WO2016059674A1 - Target material, material processing device, material processing method, material production method and program - Google Patents

Target material, material processing device, material processing method, material production method and program Download PDF

Info

Publication number
WO2016059674A1
WO2016059674A1 PCT/JP2014/077339 JP2014077339W WO2016059674A1 WO 2016059674 A1 WO2016059674 A1 WO 2016059674A1 JP 2014077339 W JP2014077339 W JP 2014077339W WO 2016059674 A1 WO2016059674 A1 WO 2016059674A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
target
target material
control unit
melted
Prior art date
Application number
PCT/JP2014/077339
Other languages
French (fr)
Japanese (ja)
Inventor
白石 裕
司 堀
岩本 文男
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to PCT/JP2014/077339 priority Critical patent/WO2016059674A1/en
Publication of WO2016059674A1 publication Critical patent/WO2016059674A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma

Definitions

  • the present disclosure relates to a target material irradiated with laser light to generate extreme ultraviolet (EUV) light, a processing apparatus, a processing method, a manufacturing method, and a program thereof.
  • EUV extreme ultraviolet
  • the EUV light generation apparatus includes an LPP (Laser Produced Plasma) system using plasma generated by irradiating a target material with laser light, and a DPP (Discharge Produced Plasma) using plasma generated by discharge.
  • LPP Laser Produced Plasma
  • DPP discharge Produced Plasma
  • Three types of devices have been proposed: a device of the system and a device of SR (Synchrotron Radiation) method using orbital radiation.
  • the target material according to an aspect of the present disclosure is a target material (271) used in the target generation device (26, 120, 140, 51, 112) of the extreme ultraviolet light generation device (1), and the concentration of dissolved oxygen However, it may be equal to or lower than the saturation concentration of oxygen at the first temperature (Top) that is the temperature of the target material output by the target generation device.
  • a material processing apparatus includes a tank unit (260) that stores a target material, a temperature variable device (140) that changes a temperature of the target material in the tank unit, and the tank unit in the tank unit.
  • the temperature variable so that the target material (273) is solidified after being melted at a second temperature (Td) equal to or lower than the first temperature that is the temperature of the target material output by the target generation device of the extreme ultraviolet light generation device.
  • Td second temperature
  • a material processing method is a material processing method executed by a material processing apparatus that processes a target material used in a target generation apparatus of an extreme ultraviolet light generation apparatus, and is housed in a tank unit.
  • the target material is melted at a second temperature that is equal to or lower than the first temperature that is the temperature of the target material output by the target generation device (S125 / S222), and the target material melted at the second temperature is solidified (S126). / S207 / S227).
  • a material manufacturing method is a material manufacturing method for manufacturing a target material used in a target generation device of an extreme ultraviolet light generation device, wherein the target material contained in a tank unit is used as the target material.
  • the method may include melting at a second temperature that is equal to or lower than the first temperature, which is the temperature of the target material output by the generation device, and solidifying the target material melted at the second temperature.
  • a program includes a tank unit that stores a target material, and a temperature variable device that changes a temperature of the target material in the tank unit, and the target generation device of the extreme ultraviolet light generation device
  • FIG. 1 is a diagram schematically illustrating a configuration example of an exemplary LPP EUV light generation system.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration example of a target generation device including the target supply unit illustrated in FIG. 1.
  • FIG. 3 is a flowchart illustrating a schematic operation example of the target generation device illustrated in FIG. 2.
  • FIG. 4 is a diagram for explaining generation of particles between the filter unit and the nozzle hole in the target generation device shown in FIG.
  • FIG. 5 is a graph showing the temperature dependence of the solubility of oxygen in liquid tin.
  • FIG. 6 is a schematic diagram illustrating a schematic configuration example of the material processing apparatus according to the first embodiment of the present disclosure.
  • FIG. 7 is a flowchart illustrating a schematic operation example of the material processing according to the first embodiment.
  • FIG. 8 is a schematic diagram illustrating a schematic operation example of material processing according to the first embodiment (part 1).
  • FIG. 9 is a schematic diagram illustrating a schematic operation example of the material processing according to the first embodiment (part 2).
  • FIG. 10 is a schematic diagram illustrating a schematic operation example of the material processing according to the first embodiment (part 3).
  • FIG. 11 is a schematic diagram illustrating a schematic configuration example of a material processing apparatus according to a modification of the first embodiment.
  • FIG. 11 is a schematic diagram illustrating a schematic configuration example of a material processing apparatus according to a modification of the first embodiment.
  • FIG. 12 is a flowchart illustrating a schematic operation example of the material processing according to the modification of the first embodiment.
  • FIG. 13 is a schematic diagram illustrating a schematic operation example of material processing according to the modification of the first embodiment.
  • FIG. 14 is a schematic diagram illustrating a schematic configuration example of the material processing apparatus according to the second embodiment of the present disclosure.
  • FIG. 15 is a flowchart illustrating a schematic operation example of the material processing according to the second embodiment.
  • FIG. 16 is a schematic diagram illustrating a schematic operation example of material processing according to the second embodiment (part 1).
  • FIG. 17 is a schematic diagram illustrating a schematic operation example of material processing according to the second embodiment (part 2).
  • FIG. 18 is a schematic diagram illustrating a schematic operation example of the material processing according to the second embodiment (part 3).
  • FIG. 19 is a schematic diagram illustrating a schematic operation example of the material processing according to the second embodiment (No. 4).
  • FIG. 20 is a flowchart showing an example of the oxide precipitation process shown in step S203 of FIG.
  • FIG. 21 is a graph showing a change in temperature controlled by the oxide precipitation process shown in step S203 of FIG.
  • FIG. 22 is a block diagram illustrating an example hardware environment in which various aspects of the disclosed subject matter may be implemented.
  • Embodiments of the present disclosure relate to a target material used to generate EUV light, and specifically relate to the purification, processing or manufacture of the target material, and the supply of the target material. Also good.
  • the present disclosure is not limited to these items, and may relate to all items related to the target material used for generating EUV light.
  • FIG. 1 schematically shows a configuration of an exemplary LPP type EUV light generation system.
  • the EUV light generation apparatus 1 may be used together with at least one laser apparatus 3.
  • a system including the EUV light generation apparatus 1 and the laser apparatus 3 is referred to as an EUV light generation system 11.
  • the EUV light generation apparatus 1 may include a chamber 2 and a target supply unit 26.
  • the chamber 2 may be sealable.
  • the target supply unit 26 may be attached so as to penetrate the wall of the chamber 2, for example.
  • the material of the target substance supplied from the target supply unit 26 may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or a combination of any two or more thereof.
  • the wall of the chamber 2 may be provided with at least one through hole.
  • a window 21 may be provided in the through hole, and the pulse laser beam 32 output from the laser device 3 may pass through the window 21.
  • an EUV collector mirror 23 having a spheroidal reflecting surface may be disposed.
  • the EUV collector mirror 23 may have first and second focal points.
  • On the surface of the EUV collector mirror 23, for example, a multilayer reflective film in which molybdenum and silicon are alternately laminated may be formed.
  • the EUV collector mirror 23 is preferably arranged such that, for example, the first focal point thereof is located in the plasma generation region 25 and the second focal point thereof is located at the intermediate focal point (IF) 292.
  • a through hole 24 may be provided at the center of the EUV collector mirror 23, and the pulse laser beam 33 may pass through the through hole 24.
  • the EUV light generation apparatus 1 may include an EUV light generation control apparatus 5, a target sensor 4, and the like.
  • the target sensor 4 may have an imaging function and may be configured to detect the presence, trajectory, position, speed, and the like of the target 27.
  • the EUV light generation apparatus 1 may include a connection unit 29 that allows the inside of the chamber 2 and the inside of the exposure apparatus 6 to communicate with each other.
  • a wall 291 in which an aperture 293 is formed may be provided inside the connection portion 29.
  • the wall 291 may be arranged such that its aperture 293 is located at the second focal position of the EUV collector mirror 23.
  • the EUV light generation apparatus 1 may include a laser beam traveling direction control unit 34, a laser beam focusing mirror 22, a target recovery unit 28 for recovering the target 27, and the like.
  • the laser beam traveling direction control unit 34 may include an optical element for defining the traveling direction of the laser beam and an actuator for adjusting the position, posture, and the like of the optical element.
  • the pulsed laser beam 31 output from the laser device 3 passes through the window 21 as the pulsed laser beam 32 through the laser beam traveling direction control unit 34 and enters the chamber 2. May be.
  • the pulse laser beam 32 may travel along the at least one laser beam path into the chamber 2, be reflected by the laser beam collector mirror 22, and irradiate at least one target 27 as the pulse laser beam 33.
  • the target supply unit 26 may be configured to output the target 27 toward the plasma generation region 25 inside the chamber 2.
  • the target 27 may be irradiated with at least one pulse included in the pulse laser beam 33.
  • the target 27 irradiated with the pulsed laser light is turned into plasma, and radiation light 251 can be emitted from the plasma.
  • the EUV light 252 included in the radiation light 251 may be selectively reflected by the EUV collector mirror 23.
  • the EUV light 252 reflected by the EUV collector mirror 23 may be condensed at the intermediate condensing point 292 and output to the exposure apparatus 6.
  • a single target 27 may be irradiated with a plurality of pulses included in the pulse laser beam 33.
  • the EUV light generation control device 5 may be configured to control the entire EUV light generation system 11.
  • the EUV light generation controller 5 may be configured to process image data of the target 27 imaged by the target sensor 4. Further, the EUV light generation control device 5 may be configured to control the timing at which the target 27 is output, the output direction of the target 27, and the like. Further, the EUV light generation control device 5 may be configured to control, for example, the oscillation timing of the laser device 3, the traveling direction of the pulse laser light 32, the condensing position of the pulse laser light 33, and the like.
  • the various controls described above are merely examples, and other controls may be added as necessary.
  • a “droplet” may be a melted droplet of target material.
  • the shape may be substantially spherical.
  • the “plasma generation region” may be a three-dimensional space preset as a space where plasma is generated.
  • Target Generation Device Next, an example of a target generation device including the target supply unit 26 shown in FIG. 1 will be described in detail with reference to the drawings.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration example of a target generation device including the target supply unit 26 illustrated in FIG. 1.
  • the target generation device may include a pressure regulator 120, a temperature variable device 140, a control unit 51, and a piezo power source 112 in addition to the target supply unit 26.
  • the target supply unit 26 may include a tank unit 260, a filter unit 265, a nozzle unit 266, and a piezo element 111.
  • the tank unit 260 may include a tank 261 and a lid 262.
  • the target material 271 may be stored in the tank unit 260.
  • the target material 271 may be a metal material such as tin (Sn).
  • a convex portion 263 for projecting the nozzle portion 266 into the chamber 2 may be provided at the lower portion of the tank portion 260.
  • the convex portion 263 may be formed integrally with the tank 261 or may be a separate body.
  • a flow path for the melted target material 271 to pass from the tank 261 to the nozzle part 266 may be formed inside the convex part 263. This flow path may communicate with the tank 261. Further, the flow path may be opened on the lower surface of the convex portion 263.
  • the material of the tank 261, the lid 262, and the convex portion 263 may be a material having low reactivity with the target material 271.
  • the material having low reactivity with the target material 271 may be, for example, molybdenum (Mo).
  • the nozzle part 266 may be provided on the convex part 263 so as to cover the opening on the lower surface of the convex part 263.
  • a nozzle hole 267 may be formed in the nozzle portion 266.
  • the nozzle hole 267 may communicate with the flow path in the convex portion 263.
  • the hole diameter of the nozzle hole 267 may be, for example, 3 to 6 ⁇ m.
  • the material of the nozzle part 266 may be molybdenum (Mo).
  • the filter unit 265 may be disposed in a flow path between the tank unit 260 and the nozzle unit 266. In the flow path between the tank part 260 and the nozzle part 266, an enlarged diameter part for accommodating the filter part 265 may be formed. The filter portion 265 may be accommodated in the enlarged diameter portion without a gap using the holder 264.
  • the filter unit 265 may filter out particles such as tin oxide described later, impurities contained in the target material 271, and the like.
  • a filter portion 265 may be formed of a porous member.
  • the porous member may be porous glass.
  • the porous glass may be a porous glass body having an aluminum oxide / silicon dioxide glass as a skeleton.
  • the porous pore diameter may be 3 to 10 ⁇ m.
  • the filter portion 265 may have a structure in which a plurality of porous plate-like members are stacked.
  • a part or all of the porous member may be replaced with a member having an array of capillary tubes.
  • the pore diameter of the capillary tube may be about 0.1-2 ⁇ m.
  • the capillary tube may be made of glass.
  • the pressure regulator 120 may include a pressure control unit 125, an exhaust device 124, valves 121 and 122, and a pressure sensor 123.
  • the exhaust device 124 may be connected to an inert gas cylinder 130 via a gas pipe 131.
  • the cylinder 130 may be provided with a valve 134 for adjusting the flow rate of the supplied gas.
  • Valves 121 and 122 may be provided at two locations on the gas pipe 131.
  • a gas pipe 132 may be branched from the gas pipe 131 between the valves 121 and 122.
  • the gas pipe 132 may communicate with the tank unit 260.
  • the pressure sensor 123 may be provided for the gas pipe 132.
  • the temperature variable device 140 may include a heater 141, a temperature sensor 142, a heater power supply 143, and a temperature adjustment unit 144.
  • the heater 141 may be provided so as to heat the target material 271 in the tank unit 260.
  • the installation position of the heater 141 may be the outer periphery of the side surface of the tank 261.
  • the temperature sensor 142 may be arranged to measure the temperature of the tank part 260 or the target material 271 in the tank part 260.
  • the installation position of the temperature sensor 142 may be a side surface of the tank 261.
  • the heater power supply 143 may supply current to the heater 142.
  • the output signal line from the control unit 51 may be connected to the piezo power source 112, the temperature control unit 144, the pressure control unit 125, and the EUV light generation control device 5.
  • An input signal line to the control unit 51 may be connected to the temperature control unit 144, the pressure control unit 125, and the EUV light generation control device 5.
  • FIG. 3 is a flowchart showing a schematic operation example of the target generation device shown in FIG. However, FIG. 3 focuses on the operation of the control unit 51. Further, as preparation before starting this operation, an ingot (for example, tin ingot) of the target material 271 may be set in the tank portion 260. The lid 262 and the tank 261 may be sealed with the ingot of the target material 271 set. The seal between the lid 262 and the tank 261 may be a metal seal.
  • an ingot for example, tin ingot
  • the seal between the lid 262 and the tank 261 may be a metal seal.
  • the control unit 51 may stand by until a droplet output preparation signal is input from the EUV light generation control device 5 or the control unit of the external device (step S101; NO).
  • the droplet output preparation signal may be a signal for requesting that the target material 271 be in an outputable state.
  • the control unit 51 may first control the pressure regulator 120 to exhaust the gas in the tank unit 260 (step S102). .
  • the pressure controller 125 of the pressure regulator 120 may close the valve 121 and open the valve 122, and drive the exhaust device 124 in this state. Thereby, exhaust of the gas in the tank part 260 may be started.
  • the control unit 51 may control the temperature variable device 140 so that the target material 271 in the tank unit 260 is melted (step S103).
  • the temperature control unit 144 of the temperature variable device 140 may drive the heater power supply 143 to start supplying current to the heater 141.
  • the temperature control unit 144 may adjust the amount of current supplied from the heater power supply 143 to the heater 141 based on the temperature detected by the temperature sensor 142.
  • the temperature Top of the tank unit 260 targeted by the temperature control unit 144 may be a temperature equal to or higher than the melting point of the target material 271.
  • the temperature Top may be a temperature of 232 ° C. or higher, which is the melting point of tin.
  • the temperature Top may be in a temperature range of 240 ° C. to 290 ° C., for example.
  • the temperature detected by the temperature sensor 142 may be notified to the control unit 51 via the temperature control unit 144 as needed or periodically.
  • the control unit 51 may determine whether or not the temperature detected by the temperature sensor 142 is maintained for a predetermined time or longer (step S104). When the temperature is not maintained for a predetermined time or more, that is, when the temperature of the target material 271 in the tank unit 260 is unstable, the control unit 51 may wait until the temperature is stabilized (step S104; NO). . On the other hand, when the temperature is maintained for a predetermined time or longer (step S104; YES), the control unit 51 may transmit a droplet output preparation completion signal to the EUV light generation control device 5 or the control unit of the external device ( Step S105).
  • the droplet output preparation completion signal may be a signal notifying that preparation for outputting the target material 271 is completed. Thereafter, the control unit 51 may stand by until a droplet output signal is input from the EUV light generation control device 5 or the control unit of the external device (step S106; NO).
  • the droplet output signal may be a signal for instructing the start of droplet output at a predetermined repetition frequency.
  • the present invention is not limited to this, and the droplet output signal may be a signal indicating the output of each droplet and its output timing.
  • the control unit 51 may control the pressure regulator 120 so that the gas pressure in the tank unit 260 becomes the pressure P (step S107).
  • the pressure P may be a pressure at which the target material 271 is discharged from the nozzle hole 267 at a predetermined speed. This pressure P may be, for example, 10 MPa (megapascal).
  • the pressure control unit 125 of the pressure regulator 120 that has received a command from the control unit 51 may introduce the gas from the cylinder 130 into the tank unit 260 by closing the valve 122 and opening the valve 121. Thereby, the gas pressure in the tank part 260 rises to the pressure P, and as a result, the jet of the target material 271 can be output from the nozzle hole 267.
  • the pressure control unit 125 may stop the exhaust device 124. Further, the pressure control unit 120 may maintain the gas pressure in the tank unit 260 at the pressure P until step S111 described later. In the control for maintaining the gas pressure in the tank unit 260 at the pressure P, the pressure control unit 125 may open and close the valves 121 and 122. At that time, the exhaust device 124 may be stopped. In the stopped state, the exhaust device 124 may function as an exhaust port.
  • control unit 51 may control the piezo power source 112 so that the jet of the target material 271 discharged from the nozzle hole 267 changes to a droplet having a predetermined size and a predetermined cycle (step S108).
  • the piezo power supply 112 may apply a voltage having a predetermined waveform and a predetermined frequency to the piezo element 111.
  • vibration corresponding to the voltage waveform and frequency is transmitted to the nozzle hole 267, and as a result, the jet of the target material 271 discharged from the nozzle hole 267 changes to a droplet-shaped target 27 having a predetermined size and a predetermined cycle. obtain.
  • control unit 51 maintains temperature inside the tank unit 260 at a temperature Top until a droplet output stop signal is input from the EUV light generation control device 5 or the control unit of the external device.
  • Pressure control for maintaining the gas pressure at the pressure P and control for applying a voltage having a predetermined waveform and a predetermined frequency from the piezoelectric power source 112 to the piezoelectric element 111 may be continued (step S109; NO).
  • the droplet output stop signal may be a signal that instructs the output stop of the target material 271.
  • the control unit 51 may stop the piezo power supply 112 (step S110). Moreover, the control part 51 may control the pressure regulator 120 so that the gas pressure in the tank part 260 may be reduced to near atmospheric pressure (step S111). For this control, the pressure control unit 125 of the pressure regulator 120 may close the valve 121 and open the valve 122. As a result, the gas in the tank portion 260 is exhausted through the valve 122 and the exhaust device 124, and the gas pressure in the tank portion 260 can be reduced to near atmospheric pressure. At that time, the exhaust device 124 may be stopped or operated.
  • the control unit 51 determines again whether or not the droplet output signal has been input (step S112). If the droplet output signal has not been input (step S112; NO), the control unit 51 returns to step S107 and performs the subsequent operations. May be executed. On the other hand, when the droplet output signal has been input (step S112; YES), the control unit 51 may determine whether or not a shutdown signal for instructing the shutdown of the apparatus has been input (step S113). When the shutdown signal is not input (step S113; NO), the control unit 51 may return to step S112. On the other hand, when the shutdown signal is input (step S113; YES), the control unit 51 controls the temperature variable device 140 to turn off the heater power supply 143 (step S114), and then ends this operation. Also good. Thereby, the heat generation in the heater 141 is stopped, the tank part 260 is cooled by natural heat dissipation, and the target material 271 in the tank part 260 can be solidified.
  • the nozzle hole 267 is clogged or the hole diameter is reduced, and the target 27 may not be stably supplied.
  • a defect is considered to be caused by an oxide precipitated by the reaction between the target material 271 and oxygen dissolved in the target material 271.
  • tin when used as the target material 271, it is considered that the nozzle hole 267 is clogged or the hole diameter is reduced due to the tin oxide precipitated between the filter portion 265 and the nozzle hole 267.
  • particles 272 such as tin oxide existing in the tank unit 260 can be filtered out by the filter unit 265. Therefore, it is considered that the nozzle hole 267 is not clogged or the hole diameter is not reduced. However, since the particles 272 such as tin oxide deposited between the filter portion 265 and the nozzle hole 267 are not filtered out by the filter portion 265, the nozzle hole 267 may be clogged or the hole diameter may be reduced. .
  • oxygen dissolved in the liquid target material 271 can be considered. As shown in FIG. 4, oxygen 270 dissolved in a supersaturated state in the target material 271 does not precipitate as particles 272 such as tin oxide, and thus can pass through the filter portion 265.
  • the oxygen 270 that has passed through the filter portion 265 can react with the target material 271 before being output from the nozzle hole 267 as a part of the droplet-like target 27.
  • oxygen that has passed through the filter portion 265 can react with tin to precipitate tin oxide.
  • FIG. 5 is a graph showing the temperature dependence of the solubility of oxygen in liquid tin. Note that black circles in FIG. 5 indicate data based on Non-Patent Document 1, and white circles indicate data based on Non-Patent Document 2. A solid line indicates an approximate line of data based on Non-Patent Documents 1 and 2, and a broken line indicates data based on Non-Patent Document 3.
  • the dissolved oxygen concentration of a high-purity tin material (ingot) provided by a general tin material vendor may be in the range of about 0.6 ppmw to about 5 ppmw (weight ratio), for example.
  • a high concentration of dissolved oxygen is considered to be due to the high temperature of the process for purifying high-purity tin.
  • the temperature of the liquid tin in the tank unit 260 may be in the range of about 240 ° C. to about 290 ° C.
  • the solubility of oxygen in this temperature range can be about 0.0001 ppmw to 0.001 ppmw.
  • the saturated oxygen concentration of liquid tin at 290 ° C. can be about 1E-3 ppmw. Therefore, when a high-purity tin ingot provided from a material vendor is melted in the tank portion 260, oxygen dissolved in the liquid tin can be supersaturated.
  • oxygen in the liquid tin can remain supersaturated. This may mean that supersaturated oxygen that is not deposited as tin oxide remains.
  • the supersaturated oxygen is precipitated as tin oxide by cooling the liquid tin containing it to a melting point temperature of 232 ° C. or lower and once solidifying, and then heating again to about 240 ° C. to 290 ° C. to melt. Can do.
  • the tin oxide deposited between the filter portion 265 and the nozzle hole 267 is obtained by cooling liquid tin containing oxygen in a supersaturated state to a melting point temperature of 232 ° C. or lower. It is considered that it was generated by once solidifying and then heating again to about 240 ° C. to 290 ° C. to melt.
  • a target that can stably supply the target 27 by suppressing clogging of the nozzle hole 267 and reduction of the hole diameter caused by the particles 272 precipitated by the reaction of the target material 271.
