。
                dAZ=35.5×VAZ -0.31
  種々の組成や大きさ(厚さ、幅など)のテストピースを用いて、DASと冷却速度との関係を予め求めて、相関データを作成しておき、この相関データを参照して、所望の冷却速度となるように冷却条件を調整すると作業性に優れる。
The cooling rate is calculated using DAS (dendrite arm spacing). Here, regarding the magnesium alloy, when α and β are constants based on the composition, d (μm) is DAS, and V (° C./second) is the cooling rate, the following relational expression (1) can be used.
d = α × V −β (1)
For example, in the ASTM standard AZ alloy, α = 35.5 and β = 0.31 in the relational expression (1), and the cooling rate V AZ is expressed as follows, with DAS being expressed as d AZ. .
d AZ = 35.5 × V AZ −0.31
Using test pieces of various compositions and sizes (thickness, width, etc.), the relationship between DAS and cooling rate is obtained in advance, and correlation data is created. When the cooling conditions are adjusted so that the cooling rate is achieved, the workability is excellent.
  560℃/秒以上の冷却速度を実現する手法として、例えば、以下が挙げられる。(1)鋳型の表面温度を低くする(例えば、100℃以下、更に80℃以下)。例えば、水冷などの強制冷却が可能な鋳型とすることで、鋳型の表面温度を低く維持できる。(2)鋳造材の大きさを小さくする。例えば、鋳造板では、厚さを5mm以下、更に4.5mm以下、更には4mm以下とする。(3)冷却能力が高い材料からなる鋳型を用いる。例えば、熱伝導率が高い材料からなる鋳型を利用すれば、放熱性に優れるため冷却速度を速められる。 Examples of methods for realizing a cooling rate of 560 ° C./second or more include the following. (1) Lower the surface temperature of the mold (for example, 100 ° C. or lower, and further 80 ° C. or lower). For example, by using a mold capable of forced cooling such as water cooling, the surface temperature of the mold can be kept low. (2) Reduce the size of the cast material. For example, in a cast plate, the thickness is 5 mm or less, further 4.5 mm or less, and further 4 mm or less. (3) A mold made of a material having a high cooling capacity is used. For example, if a mold made of a material having high thermal conductivity is used, the cooling rate can be increased because of excellent heat dissipation.
  鋳造工程(冷却工程も含む)は、マグネシウム合金の酸化などを防止するために、不活性ガス雰囲気で行うことが好ましい。 The casting process (including the cooling process) is preferably performed in an inert gas atmosphere in order to prevent oxidation of the magnesium alloy.
  ・鋳造以降の工程
  ・・圧延工程
  実施形態のマグネシウム合金を圧延材(代表的には圧延板)とする場合、上述の鋳造材(代表的には鋳造板)に少なくとも1パスの圧延加工を施す。即ち、実施形態のマグネシウム合金の製造方法の一例として、上述の鋳造工程と、連続鋳造によって得られた鋳造材に少なくとも1パスの圧延を施す工程(以下、圧延工程と呼ぶことがある)とを備える形態が挙げられる。少なくとも1パスは、圧延温度を200℃以上400℃以下とする温間圧延とすることが好ましい。圧延工程のパス数、1パスあたりの圧下率、総圧下率などは、所望の厚さの圧延板などが得られるように適宜選択できる。上記鋳造材に圧延加工を施すことで、鋳造組織ではなく圧延組織(代表的には再結晶組織)とすることができる。また、圧延を行うことで、(1)平均結晶粒径が20μm以下、更に10μm以下の微細組織が得られ易い、(2)鋳造時の偏析、引け巣、空隙(ポア)といった内部欠陥、表面欠陥などを低減して優れた表面性状が得られる、(3)微細な再結晶組織にすることで強度や耐食性を更に高め易い、といった効果も期待できる。このような圧延工程を経た圧延板は、少なくともその表層領域が、より微細な結晶組織を有し、かつ上述の特定の大きさであって、AlとMnとを含む化合物が均一的に分散した分散強化組織を有する。圧延工程後、上述の研磨、矯正、防食処理、塗装、装飾用加工、歪み除去などを目的とした熱処理などの少なくとも一つの付加加工を施す工程を備えることができる。
-Process after casting-Rolling process When the magnesium alloy of the embodiment is used as a rolled material (typically a rolled plate), the above-mentioned cast material (typically a cast plate) is subjected to a rolling process of at least one pass. . That is, as an example of the manufacturing method of the magnesium alloy of the embodiment, the above-described casting process, and a process of rolling at least one pass on the cast material obtained by continuous casting (hereinafter sometimes referred to as a rolling process). The form provided is mentioned. At least one pass is preferably warm rolling at a rolling temperature of 200 ° C. or higher and 400 ° C. or lower. The number of passes in the rolling process, the rolling reduction per pass, the total rolling reduction, and the like can be appropriately selected so as to obtain a rolled sheet having a desired thickness. By rolling the cast material, a rolled structure (typically a recrystallized structure) can be formed instead of a cast structure. Also, by rolling, (1) a fine structure with an average crystal grain size of 20 μm or less, more preferably 10 μm or less is easily obtained, (2) internal defects such as segregation, shrinkage nests and voids (pores) during casting, surface It is also possible to expect the effect that excellent surface properties can be obtained by reducing defects and the like, and (3) the strength and corrosion resistance can be further improved by forming a fine recrystallized structure. A rolled sheet that has undergone such a rolling process has at least a surface region having a finer crystal structure and the above-mentioned specific size, and a compound containing Al and Mn is uniformly dispersed. Has a dispersion strengthened organization. After the rolling step, it can be provided with a step of performing at least one additional processing such as the above-described polishing, correction, anticorrosion treatment, painting, decoration processing, heat treatment for distortion removal and the like.
  ・・2次加工工程
  実施形態のマグネシウム合金を塑性加工部材とする場合、上記圧延板(研磨や矯正などの付加加工が施されていてもよい)の少なくとも一部に塑性加工を施す。即ち、実施形態のマグネシウム合金の製造方法の一例として、上述の鋳造工程と、上述の圧延工程と、この圧延工程を経た素材の少なくとも一部に塑性加工(2次加工)を施す工程とを備える形態が挙げられる。
.. Secondary processing step When the magnesium alloy of the embodiment is used as a plastic processing member, plastic processing is performed on at least a part of the rolled plate (which may be subjected to additional processing such as polishing or correction). That is, as an example of the manufacturing method of the magnesium alloy of the embodiment, the above-described casting step, the above-described rolling step, and a step of performing plastic working (secondary processing) on at least a part of the material that has undergone the rolling step are provided. A form is mentioned.
  具体的な塑性加工(2次加工)は、プレス加工(深絞り加工、打ち抜き加工、据え込みなど)、鍛造加工、曲げ加工などが挙げられる。この塑性加工は、加工温度を200℃以上280℃以下とする温間加工とすると、素材(代表的には上記圧延板)の塑性加工性を高めて精度よく塑性加工(2次加工)が行えて好ましい。また、温間加工とすると、素材の組織が粗大な再結晶組織となることを低減して機械的特性や耐食性の劣化を低減できる。塑性加工(2次加工)は、素材の一部のみに施すこともできるし、全体に施すこともできる。2次加工工程後、上述の研磨、防食処理、塗装、装飾用加工、歪み除去などを目的とした熱処理などの少なくとも一つの付加加工を施す工程を備えることができる。 Specific plastic processing (secondary processing) includes press processing (deep drawing processing, punching processing, upsetting, etc.), forging processing, bending processing, and the like. If this plastic working is warm working at a working temperature of 200 ° C. or higher and 280 ° C. or lower, the plastic workability of the material (typically, the rolled sheet) is improved and the plastic working (secondary work) can be performed with high accuracy. It is preferable. Moreover, when it is set as warm processing, it can reduce that a structure | tissue of a raw material turns into a coarse recrystallized structure, and can reduce deterioration of a mechanical characteristic or corrosion resistance. Plastic processing (secondary processing) can be performed on only a part of the material or on the whole. After the secondary processing step, there can be provided a step of performing at least one additional processing such as the above-described polishing, anticorrosion processing, coating, decoration processing, heat treatment for the purpose of distortion removal and the like.