  • a material, a material processing apparatus, a material processing method, a material manufacturing method, and a program are illustrated.
  • tin is used as the target material 271 is illustrated. Therefore, 271 is used for the sign of the tin material and 272 is used for the sign of the deposited tin oxide.
  • Embodiment 1 Material processing apparatus In Embodiment 1, the process which precipitates the oxygen dissolved in the supersaturated state in the tin material 271 beforehand as the tin oxide 272 may be performed. Note that “in advance” may be before the tin material 271 is set in the tank unit 260 of the target supply unit 26.
  • the dissolved oxygen concentration C Oxygen (ppmw) in the tin material 271 after the treatment according to the first embodiment has the relationship of FIG. 5 when the temperature of the tin material 271 when outputting the droplet-shaped target 27 is Top (K). May be 1.38E8 ⁇ exp ( ⁇ 1.48E4 / Top) or less. Therefore, the temperature at which the tin material 271 is melted in the process according to the first embodiment may be set to a temperature equal to or lower than the temperature Top of the tin material 271 when the droplet-shaped target 27 is output.
  • FIG. 6 is a schematic diagram illustrating a schematic configuration example of the material processing apparatus according to the first embodiment.
  • the same components as those in FIG. 2 are denoted by the same reference numerals, and redundant description thereof is omitted.
  • the material processing apparatus shown in FIG. 6 may execute a process for precipitating dissolved oxygen in the tin material 271 as tin oxide 272. Therefore, the material processing apparatus may include a temperature variable device 140, a pressure regulator 120, a control unit 201, a storage unit 202, and a melting container 210.
  • the temperature variable device 140 and the pressure regulator 120 may be the same as those shown in FIG. However, the pressure regulator 120 may not be connected to the cylinder 130 for supplying an inert gas for increasing the pressure in the melting vessel 210.
  • the melting vessel 210 may be composed of a lid 212 and a mold 211.
  • the lid 212 and the mold 211 may have a heat resistance of about 300 ° C.
  • the lid 212 and the mold 211 may be made of a substance that does not easily react with the tin material 271.
  • the substance that hardly reacts with the tin material 271 may be, for example, molybdenum (Mo).
  • the mold 211 may be composed of a plurality of separable members so that the tin material 271 can be cast.
  • a configuration of a surface contact seal or a metal seal may be applied to the connection portion of each member in the mold 211.
  • a surface contact seal or metal seal configuration may be applied to the connection between the mold 211 and the lid 212 in order to obtain airtightness.
  • the output signal line from the control unit 201 may be connected to the temperature control unit 144 and the pressure control unit 125.
  • An input signal line to the control unit 201 may be connected to the temperature control unit 144 and the pressure control unit 125.
  • the storage unit 202 may be connected to the control unit 201.
  • the storage unit 202 may be built in or externally attached to the control unit 201.
  • FIGS. 7 to 10 are diagrams for explaining a schematic operation example of material processing (including material manufacturing) according to the first embodiment. Note that the material processing according to the present embodiment may include at least steps S125 and S126 in FIG.
  • the high-purity tin material 273 may be deposited by, for example, electrolytic purification (step S121). This step may be performed, for example, in a material vendor.
  • the deposited high purity tin material 273 may be set in the mold 211 as shown in FIG. 8 (step S122). Note that, as described above, the mold 211 may include a plurality of separable members 211a and 211b.
  • the processing temperature Td at the time of processing the high purity tin material 273 may be input to the control unit 201 (step S123).
  • the input processing temperature Td may be stored in the storage unit 202 connected to the control unit 201.
  • the step of inputting the processing temperature Td may be before the step of exhausting the inside of the melting vessel 210. Further, the processing temperature Td may be input manually by an operator or input via a storage medium or a communication network. Alternatively, the control unit 201 may read the processing temperature Td stored in the storage unit 202 during the previous processing.
  • the treatment temperature Td may be a temperature included in a temperature range of the melting point (232 ° C.) or more and 350 ° C. or less of tin. More preferably, the processing temperature Td may be a temperature included in a temperature range of 240 ° C. or higher and 290 ° C. or lower. More preferably, the processing temperature Td may be a temperature that is 240 ° C. or higher and that is included in a temperature range that is equal to or lower than the temperature Top of the tank unit 260 that is maintained when the target is supplied.
  • the controller 201 may control the pressure regulator 125 so as to exhaust the gas in the melting vessel 210 as in step S102 of FIG. 3 (step S124). Thereby, exhaust of the gas in the melting container 210 may be started.
  • control unit 201 may control the temperature variable device 140 so that the high-purity tin material 273 in the melting vessel 210 is melted, similarly to step S103 of FIG. 3 (step S125).
  • the temperature of the melting vessel 210 targeted by the temperature control unit 144 may be the processing temperature Td.
  • the high-purity tin material 273 in the melting container 210 may be melted into the liquid tin material 271.
  • the control unit 201 may cool the melting vessel 210 to room temperature by turning off the heater power supply 143 and leaving it to stand. (Step S126). At that time, oxygen dissolved in the liquid tin material 271 in a supersaturated state reacts with tin and can be precipitated as tin oxide 272. As a result, the amount of oxygen not precipitated as tin oxide in the tin material 271 may be equal to or lower than the saturated oxygen concentration of oxygen with respect to the tin material 271 at the temperature Top. For example, when the processing temperature Td is 290 ° C., the oxygen concentration of the tin material 271 after the processing may be 1E-3 ppmw or less.
  • the control unit 201 may control the pressure regulator 120 so that the gas pressure in the melting vessel 210 rises to near atmospheric pressure (step S127).
  • the pressure controller 125 of the pressure regulator 120 may stop the exhaust device 124 and close the valve 122 and open the valve 121.
  • air may flow into the melting vessel 210 through the gas pipe 131 on the valve 121 side.
  • the pressure control unit 125 may stop the exhaust device 124 while keeping the valve 122 opened and the valve 121 closed. Thereby, air may flow into the melting vessel 210 through the exhaust device 124 and the valve 122.
  • the melting container 210 is removed from the material processing apparatus and the mold 211 is separated, whereby the solidified tin material 271A may be taken out from the melting container 210 as shown in FIG. 10 (step S128).
  • the extracted tin material 271A may be set, for example, in the tank unit 260 of the target generation device shown in FIG. 2 (step S129) and used for droplet output processing by the target generation device (step S130).
  • control unit 201 may maintain the temperature of the melting vessel 210 at the processing temperature Td, for example, for several hours to one week. Further, the control unit 201 may proceed to step S127 after repeating the processes of steps S125 and S126 a plurality of times.
  • the tin material 271 with a small amount of dissolved oxygen can be used in the droplet output processing by the target generation device.
  • a tin material 271 in which the amount of oxygen not precipitated as tin oxide is equal to or lower than the saturated oxygen concentration of oxygen with respect to the tin material 271 at the temperature Top can be used.
  • precipitation of the tin oxide 272 between the filter part 265 and the nozzle hole 267 can be suppressed.
  • the tin oxide 272 deposited in advance can be filtered out by the filter unit 265.
  • repeating the processes of steps S125 and S126 a plurality of times may further reduce the amount of oxygen not precipitated as tin oxide 272 in the tin material 271 after the process. Further, increasing the number of repetitions may increase the particle size of the precipitated tin oxide 272. Thereby, the tin oxide 272 that passes through the filter portion 265 may be further reduced.
  • materials other than tin can be used as a target material for EUV light generation.
  • a material including at least one of these materials including terbium (Tb), cadmium (Gd), or tin (Sn) can be used as the target material.
  • materials such as terbium (Tb) and cadmium (Gd) may also contain dissolved oxygen.
  • Terbium has a melting point of 1356 ° C.
  • gadolinium has a melting point of 1312 ° C. Therefore, the processing temperature Td and the temperature Top corresponding to each may be set to a temperature equal to or higher than the melting point. At that time, similarly to the case of using tin, the processing temperature Td may be equal to or lower than the temperature Top.
  • Embodiment 1 Material Processing Device with Stirring Device Precipitation of tin oxide 272 may be facilitated by stirring the tin material 271. At that time, precipitation of tin oxide 272 may be further promoted by adding a scavenger that promotes precipitation of tin oxide 272 to the liquid tin material 271.
  • FIG. 11 is a schematic diagram illustrating a schematic configuration example of a material processing apparatus according to a modification of the first embodiment.
  • the same components as those in FIG. 6 are denoted by the same reference numerals, and redundant description thereof is omitted.
  • the material processing apparatus shown in FIG. 11 may include a stirring device 150 in addition to the same configuration as the material processing apparatus shown in FIG. Stirrer 150 may be placed in contact with the bottom surface of melting vessel 210, for example.
  • the stirring device 150 may be connected to a three-phase AC power source 151.
  • the stirring device 150 may electromagnetically flow the molten metal by a magnetic field generated by a current supplied from the three-phase AC power supply 151.
  • the material of the mold 211 and the lid 212 constituting the melting container 210 is a non-magnetic material.
  • the non-magnetic material may be quartz, alumina, zirconia, PBN (Pyrolytic Born Nitride), BN (Born Nitride), or the like.
  • stirring device 150 may be replaced with a stirring device having another configuration generally known in a metal melting furnace or the like.
  • a configuration in which a high-frequency current is supplied to the heater 141 may be configured so that the heater 141 also serves as a stirring device.
  • a scavenger may be added in addition to the high-purity tin material 273.
  • the scavenger may be a substance that promotes the precipitation of tin oxide 272.
  • the scavenger may be more easily oxidized than the material tin.
  • the scavenger may be a material that dissolves at least about 1% by mass in a tin material 271 that is melted at 290 ° C., for example.
  • powdery or bulk calcium (Ca), magnesium (Mg), aluminum (Al), zinc (Zn), or the like may be used.
  • FIGS. 12 and 13 are diagrams for explaining a schematic operation example of the material processing according to the modification of the first embodiment. Note that the material processing according to the present embodiment may include at least steps S125 to S126 in FIG.
  • the operation example shown in FIG. 12 may be basically the same as the operation example shown in FIG. However, in the operation example shown in FIG. 12, the process in step S122 in FIG. 7 may be replaced with step S301, and steps S302 to S304 may be added between steps S125 and S126.
  • step S301 the high-purity tin material 273 deposited by electrolytic purification may be set in the container 311 together with the scavenger 274 (see FIG. 13).
  • step S302 after the temperature of the melting vessel 210 rises to the processing temperature Td, stirring of the molten high-purity tin material 273 may be started.
  • This agitation may be started when an operator turns on the agitator 150 and the three-phase AC power supply 151, or the control unit 51 starts the control of the agitator 150 and the three-phase AC power supply 151. May be.
  • a part of the scavenger 274 added to the high-purity tin material 273 may be melted when the temperature of the melting vessel 210 rises to the processing temperature Td.
  • the operator turns on the stirring device 150 and the three-phase AC power supply 151, the operator is notified of the temperature of the melting vessel 210 having risen to the processing temperature Td using light, sound, communication means, or the like. May be.
  • step S303 it may be determined whether a predetermined time has elapsed since the start of stirring. This determination may be performed based on the elapsed time measured by a timer (not shown), for example, or may be performed by an operator. When performed by an operator, the operator may be notified that a predetermined time has elapsed since the start of stirring using light, sound, communication means, or the like.
  • step S304 stirring of the high-purity tin material 273 may be stopped.
  • the stop of the stirring may be the power-off of the stirring device 150 or the three-phase AC power supply 151 by the operator, or the control of the stirring device 150 or the three-phase AC power supply 151 by the control unit 51.
  • the scavenger 274 and the stirring promote the precipitation of the tin oxide 272, so that the amount per fixed amount not precipitated as tin oxide in the treated tin material 271A. It may be possible to further reduce the amount of oxygen. Thereby, it is possible to further suppress the occurrence of clogging of the nozzle holes 267 and the reduction of the hole diameter and to supply the target 27 more stably.
  • Second Embodiment Other Examples of Material Processing Device
  • the particles 272 deposited by the material processing can be filtered out by the filter unit 265 in the target generation device during the droplet output processing.
  • the particles 272 deposited by the material processing may be filtered off.
  • FIG. 14 is a schematic diagram illustrating a schematic configuration example of a material processing apparatus according to the second embodiment.
  • the material processing apparatus shown in FIG. 14 may execute a process for precipitating dissolved oxygen in the tin material 271 as tin oxide 272 and a process for filtering the precipitated tin oxide 272. Therefore, the material processing apparatus includes a temperature variable device 140, a pressure regulator 120, a control unit 301, a storage unit 302, a melting container 310, a filter unit 265, a gate valve 314, and a mold 320. Also good.
  • the temperature variable device 140, the pressure regulator 120, and the filter unit 265 may be the same as those shown in FIG. 2 or FIG. However, the pressure regulator 120 may be connected to a cylinder 130 that supplies an inert gas for increasing the pressure in the melting vessel 310.
  • the melting container 310 may be composed of a lid 312 and a container 311.
  • the lid 312 and the container 311 may be formed of, for example, molybdenum (Mo).
  • the container 311 may be provided with a convex portion 313 that accommodates the filter portion 265 similarly to the tank 261 shown in FIG.
  • the shape of the convex portion 313 may be the same as that of the convex portion 263.
  • the filter portion 265 may be accommodated in the enlarged diameter portion formed in the flow path that connects the upper surface opening and the lower surface opening of the convex portion 313 with no gap.
  • a mold 320 may be disposed below the opening on the lower surface of the convex portion 313.
  • the mold 320 may be provided with an opening through which the target material 271 flowing out from the lower surface opening of the convex portion 313 flows.
  • you may connect so that airtightness may be maintained using the gate valve 314.
  • FIG. The gate valve 314 and the mold 320 may be detachable from the convex portion 313.
  • the output signal line from the control unit 301 may be connected to the temperature control unit 144 and the pressure control unit 125.
  • An input signal line to the control unit 301 may be connected to the temperature control unit 144 and the pressure control unit 125.
  • the storage unit 302 may be connected to the control unit 301.
  • the storage unit 302 may be built in or externally attached to the control unit 301.
  • FIGS. 15 to 19 are diagrams for explaining a schematic operation example of material processing according to the second embodiment. Note that the material processing according to the present embodiment may include at least steps S203 and S205 in FIG.
  • the high-purity tin material 273 deposited by electrolytic purification may be set in the container 311 (see FIG. 16) (steps S ⁇ b> 121 and S ⁇ b> 201). .
  • the gate valve 314 may be open.
  • the processing temperature Td and TL, the processing times t1 and t2, and the number of processing times Nmax may be input to the control unit 301 (step S202).
  • the input processing temperatures Td and TL, processing times t1 and t2, and the number of processing times N may be stored in the storage unit 302 connected to the control unit 301.
  • the processing temperature Td may be the same as in the first embodiment. Experiments have shown that good results are obtained when the processing temperature TL is set to a temperature near the melting point of tin. From this, it is considered that the treatment temperature TL is a temperature at which tin oxide is precipitated in liquid tin or a temperature at which tin oxide is precipitated and aggregated.
  • the processing temperature TL may be a temperature range of 232 ° C. to 240 ° C. that is equal to or higher than the melting point Tmp of tin.
  • the processing temperature TL may be a temperature range (for example, 200 ° C. to 220 ° C.) below the melting point Tmp of tin.
  • the processing time t1 may be a time for maintaining the melting vessel 310 at the processing temperature Td.
  • the processing time t1 may be set within a range of 1 to 20 hours, for example.
  • the processing time t1 may be set to 7 hours.
  • the processing time t2 may be a time for maintaining the temperature of the melting vessel 310 at the processing temperature TL.
  • the processing time t2 may be set within a range of 1 to 18 hours, for example.
  • the processing time t2 may be set to 12 hours.
  • the number of processing times Nmax may be the number of cycles in which the temperature of the melting vessel 310 is raised and lowered to the processing temperature Td and the processing temperature TL.
  • the number of processing times Nmax may be, for example, 5 times.
  • control unit 301 may control the pressure regulator 125 so as to exhaust the gas in the melting container 310, similarly to step S124 of FIG. 7 (step S124). . Thereby, exhaust of the gas in the melting container 310 may be started. At this time, since the gate valve 314 is open, the inside of the mold 320 can also be exhausted through the filter portion 265.
  • control unit 301 may perform an oxide deposition process for depositing tin oxide 272 in the tin material 271 (step S203). Details of this oxide precipitation treatment will be described later.
  • the gate valve 314 may remain open.
  • control unit 301 may control the pressure regulator 125 to stop the exhaust device 124 (step S204). At that time, the pressure controller 125 of the pressure regulator 120 may stop the exhaust device 124 and close the valve 122.
  • the control unit 301 may control the pressure regulator 120 so as to pressurize the inside of the melting container 310 (step S205).
  • the pressure control unit 125 may introduce the inert gas from the cylinder 130 into the melting container 310 by opening the valve 121.
  • the pressure in the melting container 310 is such that the target material 271 passes through the filter portion 265 and flows out from the opening of the convex portion 313 (for example, the pressure P in step S107 in FIG. 3). It may be.
  • the pressure regulator 125 may control the pressure in the melting container 310 to maintain the pressure Pt by controlling the opening and closing of the valve 121.
  • the pressure Pt can be specified in advance by, for example, experiments or simulations.
  • the tin oxide 272 in the tin material 271 can be filtered by the filter portion 265 by passing through the filter portion 265.
  • the tin material 271B in a state where the tin oxide 272 is filtered is introduced into the mold 320.
  • the inert gas introduced into the melting vessel 310 may flow into the mold 320.
  • the control unit 301 may close the gate valve 314 (step S206). Thereafter, the mold 320 into which the tin material 271B has been introduced may be cooled to room temperature, for example (step S207).
  • the cooling of the mold 320 may be natural heat dissipation or forced heat dissipation.
  • the mold 320 is removed from the material processing apparatus and separated, so that the solidified tin material 271B may be taken out from the mold 320 as shown in FIG. 19 ( Step S128).
  • the mold 320 may be composed of a plurality of separable members 321 and 322. Further, the extracted tin material 271B may be set, for example, in the tank unit 260 of the target generation device shown in FIG. 2 (step S129) and used for droplet output processing by the target generation device (step S130).
  • FIGS. 20 and 21 are diagrams illustrating an example of the oxide precipitation process shown in step S203 of FIG.
  • the control unit 301 may first reset the value N of a counter (not shown) to 0 (step S221).
  • the control unit 301 may control the temperature variable device 140 so that the temperature T of the melting vessel 310 increases to the processing temperature Td (steps S222 to S223; NO) (periods t00 to t01 in FIG. 21). reference).
  • the control unit 301 starts measuring the elapsed time t using a timer (not shown) (step S224) and The temperature variable device 140 may be controlled so that the temperature T is maintained at the processing temperature Td for the set processing time t1 (steps S225 to S226; NO) (see the periods t01 to t02 in FIG. 21). .
  • step S226 the control unit 301 may control the temperature variable device 140 so that the temperature T of the melting container 310 is lowered to the processing temperature TL.
  • Step S227 to S228; NO the control unit 301 may reset the timer.
  • the control unit 301 starts measuring the elapsed time t using the reset timer (step S229), and The temperature variable device 140 may be controlled so that the temperature T is maintained at the processing temperature TL for the set processing time t2 (steps S230 to S231; NO) (see the periods t03 to t04 in FIG. 21). .
  • step S232 the control unit 301 adds 1 to the counter value N (step S232), and the processing in which the counter value N after the addition is set is performed. It may be determined whether or not the number Nmax has been reached (step S233). When the value N of the counter has not reached the processing count Nmax (step S233; NO), the control unit 301 may return to step S222 and repeat the subsequent operations. On the other hand, when the value N of the counter reaches the processing count Nmax (step S233; YES), the control unit 301 may return to the operation illustrated in FIG.
  • the tin material 271 in which the tin oxide 272 has been reduced in advance can be set in the target generation device. Thereby, it may be possible to further reduce the tin oxide 272 from reaching the nozzle hole 267. Also, using a tin material 271 that has been pre-reduced in tin oxide 272 may lengthen the replacement cycle of the filter portion 265.
  • the processing temperatures Td and TL, the processing times t1 and t2, and the processing frequency Nmax may be determined in advance based on, for example, results of experiments or simulations. For example, according to the experimental results, the amount of oxygen remaining in the target material 271 could be reduced by setting the number of treatments Nmax to 5 or more. However, this experimental result does not deny that the number of processing times Nmax is less than 5.
  • FIG. 22 is a block diagram illustrating an example hardware environment in which various aspects of the disclosed subject matter may be implemented.
  • the example hardware environment 100 of FIG. 22 includes a processing unit 1000, a storage unit 1005, a user interface 1010, a parallel I / O controller 1020, a serial I / O controller 1030, A / D, D / A.
  • the converter 1040 may be included, the configuration of the hardware environment 100 is not limited to this.
  • the processing unit 1000 may include a central processing unit (CPU) 1001, a memory 1002, a timer 1003, and an image processing unit (GPU) 1004.
  • the memory 1002 may include random access memory (RAM) and read only memory (ROM).
  • the CPU 1001 may be any commercially available processor. A dual microprocessor or other multiprocessor architecture may be used as the CPU 1001.
  • FIG. 22 may be interconnected to perform the processes described in this disclosure.
  • the processing unit 1000 may read and execute a program stored in the storage unit 1005, or the processing unit 1000 may read data together with the program from the storage unit 1005.
  • the unit 1000 may write data to the storage unit 1005.
  • the CPU 1001 may execute a program read from the storage unit 1005.
  • the memory 1002 may be a work area for temporarily storing programs executed by the CPU 1001 and data used for the operation of the CPU 1001.
  • the timer 1003 may measure the time interval and output the measurement result to the CPU 1001 according to the execution of the program.
  • the GPU 1004 may process the image data according to a program read from the storage unit 1005 and output the processing result to the CPU 1001.
  • the parallel I / O controller 1020 may be connected to parallel I / O devices that can communicate with the processing unit 1000, such as the EUV light generation controller 5 and the control unit 51, and the processing unit 1000 and the parallel I / O devices. You may control communication between.
  • the serial I / O controller 1030 may be connected to a serial I / O device that can communicate with the processing unit 1000, such as the temperature control unit 144, the pressure control unit 125, and the piezo power supply 112. The communication with the / O device may be controlled.
  • the A / D and D / A converter 1040 may be connected to analog devices such as a temperature sensor, a pressure sensor, and various vacuum gauge sensors via an analog port, and communication between the processing unit 1000 and these analog devices. Or A / D and D / A conversion of communication contents may be performed.
  • the user interface 1010 may display the progress of the program executed by the processing unit 1000 to the operator so that the operator can instruct the processing unit 1000 to stop the program or execute the interrupt routine.
  • the exemplary hardware environment 100 may be applied to configurations of the EUV light generation control device 5, the control unit 51, the temperature control unit 144, the pressure control unit 125, and the like in the present disclosure.
  • controllers may be implemented in a distributed computing environment, i.e., an environment where tasks are performed by processing units connected via a communications network.
  • the EUV light generation control device 5, the control unit 51, the temperature control unit 144, the pressure control unit 125, and the like may be connected to each other via a communication network such as Ethernet (registered trademark) or the Internet.
  • program modules may be stored in both local and remote memory storage devices.
  • Stirrer 151 ... 3-phase AC power source, 202, 302 ... Storage unit, 210, 310 ... Melting vessel, 211,320 ... Mold, 211a, 211b, 321,322 ... Member, 212, 312 ... Lid, 311 ... Container, 314 ... Gate valve, 260 ... Tank part, 261 ... Tank, 262 ... Lid, 263 DESCRIPTION OF SYMBOLS 13 ... Convex part, 264 ... Holder, 265 ... Filter part, 266 ... Nozzle part, 267 ... Nozzle hole, 270 ... Oxygen, 271, 271A, 271B ... Target material (tin material), 272 ... Particle (tin oxide), 273 ... high-purity tin material, 274 ... scavenger

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • X-Ray Techniques (AREA)

Abstract

In one aspect of this invention, the target material (271) is used for a target generation device (26, 120, 140, 51, 112) of an extreme UV generation device (1), wherein the concentration of dissolved oxygen may be less than or equal to the oxygen saturation concentration at a first temperature (Top), which is the temperature of the target material being delivered by the target generation device. In another aspect of the invention, the material processing device may comprise a tank unit (260) for containing the target material, a temperature changing device (140) for changing the temperature of the target material inside the tank unit, and a control unit (201/301) for controlling the temperature changing device so that the target material (273) inside the tank unit is melted at a second temperature (Td) and then solidified, the second temperature (Td) being less than or equal to the first temperature which is the temperature of the target material being delivered by the target generation device of the extreme UV generation device.

Description

ターゲット材料、材料処理装置、材料処理方法、材料製造方法およびプログラムTarget material, material processing apparatus, material processing method, material manufacturing method and program
 本開示は、極端紫外(EUV)光を生成するためにレーザ光に照射されるターゲット材料、およびその処理装置、処理方法、製造方法、およびそのプログラムに関する。 The present disclosure relates to a target material irradiated with laser light to generate extreme ultraviolet (EUV) light, a processing apparatus, a processing method, a manufacturing method, and a program thereof.
 近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、70nm~45nmの微細加工、さらには32nm以下の微細加工が要求されるようになる。このため、例えば32nm以下の微細加工の要求に応えるべく、波長13nm程度の極端紫外(EUV)光を生成するための装置と縮小投影反射光学系(reduced projection reflective optics)とを組み合わせた露光装置の開発が期待されている。 In recent years, along with miniaturization of semiconductor processes, miniaturization of transfer patterns in optical lithography of semiconductor processes has been progressing rapidly. In the next generation, fine processing of 70 nm to 45 nm and further fine processing of 32 nm or less will be required. For this reason, for example, an exposure apparatus combining an apparatus for generating extreme ultraviolet (EUV) light having a wavelength of about 13 nm and a reduced projection reflective optical system to meet the demand for fine processing of 32 nm or less. Development is expected.
 EUV光生成装置としては、ターゲット物質にレーザ光を照射することによって生成されるプラズマを用いたLPP(Laser Produced Plasma)方式の装置と、放電によって生成されるプラズマを用いたDPP(Discharge Produced Plasma)方式の装置と、軌道放射光を用いたSR(Synchrotron Radiation)方式の装置との3種類の装置が提案されている。 The EUV light generation apparatus includes an LPP (Laser Produced Plasma) system using plasma generated by irradiating a target material with laser light, and a DPP (Discharge Produced Plasma) using plasma generated by discharge. Three types of devices have been proposed: a device of the system and a device of SR (Synchrotron Radiation) method using orbital radiation.
特許第5362515号公報Japanese Patent No. 5362515 特開2011-216860号公報JP 2011-216860 A 特開2013-179029号公報JP 2013-179029 A 特開2013-201118号公報JP 2013-201118 A 特許第5296269号公報Japanese Patent No. 5296269 米国特許第7122816号明細書US Pat. No. 7,122,816 米国特許第7449703号明細書US Pat. No. 7,449,703
概要Overview
 本開示の一態様によるターゲット材料は、極端紫外光生成装置(1)のターゲット生成装置(26,120,140,51,112)に用いられるターゲット材料(271)であって、溶存する酸素の濃度が、前記ターゲット生成装置により出力されるターゲット材料の温度である第1温度(Top)での酸素の飽和濃度以下であってもよい。 The target material according to an aspect of the present disclosure is a target material (271) used in the target generation device (26, 120, 140, 51, 112) of the extreme ultraviolet light generation device (1), and the concentration of dissolved oxygen However, it may be equal to or lower than the saturation concentration of oxygen at the first temperature (Top) that is the temperature of the target material output by the target generation device.
 本開示の他の一態様による材料処理装置は、ターゲット材料を収容するタンク部(260)と、前記タンク部内の前記ターゲット材料の温度を変化させる温度可変装置(140)と、前記タンク部内の前記ターゲット材料(273)を、極端紫外光生成装置のターゲット生成装置により出力されるターゲット材料の温度である第1温度以下の第2温度(Td)で融解させた後に固化させるように、前記温度可変装置を制御する制御部(201/301)とを備えてもよい。 A material processing apparatus according to another aspect of the present disclosure includes a tank unit (260) that stores a target material, a temperature variable device (140) that changes a temperature of the target material in the tank unit, and the tank unit in the tank unit. The temperature variable so that the target material (273) is solidified after being melted at a second temperature (Td) equal to or lower than the first temperature that is the temperature of the target material output by the target generation device of the extreme ultraviolet light generation device. You may provide the control part (201/301) which controls an apparatus.
 本開示のさらに他の一態様による材料処理方法は、極端紫外光生成装置のターゲット生成装置に用いられるターゲット材料を処理する材料処理装置が実行する材料処理方法であって、タンク部内に収容されたターゲット材料を、前記ターゲット生成装置により出力されるターゲット材料の温度である第1温度以下の第2温度で融解させ(S125/S222)、前記第2温度で融解した前記ターゲット材料を固化させる(S126/S207/S227)ことを含んでもよい。 A material processing method according to still another aspect of the present disclosure is a material processing method executed by a material processing apparatus that processes a target material used in a target generation apparatus of an extreme ultraviolet light generation apparatus, and is housed in a tank unit. The target material is melted at a second temperature that is equal to or lower than the first temperature that is the temperature of the target material output by the target generation device (S125 / S222), and the target material melted at the second temperature is solidified (S126). / S207 / S227).
 本開示のさらに他の一態様による材料製造方法は、極端紫外光生成装置のターゲット生成装置に用いられるターゲット材料を製造する材料製造方法であって、タンク部内に収容されたターゲット材料を、前記ターゲット生成装置により出力されるターゲット材料の温度である第1温度以下の第2温度で融解させ、前記第2温度で融解した前記ターゲット材料を固化させることを含んでもよい。 A material manufacturing method according to still another aspect of the present disclosure is a material manufacturing method for manufacturing a target material used in a target generation device of an extreme ultraviolet light generation device, wherein the target material contained in a tank unit is used as the target material. The method may include melting at a second temperature that is equal to or lower than the first temperature, which is the temperature of the target material output by the generation device, and solidifying the target material melted at the second temperature.
 本開示のさらに他の一態様によるプログラムは、ターゲット材料を収容するタンク部と、前記タンク部内の前記ターゲット材料の温度を変化させる温度可変装置とを備え、極端紫外光生成装置のターゲット生成装置に用いられるターゲット材料を処理する材料処理装置を制御するコンピュータを機能させるためのプログラムであって、前記タンク部内に収容されたターゲット材料を、前記ターゲット生成装置により出力されるターゲット材料の温度である第1温度以下の第2温度で融解させるように前記温度可変装置を制御し、前記第2温度で融解した前記ターゲット材料を固化させるように前記温度可変装置を制御することを前記コンピュータに実行させてもよい。 A program according to yet another aspect of the present disclosure includes a tank unit that stores a target material, and a temperature variable device that changes a temperature of the target material in the tank unit, and the target generation device of the extreme ultraviolet light generation device A program for causing a computer to control a material processing apparatus for processing a target material to be used, wherein the target material stored in the tank unit is a temperature of the target material output by the target generation apparatus. Controlling the temperature variable device to melt at a second temperature of 1 temperature or less, and causing the computer to control the temperature variable device to solidify the target material melted at the second temperature. Also good.
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的なLPP方式のEUV光生成システムの構成例を概略的に示す図である。 図2は、図1に示すターゲット供給部を含むターゲット生成装置の概略構成例を示す模式図である。 図3は、図2に示すターゲット生成装置の概略動作例を示すフローチャートである。 図4は、図2に示すターゲット生成装置におけるフィルタ部とノズル孔との間でのパーティクルの発生を説明するための図である。 図5は、液体錫に対する酸素の溶解度の温度依存性を示すグラフである。 図6は、本開示の実施形態1にかかる材料処理装置の概略構成例を示す模式図である。 図7は、実施形態1にかかる材料処理の概略動作例を示すフローチャートである。 図8は、実施形態1にかかる材料処理の概略動作例を示す模式図である(その1)。 図9は、実施形態1にかかる材料処理の概略動作例を示す模式図である(その2)。 図10は、実施形態1にかかる材料処理の概略動作例を示す模式図である(その3)。 図11は、実施形態1の変形例にかかる材料処理装置の概略構成例を示す模式図である。 図12は、実施形態1の変形例にかかる材料処理の概略動作例を示すフローチャートである。 図13は、実施形態1の変形例にかかる材料処理の概略動作例を示す模式図である。 図14は、本開示の実施形態2にかかる材料処理装置の概略構成例を示す模式図である。 図15は、実施形態2にかかる材料処理の概略動作例を示すフローチャートである。 図16は、実施形態2にかかる材料処理の概略動作例を示す模式図である(その1)。 図17は、実施形態2にかかる材料処理の概略動作例を示す模式図である(その2)。 図18は、実施形態2にかかる材料処理の概略動作例を示す模式図である(その3)。 図19は、実施形態2にかかる材料処理の概略動作例を示す模式図である(その4)。 図20は、図15のステップS203に示す酸化物析出処理の一例を示すフローチャートである。 図21は、図15のステップS203に示す酸化物析出処理によって制御される温度の変化を示すグラフである。 図22は、開示される主題の様々な側面が実行され得る例示的なハードウエア環境を示すブロック図である。
Several embodiments of the present disclosure are described below by way of example only and with reference to the accompanying drawings.
FIG. 1 is a diagram schematically illustrating a configuration example of an exemplary LPP EUV light generation system. FIG. 2 is a schematic diagram illustrating a schematic configuration example of a target generation device including the target supply unit illustrated in FIG. 1. FIG. 3 is a flowchart illustrating a schematic operation example of the target generation device illustrated in FIG. 2. FIG. 4 is a diagram for explaining generation of particles between the filter unit and the nozzle hole in the target generation device shown in FIG. FIG. 5 is a graph showing the temperature dependence of the solubility of oxygen in liquid tin. FIG. 6 is a schematic diagram illustrating a schematic configuration example of the material processing apparatus according to the first embodiment of the present disclosure. FIG. 7 is a flowchart illustrating a schematic operation example of the material processing according to the first embodiment. FIG. 8 is a schematic diagram illustrating a schematic operation example of material processing according to the first embodiment (part 1). FIG. 9 is a schematic diagram illustrating a schematic operation example of the material processing according to the first embodiment (part 2). FIG. 10 is a schematic diagram illustrating a schematic operation example of the material processing according to the first embodiment (part 3). FIG. 11 is a schematic diagram illustrating a schematic configuration example of a material processing apparatus according to a modification of the first embodiment. FIG. 12 is a flowchart illustrating a schematic operation example of the material processing according to the modification of the first embodiment. FIG. 13 is a schematic diagram illustrating a schematic operation example of material processing according to the modification of the first embodiment. FIG. 14 is a schematic diagram illustrating a schematic configuration example of the material processing apparatus according to the second embodiment of the present disclosure. FIG. 15 is a flowchart illustrating a schematic operation example of the material processing according to the second embodiment. FIG. 16 is a schematic diagram illustrating a schematic operation example of material processing according to the second embodiment (part 1). FIG. 17 is a schematic diagram illustrating a schematic operation example of material processing according to the second embodiment (part 2). FIG. 18 is a schematic diagram illustrating a schematic operation example of the material processing according to the second embodiment (part 3). FIG. 19 is a schematic diagram illustrating a schematic operation example of the material processing according to the second embodiment (No. 4). FIG. 20 is a flowchart showing an example of the oxide precipitation process shown in step S203 of FIG. FIG. 21 is a graph showing a change in temperature controlled by the oxide precipitation process shown in step S203 of FIG. FIG. 22 is a block diagram illustrating an example hardware environment in which various aspects of the disclosed subject matter may be implemented.
実施形態Embodiment
内容
1.概要
2.極端紫外光生成装置の全体説明
  2.1 構成
  2.2 動作
3.用語の説明
4.ターゲット生成装置
  4.1 構成
  4.2 動作
  4.3 課題
  4.4 溶存酸素析出の原理
5.実施形態1:材料処理装置
  5.1 構成
  5.2 動作
  5.3 作用
  5.4 実施形態1の変形例:攪拌装置を備えた材料処理装置
  5.4.1 構成
  5.4.2 動作
  5.4.3 作用
6.実施形態2:材料処理装置の他の例
  6.1 構成
  6.2 動作
  6.3 作用
7.その他
  7.1 制御部
Contents 1. Outline 2. 2. Overview of Extreme Ultraviolet Light Generation Device 2.1 Configuration 2.2 Operation Explanation of terms 4. 4. Target generator 4.1 Configuration 4.2 Operation 4.3 Problem 4.4 Principle of dissolved oxygen precipitation First Embodiment Material Processing Apparatus 5.1 Configuration 5.2 Operation 5.3 Operation 5.4 Modification Example of First Embodiment: Material Processing Apparatus Equipped with Stirrer 5.4.1 Configuration 5.4.2 Operation 5 4.3 Action 6. Embodiment 2: Another example of material processing apparatus 6.1 Configuration 6.2 Operation 6.3 Action 7. Others 7.1 Control unit
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Embodiment described below shows some examples of this indication, and does not limit the contents of this indication. In addition, all the configurations and operations described in the embodiments are not necessarily essential as the configurations and operations of the present disclosure. In addition, the same referential mark is attached | subjected to the same component and the overlapping description is abbreviate | omitted.
1.概要
 本開示の実施形態は、EUV光の生成に用いられるターゲット材料に関係するものであって、具体的には、ターゲット材料の精製、処理または製造、および、ターゲット材料の供給に関するものであってもよい。ただし、本開示はこれらの事項に限定されず、EUV光の生成に用いられるターゲット材料に関係するあらゆる事項に関連するものであってよい。
1. Overview Embodiments of the present disclosure relate to a target material used to generate EUV light, and specifically relate to the purification, processing or manufacture of the target material, and the supply of the target material. Also good. However, the present disclosure is not limited to these items, and may relate to all items related to the target material used for generating EUV light.
2.EUV光生成システムの全体説明
2.1 構成
 図1に、例示的なLPP方式のEUV光生成システムの構成を概略的に示す。EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いられてもよい。本願においては、EUV光生成装置1及びレーザ装置3を含むシステムを、EUV光生成システム11と称する。図1に示し、かつ、以下に詳細に説明するように、EUV光生成装置1は、チャンバ2、ターゲット供給部26を含んでもよい。チャンバ2は、密閉可能であってもよい。ターゲット供給部26は、例えば、チャンバ2の壁を貫通するように取り付けられてもよい。ターゲット供給部26から供給されるターゲット物質の材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又は、それらの内のいずれか2つ以上の組合せを含んでもよいが、これらに限定されない。
2. 2. General Description of EUV Light Generation System 2.1 Configuration FIG. 1 schematically shows a configuration of an exemplary LPP type EUV light generation system. The EUV light generation apparatus 1 may be used together with at least one laser apparatus 3. In the present application, a system including the EUV light generation apparatus 1 and the laser apparatus 3 is referred to as an EUV light generation system 11. As shown in FIG. 1 and described in detail below, the EUV light generation apparatus 1 may include a chamber 2 and a target supply unit 26. The chamber 2 may be sealable. The target supply unit 26 may be attached so as to penetrate the wall of the chamber 2, for example. The material of the target substance supplied from the target supply unit 26 may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or a combination of any two or more thereof.
 チャンバ2の壁には、少なくとも1つの貫通孔が設けられていてもよい。その貫通孔には、ウインドウ21が設けられてもよく、ウインドウ21をレーザ装置3から出力されるパルスレーザ光32が透過してもよい。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置されてもよい。EUV集光ミラー23は、第1及び第2の焦点を有し得る。EUV集光ミラー23の表面には、例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成されていてもよい。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ生成領域25に位置し、その第2の焦点が中間集光点(IF)292に位置するように配置されるのが好ましい。EUV集光ミラー23の中央部には貫通孔24が設けられていてもよく、貫通孔24をパルスレーザ光33が通過してもよい。 The wall of the chamber 2 may be provided with at least one through hole. A window 21 may be provided in the through hole, and the pulse laser beam 32 output from the laser device 3 may pass through the window 21. In the chamber 2, for example, an EUV collector mirror 23 having a spheroidal reflecting surface may be disposed. The EUV collector mirror 23 may have first and second focal points. On the surface of the EUV collector mirror 23, for example, a multilayer reflective film in which molybdenum and silicon are alternately laminated may be formed. The EUV collector mirror 23 is preferably arranged such that, for example, the first focal point thereof is located in the plasma generation region 25 and the second focal point thereof is located at the intermediate focal point (IF) 292. A through hole 24 may be provided at the center of the EUV collector mirror 23, and the pulse laser beam 33 may pass through the through hole 24.
 EUV光生成装置1は、EUV光生成制御装置5、ターゲットセンサ4等を含んでもよい。ターゲットセンサ4は、撮像機能を有してもよく、ターゲット27の存在、軌跡、位置、速度等を検出するよう構成されてもよい。 The EUV light generation apparatus 1 may include an EUV light generation control apparatus 5, a target sensor 4, and the like. The target sensor 4 may have an imaging function and may be configured to detect the presence, trajectory, position, speed, and the like of the target 27.
 また、EUV光生成装置1は、チャンバ2の内部と露光装置6の内部とを連通させる接続部29を含んでもよい。接続部29内部には、アパーチャ293が形成された壁291が設けられてもよい。壁291は、そのアパーチャ293がEUV集光ミラー23の第2の焦点位置に位置するように配置されてもよい。 Further, the EUV light generation apparatus 1 may include a connection unit 29 that allows the inside of the chamber 2 and the inside of the exposure apparatus 6 to communicate with each other. A wall 291 in which an aperture 293 is formed may be provided inside the connection portion 29. The wall 291 may be arranged such that its aperture 293 is located at the second focal position of the EUV collector mirror 23.
 さらに、EUV光生成装置1は、レーザ光進行方向制御部34、レーザ光集光ミラー22、ターゲット27を回収するためのターゲット回収部28等を含んでもよい。レーザ光進行方向制御部34は、レーザ光の進行方向を規定するための光学素子と、この光学素子の位置、姿勢等を調整するためのアクチュエータとを備えてもよい。 Furthermore, the EUV light generation apparatus 1 may include a laser beam traveling direction control unit 34, a laser beam focusing mirror 22, a target recovery unit 28 for recovering the target 27, and the like. The laser beam traveling direction control unit 34 may include an optical element for defining the traveling direction of the laser beam and an actuator for adjusting the position, posture, and the like of the optical element.
2.2 動作
 図1を参照に、レーザ装置3から出力されたパルスレーザ光31は、レーザ光進行方向制御部34を経て、パルスレーザ光32としてウインドウ21を透過してチャンバ2内に入射してもよい。パルスレーザ光32は、少なくとも1つのレーザ光経路に沿ってチャンバ2内に進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射されてもよい。
2.2 Operation Referring to FIG. 1, the pulsed laser beam 31 output from the laser device 3 passes through the window 21 as the pulsed laser beam 32 through the laser beam traveling direction control unit 34 and enters the chamber 2. May be. The pulse laser beam 32 may travel along the at least one laser beam path into the chamber 2, be reflected by the laser beam collector mirror 22, and irradiate at least one target 27 as the pulse laser beam 33.
 ターゲット供給部26は、ターゲット27をチャンバ2内部のプラズマ生成領域25に向けて出力するよう構成されてもよい。ターゲット27には、パルスレーザ光33に含まれる少なくとも1つのパルスが照射されてもよい。パルスレーザ光が照射されたターゲット27はプラズマ化し、そのプラズマから放射光251が放射され得る。放射光251に含まれるEUV光252は、EUV集光ミラー23によって選択的に反射されてもよい。EUV集光ミラー23によって反射されたEUV光252は、中間集光点292で集光され、露光装置6に出力されてもよい。なお、1つのターゲット27に、パルスレーザ光33に含まれる複数のパルスが照射されてもよい。 The target supply unit 26 may be configured to output the target 27 toward the plasma generation region 25 inside the chamber 2. The target 27 may be irradiated with at least one pulse included in the pulse laser beam 33. The target 27 irradiated with the pulsed laser light is turned into plasma, and radiation light 251 can be emitted from the plasma. The EUV light 252 included in the radiation light 251 may be selectively reflected by the EUV collector mirror 23. The EUV light 252 reflected by the EUV collector mirror 23 may be condensed at the intermediate condensing point 292 and output to the exposure apparatus 6. A single target 27 may be irradiated with a plurality of pulses included in the pulse laser beam 33.
 EUV光生成制御装置5は、EUV光生成システム11全体の制御を統括するよう構成されてもよい。EUV光生成制御装置5は、ターゲットセンサ4によって撮像されたターゲット27のイメージデータ等を処理するよう構成されてもよい。また、EUV光生成制御装置5は、例えば、ターゲット27が出力されるタイミング、ターゲット27の出力方向等を制御するよう構成されてもよい。さらに、EUV光生成制御装置5は、例えば、レーザ装置3の発振タイミング、パルスレーザ光32の進行方向、パルスレーザ光33の集光位置等を制御するよう構成されてもよい。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御が追加されてもよい。 The EUV light generation control device 5 may be configured to control the entire EUV light generation system 11. The EUV light generation controller 5 may be configured to process image data of the target 27 imaged by the target sensor 4. Further, the EUV light generation control device 5 may be configured to control the timing at which the target 27 is output, the output direction of the target 27, and the like. Further, the EUV light generation control device 5 may be configured to control, for example, the oscillation timing of the laser device 3, the traveling direction of the pulse laser light 32, the condensing position of the pulse laser light 33, and the like. The various controls described above are merely examples, and other controls may be added as necessary.
3.用語の説明
 本開示において使用される用語について、以下のように定義する。
 「ドロップレット」とは、融解したターゲット材料の液滴であってもよい。その形状は、略球形であってもよい。
 「プラズマ生成領域」とは、プラズマが生成される空間として予め設定された3次元空間であってもよい。
3. Explanation of Terms Terms used in the present disclosure are defined as follows.
A “droplet” may be a melted droplet of target material. The shape may be substantially spherical.
The “plasma generation region” may be a three-dimensional space preset as a space where plasma is generated.
4.ターゲット生成装置
 つづいて、図1に示すターゲット供給部26を含むターゲット生成装置の一例を、図面を参照して詳細に説明する。
4). Target Generation Device Next, an example of a target generation device including the target supply unit 26 shown in FIG. 1 will be described in detail with reference to the drawings.
4.1 構成
 図2は、図1に示すターゲット供給部26を含むターゲット生成装置の概略構成例を示す模式図である。図2に示すように、ターゲット生成装置は、ターゲット供給部26の他に、圧力調節器120と、温度可変装置140と、制御部51と、ピエゾ電源112とを含んでいてもよい。
4.1 Configuration FIG. 2 is a schematic diagram illustrating a schematic configuration example of a target generation device including the target supply unit 26 illustrated in FIG. 1. As shown in FIG. 2, the target generation device may include a pressure regulator 120, a temperature variable device 140, a control unit 51, and a piezo power source 112 in addition to the target supply unit 26.
 ターゲット供給部26は、タンク部260と、フィルタ部265と、ノズル部266と、ピエゾ素子111とを含んでいてもよい。 The target supply unit 26 may include a tank unit 260, a filter unit 265, a nozzle unit 266, and a piezo element 111.
 タンク部260は、タンク261と、蓋262とを含んでもよい。タンク部260内には、ターゲット材料271が貯蔵されてもよい。ターゲット材料271は、錫(Sn)などの金属材料であってもよい。タンク部260の下部には、ノズル部266をチャンバ2(図1参照)へ突出させるための凸部263が設けられていてもよい。この凸部263は、タンク261と一体形成であってもよいし、別体であってもよい。 The tank unit 260 may include a tank 261 and a lid 262. The target material 271 may be stored in the tank unit 260. The target material 271 may be a metal material such as tin (Sn). A convex portion 263 for projecting the nozzle portion 266 into the chamber 2 (see FIG. 1) may be provided at the lower portion of the tank portion 260. The convex portion 263 may be formed integrally with the tank 261 or may be a separate body.
 凸部263の内部には、融解したターゲット材料271がタンク261内からノズル部266まで通過するための流路が形成されていてもよい。この流路は、タンク261と連通していてもよい。また、流路は、凸部263の下面において開口していてもよい。 A flow path for the melted target material 271 to pass from the tank 261 to the nozzle part 266 may be formed inside the convex part 263. This flow path may communicate with the tank 261. Further, the flow path may be opened on the lower surface of the convex portion 263.