  以下、試験例を挙げて、実施形態のマグネシウム合金、及びその製造方法をより具体的に説明する。 Hereinafter, with reference to test examples, the magnesium alloy of the embodiment and the manufacturing method thereof will be described more specifically.
  [試験例1]
  表1に示す種々の組成のマグネシウム合金を用いて、種々の条件でマグネシウム合金板、及びこのマグネシウム合金板にプレス加工を施してプレス加工材を作製し、得られたマグネシウム合金板の組織観察、引張試験(常温)、耐衝撃試験(常温)、プレス加工性の良否確認、生産性の良否判定を行った。
[Test Example 1]
Using magnesium alloys having various compositions shown in Table 1, a magnesium alloy plate under various conditions, and pressing the magnesium alloy plate to produce a pressed material, observing the structure of the obtained magnesium alloy plate, Tensile tests (room temperature), impact resistance tests (room temperature), press workability confirmation, and productivity pass / fail judgment were performed.
  各元素の含有量は質量割合(質量%)を示す。
  ・  表1に示すAZ91とは、ASTM規格のAZ91合金相当のAl,Mn,Znを含むマグネシウム合金である。ここでは、Alを9.1%、Mnを0.16%、Znを0.72%含む。
  ・  表1に示すAZX911とは、ASTM規格のAZ91合金相当のAl,Mn,Znを含み、更にCaとを含むマグネシウム合金である。ここでは、Alを9.0%、Mnを0.16%、Znを0.74%、Caを1.0%含む。
  ・  表1に示すAZ61とは、ASTM規格のAZ61合金相当のAl,Mn,Znを含むマグネシウム合金である。ここでは、Alを6.1%、Mnを0.22%、Znを0.70%含む。
  ・  表1に示すAM60とは、ASTM規格のAM60合金相当のAl,Mnを含むマグネシウム合金である。ここでは、Alを6.2%、Mnを0.20%含む。
Content of each element shows a mass ratio (mass%).
-AZ91 shown in Table 1 is a magnesium alloy containing Al, Mn, Zn corresponding to ASTM standard AZ91 alloy. Here, 9.1% of Al, 0.16% of Mn, and 0.72% of Zn are contained.
AZX911 shown in Table 1 is a magnesium alloy containing Al, Mn, Zn corresponding to ASTM standard AZ91 alloy and further containing Ca. Here, 9.0% Al, 0.16% Mn, 0.74% Zn, and 1.0% Ca are included.
-AZ61 shown in Table 1 is a magnesium alloy containing Al, Mn, Zn corresponding to ASTM standard AZ61 alloy. Here, 6.1% Al, 0.22% Mn, and 0.70% Zn are included.
-AM60 shown in Table 1 is a magnesium alloy containing Al and Mn corresponding to ASTM standard AM60 alloy. Here, 6.2% Al and 0.20% Mn are included.
  ここでは、双ロール連続鋳造→圧延→プレス加工、という製造工程を経て、鋳造板(マグネシウム合金板)、圧延板(マグネシウム合金板)、プレス加工材(マグネシウム合金部材)を作製した。具体的には、表1に示す種々の組成のマグネシウム合金のインゴットを不活性雰囲気中で溶解して溶湯を用意する。溶湯における鋳型に接触する直前の温度(以下、湯温と呼ぶ。℃)を表1に示す。ここでは、溶解炉と、溶湯を保持する保持炉と、保持炉から鋳型(一対のロール)に移送する移送部とを備える設備を利用し、移送部内の溶湯の温度を上記「湯温」とする。移送部の溶湯の温度は、設備の設定温度とする。この溶湯を鋳型(ロール)に接触させて凝固し、厚さ5.0mmの鋳造板を作製する。 Here, through a manufacturing process of twin roll continuous casting → rolling → press processing, a cast plate (magnesium alloy plate), a rolled plate (magnesium alloy plate), and a pressed material (magnesium alloy member) were produced. Specifically, magnesium alloy ingots having various compositions shown in Table 1 are melted in an inert atmosphere to prepare a molten metal. Table 1 shows the temperature of the molten metal immediately before contact with the mold (hereinafter referred to as hot water temperature, ° C.). Here, using a facility comprising a melting furnace, a holding furnace for holding the molten metal, and a transfer unit that transfers the molten metal from the holding furnace to a mold (a pair of rolls), the temperature of the molten metal in the transfer unit is referred to as the “hot water temperature”. To do. The temperature of the molten metal in the transfer section is the set temperature of the equipment. This molten metal is brought into contact with a mold (roll) and solidified to produce a cast plate having a thickness of 5.0 mm.
  鋳造工程における冷却速度(℃/秒)を表1に示す。試料No.1-1~No.1-5、No.1-101、No.1-201は、ロール温度、ロール周速、鋳造速度などを調整することで、冷却速度を変化させた。試料No.1-1~No.1-5、No.1-101は、水冷鋳型を用いて、ロール温度が100℃以下となるようにロールを冷却しながら鋳造を行う。 Table 1 shows the cooling rate (° C./sec) in the casting process. Sample No. 1-1-No. 1-5, No. 1 1-101, no. In 1-201, the cooling rate was changed by adjusting the roll temperature, roll peripheral speed, casting speed, and the like. Sample No. 1-1-No. 1-5, No. 1 In 1-101, casting is performed using a water-cooled mold while cooling the roll so that the roll temperature is 100 ° C. or lower.
  得られた各鋳造板に複数パスの温間圧延を施して、厚さ0.7mmの圧延板を作製する。温間圧延の条件は、圧延温度を200℃以上400℃以下、1パスあたりの圧下率を5%以上20%以下、総圧下率を86%とする。 Each of the obtained cast plates is subjected to multiple passes of warm rolling to produce a rolled plate having a thickness of 0.7 mm. The conditions for warm rolling are a rolling temperature of 200 ° C. or more and 400 ° C. or less, a rolling reduction per pass of 5% or more and 20% or less, and a total rolling reduction of 86%.
  得られた各圧延板を200mm×30mmに切断して、プレス用素材とし、この素材にプレス加工(角絞り加工)を施して、天板部と、天板部から延びる脚部とを備える断面[状のプレス加工材を作製する。プレス条件は、加熱温度を250℃、天板部と脚部とをつなぐ角Rを2mmとする。 Each obtained rolled plate is cut into 200 mm × 30 mm to be used as a press material. This material is subjected to press processing (square drawing), and includes a top plate portion and leg portions extending from the top plate portion. [A shaped press-work material is produced. The pressing conditions are a heating temperature of 250 ° C. and an angle R connecting the top plate and the leg is 2 mm.
  なお、上述の連続鋳造後の鋳造板に、組成を均質化するための熱処理(溶体化処理)や時効処理などを施したり、圧延途中に中間熱処理を施したり、最終の圧延後に最終熱処理を施したりすることができる。また、圧延板に矯正を施して平坦度を向上したり、研磨を施して表面をより平滑にしたりすることができる。 The cast plate after continuous casting is subjected to a heat treatment (solution treatment) or an aging treatment for homogenizing the composition, an intermediate heat treatment during the rolling, or a final heat treatment after the final rolling. Can be. Further, the flatness can be improved by correcting the rolled plate, or the surface can be smoothed by polishing.
  ・組織観察
  得られた各試料の圧延板について、以下のように金属組織を観察した。圧延板の厚さ方向に平行な面で切断して断面(縦断面)をとる。この断面は、市販のクロスセクションポリッシャ(CP)加工装置を用いて行ったCP断面とする。このCP断面について、表面から厚さ方向に板厚の30%までの領域を表層領域とし(ここでは0.7mm×0.3=0.21mm)、表層領域から任意に観察視野をとる。図1の上図は、試料No.1-1の圧延板について、選択した観察視野をSEMで観察した二次電子像を示し、下図はこの二次電子像を二値化した二値化像を示す。図2は、選択した観察視野をSEMで観察した反射電子像を示す。
-Microstructure observation About the rolling plate of each obtained sample, the metal structure was observed as follows. A section (longitudinal section) is taken by cutting along a plane parallel to the thickness direction of the rolled sheet. This cross section is a CP cross section performed using a commercially available cross section polisher (CP) processing apparatus. With respect to this CP cross section, a region from the surface to 30% of the plate thickness is defined as a surface layer region (here, 0.7 mm × 0.3 = 0.21 mm), and an observation field of view is arbitrarily taken from the surface layer region. The upper diagram in FIG. For the rolled sheet of 1-1, a secondary electron image obtained by observing the selected observation field with an SEM is shown, and the following figure shows a binary image obtained by binarizing the secondary electron image. FIG. 2 shows a backscattered electron image obtained by observing a selected observation field with an SEM.