 タンク261と蓋262と凸部263との材質は、ターゲット材料271との反応性が低い材料であってもよい。ターゲット材料271との反応性が低い材料は、たとえばモリブデン(Mo)であってもよい。 The material of the tank 261, the lid 262, and the convex portion 263 may be a material having low reactivity with the target material 271. The material having low reactivity with the target material 271 may be, for example, molybdenum (Mo).
 ノズル部266は、凸部263下面の開口を覆うように凸部263に設けられてもよい。ノズル部266には、ノズル孔267が形成されていてもよい。ノズル孔267は、凸部263内の流路と連通していてもよい。ノズル孔267の孔径は、たとえば3~6μmであってもよい。ノズル部266の材質は、モリブデン(Mo)であってもよい。 The nozzle part 266 may be provided on the convex part 263 so as to cover the opening on the lower surface of the convex part 263. A nozzle hole 267 may be formed in the nozzle portion 266. The nozzle hole 267 may communicate with the flow path in the convex portion 263. The hole diameter of the nozzle hole 267 may be, for example, 3 to 6 μm. The material of the nozzle part 266 may be molybdenum (Mo).
 フィルタ部265は、タンク部260とノズル部266との間の流路に配置されてもよい。タンク部260とノズル部266との間の流路には、フィルタ部265を収容するための拡径部が形成されていてもよい。フィルタ部265は、この拡径部にホルダ264を用いて隙間なく収容されてもよい。 The filter unit 265 may be disposed in a flow path between the tank unit 260 and the nozzle unit 266. In the flow path between the tank part 260 and the nozzle part 266, an enlarged diameter part for accommodating the filter part 265 may be formed. The filter portion 265 may be accommodated in the enlarged diameter portion without a gap using the holder 264.
 フィルタ部265は、後述する酸化錫などのパーティクルや、ターゲット材料271に含まれる不純物等を濾し取ってよい。このようなフィルタ部265は、多孔質の部材で構成されてもよい。この多孔質の部材は、多孔質ガラスであってもよい。多孔質ガラスは、酸化アルミニウム・二酸化ケイ素系ガラスを骨格とするガラス多孔体であってもよい。多孔質の孔径は、3~10μmであってもよい。また、フィルタ部265は、複数の多孔質の板状部材が積層された構造を有してもよい。 The filter unit 265 may filter out particles such as tin oxide described later, impurities contained in the target material 271, and the like. Such a filter portion 265 may be formed of a porous member. The porous member may be porous glass. The porous glass may be a porous glass body having an aluminum oxide / silicon dioxide glass as a skeleton. The porous pore diameter may be 3 to 10 μm. The filter portion 265 may have a structure in which a plurality of porous plate-like members are stacked.
 多孔質の部材の一部または全部は、キャピラリ管のアレーを持つ部材に置き換えられてもよい。キャピラリ管の孔径は、約0.1~2μmであってもよい。また、キャピラリ管は、ガラス製であってもよい。 A part or all of the porous member may be replaced with a member having an array of capillary tubes. The pore diameter of the capillary tube may be about 0.1-2 μm. The capillary tube may be made of glass.
 圧力調節器120は、圧力制御部125と、排気装置124と、バルブ121および122と、圧力センサ123とを含んでもよい。排気装置124は、ガス配管131を介して不活性ガスのボンベ130に接続されてもよい。ボンベ130には、供給するガスの流量を調節するバルブ134が設けられていてもよい。 The pressure regulator 120 may include a pressure control unit 125, an exhaust device 124, valves 121 and 122, and a pressure sensor 123. The exhaust device 124 may be connected to an inert gas cylinder 130 via a gas pipe 131. The cylinder 130 may be provided with a valve 134 for adjusting the flow rate of the supplied gas.
 ガス配管131上の2箇所には、バルブ121および122が設けられてもよい。バルブ121および122間のガス配管131からは、ガス配管132が分岐していてもよい。ガス配管132は、タンク部260内に連通していてもよい。圧力センサ123は、ガス配管132に対して設けられてもよい。 Valves 121 and 122 may be provided at two locations on the gas pipe 131. A gas pipe 132 may be branched from the gas pipe 131 between the valves 121 and 122. The gas pipe 132 may communicate with the tank unit 260. The pressure sensor 123 may be provided for the gas pipe 132.
 温度可変装置140は、ヒータ141と、温度センサ142と、ヒータ電源143と、温度調節部144とを含んでもよい。 The temperature variable device 140 may include a heater 141, a temperature sensor 142, a heater power supply 143, and a temperature adjustment unit 144.
 ヒータ141は、タンク部260内のターゲット材料271を加熱するように設けられてもよい。ヒータ141の設置位置は、タンク261の側面外周であってもよい。温度センサ142は、タンク部260またはタンク部260内のターゲット材料271の温度を計測するように配置されてもよい。温度センサ142の設置位置は、タンク261の側面であってもよい。ヒータ電源143は、ヒータ142に電流を供給してもよい。 The heater 141 may be provided so as to heat the target material 271 in the tank unit 260. The installation position of the heater 141 may be the outer periphery of the side surface of the tank 261. The temperature sensor 142 may be arranged to measure the temperature of the tank part 260 or the target material 271 in the tank part 260. The installation position of the temperature sensor 142 may be a side surface of the tank 261. The heater power supply 143 may supply current to the heater 142.
 制御部51からの出力信号線は、ピエゾ電源112と、温度制御部144と、圧力制御部125と、EUV光生成制御装置5とに接続されてもよい。制御部51への入力信号線は、温度制御部144と、圧力制御部125と、EUV光生成制御装置5とに接続されてもよい。 The output signal line from the control unit 51 may be connected to the piezo power source 112, the temperature control unit 144, the pressure control unit 125, and the EUV light generation control device 5. An input signal line to the control unit 51 may be connected to the temperature control unit 144, the pressure control unit 125, and the EUV light generation control device 5.
4.2 動作
 図3は、図2に示すターゲット生成装置の概略動作例を示すフローチャートである。ただし、図3では、制御部51の動作に着目している。また、本動作を開始する前の準備として、タンク部260内にターゲット材料271のインゴット(たとえば錫インゴット)がセットされてもよい。蓋262とタンク261との間は、ターゲット材料271のインゴットがセットされた状態でシールされてもよい。蓋262とタンク261との間のシールは、メタルシールであってもよい。
4.2 Operation FIG. 3 is a flowchart showing a schematic operation example of the target generation device shown in FIG. However, FIG. 3 focuses on the operation of the control unit 51. Further, as preparation before starting this operation, an ingot (for example, tin ingot) of the target material 271 may be set in the tank portion 260. The lid 262 and the tank 261 may be sealed with the ingot of the target material 271 set. The seal between the lid 262 and the tank 261 may be a metal seal.
 図3に示すように、制御部51は、EUV光生成制御装置5または外部装置の制御部からドロップレット出力準備信号が入力されるまで待機してもよい(ステップS101;NO)。ドロップレット出力準備信号とは、ターゲット材料271を出力可能な状態にしておくことを要求する信号であってもよい。 As shown in FIG. 3, the control unit 51 may stand by until a droplet output preparation signal is input from the EUV light generation control device 5 or the control unit of the external device (step S101; NO). The droplet output preparation signal may be a signal for requesting that the target material 271 be in an outputable state.
 ドロップレット出力準備信号が入力されると(ステップS101;YES)、制御部51は、まず、タンク部260内のガスを排気するように、圧力調節器120を制御してもよい(ステップS102)。この制御に対し、圧力調節器120の圧力制御部125は、バルブ121を閉じるとともにバルブ122を開け、この状態で排気装置124を駆動してもよい。これにより、タンク部260内のガスの排気が開始されてもよい。 When the droplet output preparation signal is input (step S101; YES), the control unit 51 may first control the pressure regulator 120 to exhaust the gas in the tank unit 260 (step S102). . In response to this control, the pressure controller 125 of the pressure regulator 120 may close the valve 121 and open the valve 122, and drive the exhaust device 124 in this state. Thereby, exhaust of the gas in the tank part 260 may be started.
 つづいて、制御部51は、タンク部260内のターゲット材料271が融解するように、温度可変装置140を制御してもよい(ステップS103)。この制御に対し、温度可変装置140の温度制御部144は、ヒータ電源143を駆動してヒータ141への電流供給を開始してもよい。その際、温度制御部144は、温度センサ142で検出された温度に基づいて、ヒータ電源143からヒータ141へ供給される電流量を調整してもよい。温度制御部144が制御目標とするタンク部260の温度Topは、ターゲット材料271の融点以上の温度であってもよい。ターゲット材料271を錫とした場合、温度Topは、錫の融点である232℃以上の温度であってもよい。その際、温度Topは、たとえば240℃~290℃の温度範囲であってもよい。 Subsequently, the control unit 51 may control the temperature variable device 140 so that the target material 271 in the tank unit 260 is melted (step S103). In response to this control, the temperature control unit 144 of the temperature variable device 140 may drive the heater power supply 143 to start supplying current to the heater 141. At that time, the temperature control unit 144 may adjust the amount of current supplied from the heater power supply 143 to the heater 141 based on the temperature detected by the temperature sensor 142. The temperature Top of the tank unit 260 targeted by the temperature control unit 144 may be a temperature equal to or higher than the melting point of the target material 271. When the target material 271 is tin, the temperature Top may be a temperature of 232 ° C. or higher, which is the melting point of tin. In this case, the temperature Top may be in a temperature range of 240 ° C. to 290 ° C., for example.
 温度センサ142で検出された温度は、温度制御部144を介して制御部51へ随時または定期的に通知されてもよい。制御部51は、温度センサ142で検出された温度が所定時間以上維持されているか否かを判断してもよい(ステップS104)。温度が所定時間以上維持されていない場合、すなわち、タンク部260内のターゲット材料271の温度が不安定な場合、制御部51は、温度が安定するまで待機してもよい(ステップS104;NO)。一方、温度が所定時間以上維持されている場合(ステップS104;YES)、制御部51は、EUV光生成制御装置5または外部装置の制御部にドロップレット出力準備完了信号を送信してもよい(ステップS105)。ドロップレット出力準備完了信号は、ターゲット材料271を出力する準備が完了したことを通知する信号であってよい。その後、制御部51は、EUV光生成制御装置5または外部装置の制御部からドロップレット出力信号が入力されるまで待機してもよい(ステップS106;NO)。ドロップレット出力信号は、所定の繰返し周波数でのドロップレットの出力開始を指示する信号であってもよい。ただし、これに限らず、ドロップレット出力信号は、1つ1つのドロップレットの出力およびその出力タイミングを指示する信号であってもよい。 The temperature detected by the temperature sensor 142 may be notified to the control unit 51 via the temperature control unit 144 as needed or periodically. The control unit 51 may determine whether or not the temperature detected by the temperature sensor 142 is maintained for a predetermined time or longer (step S104). When the temperature is not maintained for a predetermined time or more, that is, when the temperature of the target material 271 in the tank unit 260 is unstable, the control unit 51 may wait until the temperature is stabilized (step S104; NO). . On the other hand, when the temperature is maintained for a predetermined time or longer (step S104; YES), the control unit 51 may transmit a droplet output preparation completion signal to the EUV light generation control device 5 or the control unit of the external device ( Step S105). The droplet output preparation completion signal may be a signal notifying that preparation for outputting the target material 271 is completed. Thereafter, the control unit 51 may stand by until a droplet output signal is input from the EUV light generation control device 5 or the control unit of the external device (step S106; NO). The droplet output signal may be a signal for instructing the start of droplet output at a predetermined repetition frequency. However, the present invention is not limited to this, and the droplet output signal may be a signal indicating the output of each droplet and its output timing.
 ドロップレット出力信号が入力されると(ステップS106;YES)、制御部51は、タンク部260内のガス圧が圧力Pとなるように、圧力調整器120を制御してもよい(ステップS107)。圧力Pは、ターゲット材料271をノズル孔267から所定の速度で吐出させる圧力であってもよい。この圧力Pは、たとえば10MPa(メガパスカル)であってもよい。制御部51からの命令を受けた圧力調整器120の圧力制御部125は、バルブ122を閉じるとともにバルブ121を開けることで、ボンベ130からのガスをタンク部260内に導入してもよい。これにより、タンク部260内のガス圧が圧力Pへ上昇し、その結果、ノズル孔267からターゲット材料271のジェットが出力され得る。 When the droplet output signal is input (step S106; YES), the control unit 51 may control the pressure regulator 120 so that the gas pressure in the tank unit 260 becomes the pressure P (step S107). . The pressure P may be a pressure at which the target material 271 is discharged from the nozzle hole 267 at a predetermined speed. This pressure P may be, for example, 10 MPa (megapascal). The pressure control unit 125 of the pressure regulator 120 that has received a command from the control unit 51 may introduce the gas from the cylinder 130 into the tank unit 260 by closing the valve 122 and opening the valve 121. Thereby, the gas pressure in the tank part 260 rises to the pressure P, and as a result, the jet of the target material 271 can be output from the nozzle hole 267.
 タンク部260内を昇圧する間、圧力制御部125は、排気装置124を停止してもよい。また、圧力制御部120は、後述するステップS111まで、タンク部260内のガス圧を圧力Pに維持してもよい。タンク部260内のガス圧を圧力Pに維持する制御では、圧力制御部125は、バルブ121および122を開閉してもよい。その際、排気装置124は、停止していてもよい。停止している状態では、排気装置124は、排気口として機能してもよい。 While the pressure inside the tank unit 260 is increased, the pressure control unit 125 may stop the exhaust device 124. Further, the pressure control unit 120 may maintain the gas pressure in the tank unit 260 at the pressure P until step S111 described later. In the control for maintaining the gas pressure in the tank unit 260 at the pressure P, the pressure control unit 125 may open and close the valves 121 and 122. At that time, the exhaust device 124 may be stopped. In the stopped state, the exhaust device 124 may function as an exhaust port.
 つづいて、制御部51は、ノズル孔267から吐出するターゲット材料271のジェットが所定サイズおよび所定周期のドロップレットに変化するように、ピエゾ電源112を制御してもよい(ステップS108)。この制御に対し、ピエゾ電源112は、所定波形および所定周波数の電圧をピエゾ素子111に印加してもよい。これにより、電圧の波形および周波数に応じた振動がノズル孔267に伝達され、その結果、ノズル孔267から吐出するターゲット材料271のジェットが所定サイズおよび所定周期のドロップレット状のターゲット27に変化し得る。 Subsequently, the control unit 51 may control the piezo power source 112 so that the jet of the target material 271 discharged from the nozzle hole 267 changes to a droplet having a predetermined size and a predetermined cycle (step S108). For this control, the piezo power supply 112 may apply a voltage having a predetermined waveform and a predetermined frequency to the piezo element 111. As a result, vibration corresponding to the voltage waveform and frequency is transmitted to the nozzle hole 267, and as a result, the jet of the target material 271 discharged from the nozzle hole 267 changes to a droplet-shaped target 27 having a predetermined size and a predetermined cycle. obtain.
 その後、制御部51は、EUV光生成制御装置5または外部装置の制御部からドロップレット出力停止信号が入力されるまで、タンク部260内を温度Topに維持する温度制御と、タンク部260内のガス圧を圧力Pに維持する圧力制御と、ピエゾ電源112からピエゾ素子111へ所定波形および所定周波数の電圧を印加する制御とを継続してもよい(ステップS109;NO)。ドロップレット出力停止信号は、ターゲット材料271の出力停止を指示する信号であってもよい。 Thereafter, the control unit 51 maintains temperature inside the tank unit 260 at a temperature Top until a droplet output stop signal is input from the EUV light generation control device 5 or the control unit of the external device. Pressure control for maintaining the gas pressure at the pressure P and control for applying a voltage having a predetermined waveform and a predetermined frequency from the piezoelectric power source 112 to the piezoelectric element 111 may be continued (step S109; NO). The droplet output stop signal may be a signal that instructs the output stop of the target material 271.
 ドロップレット出力停止信号が入力されると(ステップS109;YES)、制御部51は、ピエゾ電源112を停止してもよい(ステップS110)。また、制御部51は、タンク部260内のガス圧が大気圧付近まで減圧されるように、圧力調整器120を制御してもよい(ステップS111)。この制御に対し、圧力調整器120の圧力制御部125は、バルブ121を閉じるとともにバルブ122を開いてもよい。その結果、タンク部260内のガスがバルブ122および排気装置124を介して排気されて、タンク部260内のガス圧が大気圧付近まで減圧し得る。その際、排気装置124は、停止していてもよいし、稼働されてもよい。 When the droplet output stop signal is input (step S109; YES), the control unit 51 may stop the piezo power supply 112 (step S110). Moreover, the control part 51 may control the pressure regulator 120 so that the gas pressure in the tank part 260 may be reduced to near atmospheric pressure (step S111). For this control, the pressure control unit 125 of the pressure regulator 120 may close the valve 121 and open the valve 122. As a result, the gas in the tank portion 260 is exhausted through the valve 122 and the exhaust device 124, and the gas pressure in the tank portion 260 can be reduced to near atmospheric pressure. At that time, the exhaust device 124 may be stopped or operated.
 その後、制御部51は、再度、ドロップレット出力信号が入力されたか否かを判定し(ステップS112)、入力されていない場合(ステップS112;NO)、ステップS107へリターンして、以降の動作を実行してもよい。一方、ドロップレット出力信号が入力されていた場合(ステップS112;YES)、制御部51は、装置の立ち下げを指示するシャットダウン信号が入力されたか否かを判定してもよい(ステップS113)。シャットダウン信号が入力されていない場合(ステップS113;NO)、制御部51は、ステップS112へリターンしてもよい。一方、シャットダウン信号が入力されている場合(ステップS113;YES)、制御部51は、ヒータ電源143をオフするように温度可変装置140を制御し(ステップS114)、その後、本動作を終了してもよい。これにより、ヒータ141での発熱が停止されてタンク部260が自然放熱により冷却され、タンク部260内のターゲット材料271が固化し得る。 Thereafter, the control unit 51 determines again whether or not the droplet output signal has been input (step S112). If the droplet output signal has not been input (step S112; NO), the control unit 51 returns to step S107 and performs the subsequent operations. May be executed. On the other hand, when the droplet output signal has been input (step S112; YES), the control unit 51 may determine whether or not a shutdown signal for instructing the shutdown of the apparatus has been input (step S113). When the shutdown signal is not input (step S113; NO), the control unit 51 may return to step S112. On the other hand, when the shutdown signal is input (step S113; YES), the control unit 51 controls the temperature variable device 140 to turn off the heater power supply 143 (step S114), and then ends this operation. Also good. Thereby, the heat generation in the heater 141 is stopped, the tank part 260 is cooled by natural heat dissipation, and the target material 271 in the tank part 260 can be solidified.
4.3 課題
 上記したターゲット生成装置では、ノズル孔267の詰まりや孔径の縮小が発生し、ターゲット27の安定供給ができない場合があった。このような不具合は、ターゲット材料271とこのターゲット材料271に溶存する酸素とが反応することで析出した酸化物が原因で発生すると考えられる。たとえばターゲット材料271として錫を用いた場合、フィルタ部265とノズル孔267との間で析出した酸化錫が原因で、ノズル孔267の詰まりや孔径の縮小が発生すると考えられる。
4.3 Problem In the target generation apparatus described above, the nozzle hole 267 is clogged or the hole diameter is reduced, and the target 27 may not be stably supplied. Such a defect is considered to be caused by an oxide precipitated by the reaction between the target material 271 and oxygen dissolved in the target material 271. For example, when tin is used as the target material 271, it is considered that the nozzle hole 267 is clogged or the hole diameter is reduced due to the tin oxide precipitated between the filter portion 265 and the nozzle hole 267.
 通常、タンク部260内に存在する酸化錫などのパーティクル272は、フィルタ部265によって濾し取られ得る。そのため、ノズル孔267を詰まらせたり、孔径を縮小させたりすることはないと考えられる。しかしながら、フィルタ部265とノズル孔267との間で析出した酸化錫などのパーティクル272は、フィルタ部265によって濾し取られないため、ノズル孔267を詰まらせたり、孔径を縮小させたりする要因となり得る。 Usually, particles 272 such as tin oxide existing in the tank unit 260 can be filtered out by the filter unit 265. Therefore, it is considered that the nozzle hole 267 is not clogged or the hole diameter is not reduced. However, since the particles 272 such as tin oxide deposited between the filter portion 265 and the nozzle hole 267 are not filtered out by the filter portion 265, the nozzle hole 267 may be clogged or the hole diameter may be reduced. .
 フィルタ部265とノズル孔267との間で酸化錫などのパーティクル272が発生する要因としては、液体状のターゲット材料271に溶存する酸素が考えられる。図4に示すように、ターゲット材料271に過飽和の状態で溶存している酸素270は、酸化錫等のパーティクル272として析出していないため、フィルタ部265を通過し得る。フィルタ部265を通過した酸素270は、ドロップレット状のターゲット27の一部としてノズル孔267から出力される前に、ターゲット材料271と反応し得る。たとえばターゲット材料271に錫を用いた場合には、フィルタ部265を通過した酸素が錫と反応して酸化錫を析出させ得る。 As a factor that the particles 272 such as tin oxide are generated between the filter portion 265 and the nozzle hole 267, oxygen dissolved in the liquid target material 271 can be considered. As shown in FIG. 4, oxygen 270 dissolved in a supersaturated state in the target material 271 does not precipitate as particles 272 such as tin oxide, and thus can pass through the filter portion 265. The oxygen 270 that has passed through the filter portion 265 can react with the target material 271 before being output from the nozzle hole 267 as a part of the droplet-like target 27. For example, when tin is used for the target material 271, oxygen that has passed through the filter portion 265 can react with tin to precipitate tin oxide.
4.4 溶存酸素析出の原理
 ここで、ターゲット材料と酸素との反応による酸化物の析出原理について、錫をターゲット材料271に用いた場合を例に挙げて説明する。図5は、液体錫に対する酸素の溶解度の温度依存性を示すグラフである。なお、図5における黒丸は、非特許文献1に基づくデータを示し、白抜きの丸は、非特許文献2に基づくデータを示す。また、実線は、非特許文献1および2に基づくデータの近似線を示し、破線は、非特許文献3に基づくデータを示す。
4.4 Principle of Precipitation of Dissolved Oxygen Here, the principle of precipitation of oxide by the reaction between the target material and oxygen will be described by taking the case where tin is used as the target material 271 as an example. FIG. 5 is a graph showing the temperature dependence of the solubility of oxygen in liquid tin. Note that black circles in FIG. 5 indicate data based on Non-Patent Document 1, and white circles indicate data based on Non-Patent Document 2. A solid line indicates an approximate line of data based on Non-Patent Documents 1 and 2, and a broken line indicates data based on Non-Patent Document 3.
 図5に示すように、一般的な錫の材料ベンダが提供する高純度錫材料(インゴット)の溶存酸素濃度は、たとえば約0.6ppmw~約5ppmw(重量比)の範囲であり得る。このような高い範囲の溶存酸素濃度は、高純度錫を精製するプロセスの温度が高いためであると考えられる。 As shown in FIG. 5, the dissolved oxygen concentration of a high-purity tin material (ingot) provided by a general tin material vendor may be in the range of about 0.6 ppmw to about 5 ppmw (weight ratio), for example. Such a high concentration of dissolved oxygen is considered to be due to the high temperature of the process for purifying high-purity tin.
 一方、タンク部260内での液体錫の温度は、約240℃~約290℃の範囲であり得る。この温度範囲での酸素の溶解度は、約0.0001ppmw~0.001ppmwとなり得る。例えば290℃のときの液体錫の飽和酸素濃度は、約1E-3ppmwであり得る。そのため、材料ベンダから提供された高純度の錫インゴットをタンク部260内で融解した場合、液体錫中に溶存する酸素は過飽和状態となり得る。 Meanwhile, the temperature of the liquid tin in the tank unit 260 may be in the range of about 240 ° C. to about 290 ° C. The solubility of oxygen in this temperature range can be about 0.0001 ppmw to 0.001 ppmw. For example, the saturated oxygen concentration of liquid tin at 290 ° C. can be about 1E-3 ppmw. Therefore, when a high-purity tin ingot provided from a material vendor is melted in the tank portion 260, oxygen dissolved in the liquid tin can be supersaturated.
 ただし、約240℃~約290℃の範囲で錫インゴットを融解したとしても、液体錫中の酸素が過飽和状態を維持したままとなり得る。これは、酸化錫として析出されていない過飽和状態の酸素が残存していることを意味し得る。過飽和状態である酸素は、これを含む液体錫を融点温度である232℃以下まで冷却して一旦固化し、その後、再び約240℃~290℃まで加熱して融解することで、酸化錫として析出し得る。 However, even if the tin ingot is melted in the range of about 240 ° C. to about 290 ° C., oxygen in the liquid tin can remain supersaturated. This may mean that supersaturated oxygen that is not deposited as tin oxide remains. The supersaturated oxygen is precipitated as tin oxide by cooling the liquid tin containing it to a melting point temperature of 232 ° C. or lower and once solidifying, and then heating again to about 240 ° C. to 290 ° C. to melt. Can do.
 したがって、図4を用いて説明したような、フィルタ部265とノズル孔267との間で析出する酸化錫は、過飽和状態である酸素を含む液体錫を融点温度である232℃以下まで冷却して一旦固化し、その後、再び約240℃~290℃まで加熱して融解することで、発生したと考えられる。 Therefore, as described with reference to FIG. 4, the tin oxide deposited between the filter portion 265 and the nozzle hole 267 is obtained by cooling liquid tin containing oxygen in a supersaturated state to a melting point temperature of 232 ° C. or lower. It is considered that it was generated by once solidifying and then heating again to about 240 ° C. to 290 ° C. to melt.
 そこで本開示では、以下の実施形態において、ターゲット材料271の反応によって析出したパーティクル272に起因するノズル孔267の詰まりや孔径の縮小を抑制し、安定してターゲット27を供給することが可能なターゲット材料、材料処理装置、材料処理方法、材料製造方法およびプログラムを例示する。なお、以下の実施形態では、ターゲット材料271として錫を用いた場合を例示する。そこで、錫材料の符号に271を用い、析出した酸化錫の符号に272を用いる。 Therefore, in the present disclosure, in the following embodiment, a target that can stably supply the target 27 by suppressing clogging of the nozzle hole 267 and reduction of the hole diameter caused by the particles 272 precipitated by the reaction of the target material 271. A material, a material processing apparatus, a material processing method, a material manufacturing method, and a program are illustrated. In the following embodiment, a case where tin is used as the target material 271 is illustrated. Therefore, 271 is used for the sign of the tin material and 272 is used for the sign of the deposited tin oxide.
5.実施形態1:材料処理装置
 実施形態1では、錫材料271中に過飽和状態で溶存している酸素をあらかじめ酸化錫272として析出する処理が実行されてもよい。なお、「あらかじめ」とは、錫材料271をターゲット供給部26のタンク部260内にセットする以前であってよい。
5. Embodiment 1: Material processing apparatus In Embodiment 1, the process which precipitates the oxygen dissolved in the supersaturated state in the tin material 271 beforehand as the tin oxide 272 may be performed. Note that “in advance” may be before the tin material 271 is set in the tank unit 260 of the target supply unit 26.
 実施形態1にかかる処理後の錫材料271における溶存酸素濃度COxygen(ppmw)は、ドロップレット状のターゲット27を出力する際の錫材料271の温度をTop(K)とすると、図5の関係に基づき、1.38E8×exp(-1.48E4/Top)以下であってもよい。そのために、実施形態1にかかる処理において錫材料271を融解する温度は、ドロップレット状のターゲット27を出力する際の錫材料271の温度Top以下の温度に設定されてもよい。 The dissolved oxygen concentration C Oxygen (ppmw) in the tin material 271 after the treatment according to the first embodiment has the relationship of FIG. 5 when the temperature of the tin material 271 when outputting the droplet-shaped target 27 is Top (K). May be 1.38E8 × exp (−1.48E4 / Top) or less. Therefore, the temperature at which the tin material 271 is melted in the process according to the first embodiment may be set to a temperature equal to or lower than the temperature Top of the tin material 271 when the droplet-shaped target 27 is output.
5.1構成
 図6は、実施形態1にかかる材料処理装置の概略構成例を示す模式図である。なお、図6において、図2と同様の構成については、同一の符号を付すことで、その重複する説明を省略する。
5.1 Configuration FIG. 6 is a schematic diagram illustrating a schematic configuration example of the material processing apparatus according to the first embodiment. In FIG. 6, the same components as those in FIG. 2 are denoted by the same reference numerals, and redundant description thereof is omitted.
 図6に示す材料処理装置は、錫材料271中の溶存酸素を酸化錫272として析出させる処理を実行してもよい。そこで、材料処理装置は、温度可変装置140と、圧力調節器120と、制御部201と、記憶部202と、溶融容器210とを備えてもよい。温度可変装置140と圧力調節器120とは、図2に示すそれらと同じであってよい。ただし、圧力調節器120には、溶融容器210内を昇圧するための不活性ガスを供給するボンベ130が接続されていなくてもよい。 The material processing apparatus shown in FIG. 6 may execute a process for precipitating dissolved oxygen in the tin material 271 as tin oxide 272. Therefore, the material processing apparatus may include a temperature variable device 140, a pressure regulator 120, a control unit 201, a storage unit 202, and a melting container 210. The temperature variable device 140 and the pressure regulator 120 may be the same as those shown in FIG. However, the pressure regulator 120 may not be connected to the cylinder 130 for supplying an inert gas for increasing the pressure in the melting vessel 210.
 溶融容器210は、蓋212と鋳型211とから構成されてもよい。蓋212および鋳型211は、300℃程度の耐熱性を備えていてもよい。また、蓋212および鋳型211は、錫材料271と反応し難い物質で構成されていてもよい。錫材料271と反応し難い物質は、例えばモリブデン(Mo)であってもよい。 The melting vessel 210 may be composed of a lid 212 and a mold 211. The lid 212 and the mold 211 may have a heat resistance of about 300 ° C. The lid 212 and the mold 211 may be made of a substance that does not easily react with the tin material 271. The substance that hardly reacts with the tin material 271 may be, for example, molybdenum (Mo).
 鋳型211は、錫材料271を鋳造できるよう、分離可能な複数の部材から構成されてもよい。鋳型211における各部材の接続部には、気密性を得るために、面接触シールまたはメタルシールの構成が適用されてもよい。同様に、鋳型211と蓋212との接続部には、気密性を得るために、面接触シールまたはメタルシールの構成が適用されてもよい。 The mold 211 may be composed of a plurality of separable members so that the tin material 271 can be cast. In order to obtain airtightness, a configuration of a surface contact seal or a metal seal may be applied to the connection portion of each member in the mold 211. Similarly, a surface contact seal or metal seal configuration may be applied to the connection between the mold 211 and the lid 212 in order to obtain airtightness.
 制御部201からの出力信号線は、温度制御部144と圧力制御部125とに接続されてもよい。制御部201への入力信号線は、温度制御部144と圧力制御部125とに接続されてもよい。 The output signal line from the control unit 201 may be connected to the temperature control unit 144 and the pressure control unit 125. An input signal line to the control unit 201 may be connected to the temperature control unit 144 and the pressure control unit 125.
 また、制御部201には、記憶部202が接続されてもよい。記憶部202は、制御部201に対して、内蔵されてもよいし、外付けされてもよい。 Further, the storage unit 202 may be connected to the control unit 201. The storage unit 202 may be built in or externally attached to the control unit 201.
5.2 動作
 図7~図10は、実施形態1にかかる材料処理(材料製造を含んでもよい)の概略動作例を説明するための図である。なお、本実施形態にかかる材料処理は、後述する工程において、少なくとも図7におけるステップS125およびS126の工程を含めばよい。
5.2 Operation FIGS. 7 to 10 are diagrams for explaining a schematic operation example of material processing (including material manufacturing) according to the first embodiment. Note that the material processing according to the present embodiment may include at least steps S125 and S126 in FIG.
 図7に示す動作例では、まず、高純度錫材料273がたとえば電解精製によって析出されてもよい(ステップS121)。この工程は、たとえば材料ベンダにおいて行われてもよい。析出された高純度錫材料273は、図8に示すように、鋳型211内にセットされてもよい(ステップS122)。なお、鋳型211は、上述したように、分離可能な複数の部材211aおよび211bから構成されてもよい。また、制御部201には、高純度錫材料273を処理する際の処理温度Tdが入力されてもよい(ステップS123)。入力された処理温度Tdは、制御部201に接続された記憶部202に記憶されてもよい。 In the operation example shown in FIG. 7, first, the high-purity tin material 273 may be deposited by, for example, electrolytic purification (step S121). This step may be performed, for example, in a material vendor. The deposited high purity tin material 273 may be set in the mold 211 as shown in FIG. 8 (step S122). Note that, as described above, the mold 211 may include a plurality of separable members 211a and 211b. Moreover, the processing temperature Td at the time of processing the high purity tin material 273 may be input to the control unit 201 (step S123). The input processing temperature Td may be stored in the storage unit 202 connected to the control unit 201.
 なお、処理温度Tdを入力する工程は、溶融容器210内を排気する工程より前であってもよい。また、処理温度Tdの入力は、作業者による手入力であってもよいし、記憶媒体または通信網を介した入力であってもよい。あるいは、制御部201が、以前の処理の際に記憶部202に記憶された処理温度Tdを読み出してもよい。 Note that the step of inputting the processing temperature Td may be before the step of exhausting the inside of the melting vessel 210. Further, the processing temperature Td may be input manually by an operator or input via a storage medium or a communication network. Alternatively, the control unit 201 may read the processing temperature Td stored in the storage unit 202 during the previous processing.
 処理温度Tdは、錫の融点(232℃)以上350℃以下の温度範囲に含まれる温度であってもよい。より好ましくは、処理温度Tdは、240℃以上290℃以下の温度範囲に含まれる温度であってもよい。さらに好ましくは、処理温度Tdは、240℃以上であって、ターゲット供給時に維持されるタンク部260の温度Top以下の温度範囲に含まれる温度であってもよい。 The treatment temperature Td may be a temperature included in a temperature range of the melting point (232 ° C.) or more and 350 ° C. or less of tin. More preferably, the processing temperature Td may be a temperature included in a temperature range of 240 ° C. or higher and 290 ° C. or lower. More preferably, the processing temperature Td may be a temperature that is 240 ° C. or higher and that is included in a temperature range that is equal to or lower than the temperature Top of the tank unit 260 that is maintained when the target is supplied.
 次に、制御部201は、図3のステップS102と同様に、溶融容器210内のガスを排気するように、圧力調節器125を制御してもよい(ステップS124)。これにより、溶融容器210内のガスの排気が開始されてもよい。 Next, the controller 201 may control the pressure regulator 125 so as to exhaust the gas in the melting vessel 210 as in step S102 of FIG. 3 (step S124). Thereby, exhaust of the gas in the melting container 210 may be started.
 続いて、制御部201は、図3のステップS103と同様に、溶融容器210内の高純度錫材料273が融解するように、温度可変装置140を制御してもよい(ステップS125)。ただし、温度制御部144がターゲットとする溶融容器210の温度は、処理温度Tdであってよい。これにより、図9に示すように、溶融容器210内の高純度錫材料273が液体状の錫材料271に融解してもよい。 Subsequently, the control unit 201 may control the temperature variable device 140 so that the high-purity tin material 273 in the melting vessel 210 is melted, similarly to step S103 of FIG. 3 (step S125). However, the temperature of the melting vessel 210 targeted by the temperature control unit 144 may be the processing temperature Td. Thereby, as shown in FIG. 9, the high-purity tin material 273 in the melting container 210 may be melted into the liquid tin material 271.
 溶融容器210の温度が処理温度Tdまで上昇して高純度錫材料273が融解すると、制御部201は、ヒータ電源143をオフにして放置することで、溶融容器210を室温まで冷却してもよい(ステップS126)。その際、過飽和の状態で液体の錫材料271に溶存していた酸素が錫と反応し、酸化錫272として析出し得る。その結果、錫材料271中において酸化錫として析出していない酸素の量は、温度Topでの錫材料271に対する酸素の飽和酸素濃度以下となってもよい。たとえば処理温度Tdを290℃とした場合、処理後の錫材料271の酸素濃度は、1E-3ppmw以下となってもよい。 When the temperature of the melting vessel 210 rises to the processing temperature Td and the high-purity tin material 273 is melted, the control unit 201 may cool the melting vessel 210 to room temperature by turning off the heater power supply 143 and leaving it to stand. (Step S126). At that time, oxygen dissolved in the liquid tin material 271 in a supersaturated state reacts with tin and can be precipitated as tin oxide 272. As a result, the amount of oxygen not precipitated as tin oxide in the tin material 271 may be equal to or lower than the saturated oxygen concentration of oxygen with respect to the tin material 271 at the temperature Top. For example, when the processing temperature Td is 290 ° C., the oxygen concentration of the tin material 271 after the processing may be 1E-3 ppmw or less.
 溶融容器210の冷却が完了したら、制御部201は、溶融容器210内のガス圧が大気圧付近まで上昇するように、圧力調整器120を制御してもよい(ステップS127)。この制御に対し、圧力調整器120の圧力制御部125は、排気装置124を停止し、バルブ122を閉じるとともにバルブ121を開いてもよい。その結果、バルブ121側のガス配管131を介して溶融容器210内に空気が流入してもよい。ただし、停止している排気装置124が排気口として機能する場合、圧力制御部125は、バルブ122を開き且つバルブ121を閉じた状態を維持したまま、排気装置124を停止してもよい。これにより、排気装置124およびバルブ122を介して溶融容器210内に空気が流入してもよい。 When the cooling of the melting vessel 210 is completed, the control unit 201 may control the pressure regulator 120 so that the gas pressure in the melting vessel 210 rises to near atmospheric pressure (step S127). In response to this control, the pressure controller 125 of the pressure regulator 120 may stop the exhaust device 124 and close the valve 122 and open the valve 121. As a result, air may flow into the melting vessel 210 through the gas pipe 131 on the valve 121 side. However, when the stopped exhaust device 124 functions as an exhaust port, the pressure control unit 125 may stop the exhaust device 124 while keeping the valve 122 opened and the valve 121 closed. Thereby, air may flow into the melting vessel 210 through the exhaust device 124 and the valve 122.
 その後、溶融容器210が材料処理装置から取り外されて鋳型211が分離されることで、図10に示すように、溶融容器210内から固化した錫材料271Aが取り出されてもよい(ステップS128)。なお、取り出された錫材料271Aは、たとえば図2に示すターゲット生成装置のタンク部260内にセットされ(ステップS129)、ターゲット生成装置によるドロップレット出力処理に用いられてもよい(ステップS130)。 Thereafter, the melting container 210 is removed from the material processing apparatus and the mold 211 is separated, whereby the solidified tin material 271A may be taken out from the melting container 210 as shown in FIG. 10 (step S128). Note that the extracted tin material 271A may be set, for example, in the tank unit 260 of the target generation device shown in FIG. 2 (step S129) and used for droplet output processing by the target generation device (step S130).
 なお、上記したステップS125において、制御部201は、たとえば数時間~1週間程度、溶融容器210の温度を処理温度Tdに維持してもよい。また、制御部201は、ステップS125およびS126の処理を複数回繰り返した後に、ステップS127へ進んでもよい。 In step S125 described above, the control unit 201 may maintain the temperature of the melting vessel 210 at the processing temperature Td, for example, for several hours to one week. Further, the control unit 201 may proceed to step S127 after repeating the processes of steps S125 and S126 a plurality of times.
5.3 作用
 実施形態1によれば、ターゲット生成装置によるドロップレット出力処理において、溶存酸素量の少ない錫材料271が使用され得る。たとえば、酸化錫として析出していない酸素の量が温度Topでの錫材料271に対する酸素の飽和酸素濃度以下である錫材料271が使用され得る。それにより、フィルタ部265とノズル孔267との間での酸化錫272の析出が抑制され得る。その結果、酸化錫272がノズル孔267に達することを低減できるかもしれない。また、あらかじめ析出している酸化錫272は、フィルタ部265によって濾し取られ得る。これによっても、酸化錫272がノズル孔267に達することを低減できるかもしれない。以上のことから、ノズル孔267の詰まりや孔径の縮小の発生を抑制し、ターゲット27の安定供給が可能となり得る。
5.3 Action According to the first embodiment, the tin material 271 with a small amount of dissolved oxygen can be used in the droplet output processing by the target generation device. For example, a tin material 271 in which the amount of oxygen not precipitated as tin oxide is equal to or lower than the saturated oxygen concentration of oxygen with respect to the tin material 271 at the temperature Top can be used. Thereby, precipitation of the tin oxide 272 between the filter part 265 and the nozzle hole 267 can be suppressed. As a result, it may be possible to reduce the tin oxide 272 from reaching the nozzle hole 267. Further, the tin oxide 272 deposited in advance can be filtered out by the filter unit 265. Also by this, it may be possible to reduce the tin oxide 272 from reaching the nozzle hole 267. From the above, it is possible to suppress the occurrence of clogging of the nozzle holes 267 and the reduction of the hole diameter, and to enable the stable supply of the target 27.
 また、図7に示す動作において、ステップS125およびS126の処理を複数回繰り返すことは、処理後の錫材料271において酸化錫272として析出していない酸素の量をより低減させるかもしれない。また、繰り返し回数を増やすことは、析出する酸化錫272の粒径を大きくするかもしれない。それにより、フィルタ部265を通過する酸化錫272をより低減できるかもしれない。 In the operation shown in FIG. 7, repeating the processes of steps S125 and S126 a plurality of times may further reduce the amount of oxygen not precipitated as tin oxide 272 in the tin material 271 after the process. Further, increasing the number of repetitions may increase the particle size of the precipitated tin oxide 272. Thereby, the tin oxide 272 that passes through the filter portion 265 may be further reduced.
 なお、錫以外の材料をEUV光生成のターゲット材料に使用することも可能である。例えば、テルビウム(Tb)、カドリミウム(Gd)、または錫(Sn)を含むこれらの材料のうち少なくとも1つを含む混合物などを材料をターゲット材料として用いることも可能である。ただし、テルビウム(Tb)、カドリミウム(Gd)などの材料も溶存酸素を含み得る。テルビウムの融点は1356℃であり、ガドリニウムの融点は1312℃である。そこで、それぞれに対応する処理温度Tdおよび温度Topは、融点以上の温度に設定されてもよい。その際、錫を用いた場合と同様に、処理温度Tdは温度Top以下であってもよい。 Note that materials other than tin can be used as a target material for EUV light generation. For example, a material including at least one of these materials including terbium (Tb), cadmium (Gd), or tin (Sn) can be used as the target material. However, materials such as terbium (Tb) and cadmium (Gd) may also contain dissolved oxygen. Terbium has a melting point of 1356 ° C. and gadolinium has a melting point of 1312 ° C. Therefore, the processing temperature Td and the temperature Top corresponding to each may be set to a temperature equal to or higher than the melting point. At that time, similarly to the case of using tin, the processing temperature Td may be equal to or lower than the temperature Top.
5.4 実施形態1の変形例:攪拌装置を備えた材料処理装置
 酸化錫272の析出は、錫材料271を撹拌することで促進されるかもしれない。その際、液体状の錫材料271に酸化錫272の析出を促進させるスカベンジャを添加することで、酸化錫272の析出がより促進されるかもしれない。
5.4 Variation of Embodiment 1: Material Processing Device with Stirring Device Precipitation of tin oxide 272 may be facilitated by stirring the tin material 271. At that time, precipitation of tin oxide 272 may be further promoted by adding a scavenger that promotes precipitation of tin oxide 272 to the liquid tin material 271.
5.4.1 構成
 図11は、実施形態1の変形例にかかる材料処理装置の概略構成例を示す模式図である。なお、図11において、図6と同様の構成については、同一の符号を付すことで、その重複する説明を省略する。
5.4.1 Configuration FIG. 11 is a schematic diagram illustrating a schematic configuration example of a material processing apparatus according to a modification of the first embodiment. In FIG. 11, the same components as those in FIG. 6 are denoted by the same reference numerals, and redundant description thereof is omitted.
 図11に示す材料処理装置は、図6に示す材料処理装置と同様の構成に加え、撹拌装置150を備えてもよい。攪拌装置150は、たとえば溶融容器210の底面に接触配置されてもよい。 The material processing apparatus shown in FIG. 11 may include a stirring device 150 in addition to the same configuration as the material processing apparatus shown in FIG. Stirrer 150 may be placed in contact with the bottom surface of melting vessel 210, for example.
 攪拌装置150は、3相交流電源151に接続されてもよい。攪拌装置150は、3相交流電源151から供給される電流が発生させる磁場によって溶融金属を電磁流動させてもよい。磁場を融解した錫材料271に効果的に作用させるために、溶融容器210を構成する鋳型211および蓋212の材質は、非磁性体であることが望ましい。非磁性体は、石英、アルミナ、ジルコニア、PBN(Pyrolytic Born Nitride)、BN(Born Nitride)等であってもよい。 The stirring device 150 may be connected to a three-phase AC power source 151. The stirring device 150 may electromagnetically flow the molten metal by a magnetic field generated by a current supplied from the three-phase AC power supply 151. In order to effectively act on the tin material 271 in which the magnetic field is melted, it is desirable that the material of the mold 211 and the lid 212 constituting the melting container 210 is a non-magnetic material. The non-magnetic material may be quartz, alumina, zirconia, PBN (Pyrolytic Born Nitride), BN (Born Nitride), or the like.
 なお、攪拌装置150は、金属溶融炉等で一般に知られる他の構成の攪拌装置に置き換えられてもよい。もしくは、例えばヒータ141に高周波電流を流す構成とすることで、ヒータ141が攪拌装置を兼ねる構成としてもよい。 It should be noted that the stirring device 150 may be replaced with a stirring device having another configuration generally known in a metal melting furnace or the like. Alternatively, for example, a configuration in which a high-frequency current is supplied to the heater 141 may be configured so that the heater 141 also serves as a stirring device.
 溶融容器210内には、高純度錫材料273に加え、スカベンジャが添加されてもよい。スカベンジャは、酸化錫272の析出を促進させる物質であってもよい。スカベンジャは、材料である錫よりも易酸化であってもよい。また、スカベンジャは、例えば290℃で融解している錫材料271に少なくとも1質量%程度、溶解する材料であってもよい。このようなスカベンジャとして、粉末状あるいはバルク状のカルシウム(Ca)、マグネシウム(Mg)、アルミニウム(Al)、亜鉛(Zn)等が使用されてもよい。 In the melting vessel 210, a scavenger may be added in addition to the high-purity tin material 273. The scavenger may be a substance that promotes the precipitation of tin oxide 272. The scavenger may be more easily oxidized than the material tin. The scavenger may be a material that dissolves at least about 1% by mass in a tin material 271 that is melted at 290 ° C., for example. As such a scavenger, powdery or bulk calcium (Ca), magnesium (Mg), aluminum (Al), zinc (Zn), or the like may be used.
5.4.2 動作
 図12および図13は、実施形態1の変形例にかかる材料処理の概略動作例を説明するための図である。なお、本実施形態にかかる材料処理は、後述する工程において、少なくとも図12におけるステップS125~S126の工程を含めばよい。
5.4.2 Operation FIGS. 12 and 13 are diagrams for explaining a schematic operation example of the material processing according to the modification of the first embodiment. Note that the material processing according to the present embodiment may include at least steps S125 to S126 in FIG.
 図12に示す動作例は、基本的には、図7に示す動作例と同様であってよい。ただし、図12に示す動作例では、図7のステップS122における工程がステップS301に置き換えられるとともに、ステップS125とS126との間にステップS302~S304が追加されてもよい。 The operation example shown in FIG. 12 may be basically the same as the operation example shown in FIG. However, in the operation example shown in FIG. 12, the process in step S122 in FIG. 7 may be replaced with step S301, and steps S302 to S304 may be added between steps S125 and S126.
 ステップS301では、電解精製により析出された高純度錫材料273が、スカベンジャ274とともに、容器311内にセットされてもよい(図13参照)。 In step S301, the high-purity tin material 273 deposited by electrolytic purification may be set in the container 311 together with the scavenger 274 (see FIG. 13).
 ステップS302では、溶融容器210の温度が処理温度Tdまで上昇した後に、融解した高純度錫材料273の攪拌が開始されてもよい。この攪拌は、作業者が攪拌装置150および3相交流電源151の電源をオンすることで開始されてもよいし、制御部51が攪拌装置150および3相交流電源151を制御することで開始されてもよい。なお、高純度錫材料273に添加されたスカベンジャ274の一部は、溶融容器210の温度が処理温度Tdまで上昇することで溶解してもよい。また、攪拌装置150および3相交流電源151の電源オンを作業者が行う場合、溶融容器210の温度が処理温度Tdまで上昇したことが、光や音や通信手段などを用いて作業者に報知されてもよい。 In step S302, after the temperature of the melting vessel 210 rises to the processing temperature Td, stirring of the molten high-purity tin material 273 may be started. This agitation may be started when an operator turns on the agitator 150 and the three-phase AC power supply 151, or the control unit 51 starts the control of the agitator 150 and the three-phase AC power supply 151. May be. A part of the scavenger 274 added to the high-purity tin material 273 may be melted when the temperature of the melting vessel 210 rises to the processing temperature Td. In addition, when the operator turns on the stirring device 150 and the three-phase AC power supply 151, the operator is notified of the temperature of the melting vessel 210 having risen to the processing temperature Td using light, sound, communication means, or the like. May be.
 ステップS303では、たとえば撹拌の開始から所定時間が経過したか否かが判定されてもよい。この判定は、たとえば制御部51が不図示のタイマで計測された経過時間に基づいて実行してもよいし、作業者によって実行されてもよい。作業者によって行われる場合、撹拌の開始から所定時間が経過したことが、光や音や通信手段などを用いて作業者に報知されてもよい。 In step S303, for example, it may be determined whether a predetermined time has elapsed since the start of stirring. This determination may be performed based on the elapsed time measured by a timer (not shown), for example, or may be performed by an operator. When performed by an operator, the operator may be notified that a predetermined time has elapsed since the start of stirring using light, sound, communication means, or the like.
 ステップS304では、高純度錫材料273の攪拌が停止されてもよい。攪拌の停止は、作業者による攪拌装置150または3相交流電源151の電源オフであってもよいし、制御部51による攪拌装置150または3相交流電源151の制御であってもよい。 In step S304, stirring of the high-purity tin material 273 may be stopped. The stop of the stirring may be the power-off of the stirring device 150 or the three-phase AC power supply 151 by the operator, or the control of the stirring device 150 or the three-phase AC power supply 151 by the control unit 51.
5.4.3 作用
 実施形態1の変形例によれば、スカベンジャ274と撹拌によって酸化錫272の析出が促進されるため、処理後の錫材料271Aにおける酸化錫として析出していない一定量あたりの酸素の量をより低減することができるかもしれない。それにより、ノズル孔267の詰まりや孔径の縮小の発生をさらに抑制し、より安定したターゲット27の供給が可能となり得る。
5.4.3 Action According to the modification of the first embodiment, the scavenger 274 and the stirring promote the precipitation of the tin oxide 272, so that the amount per fixed amount not precipitated as tin oxide in the treated tin material 271A. It may be possible to further reduce the amount of oxygen. Thereby, it is possible to further suppress the occurrence of clogging of the nozzle holes 267 and the reduction of the hole diameter and to supply the target 27 more stably.
 なお、ここで説明した変形例は、後述する他の実施形態に適用することも可能である。 Note that the modification described here can be applied to other embodiments described later.
6.実施形態2:材料処理装置の他の例
 上述のように、実施形態1では、材料処理により析出したパーティクル272がドロップレット出力処理の際にターゲット生成装置におけるフィルタ部265によって濾し取られ得る。一方、実施形態2では、ターゲット材料271をターゲット生成装置にセットする前に、材料処理により析出したパーティクル272が濾し取られてもよい。
6). Second Embodiment: Other Examples of Material Processing Device As described above, in the first embodiment, the particles 272 deposited by the material processing can be filtered out by the filter unit 265 in the target generation device during the droplet output processing. On the other hand, in the second embodiment, before the target material 271 is set in the target generation device, the particles 272 deposited by the material processing may be filtered off.
6.1 構成
 図14は、実施形態2にかかる材料処理装置の概略構成例を示す模式図である。なお、図14において、図2または図6と同様の構成については、同一の符号を付すことで、その重複する説明を省略する。
6.1 Configuration FIG. 14 is a schematic diagram illustrating a schematic configuration example of a material processing apparatus according to the second embodiment. In FIG. 14, the same components as those in FIG. 2 or FIG.
 図14に示す材料処理装置は、錫材料271中の溶存酸素を酸化錫272として析出させる処理と、析出した酸化錫272を濾過する処理とを実行してもよい。そこで、材料処理装置は、温度可変装置140と、圧力調節器120と、制御部301と、記憶部302と、溶融容器310と、フィルタ部265と、ゲートバルブ314と、鋳型320とを備えてもよい。温度可変装置140と圧力調節器120とフィルタ部265は、図2または図6に示すそれらと同じであってよい。ただし、圧力調節器120には、溶融容器310内を昇圧するための不活性ガスを供給するボンベ130が接続されてもよい。 The material processing apparatus shown in FIG. 14 may execute a process for precipitating dissolved oxygen in the tin material 271 as tin oxide 272 and a process for filtering the precipitated tin oxide 272. Therefore, the material processing apparatus includes a temperature variable device 140, a pressure regulator 120, a control unit 301, a storage unit 302, a melting container 310, a filter unit 265, a gate valve 314, and a mold 320. Also good. The temperature variable device 140, the pressure regulator 120, and the filter unit 265 may be the same as those shown in FIG. 2 or FIG. However, the pressure regulator 120 may be connected to a cylinder 130 that supplies an inert gas for increasing the pressure in the melting vessel 310.
 溶融容器310は、蓋312と、容器311とから構成されてよい。蓋312および容器311は、たとえばモリブデン(Mo)で形成されてもよい。 The melting container 310 may be composed of a lid 312 and a container 311. The lid 312 and the container 311 may be formed of, for example, molybdenum (Mo).