  図1の上図に示すように微細な結晶組織中に多数の大小の粒が分散して存在することが分かる。具体的には、薄灰色で示される比較的大きい粒(最大長さが0.1μm~1μm程度)と、白色で示される比較的小さい粒とが存在することが分かる。これらの粒の成分分析を行ったところ、比較的大きな粒(薄灰色)は、AlとMgとを含む化合物(β相、主として析出物)であり、β相よりも小さい粒(白色)は、AlとMnとを含む化合物(Al-Mn晶出物)である。白い粒の存在状態を把握し易いように、図1の下図に示すようにコントラストを変換したところ、白い粒が結晶組織中に均一的に分散して存在することが分かる。また、白い粒はβ相よりも小さく、かつβ相よりも量が少ないものの、ある程度存在することが分かる。この点は、図2からも把握できる。図2に示すSEMの反射電子像でも、薄灰色の粒と白色の粒とが存在すること、白い粒が薄灰色の粒よりも小さく、薄灰色の粒よりも量が少ないものの、ある程度存在することが分かる。これらのことから、試料No.1-1の圧延板は、AlとMnとを含む化合物(Al-Mn晶出物)が比較的小さく、かつ比較的少ないものの、ある程度の量存在すること、また均一的に分散していることが分かる。試料No.1-2~No.1-5の圧延板も、試料No.1-1の圧延板と同様な組織、即ち、微細な結晶組織であって、比較的小さなAl-Mn晶出物がある程度の量存在し、かつ均一的に分散した組織である。 As shown in the upper diagram of FIG. 1, it can be seen that a large number of large and small grains are dispersed in a fine crystal structure. Specifically, it can be seen that there are relatively large grains (maximum length of about 0.1 μm to 1 μm) shown in light gray and relatively small grains shown in white. When component analysis of these grains was performed, relatively large grains (light gray) are compounds containing Al and Mg (β phase, mainly precipitates), and grains smaller than the β phase (white) are It is a compound containing Al and Mn (Al-Mn crystallized product). When the contrast is converted as shown in the lower diagram of FIG. 1 so that the existence state of the white grains can be easily grasped, it can be seen that the white grains are uniformly dispersed in the crystal structure. It can also be seen that white grains are present to some extent although they are smaller than the β phase and less in amount than the β phase. This point can also be grasped from FIG. Also in the SEM reflected electron image shown in FIG. 2, there are light gray particles and white particles, white particles are smaller than light gray particles and less in amount than light gray particles, but are present to some extent. I understand that. From these facts, sample no. The rolled plate 1-1 has a relatively small amount of a compound containing Al and Mn (Al—Mn crystallized product), but it is present in a certain amount and is uniformly dispersed. I understand. Sample No. 1-2 to No. The rolled plate of 1-5 is also sample no. A structure similar to that of the rolled sheet 1-1, that is, a fine crystal structure, in which a relatively small amount of a relatively small Al—Mn crystallized substance exists and is uniformly dispersed.
  試料No.1-101の圧延板は、AlとMnとを含む化合物(Al-Mn晶出物)が非常に少ない。試料No.1-201の圧延板は、AlとMnとを含む化合物が非常に少ないものの、粗大な粒子が存在している。 Sample No. The rolled sheet of 1-101 has very little compound containing Al and Mn (Al-Mn crystallized product). Sample No. The rolled plate of 1-201 has very few compounds containing Al and Mn, but has coarse particles.
  得られた各試料の圧延板に対して光学顕微鏡の観察像を用いて、平均結晶粒径を測定した。その結果を表1に示す。平均結晶粒径の測定は、「鋼-結晶粒度の顕微鏡試験方法  JIS  G  0551(2005)、直線試験線による切断法」に基づいて行った。観察像に、圧延板の厚さ方向に平行に直線を引き、結晶粒においてこの直線を切断する線分を粒径として調べたところ、試料No.1-1~No.1-5の圧延板の平均結晶粒径は10μm以下である。このことから、試料No.1-1~No.1-5の圧延板はいずれも、結晶粒が微細であることが分かる。 The average crystal grain size was measured using the observation image of an optical microscope with respect to the rolling plate of each obtained sample. The results are shown in Table 1. The measurement of the average crystal grain size was performed based on “steel—microscopic test method of crystal grain size JIS G 0551 (2005), cutting method using linear test line”. When a straight line was drawn in the observed image in parallel with the thickness direction of the rolled plate and the line segment that cuts the straight line in the crystal grain was examined as the grain size, Sample No. 1-1-No. The average crystal grain size of the 1-5 rolled sheet is 10 μm or less. From this, sample no. 1-1-No. It can be seen that all the 1-5 rolled sheets have fine crystal grains.
  得られた各試料の圧延板について、SEM像(二次電子像を変換した二値化像)から上述の白い粒をAlとMnとを含む化合物(Al-Mn晶出物)として抽出し、抽出したAl-Mn晶出物の粒子の平均粒径(μm)、最大径(μm)を調べた。その結果を表1に示す。Al-Mn晶出物の粒径は、抽出した粒子の面積相当円を直径とし、観察視野(ここでは上述の表層領域から選択した195μm×195μmの正方形の領域)に存在する全ての粒子の直径の平均をAl-Mn晶出物の平均粒径とする。また、上記全ての粒子の直径のうち、最も大きな値をAl-Mn晶出物の最大径とする。 About the obtained rolled plate of each sample, the above white grains were extracted as a compound containing Al and Mn (Al-Mn crystallized product) from the SEM image (binarized image obtained by converting the secondary electron image), The average particle diameter (μm) and maximum diameter (μm) of the extracted Al—Mn crystallized particles were examined. The results are shown in Table 1. The particle diameter of the Al—Mn crystallized product is the diameter of all particles present in the observation field (here, a 195 μm × 195 μm square region selected from the above-mentioned surface layer region), where the equivalent circle of the extracted particles is the diameter. Is the average particle size of the Al—Mn crystallized product. Further, among all the above-mentioned particle diameters, the largest value is the maximum diameter of the Al—Mn crystallized product.
  得られた各試料の圧延板について、上述のCP断面から選択した観察視野について、FE-EPMAによる組成マッピングを作成し、Mnの濃度分布を調べた。ここでは、電子銃の加速電圧が異なる二つの条件でMnの濃度を分析した。条件を以下に示す。
(1)  電子銃の加速電圧:15kV、照射電流:100nA、計測時間:50ms、測定元素:Mn(LiFH)、測定領域:195μm×195μmの正方形の領域
(2)  電子銃の加速電圧:5kV、照射電流:100nA、計測時間:500ms、測定元素:Mn(TAPH)、測定領域:24μm×24μmの正方形の領域
  なお、加速電圧が小さい条件(2)は、条件(1)よりも測定領域を小さくしたが、条件(2)の測定領域を条件(1)と同様な大きさとした場合でも、測定結果(Mnの濃度分布)に大きさな差異が生じないことを確認している。
About the obtained rolled plate of each sample, composition mapping by FE-EPMA was created for the observation visual field selected from the CP cross section described above, and the Mn concentration distribution was examined. Here, the concentration of Mn was analyzed under two conditions with different acceleration voltages of the electron gun. The conditions are shown below.
(1) Acceleration voltage of electron gun: 15 kV, irradiation current: 100 nA, measurement time: 50 ms, measurement element: Mn (LiFH), measurement area: square area of 195 μm × 195 μm (2) acceleration voltage of electron gun: 5 kV, Irradiation current: 100 nA, measurement time: 500 ms, measurement element: Mn (TAPH), measurement area: square area of 24 μm × 24 μm Condition (2) where the acceleration voltage is small is smaller than condition (1). However, even when the measurement area of the condition (2) is the same size as that of the condition (1), it has been confirmed that there is no significant difference in the measurement result (Mn concentration distribution).
  図3は、試料No.1-1の圧延板について、加速電圧を15kVとした条件(1)を用いた場合のFE-EPMAによるMnの組成マッピングである。図3の右にカラースケールを示す。この組成マッピングは、Mnの濃淡を白~桃色~赤~橙~黄~緑~水色~青~黒の色別で表わし、白に近い色であるほど、Mnの濃度が高いことを意味し、黒に近い色であるほど、Mnの濃度が低いことを示す。図3では、Mnの最高濃度を示す地点のMnのLevelを135とし、Mnを含まない地点のMnのLevelを0とし、各地点のMnの濃度を最高濃度つまりLevel:135に対する相対値で表わす。そして、各Levelの存在割合を面積割合(Area  %)で示す。図3の組成マッピングに示すように、黒の背景中に赤色~青色が粒状に固まった領域が多数存在することが分かる。そして、図3の組成マッピングに示す赤色~青色の粒状の領域の存在位置と、同じ観察視野におけるSEM像(反射電子像)に示す白い粒(図2参照)の存在位置とを比較参照すれば、組成マッピングに示す赤色~青色の粒状の領域は、AlとMnとを含む化合物(Al-Mn晶出物)に含まれるといえる。このことから、試料No.1-1の圧延板におけるMnはAl-Mn晶出物として存在する、と考えられる。そこで、ここでは、Mnは全てAlとの化合物として存在するとして扱う。 FIG. FIG. 5 is a composition mapping of Mn by FE-EPMA when the condition (1) with an acceleration voltage of 15 kV is used for the rolled sheet of 1-1. The color scale is shown on the right side of FIG. This composition mapping expresses the density of Mn by white, pink, red, orange, yellow, green, light blue, blue, black, and the closer the color is to white, the higher the Mn concentration. The closer the color is to black, the lower the Mn concentration. In FIG. 3, the Mn level at the point showing the highest concentration of Mn is set to 135, the Mn level at the point not containing Mn is set to 0, and the Mn concentration at each point is expressed as a relative value with respect to the highest concentration, that is, Level: 135. . Then, the ratio of each Level is shown as an area ratio (AreaA%). As shown in the composition mapping of FIG. 3, it can be seen that there are many regions in which a red to blue color is solidified in a black background. Then, by comparing and referring to the existence position of the red to blue granular region shown in the composition mapping of FIG. 3 and the existence position of the white particle (see FIG. 2) shown in the SEM image (reflected electron image) in the same observation visual field. It can be said that the red to blue granular regions shown in the composition mapping are included in the compound containing Al and Mn (Al—Mn crystallized product). From this, sample no. It is considered that Mn in the 1-1 rolled sheet exists as an Al-Mn crystallized product. Therefore, here, all Mn is treated as existing as a compound with Al.