 容器311は、図2に示すタンク261と同様に、フィルタ部265を収容する凸部313を備えてもよい。凸部313の形状は、凸部263と同様であってよい。フィルタ部265は、凸部263と同様に、凸部313の上面開口と下面開口とを連通する流路に形成された拡径部内にホルダ264を用いて隙間なく収容されてもよい。 The container 311 may be provided with a convex portion 313 that accommodates the filter portion 265 similarly to the tank 261 shown in FIG. The shape of the convex portion 313 may be the same as that of the convex portion 263. Similarly to the convex portion 263, the filter portion 265 may be accommodated in the enlarged diameter portion formed in the flow path that connects the upper surface opening and the lower surface opening of the convex portion 313 with no gap.
 凸部313の下面開口下には、鋳型320が配置されてもよい。鋳型320には、凸部313の下面開口から流れ出したターゲット材料271が流入する開口が設けられてもよい。凸部313と鋳型320との間は、ゲートバルブ314を用いて気密性を保つように接続されてもよい。ゲートバルブ314および鋳型320は、凸部313に対して着脱可能であってもよい。 A mold 320 may be disposed below the opening on the lower surface of the convex portion 313. The mold 320 may be provided with an opening through which the target material 271 flowing out from the lower surface opening of the convex portion 313 flows. Between the convex part 313 and the casting_mold | template 320, you may connect so that airtightness may be maintained using the gate valve 314. FIG. The gate valve 314 and the mold 320 may be detachable from the convex portion 313.
 制御部301からの出力信号線は、温度制御部144と圧力制御部125とに接続されてもよい。制御部301への入力信号線は、温度制御部144と圧力制御部125とに接続されてもよい。 The output signal line from the control unit 301 may be connected to the temperature control unit 144 and the pressure control unit 125. An input signal line to the control unit 301 may be connected to the temperature control unit 144 and the pressure control unit 125.
 また、制御部301には、記憶部302が接続されてもよい。記憶部302は、制御部301に対して、内蔵されてもよいし、外付けされてもよい。 Further, the storage unit 302 may be connected to the control unit 301. The storage unit 302 may be built in or externally attached to the control unit 301.
 その他の構成は、図6に示す材料処理装置と同様であってもよい。 Other configurations may be the same as those of the material processing apparatus shown in FIG.
6.2 動作
 図15~図19は、実施形態2にかかる材料処理の概略動作例を説明するための図である。なお、本実施形態にかかる材料処理は、後述する工程において、少なくとも図15におけるステップS203およびS205の工程を含めばよい。
6.2 Operation FIGS. 15 to 19 are diagrams for explaining a schematic operation example of material processing according to the second embodiment. Note that the material processing according to the present embodiment may include at least steps S203 and S205 in FIG.
 図15に示す動作例では、図7に示す動作例と同様に、電解精製により析出された高純度錫材料273が容器311内にセットされてもよい(図16参照)(ステップS121およびS201)。この際、ゲートバルブ314は開いた状態でよい。また、制御部301には、処理温度TdおよびTLと、処理時間t1およびt2と、処理回数Nmaxとが入力されてもよい(ステップS202)。入力された処理温度TdおよびTLと、処理時間t1およびt2と、処理回数Nとは、制御部301に接続された記憶部302に記憶されてもよい。 In the operation example shown in FIG. 15, as in the operation example shown in FIG. 7, the high-purity tin material 273 deposited by electrolytic purification may be set in the container 311 (see FIG. 16) (steps S <b> 121 and S <b> 201). . At this time, the gate valve 314 may be open. Further, the processing temperature Td and TL, the processing times t1 and t2, and the number of processing times Nmax may be input to the control unit 301 (step S202). The input processing temperatures Td and TL, processing times t1 and t2, and the number of processing times N may be stored in the storage unit 302 connected to the control unit 301.
 なお、処理温度Tdは、実施形態1と同様であってもよい。処理温度TLは、錫の融点付近の温度に設定すると良好な結果が得られることが実験で判明している。このことから、処理温度TLは、液体錫中に酸化錫が析出する温度、または、酸化錫が析出して凝集する温度であると考えられる。たとえば、処理温度TLは、錫の融点Tmp以上であって、その近傍の232℃~240℃の温度範囲であってもよい。または、処理温度TLは、錫の融点Tmp以下の温度範囲(たとえば200℃~220℃)であってもよい。処理時間t1は、溶融容器310を処理温度Tdに維持する時間であってもよい。処理時間t1は、たとえば1~20時間の範囲内に設定されてもよい。たとえば、処理時間t1は、7時間に設定されてもよい。処理時間t2は、溶融容器310の温度を処理温度TLに維持する時間であってもよい。処理時間t2は、たとえば1~18時間の範囲内に設定されてもよい。たとえば、処理時間t2は、12時間に設定されてもよい。処理回数Nmaxは、溶融容器310の温度を処理温度Tdと処理温度TLとに昇温降温させるサイクルの回数であってもよい。処理回数Nmaxは、たとえば5回であってもよい。 Note that the processing temperature Td may be the same as in the first embodiment. Experiments have shown that good results are obtained when the processing temperature TL is set to a temperature near the melting point of tin. From this, it is considered that the treatment temperature TL is a temperature at which tin oxide is precipitated in liquid tin or a temperature at which tin oxide is precipitated and aggregated. For example, the processing temperature TL may be a temperature range of 232 ° C. to 240 ° C. that is equal to or higher than the melting point Tmp of tin. Alternatively, the processing temperature TL may be a temperature range (for example, 200 ° C. to 220 ° C.) below the melting point Tmp of tin. The processing time t1 may be a time for maintaining the melting vessel 310 at the processing temperature Td. The processing time t1 may be set within a range of 1 to 20 hours, for example. For example, the processing time t1 may be set to 7 hours. The processing time t2 may be a time for maintaining the temperature of the melting vessel 310 at the processing temperature TL. The processing time t2 may be set within a range of 1 to 18 hours, for example. For example, the processing time t2 may be set to 12 hours. The number of processing times Nmax may be the number of cycles in which the temperature of the melting vessel 310 is raised and lowered to the processing temperature Td and the processing temperature TL. The number of processing times Nmax may be, for example, 5 times.
 制御部301への入力が完了したら、制御部301は、図7のステップS124と同様に、溶融容器310内のガスを排気するように、圧力調節器125を制御してもよい(ステップS124)。これにより、溶融容器310内のガスの排気が開始されてもよい。このとき、ゲートバルブ314が開いているので、フィルタ部265を介して鋳型320内部も排気され得る。 When the input to the control unit 301 is completed, the control unit 301 may control the pressure regulator 125 so as to exhaust the gas in the melting container 310, similarly to step S124 of FIG. 7 (step S124). . Thereby, exhaust of the gas in the melting container 310 may be started. At this time, since the gate valve 314 is open, the inside of the mold 320 can also be exhausted through the filter portion 265.
 つぎに、制御部301は、錫材料271中に酸化錫272を析出させる酸化物析出処理を実行してもよい(ステップS203)。この酸化物析出処理の詳細は、後述において説明する。なお、酸化物析出処理の過程で融解した錫材料271は、後述する圧力Ptで加圧されていず粘性と表面張力によりフィルタ部265を通過しないので、ゲートバルブ314は開いたままでよい。 Next, the control unit 301 may perform an oxide deposition process for depositing tin oxide 272 in the tin material 271 (step S203). Details of this oxide precipitation treatment will be described later. In addition, since the tin material 271 melted in the course of the oxide precipitation process is not pressurized with the pressure Pt described later and does not pass through the filter portion 265 due to viscosity and surface tension, the gate valve 314 may remain open.
 酸化物析出処理が完了すると、制御部301は、圧力調節器125を制御して排気装置124を停止してもよい(ステップS204)。その際、圧力調整器120の圧力制御部125は、排気装置124を停止するとともに、バルブ122を閉じてもよい。 When the oxide deposition process is completed, the control unit 301 may control the pressure regulator 125 to stop the exhaust device 124 (step S204). At that time, the pressure controller 125 of the pressure regulator 120 may stop the exhaust device 124 and close the valve 122.
 つぎに、制御部301は、溶融容器310内を加圧するように、圧力調節器120を制御してもよい(ステップS205)。この制御に対し、圧力制御部125は、バルブ121を開くことで、ボンベ130からの不活性ガスを溶融容器310内に導入してもよい。その結果、図17に示すように、溶融容器310内の圧力が、ターゲット材料271がフィルタ部265を通過して凸部313の開口から流れ出す圧力Pt(たとえば図3のステップS107の圧力P)となってもよい。また、圧力調整器125は、バルブ121の開閉を制御することで、溶融容器310内の圧力が圧力Ptを維持するように制御してもよい。圧力Ptは、たとえば実験やシミュレーション等によって事前に特定しておくことができる。 Next, the control unit 301 may control the pressure regulator 120 so as to pressurize the inside of the melting container 310 (step S205). For this control, the pressure control unit 125 may introduce the inert gas from the cylinder 130 into the melting container 310 by opening the valve 121. As a result, as shown in FIG. 17, the pressure in the melting container 310 is such that the target material 271 passes through the filter portion 265 and flows out from the opening of the convex portion 313 (for example, the pressure P in step S107 in FIG. 3). It may be. Further, the pressure regulator 125 may control the pressure in the melting container 310 to maintain the pressure Pt by controlling the opening and closing of the valve 121. The pressure Pt can be specified in advance by, for example, experiments or simulations.
 液体状の錫材料271が溶融容器310から鋳型320内に導入される過程でフィルタ部265を通過することで、錫材料271中の酸化錫272がフィルタ部265によって濾し取られ得る。その結果、図18に示すように、鋳型320内には、酸化錫272が濾し取られた状態の錫材料271Bが導入される。その際、溶融容器310内に導入された不活性ガスが鋳型320内に流入してもよい。 In the process of introducing the liquid tin material 271 from the melting vessel 310 into the mold 320, the tin oxide 272 in the tin material 271 can be filtered by the filter portion 265 by passing through the filter portion 265. As a result, as shown in FIG. 18, the tin material 271B in a state where the tin oxide 272 is filtered is introduced into the mold 320. At that time, the inert gas introduced into the melting vessel 310 may flow into the mold 320.
 溶融容器310から鋳型310内への錫材料271Bの導入が完了すると、制御部301は、ゲートバルブ314を閉じてもよい(ステップS206)。その後、錫材料271Bが導入された鋳型320は、たとえば常温に冷却されてもよい(ステップS207)。鋳型320の冷却は、自然放熱であってもよいし、強制放熱であってもよい。 When the introduction of the tin material 271B from the melting container 310 into the mold 310 is completed, the control unit 301 may close the gate valve 314 (step S206). Thereafter, the mold 320 into which the tin material 271B has been introduced may be cooled to room temperature, for example (step S207). The cooling of the mold 320 may be natural heat dissipation or forced heat dissipation.
 その後、図7のステップS128と同様に、鋳型320が材料処理装置から取り外されて分離されることで、図19に示すように、鋳型320内から固化した錫材料271Bが取り出されてもよい(ステップS128)。なお、鋳型320は、分離可能な複数の部材321および322から構成されてもよい。また、取り出された錫材料271Bは、たとえば図2に示すターゲット生成装置のタンク部260内にセットされ(ステップS129)、ターゲット生成装置によるドロップレット出力処理に用いられてもよい(ステップS130)。 Thereafter, as in step S128 of FIG. 7, the mold 320 is removed from the material processing apparatus and separated, so that the solidified tin material 271B may be taken out from the mold 320 as shown in FIG. 19 ( Step S128). The mold 320 may be composed of a plurality of separable members 321 and 322. Further, the extracted tin material 271B may be set, for example, in the tank unit 260 of the target generation device shown in FIG. 2 (step S129) and used for droplet output processing by the target generation device (step S130).
6.2.1 酸化物析出処理
 図20および図21は、図15のステップS203に示す酸化物析出処理の一例を説明する図である。図20および図21に示すように、酸化物析出処理では、制御部301は、まず、不図示のカウンタの値Nを0にリセットしてもよい(ステップS221)。つぎに、制御部301は、溶融容器310の温度Tが処理温度Tdに上昇するように、温度可変装置140を制御してもよい(ステップS222~S223;NO)(図21の期間t00~t01参照)。
6.2.1 Oxide Precipitation Process FIGS. 20 and 21 are diagrams illustrating an example of the oxide precipitation process shown in step S203 of FIG. As shown in FIGS. 20 and 21, in the oxide deposition process, the control unit 301 may first reset the value N of a counter (not shown) to 0 (step S221). Next, the control unit 301 may control the temperature variable device 140 so that the temperature T of the melting vessel 310 increases to the processing temperature Td (steps S222 to S223; NO) (periods t00 to t01 in FIG. 21). reference).
 溶融容器310の温度Tが処理温度Tdに達すると(ステップS223;YES)、制御部301は、不図示のタイマを用いた経過時間tの計測を開始するとともに(ステップS224)、溶融容器310の温度Tが、設定された処理時間t1の間、処理温度Tdを維持するように、温度可変装置140を制御してもよい(ステップS225~S226;NO)(図21の期間t01~t02参照)。 When the temperature T of the melting container 310 reaches the processing temperature Td (step S223; YES), the control unit 301 starts measuring the elapsed time t using a timer (not shown) (step S224) and The temperature variable device 140 may be controlled so that the temperature T is maintained at the processing temperature Td for the set processing time t1 (steps S225 to S226; NO) (see the periods t01 to t02 in FIG. 21). .
 その後、経過時間tが処理時間t1に達すると(ステップS226;YES)、制御部301は、溶融容器310の温度Tが処理温度TLに下降するように、温度可変装置140を制御してもよい(ステップS227~S228;NO)(図21の期間t02~t03参照)。その際、制御部301は、タイマをリセットしてもよい。 Thereafter, when the elapsed time t reaches the processing time t1 (step S226; YES), the control unit 301 may control the temperature variable device 140 so that the temperature T of the melting container 310 is lowered to the processing temperature TL. (Steps S227 to S228; NO) (see periods t02 to t03 in FIG. 21). At that time, the control unit 301 may reset the timer.
 溶融容器310の温度Tが処理温度TLに達すると(ステップS228;YES)、制御部301は、リセットされたタイマを用いた経過時間tの計測を開始するとともに(ステップS229)、溶融容器310の温度Tが、設定された処理時間t2の間、処理温度TLを維持するように、温度可変装置140を制御してもよい(ステップS230~S231;NO)(図21の期間t03~t04参照)。 When the temperature T of the melting container 310 reaches the processing temperature TL (step S228; YES), the control unit 301 starts measuring the elapsed time t using the reset timer (step S229), and The temperature variable device 140 may be controlled so that the temperature T is maintained at the processing temperature TL for the set processing time t2 (steps S230 to S231; NO) (see the periods t03 to t04 in FIG. 21). .
 その後、経過時間tが処理時間t2に達すると(ステップS231;YES)、制御部301は、カウンタの値Nに1を加算し(ステップS232)、加算後のカウンタの値Nが設定された処理回数Nmaxに達したか否かを判定してもよい(ステップS233)。カウンタの値Nが処理回数Nmaxに達していない場合(ステップS233;NO)、制御部301は、ステップS222へリターンし、以降の動作を繰り返してもよい。一方、カウンタの値Nが処理回数Nmaxに達した場合(ステップS233;YES)、制御部301は、図15に示す動作へリターンしてもよい。 Thereafter, when the elapsed time t reaches the processing time t2 (step S231; YES), the control unit 301 adds 1 to the counter value N (step S232), and the processing in which the counter value N after the addition is set is performed. It may be determined whether or not the number Nmax has been reached (step S233). When the value N of the counter has not reached the processing count Nmax (step S233; NO), the control unit 301 may return to step S222 and repeat the subsequent operations. On the other hand, when the value N of the counter reaches the processing count Nmax (step S233; YES), the control unit 301 may return to the operation illustrated in FIG.
6.3 作用
 実施形態2によれば、実施形態1による作用に加え、酸化錫272が事前に低減された錫材料271をターゲット生成装置へセットすることが可能となる。それにより、酸化錫272がノズル孔267に達することをより低減できるかもしれない。また、酸化錫272が事前に低減された錫材料271を使用することは、フィルタ部265の交換サイクルを長くするかもしれない。
6.3 Action According to the second embodiment, in addition to the action according to the first embodiment, the tin material 271 in which the tin oxide 272 has been reduced in advance can be set in the target generation device. Thereby, it may be possible to further reduce the tin oxide 272 from reaching the nozzle hole 267. Also, using a tin material 271 that has been pre-reduced in tin oxide 272 may lengthen the replacement cycle of the filter portion 265.
 なお、処理温度TdおよびTL、処理時間t1およびt2、処理回数Nmaxは、たとえば実験やシミュレーション等の結果に基づいて事前に決定しておいてもよい。たとえば、実験結果によれば、処理回数Nmaxを5以上とすることで、ターゲット材料271に残存している酸素の量を低減することができた。ただし、この実験結果は、処理回数Nmaxを5回未満とすることを否定するものではない。 Note that the processing temperatures Td and TL, the processing times t1 and t2, and the processing frequency Nmax may be determined in advance based on, for example, results of experiments or simulations. For example, according to the experimental results, the amount of oxygen remaining in the target material 271 could be reduced by setting the number of treatments Nmax to 5 or more. However, this experimental result does not deny that the number of processing times Nmax is less than 5.
7.その他
7.1 制御部
 当業者は、汎用コンピュータまたはプログラマブルコントローラにプログラムモジュールまたはソフトウエアアプリケーションを組み合わせて、ここに述べられる主題が実行されることを理解するだろう。一般的に、プログラムモジュールは、本開示に記載されるプロセスを実行できるルーチン、プログラム、コンポーネント、データストラクチャー等を含む。
7). Other 7.1 Controls Those skilled in the art will understand that the subject matter described herein may be implemented by combining program modules or software applications with a general purpose computer or programmable controller. Generally, program modules include routines, programs, components, data structures, etc. that can perform the processes described in this disclosure.
 図22は、開示される主題の様々な側面が実行され得る例示的なハードウエア環境を示すブロック図である。図22の例示的なハードウエア環境100は、処理ユニット1000と、ストレージユニット1005と、ユーザインターフェイス1010と、パラレルI/Oコントローラ1020と、シリアルI/Oコントローラ1030と、A/D、D/Aコンバータ1040とを含んでもよいが、ハードウエア環境100の構成は、これに限定されない。 FIG. 22 is a block diagram illustrating an example hardware environment in which various aspects of the disclosed subject matter may be implemented. The example hardware environment 100 of FIG. 22 includes a processing unit 1000, a storage unit 1005, a user interface 1010, a parallel I / O controller 1020, a serial I / O controller 1030, A / D, D / A. Although the converter 1040 may be included, the configuration of the hardware environment 100 is not limited to this.
 処理ユニット1000は、中央処理ユニット(CPU)1001と、メモリ1002と、タイマ1003と、画像処理ユニット(GPU)1004とを含んでもよい。メモリ1002は、ランダムアクセスメモリ(RAM)とリードオンリーメモリ(ROM)とを含んでもよい。CPU1001は、市販のプロセッサのいずれでもよい。デュアルマイクロプロセッサや他のマルチプロセッサアーキテクチャが、CPU1001として使用されてもよい。 The processing unit 1000 may include a central processing unit (CPU) 1001, a memory 1002, a timer 1003, and an image processing unit (GPU) 1004. The memory 1002 may include random access memory (RAM) and read only memory (ROM). The CPU 1001 may be any commercially available processor. A dual microprocessor or other multiprocessor architecture may be used as the CPU 1001.
 図22におけるこれらの構成物は、本開示において記載されるプロセスを実行するために、相互に接続されていてもよい。 These components in FIG. 22 may be interconnected to perform the processes described in this disclosure.
 動作において、処理ユニット1000は、ストレージユニット1005に保存されたプログラムを読み込んで、実行してもよい、また、処理ユニット1000は、ストレージユニット1005からプログラムと一緒にデータを読み込んでもよい、また、処理ユニット1000は、ストレージユニット1005にデータを書き込んでもよい。CPU1001は、ストレージユニット1005から読み込んだプログラムを実行してもよい。メモリ1002は、CPU1001によって実行されるプログラムおよびCPU1001の動作に使用されるデータを、一時的に保管する作業領域であってもよい。タイマ1003は、時間間隔を計測して、プログラムの実行に従ってCPU1001に計測結果を出力してもよい。GPU1004は、ストレージユニット1005から読み込まれるプログラムに従って、画像データを処理し、処理結果をCPU1001に出力してもよい。 In operation, the processing unit 1000 may read and execute a program stored in the storage unit 1005, or the processing unit 1000 may read data together with the program from the storage unit 1005. The unit 1000 may write data to the storage unit 1005. The CPU 1001 may execute a program read from the storage unit 1005. The memory 1002 may be a work area for temporarily storing programs executed by the CPU 1001 and data used for the operation of the CPU 1001. The timer 1003 may measure the time interval and output the measurement result to the CPU 1001 according to the execution of the program. The GPU 1004 may process the image data according to a program read from the storage unit 1005 and output the processing result to the CPU 1001.
 パラレルI/Oコントローラ1020は、EUV光生成制御装置5、制御部51等の、処理ユニット1000と通信可能なパラレルI/Oデバイスに接続されてもよく、処理ユニット1000とそれらパラレルI/Oデバイスとの間の通信を制御してもよい。シリアルI/Oコントローラ1030は、温度制御部144、圧力制御部125、ピエゾ電源112等の、処理ユニット1000と通信可能なシリアルI/Oデバイスに接続されてもよく、処理ユニット1000とそれらシリアルI/Oデバイスとの間の通信を制御してもよい。A/D、D/Aコンバータ1040は、アナログポートを介して、温度センサや圧力センサ、真空計各種センサ等のアナログデバイスに接続されてもよく、処理ユニット1000とそれらアナログデバイスとの間の通信を制御したり、通信内容のA/D、D/A変換を行ってもよい。 The parallel I / O controller 1020 may be connected to parallel I / O devices that can communicate with the processing unit 1000, such as the EUV light generation controller 5 and the control unit 51, and the processing unit 1000 and the parallel I / O devices. You may control communication between. The serial I / O controller 1030 may be connected to a serial I / O device that can communicate with the processing unit 1000, such as the temperature control unit 144, the pressure control unit 125, and the piezo power supply 112. The communication with the / O device may be controlled. The A / D and D / A converter 1040 may be connected to analog devices such as a temperature sensor, a pressure sensor, and various vacuum gauge sensors via an analog port, and communication between the processing unit 1000 and these analog devices. Or A / D and D / A conversion of communication contents may be performed.
 ユーザインターフェイス1010は、操作者が処理ユニット1000にプログラムの停止や、割込みルーチンの実行を指示できるように、処理ユニット1000によって実行されるプログラムの進捗を操作者に表示してもよい。 The user interface 1010 may display the progress of the program executed by the processing unit 1000 to the operator so that the operator can instruct the processing unit 1000 to stop the program or execute the interrupt routine.
 例示的なハードウエア環境100は、本開示におけるEUV光生成制御装置5、制御部51、温度制御部144、圧力制御部125等の構成に適用されてもよい。当業者は、それらのコントローラが分散コンピューティング環境、すなわち、通信ネットワークを介して繋がっている処理ユニットによってタスクが実行される環境において実現されてもよいことを理解するだろう。本開示において、EUV光生成制御装置5、制御部51、温度制御部144、圧力制御部125等は、イーサネット(登録商標)やインターネットといった通信ネットワークを介して互いに接続されてもよい。分散コンピューティング環境において、プログラムモジュールは、ローカルおよびリモート両方のメモリストレージデバイスに保存されてもよい。 The exemplary hardware environment 100 may be applied to configurations of the EUV light generation control device 5, the control unit 51, the temperature control unit 144, the pressure control unit 125, and the like in the present disclosure. Those skilled in the art will appreciate that these controllers may be implemented in a distributed computing environment, i.e., an environment where tasks are performed by processing units connected via a communications network. In the present disclosure, the EUV light generation control device 5, the control unit 51, the temperature control unit 144, the pressure control unit 125, and the like may be connected to each other via a communication network such as Ethernet (registered trademark) or the Internet. In a distributed computing environment, program modules may be stored in both local and remote memory storage devices.
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。 The above description is intended to be illustrative only and not limiting. Thus, it will be apparent to one skilled in the art that modifications may be made to the embodiments of the present disclosure without departing from the scope of the appended claims.
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。 Terms used throughout this specification and the appended claims should be construed as "non-limiting" terms. For example, the terms “include” or “included” should be interpreted as “not limited to those described as included”. The term “comprising” should be interpreted as “not limited to what is described as having”. Also, the indefinite article “one” in the specification and the appended claims should be interpreted to mean “at least one” or “one or more”.
 26…ターゲット生成装置、27…ドロップレット、51,201,301…制御部、61…EUV光生成制御装置
111…ピエゾ素子、112…ピエゾ電源、120…圧力調整器、121,122…バルブ、123…圧力センサ、124…排気装置、125…圧力制御部、130…ボンベ、131,132…ガス配管、134…バルブ、140…温度可変装置、141…ヒータ、142…温度センサ、143…ヒータ電源、144…温度制御部、150…攪拌装置、151…3相交流電源、202,302…記憶部、210,310…溶融容器、211,320…鋳型、211a,211b,321,322…部材、212,312…蓋、311…容器、314…ゲートバルブ、260…タンク部、261…タンク、262…蓋、263,313…凸部、264…ホルダ、265…フィルタ部、266…ノズル部、267…ノズル孔、270…酸素、271,271A,271B…ターゲット材料(錫材料)、272…パーティクル(酸化錫)、273…高純度錫材料、274…スカベンジャ
DESCRIPTION OF SYMBOLS 26 ... Target production | generation apparatus, 27 ... Droplet, 51, 201, 301 ... Control part, 61 ... EUV light production | generation control apparatus 111 ... Piezo element, 112 ... Piezo power supply, 120 ... Pressure regulator, 121, 122 ... Valve, 123 DESCRIPTION OF SYMBOLS ... Pressure sensor, 124 ... Exhaust device, 125 ... Pressure control part, 130 ... Cylinder, 131, 132 ... Gas piping, 134 ... Valve, 140 ... Temperature variable device, 141 ... Heater, 142 ... Temperature sensor, 143 ... Heater power supply, 144 ... Temperature control unit, 150 ... Stirrer, 151 ... 3-phase AC power source, 202, 302 ... Storage unit, 210, 310 ... Melting vessel, 211,320 ... Mold, 211a, 211b, 321,322 ... Member, 212, 312 ... Lid, 311 ... Container, 314 ... Gate valve, 260 ... Tank part, 261 ... Tank, 262 ... Lid, 263 DESCRIPTION OF SYMBOLS 13 ... Convex part, 264 ... Holder, 265 ... Filter part, 266 ... Nozzle part, 267 ... Nozzle hole, 270 ... Oxygen, 271, 271A, 271B ... Target material (tin material), 272 ... Particle (tin oxide), 273 ... high-purity tin material, 274 ... scavenger