  図4は、図3に示すMnの組成マッピング(15kV)を用いて作成したMnの各Level(Mnカウント数)の頻度及び累積頻度を示すグラフである。図4のグラフにおいて横軸は、MnのLevel(0~135。図4では110まで表示)を示し、左縦軸は、Mnの各Levelの頻度、右縦軸は、Mnの各Levelの累積頻度(%)を示す。
累積頻度は、Mnの各Levelの面積割合(Area  %)に等価といえる。ここで、MnのLevelの平均SLevelをとったところ、SLevel≒10であり、全体的にMnの濃度が非常に低いことが分かる。従って、MnのLevelが平均SLevel程度である領域は、ノイズとして扱うことでMnをより適切に抽出できると考えられる。ひいては、AlとMnとを含む化合物(Al-Mn晶出物)をより適切に抽出できるといえる。そこで、ここでは、MnのLevelの標準偏差σLevelを求めて、平均SLevel+3σLevelを閾値とし、MnのLevelが平均SLevel+3σLevel以上の領域をAl-Mn晶出物として扱う。そして、平均SLevel+3σLevel(ここでは11.3)以上の累積頻度(%)をAl-Mn晶出物の面積割合(%、15kV)として扱う。その結果を表1に示す。
FIG. 4 is a graph showing the frequency and cumulative frequency of each level (Mn count number) of Mn created using the Mn composition mapping (15 kV) shown in FIG. In the graph of FIG. 4, the horizontal axis indicates the level of Mn (0 to 135; up to 110 is displayed in FIG. 4), the left vertical axis indicates the frequency of each level of Mn, and the right vertical axis indicates the accumulation of each level of Mn. Indicates the frequency (%).
The cumulative frequency can be said to be equivalent to the area ratio (Area%) of each level of Mn. Here, when the average S Level of Mn Level is taken, S Level ≈10, and it can be seen that the Mn concentration is very low as a whole. Therefore, it is considered that Mn can be extracted more appropriately by treating it as a noise in a region where the level of Mn is about the average S Level . As a result, it can be said that a compound containing Al and Mn (Al-Mn crystallized product) can be extracted more appropriately. Therefore, here, the standard deviation σ Level of Mn Level is obtained, the average S Level + 3σ Level is set as a threshold value, and the region where the Level of Mn is equal to or higher than the average S Level + 3σ Level is treated as an Al-Mn crystallized product. Then, the cumulative frequency (%) of average S Level + 3σ Level (here 11.3) or more is treated as the area ratio (%, 15 kV) of the Al—Mn crystallized product. The results are shown in Table 1.
  図5の左図は、試料No.1-1の圧延板について、加速電圧を5kVとした条件(2)を用いた場合のFE-EPMAによるMnの組成マッピングであり、右図は、同じ観察視野におけるSEM像(反射電子像)を示す。この図5の組成マッピングも、図3と同様にMnの濃度を色別で示す。図5の組成マッピングでは、Mnの最高濃度を示す地点のMnのLevelを55とし、Mnを含まない地点のMnのLevelを0とし、各Levelの存在割合を面積割合(Area  %)で示す。なお、図5の左図に示す組成マッピングでは、電子銃の照射エネルギーが条件(1)よりも小さいことで、採取されるMnの情報量が条件(1)の場合よりも少ないことから、Mnの最高Levelが55と小さいが、図5の左図に示すようにMnの濃淡が把握できること、図3の組成マッピングと同様に赤色~青色が粒状に固まって存在していることが分かる。また、図5の左図の組成マッピングに示す赤色~青色の粒状の領域の存在位置と、図5の右図のSEM像(反射電子像)に示す白い粒の存在位置とを比較参照すれば、この組成マッピングに示す赤色~青色の粒状の領域は、AlとMnとを含む化合物(Al-Mn晶出物)であるといえる。 左 The left figure in FIG. 1-1 is Mn composition mapping by FE-EPMA when the condition (2) with an acceleration voltage of 5 kV is used for the rolled plate 1-1, and the right figure shows an SEM image (reflection electron image) in the same observation field. Show. The composition mapping of FIG. 5 also shows the Mn concentration by color as in FIG. In the composition mapping of FIG. 5, the Mn Level at the point showing the highest concentration of Mn is 55, the Mn Level at the point not containing Mn is 0, and the presence ratio of each Level is shown as an area ratio (Area%). In the composition mapping shown in the left diagram of FIG. 5, since the irradiation energy of the electron gun is smaller than that in the condition (1), the information amount of Mn collected is smaller than that in the condition (1). As shown in the left figure of FIG. 5, it can be seen that the density of Mn can be grasped, and that red to blue are solidified in the same manner as the composition mapping of FIG. In addition, if the existence position of the red to blue granular region shown in the composition mapping in the left diagram of FIG. 5 is compared with the existence position of the white particle shown in the SEM image (reflection electron image) in the right diagram of FIG. It can be said that the red to blue granular region shown in the composition mapping is a compound containing Al and Mn (Al-Mn crystallized product).
  図6は、図5の左図に示すMnの組成マッピング(5kV)を用いて作成したMnの各Level(Mnカウント数)の頻度及び累積頻度を示すグラフである。図6のグラフにおいて横軸は、図4のグラフと同様にMnのLevel(0~55。図6では50まで表示)を示し、左縦軸は、Mnの各Levelの頻度、右縦軸は、Mnの各Levelの累積頻度(%)を示す。ここでも、MnのLevelの平均SLevel及び標準偏差σLevelを求め、平均SLevel+3σLevelを閾値とし、平均SLevel+3σLevel(ここでは12)以上の累積頻度(%)をAlとMnとを含む化合物(Al-Mn晶出物)の面積割合(%、5kV)として求めた。その結果を表1に示す。 FIG. 6 is a graph showing the frequency and cumulative frequency of each level of Mn (Mn count number) created using the Mn composition mapping (5 kV) shown in the left diagram of FIG. In the graph of FIG. 6, the horizontal axis indicates the level of Mn (0 to 55, displayed up to 50 in FIG. 6) as in the graph of FIG. 4, the left vertical axis indicates the frequency of each level of Mn, and the right vertical axis indicates The cumulative frequency (%) of each level of Mn is shown. Again, the average S Level of Mn Level and the standard deviation σ Level are obtained, the average S Level + 3σ Level is set as a threshold, and the cumulative frequency (%) of average S Level + 3σ Level (here 12) or more is expressed as Al and Mn. The area ratio (%, 5 kV) of the contained compound (Al—Mn crystallized product) was obtained. The results are shown in Table 1.
  試料No.1-1~No.1-5のプレス加工材において、曲げなどが実質的に与えられてない天板部について、圧延板と同様に金属組織を観察したところ、圧延板と同程度に微細な結晶組織を有し、AlとMnとを含む化合物(Al-Mn晶出物)が分散した組織を有していた。また、この天板部の平均結晶粒径、上記化合物の平均粒径、最大径、面積割合は、圧延板と同程度の値であり、実質的に圧延板の組織を有しているといえる。 Sample No. 1-1-No. In the press-worked material of 1-5, the top plate portion to which bending or the like is not substantially given is observed in the same manner as the rolled plate. As a result, the crystal structure is as fine as the rolled plate. It had a structure in which a compound containing Al and Mn (Al-Mn crystallized product) was dispersed. In addition, the average crystal grain size of the top plate part, the average grain size, the maximum diameter, and the area ratio of the above compound are the same values as those of the rolled plate, and can be said to substantially have a rolled plate structure. .