Claims (14)

  1.  極端紫外光生成装置(1)のターゲット生成装置(26,120,140,51,112)に用いられるターゲット材料(271)であって、
     溶存する酸素の濃度が、前記ターゲット生成装置により出力されるターゲット材料の温度である第1温度(Top)での酸素の飽和濃度以下であるターゲット材料。
    A target material (271) used in the target generator (26, 120, 140, 51, 112) of the extreme ultraviolet light generator (1),
    A target material in which a concentration of dissolved oxygen is equal to or lower than a saturation concentration of oxygen at a first temperature (Top) that is a temperature of the target material output by the target generation device.
  2.  前記第1温度をT(K)、前記酸素原子の濃度をC(ppmw)として、以下の式(1)を満たす請求項1に記載のターゲット材料。
      C≦1.38×10×exp((-1.48×10)/T) … (1)
    2. The target material according to claim 1, wherein the first temperature is T (K) and the concentration of the oxygen atoms is C (ppmw), and the following formula (1) is satisfied.
    C ≦ 1.38 × 10 8 × exp ((− 1.48 × 10 4 ) / T) (1)
  3.  錫(Sn)、テルビウム(Tb)、カドリミウム(Gd)、または、これらのうち少なくとも1つを含む混合物である請求項1に記載のターゲット材料。 The target material according to claim 1, which is tin (Sn), terbium (Tb), cadmium (Gd), or a mixture containing at least one of these.
  4.  ターゲット材料を収容するタンク部(260)と、
     前記タンク部内の前記ターゲット材料の温度を変化させる温度可変装置(140)と、
     前記タンク部内の前記ターゲット材料(273)を、極端紫外光生成装置のターゲット生成装置により出力されるターゲット材料の温度である第1温度以下の第2温度(Td)で融解させた後に固化させるように、前記温度可変装置を制御する制御部(201/301)と
     を備える材料処理装置。
    A tank part (260) for accommodating the target material;
    A temperature variable device (140) for changing the temperature of the target material in the tank section;
    The target material (273) in the tank part is solidified after being melted at a second temperature (Td) equal to or lower than the first temperature that is the temperature of the target material output by the target generation device of the extreme ultraviolet light generation device. And a control unit (201/301) for controlling the temperature variable device.
  5.  前記制御部は、前記第2温度での前記ターゲット材料の融解と、前記融解したターゲット材料の固化とを含む工程を、2回以上繰り返す請求項4に記載の材料処理装置。 The material processing apparatus according to claim 4, wherein the control unit repeats a process including melting of the target material at the second temperature and solidification of the melted target material twice or more.
  6.  前記制御部は、前記ターゲット材料を融解する場合、前記第2温度を所定時間(t1)維持するように前記温度可変装置を制御する請求項4に記載の材料処理装置。 The material processing apparatus according to claim 4, wherein, when the target material is melted, the control unit controls the temperature variable device so as to maintain the second temperature for a predetermined time (t1).
  7.  前記タンク部内で融解しているターゲット材料を撹拌する撹拌装置(150)をさらに備える請求項4に記載の材料処理装置。 The material processing apparatus according to claim 4, further comprising a stirring device (150) for stirring the target material melted in the tank portion.
  8.  前記ターゲット材料内に析出した酸化物(272)を捕集するフィルタ(265)をさらに備える請求項4に記載の材料処理装置。 The material processing apparatus according to claim 4, further comprising a filter (265) for collecting an oxide (272) deposited in the target material.
  9.  前記フィルタを通過した前記ターゲット材料を回収する回収部(320)をさらに備える請求項8に記載の材料処理装置。 The material processing apparatus according to claim 8, further comprising a collection unit (320) for collecting the target material that has passed through the filter.
  10.  極端紫外光生成装置のターゲット生成装置に用いられるターゲット材料を処理する材料処理装置が実行する材料処理方法であって、
     タンク部内に収容されたターゲット材料を、前記ターゲット生成装置により出力されるターゲット材料の温度である第1温度以下の第2温度で融解させ(S125/S222)、
     前記第2温度で融解した前記ターゲット材料を固化させる(S126/S207/S227)
     ことを含む材料処理方法。
    A material processing method executed by a material processing apparatus for processing a target material used in a target generation apparatus of an extreme ultraviolet light generation apparatus,
    The target material accommodated in the tank unit is melted at a second temperature equal to or lower than the first temperature that is the temperature of the target material output by the target generation device (S125 / S222),
    The target material melted at the second temperature is solidified (S126 / S207 / S227).
    A material processing method.
  11.  前記タンク部内のターゲット材料は、酸化物の析出を促進させるスカベンジャ(274)が添加された状態で前記第2温度で融解させられる請求項10に記載の材料処理方法。 The material processing method according to claim 10, wherein the target material in the tank part is melted at the second temperature in a state where a scavenger (274) for promoting the precipitation of oxide is added.
  12.  前記第2温度で融解した後に固化されたターゲット材料を再融解させ(S130/S233;NO,S222)、
     再融解された前記ターゲット材料を濾過する(S205)
     ことをさらに含む請求項10に記載の材料処理方法。
    The target material solidified after melting at the second temperature is remelted (S130 / S233; NO, S222),
    The re-melted target material is filtered (S205).
    The material processing method according to claim 10, further comprising:
  13.  極端紫外光生成装置のターゲット生成装置に用いられるターゲット材料を製造する材料製造方法であって、
     タンク部内に収容されたターゲット材料を、前記ターゲット生成装置により出力されるターゲット材料の温度である第1温度以下の第2温度で融解させ、
     前記第2温度で融解した前記ターゲット材料を固化させる
     ことを含む材料製造方法。
    A material manufacturing method for manufacturing a target material used in a target generator of an extreme ultraviolet light generator,
    Melting the target material accommodated in the tank part at a second temperature equal to or lower than the first temperature, which is the temperature of the target material output by the target generation device;
    A material manufacturing method comprising solidifying the target material melted at the second temperature.
  14.  ターゲット材料を収容するタンク部と、前記タンク部内の前記ターゲット材料の温度を変化させる温度可変装置とを備え、極端紫外光生成装置のターゲット生成装置に用いられるターゲット材料を処理する材料処理装置を制御するコンピュータを機能させるためのプログラムであって、
     前記タンク部内に収容されたターゲット材料を、前記ターゲット生成装置により出力されるターゲット材料の温度である第1温度以下の第2温度で融解させるように前記温度可変装置を制御し、
     前記第2温度で融解した前記ターゲット材料を固化させるように前記温度可変装置を制御する
     ことを前記コンピュータに実行させるためのプログラム。
    A tank unit for storing the target material, and a temperature variable device for changing the temperature of the target material in the tank unit, and controls a material processing apparatus for processing the target material used in the target generation apparatus of the extreme ultraviolet light generation apparatus A program for causing a computer to function,
    Controlling the temperature variable device to melt the target material accommodated in the tank part at a second temperature equal to or lower than the first temperature that is the temperature of the target material output by the target generation device;
    A program for causing the computer to control the temperature variable device to solidify the target material melted at the second temperature.
PCT/JP2014/077339 2014-10-14 2014-10-14 Target material, material processing device, material processing method, material production method and program WO2016059674A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077339 WO2016059674A1 (en) 2014-10-14 2014-10-14 Target material, material processing device, material processing method, material production method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077339 WO2016059674A1 (en) 2014-10-14 2014-10-14 Target material, material processing device, material processing method, material production method and program