  試料No.1-1~No.1-5の鋳造板について、圧延板と同様に金属組織を観察したところ、圧延板よりも結晶粒が大きいものの微細な結晶組織を有していた。試料No.1-1~No.1-5の鋳造板も、少なくともその表層領域は、AlとMnとを含む化合物が均一的に分散した組織を有していた。上記化合物の平均粒径、最大径、面積割合(15kV,5kV)を調べたところ、圧延板と同程度の値であった。このことから、試料No.1-1~No.1-5の圧延板に存在する上記化合物は、鋳造板における上記化合物を実質的に維持している、といえる。 Sample No. 1-1-No. As for the cast plate of 1-5, the metal structure was observed in the same manner as the rolled plate, and it had a fine crystal structure although the crystal grains were larger than the rolled plate. Sample No. 1-1-No. The cast plate of 1-5 also had a structure in which a compound containing Al and Mn was uniformly dispersed in at least the surface layer region. When the average particle diameter, maximum diameter, and area ratio (15 kV, 5 kV) of the above compound were examined, the values were similar to those of the rolled sheet. From this, sample no. 1-1-No. It can be said that the compound present in the 1-5 rolled sheet substantially maintains the compound in the cast sheet.
  ・引張試験(常温、20℃程度)
  得られた各試料の圧延板(厚さ:0.7mm)からJIS  13B号の板状試験片(JIS  Z  2201(1998))を作製して、JIS  Z  2241(1998)の金属材料引張試験方法に基づいて引張試験(標点距離GL=50mm)を行った。ここでは、引張強さ(MPa)、0.2%耐力(MPa)、破断伸び(%)を測定した(評価数:いずれもn=1)。その結果を表2に示す。
・ Tensile test (normal temperature, about 20 ℃)
A plate-like test piece (JIS Z 2201 (1998)) of JIS 13B was prepared from the obtained rolled plate (thickness: 0.7 mm) of each sample, and a metal material tensile test method of JIS Z 2241 (1998). Based on the above, a tensile test (mark distance GL = 50 mm) was performed. Here, tensile strength (MPa), 0.2% proof stress (MPa), and elongation at break (%) were measured (evaluation number: all n = 1). The results are shown in Table 2.
  ・耐衝撃試験(室温、20℃程度)
  得られた各試料の圧延板(厚さ:0.7mm)から30mm×30mmの板片を切り出し、この切り出した板片を試験片とする。この試験では、図7に示すように、水平な面に直径d=20mmの円穴21を有する支持台20を用意した。円穴21の深さは後述の円柱棒10が十分に挿入可能な大きさとした。この円穴21を塞ぐように試験片1を配置し、この状態で、試験片1から高さ200mmの地点に、重量100g、先端r=5mm、セラミックス製の円柱棒10を、その中心軸と、円穴21の中心軸とが同軸となるように配置した。そして、試験片1に向けて、上記配置地点(高さ200mm)から円柱棒10を自由落下させた後、試験片1の凹み量を測定する。凹み量(mm)は、試験片1の対向する両辺を結ぶ直線をとり、この直線から最も凹んだ部分までの距離を、ポイントマイクロメータを用いて測定した。その結果を表2に示す。
・ Impact resistance test (room temperature, about 20 ℃)
A 30 mm × 30 mm plate piece is cut out from the obtained rolled plate (thickness: 0.7 mm) of each sample, and this cut plate piece is used as a test piece. In this test, as shown in FIG. 7, a support base 20 having a circular hole 21 having a diameter d = 20 mm on a horizontal surface was prepared. The depth of the circular hole 21 was set to a size that allows a cylindrical rod 10 described later to be sufficiently inserted. The test piece 1 is arranged so as to close the circular hole 21. In this state, a cylindrical rod 10 made of ceramic having a weight of 100 g, a tip r = 5 mm, and a ceramic is placed at a point 200 mm in height from the test piece 1. The central axis of the circular hole 21 is coaxial. Then, the cylindrical bar 10 is freely dropped from the arrangement point (height 200 mm) toward the test piece 1, and then the dent amount of the test piece 1 is measured. The dent amount (mm) was a straight line connecting both opposing sides of the test piece 1, and the distance from this straight line to the most recessed part was measured using a point micrometer. The results are shown in Table 2.
  ・加工性
  得られた各試料のプレス加工材(角絞り材)において角R部分の割れの有無を目視にて確認し、割れが無い場合をGood、割れが有る場合をBadと評価した。その結果を表2に示す。
-Workability The presence or absence of cracks in the corner R portion was visually confirmed in the press-processed material (corner drawing material) of each sample obtained, and the case where there was no crack was evaluated as Good, and the case where there was a crack was evaluated as Bad. The results are shown in Table 2.
  ・生産性
  鋳造工程において、溶湯温度が690℃以下の場合を生産性が良いと判定する。
-Productivity In a casting process, when the molten metal temperature is 690 degrees C or less, it determines with productivity being good.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  表1に示すように、AlとMnとを含む化合物の粒子の平均粒径が0.3μm以上1μm以下であり、上記化合物の粒子の面積割合がFE-EPMAの分析において3.5%以上25%以下である試料No.1-1~No.1-5はいずれも、上記化合物が非常に少ない試料No.1-101と同程度の強度、耐力、伸び、及び塑性加工性を有しており、組成によらず、高強度及び高靭性で塑性加工性にも優れることが分かる。この試験では試料No.1-1~No.1-5はいずれも、引張強さが300MPa以上、0.2%耐力が230MPa以上、破断伸びが6%超である。このような試料No.1-1~No.1-5はいずれも、角絞り加工といったプレス加工を行った場合に割れやクラックが生じ難いことが分かる。更に、試料No.1-101と比較して上記化合物の粒子の面積割合が大きい試料No.1-1~No.1-5はいずれも、凹み量が0.5mm以下であり、試料No.1-101よりも耐衝撃性に優れる。試料No.1-1~No.1-5がこのように耐衝撃性、機械的特性、塑性加工性に優れる理由の一つとして、上記化合物がある程度存在していても比較的微細であったことから、1.分散強化効果を良好に得られたため、2.上記化合物が割れなどの起点になり難かったためと考えられる。 As shown in Table 1, the average particle diameter of the particles of the compound containing Al and Mn is 0.3 μm or more and 1 μm or less, and the area ratio of the particles of the compound is 3.5% or more and 25 or more in the FE-EPMA analysis. % Of sample No. 1-1-No. In each of samples 1-5, sample Nos. It has the same strength, proof stress, elongation, and plastic workability as 1-101, and it has high strength, high toughness and excellent plastic workability regardless of the composition. In this test, sample no. 1-1-No. 1-5 has a tensile strength of 300 MPa or more, a 0.2% proof stress of 230 MPa or more, and a breaking elongation of more than 6%. Such sample No. 1-1-No. It can be seen that 1-5 does not easily cause cracks or cracks when press working such as corner drawing is performed. Furthermore, sample no. Sample No. 1 has a larger area ratio of particles of the above compound than that of 1-101. 1-1-No. In all of Nos. 1-5, the dent amount is 0.5 mm or less. Excellent impact resistance than 1-101. Sample No. 1-1-No. As one of the reasons why 1-5 is excellent in impact resistance, mechanical properties, and plastic workability, it is relatively fine even if the compound is present to some extent. 1. A good dispersion strengthening effect was obtained. This is thought to be because the above compound was less likely to be a starting point for cracking or the like.
  更に、試料No.1-1~No.1-5について以下のことが分かる。
  上記化合物の最大径が1.2μm以下である。このことから、上記化合物を起点とする割れなどをより効果的に抑制できたと考えられる。
  結晶も微細であり、平均結晶粒径が10μm以下である。このことから、粗大な結晶粒を起点とする割れなどを効果的に抑制できたことからも、耐衝撃性、機械的特性、塑性加工性に優れると考えられる。
  連続鋳造にあたり、溶湯の温度が低めであることで、設備の熱劣化を抑制できる。このことから、生産性にも優れるといえる。
Furthermore, sample no. 1-1-No. The following can be seen for 1-5.
The maximum diameter of the compound is 1.2 μm or less. From this, it is thought that the crack etc. which originated from the said compound were able to be suppressed more effectively.
The crystal is also fine, and the average crystal grain size is 10 μm or less. From this fact, it is considered that the impact resistance, mechanical properties, and plastic workability are excellent because cracks and the like starting from coarse crystal grains can be effectively suppressed.
In continuous casting, the temperature of the molten metal is low, so that thermal deterioration of the equipment can be suppressed. From this, it can be said that productivity is also excellent.
  更に、この試験から、FE-EPMAの分析にあたり、電子銃の加速電圧を5kVとした場合、15kVとした場合のいずれも、試料No.1-1~No.1-5は、試料No.1-101,1-201と比較して面積割合が高く、AlとMnとを含む化合物が十分に存在することが分かる。
  この試験では5kVとした場合、試料No.1-1~No.1-5の面積割合は5%以上であり、3.5%未満である試料No.1-101,1-201よりも高い。
  この試験では15kVとした場合、試料No.1-1~No.1-5の面積割合は10%以上であり、9.4%以下である試料No.1-101,1-201よりも高い。