Publications (1)

Publication Number Publication Date
WO2016059674A1 true WO2016059674A1 (en) 2016-04-21

Family

ID=55746245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077339 WO2016059674A1 (en) 2014-10-14 2014-10-14 Target material, material processing device, material processing method, material production method and program

Country Status (1)

Country Link
WO (1) WO2016059674A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020148155A1 (en) * 2019-01-17 2020-07-23 Asml Netherlands B.V. Target delivery system
WO2021121852A1 (en) * 2019-12-17 2021-06-24 Asml Netherlands B.V. Target material tank for extreme ultraviolet light source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532293A (en) * 2005-02-25 2008-08-14 サイマー インコーポレイテッド Laser-generated plasma EUV light source with pre-pulse
JP2013179029A (en) * 2012-02-10 2013-09-09 Gigaphoton Inc Target supply device, and target supply method
JP2013201118A (en) * 2012-02-23 2013-10-03 Gigaphoton Inc Target material purification apparatus and target supply apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532293A (en) * 2005-02-25 2008-08-14 サイマー インコーポレイテッド Laser-generated plasma EUV light source with pre-pulse
JP2013179029A (en) * 2012-02-10 2013-09-09 Gigaphoton Inc Target supply device, and target supply method
JP2013201118A (en) * 2012-02-23 2013-10-03 Gigaphoton Inc Target material purification apparatus and target supply apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020148155A1 (en) * 2019-01-17 2020-07-23 Asml Netherlands B.V. Target delivery system
US11856681B2 (en) 2019-01-17 2023-12-26 Asml Netherlands B.V. Target delivery system
WO2021121852A1 (en) * 2019-12-17 2021-06-24 Asml Netherlands B.V. Target material tank for extreme ultraviolet light source

Similar Documents

Publication Publication Date Title
US10629414B2 (en) Target supply device, target material refining method, recording medium having target material refining program recorded therein, and target generator
US9039957B2 (en) Target material refinement device and target supply apparatus
JP5643779B2 (en) EUV plasma source target supply system
JP6054067B2 (en) EUV light generation apparatus, target recovery apparatus, and target recovery method
US8610095B2 (en) Extreme ultraviolet light source device
US10136509B2 (en) Target supply device, processing device and processing method thefefor
JP2008226462A (en) Extreme-ultraviolet light source device
WO2016059674A1 (en) Target material, material processing device, material processing method, material production method and program
JP2013112550A (en) Apparatus and method for supplying sodium
JP5964400B2 (en) Extreme ultraviolet light source device and its target supply system
JP2010123405A (en) Extreme ultraviolet light source device and target supply system therefor
JP6734264B2 (en) Chamber apparatus, target generation method, and extreme ultraviolet light generation system
US11360391B2 (en) Target supply device, extreme ultraviolet light generating apparatus, and electronic device manufacturing method
JP2011165943A (en) Extreme ultraviolet light source device
JP5662515B2 (en) Extreme ultraviolet light source device and its target supply system
WO2005116305A1 (en) Method for producing calcium fluoride crystal
JP6676127B2 (en) Target supply device, extreme ultraviolet light generation device, and method for manufacturing electronic device
JP7340005B2 (en) Tin trap device, extreme ultraviolet light generation device, and method for manufacturing electronic device
JP2008071570A (en) Target for extreme-ultraviolet light source, its manufacturing equipment, and extreme-ultraviolet light source
JP2008161894A (en) Continuous casting/rolling device and continuous casting/rolling method
US20230142875A1 (en) Euv light generation apparatus, electronic device manufacturing method, and inspection method
US20180263101A1 (en) Target generation device and euv light generation device
WO2019097630A1 (en) Extreme ultraviolet light generation device and electronic device manufacturing process
TW202131761A (en) Extreme ultraviolet light source
JP2005262236A (en) Apparatus for producing metallic slurry and apparatus for producing cast block

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904204

Country of ref document: EP

Kind code of ref document: A1

WD Withdrawal of designations after international publication

Designated state(s): JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904204

Country of ref document: EP

Kind code of ref document: A1