Furthermore, from this test, in the analysis of FE-EPMA, when the acceleration voltage of the electron gun was 5 kV or 15 kV, the sample No. 1-1-No. Sample No. 1-5 It can be seen that the area ratio is higher than those of 1-101 and 1-201, and a compound containing Al and Mn is sufficiently present.
In this test, the sample No. 1-1-No. Sample No. 1-5 having an area ratio of 5% or more and less than 3.5%. It is higher than 1-101, 1-201.
In this test, the sample No. 1-1-No. Sample No. 1-5 having an area ratio of 10% or more and 9.4% or less. It is higher than 1-101, 1-201.
  そして、このような耐衝撃性、機械的特性、塑性加工性、更には生産性にも優れるマグネシウム合金は、上述のように鋳型に接触する直前の溶湯の温度を630℃以上690℃以下と比較的低めにし、かつ溶湯の冷却速度を560℃/秒以上の急冷とすることで製造できることが分かる。また、この試験から、溶湯の温度や冷却速度を上述の範囲内で調整することで、組成を変えても、AlとMnとを含む化合物が上述の特定量及び特定の平均粒径を満たせば、耐衝撃性、機械的特性、塑性加工性を有するマグネシウム合金を生産性よく製造できることが分かる。 And, such a magnesium alloy excellent in impact resistance, mechanical properties, plastic workability, and productivity is compared with the temperature of the molten metal immediately before contacting the mold as described above between 630 ° C. and 690 ° C. It can be seen that it can be produced by lowering the cooling rate of the molten metal and quenching the molten metal at 560 ° C./second or more. Also, from this test, by adjusting the temperature and cooling rate of the molten metal within the above range, even if the composition is changed, the compound containing Al and Mn satisfies the above specific amount and the specific average particle size. It can be seen that a magnesium alloy having impact resistance, mechanical properties, and plastic workability can be produced with high productivity.
  一方、溶湯の温度を非常に高くしていても、冷却速度が550℃/秒未満と遅い試料No.1-201は、試料No.1-1と比較してAlとMnとを含む化合物が少ないものの、粗大な粒子(ここでは2.5μm以上)が存在することが分かる。また、この試料No.1-201は、同じ組成の試料No.1-1と比較して耐衝撃性、機械的特性、塑性加工性に劣ることが分かる。このような結果となった理由として、凝固時に上記化合物が生成や成長し易い温度域である630℃近傍に保持される時間が長くなったため、と考えられる。また、成長してできた粗大な上記化合物の粒子が割れなどの起点となったり、微細な化合物による分散強化効果が不十分であったりすることで、耐衝撃性、機械的特性、塑性加工性を低下させたと考えられる。 On the other hand, even though the temperature of the molten metal is very high, the sample No. 1-201 is Sample No. It can be seen that although there are few compounds containing Al and Mn compared to 1-1, there are coarse particles (2.5 μm or more in this case). In addition, this sample No. 1-201 is a sample No. 1 having the same composition. It can be seen that the impact resistance, mechanical properties, and plastic workability are inferior to those of 1-1. The reason for this result is considered to be that the time during which the above compound is maintained at around 630 ° C., which is a temperature range in which the compound is easily generated and grown, is increased. In addition, the coarse particles of the above-mentioned grown compounds may become the starting point of cracking, and the dispersion strengthening effect due to fine compounds may be insufficient, resulting in impact resistance, mechanical properties, plastic workability. Is thought to have decreased.
  他方、試料No.1-101は、溶湯の温度を高くし、かつ冷却速度を速めたことで、AlとMnとを含む化合物が非常に少なくなっていることが分かる。また、試料No.1-101は、同じ組成の試料No.1-1と比較して特に耐衝撃性に劣る。この理由は、微細な化合物による分散強化が不十分であったためと考えられる。 On the other hand, sample no. In 1-101, it can be seen that the compound containing Al and Mn is extremely reduced by increasing the temperature of the molten metal and increasing the cooling rate. Sample No. 1-101 is a sample No. 1 having the same composition. Compared with 1-1, it is particularly inferior in impact resistance. The reason for this is considered that the dispersion strengthening by the fine compound was insufficient.
  試料No.1-1~No.1-5のプレス加工材について、天板部から上述の圧延板と同様の試験片を作製して、圧延板と同様に引張試験(室温)、耐衝撃試験(室温)を行ったところ、圧延板と概ね同程度の結果となった。即ち、プレス加工材も、耐衝撃性、機械的特性に優れていた。このような理由の一つとして、プレス加工材の少なくとも一部が圧延板の組織を実質的に維持している、即ち、微細な結晶組織を有し、かつ特定の大きさのAlとMnとを含む化合物が均一的に分散した組織を有しているためと考えられる。 Sample No. 1-1-No. For the press-formed material of 1-5, a test piece similar to the above-mentioned rolled plate was produced from the top plate portion and subjected to a tensile test (room temperature) and an impact resistance test (room temperature) in the same manner as the rolled plate. The result was almost the same as the board. That is, the press-processed material was also excellent in impact resistance and mechanical properties. One of the reasons is that at least a part of the pressed material substantially maintains the structure of the rolled sheet, that is, has a fine crystal structure and a specific size of Al and Mn. This is presumably because the compound containing a has a uniformly dispersed structure.
  なお、本発明は、上述した例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。例えば、上述の試験例において、組成(添加元素の種類、含有量)、マグネシウム合金板の形状、大きさ(厚さ、長さ、幅など)、製造条件(鋳造条件では鋳型の仕様、鋳型の温度、湯温、冷却速度、鋳造板の厚さなど)などを適宜変更することができる。 It should be noted that the present invention is not limited to the above-described examples, but is defined by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims. For example, in the above test example, the composition (type of additive element, content), the shape, size (thickness, length, width, etc.) of the magnesium alloy plate, manufacturing conditions (in the casting conditions, the specifications of the mold, the mold The temperature, the hot water temperature, the cooling rate, the thickness of the cast plate, etc.) can be appropriately changed.
  本発明のマグネシウム合金及びマグネシウム合金板は、例えば、プレス加工、曲げ、鍛造などの種々の塑性加工が施される塑性加工部材(マグネシウム合金部材)の素材に好適に利用できる。特に、このマグネシウム合金板は、軽量や薄型、高強度、制振性などの特性が望まれる部材、例えば、各種の電子・電気機器類(パーソナルコンピュータ(PC)、タブレット型PC、スマートフォンや折り畳み式携帯電話などの携帯電話、デジタルカメラなど)の筐体、カバーなどの外装部材、自動車や航空機といった輸送機器の構成部材、骨格部材、カバン、種々の保護ケースなどの素材に好適に利用できる。本発明のマグネシウム合金及びマグネシウム合金部材は、例えば、上記筐体などの外装部材、上記輸送機器の構成部材、骨格部材、カバン、保護ケースなどに好適に利用できる。本発明のマグネシウム合金の製造方法は、上記マグネシウム合金板や上記マグネシウム合金部材といったマグネシウム合金の製造に好適に利用できる。 マ グ ネ シ ウ ム The magnesium alloy and magnesium alloy plate of the present invention can be suitably used as a material for plastic working members (magnesium alloy members) subjected to various plastic workings such as press working, bending and forging. In particular, this magnesium alloy plate is a member that is desired to have characteristics such as light weight, thinness, high strength, vibration damping, such as various electronic / electrical devices (personal computer (PC), tablet PC, smartphone, folding type). It can be suitably used for materials such as casings of mobile phones such as mobile phones, digital cameras, etc., exterior members such as covers, components of transportation equipment such as automobiles and aircraft, skeleton members, bags, and various protective cases. The magnesium alloy and magnesium alloy member of the present invention can be suitably used for, for example, exterior members such as the above-described casing, constituent members of the above transportation equipment, skeleton members, bags, protective cases, and the like. The manufacturing method of the magnesium alloy of this invention can be utilized suitably for manufacture of magnesium alloys, such as the said magnesium alloy plate and the said magnesium alloy member.
  1  試験片  10  円柱棒  20  支持台  21  円穴 1 Test piece 10 Cylindrical rod 20 Support stand 21 Circular hole

Claims (6)

  1.   質量%で、Alを1%以上12%以下、Mnを0.1%以上5%以下含有し、
      AlとMnとを含む化合物の粒子が分散した組織を備え、
      前記化合物の粒子の平均粒径が0.3μm以上1μm以下であり、
      前記化合物の粒子の面積割合が3.5%以上25%以下であるマグネシウム合金。
    In mass%, Al is contained 1% or more and 12% or less, Mn is contained 0.1% or more and 5% or less,
    Comprising a structure in which particles of a compound containing Al and Mn are dispersed;
    The average particle size of the particles of the compound is 0.3 μm or more and 1 μm or less,
    A magnesium alloy having an area ratio of particles of the compound of 3.5% or more and 25% or less.
  2.   前記化合物の粒子の最大径が2.5μm未満である請求項1に記載のマグネシウム合金。 The magnesium alloy according to claim 1, wherein the maximum particle diameter of the compound is less than 2.5 μm.
  3.   前記マグネシウム合金の平均結晶粒径が10μm以下である請求項1又は請求項2に記載のマグネシウム合金。 The magnesium alloy according to claim 1 or 2, wherein the magnesium alloy has an average crystal grain size of 10 µm or less.
  4.   請求項1~請求項3のいずれか1項に記載のマグネシウム合金からなるマグネシウム合金板。 A magnesium alloy plate comprising the magnesium alloy according to any one of claims 1 to 3.
  5.   請求項1~請求項3のいずれか1項に記載のマグネシウム合金からなり、少なくとも一部に塑性加工が施された塑性加工部を有するマグネシウム合金部材。 A magnesium alloy member comprising the magnesium alloy according to any one of claims 1 to 3 and having a plastic working portion at least partially subjected to plastic working.
  6.   質量%で、Alを1%以上12%以下、Mnを0.1%以上5%以下含有するマグネシウム合金の溶湯を連続鋳造する工程を備え、
      鋳型に接触する直前の前記溶湯の温度を630℃以上690℃以下とし、
      前記溶湯の冷却速度を560℃/秒以上とするマグネシウム合金の製造方法。
    A step of continuously casting a molten magnesium alloy containing 1% to 12% Al and 0.1% to 5% Mn in mass%,
    The temperature of the molten metal immediately before contacting the mold is set to 630 ° C. or more and 690 ° C. or less,
    A method for producing a magnesium alloy, wherein the molten metal is cooled at a rate of 560 ° C./second or more.
PCT/JP2015/076885 2014-10-15 2015-09-24 Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy WO2016059950A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15851242.6A EP3208356B1 (en) 2014-10-15 2015-09-24 Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy
CN201580049782.0A CN106715736A (en) 2014-10-15 2015-09-24 Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy
US15/506,622 US20170283915A1 (en) 2014-10-15 2015-09-24 Magnesium alloy, magnesium alloy sheet, magnesium alloy structural member, and method for producing magnesium alloy
KR1020177004623A KR20170068431A (en) 2014-10-15 2015-09-24 Magnesium alloy, magnesium alloy sheet, magnesium alloy structural member, and method for producing magnesium alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-211259 2014-10-15
JP2014211259A JP6465338B2 (en) 2014-10-15 2014-10-15 Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy

Publications (1)

Publication Number Publication Date
WO2016059950A1 true WO2016059950A1 (en) 2016-04-21

Family

ID=55746498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076885 WO2016059950A1 (en) 2014-10-15 2015-09-24 Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy

Country Status (6)

Country Link
US (1) US20170283915A1 (en)
EP (1) EP3208356B1 (en)
JP (1) JP6465338B2 (en)
KR (1) KR20170068431A (en)
CN (1) CN106715736A (en)
WO (1) WO2016059950A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078184A (en) * 2015-10-19 2017-04-27 権田金属工業株式会社 Magnesium alloy manufacturing method, magnesium alloy casting material, magnesium alloy rolled material and magnesium alloy molded body

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6760584B2 (en) * 2016-06-24 2020-09-23 不二ライトメタル株式会社 Extruded member of magnesium alloy
KR101889018B1 (en) 2016-12-23 2018-09-20 주식회사 포스코 Magnesium alloy sheet and method for manufacturing the same
JP2019174781A (en) * 2017-08-24 2019-10-10 キヤノン株式会社 Catoptric element and stereo camera device
CN114994815A (en) * 2017-08-24 2022-09-02 佳能株式会社 Reflective optical element and stereoscopic camera device
JP6852186B2 (en) * 2017-11-17 2021-03-31 住友電気工業株式会社 Magnesium alloy and magnesium alloy members
KR102043786B1 (en) 2017-12-26 2019-11-12 주식회사 포스코 Magnesium alloy sheet and method for manufacturing the same
US20220001653A1 (en) * 2019-03-22 2022-01-06 Hewlett-Packard Development Company, L.P. Covers for electronic devices
CN111455243A (en) * 2020-05-21 2020-07-28 东北大学 Mg-Ca-Mn-Al-Zn series wrought magnesium alloy with high Mn content and preparation method thereof
CN114908278A (en) * 2021-02-08 2022-08-16 通用汽车环球科技运作有限责任公司 Magnesium alloy and forged component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156007A (en) * 2008-12-26 2010-07-15 Mitsubishi Alum Co Ltd Magnesium-alloy sheet excellent in corrosion resistance and surface treatability, and method for producing the same
JP2011006754A (en) * 2009-06-26 2011-01-13 Sumitomo Electric Ind Ltd Magnesium alloy sheet
JP2011236497A (en) * 2010-04-16 2011-11-24 Sumitomo Electric Ind Ltd Impact-resistant member
JP2012077320A (en) * 2010-09-30 2012-04-19 Mitsubishi Alum Co Ltd Magnesium alloy sheet material for bending and method for producing the same, and magnesium alloy pipe and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2359960B1 (en) * 2004-06-30 2017-09-27 Sumitomo Electric Industries, Ltd. Method for producing magnesium alloy product
KR100993840B1 (en) * 2008-01-30 2010-11-11 포항공과대학교 산학협력단 Magnesium alloy panel having high strength and manufacturing method thereof
JP5648885B2 (en) * 2009-07-07 2015-01-07 住友電気工業株式会社 Magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy plate
JP5522400B2 (en) * 2009-12-11 2014-06-18 住友電気工業株式会社 Magnesium alloy material
CN103210102B (en) * 2010-11-16 2015-11-25 住友电气工业株式会社 Magnesium alloy plate and manufacture method thereof
JP5522000B2 (en) * 2010-11-22 2014-06-18 住友電気工業株式会社 Magnesium alloy parts
JP5880811B2 (en) * 2011-06-22 2016-03-09 住友電気工業株式会社 Magnesium alloy cast material, magnesium alloy cast coil material, magnesium alloy wrought material, magnesium alloy joint material, method for producing magnesium alloy cast material, method for producing magnesium alloy wrought material, and method for producing magnesium alloy member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156007A (en) * 2008-12-26 2010-07-15 Mitsubishi Alum Co Ltd Magnesium-alloy sheet excellent in corrosion resistance and surface treatability, and method for producing the same
JP2011006754A (en) * 2009-06-26 2011-01-13 Sumitomo Electric Ind Ltd Magnesium alloy sheet
JP2011236497A (en) * 2010-04-16 2011-11-24 Sumitomo Electric Ind Ltd Impact-resistant member
JP2012077320A (en) * 2010-09-30 2012-04-19 Mitsubishi Alum Co Ltd Magnesium alloy sheet material for bending and method for producing the same, and magnesium alloy pipe and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078184A (en) * 2015-10-19 2017-04-27 権田金属工業株式会社 Magnesium alloy manufacturing method, magnesium alloy casting material, magnesium alloy rolled material and magnesium alloy molded body

Also Published As

Publication number Publication date
EP3208356B1 (en) 2018-10-24
KR20170068431A (en) 2017-06-19
JP6465338B2 (en) 2019-02-06
CN106715736A (en) 2017-05-24
US20170283915A1 (en) 2017-10-05
EP3208356A1 (en) 2017-08-23
EP3208356A4 (en) 2017-11-08
JP2016079451A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6465338B2 (en) Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy
JP5880811B2 (en) Magnesium alloy cast material, magnesium alloy cast coil material, magnesium alloy wrought material, magnesium alloy joint material, method for producing magnesium alloy cast material, method for producing magnesium alloy wrought material, and method for producing magnesium alloy member
JP4189687B2 (en) Magnesium alloy material
JP4613965B2 (en) Magnesium alloy sheet
JP6296558B2 (en) Copper alloy and manufacturing method thereof
WO2010150651A1 (en) Magnesium alloy plate
EP2453031B1 (en) Magnesium alloy plate
WO2010103971A1 (en) Magnesium alloy member
EP3395458B1 (en) Magnesium alloy sheet and method for manufacturing same
WO2019189558A1 (en) Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
JP2017160542A (en) Magnesium alloy casting material, magnesium alloy cast coil material, wrought magnesium alloy material, magnesium alloy member, magnesium alloy joint material, and method for producing magnesium alloy casting material
JP6860236B2 (en) Magnesium-based alloy wrought material and its manufacturing method
JPWO2019013226A1 (en) Magnesium-based alloy wrought material and method for producing the same
TWI486457B (en) Magnesium alloy plate
JP6869119B2 (en) Cu-Ni-Al-based copper alloy plate material, manufacturing method, and conductive spring member
JP2014237896A (en) Magnesium alloy sheet
KR20180046764A (en) Manufacturing method of hot stamping aluminuim case and hot stamping aluminuim case manufacturing by the method
KR20170075407A (en) Magnesium alloy sheet, method for manufacturing the same
EP3643802A1 (en) Magnesium alloy sheet and manufacturing method therefor
JP6136037B2 (en) Magnesium alloy cast material, magnesium alloy cast coil material, magnesium alloy wrought material, magnesium alloy joint material, method for producing magnesium alloy cast material, method for producing magnesium alloy wrought material, and method for producing magnesium alloy member
JP5598657B2 (en) Magnesium alloy sheet and magnesium alloy molded body
JP2012107274A (en) Manufacturing method of magnesium alloy sheet
RU2579861C1 (en) Method for production of deformed semi-finished products of aluminium-based alloy
JP5892212B2 (en) Magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy plate
EP2644726A2 (en) Aluminum-magnesium alloy and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851242

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177004623

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15506622

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015851242

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015851242

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE