WO2016058559A1 - 新型聚烯烃催化剂及其应用 - Google Patents

新型聚烯烃催化剂及其应用 Download PDF

Info

Publication number
WO2016058559A1
WO2016058559A1 PCT/CN2015/092201 CN2015092201W WO2016058559A1 WO 2016058559 A1 WO2016058559 A1 WO 2016058559A1 CN 2015092201 W CN2015092201 W CN 2015092201W WO 2016058559 A1 WO2016058559 A1 WO 2016058559A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
oily
alkyl
alkane mixture
unsubstituted
Prior art date
Application number
PCT/CN2015/092201
Other languages
English (en)
French (fr)
Inventor
唐勇
刘佳帅
陶闻杰
Original Assignee
中国科学院上海有机化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海有机化学研究所 filed Critical 中国科学院上海有机化学研究所
Priority to EP15850627.9A priority Critical patent/EP3208265A4/en
Priority to US15/519,679 priority patent/US10961329B2/en
Priority to JP2017520904A priority patent/JP2017532345A/ja
Publication of WO2016058559A1 publication Critical patent/WO2016058559A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof
    • C08F4/7095Cobalt, nickel or compounds thereof
    • C08F4/7098Nickel or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • C07F15/0066Palladium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/06Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
    • C08F4/26Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of manganese, iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof
    • C08F4/7001Iron group metals, platinum group metals or compounds thereof the metallic compound containing a multidentate ligand, i.e. a ligand capable of donating two or more pairs of electrons to form a coordinate or ionic bond
    • C08F4/7003Bidentate ligand
    • C08F4/7032Dianionic ligand
    • C08F4/7034NN
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/80Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/12Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step
    • C10G69/126Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step polymerisation, e.g. oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/04Well-defined hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index

Definitions

  • the invention relates to the technical field of base oil preparation of lubricating oil, in particular to a novel polyolefin catalyst and a preparation technology thereof, and realizes simple olefins such as ethylene, propylene and butene and the like under the action of such catalysts.
  • Industrial base oils for lubricating oils are obtained by petroleum cracking or oligomerization of alpha-olefins.
  • poly- ⁇ -olefin (PAO) is a kind of very important and excellent lubricating base oil obtained by oligomerization of ⁇ -olefin.
  • the main raw materials are ⁇ -octene, ⁇ -pinene and ⁇ -dodecene. Such as expensive high-grade alpha-olefins.
  • PAO high-quality base oil PAO
  • PAO the current prerequisite for obtaining high-quality base oil PAO is that it must first catalyze the selective oligomerization of ethylene to obtain ⁇ -olefins, especially ⁇ -pinene, and the technology for selectively producing ⁇ -olefins above C6 is still immature, resulting in Its price is very high.
  • the preparation of high-performance base oils directly from inexpensive olefins such as ethylene, propylene, and butene is economical and efficient.
  • inexpensive olefins such as ethylene, propylene, and butene
  • Nickel complexes were considered to be only catalysts for olefin oligomerization before 1995.
  • the well-known SHOP catalyst can highly catalyze the oligomerization of ethylene to obtain a series of ⁇ -olefins in accordance with the Flory distribution.
  • Brookhart et al. J. Am. Chem. Soc. 1995, 117, 6414.
  • Polymerization gives a branched high molecular weight polyethylene having a melting point (Tm) between 39 and 132 °C.
  • the morphology and properties of polyethylene are closely related to its degree of branching, and the catalyst structure is the core of the controlled polyethylene structure. Brookhart et al. have obtained a certain degree of branching from the nickel-based catalyst, but still can not meet the requirements, showing that the product is solid at room temperature.
  • the new ⁇ -diimine nickel complex can realize the high activity catalyzed polymerization of simple olefins such as ethylene to directly obtain highly branched oil-like polymer technology such as oily polyethylene.
  • the catalytic system can directly realize the preparation of a highly branched oily polymer directly from an inexpensive olefin such as ethylene, propylene or butene.
  • Another object of the invention is to provide a use of a novel class of catalytic systems for the synthesis of highly branched alkanes.
  • Another object of the present invention is to provide a class of highly branched alkanes useful in advanced lubricating base oils.
  • Y 1 is each hydrogen, C1-C8 alkyl or C1-C8 haloalkyl, unsubstituted or substituted phenyl;
  • Y 2 is each independently CR 4 R 5 , NR 6 , O or S, and R 4 , R 5 and R 6 are each independently H, C1-C4 alkyl or haloalkyl;
  • An unsubstituted or substituted 5-7 membered monocyclic ring which is formed together with Y 2 or a bicyclic or tricyclic group containing the 5-7 membered monocyclic ring, wherein the 5-7 membered monocyclic ring contains 1-3 N, O or S atoms and containing at least one N;
  • Y 3 is one or more optional substituent groups on the 5-7 membered monocyclic ring or a bicyclic or tricyclic group containing the 5-7 membered monocyclic ring, and each Y 3 is independently hydrogen, C1-C8 An alkyl or C1-C8 haloalkyl group, an unsubstituted or substituted phenyl group, an unsubstituted or substituted benzyl group;
  • Z is a C1-C8 alkyl group, a C1-C8 haloalkyl group, an unsubstituted or substituted phenyl group;
  • substituted means that the group has from 1 to 5 substituents selected from the group consisting of C1-C4 alkyl and C1-C4 haloalkyl, halogen, nitrate a group, a cyano group, a CF 3 group , a —OR 1 , —N(R 2 ) 2 , —Si(R 3 ) 3 , —CH 2 —OR 8 , —SR 9 or —CH 2 —SR 10 , wherein R 1 , R 2 and R 3 are each independently a C1-C4 alkyl group or a halogenated alkyl group; and R 8 , R 9 and R 10 are each a C1-C8 alkyl group or a phenyl group.
  • It can be optically active or racemic.
  • the N ortho position is a C carbon atom, and the C atom has one or two non-hydrogen substituents.
  • the non-hydrogen substituent is selected from the group consisting of C3-C8 alkyl (preferably branched alkyl) or C3-C8 haloalkyl (preferably halo-branched alkyl), unsubstituted or Substituted phenyl, unsubstituted or substituted benzyl.
  • the "Y 2 together with the configuration" includes the entire Y 2 together form a portion (the sequestration inactivating moiety) or Y 2 together constitute.
  • Y 4 , Y 5 , Y 6 , Y 7 , Y 8 , Y 9 , Y 10 and Y 11 are each H, halogen, C1-C8 alkyl, C1-C8 haloalkyl, unsubstituted or substituted phenyl, un a substituted or substituted benzyl group, -OR 7 , -CH 2 -OR 8 , -SR 9 or -CH 2 -SR 10 , wherein R 7 , R 8 , R 9 and R 10 are each a C1-C8 alkyl group, Substituted or substituted phenyl; Y 12 is H, C1-C8 alkyl, C1-C8 haloalkyl, unsubstituted or substituted phenyl, unsubstituted or substituted benzyl.
  • substituents of Y 4 , Y 5 , Y 6 and Y 7 are H, C1-C8 alkyl, C1-C8 haloalkyl, unsubstituted or substituted phenyl, and 1-3 substituents are H, halogen, C1-C4 alkyl and C1-C4 haloalkyl.
  • substituents of Y 4 , Y 5 , Y 6 , Y 7 and Y 12 are H, C1-C8 alkyl, C1-C8 haloalkyl, unsubstituted or substituted phenyl, and 1-3
  • the substituents are H, halogen, C1-C4 alkyl and C1-C4 haloalkyl.
  • the Y 12 is not a halogen.
  • Y 1 and Y 2 may together with the CC bond which are commonly joined to form an unsubstituted or substituted C6-C8 ring, wherein said "substituted" is as defined above.
  • the compound has the structure:
  • Y 3 or Z is as defined in claim 1;
  • n 0, 1, 2 or 3;
  • G 1 , G 2 , G 3 and G 4 are each H, halogen, C1-C8 alkyl, C1-C8 haloalkyl, silyl, unsubstituted or substituted phenyl, unsubstituted or substituted benzyl, -OR 7 , -CH 2 -OR 8 , -SR 9 or -CH 2 -SR 10 , wherein R 7 , R 8 , R 9 and R 10 are each a C1-C8 alkyl group, an unsubstituted or substituted phenyl group;
  • substituted is as defined above.
  • the bicyclic ring containing the 5-7 membered monocyclic ring is a spiro ring or a fused ring, and preferably the compound has any structure of the formula:
  • n 1, 2, 3 or 4;
  • Y 1 , Y 2 , and Z are as defined in claim 1;
  • Y 4 and Y 5 are each independently H, halogen, C1-C8 alkyl, C1-C8 haloalkyl, unsubstituted or substituted phenyl, unsubstituted or substituted benzyl, -OR 7 , -CH 2 -OR 8 , -SR 9 or -CH 2 -SR 10 , wherein R 7 , R 8 , R 9 and R 10 are each a C1-C8 alkyl group, an unsubstituted or substituted phenyl group; wherein Y 4 and Y 5 are not simultaneously halogen , -OR 7 or -SR 9 .
  • each chiral center (preferably a C carbon atom) in the compound of formula I is R and/or S.
  • the C atom on the 5-7 membered monocyclic ring attached to Y 4 and/or Y 5 is R type and/or S type.
  • the Z is an unsubstituted or substituted phenyl group, or an unsubstituted or substituted naphthyl group, wherein the substitution means that the group has 1-5 substituents selected from the group consisting of Base: C1-C4 alkyl and C1-C4 haloalkyl, halogen, nitro, cyano, CF 3 , -OR 1 , -N(R 2 ) 2 , -Si(R 3 ) 3, -CH 2 -OR 8 , -SR 9 , -CH 2 -SR 10 , -CH-(R 10 ) 2 , or a phenyl group which is unsubstituted or substituted by 1 to 5 substituents selected from the group consisting of C1-C4 alkyl and C1 a -C4 haloalkyl group, wherein R 1 , R 2 , R 3 are each independently C1-C4 alkyl or haloalkyl group, wherein
  • substituted phenyl group can only have at most one nitro or cyano group.
  • Z is selected from one of the following groups:
  • Any one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 is a group corresponding to the specific compound described in the present invention.
  • a complex which is a complex of a compound of the first aspect of the invention and a divalent or trivalent metal salt.
  • the metal salt comprises a metal selected from the group consisting of iron, cobalt, nickel, palladium, platinum, or a combination thereof.
  • the metal salt is a divalent metal salt
  • the complex has a structure represented by the following formula II:
  • Y 1 , Y 2 , Y 3 and Z are as defined in claim 1;
  • M is iron, cobalt, nickel, palladium, platinum or a combination thereof
  • X is independently halogen, C1-C4 alkyl, C2-C6 alkenyl, allyl ( ), - OAc, - OTf or benzyl.
  • the halogen is F, Cl, Br or I, preferably Cl or Br.
  • a third aspect of the invention there is provided a method of preparing a complex according to the second aspect of the invention, the method comprising the steps of:
  • the compound of the first aspect of the invention is reacted with a divalent or trivalent metal salt in an inert solvent to form the complex of the second aspect of the invention.
  • the metal salt is selected from the group consisting of NiCl 2 , NiBr 2 , NiI 2 , (DME)NiBr 2 , PdCl 2 , PdBr 2 , Pd(OTf) 2 , Pd(OAc) 2 , (COD) PdMeCl or a combination thereof.
  • reaction is carried out under almost anhydrous conditions (e.g., water content ⁇ 0.1%).
  • reaction is carried out under an inert atmosphere such as nitrogen.
  • the step (a) extracts hydrogen with a base in an inert organic solvent, wherein the base is preferably n-butyllithium, t-butyllithium, lithium diisopropylamide (LDA), Lithium hexamethyldisilazide (LHMDS); then oxidized for 3 to 48 hours with oxygen, air or with other oxidizing agents.
  • the base is preferably n-butyllithium, t-butyllithium, lithium diisopropylamide (LDA), Lithium hexamethyldisilazide (LHMDS); then oxidized for 3 to 48 hours with oxygen, air or with other oxidizing agents.
  • the inert organic solvent refers to any one of the chemicals used in the present reaction, which is not used in the present reaction.
  • 0.001 to 100% of a corresponding catalyst for promoting the condensation reaction is added to the step (b), wherein formic acid, acetic acid, p-toluenesulfonic acid, TiCl 4 , orthosilicate are preferred.
  • the ratio of the compound B to the C in the step (b) is (0.7 - 1.2): 1.
  • the inert organic solvent in the step (a) comprises: diethyl ether or tetrahydrofuran.
  • the inert solvent in the step (b) is dichloromethane, methanol, ethanol or toluene.
  • the complex of the second aspect of the present invention is used as a catalyst for the polymerization of an olefin in the presence of an olefin polymerization catalyst to form an oily polyolefin.
  • the alkyl aluminum compound comprises a trialkyl aluminum, a dialkyl aluminum chloride, an alkyl aluminum dichloride, an alkyl aluminoxane; the polymerization is carried out in an organic solvent, Preferred are aromatic hydrocarbons, alkanes and halogenated alkanes; more preferred are toluene, C4-C10 alkanes and C1-C6 haloalkanes; more preferred toluene, C5-C7 alkanes, C1-C3 haloalkanes; most preferred toluene, C5-C7 alkanes, Dichloromethane, 1,2-dichloroethane or 1,1,2,2-tetrachloroethane.
  • the complex described in step (a) is prepared in situ or prepared in advance.
  • the method further includes the steps of:
  • the olefin is ethylene, propylene, and a C4-C20 terminal olefin, an internal olefin, a diolefin, or a mixture thereof.
  • the olefin further comprises a polar monomer
  • the polar monomer is a C3-C50 olefin containing a polar group selected from the group consisting of a carbonyl group, a hydroxyl group, a -COOH group, an ester group-COOR 11 , and an alkane.
  • a polar group selected from the group consisting of a carbonyl group, a hydroxyl group, a -COOH group, an ester group-COOR 11 , and an alkane.
  • the polar monomer is selected from the group consisting of:
  • the method further comprises, before step (a):
  • the polar monomer is reacted with a functional group protecting reagent to form a functional group-protected polar monomer, and then the protected polar monomer is used in step (a).
  • the functional group protecting agent is selected from the group consisting of TBS, TES, TBDPS, TMS, AlEt 3 , Al i Bu 3 , methyl aluminoxane, ethyl aluminoxane, butyl aluminum oxide. Alkane, MMAO, or a combination thereof.
  • the cocatalyst is selected from the group consisting of aluminum alkyls, alkyl aluminoxanes, weakly coordinating anions, or combinations thereof.
  • the aluminum alkyl reagent is selected from the group consisting of AlEt 3 , AlMe 3 , Al i Bu 3 , or AlEt 2 Cl.
  • the alkyl aluminoxane is selected from the group consisting of MMAO or MAO.
  • the weakly coordinating anion is selected from the group consisting of [B(3,5-(CF 3 ) 2 C 6 H 3 ) 4 ] - or - OSO 2 CF 3 .
  • the "MMAO” refers to a modified methyl aluminoxane (product of Akzo Chemical Co., Ltd.).
  • the olefin is a polar monomer, a non-polar monomer, or a combination thereof.
  • the non-polar monomer comprises: ethylene, propylene, butylene or any combination thereof.
  • the olefin is any combination of ethylene, propylene and/or butene with other C5-C20 olefins.
  • the oily olefin polymer is highly branched; more preferably, the high branching means that the number of methyl groups corresponding to 1000 methylene groups in the polymer is from 100 to 500.
  • a cocatalyst is also present in step (a).
  • the cocatalyst is selected from the group consisting of alkylaluminum reagents (such as alkyl aluminoxanes, diethylaluminum chloride and ethylaluminum dichloride).
  • alkylaluminum reagents such as alkyl aluminoxanes, diethylaluminum chloride and ethylaluminum dichloride.
  • reaction temperature of the step (a) is 0-100 °C.
  • the reaction condition of the step (a) is: pressure (gauge pressure) 0.1-10 MPa
  • the cocatalyst is an alkyl aluminoxane or diethyl aluminum chloride, wherein the molar ratio of the promoter aluminum to the catalyst It is 10-5000.
  • step (a) is carried out under a polymerization solvent selected from the group consisting of toluene, n-hexane, dichloromethane, 1,2-dichloroethane, chlorobenzene, tetrahydrofuran or a combination thereof.
  • a polymerization solvent selected from the group consisting of toluene, n-hexane, dichloromethane, 1,2-dichloroethane, chlorobenzene, tetrahydrofuran or a combination thereof.
  • step (a) can be carried out in an oily polyethylene or oily alkane mixture.
  • the method further includes the steps of:
  • the oily alkane mixture has a bromine number of less than 0.5 g/100 g.
  • step (a) is further included between step (a) and step (b): separating the oily polyolefin.
  • the hydrogenation reaction is carried out simultaneously in step (a).
  • step (b) can be carried out in an inert solvent or directly with an oily polyolefin as a solvent.
  • the oily alkane mixture is a hydrogenated product of the oily polyolefin of the present invention.
  • the oily alkane mixture is a hydrogenated product of an oily polyethylene.
  • oily olefin polymer or hydrogenated product thereof has one or more characteristics selected from the group consisting of:
  • the number of methyl groups in the polymer is: 1000 methylene corresponding to a methyl number of 100-500;
  • the density is from 0.75 to 0.91 g/mol.
  • the oily olefin polymer or the hydrogenated product thereof has a methyl group number of from 100 to 300, preferably from 150 to 300.
  • the oily olefin polymer or its hydrogenated product has a number of branches corresponding to 1000 methylene groups of from 100 to 300, preferably from 150 to 300.
  • the branched types are methyl, ethyl, n-propyl, n-butyl, sec-butyl and other four or more carbon branches.
  • the number of alkyl side chains having multiple ends corresponding to 1000 carbons is from 40 to 70.
  • the polymer has a branch selected from the group consisting of a C3-C8 linear or branched alkyl group.
  • the polymer has a multi-terminal alkyl side chain of sec-butyl groups and 1000 carbons corresponding to a number of sec-butyl groups of 15-30.
  • the oil refers to the polymerization of the olefin in all or part of the temperature range of -50 ° C or higher (preferably -40 ° C to 50 ° C, more preferably -40 ° C to 35 ° C).
  • the substance is oily.
  • the oily olefin polymer obtained by the invention or the hydrogenated hydrogenated product thereof has a kinematic viscosity at 100 ° C of 4 to 50 mm 2 /s, a viscosity index (VI value) of 160 to 300, and a surface tension of more than 20 mM / m.
  • the test method for kinematic viscosity refers to GB/T 265-1988 (2004), and the test method for viscosity index (VI value) refers to GB/T 1995-1998 (2004).
  • the oily alkane mixture has a molecular weight of from 500 to 50,000 g/mol.
  • the hydrogenated product of the oily olefin polymer obtained in the invention has superior oxidation stability.
  • the oxidation stability (rotary oxygen bomb method) was tested using the SH/T 0193-2008 test method.
  • an oily olefin polymer or a hydrogenated hydrogenated product thereof having one or more characteristics selected from the group consisting of:
  • the number of polar groups in the polymer is: 1000 methylene corresponding to the number of polar groups of 0.1 to 1000, preferably 5 to 200, more preferably 5 to 50 ;
  • the number of methyl groups in the polymer is: 1000 methylene corresponding to a methyl number of 100-500;
  • the density is from 0.75 to 0.91 g/mol.
  • the oily refers to the temperature range of all or a portion of the temperature above -50 ° C (preferably above -40 ° C), and the olefin polymer is in the form of an oil.
  • the oily alkane mixture has a pour point of from -60 ° C to -20 ° C.
  • the oily olefin polymer or a hydrogenated product thereof is characterized in that the oily olefin polymer or a hydrogenated product thereof contains a polar group selected from the group consisting of a carbonyl group and a hydroxyl group.
  • R 11 and R 12 are independently a C1-C10 alkyl group or a C6-C20 aryl group
  • R 13 , R 14 , R 15 , R 16 , R 17 or R 18 is independently hydrogen or a C1-C10 alkyl group or a C6-C20 aryl group
  • R 19 or R 20 is independently a C1-C10 alkyl group or a C6-C20 aryl group.
  • an oily olefin polymer or a hydrogenated hydrogenated product thereof according to the sixth aspect of the invention, characterized in that it is used as a base oil and lubricating oil for lubricating oil Additives, plasticizers or processing aids for resins.
  • an oily alkane mixture characterized in that, in the oily alkane mixture, 1000 carbons have a number of alkyl side chains having a polyterminal end of 20 to 100.
  • the oily alkane mixture is obtained by the method of the fifth aspect of the invention.
  • the oily alkane mixture is obtained by the method of the fifth aspect of the invention using ethylene as a polymerization monomer.
  • the number of methyl groups (CH 3 ) per 1000 methylene groups is from 100 to 300.
  • the number of alkyl side chains having multiple ends corresponding to 1000 carbons is from 40 to 70.
  • the number of sec-butyl groups in the 1000 carbons of the polymer is from 15 to 30.
  • the polymer has a branch selected from the group consisting of a C1-C8 linear or branched alkyl group.
  • the polymer has a branch selected from the group consisting of a C3-C8 linear or branched alkyl group.
  • the oily alkane mixture has a pour point of from -40 to -20 ° C, preferably from -60 ° C to -20 ° C.
  • the polymer is a colorless, transparent oil.
  • the oily alkane mixture has a molecular weight of from 500 to 50,000 g/mol, more preferably from 500 to 10,000 g/mol.
  • the oily alkane mixture has a methyl number (CH 3 ) per 100 methylene groups of from 100 to 300.
  • the oily alkane mixture has a kinematic viscosity at 100 ° C of 4 to 50 mm 2 /s.
  • the oily alkane mixture has a viscosity index (VI value) of from 160 to 300.
  • the oily alkane mixture has a surface tension greater than 20 mM/m.
  • the oily alkane mixture has a surface tension of from 20 mM/m to 40 mM/m.
  • the oily alkane mixture has a density of from 0.75 to 0.91 g/mol.
  • the hydrogenated oily alkane mixture has an oxidation stability of greater than 50 min, preferably greater than 70 min, more preferably greater than 90 min.
  • the oily alkane mixture is a colorless transparent oil in the temperature range of -50 ° C to 200 ° C; preferably a colorless transparent oil in the temperature range of -40 ° C to 50 ° C.
  • a lubricating oil comprising the oily olefin polymer of the sixth aspect of the invention and/or a hydrogenated hydrogenated product thereof (i.e., an oily alkane mixture), or The oily alkane mixture of the eighth aspect of the invention.
  • the lubricating oil has a viscosity index (VI value) of 130-200.
  • the lubricating oil contains from 0.1 to 100% by weight, preferably from 1 to 90% by weight, of the oily alkane mixture.
  • a complex according to the second aspect of the invention as a catalyst for the polymerization of olefins.
  • the olefin polymerization is carried out under homogeneous conditions.
  • the catalyst is supported on an inorganic or organic support.
  • Figure 1 shows the polymer nuclear magnetic carbon spectrum prepared in Example 125 of the present invention.
  • Figure 2 shows the molecular structure of complexes 2-9 of Example 57 of the present invention.
  • Figure 3 shows the polymer nuclear magnetic carbon spectrum prepared in Example 198 of the present invention.
  • Figure 4 is a graph showing changes in temperature and ethylene flow rate over time in the reaction process in Example 201 of the present invention.
  • Figure 5 shows the polymer nuclear magnetic carbon spectrum prepared in Example 201 of the present invention.
  • Figure 6 shows the polymer nuclear magnetic carbon spectrum prepared in Example 208 of the present invention.
  • Figure 7 shows the polymer nuclear magnetic carbon spectrum prepared in Example 245 of the present invention.
  • Figure 8 shows the change in kinematic shear viscosity as a function of shear rate for samples P1-hydrogenation, P2-hydrogenation, and P3-hydrogenation (alkane mixture) at different temperatures.
  • Figure 9 shows a physical map of the polymer prepared in Example 248 of the present invention.
  • the inventors have conducted extensive and intensive research to prepare novel ligand compounds, complexes and catalytic systems to achieve high activity of catalyzing the direct polymerization of non-polar and/or functional group-containing polar olefin monomers to obtain high branching. Degree of oily polymer.
  • the catalyst technology of the present invention is capable of producing a range of novel, clean, oily olefin polymers of varying viscosities, including polar functional group-containing polyolefin oils, which substantially reduce the cost of high quality lubricating oils. On this basis, the inventors completed the present invention.
  • the chiral center not indicating the optical configuration may be in any configuration such as R type, S type, racemic or the like.
  • Alkyl means a saturated aliphatic hydrocarbon group comprising straight and branched chain groups of 1 to 10 carbon atoms. Preference is given to medium-sized alkyl groups having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, 2-propyl, n-butyl, isobutyl, tert-butyl, pentyl and the like. More preferred are lower alkyl groups having 1 to 4 carbon atoms, such as methyl, ethyl, propyl, 2-propyl, n-butyl, isobutyl, t-butyl and the like.
  • Alkynyl means an unsaturated aliphatic hydrocarbon group having a carbon-carbon triple bond, and includes straight-chain and branched-chain groups having 2 to 10 (preferably 2 to 6) carbon atoms.
  • Cycloalkyl means a 3 to 8 membered all carbon monocyclic, all carbon 5 membered/6 membered or 6 membered/6 membered fused or polycyclic fused ring group wherein one or more of the rings may contain one or Multiple double bonds, but none of the rings have a fully conjugated ⁇ -electron system.
  • Examples of cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexadienyl, adamantyl, cycloheptyl, cycloheptatriene and the like.
  • Carbocycle refers to a saturated or unsaturated ring in which the ring skeleton is a carbon atom, wherein one or more of the rings may contain one or more double bonds.
  • Heterocycle means a saturated or unsaturated ring having at least one heteroatom selected from the group consisting of N, S, O or P, wherein one or more of the rings may contain one or more double bonds.
  • 5-7 membered monocyclic ring means a monocyclic ring having 5 to 7 members (only one ring structure), and the monocyclic ring may be a saturated or unsaturated ring such as a cycloalkyl group, a cycloalkenyl group or an aromatic ring.
  • Bicyclic or tricyclic group refers to a group containing two or three ring structures in the group, such as a cyclo, spiro or bridged ring structure, such as an indenyl group, a quinolyl group, and the like.
  • a preferred bicyclic or tricyclic group is an 8- to 20-membered ring.
  • Bicyclic or tricyclic group containing a monocyclic A means that one or more of the bicyclic or tricyclic groups are monocyclic A.
  • Aromatic ring refers to an aromatic ring having a conjugated ⁇ -electron system, including carbocyclic aryl, heteroaryl.
  • Heteroaryl means an aryl group having one hetero atom as a ring atom and the remaining ring atoms being carbon, the hetero atom including oxygen, sulfur, nitrogen.
  • the ring may be a 5- or 6- or 7-membered ring.
  • heteroaryl groups include, but are not limited to, furyl, thienyl, benzofuranyl, benzothienyl, pyridyl, pyrrole, N-alkylpyrrolyl.
  • Alkoxy means -O-(alkyl). Representative examples include methoxy, ethoxy, propoxy, butoxy, and the like.
  • Halogen means fluoro, chloro, bromo or iodo.
  • the ligand compounds of the invention may contain one or more asymmetric centers and thus occur in the form of racemates, racemic mixtures, single enantiomers, diastereomeric compounds and single diastereomers.
  • the asymmetric center that can exist depends on the nature of the various substituents on the molecule. Each such asymmetric center will independently produce two optical isomers, and all possible optical isomers and diastereomeric mixtures and pure or partially pure compounds are included within the scope of the invention.
  • the invention includes all such isomeric forms of the ligand compounds.
  • Some of the ligand compounds of the invention may exist in tautomeric forms with or with different hydrogen attachment points shifted by one or more double bonds.
  • inert solvent refers to a solvent that does not chemically react with other components to be mixed therewith.
  • the shape is The structure represents Y 3 as an arbitrary (unrestricted position and number) substituent on the ring, and the position and number of the substituent are not particularly limited, and may be any substitution rule which is defined in the present specification and is well known in the art. Substituents.
  • the "DME” is ethylene glycol dimethyl ether; the “OTf - " is a triflate anion; the “OAc - “ is an acetate anion; COD” is cyclooctadiene.
  • substituted hydrogen atom on the group is selected from the group of substituents: C1-C4 alkyl and C1-C4 haloalkyl, halo, nitro, cyano, CF 3, -OR 1 , -N(R 2 ) 2 , -Si(R 3 ) 3, -CH 2 -OR 8 , -SR 9 or -CH 2 -SR 10 , wherein R 1 , R 2 , R 3 are each independently Is a C1-C4 alkyl or haloalkyl group; and R 8 , R 9 and R 10 are each a C1-C8 alkyl group or a phenyl group.
  • multi-terminal alkyl refers to an alkyl group having more than one methyl group, such as t-butyl, isopropyl, and the like.
  • the present invention provides a ligand compound of formula I.
  • each group is as defined above.
  • Y 1 is selected from the group consisting of hydrogen, methyl, trifluoromethyl, n-butyl, n-hexyl, phenyl, C1-C4 alkyl-phenyl; wherein the phenyl group may be An alkyl group, a halogen, an alkoxy group, a C1-C4 amine group, a nitro group, a cyano group, a trimethylsilyl group-substituted phenyl group; said halogen includes fluorine, chlorine, bromine or iodine; said alkoxy group Preferred are methoxy, ethoxy, isopropoxy; the alkyl group is preferably a C1-C6 alkyl group, more preferably a C1-C4 alkyl group, most preferably a methyl group, an ethyl group, an isopropyl group and a butyl group.
  • the substituent group may be at any position in the phenyl
  • Z is isopropyl, tert-butyl, phenyl, C1-C4 alkyl-phenyl; wherein the phenyl group may be alkyl, halogen, alkoxy or alkoxy-alkane a substituted phenyl group; said halogen includes fluorine, chlorine, bromine or iodine; said alkoxy group is preferably methoxy, ethoxy, isopropoxy; said alkyl group is preferably C1-C6
  • the Y 4 , Y 5 , Y 6 , Y 7 substituent is C1-C4 alkyl, C1-C4 alkoxy-alkyl, phenyl, C1-C4 alkyl-phenyl, or C1-C6 alkyl a halogen- or alkoxy-substituted phenyl group; said halogen includes fluorine, chlorine, bromine or iodine; said alkoxy group is preferably methoxy, ethoxy, isopropoxy; said alkyl group is preferably The alkyl group of C1-C4, most preferably methyl, ethyl, isopropyl and butyl, may be substituted at any position of the phenyl ring which may be substituted.
  • Y 4 and Y 5 and one of Y 6 and Y 7 form a substituted or unsubstituted phenyl group.
  • Y 4 and Y 5 may together with adjacent carbon atoms constitute an unsubstituted or substituted C5-C8 saturated carbocyclic ring.
  • Y 6 and Y 7 may together with adjacent carbon atoms constitute an unsubstituted or substituted C5-C8 saturated carbocyclic ring.
  • the Y 4 , Y 5 , Y 6 , Y 7 substituent is isopropyl, tert-butyl, phenyl, or phenyl substituted by C1-C6 alkyl, halogen, alkoxy; said halogen includes fluorine , chlorine, bromine or iodine; the alkoxy group is preferably a methoxy group, an ethoxy group, an isopropoxy group; the alkyl group is preferably a C1-C4 alkyl group, most preferably a methyl group, an ethyl group, an isopropyl group.
  • the substituent group may be at any position in the phenyl ring which may be substituted;
  • Y 12 is H, C1-C8 alkyl, C1-C8 haloalkyl, unsubstituted or substituted phenyl, unsubstituted or substituted Benzyl.
  • one of Y 4 and Y 5 and one of Y 6 and Y 7 form a substituted or unsubstituted phenyl group.
  • Y 4 and Y 5 may together with adjacent carbon atoms constitute an unsubstituted or substituted C5-C8 saturated carbocyclic ring.
  • Y 6 and Y 7 may together with adjacent carbon atoms constitute an unsubstituted or substituted C5-C8 saturated carbocyclic ring.
  • the compound of formula I has the structure:
  • n 0, 1, 2 or 3.
  • the alkyl group may be a substituted alkyl group, the preferred substituent is a halogen, an alkoxy group, a phenoxy group; the halogen includes fluorine, chlorine, bromine or iodine; the alkoxy group is preferably a methoxy group. And ethoxy, isopropoxy, more preferably methoxy.
  • a particularly preferred class of ligands include the ligands L1-1 to L1-48 shown in Examples 1 to 48.
  • the most preferred ligand structure comprises:
  • the compound of formula I can be reacted with a divalent nickel or a divalent palladium metal salt to form the corresponding nickel or palladium complex.
  • each group is as defined above.
  • X may be halogen, C1-C4 alkyl, C2-C6 alkenyl, allyl ( And a benzyl group; the C1-C4 alkyl group is preferably a methyl group; and the halogen is preferably bromine, chlorine or iodine.
  • X is chlorine, bromine, iodine, methyl, allyl ( ) or benzyl.
  • X is chlorine, bromine or iodine.
  • the ligand compound I of the present invention can be reacted with a corresponding divalent metal precursor in an inert solvent to form a complex.
  • the divalent nickel or divalent palladium metal salt as the metal precursor of the reaction includes: NiCl 2 , NiBr 2 , NiI 2 , (DME) NiBr 2 , (DME) NiCl 2 , (DME) NiI 2 , PdCl 2 , PdBr 2 , Pd(OTf) 2 and Pd(OAc) 2 .
  • the metal complex of the present invention can catalyze the polymerization of ethylene, propylene, butylene, and C4-C20 terminal olefins, internal olefins, diolefins or mixtures thereof under the action of a cocatalyst to obtain an oily polymer; it can also catalyze the above simple olefins,
  • a simple olefin such as a diolefin is polymerized together with a polar monomer having a polar functional group to obtain a functionalized polyolefin oil having a functional group.
  • the invention also provides the synthesis of a ligand compound of formula I, comprising the steps of:
  • (a) B is obtained by oxidation of the corresponding heterocyclic compound A.
  • the compounds A, B, and C have the structural formula shown below.
  • the heterocyclic compound A is extracted with a base in an inert organic solvent, and then the resulting negative ion is oxidized to the compound B by oxygen, air or by using another oxidizing agent.
  • Compound B in an inert solvent is condensed with compound C under the action of a catalyst which promotes the condensation reaction to obtain a compound I.
  • the inert solvent includes an alcohol, an aromatic hydrocarbon, an aliphatic hydrocarbon, a halogenated hydrocarbon, an ether, an ester solvent, preferably an aromatic hydrocarbon solvent such as toluene, xylene, trimethylbenzene or the like.
  • the catalyst for promoting the condensation reaction includes formic acid, acetic acid, p-toluenesulfonic acid, TiCl 4 , orthosilicate.
  • the step (a) is preferably carried out in an inert solvent for 3 to 48 hours, respectively.
  • step (b) it is necessary to add a catalyst which promotes a condensation reaction corresponding to a molar ratio of the reactants of 0.001 to 100%, and among them, acetic acid, p-toluenesulfonic acid, TiCl 4 and orthosilicate are preferable.
  • the ratio of the preferred compounds B to C in the step (b) is (0.7-1.2):1.
  • the preferred inert solvent in step (a) is diethyl ether or tetrahydrofuran.
  • Preferred inert solvents for step (b) are alcohols, aromatic hydrocarbons, aliphatic hydrocarbons, halogenated hydrocarbons, ethers, ester solvents.
  • Step (b) is carried out after separation or purification of step B produced by step (a) or without isolation and purification.
  • the invention also provides a method of preparing a complex.
  • the compound I and the metal salt including NiCl 2 , NiBr 2 , NiI 2 or (DME) NiBr 2 , (DME) NiCl 2 , (DME) NiI
  • the inert solvent may be any solvent which is conventionally used and does not affect the progress of the reaction, and includes an alcohol, an aromatic hydrocarbon, an aliphatic hydrocarbon, a halogenated hydrocarbon, an ether, an ester, a nitrile solvent, preferably a halogenated hydrocarbon solvent.
  • better results can be obtained in the halogenated hydrocarbon and the lipid solvent, and preferred examples are dichloromethane, 1,2-dichloroethane, ethyl acetate, and tetrahydrofuran.
  • Y 1 -Y 12 , Z, X are as defined above.
  • DME means ethylene glycol dimethyl ether; when X is a hydrocarbon group, such as methyl or benzyl, it is often possible to use the corresponding chloride or bromide II with a methyl Grignard reagent or a benzyl Grignard reagent.
  • X in the complex II is a halogen or a hydrocarbon group or any other group which can coordinate with the nickel metal, such as a nitrogen-containing compound or an oxygen-containing compound, as long as the complex is in the alkyl group
  • This catalysis can be achieved by the formation of Ni-C bonds or Ni-H bonds by the action of aluminum.
  • the present invention provides a catalytic system which catalyzes the polymerization of olefins to obtain a mixture of highly branched alkanes, said catalysis
  • the system consists of a complex comprising 1) a nickel, a palladium metal salt with a ligand of formula I; 2) a hydrogenation system.
  • each group is as defined above.
  • the catalytic system consisting of the above catalyst together with the hydrogenation catalyst enables the direct preparation of highly branched alkanes from ethylene.
  • the hyperbranched alkane refers to an aliphatic hydrocarbon having a methyl group number of 100-500 and a bromine number of less than 0.5 g/100 g per 1000 methylene groups in the polymer chain.
  • this method consists of the following two steps.
  • the metal complex is a complex of compound I with divalent nickel or palladium, preferably a nickel complex of formula II.
  • the cocatalyst is a reagent capable of promoting the catalytic reaction, and may be an alkyl aluminum compound or an organic boron reagent.
  • the alkyl aluminum compound includes any compound containing a carbon-aluminum bond, including methyl aluminoxane (MAO), MMAO, triethyl aluminum, triisobutyl aluminum, diethyl aluminum chloride, and B. Base of aluminum chloride and the like.
  • the molar ratio of aluminum to nickel or palladium in the catalyst is 10-5000; the methyl aluminoxane, MMAO or aluminum alkyl reagent can be used as a cocatalyst to assist the polymerization of ethylene by nickel or palladium complex to obtain oily polyethylene.
  • the structure of the methylaluminoxane or the aluminum alkyl reagent does not affect the promotion, but the degree of branching or molecular weight of the obtained polymer may vary depending on the structure of the promoter, wherein the methyl group
  • the best results are obtained for aluminoxanes and diethylaluminum chloride and ethylaluminum dichloride.
  • AlCl 3 alone or in combination with an alkyl aluminum compound can also provide a desirable effect.
  • the metal complex may be added to the reaction system after being prepared in advance, or may be prepared in situ. That is, the metal complex may be directly added to the system, or the ligand of the present invention and the metal precursor for preparing the metal complex may be added to the system to form a metal complex during the reaction.
  • the hyperbranched polyethylene of the present invention can be hydrogenated to form highly branched alkanes.
  • the structure of the hyperbranched polyethylene is determined by comparing the molecular weight measured by 13 C NMR and high temperature GPC with the actual molecular weight measured by high temperature laser light scattering.
  • the hyperbranched alkane has a molecular weight of between 500 and 500,000 g/mol and is a clear, transparent oil.
  • the contact time of the ethylene with the nickel or palladium complex and the alkyl aluminum compound in the inert solvent in step (1) may vary from 0.5 hours to 72 hours, and the reaction temperature ranges from 0 to 100 degrees.
  • the pressure (referred to as gauge pressure) varies from 0.1 to 3 MPa (1 to 30 atmospheres).
  • the hyperbranched oily polyethylene obtained in the step (1) is reacted with a reducing agent or the oily polyethylene is contacted with hydrogen under the action of one or more reducing catalysts to obtain a highly branched oil.
  • the alkane mixture has a bromine number of less than 0.5 g/100 g.
  • the reduction catalyst may be any catalyst which can promote the hydrogenation process, preferably from hydrogenation catalysts such as Pd/C, Pd(OH) 2 , PtO 2 , ruthenium, nickel, ruthenium, etc., and the reduction reagent includes any conventional reagent which can reduce double bonds.
  • hydrogenation catalysts such as Pd/C, Pd(OH) 2 , PtO 2 , ruthenium, nickel, ruthenium, etc.
  • the reduction reagent includes any conventional reagent which can reduce double bonds.
  • a step is further included between step (1) and step (2): separating the oily olefin polymer.
  • the hydrogenation reaction is also carried out simultaneously in the step (1).
  • the step (2) may be carried out in an inert solvent or directly with an oily olefin polymer as a solvent; the step (1) may be carried out in an inert solvent or as an oily olefin polymer (such as an oil) Polyethylene) is polymerized as a solvent.
  • an oily olefin polymer such as an oil
  • Polyethylene an oily olefin polymer
  • the step (2) can also be accomplished by: a) simultaneously performing the step (1), simultaneously introducing hydrogen gas to directly obtain the highly branched oily alkane; b) after performing the step (1), not performing Treating, introducing hydrogen into the polymerization system to obtain a highly branched oily alkane; c) after performing the step (1), without treating, directly adding one or more reduction catalysts to the polymerization system for hydrogenation, thereby obtaining Highly branched oily alkane; d) After carrying out step (1), the oily olefin polymer is separated and subjected to a hydrogenation reaction.
  • the above reaction can be carried out in an inert solvent, preferably an alcohol, an alkane, an aromatic hydrocarbon and a halogenated hydrocarbon, wherein in the step (1), a C5-C12 saturated hydrocarbon such as hexane, heptane or a halogenated hydrocarbon such as dichloromethane is preferred. 1,2-dichloroethane, 1,1,2,2-tetrachloroethane; aromatic hydrocarbons such as toluene and xylene.
  • an inert solvent preferably an alcohol, an alkane, an aromatic hydrocarbon and a halogenated hydrocarbon
  • Preferred in the step (2) are C5-C12 saturated hydrocarbons such as hexane, heptane; halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane.
  • An aromatic hydrocarbon such as toluene or xylene.
  • the catalytic system can efficiently catalyze the catalytic polymerization of polar monomers by adjusting the structure of the substituent groups in the catalyst, or any combination of polar monomers and non-polar monomers. Catalytic polymerization is carried out to obtain a functionalized oily polymer containing a functional group.
  • the olefin polymers of the present invention have a high degree of branching, preferably dendritic or spherical, spheroidal polymers which can likewise obtain highly branched alkanes by hydrogenation step (2).
  • the hydrogenation reaction is also carried out simultaneously; in another preferred embodiment, the step (2) may be carried out in an inert solvent or directly by using an oily polyolefin as a solvent.
  • the reaction; the step (1) can be carried out in an inert solvent or in an oily polyolefin as a solvent.
  • olefins used in the present invention may be double bonds at the end groups or internal olefins, all without affecting the catalytic effect.
  • the internal olefin refers to a double bond at any position other than the terminal group.
  • the internal olefin of the same olefin may be a mixture of a plurality of isomers or a single internal olefin, for example, for butene.
  • 1-C4,2-C4 wherein 2-C4 has two isomers of cis and trans, and the use thereof may not be limited to only 1-C4 or cis2-C4 or trans.
  • 2-C4 a mixture of one or several isomers can be used simultaneously without affecting the above polymerization.
  • Oily olefin polymer and oily alkane mixture Oily olefin polymer and oily alkane mixture
  • the catalyst disclosed by the invention can be applied to various ethylene, propylene, butene polymerization process equipment and common reduction process equipment which have been used in the industry. It can be used under heterogeneous conditions using homogeneous conditions or after loading on an organic or inorganic carrier.
  • the invention also provides an oily olefin polymer and a process for the preparation thereof.
  • the oily polyethylene of the present invention is highly branched; and the high branching means that the number of methyl groups corresponding to 1000 methylene groups (CH 2 ) in the polyethylene is from 100 to 500.
  • a representative preparation method includes the steps of:
  • a cocatalyst is also present in the step; more preferably, the cocatalyst is selected from the group consisting of alkyl aluminum reagents (such as alkyl aluminoxanes, diethyl aluminum chloride and ethyl dichlorination). Aluminum); wherein the molar ratio of the promoter aluminum to the nickel in the catalyst is 10-5000.
  • step (a) is carried out under a polymerization solvent selected from the group consisting of toluene, n-hexane, dichloromethane, 1,2-dichloroethane, chlorobenzene, tetrahydrofuran or a combination thereof.
  • a polymerization solvent selected from the group consisting of toluene, n-hexane, dichloromethane, 1,2-dichloroethane, chlorobenzene, tetrahydrofuran or a combination thereof.
  • the cocatalyst may be MAO or MMAO, an aluminum alkyl or an organoboron reagent.
  • the molar ratio of the promoter to the catalyst in nickel or palladium is from 10 to 5,000.
  • the step (a) in the representative preparation method may further be that the complex of the present invention is used in the presence of an olefin polymerization catalyst at 0-100 ° C, and the pressure (gauge pressure) varies from 0.1 to 3 MPa (1-30).
  • Catalytic polymerization of propylene, butene or any combination of ethylene, propylene, butylene, C4-C20 terminal olefins, internal olefins, diolefins or mixtures thereof and polar functional group-containing polar monomers thereby The oily polyolefin with or without a functional group is formed, and a product having a different structure can be prepared by selecting a suitable monomer and a catalyst according to the use of the oil.
  • the polar monomer is selected from the group consisting of:
  • the method further comprises, prior to step (a), mixing the functional group-containing polar olefin monomer and a cocatalyst to form a mixture, and then using the mixture in step (a);
  • the functional group-containing polar olefin monomer is reacted with a functional group protecting reagent to form a functional group-protected polar monomer, and then the protected polar monomer is used in the step (a).
  • the functional group protecting agent is selected from the group consisting of TBS, TES, TBDPS, TMS, AlEt 3 , Al i Bu 3 , methyl aluminoxane, ethyl aluminoxane, butyl aluminum oxide. Alkane, MMAO, or a combination thereof.
  • the cocatalyst is selected from the group consisting of an alkyl aluminum reagent, an alkyl aluminoxane reagent, a weakly coordinating anion, or a combination thereof.
  • the aluminum alkyl reagent is selected from the group consisting of AlMe 3 , AlEt 3 , Al i Bu 3 , or AlEt 2 Cl.
  • the alkyl aluminoxane reagent is selected from the group consisting of MMAO or MAO.
  • the weakly coordinating anion is selected from the group consisting of [B(3,5-(CF 3 ) 2 C 6 H 3 ) 4 ] - or - OSO 2 CF 3 .
  • the "MMAO” refers to a modified methyl aluminoxane (product of Akzo Chemical Co., Ltd.).
  • the olefin is a functional group-containing polar olefin monomer, a non-polar olefin monomer, or a combination thereof.
  • the non-polar monomer comprises: ethylene, propylene, butylene or any combination thereof.
  • the olefin is any combination of ethylene, propylene and/or butene with other C5-C20 olefins.
  • the oily olefin polymer is hyperbranched; more preferably, the high branching means that the number of methyl groups corresponding to 1000 methylene groups (CH 2 ) in the polymer is 100- 500.
  • a cocatalyst is also present in step (a).
  • the cocatalyst is selected from the group consisting of alkylaluminum reagents (such as alkyl aluminoxanes, diethylaluminum chloride and ethylaluminum dichloride).
  • alkylaluminum reagents such as alkyl aluminoxanes, diethylaluminum chloride and ethylaluminum dichloride.
  • reaction temperature of the step (a) is 0-100 °C.
  • the reaction condition of the step (a) is: pressure (gauge pressure) 0.1-3 MPa
  • the cocatalyst is an alkyl aluminoxane or diethyl aluminum chloride, wherein the molar ratio of the promoter aluminum to the catalyst It is 10-5000.
  • step (a) is carried out under a polymerization solvent selected from the group consisting of toluene, n-hexane, dichloromethane, 1,2-dichloroethane, chlorobenzene, tetrahydrofuran or a combination thereof.
  • a polymerization solvent selected from the group consisting of toluene, n-hexane, dichloromethane, 1,2-dichloroethane, chlorobenzene, tetrahydrofuran or a combination thereof.
  • step (a) can be carried out in an oily polyethylene or oily alkane mixture.
  • the method further includes the steps of:
  • the oily alkane mixture has a bromine number of less than 0.5 g/100 g.
  • step (a) is further included between step (a) and step (b): separating the oily polyolefin.
  • the hydrogenation reaction is carried out simultaneously in step (a).
  • step (b) can be carried out in an inert solvent or directly with an oily polyolefin as a solvent.
  • the oily alkane mixture is a hydrogenated product of the oily polyolefin of the present invention.
  • the oily alkane mixture is a hydrogenated product of an oily polyethylene.
  • oily olefin polymer or hydrogenated product thereof has one or more characteristics selected from the group consisting of:
  • the number of polar groups in the polymer is: 1000 carbon corresponding to the number of polar groups of from 0.1 to 1000, preferably from 5 to 200, more preferably from 5 to 50;
  • the number of methyl groups in the polymer is: 1000 methylene corresponding to a methyl number of 100-500;
  • the density is from 0.75 to 0.91 g/mol.
  • the oil refers to a temperature range of all or part of -50 ° C to 70 ° C (preferably -40 ° C to 50 ° C, more preferably -40 ° C to 35 ° C),
  • Olefin polymers are oils that are very fluid, colorless and transparent.
  • the present invention also provides a high-branched oily alkane mixture, the mixture being a hydrogenated product of the oily polyolefin of the present invention, wherein the oily polyolefin comprises an oily polyethylene, an oily polypropylene, an oily polybutene or a mixed gas of the above An oily copolymer obtained by the action of a catalyst.
  • Molecular weight alkanes oily mixture of the invention is 500 to 500,000 g / mol, per 1000 methylene (CH 2) corresponding to the methylene group (CH 3) is 100-500.
  • the oily alkane mixture has a molecular weight of from 500 to 50,000 g/mol; more preferably, the oily alkane mixture has a molecular weight of from 500 to 10,000 g/mol, and the methyl group per 1000 methylene groups (CH 2 ) The number (CH 3 ) is 100-300, and the pour point is lower than -20 °C.
  • oily olefin polymer or hydrogenated product thereof has one or more characteristics selected from the group consisting of:
  • the number of methyl groups in the polymer is: 1000 methylene corresponding to a methyl number of 100-500;
  • the density is from 0.75 to 0.91 g/mol.
  • the oily olefin polymer or the hydrogenated product thereof has a methyl group number of from 100 to 300, preferably from 150 to 300.
  • the oily olefin polymer or its hydrogenated product has a number of branches corresponding to 1000 methylene groups of from 100 to 300, preferably from 150 to 300.
  • the branched types are methyl, ethyl, n-propyl, n-butyl, sec-butyl and other four carbon (preferably 4-8) branched alkyl groups.
  • the number of alkyl side chains having multiple ends corresponding to 1000 carbons is from 40 to 70.
  • the polymer has a branch selected from the group consisting of a C3-C8 linear or branched alkyl group.
  • the polymer has a multi-terminal alkyl side chain of sec-butyl groups and 1000 carbons corresponding to a number of sec-butyl groups of 15-30.
  • the oil refers to the polymerization of the olefin in all or part of the temperature range of -50 ° C or higher (preferably -40 ° C to 50 ° C, more preferably -40 ° C to 35 ° C).
  • the substance is oily.
  • the oily olefin polymer obtained by the invention or the hydrogenated hydrogenated product thereof has a kinematic viscosity at 100 ° C of 4 to 50 mm 2 /s, a viscosity index (VI value) of 160 to 300, and a surface tension of more than 20 mM / m.
  • the test method for kinematic viscosity refers to GB/T 265-1988 (2004), and the test method for viscosity index (VI value) refers to GB/T 1995-1998 (2004).
  • the hydrogenated product of the oily olefin polymer obtained in the invention has superior oxidation stability (50 min or more).
  • the oxidation stability (rotary oxygen bomb method) was tested using the SH/T 0193-2008 test method.
  • the resulting oily olefin mixture is a colorless, transparent liquid above the pour point.
  • it can be stably present at a high temperature, preferably higher than 300 ° C (no reaction such as oxidation occurs).
  • hyperbranched saturated alkanes may be added with various additives or reinforcing agents, such as antifreeze, alkylnaphthalene, and the like, in use.
  • additives or reinforcing agents such as antifreeze, alkylnaphthalene, and the like
  • highly branched saturated alkanes can also be used as additives to improve the processability of the resin, for example as a plasticizer in the processing of polymers.
  • the lubricating oil contains from 0.1 to 100% by weight, preferably from 1 to 90% by weight, of the oily alkane mixture.
  • the metal complex may also be prepared in situ. That is, (i) the desired ligand and metal salt are added successively in an organic solvent; (ii) the reaction solution is stirred for 0-72 hours, and then all or part of the solution is contacted with the olefin alone or together with the cocatalyst to catalyze the polymerization of the olefin to obtain an oily state.
  • the method further comprises, prior to step (i), mixing the polar olefin monomer and the cocatalyst to form a mixture, and then Said mixture is used in step (i); or reacted with said polar olefin monomer and a functional group protecting reagent to form a functional group protected polar olefin monomer, and then said protected polar olefin monomer is used in the step (i).
  • the preparation of the metal complex in situ or the preparation and separation of the metal complex and then the polymerization required by the complex does not affect the polymerization effect, and the same product can be obtained under the same polymerization process and polymerization conditions.
  • the catalyst system of the present invention can catalyze the polymerization of a functional group-containing polar olefin monomer, and thus the olefin polymer can have various polar groups and can be applied to different occasions.
  • the highly branched alkane mixture disclosed herein has a low bromine number, a high viscosity index, and can be used as a base oil or processing aid for advanced lubricating oils.
  • Example 2-48 the corresponding starting materials of Example 1 were replaced with different racemic or optically pure starting materials to produce ligands L1-2 to L1-48, all of which are summarized in Table 1.
  • Example 50-103 the corresponding ligands or metal precursors of Example 49 were replaced with different ligands or metal precursors to produce complexes 2-2 to 2-55, all of which are summarized in Table 2 in.
  • the 250 mL polymerization bottle was replaced with ethylene three times and then replaced with ethylene.
  • 40 mL of solvent toluene was added, and a toluene solution of the promoter diethylaluminum chloride (1.10 mL (0.9 mol/L) was added at 30 ° C.
  • the complex 2-9 2.0 umol was added, the polymerization was carried out for 30 min, the ethylene was cut off, 1.0 mL of methanol was added to quench the reaction, and the solvent was removed to obtain an oily polyethylene.
  • the catalytic efficiency was 6.6 ⁇ 10 6 g/mol. .h.atm, 1000 methyl groups of oily polyethylene correspond to a methyl number of 120.
  • the complex was prepared in situ, and 60 ⁇ mol of ligand L1-9 and (DME)NiBr 2 were weighed in a glove box, dissolved in 30 mL of dichloromethane, and reacted at room temperature for 2 h to prepare a solution of 2 ⁇ mol/mL.
  • the 250 mL polymerization bottle was replaced with ethylene three times and then replaced with ethylene.
  • 40 mL of solvent toluene was added, and a toluene solution of the promoter diethylaluminum chloride (1.10 mL (0.9 mol/L) was added at 30 ° C.
  • the above-prepared complex 2.0 umol
  • ethylene was cut off, 1.0 mL of methanol was added to quench the reaction, and the solvent was removed to obtain an oily polyethylene.
  • the catalytic efficiency was 6.7 ⁇ 10 6 g. /mol.h.atm, the number of methyl groups corresponding to 1000 methylene groups of oily polyethylene is 126.
  • Example 104 was repeated except that propylene was used in place of ethylene.
  • Example 104 was repeated except that ethylene was replaced with a mixture of cis/trans-2-butene.
  • the oily polymer was 10.8 g, the catalytic efficiency was 10.8 x 10 6 g/mol.h.atm, and the number of methyl groups corresponding to 1000 methylene groups in the polymer was 279.
  • Example 104 was repeated except that 1-hexene was used in place of ethylene.
  • Example 104 was repeated except that 1-decene was used in place of ethylene.
  • Example 104 was repeated except that cyclohexene was used in place of ethylene.
  • Example 104 was repeated except that the toluene was replaced with n-hexane.
  • Example 104 was repeated except that the toluene was replaced with DCE.
  • Example 104 was repeated except that DMAO was used in place of diethylaluminum chloride.
  • Example 104 was repeated except that the aluminum chloride was replaced with MAO.
  • Example 104 was repeated except that the polymerization temperature was 40 °C.
  • Example 104 was repeated except that the polymerization temperature was 50 °C.
  • Example 104 was repeated except that the polymerization temperature was 70 °C.
  • Example 118 was repeated and the ethylene pressure was changed to 5 atm.
  • Example 120-149 the corresponding complexes 2-9 of Example 104 were replaced with different complexes to provide the different oily polymers of Examples 120-149, all of which are summarized in Table 3.
  • the 250 mL polymerization bottle was replaced with ethylene three times and then replaced with ethylene.
  • 40 mL of solvent toluene was added, and a toluene solution of the promoter diethylaluminum chloride (1.10 mL (0.9 mol/L) was added at 30 ° C.
  • 5 mmol of polar monomer M3 was added under 1 atm ethylene pressure.
  • complex 2-9 2.0 umol
  • polymerization was carried out for 30 min, ethylene was cut off, and 1.0 mL of methanol was added to quench the reaction, and the solvent was removed to obtain an oily polymer.
  • Example 152-166 the corresponding polar monomers M3 of Example 150 were replaced with different polar monomers to provide the different oily polymers of Examples 152-166, all of which are summarized in Table 4. .
  • Example 167-177 the corresponding polar monomers M3 of Example 151 were replaced with different polar monomers to give the different oily polymers of Examples 167-177, all of which are summarized in Table 5. .
  • Example 104 In a 50 mL egg-shaped bottle, 2.5 g of the highly branched oily polyethylene obtained in Example 104 was added, 50 mg of Pd/C, 10 mL of n-hexane was added, and the gas was exchanged three times, and then reacted at room temperature overnight under normal pressure hydrogen atmosphere, and sampled.
  • the NMR spectrum showed that the starting material had been completely hydrogenated, the hydrogenation was stopped, and the solvent was removed by filtration to obtain an oily hyperbranched alkane having a bromine number of 0.31 g/100 g, a corresponding methyl group of 1,000 methylene groups of 140, and a viscosity index VI of The kinematic viscosity at 241, 100 ° C was 7.9 cSt.
  • Example 104 In a 50 mL egg-shaped bottle, 2.5 g of the highly branched oily polyethylene obtained in Example 104 was added, 50 mg of Pd/C was added, and the gas was exchanged three times, and then reacted at room temperature overnight under an atmospheric hydrogen atmosphere, and a nuclear magnetic resonance spectrum was sampled.
  • the starting material has been completely hydrogenated, the hydrogenation is stopped, the solvent is removed by filtration and the oily hyperbranched alkane is obtained, the bromine value is 0.33 g/100 g, and the corresponding methyl number in the 1000 methylene groups is 146.
  • Example 178 was repeated to convert Pd/C to Pd(OH) 2 .
  • Example 178 was repeated and the hydrogenated substrate was changed to the oily polyethylene obtained in Example 115.
  • the bromine value of the oily hyperbranched alkane was 0.35 g/100 g, the number of methyl groups corresponding to 1000 methylene groups was 170, and the viscosity index VI was 290.
  • Example 178 was repeated and the hydrogenated substrate was changed to the oily polyethylene obtained in Example 118.
  • Example 104 was repeated.
  • the olefin polymerization catalyst was contacted with ethylene, hydrogen was simultaneously introduced, and the hydrogenation was completed completely, and the mixture was filtered, and the solvent was removed to obtain a highly branched oily alkane having a bromine number of 0.46 g/100 g and 1,000 methylene groups.
  • the corresponding number of methyl groups was 230 and the viscosity index was 196.
  • Example 104 was repeated. After the olefin polymerization catalyst was contacted with ethylene for 30 min, no treatment was carried out, 50 mg of Pd/C was added, hydrogen gas was introduced thereto, and the hydrogenation was completed. The filtrate was removed by filtration, and the solvent was removed to obtain a highly branched oily alkane, and the oil was highly branched. Alkane The number of methyl groups corresponding to 1000 methylene groups is 207.
  • Example 104 after the olefin polymerization catalyst was contacted with ethylene for 30 minutes, the treatment was carried out without replacing the atmosphere, and the atmosphere was directly replaced with hydrogen, and the reaction was carried out under a hydrogen atmosphere until the hydrogenation was completed. The mixture was filtered, and the solvent was removed to obtain a highly branched oily alkane. It is 0.33 g/100 g.
  • Example 118 was repeated and the ethylene pressure was changed to 10 atm.
  • Example 118 was repeated and the ethylene pressure was changed to 20 atm.
  • Example 118 was repeated and the polymerization temperature was changed to 50 °C.
  • Example 118 was repeated and the polymerization temperature was changed to 70 °C.
  • the catalytic efficiency of the oily polyethylene was 4.4 x 10 6 g/mol.h.atm, and the number of methyl groups corresponding to 1000 methylene groups was 128.
  • Example 118 was repeated and the solvent toluene was replaced with n-hexane.
  • Example 118 was repeated, the solvent toluene was changed to dichloromethane (DCM), and the polymerization time was 4 hours.
  • DCM dichloromethane
  • Example 118 was repeated and the solvent toluene was changed to 1,2-dichloroethane (DCE).
  • DCE 1,2-dichloroethane
  • the catalytic efficiency of the oily polyethylene was 4.7 x 10 6 g/mol.h.atm, and the number of methyl groups corresponding to 1000 methylene groups was 165.
  • Example 118 was repeated, the solvent toluene was changed to dichloromethane (DCM), and the ethylene pressure was changed to 10 atm.
  • DCM dichloromethane
  • Example 118 was repeated, the solvent toluene was changed to dichloromethane (DCM), and the ethylene pressure was changed to 20 atm.
  • DCM dichloromethane
  • the catalytic efficiency of the oily polyethylene was 5.5 x 10 7 g/mol.h.atm, and the number of methyl groups corresponding to 1000 methylene groups was 184.
  • Example 118 was repeated, replacing the solvent toluene with 1,2-dichloroethane (DCE) and changing the ethylene pressure to 20 atm.
  • DCE 1,2-dichloroethane
  • the catalytic efficiency of the oily polyethylene was 6.1 x 10 7 g/mol.h.atm, and the number of methyl groups corresponding to 1000 methylene groups was 178.
  • Example 118 was repeated, the solvent toluene was changed to dichloromethane (DCM), the ethylene pressure was changed to 5 atm, and the complex 2-9 was changed to the complex 2-2.
  • DCM dichloromethane
  • the catalytic efficiency of the oily polyethylene was 9.0 x 10 6 g/mol.h.atm, and the number of methyl groups corresponding to 1000 methylene carbon was 267.
  • Example 118 was repeated, the solvent toluene was changed to dichloromethane (DCM), the ethylene pressure was changed to 10 atm, and the complex 2-9 was changed to the complex 2-2.
  • DCM dichloromethane
  • the catalytic efficiency of oily polyethylene was 2.3 ⁇ 10 7 g/mol.h.atm, the number of methyl groups corresponding to 1000 methylene groups was 283, the bromine number was 23.41 g/100 g, and the oxidation stability was 56 minutes.
  • the 13 C spectrum of the polymer is shown in Figure 3.
  • the 13 C spectrum shows that the branched types of the polymer include methyl, ethyl, n-propyl, n-butyl, sec-butyl and other four or more carbon branches. Among them, 1000 carbons contain 24 sec-butyl groups.
  • Example 118 was repeated, the solvent toluene was changed to 1,2-dichloroethane (DCE), the ethylene pressure was changed to 5 atm, and the complex 2-9 was replaced with the complex 2-2.
  • DCE 1,2-dichloroethane
  • Example 118 was repeated, the solvent toluene was changed to 1,2-dichloroethane (DCE), the ethylene pressure was changed to 10 atm, and the complex 2-9 was replaced with the complex 2-2.
  • DCE 1,2-dichloroethane
  • the catalytic efficiency of the oily polyethylene was 4.8 x 10 6 g/mol.h.atm, and the number of methyl groups corresponding to 1000 methylene groups was 246.
  • the 13 C spectrum of the polymer is shown in Figure 5. As can be seen from the 13 C spectrum, the polymer is rich in the type of branching.
  • Example 201 was repeated and the ethylene pressure was changed to 10 atm.
  • the catalytic efficiency of the oily polyethylene was 5.3 x 10 7 g/mol.h.atm, and the number of methyl groups corresponding to 1000 methylene groups was 264.
  • Example 201 was repeated to reduce the reaction temperature to 20 °C.
  • the catalytic efficiency of the oily polyethylene was 8.0 x 10 7 g/mol.h.atm, and the number of methyl groups corresponding to 1000 methylene groups was 257.
  • Example 201 was repeated and the reaction temperature was raised to 50 °C.
  • the catalytic efficiency of the oily polyethylene was 5.0 x 10 7 g/mol.h. atm, and the methyl number corresponding to 1000 methylene groups was 278.
  • Example 201 was repeated, the solvent was changed to 1,2-dichloroethane (DCE), and the ethylene pressure was changed to 10 atm.
  • DCE 1,2-dichloroethane
  • the catalytic efficiency of the oily polyethylene was 6.3 x 10 7 g/mol.h.atm, and the number of methyl groups corresponding to 1000 methylene groups was 264.
  • Example 201 was repeated and the solvent was changed to toluene.
  • Example 201 was repeated and the complex 2-2 was replaced with the complex 2-4.
  • Example 201 was repeated and the complex 2-2 was replaced with the complex 2-5.
  • Example 208 was repeated and the ethylene pressure was changed to 10 atm.
  • the catalytic efficiency of the oily polyethylene was 1.6 x 10 8 g/mol.h.atm, and the methyl number corresponding to 1000 methylene groups was 273.
  • Example 210 (compared to Example 201)
  • Example 201 was repeated and the complex 2-2 was replaced with the complex 2-56.
  • the obtained polymer was a mixture of a solid product and a liquid, wherein the solid product was 123.70 g and the liquid product was 37.63 g.
  • Example 211 was repeated and the ethylene pressure was changed to 10 atm.
  • Example 211 was repeated and the reaction temperature was raised to 50 °C.
  • Example 211 was repeated, the solvent was changed to 1,2-dichloroethane (DCE), and the ethylene pressure was changed to 10 atm.
  • DCE 1,2-dichloroethane
  • Example 215-225 the different starting materials of Example 1 were replaced with different racemic or optically pure starting materials to produce ligands L1-49 through L1-59, all of which are summarized in Table 6.
  • Example 226-234 the corresponding ligands or metal precursors of Example 49 were replaced with different ligands or metal precursors to produce complexes 2-57 to 2-64, all of which are summarized in Table 7. in.
  • Example 118 was repeated, the solvent toluene was changed to dichloromethane (DCM), the ethylene pressure was changed to 10 atm, and the complex 2-9 was changed to the complex 2-57.
  • DCM dichloromethane
  • the catalytic efficiency of the oily polyethylene was 2.3 x 10 7 g/mol.h.atm, and the methyl number corresponding to 1000 methylene groups was 201.
  • Example 118 was repeated, the solvent toluene was changed to dichloromethane (DCM), the ethylene pressure was changed to 10 atm, and the complex 2-9 was changed to the complex 2-59.
  • DCM dichloromethane
  • the catalytic efficiency of the oily polyethylene was 2.8 x 10 7 g/mol.h.atm, and the number of methyl groups corresponding to 1000 methylene groups was 214.
  • Example 118 was repeated, the solvent toluene was changed to dichloromethane (DCM), the ethylene pressure was changed to 10 atm, and the complex 2-9 was changed to the complex 2-61.
  • DCM dichloromethane
  • the catalytic efficiency of the oily polyethylene was 2.0 x 10 7 g/mol.h.atm, and the methyl number corresponding to 1000 methylene groups was 254.
  • Example 118 was repeated, the solvent toluene was changed to dichloromethane (DCM), the ethylene pressure was changed to 10 atm, and the complex 2-9 was changed to the complex 2-63.
  • DCM dichloromethane
  • the catalytic efficiency of the oily polyethylene was 3.3 x 10 7 g/mol.h.atm, and the number of methyl groups corresponding to 1000 methylene groups was 243.
  • Example 118 was repeated, the solvent toluene was changed to dichloromethane (DCM), the ethylene pressure was changed to 10 atm, and the complex 2-9 was changed to the complex 2-64.
  • DCM dichloromethane
  • Example 201 was repeated and the complex 2-2 was replaced with the complex 2-57.
  • the catalytic efficiency of the oily polyethylene was 3.4 x 10 7 g/mol.h.atm, and the number of methyl groups corresponding to 1000 methylene groups was 212.
  • Example 201 was repeated and the complex 2-2 was replaced with the complex 2-59.
  • the catalytic efficiency of the oily polyethylene was 3.8 x 10 7 g/mol.h.atm, and the number of methyl groups corresponding to 1000 methylene groups was 225.
  • Example 201 was repeated and the complex 2-2 was replaced with the complex 2-61.
  • Example 201 was repeated and the complex 2-2 was replaced with the complex 2-63.
  • Example 198 In a 100 mL egg-shaped bottle, 2.0 g of the highly branched oily polyethylene obtained in Example 198 was added, 150 mg of Pd/C was added, 15 mL of n-hexane + 5 mL of ethyl acetate was added, and after three times of gas exchange, the atmosphere under a hydrogen atmosphere under normal pressure was used.
  • Example 201 In a 250 mL egg-shaped bottle, 10.0 g of the highly branched oily polyethylene obtained in Example 201 was added, and Pd/C 150 mg, n-hexane 100 mL + 30 mL of ethyl acetate was added, and after three times of gas exchange, under a hydrogen atmosphere at normal pressure, After reacting at room temperature overnight, the sample was found to have been hydrogenated completely, the hydrogenation was stopped, the hydrogenation was stopped, and the solvent was removed to obtain an oily hyperbranched alkane having a bromine number of 0.33 g/100 g, and the corresponding methyl group of 1000 methylene groups was 274.
  • the viscosity index VI was 253, the kinematic viscosity at 100 ° C was 8.4 cSt, and the surface tension was 24.6 mM / m.
  • Example 201 In a 2 L reaction flask, 500 g of the highly branched oily polyethylene obtained in Example 201 was added, and 1.5 g of Pd/C, 1.5 g of n-hexane, and 300 mL of ethyl acetate were added, and after three times of gas exchange, under a hydrogen atmosphere at normal pressure, 50 After reacting at °C overnight, the sample was found to have been completely hydrogenated by hydrogen nucleation. The hydrogenation was stopped, and the solvent was removed by filtration to obtain an oily hyperbranched alkane having a bromine number of 0.38 g/100 g. The corresponding methyl group of 1000 methylene groups was 269. The viscosity index VI was 259, the kinematic viscosity at 100 ° C was 8.6 cSt, and the surface tension was 24.0 mM / m.
  • a physical map of the oily hyperbranched alkane is shown in Figure 9 as a colorless, transparent oil.
  • Example 201 In a 2 L autoclave, 500 g of the highly branched oily polyethylene obtained in Example 201 was added, and 1.5 g of Pd/C, 1.5 g of n-hexane, and 300 mL of ethyl acetate were added, and after three times of gas exchange, under a hydrogen atmosphere of 20 bar, 50 ° C After 6 hours of reaction, the sampled nuclear magnetic hydrogen spectrum was found to have been completely hydrogenated, the hydrogenation was stopped, and the solvent was removed by filtration to obtain an oily hyperbranched alkane having a bromine number of 0.40 g/100 g, and the corresponding methyl number of 1000 methylene groups was 273.
  • the viscosity index VI was 261, the kinematic viscosity at 100 ° C was 8.2 cSt, and the surface tension was 24.7 mM / m.
  • Example 208 In a 2 L autoclave, 500 g of the highly branched oily polyethylene obtained in Example 208 was added, and 1.5 g of Pd/C, 1.5 g of n-hexane, and 300 mL of ethyl acetate were added thereto, and after three times of gas exchange, under a hydrogen atmosphere of 20 bar, 50 ° C. After 6 hours of reaction, the sampled nuclear magnetic hydrogen spectrum was found to have been completely hydrogenated, the hydrogenation was stopped, and the solvent was removed by filtration to obtain an oily hyperbranched alkane having a bromine number of 0.50 g/100 g, and the corresponding methyl number of 1000 methylene groups was 287.
  • the viscosity index VI was 272, the kinematic viscosity at 100 ° C was 4.2 cSt, and the surface tension was 22.0 mM / m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Lubricants (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Indole Compounds (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一类新型聚烯烃催化剂及其制备。具体地,本发明公开了一类催化体系,该催化体系包含一类新型:铁、钴、镍、钯、铂配合物。在该催化体系的作用下,只需要温和的条件即可以由简单烯烃,例如乙烯,高效地获得油状聚乙烯,氢化后得到油状高支化烷烃混合物。该烷烃混合物可以用于加工助剂和高性能润滑油的基础油。本发明还提供了催化剂的制法以及油状高支化烷烃混合物的制备方法,还包括功能化聚烯烃油的制备方法。

Description

新型聚烯烃催化剂及其应用 技术领域
本发明涉及润滑油的基础油制备技术领域,具体地,本发明涉及一类新型聚烯烃催化剂及其制备技术,以及在这类催化剂作用下,实现由乙烯、丙烯、丁烯等简单烯烃以及含官能团的极性烯烃直接制备油状高支化聚合物的方法。
背景技术
工业上润滑油的基础油是通过石油裂解或者α-烯烃齐聚获得。其中,聚α-烯烃(PAO)作为一类非常重要、性能优异的润滑油基础油是通过α-烯烃齐聚获得,主要原料是α-辛烯,α-癸烯,α-十二碳烯等价格昂贵的高级α-烯烃。
因此目前获得高品质基础油PAO的前提是必须先催化乙烯齐聚选择性得到α-烯烃,特别是α-癸烯,而选择性地生产C6以上的α-烯烃的技术目前还不成熟,导致其价格很高。直接由乙烯、丙烯、丁烯等廉价烯烃制备高性能基础油具有经济、高效等优势,然而由于缺乏高效的催化体系,到目前为止这一领域没有明显的进展。
1995年以前镍配合物均被认为只能作为催化烯烃齐聚的催化剂,例如著名的SHOP催化剂可以高活性地催化乙烯齐聚得到符合Flory分布的一系列α-烯烃。1995年,Brookhart等人(J.Am.Chem.Soc.1995,117,6414.)利用α-二亚胺镍配合物首次证明通过改变配体结构控制活性中心的性质可以实现镍配合物催化乙烯聚合,得到了支化的高分子量聚乙烯,聚合物的熔点(Tm)在39-132℃之间。Du Pont公司就此技术申请了多个专利(WO 96/23010,WO 98/03521,WO 98/40374,WO 99/05189,WO 99/62968,WO 00/06620,US 6,103,658,US 6,660,677)对该类聚合产品予以保护。由相应的阳离子钯体系可以得到油状的聚乙烯,聚烯烃支化度高,但是催化剂制备困难、价格昂贵,且催化活性很低。
聚乙烯的形态、性能与其支化度密切相关,而催化剂结构是控制聚乙烯结构的核心。Brookhart等人由镍系催化剂得到的聚乙烯已经具备一定的支化度,但仍不能满足要求,表现为常温下产品为固体状态。2011年我们申请了专利CN201110126431.9,公开了利用新型α-二亚胺镍配合物实现了高活性催化乙烯等简单烯烃聚合直接得到高支化的油状聚乙烯等油状聚合物技术。
总体上,尽管聚烯烃油具有巨大的潜在应用价值,但是目前能够实现低成本制造该产品的催化剂技术还很少。特别是在实际应用中需要聚烯烃结构中含有一定的极性基团以满足与其它材料的有机复合,因此,本领域迫切需要开发新高效的催化体系实现低成本的高性能油状聚合物的制备。
发明内容
本发明的目的是提供一类新型催化体系以及其中关键催化剂的制法。通过催化剂结构的调控,该催化体系可以直接实现由乙烯、丙烯或丁烯等廉价烯烃直接制备高支化度的油状聚合物。
本发明的另一目的是提供一类新型催化体系在合成高支化烷烃中的用途。
本发明的另一目的是提供一类可用于高级润滑油基础油的高支化烷烃。
在本发明的第一方面,提供了一种下式I所示的化合物,
Figure PCTCN2015092201-appb-000001
式中,
Y1分别为氢、C1-C8烷基或C1-C8卤代烷基、未取代或取代的苯基;
Y2分别为CR4R5、NR6、O或S,R4、R5、R6各自独立地为H、C1-C4烷基或卤代烷基;
或者Y1与Y2,及两者共同相连的C-C键共同形成未取代或取代的5-12元环(例如,共同构成形如
Figure PCTCN2015092201-appb-000002
的化合物,其中虚线表示化学键或无);
Figure PCTCN2015092201-appb-000003
为与Y2共同构成的未取代或取代的5-7元单环、或含所述5-7元单环的双环或三环基团,其中该5-7元单环含有1-3个N、O或S原子且含有至少一个N;
Y3为位于所述5-7元单环或含所述5-7元单环的双环或三环基团上的一个或多个任意取代基团,各Y3独立为氢、C1-C8烷基或C1-C8卤代烷基、未取代或取代的苯基、未取代或取代的苄基;
Z分别为C1-C8烷基、C1-C8卤代烷基、未取代或取代的苯基;
其中,除非特别说明,上述各定义中所述的“取代的”指所述基团具有1-5个选自下组的取代基:C1-C4烷基和C1-C4卤代烷基、卤素、硝基、氰基、CF3、-O-R1、-N(R2)2、-Si(R3)3、-CH2-O-R8、-SR9或-CH2-S-R10,其中R1、R2、R3各自独立地为C1-C4烷基或卤代烷基;而R8、R9和R10分别为C1-C8烷基或苯基。
在另一优选例中,
Figure PCTCN2015092201-appb-000004
可以是光学活性的或外消旋的。
在另一优选例中,在
Figure PCTCN2015092201-appb-000005
中N邻位为C碳原子,且所述C原子具有一个或两个非氢取代基。
在另一优选例中,所述的非氢取代基选自下组:C3-C8烷基(优选支链烷基)或C3-C8卤代烷基(优选卤代支链烷基)、未取代或取代的苯基、未取代或取代的苄基。
在另一优选例中,所述的“与Y2共同构成”包括与整个Y2共同构成,或与Y2的一部分(moiety)共同构成。
在另一优选例中,
Figure PCTCN2015092201-appb-000006
选自下组:
Figure PCTCN2015092201-appb-000007
Y4、Y5、Y6、Y7、Y8、Y9、Y10和Y11分别为H、卤素、C1-C8烷基、C1-C8卤代烷基、未取代或取代的苯基、未取代或取代的苄基、-O-R7、-CH2-O-R8、-SR9或-CH2-S-R10,其中R7、R8、R9和R10分别为C1-C8烷基、未取代或取代的苯基;Y12为H、C1-C8烷基、C1-C8卤代烷基、未取代或取代的苯基、未取代或取代的苄基。
在另一优选例中,
Figure PCTCN2015092201-appb-000008
Figure PCTCN2015092201-appb-000009
其中Y4、Y5、Y6和Y7中1-3个取代基为H、C1-C8烷基、C1-C8卤代烷基、未取代或取代的苯基,并且1-3个取代基为H、卤素、C1-C4烷基和C1-C4卤代烷基。
在另一优选例中,
Figure PCTCN2015092201-appb-000010
Figure PCTCN2015092201-appb-000011
其中Y4、Y5、Y6、Y7和Y12中1-3个取代基为H、C1-C8烷基、C1-C8卤代烷基、未取代或取代的苯基,并且1-3个取代基为H、卤素、C1-C4烷基和C1-C4卤代烷基。
在另一优选例中,所述的Y12不为卤素。
在另一优选例中,Y1和Y2可以与两者共同相连的C-C键共同构成未取代或取代的C6-C8环,其中,所述的“取代的”的定义如上。
在另一优选例中,所述化合物具有下式结构:
Figure PCTCN2015092201-appb-000012
其中,
Y3或Z的定义如权利要求1中所述;
n为0、1、2或3;
Figure PCTCN2015092201-appb-000013
为未取代或取代的5-7元单环、或含所述5-7元单环的双环或三环基团;
G1、G2、G3和G4分别为H、卤素、C1-C8烷基、C1-C8卤代烷基、硅基、未取代或取代的苯基、未取代或取代的苄基、-O-R7、-CH2-O-R8、-SR9或-CH2-S-R10,其中R7、R8、R9和R10分别为C1-C8烷基、未取代或取代的苯基;其中所述的“取代的”定义如上。
在另一优选例中,所述的含所述5-7元单环的双环为螺环或并环,较佳地所述化合物具有下式任一结构:
Figure PCTCN2015092201-appb-000014
其中,
各n分别为1、2、3或4;
Y1、Y2、和Z的定义如权利要求1中所述;
Y4、Y5分别为H、卤素、C1-C8烷基、C1-C8卤代烷基、未取代或取代的苯基、未取代或取代的苄基、-O-R7、-CH2-O-R8、-SR9或-CH2-S-R10,其中R7、R8、R9和R10分别为C1-C8烷基、未取代或取代的苯基;其中,Y4和Y5不能同时为卤素、-O-R7或-SR9
在另一优选例中,式I化合物中各手性中心(优选C碳原子)为R型和/或S型。
在另一优选例中,其中与Y4和/或Y5相连的5-7元单环上的C原子为R型和/或S型。
在另一优选例中,所述的Z为未取代或取代的苯基,或未取代或取代的萘基,其中,所述取代是指基团上具有1-5个选自下组的取代基:C1-C4烷基和C1-C4卤代烷基、卤素、硝基、氰基、CF3、-O-R1、-N(R2)2、-Si(R3)3、-CH2-O-R8、-SR9、-CH2-S-R10、-CH-(R10)2、或未取代或被1-5个选自下组的取代基取代的苯基:C1-C4烷基和C1-C4卤代烷基,其中R1、R2、R3各自独立地为C1-C4烷基或卤代烷基;而R8、R9和R10分别为C1-C8烷基或苯基;
且取代的苯基上最多只能有一个硝基或氰基基团。
更佳地,Z选自下组之一:
Figure PCTCN2015092201-appb-000015
在另一优选例中,所述的化合物中,Y1、Y2、Y3、Y4、Y5、Y6、Y7、Y8、Y9、Y10、 Y11、Y12、Z、R1、R2、R3、R4、R5、R6、R7、R8、R9和R10中任一个分别为本发明所述具体化合物中所对应的基团。
本发明的第二方面,提供了一种配合物,所述的配合物是本发明第一方面所述的化合物与二价或三价金属盐形成的配合物。
较佳地,所述金属盐含有选自下组金属:铁、钴、镍、钯、铂或其组合。
在另一优选例中,所述金属盐为二价金属盐,且所述配合物具有下式II所示结构:
Figure PCTCN2015092201-appb-000016
式中,
Y1、Y2、Y3和Z的定义如权利要求1中所述;
M为铁、钴、镍、钯、铂或其组合;
X独立为卤素、C1-C4烷基、C2-C6烯基、烯丙基(
Figure PCTCN2015092201-appb-000017
)、-OAc、-OTf或苄基。
在另一优选例中,所述卤素为F、Cl、Br或I,较佳地为Cl或Br。
本发明的第三方面,提供了一种制备如本发明第二方面所述的配合物的方法,所述方法包括步骤:
在惰性溶剂中,将本发明第一方面所述的化合物与二价或三价金属盐进行反应,从而形成本发明第二方面所述的配合物。
在另一优选例中,所述的金属盐选自下组:NiCl2、NiBr2、NiI2、(DME)NiBr2、PdCl2、PdBr2、Pd(OTf)2、Pd(OAc)2、(COD)PdMeCl或其组合。
在另一优选例中,所述反应在几乎无水条件(例如,水含量≤0.1%)下进行。
在另一优选例中,所述反应在惰性气氛(如氮气)下进行。
本发明的第四方面,提供了一种制备式I化合物的方法,所述方法包括步骤:
(a)在碱性条件下,将式A所示的杂环化合物氧化成式B化合物;
Figure PCTCN2015092201-appb-000018
(b)将式B化合物与式C化合物反应,形成式I化合物;
Figure PCTCN2015092201-appb-000019
上述各式中,Y1、Y2、Y3、Z和
Figure PCTCN2015092201-appb-000020
的定义如权利要求1中所述。
在另一优选例中,所述步骤(a)在惰性有机溶剂中用碱拔氢,其中,所述的碱优选正丁基锂、叔丁基锂、二异丙基氨基锂(LDA)、六甲基二硅基胺基锂(LHMDS);然后通氧气、空气或利用其它氧化试剂氧化3-48小时。
在另一优选例中,所述惰性有机溶剂指在本反应中,不与本反应所用到的任何一种化学 试剂发生化学反应的溶剂。
在另一优选例中,所述步骤(b)中加入0.001-100%相应的促进缩合反应的催化剂,其中优选甲酸、醋酸、对甲苯磺酸、TiCl4、原硅酸酯。
在另一优选例中,所述步骤(b)中化合物B与C的比例为(0.7-1.2):1。
在另一优选例中,所述步骤(a)中的惰性有机溶剂包括:乙醚或四氢呋喃。
在另一优选例中,所述步骤(b)中的惰性溶剂是二氯甲烷、甲醇、乙醇或甲苯。
本发明的第五方面,提供了一种油状烯烃聚合物的制备方法,所述方法包括步骤:
(a)在本发明第二方面所述的配合物作为烯烃聚合催化剂存在下,以烷基铝化合物为助催化剂对烯烃进行催化聚合,形成油状聚烯烃。
在另一优选例中,所述的烷基铝化合物包括三烷基铝、二烷基氯化铝、烷基二氯化铝、烷基铝氧烷;所述的聚合在有机溶剂中进行,优选芳烃、烷烃和卤代烷烃;更优选甲苯、C4-C10的烷烃和C1-C6的卤代烷烃;更优选甲苯、C5-C7烷烃、C1-C3的卤代烷烃;最优选甲苯、C5-C7烷烃、二氯甲烷、1,2-二氯乙烷或1,1,2,2-四氯乙烷。
在另一优选例中,在步骤(a)中所述的配合物是原位(in situ)制备或预先制备的。
在另一优选例中,所述方法还包括步骤:
(b)对步骤(a)获得的油状聚烯烃进行加氢反应,从而获得加氢的油状烷烃混合物。
在另一优选例中,所述的烯烃是乙烯、丙烯以及C4-C20的端烯烃、内烯烃、双烯烃或其混合物。
在另一优选例中,所述的烯烃还包括极性单体,
较佳地,所述的极性单体是含有极性基团的C3-C50的烯烃,所述的极性基团选自下组:羰基、羟基、-COOH、酯基-COOR11、烷氧基-OR12、胺基-NR13R14、酰胺基-CONR15R16、硫醚-SR17、硒醚-SeR18、-PR19R20、-P(=O)R19R20或其组合;其中,R11和R12独立地为C1-C10的烷基或C6-C20芳基;R13、R14、R15、R16、R17或R18独立地为氢、C1-C10的烷基,或C6-C20芳基;R19或R20独立地为C1-C10的烷基或C6-C20芳基。
在另一优选例中,所述的极性单体选自下组:
Figure PCTCN2015092201-appb-000021
在另一优选例中,所述的方法在步骤(a)之前还包括:
将所述的极性单体和助催化剂进行混合,形成混合物,然后将所述混合物用于步骤 (a);
或用所述的极性单体与官能团保护试剂进行反应,形成官能团保护的极性单体,然后所述受保护的极性单体用于步骤(a)。
在另一优选例中,所述的官能团保护试剂选自下组:TBS、TES、TBDPS、TMS、AlEt3、AliBu3、甲基铝氧烷、乙基铝氧烷、丁基铝氧烷、MMAO,或其组合。
在另一优选例中,所述的助催化剂选自下组:烷基铝、烷基铝氧烷、弱配位阴离子或其组合。
在另一优选例中,所述的烷基铝试剂选自下组:AlEt3、AlMe3、AliBu3,或AlEt2Cl。
在另一优选例中,所述的烷基铝氧烷选自下组:MMAO或MAO。
在另一优选例中,所述的弱配位阴离子选自下组:[B(3,5-(CF3)2C6H3)4]--OSO2CF3
在另一优选例中,所述的“MMAO”指改性的甲基铝氧烷(Akzo Chemical公司产品)。
在另一优选例中,所述的烯烃是极性单体、非极性单体,或其组合。
在另一优选例中,所述的非极性单体包括:乙烯、丙烯、丁烯或其任意组合。
在另一优选例中,所述的烯烃是乙烯、丙烯和/或丁烯与其它C5-C20烯烃的任意组合。
在另一优选例中,所述油状烯烃聚合物是高支化的;更佳地,所述的高支化指聚合物中1000个亚甲基对应的甲基数为100-500个。
在另一优选例中,步骤(a)中还存在助催化剂。
更佳地,所述的助催化剂选自下组或其组合:烷基铝试剂(如烷基铝氧烷,二乙基氯化铝和乙基二氯化铝)。
在另一优选例中,步骤(a)的反应温度为0-100℃。
在另一优选例中,步骤(a)的反应条件为:压力(表压)0.1-10MPa,助催化剂为烷基铝氧烷或二乙基氯化铝,其中助催化剂铝与催化剂的摩尔比为10-5000。
在另一优选例中,步骤(a)在选自下组的聚合溶剂下进行:甲苯、正己烷、二氯甲烷、1、2-二氯乙烷、氯苯、四氢呋喃或其组合。
在另一优选例中,步骤(a)可以在油状聚乙烯或油状烷烃混合物中进行。
在另一优选例中,所述方法还包括步骤:
(b)对步骤(a)获得的油状聚烯烃进行加氢反应,从而获得加氢的油状烷烃混合物。
在另一优选例中,所述的油状烷烃混合物的溴值小于0.5g/100g。
在另一优选例中,在步骤(a)和步骤(b)之间还包括步骤:分离油状聚烯烃。
在另一优选例中,在步骤(a)之中同时进行加氢反应。
在另一优选例中,步骤(b)可以在惰性溶剂中进行或直接以油状聚烯烃为溶剂进行加氢反应。
在另一优选例中,所述的油状烷烃混合物是本发明的油状聚烯烃的加氢产物。
在另一优选例中,所述的油状烷烃混合物是油状聚乙烯的加氢产物。
在另一优选例中,所述的油状烯烃聚合物或其氢化产物具有选自下组的一个或多个特性:
(i)所述聚合物中的甲基数为:1000个亚甲基对应的甲基数为100-500个;
(ii)分子量300-500,000g/mol;
(iii)密度为0.75-0.91g/mol。
在另一优选例中,所述的油状烯烃聚合物或其氢化产物1000个亚甲基对应的甲基数为100-300个,较佳地为150-300。
在另一优选例中,所述的油状烯烃聚合物或其氢化产物1000个亚甲基对应的支链数为100-300个,较佳地为150-300。其中的支链类型有甲基、乙基、正丙基、正丁基、仲丁基以及其它四个碳以上的支链。
在另一优选例中,1000个碳对应的具有多末端的烷基侧链数为40-70个。
在另一优选例中,所述的聚合物具有选自下组的支链:C3-C8的直链或支链烷基。
在另一优选例中,所述的聚合物具有多末端的烷基侧链为仲丁基,且1000个碳对应的仲丁基数目为15-30。
在另一优选例中,所述的油状指在-50℃以上(较佳地-40℃至50℃,更佳地-40℃至35℃)的全部或部分温度范围内,所述烯烃聚合物为油状。
在另一优选例中,该发明所得油状烯烃聚合物或其加氢的氢化产物具有100℃运动粘度4-50mm2/s,粘度指数(VI值)160-300,表面张力大于20mM/m。其中运动粘度测试方法参照GB/T 265-1988(2004),粘度指数(VI值)测试方法参照GB/T 1995-1998(2004)。
在另一优选例中,所述油状烷烃混合物的分子量为500-50,000克/摩尔。
在另一优选例中,该发明所得油状烯烃聚合物的氢化产物具有优越的氧化安定性。氧化安定性(旋转氧弹法)的测试采用SH/T 0193-2008测试方法。
本发明的第六方面,提供了一种油状烯烃聚合物或其加氢的氢化产物,所述的油状烯烃聚合物或其氢化产物具有选自下组的一个或多个特性:
(i)所述聚合物中极性基团的数量为:1000个亚甲基对应的极性基团数为0.1-1000个,较佳地5-200个,更佳地为5-50个;
(ii)所述聚合物中的甲基数为:1000个亚甲基对应的甲基数为100-500个;
(iii)分子量300-500,000g/mol;
(iv)密度为0.75-0.91g/mol。
在另一优选例中,所述的油状指在-50℃以上(较佳地-40℃以上)的全部或部分温度范围内,所述烯烃聚合物为油状。
在另一优选例中,所述油状烷烃混合物的倾点为-60℃至-20℃。
在另一优选例中,所述的油状烯烃聚合物或其氢化产物具有,其特征在于,所述的油状烯烃聚合物或其氢化产物含有选自下组的极性基团:羰基、羟基、-COOH、酯基-COOR11、烷氧基-OR12、胺基-NR13R14、酰胺基-CONR15R16、硫醚-SR17、硒醚-SeR18、-PR19R20、-P(=O)R19R20或其组合;其中,R11和R12独立地为C1-C10的烷基或C6-C20芳基;R13、R14、R15、R16、R17或R18独立地为氢或C1-C10的烷基或C6-C20芳基;R19或R20独立地为C1-C10的烷基或C6-C20芳基。
本发明的第七方面,提供了一种如本发明第六方面所述的油状烯烃聚合物或其加氢的氢化产物的用途,其特征在于,它被用作润滑油的基础油、润滑油的添加剂、增塑剂或树脂的加工助剂。
本发明的第八方面,提供了一种油状烷烃混合物,其特征在于,所述的油状烷烃混合物中,1000个碳所含具有多末端的烷基侧链数为20-100个。
在另一优选例中,所述的油状烷烃混合物是用如本发明第五方面所述方法得到的。
在另一优选例中,所述的油状烷烃混合物是用乙烯作为聚合单体,通过如本发明第五方面所述的方法得到的。
在另一优选例中,所述的油状烷烃混合物中,每1000个亚甲基对应的甲基数(CH3)为100-300个。
在另一优选例中,1000个碳对应的具有多末端的烷基侧链数为40-70个。
在另一优选例中,所述的聚合物中1000个碳所含仲丁基数目为15-30。
在另一优选例中,所述的聚合物具有选自下组的支链:C1-C8的直链或支链烷基。
在另一优选例中,所述的聚合物具有选自下组的支链:C3-C8的直链或支链烷基。
在另一优选例中,所述的油状烷烃混合物的倾点为-40~-20℃,优选为-60℃至-20℃。
在另一优选例中,所述的聚合物为无色透明油状物。
在另一优选例中,所述油状烷烃混合物的分子量为500-50,000克/摩尔,更优选为500-10,000克/摩尔。
在另一优选例中,所述油状烷烃混合物每1000个亚甲基对应的甲基数(CH3)为100-300个。
在另一优选例中,所述的油状烷烃混合物在100℃下的运动粘度为4-50mm2/s。
在另一优选例中,所述的油状烷烃混合物的粘度指数(VI值)为160-300。
在另一优选例中,所述的油状烷烃混合物表面张力大于20mM/m。
在另一优选例中,所述的油状烷烃混合物的表面张力为20mM/m-40mM/m。
在另一优选例中,所述的油状烷烃混合物密度为0.75-0.91g/mol。
在另一优选例中,所述的加氢的油状烷烃混合物的氧化安定性为高于50min,优选为高于70min,更优选为高于90min。
在另一优选例中,所述的油状烷烃混合物在-50℃至200℃温度范围内为无色透明油状物;优选地在-40℃至50℃的温度范围内为无色透明油状物。
本发明的第九方面,提供了一种润滑油,所述的润滑油含有本发明第六方面所述的油状烯烃聚合物和/或其加氢的氢化产物(即油状烷烃混合物),或本发明第八方面所述的油状烷烃混合物。在另一优选例中,所述该润滑油的粘度指数(VI值)130-200。
在另一优选例中,所述润滑油含有0.1-100wt%(较佳地1-90wt%)所述油状烷烃混合物。
本发明的第九方面,提供了一种如本发明第二方面所述的配合物用作烯烃聚合的催化剂的用途。
在另一优选例中,所述的烯烃聚合是在均相条件下进行。
在另一优选例中,所述的催化剂被负载在无机载体或有机载体上。
应理解,在本发明范围内,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1显示了本发明实例125中制备的聚合物核磁碳谱。
图2显示了本发明实施例57的配合物2-9的分子结构。
图3显示了本发明实例198中制备的聚合物核磁碳谱。
图4显示了本发明实例201中反应过程中釜内温度和乙烯流量随时间的变化情况。
图5显示了本发明实例201中制备的聚合物核磁碳谱。
图6显示了本发明实例208中制备的聚合物核磁碳谱。
图7显示了本发明实例245中制备的聚合物核磁碳谱。
图8显示了不同温度下样品P1-hydrogenation、P2-hydrogenation和P3-hydrogenation(烷烃混合物)的运动剪切粘度随剪切速率的变化。
图9显示了本发明实施例248中制备的聚合物的实物图。
具体实施方式
本发明人经过广泛而深入的研究,制备了新颖的配体化合物、配合物和催化体系,从而实现高活性地催化非极性和/或含官能团的极性烯烃单体直接聚合得到高支化度的油状聚合物。本发明的催化剂技术能够制备一系列不同粘度的新型、清洁的油状烯烃聚合物,包括含极性官能团的聚烯烃油,大幅降低高品质润滑油的成本。在此基础上,发明人完成了本发明。
术语
除非特别说明,本发明所述的所有化合物中,未注明光学构型的手性中心可以为任意构型,如R型、S型、外消旋等。
“烷基”指饱和的脂族烃基团,包括1至10个碳原子的直链和支链基团。优选含有1至6个碳原子的中等大小烷基,例如甲基、乙基、丙基、2-丙基、正丁基、异丁基、叔丁基、戊基等。更优选的是含有1至4个碳原子的低级烷基,例如甲基、乙基、丙基、2-丙基、正丁基、异丁基、叔丁基等。
“烯基”指具有碳碳双键(C=C)的不饱和脂族烃基团,包括含2-10个(较佳地2-6个)碳原子的直链和支链基团。
“炔基”指具有碳碳三键的不饱和脂族烃基团,包括含2-10个(较佳地2-6个)碳原子的直链和支链基团。
“环烷基”指3至8元全碳单环、全碳5元/6元或6元/6元稠合环或多环稠合环基团,其中一个或多个环可以含有一个或多个双键,但没有一个环具有完全共轭的π电子系统。环烷基实例有环丙基、环丁基、环戊基、环己基、环己二烯基、金刚烷基、环庚烷基、环庚三烯基等。
“碳环”指环骨架皆为碳原子的饱和或不饱和环,其中一个或多个环可以含有一个或多个双键。
“杂环”指环骨架上至少存在一个选自下组的杂原子的饱和或不饱和环:N、S、O或P,其中一个或多个环可以含有一个或多个双键。
“5-7元单环”指具有5~7元的单环(仅有一个环结构),所述的单环可以是饱和或不饱和环,如环烷基、环烯基、芳环。
“双环或三环基团”指基团中含有两个或三个环结构的基团,如并环、螺环或桥环结构,例如吲哚基、喹啉基等。本发明中,优选的双环或三环基团为8~20元环。“含单环A的双环或三环基团”指所述的双环或三环基团中的一个或多个环为单环A。
“芳环”指具有共轭的π电子系统的芳环,包括碳环芳基、杂芳基。
“杂芳基”指具有1个杂原子作为环原子,其余的环原子为碳的芳基,杂原子包括氧、硫、氮。所述环可以是5元或6元或7元环。杂芳基基团的实例包括但不限于呋喃基、噻吩基、苯并呋喃基、苯并噻吩基、吡啶基、吡咯、N-烷基吡咯基。
“烷氧基”指-O-(烷基)。代表性实例包括甲氧基、乙氧基、丙氧基、丁氧基等。
“卤素”指氟、氯、溴或碘。
本发明的配体化合物可以含有一个或多个不对称中心,并因此以消旋体、外消旋混合物、单一对映体、非对映异构体化合物和单一非对映体的形式出现。可以存在的不对称中心,取决于分子上各种取代基的性质。每个这种不对称中心将独立地产生两个旋光异构体,并且所有可能的旋光异构体和非对映体混合物和纯或部分纯的化合物包括在本发明的范围之内。本发明包括配体化合物的所有这种异构形式。本发明一些配体化合物可以以互变异构体形式存在,其具有或伴有一个或多个双键移位的不同的氢连接点。
如本文所用,术语“惰性溶剂”指不与即将与之混合的其它组分发生化学反应的溶剂。
特别地,在本发明中,形如
Figure PCTCN2015092201-appb-000022
的结构,表示Y3为所述环上的任意(不限位置和数量)取代基,该取代基的位置和个数没有特别的限制,可以是任意符合本文中定义以及本领域公知的取代规律的取代基。
在本发明中,所述的“DME”是乙二醇二甲醚;所述的“OTf-”是三氟甲磺酸根负离子;所述的“OAc-”是醋酸根负离子;所述的“COD”是环辛二烯。
除非特别说明,本文中,“取代的”基团上的氢原子被选自下组的取代基取代:C1-C4烷基和C1-C4卤代烷基、卤素、硝基、氰基、CF3、-O-R1、-N(R2)2、-Si(R3)3、-CH2-O-R8、-SR9或-CH2-S-R10,其中R1、R2、R3各自独立地为C1-C4烷基或卤代烷基;而R8、R9和R10分别为C1-C8烷基或苯基。
如本文所用,术语“多末端的烷基”指具有一个以上甲基的烷基基团,如叔丁基、异丙基等。
配体化合物
本发明提供了式I配体化合物。
Figure PCTCN2015092201-appb-000023
式中,各基团的定义如上所述。
较佳地,Y1选自下组:氢、甲基、三氟甲基、正丁基、正己基、苯基、C1-C4烷基-苯基;其中,所述的苯基可以是被烷基、卤素、烷氧基、C1-C4胺基、硝基、氰基、三甲 基硅基取代的苯基;所述的卤素包括氟、氯、溴或碘;所述的烷氧基优选甲氧基、乙氧基、异丙氧基;所述的烷基优选为C1-C6的烷基,更优选C1-C4的烷基,最优选甲基、乙基、异丙基和丁基,取代基团可在苯环的任何可被取代的位置。
较佳地,Z为异丙基、叔丁基、苯基、C1-C4烷基-苯基;其中,所述的苯基可以是被烷基、卤素、烷氧基或烷氧基-烷基取代的苯基;所述的卤素包括氟、氯、溴或碘;所述的烷氧基优选甲氧基、乙氧基、异丙氧基;所述的烷基优选为C1-C6的烷基,更优选C1-C4的烷基,最优选甲基、乙基、异丙基和丁基,取代基团可在苯环的任何可被取代的位置。
较佳地,
Figure PCTCN2015092201-appb-000024
Figure PCTCN2015092201-appb-000025
其中Y4、Y5、Y6、Y7取代基为C1-C4烷基、C1-C4烷氧基-烷基、苯基、C1-C4烷基-苯基、或被C1-C6烷基、卤素、烷氧基取代的苯基;所述的卤素包括氟、氯、溴或碘;所述的烷氧基优选甲氧基、乙氧基、异丙氧基;所述的烷基优选C1-C4的烷基,最优选甲基、乙基、异丙基和丁基,取代基团可在苯环的任何可被取代的位置。
或Y4、Y5之中的一个与Y6、Y7之中的一个形成取代或未取代的苯基。
较佳地,Y4和Y5可以与相邻的碳原子一起构成未取代或取代的C5-C8饱和碳环。
较佳地,Y6和Y7可以与相邻的碳原子一起构成未取代或取代的C5-C8饱和碳环。
较佳地,
Figure PCTCN2015092201-appb-000026
Figure PCTCN2015092201-appb-000027
其中Y4、Y5、Y6、Y7取代基为异丙基、叔丁基、苯基、或被C1-C6烷基、卤素、烷氧基取代的苯基;所述的卤素包括氟、氯、溴或碘;所述的烷氧基优选甲氧基、乙氧基、异丙氧基;所述的烷基优选C1-C4的烷基,最优选甲基、乙基、异丙基和丁基,取代基团可在苯环的任何可被取代的位置;Y12为H、C1-C8烷基、C1-C8卤代烷基、未取代或取代的苯基、未取代或取代的苄基。或Y4、Y5之中的一个与Y6、Y7之中的一个形成取代或未取代的苯基。
较佳地,Y4和Y5可以与相邻的碳原子一起构成未取代或取代的C5-C8饱和碳环。
较佳地,Y6和Y7可以与相邻的碳原子一起构成未取代或取代的C5-C8饱和碳环。
在另一优选例中,式I化合物具有以下结构:
Figure PCTCN2015092201-appb-000028
其中,
Y3、Z、G1、G2、G3和G4的定义如上文中所述;
n为0、1、2或3。
所述的烷基可以是取代的烷基,优选的取代基为卤素、烷氧基、苯氧基;所述的卤素包括氟、氯、溴或碘;所述的烷氧基优选甲氧基、乙氧基、异丙氧基,更优选甲氧基。
一类特别优选的配体包括实施例1~48中所示的配体L1-1~L1-48。
本发明中,最为优选的配体结构包括:
Figure PCTCN2015092201-appb-000029
配合物
在本发明中,式I化合物可以与二价镍或二价钯金属盐作用形成相应的镍或钯配合物。
在本发明中,优选式II的配合物:
Figure PCTCN2015092201-appb-000030
式中,各基团的定义如上所述。
X可以为卤素、C1-C4烷基、C2-C6烯基、烯丙基(
Figure PCTCN2015092201-appb-000031
)、苄基;所述的C1-C4烷基优选甲基;所述的卤素优选溴、氯或碘。
在另一优选例中,X为氯、溴、碘、甲基、烯丙基(
Figure PCTCN2015092201-appb-000032
)或苄基。
在另一优选例中,X为氯、溴或碘。
在本发明中,可在惰性溶剂中,将本发明的配体化合物I与相应的二价金属前体进行反应,从而形成配合物。
在本发明中,所述的二价镍或二价钯金属盐作为反应的金属前体包括:NiCl2、NiBr2、NiI2、(DME)NiBr2、(DME)NiCl2、(DME)NiI2、PdCl2、PdBr2、Pd(OTf)2和Pd(OAc)2
本发明的金属配合物可以在助催化剂作用下催化乙烯、丙烯、丁烯、以及C4-C20的端烯烃、内烯烃、双烯烃或其混合物聚合得到油状的聚合物;也可以催化上述简单烯烃、双烯烃等简单烯烃与含极性官能团的极性单体一起聚合,得到含官能团的功能化聚烯烃油。
配体化合物和配合物的制备
本发明还提供了式I配体化合物的合成,包括步骤:
(a)由相应的杂环化合物A氧化获得B。
(b)由B与胺化合物C反应获得配体I。
所述的化合物A、B、C具有如下所示的结构式。
Figure PCTCN2015092201-appb-000033
具体地,杂环化合物A在惰性有机溶剂中用碱拔氢,然后通氧气、空气或利用其它氧化试剂将生成的负离子氧化成化合物B。惰性溶剂中化合物B在促进缩合反应的催化剂作用下与化合物C缩合得到配I。所述的惰性溶剂包括醇、芳香烃、脂肪烃、卤代烃、醚、酯类溶剂,优选芳香烃类溶剂,例如甲苯、二甲苯、三甲苯等。所述的促进缩合反应的催化剂包括甲酸、醋酸、对甲苯磺酸、TiCl4、原硅酸酯。
所述步骤(a)优选在惰性溶剂中分别反应3-48小时。
所述步骤(b)中优选需要加入相当于反应物的摩尔比为0.001-100%相应的促进缩合反应的催化剂,其中优选醋酸、对甲苯磺酸、TiCl4、原硅酸酯。
所述步骤(b)中优选化合物B与C的比例为(0.7-1.2):1。
所述步骤(a)中优选的惰性溶剂是乙醚或四氢呋喃。
所述步骤(b)优选的惰性溶剂是醇、芳香烃、脂肪烃、卤代烃、醚、酯类溶剂。
步骤(a)生成的B分离提纯后或者不分离提纯直接进行步骤(b)。
本发明还提供配合物的制备方法。以镍配合物为例,可以在无水无氧的条件下,由化合物I与金属盐,包括NiCl2、NiBr2、NiI2或(DME)NiBr2、(DME)NiCl2、(DME)NiI2在惰性溶剂中作用得到。所述的惰性溶剂可以是常规用到的、不影响该反应进行的任何溶剂,包括醇、芳香烃、脂肪烃、卤代烃、醚、酯类、腈类溶剂,优选卤代烃类溶剂,其中在卤代烃和脂类溶剂中可以取得更优的结果,较佳的例子有二氯甲烷、1,2-二氯乙烷、乙酸乙酯、四氢呋喃。
其中,Y1-Y12,Z,X的定义如前所述。DME是指乙二醇二甲醚;当X为烃基时,例如为甲基或苄基时,常常可以由相应的氯化物或溴化物II与甲基格氏试剂或苄基格氏试剂在常规的类似反应的反应条件下作用得到,且无论配合物II中X是卤素或者烃基或者其他任何可以与镍金属配位的基团,例如含氮化合物、含氧化合物,只要该配合物在烷基铝的作用下可以形成Ni-C键或者Ni-H键,即可以实现这个催化作用,这些化合物在催化乙烯聚合的过程中均具有相同的活性中心,并因此而表现出相同或相似的性质。
催化体系和应用
本发明提供了一种可催化烯烃聚合得到高支化度烷烃混合物的催化体系,所述的催化 体系由包含1)镍、钯金属盐与式I所示的配体形成的配合物;2)氢化体系。
Figure PCTCN2015092201-appb-000034
式中,各基团的定义如上所述。
由上述的催化剂以及加氢催化剂一起组成的催化体系可以实现由乙烯直接制备高支化烷烃。所述的高支化烷烃是指聚合物链中每1000个亚甲基对应的甲基数为100-500、溴值低于0.5g/100g的脂肪烃。通常,该方法包含以下两个步骤,
(1)上述的金属配合物和助催化剂共同作用,由烯烃直接制备高支化的油状聚烯烃。
(2)对步骤(1)获得的油状聚烯烃进行加氢反应,从而获得加氢的油状烷烃混合物。
所述的金属配合物为化合物I与二价镍或钯形成的配合物,优选结构式II所示的镍配合物。
所述的助催化剂为可促进该催化反应的试剂,可以是烷基铝化合物或者有机硼试剂。
所述的烷基铝化合物包括任何一种含有碳-铝键的化合物,包含甲基铝氧烷(MAO)、MMAO、三乙基铝、三异丁基铝、二乙基氯化铝、乙基二氯化铝等。其中助催化剂中铝与催化剂中镍或钯的摩尔比为10-5000;甲基铝氧烷、MMAO或烷基铝试剂作为助催化剂均可以实现帮助镍或钯配合物催化乙烯聚合得到油状聚乙烯,而且甲基铝氧烷或烷基铝试剂的结构不会影响这种助催化作用,只是所得到的聚合物的支化度或分子量会因助催化剂的结构而有所差异,其中在甲基铝氧烷和二乙基氯化铝、乙基二氯化铝中可以取得最优的结果。在另一种情况下,AlCl3单独或与烷基铝化合物一起起到助催化作用,也可以起到理想的效果。
所述的步骤(1)中,所述的金属配合物可以是预先制备完毕后加入反应体系的,也可以是原位(in situ)制备的。即,既可以在体系中直接加入金属配合物,也可以在体系中加入用于制备所述的金属配合物的本发明的配体以及金属前体,使其在反应过程中生成金属配合物。
本发明的高支化聚乙烯,可通过氢化,形成高支化烷烃。
所述的高支化聚乙烯的结构由13C NMR和高温GPC测得的分子量与高温激光光散射测得的实际分子量对比确定。所述的高支化烷烃分子量在500至50万克/摩尔之间,为澄清透明的油状物。
视具体要求,步骤(1)中乙烯与镍或钯配合物和烷基铝化合物在惰性溶剂中接触的时间可以在0.5小时至72小时范围内变化,反应温度的变化范围为0-100度,压力(指表压)变化范围为0.1-3Mpa(1-30个大气压)。
步骤(2)中,将步骤(1)中得到的高支化油状聚乙烯与还原试剂作用或者在一种或多种还原催化剂的共同作用下将油状聚乙烯与氢气接触,得到高支化油状烷烃混合物的溴值低于0.5g/100g。还原催化剂可以是任何可以促进该氢化过程的催化剂,优选自Pd/C,Pd(OH)2,PtO2,铑、镍、钌等氢化催化剂,还原试剂包括常规的可以将双键还原的任何试剂,主要有硼烷化合物、三乙基硅烷等。
在另一优选例中,在步骤(1)和步骤(2)之间还包括步骤:分离油状烯烃聚合物。
在另一优选例中,在步骤(1)之中还同时进行加氢反应。
在另一优选例中,步骤(2)可以在惰性溶剂中进行或直接以油状烯烃聚合物为溶剂进行加氢反应;步骤(1)可以在惰性溶剂中进行或以油状烯烃聚合物(如油状聚乙烯)为溶剂进行聚合。
具体的,步骤(2)还可以通过如下方式完成:a)在进行步骤(1)时,同时通入氢气,从而直接得到高支化油状烷烃;b)在进行步骤(1)后,不进行处理,在聚合体系中通入氢气,从而得到高支化油状烷烃;c)在进行步骤(1)后,不进行处理,直接在聚合体系中加入一种或多种还原催化剂进行氢化,从而得到高支化油状烷烃;d)在进行步骤(1)后,将油状烯烃聚合物分离并进行加氢反应。
上述反应可在惰性溶剂中完成,优选醇、烷烃、芳香烃和卤代烃,其中步骤(1)中优选C5-C12的饱和烃,例如己烷、庚烷;卤代烃,例如二氯甲烷、1,2-二氯乙烷、1,1,2,2-四氯乙烷;芳香烃,例如甲苯、二甲苯。步骤(2)中优选C5-C12的饱和烃,例如己烷、庚烷;卤代烃,例如二氯甲烷、1,2-二氯乙烷、1,1,2,2-四氯乙烷;芳香烃,例如甲苯、二甲苯。
除了非极性单体之外,通过调整催化剂中取代基团的结构,该催化体系还可以高效地催化极性单体进行催化聚合,或对极性单体与非极性单体的任意组合进行催化聚合,从而得到含官能团的功能化油状聚合物。
本发明的烯烃聚合物具有高度的支化,优选为树枝状或球形、类球形的聚合物,该聚合物同样可以通过氢化步骤(2)获得高支化的烷烃。
在另一优选例中,在步骤(1)之中,还同时进行加氢反应;在另一优选例中,步骤(2)可以在惰性溶剂中进行或直接以油状聚烯烃为溶剂进行加氢反应;步骤(1)可以在惰性溶剂中进行或以油状聚烯烃为溶剂进行聚合。
除乙烯外,其它用于本发明中使用的烯烃可以是双键在端基或为内烯烃,均不影响催化效果。所说的内烯烃是指双键在除端基之外的任意位置,在应用中同一种烯烃的内烯烃可以是多种异构体的混合物或单一一种内烯烃,例如,对于丁烯而言,可以有1-C4,2-C4,其中2-C4又有顺式和反式两种异构体,使用中可以不局限于只用1-C4或顺式2-C4或反式2-C4,可以同时使用一种或几种异构体的混合物而不会对上述的聚合产生影响。
油状烯烃聚合物和油状烷烃混合物
本发明公开的催化剂可以应用于目前工业上已经使用的各种乙烯、丙烯、丁烯聚合的工艺设备和常用的还原工艺设备。可以使用均相条件也可以负载于有机载体或无机载体后在非均相条件下使用。
本发明还提供了一种油状烯烃聚合物及其制备方法。本发明的油状聚乙烯是高支化的;并且所述的高支化指聚乙烯中1000个亚甲基(CH2)对应的甲基数为100-500个。
在本发明中,以乙烯为例,代表性的制备方法包括步骤:
(a)将本发明配合物作为烯烃聚合催化剂存在下在0-100℃、压力(表压)变化范围为0.1-3Mpa(1-30个大气压),对乙烯进行催化聚合,从而形成油状聚乙烯。
较优的,该步骤中还存在助催化剂;更佳地,所述的助催化剂选自下组:烷基铝试剂(如烷基铝氧烷,二乙基氯化铝和乙基二氯化铝);其中助催化剂铝与催化剂中镍的摩尔比为10-5000。
在另一优选例中,步骤(a)在选自下组的聚合溶剂下进行:甲苯、正己烷、二氯甲烷、 1,2-二氯乙烷、氯苯、四氢呋喃或其组合。
在一个优选例中,所述的助催化剂可以是MAO或MMAO、烷基铝或有机硼试剂。其中助催化剂与催化剂中镍或钯的摩尔比为10-5000。
由于这类镍、钯配合物在反应过程具有以下特点:1)可以进行快速的β-H消除生成含双键的聚烯烃和含Ni(Pd)-H键的活性物种;2)含Ni(Pd)-H键的活性物种与α-烯烃的重新再配位、插入得到Ni(Pd)-C键;3)得到的Ni(Pd)-C键再次与体系中的乙烯开始聚合反应;4)最终通过β-H消除终止催化循环反应。所以生成的聚合物含有大量的支链,支链的总数由13C NMR通过判断CH2和CH3的信号(积分面积)可以做出定量的分析。而且由于终止催化循环的方式是金属的β-H消除,所以不可避免地聚合物链中含有双键。
在本发明中,代表性的制备方法中步骤(a)还可以是将本发明配合物作为烯烃聚合催化剂存在下在0-100℃、压力(表压)变化范围为0.1-3MPa(1-30个大气压),对丙烯、丁烯或乙烯、丙烯、丁烯、C4-C20的端烯烃、内烯烃、双烯烃或其混合物以及含极性官能团的极性单体的任意组合进行催化聚合,从而形成含有或者不含有官能团的油状聚烯烃,可以根据油的用途选择合适的单体和催化剂制备得到不同结构的产品。极性基团可以是选自下组:羰基、羟基、-COOH、酯基-COOR11、烷氧基-OR12、胺基-NR13R14、酰胺基-CONR15R16、硫醚-SR17、硒醚-SeR18、-PR19R20、-P(=O)R19R20或其组合;其中,R11和R12独立地为C1-C10的烷基或C6-C20芳基;R13、R14、R15、R16、R17或R18独立地为氢、C1-C10的烷基,或C6-C20芳基;R19或R20独立地为C1-C10的烷基或C6-C20芳基。
在另一优选例中,所述的极性单体选自下组:
Figure PCTCN2015092201-appb-000035
此外,所述的方法在步骤(a)之前还包括将所述的含官能团的极性烯烃单体和助催化剂进行混合,形成混合物,然后将所述混合物用于步骤(a);
或用所述的含官能团的极性烯烃单体与官能团保护试剂进行反应,形成官能团受保护的极性单体,然后所述受保护的极性单体用于步骤(a)。
在另一优选例中,所述的官能团保护试剂选自下组:TBS、TES、TBDPS、TMS、AlEt3、AliBu3、甲基铝氧烷、乙基铝氧烷、丁基铝氧烷、MMAO,或其组合。
在另一优选例中,所述的助催化剂选自下组:烷基铝试剂、烷基铝氧烷试剂、弱配位阴离子或其组合。
在另一优选例中,所述的烷基铝试剂选自下组:AlMe3、AlEt3、AliBu3,或AlEt2Cl。
在另一优选例中,所述的烷基铝氧烷试剂选自下组:MMAO或MAO。
在另一优选例中,所述的弱配位阴离子选自下组:[B(3,5-(CF3)2C6H3)4]--OSO2CF3
在另一优选例中,所述的“MMAO”指改性的甲基铝氧烷(Akzo Chemical公司产品)。
在另一优选例中,所述的烯烃是含官能团的极性烯烃单体、非极性烯烃单体、或其组合。
在另一优选例中,所述的非极性单体包括:乙烯、丙烯、丁烯或其任意组合。
在另一优选例中,所述的烯烃是乙烯、丙烯和/或丁烯与其它C5-C20烯烃的任意组合。
在另一优选例中,所述油状烯烃聚合物是高支化的;更佳地,所述的高支化指聚合物中1000个亚甲基(CH2)对应的甲基数为100-500个。
在另一优选例中,步骤(a)中还存在助催化剂。
更佳地,所述的助催化剂选自下组或其组合:烷基铝试剂(如烷基铝氧烷,二乙基氯化铝和乙基二氯化铝)。
在另一优选例中,步骤(a)的反应温度为0-100℃。
在另一优选例中,步骤(a)的反应条件为:压力(表压)0.1-3MPa,助催化剂为烷基铝氧烷或二乙基氯化铝,其中助催化剂铝与催化剂的摩尔比为10-5000。
在另一优选例中,步骤(a)在选自下组的聚合溶剂下进行:甲苯、正己烷、二氯甲烷、1,2-二氯乙烷、氯苯、四氢呋喃或其组合。
在另一优选例中,步骤(a)可以在油状聚乙烯或油状烷烃混合物中进行。
在另一优选例中,所述方法还包括步骤:
(b)对步骤(a)获得的油状聚烯烃进行加氢反应,从而获得加氢的油状烷烃混合物。
在另一优选例中,所述的油状烷烃混合物的溴值小于0.5g/100g。
在另一优选例中,在步骤(a)和步骤(b)之间还包括步骤:分离油状聚烯烃。
在另一优选例中,在步骤(a)之中同时进行加氢反应。
在另一优选例中,步骤(b)可以在惰性溶剂中进行或直接以油状聚烯烃为溶剂进行加氢反应。
在另一优选例中,所述的油状烷烃混合物是本发明的油状聚烯烃的加氢产物。
在另一优选例中,所述的油状烷烃混合物是油状聚乙烯的加氢产物。
在另一优选例中,所述的油状烯烃聚合物或其氢化产物具有选自下组的一个或多个特性:
(i)所述聚合物中极性基团的数量为:1000个碳对应的极性基团数为0.1-1000个,较佳地5-200个,更佳地为5-50个;
(ii)所述聚合物中的甲基数为:1000个亚甲基对应的甲基数为100-500个;
(iii)分子量300-500,000g/mol;
(iv)密度为0.75-0.91g/mol。
在另一优选例中,所述的油状指在-50℃至70℃(较佳地-40℃至50℃,更佳地-40℃至35℃)的全部或部分温度范围内,所述烯烃聚合物为流动性很好、无色透明的油状物。
本发明还提供一类高支化油状烷烃混合物,所述混合物是本发明油状聚烯烃的加氢产物,其中油状聚烯烃包括油状聚乙烯、油状聚丙烯、油状聚丁烯或上述的混合气体在催化剂作用下得到的油状共聚物。本发明的油状烷烃混合物的分子量为500-500,000克/摩尔, 每1000个亚甲基(CH2)对应的甲基数(CH3)为100-500个。另一优选例中,油状烷烃混合物的分子量为500-50,000克/摩尔;更佳的,油状烷烃混合物的分子量为500-10,000克/摩尔,每1000个亚甲基(CH2)对应的甲基数(CH3)为100-300个,倾点低于-20℃。
在另一优选例中,所述的油状烯烃聚合物或其氢化产物具有选自下组的一个或多个特性:
(i)所述聚合物中的甲基数为:1000个亚甲基对应的甲基数为100-500个;
(ii)分子量300-500,000g/mol;
(iii)密度为0.75-0.91g/mol。
在另一优选例中,所述的油状烯烃聚合物或其氢化产物1000个亚甲基对应的甲基数为100-300个,较佳地为150-300。
在另一优选例中,所述的油状烯烃聚合物或其氢化产物1000个亚甲基对应的支链数为100-300个,较佳地为150-300。其中的支链类型有甲基、乙基、正丙基、正丁基、仲丁基以及其它四个碳(优选4-8个)以上的支链烷基。
在另一优选例中,1000个碳对应的具有多末端的烷基侧链数为40-70个。
在另一优选例中,所述的聚合物具有选自下组的支链:C3-C8的直链或支链烷基。
在另一优选例中,所述的聚合物具有多末端的烷基侧链为仲丁基,且1000个碳对应的仲丁基数目为15-30。
在另一优选例中,所述的油状指在-50℃以上(较佳地-40℃至50℃,更佳地-40℃至35℃)的全部或部分温度范围内,所述烯烃聚合物为油状。
在另一优选例中,该发明所得油状烯烃聚合物或其加氢的氢化产物具有100℃运动粘度4-50mm2/s,粘度指数(VI值)160-300,表面张力大于20mM/m。其中运动粘度测试方法参照GB/T 265-1988(2004),粘度指数(VI值)测试方法参照GB/T 1995-1998(2004)。
在另一优选例中,该发明所得油状烯烃聚合物的氢化产物具有优越的氧化安定性(50min以上)。氧化安定性(旋转氧弹法)的测试采用SH/T 0193-2008测试方法。
在本发明的优选实施例中,所得到的油状烯烃混合物在倾点之上为无色透明的液体。在惰性气体氛围中,可以在高温下,优选高于300℃时稳定存在(不发生氧化等反应)。
为了提高其相应的物理性能,这类高支化的饱和烷烃可以在使用中添加各种填加剂或增强剂,例如防冻液、烷基萘等。此外,这类高支化的饱和烷烃还可以作为添加剂改善树脂的加工性能,例如作为聚合物加工过程中的增塑剂。在另一优选例中,所述润滑油含有0.1-100wt%(较佳地1-90wt%)所述油状烷烃混合物。
所述的聚合中,所述的金属配合物也可以是原位(in situ)制备的。即,(i)在有机溶剂中先后加入所需要的配体和金属盐;(ii)反应液搅拌0-72h后将全部或者部分溶液单独或者与助催化剂一起与烯烃接触,催化烯烃聚合得到油状聚合物;或者当部分或者全部烯烃单体含有极性官能团时,所述的方法在步骤(i)之前还包括将所述的极性烯烃单体和助催化剂进行混合,形成混合物,然后将所述混合物用于步骤(i);或用所述的极性烯烃单体与官能团保护试剂进行反应,形成官能团保护的极性烯烃单体,然后所述受保护的极性烯烃单体用于步骤(i)。
无论原位制备金属配合物还是先制备、分离金属配合物后再利用该配合物实施所需要的聚合都不影响聚合效果,在相同的聚合工艺和聚合条件下均可以得到同样的产品。
本发明的主要优点包括:
(a)利用新型催化剂体系,高活性地实现了由简单烯烃单体,如乙烯,直接得到高支化度的油状烷烃,并大幅降低成本。
(b)本发明的催化剂体系可以催化含官能团的极性烯烃单体的聚合,因此得到烯烃聚合物可具有各种不同的极性基团,可适用于不同的场合。
(c)本发明公开的高支化烷烃混合物具有低溴值、高粘度指数,可用于高级润滑油的基础油或加工助剂。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。
动力学试验表明催化剂的稳定性好,至少3小时内活性几乎不衰减。
从聚合物13C谱可以看出聚合物的支链类型十分丰富,具体的支链类型分析见参考文献:Galland,G.B.;de Souza,R.F.;Mauler,R.S.;Nunes,F.F.Macromolecules 1999,32,1620.和Wiedemann,T.;Voit,G.;Tchernook,A.;Roesle,P.;Gottker-Schnetmann,I.;Mecking,S.J.Am.Chem.Soc.2014,136,2078。
配体制备
实施例1
配体L1-1的合成
Figure PCTCN2015092201-appb-000036
(1)100mL蛋形瓶中,加入苯乙酸(2.72g,20mmol),乙醇胺(1.22g,20mmol),二甲苯(50mL),170℃回流分水,NMR跟踪反应结束后,旋蒸浓缩,减压蒸馏,得2-苄基-4,5-二氢噁唑,产物为淡黄色液体,收率为63%。1H NMR(300MHz,CDCl3):δ=7.31-7.24(5H,m),4.22(2H,t),3.82(2H,t),3.60(2H,s)。
(2)100mL干燥的反应瓶中,加入干燥的四氢呋喃(50mL),加入二异丙胺(1.70mL,12mmol),冰水浴下滴加2.4M的正丁基锂(5mL,12mmol),滴加完毕恢复室温反应2小时。然后在干冰-丙酮浴下,将2-苄基-4,5-二氢噁唑(1.61g,10.0mmol)的四氢呋喃溶液用注射泵滴加到制备好的LDA溶液中,滴加完毕在干冰-丙酮浴下反应3小时,最后在干冰-丙酮浴下通氧气,TLC跟踪反应至结束。加入饱和硫代硫酸钠溶液淬灭反应,乙醚萃取,无水硫酸钠干燥,抽滤,旋转浓缩,硅胶柱层析(三乙胺润柱,乙酸乙酯/石油醚=1/20),得到2-苯甲酰基-4,5-二氢噁唑,产物为黄色液体,收率为71%。1H NMR(400MHz,CDCl3):δ=8.31(2H,dd),7.63(1H,m),7.49(2H,m),4.49(1H,dd),4.20(1H,dd),3.74(2H,m)。
(3)50mL反应管中,加入2-苯甲酰基-4,5-二氢噁唑(0.88g,5.0mmol),加入二氯甲烷25mL,加入四氯化钛(0.6mL,5.5mmol),然后加入2,6-二异丙基苯胺(0.94mL,5.0mmol),再加入三乙胺(1.05mL,7.5mmol),TLC跟踪反应至结束。加入饱和碳酸氢钠溶液淬灭反应,硅藻土过滤,二氯甲烷萃取,无水硫酸钠干燥,抽滤,旋转浓缩,中性氧化铝柱层析(乙酸乙酯/石油醚=1/30)得粗产物,再用甲醇重结晶得到配体L1-1,为黄色固体,收率为38%。1H NMR(400MHz,CDCl3):δ=8.01(2H,dd),7.50(3H,m),7.05(3H,m),4.56(0.5H,t),4.18(0.5H,t),4.01(1.5H,t),3.82(1.5H,t),2.86(2H,m),1.19(4.5H,d),1.14(1.5H,d),1.11(4.5H,d),0.86(1.5H,d)。
在实施例2-48中,采用不同的外消旋或光学纯的原料,替换实施例1中相应的原料,从而制得配体L1-2至L1-48,所有结果总结在表1中。
表1
Figure PCTCN2015092201-appb-000037
Figure PCTCN2015092201-appb-000038
Figure PCTCN2015092201-appb-000039
Figure PCTCN2015092201-appb-000040
Figure PCTCN2015092201-appb-000041
配合物制备
实施例49
配合物2-1的合成
Figure PCTCN2015092201-appb-000042
取NiBr2(DME)1mmol和1.05mmol L1-1混合后,用氮气置换反应体系三次,加入无水二氯甲烷20mL并搅拌过夜。反应液过滤,将滤液在减压下除去溶剂,加入二氯甲烷/正己烷(2mL/20mL)的混合溶剂洗涤固体2-3次,过滤后剩余固体在真空下干燥。得到产物为红色固体,产率87%。Anal.Calcd.For C22H26Br2N2NiO:C,47.79;H,4.74;N,5.07.Found:C,48.04;H,4.65;N,4.95。
在实施例50-103中,采用不同的配体或金属前体替换实施例49中相应的配体或金属前体,从而制得配合物2-2至2-55,所有结果总结在表2中。
表2
Figure PCTCN2015092201-appb-000043
Figure PCTCN2015092201-appb-000044
Figure PCTCN2015092201-appb-000045
Figure PCTCN2015092201-appb-000046
Figure PCTCN2015092201-appb-000047
Figure PCTCN2015092201-appb-000048
高支化油状聚烯烃制备
实施例104
250mL的聚合瓶用氮气置换气三次后再置换为乙烯,在乙烯气氛下,加入溶剂甲苯40mL,加入助催化剂二乙基氯化铝的甲苯溶液1.10mL(0.9mol/L),在30℃下,1atm乙烯压力下,加入配合物2-9(2.0umol),聚合30min,切断乙烯,加入1.0mL甲醇淬灭反应,将反应液除去溶剂后得油状聚乙烯,催化效率6.6x106g/mol.h.atm,油状聚乙烯1000个亚甲基对应的甲基数为120。
实施例105
原位制备配合物,先在手套箱中分别称取60μmol的配体L1-9和(DME)NiBr2,溶于30mL二氯甲烷中,室温下反应2h,配成2μmol/mL的溶液备用。
250mL的聚合瓶用氮气置换气三次后再置换为乙烯,在乙烯气氛下,加入溶剂甲苯40mL,加入助催化剂二乙基氯化铝的甲苯溶液1.10mL(0.9mol/L),在30℃下,1atm乙 烯压力下,加入上述原位制备的配合物(2.0umol),聚合30min,切断乙烯,加入1.0mL甲醇淬灭反应,将反应液除去溶剂后得油状聚乙烯,催化效率6.7x106g/mol.h.atm,油状聚乙烯1000个亚甲基对应的甲基数为126。
实施例106
重复实施例104,不同点在于,采用丙烯替换乙烯。
结果:得油状聚合物8.7g,催化效率8.7x106g/mol.h.atm,聚合物中1000个亚甲基对应的甲基数为276。
实施例107
重复实施例104,不同点在于,采用顺/反-2-丁烯的混合物替换乙烯。
结果:得油状聚合物10.8g,催化效率10.8x106g/mol.h.atm,聚合物中1000个亚甲基对应的甲基数为279。
实施例108
重复实施例104,不同点在于,采用1-己烯替换乙烯。
结果:得油状聚合物8.3g,催化效率8.3x106g/mol.h.atm,聚合物中1000个亚甲基对应的甲基数为235。
实施例109
重复实施例104,不同点在于,采用1-癸烯替换乙烯。
结果:得油状聚合物9.1g,催化效率9.1x106g/mol.h.atm,聚合物中1000个亚甲基对应的甲基数为208。
实施例110
重复实施例104,不同点在于,采用环己烯替换乙烯。
结果:得油状聚合物3.5g,催化效率3.5x106g/mol.h.atm。
实施例111
重复实施例104,不同点在于,采用正己烷替换甲苯。
结果:得油状聚乙烯5.3g,催化效率5.3x106g/mol.h.atm,聚合物中1000个亚甲基对应的甲基数为134。
实施例112
重复实施例104,不同点在于,采用DCE替换甲苯。
结果:得油状聚乙烯5.8g,催化效率5.8x106g/mol.h.atm,聚合物中1000个亚甲基对应的甲基数为140。
实施例113
重复实施例104,不同点在于,采用MMAO替换二乙基氯化铝。
结果:得油状聚乙烯6.0g,催化效率6.0x106g/mol.h.atm,聚合物中1000个亚甲基对应的甲基数为132。
实施例114
重复实施例104,不同点在于,采用MAO替换二乙基氯化铝。
结果:得油状聚乙烯5.5g,催化效率5.5x106g/mol.h.atm,聚合物中1000个亚甲基对应的甲基数为138。
实施例115
重复实施例104,不同点在于,聚合温度为40℃。
结果:得油状聚乙烯5.2g,催化效率5.2x106g/mol.h.atm,聚合物中1000个亚甲基对应的甲基数为156。
实施例116
重复实施例104,不同点在于,聚合温度为50℃。
结果:得油状聚乙烯4.6g,催化效率4.6x106g/mol.h.atm,聚合物中1000个亚甲基对应的甲基数为175。
实施例117
重复实施例104,不同点在于,聚合温度为70℃。
结果:得油状聚乙烯2.3g,催化效率2.3x106g/mol.h.atm,聚合物中1000个亚甲基对应的甲基数为214。
实施例118
300mL高压釜,预先在120℃下真空干燥过夜,在30℃下用氮气对高压釜抽换气3次,加入甲苯100mL,加入助催化剂二乙基氯化铝1.10mL(0.9mol/L),搅拌10min后,加入配合物2-9(5umol),马上将乙烯压力增加到3atm,聚合1h,切断乙烯。
将反应液除去溶剂后得到油状聚乙烯,催化效率为7.0x106g/mol.h.atm,聚合物中1000个亚甲基对应的甲基数为94。
实施例119
重复实施例118,乙烯压力改为5atm。
结果:油状聚乙烯催化效率为4.3x106g/mol.h.atm,1000个亚甲基对应的甲基数为85。
在实施例120-149中,采用不同的配合物替换实施例104中相应的配合物2-9,从而得到实施例120-149中的不同油状聚合物,所有聚合结果总结在表3中。
表3
Figure PCTCN2015092201-appb-000049
Figure PCTCN2015092201-appb-000050
乙烯与极性单体共聚
(注:以下所有极性单体编号参照“具体实施方式”部分中对于极性单体的编号)
实施例150
250mL的聚合瓶用氮气置换气三次后再置换为乙烯,在乙烯气氛下,加入溶剂甲苯40mL,加入助催化剂二乙基氯化铝的甲苯溶液4.40mL(0.9mol/L),在30℃下,1atm乙烯压力下,加入2mmol极性单体M3,5min后加入配合物2-9(2.0umol),聚合30min,切断乙烯,加入1.0mL甲醇淬灭反应,将反应液除去溶剂后得油状聚乙烯,催化效率3.8x105 g/mol.h.atm,油状聚合物中每1000个亚甲基对应的极性基团数为59。
实施例151
真空下高温干燥并置换氮气的反应瓶中,加入AliBu3(60mmol)和20mL甲苯,然后在-78℃下将极性单体M3(50mmol)的甲苯溶液慢慢滴加入上述溶液,反应2h后,升温到室温反应12h,补加一定量甲苯将其配制成极性单体的摩尔浓度为1.0mol/L的甲苯溶液备用。
250mL的聚合瓶用氮气置换气三次后再置换为乙烯,在乙烯气氛下,加入溶剂甲苯40mL,加入助催化剂二乙基氯化铝的甲苯溶液1.10mL(0.9mol/L),在30℃下,1atm乙烯压力下,加入5mmol极性单体M3,5min后加入配合物2-9(2.0umol),聚合30min,切断乙烯,加入1.0mL甲醇淬灭反应,将反应液除去溶剂后得油状聚乙烯,催化效率4.6x105g/mol.h.atm,油状聚合物中每1000个亚甲基对应的极性基团数为64。
在实施例152-166中,采用不同的极性单体替换实施例150中相应的极性单体M3,从而得到实施例152-166中的不同油状聚合物,所有聚合结果总结在表4中。
表4
Figure PCTCN2015092201-appb-000051
在实施例167-177中,采用不同的极性单体替换实施例151中相应的极性单体M3,从而得到实施例167-177中的不同油状聚合物,所有聚合结果总结在表5中。
表5
Figure PCTCN2015092201-appb-000052
Figure PCTCN2015092201-appb-000053
实施例178
50mL蛋形瓶中,加入实施例104中得到的高支化油状聚乙烯2.5g,加入Pd/C 50mg,正己烷10mL,抽换气三次后,在常压氢气氛围下,室温反应过夜,取样核磁氢谱发现原料已经氢化完全,停止氢化,过滤并除去溶剂后得到油状高支化烷烃,溴值为0.31g/100g,1000个亚甲基中对应的甲基数为140,粘度指数VI为241,100℃的运动粘度为7.9cSt。
实施例179
50mL蛋形瓶中,加入实施例104中得到的高支化油状聚乙烯2.5g,加入Pd/C 50mg,抽换气三次后,在常压氢气氛围下,室温反应过夜,取样核磁氢谱发现原料已经氢化完全,停止氢化,过滤并除去溶剂后得到油状高支化烷烃,溴值为0.33g/100g,1000个亚甲基中对应的甲基数为146。
实施例180
重复实施例178,将Pd/C换为Pd(OH)2
结果:溴值为0.30g/100g。
实施例181
重复实施例178,将氢化底物改为实施例115中得到的油状聚乙烯。
结果:油状高支化烷烃溴值为0.35g/100g,1000个亚甲基对应的甲基数为170,粘度指数VI为290。
实施例182
重复实施例178,将氢化底物改为实施例118得到的油状聚乙烯。
结果:油状高支化烷烃溴值为0.32g/100g。
实施例183
重复实施例104,在烯烃聚合催化剂与乙烯接触时,同时通入氢气,待氢化完全,过滤,滤液除去溶剂后得到高支化的油状烷烃,溴值为0.46g/100g,1000个亚甲基对应的甲基数为230,粘度指数为196。
实施例184
重复实施例104,烯烃聚合催化剂与乙烯接触30min后,不进行处理,加入Pd/C 50mg,再通入氢气,待氢化完全,过滤、滤液除去溶剂后得到高支化油状烷烃,油状高支化烷烃 中1000个亚甲基对应的甲基数为207。
实施例185
在实施例104中,烯烃聚合催化剂与乙烯接触30min后,不进行处理,直接将气氛置换为氢气,在氢气氛围下反应直至氢化完全,过滤,滤液除去溶剂后得到高支化油状烷烃,溴值为0.33g/100g。
实施例186
300mL的高压釜,在120℃油浴中真空干燥过夜,用氮气抽换气三次,在50℃的油浴上,加入甲苯50mL,二乙基氯化铝的甲苯溶液1.10mL(0.9mol/L),在0.5atm的氢气氛围下,加入5umol配合物2-9,通入乙烯,聚合反应30min,停止反应。反应液过滤,滤液除去溶剂后得到油状的烷烃混合物4.0g,产物溴值为0.45g/100g,1000个亚甲基对应的甲基数约为235。
实施例187
重复实施例118,乙烯压力改为10atm。
结果:油状聚乙烯催化效率为9.3x106g/mol.h.atm,1000个亚甲基对应的甲基数为85。
实施例188
重复实施例118,乙烯压力改为20atm。
结果:油状聚乙烯催化效率为2.1x107g/mol.h.atm,1000个亚甲基对应的甲基数为79。
实施例189
重复实施例118,聚合温度改为50℃。
结果:油状聚乙烯催化效率为6.9x106g/mol.h.atm,1000个亚甲基对应的甲基数为103。
实施例190
重复实施例118,聚合温度改为70℃。
结果:油状聚乙烯催化效率为4.4x106g/mol.h.atm,1000个亚甲基对应的甲基数为128。
实施例191
重复实施例118,将溶剂甲苯换成正己烷。
结果:油状聚乙烯催化效率为5.7x106g/mol.h.atm,1000个亚甲基对应的甲基数为89。
实施例192
重复实施例118,将溶剂甲苯换成二氯甲烷(DCM),聚合时间为4小时。
结果:油状聚乙烯催化效率为6.6x106g/mol.h.atm,1000个亚甲基对应的甲基数为157。
实施例193
重复实施例118,将溶剂甲苯换成1,2-二氯乙烷(DCE)。
结果:油状聚乙烯催化效率为4.7x106g/mol.h.atm,1000个亚甲基对应的甲基数为165。
实施例194
重复实施例118,将溶剂甲苯换成二氯甲烷(DCM),乙烯压力改为10atm。
结果:油状聚乙烯催化效率为7.8x106g/mol.h.atm,1000个亚甲基对应的甲基数为175。
实施例195
重复实施例118,将溶剂甲苯换成二氯甲烷(DCM),乙烯压力改为20atm。
结果:油状聚乙烯催化效率为5.5x107g/mol.h.atm,1000个亚甲基对应的甲基数为184。
实施例196
重复实施例118,将溶剂甲苯换成1,2-二氯乙烷(DCE),乙烯压力改为20atm。
结果:油状聚乙烯催化效率为6.1x107g/mol.h.atm,1000个亚甲基对应的甲基数为178。
实施例197
重复实施例118,将溶剂甲苯换成二氯甲烷(DCM),乙烯压力改为5atm,将配合物2-9换成配合物2-2。
结果:油状聚乙烯催化效率为9.0x106g/mol.h.atm,1000个亚甲基碳对应的甲基数为267。
实施例198
重复实施例118,将溶剂甲苯换成二氯甲烷(DCM),乙烯压力改为10atm,将配合物2-9换成配合物2-2。
结果:油状聚乙烯催化效率为2.3x107g/mol.h.atm,1000个亚甲基对应的甲基数为283,溴值为23.41g/100g,氧化安定性为56分钟。聚合物13C谱如图3中所示,13C谱显示,聚合物的支链类型包括甲基、乙基、正丙基、正丁基、仲丁基以及其它四个碳以上的支链,其中1000个碳所含的仲丁基数目为24个。
实施例199
重复实施例118,将溶剂甲苯换成1,2-二氯乙烷(DCE),乙烯压力改为5atm,将配合物2-9换成配合物2-2。
结果:油状聚乙烯催化效率为1.9x107g/mol.h.atm,1000个亚甲基对应的甲基数为271。
实施例200
重复实施例118,将溶剂甲苯换成1,2-二氯乙烷(DCE),乙烯压力改为10atm,将配合物2-9换成配合物2-2。
结果:油状聚乙烯催化效率为4.8x106g/mol.h.atm,1000个亚甲基对应的甲基数为246。
实施例201
1L高压釜,预先在120℃下真空干燥3小时,降温到30℃后,加入二氯甲烷(DCM)400mL,加入助催化剂二乙基氯化铝2.50mL(2.0mol/L),搅拌10min后,加入配合物2-2(10umol),在5atm乙烯压力下反应3小时,切断乙烯。将反应液除去溶剂后得到油状聚乙烯,催化效率为3.9x107g/mol.h.atm,聚合物中1000个亚甲基对应的甲基数为282。GPC测得聚合物的Mn=349,Mw=673,PDI=1.69。
反应过程中釜内温度和乙烯流量随时间的变化情况如图4中所示。
聚合物13C谱如图5中所示,从13C谱可以看出,聚合物存在的支链类型丰富。
实施例202
重复实施例201,乙烯压力改为10atm。
结果:油状聚乙烯催化效率为5.3x107g/mol.h.atm,1000个亚甲基对应的甲基数为264。
实施例203
重复实施例201,将反应温度降低至20℃。
结果:油状聚乙烯催化效率为8.0x107g/mol.h.atm,1000个亚甲基对应的甲基数为257。
实施例204
重复实施例201,将反应温度升高至50℃。
结果:油状聚乙烯催化效率为5.0x107g/mol.h.atm,1000个亚甲基对应的甲基数为278。
实施例205
重复实施例201,将溶剂换成1,2-二氯乙烷(DCE),乙烯压力改为10atm。
结果:油状聚乙烯催化效率为6.3x107g/mol.h.atm,1000个亚甲基对应的甲基数为264。
实施例206
重复实施例201,将溶剂换成甲苯。
结果:油状聚乙烯催化效率为8.7x107g/mol.h.atm,1000个亚甲基对应的甲基数为231。
实施例207
重复实施例201,将配合物2-2换成配合物2-4。
结果:油状聚乙烯催化效率为8.4x107g/mol.h.atm,1000个亚甲基对应的甲基数为278。
实施例208
重复实施例201,将配合物2-2换成配合物2-5。
结果:油状聚乙烯催化效率为9.1x107g/mol.h.atm,1000个亚甲基对应的甲基数为261。
聚合物13C谱如图6中所示。
实施例209
重复实施例208,乙烯压力改为10atm。
结果:油状聚乙烯催化效率为1.6x108g/mol.h.atm,1000个亚甲基对应的甲基数为273。
实施例210(与实施例201对比)
重复实施例201,将配合物2-2换成配合物2-56。
Figure PCTCN2015092201-appb-000054
结果:获得的聚合物为固态产物和液态的混合物,其中固态产物123.70g,液态产物37.63g。
实施例211
20L高压釜,预先在120℃下真空干燥5小时,降温到30℃后,加入二氯甲烷(DCM)400mL,加入助催化剂二乙基氯化铝25.0mL(2.0mol/L),搅拌30min后,加入配合物2-2(100umol),在5atm乙烯压力下反应3小时,切断乙烯。
将反应液除去溶剂后得到油状聚乙烯,催化效率为3.5x107g/mol.h.atm,聚合物中1000个亚甲基对应的甲基数为277。
实施例212
重复实施例211,将乙烯压力改为10atm。
结果:油状聚乙烯催化效率为7.6x107g/mol.h.atm,1000个亚甲基对应的甲基数为239。
实施例213
重复实施例211,将反应温度升高至50℃。
结果:油状聚乙烯催化效率为4.8x107g/mol.h.atm,1000个亚甲基对应的甲基数为286。
实施例214
重复实施例211,将溶剂换成1,2-二氯乙烷(DCE),乙烯压力改为10atm。
结果:油状聚乙烯催化效率为9.2x107g/mol.h.atm,1000个亚甲基对应的甲基数为272。
在实施例215-225中,采用不同的外消旋或光学纯的原料,替换实施例1中相应的原料,从而制得配体L1-49至L1-59,所有结果总结在表6中。
表6
Figure PCTCN2015092201-appb-000055
Figure PCTCN2015092201-appb-000056
在实施例226-234中,采用不同的配体或金属前体替换实施例49中相应的配体或金属前体,从而制得配合物2-57至2-64,所有结果总结在表7中。
表7
Figure PCTCN2015092201-appb-000058
实施例235
重复实施例118,将溶剂甲苯换成二氯甲烷(DCM),乙烯压力改为10atm,将配合物2-9换成配合物2-57。
结果:油状聚乙烯催化效率为2.3x107g/mol.h.atm,1000个亚甲基对应的甲基数为201。
实施例236
重复实施例118,将溶剂甲苯换成二氯甲烷(DCM),乙烯压力改为10atm,将配合物2-9换成配合物2-59。
结果:油状聚乙烯催化效率为2.8x107g/mol.h.atm,1000个亚甲基对应的甲基数为214。
实施例237
重复实施例118,将溶剂甲苯换成二氯甲烷(DCM),乙烯压力改为10atm,将配合物2-9换成配合物2-61。
结果:油状聚乙烯催化效率为2.0x107g/mol.h.atm,1000个亚甲基对应的甲基数为254。
实施例238
重复实施例118,将溶剂甲苯换成二氯甲烷(DCM),乙烯压力改为10atm,将配合物2-9换成配合物2-63。
结果:油状聚乙烯催化效率为3.3x107g/mol.h.atm,1000个亚甲基对应的甲基数为243。
实施例239
重复实施例118,将溶剂甲苯换成二氯甲烷(DCM),乙烯压力改为10atm,将配合物2-9换成配合物2-64。
结果:油状聚乙烯催化效率为8.1x107g/mol.h.atm,1000个亚甲基对应的甲基数为182。
实施例240
重复实施例201,将配合物2-2换成配合物2-57。
结果:油状聚乙烯催化效率为3.4x107g/mol.h.atm,1000个亚甲基对应的甲基数为212。
实施例241
重复实施例201,将配合物2-2换成配合物2-59。
结果:油状聚乙烯催化效率为3.8x107g/mol.h.atm,1000个亚甲基对应的甲基数为225。
实施例242
重复实施例201,将配合物2-2换成配合物2-61。
结果:油状聚乙烯催化效率为2.4x107g/mol.h.atm,1000个亚甲基对应的甲基数为262。
实施例243
重复实施例201,将配合物2-2换成配合物2-63。
结果:油状聚乙烯催化效率为5.4x107g/mol.h.atm,1000个亚甲基对应的甲基数为282。
实施例244
100mL蛋形瓶中,加入实施例198中得到的高支化油状聚乙烯2.0g,加入Pd/C 150mg,加入15mL正己烷+5mL乙酸乙酯,抽换气三次后,在常压氢气氛围下,室温反应过夜,取样核磁氢谱发现原料已经氢化完全,停止氢化,过滤并除去溶剂后得到油状高支化烷烃,溴值为0.31g/100g,1000个亚甲基中对应的甲基数为265,溴值为0.43g/100g,氧化安定性:107分钟。
实施例245
100mL蛋形瓶中,加入高支化油状聚乙烯2.0g,加入Pd/C 150mg,正己烷15mL+乙 酸乙酯5mL,抽换气三次后,在常压氢气氛围下,40℃反应6小时停止氢化。
Figure PCTCN2015092201-appb-000059
下表中列出几种油状聚乙烯在相同条件下的氢化转化率。P1是实施例198中得到的油状聚乙烯,P2是实施例211中得到的油状聚乙烯,其中高支化油状聚乙烯P3是利用上述钯催化剂(配合物2-65)参照专利(Guan,WO1999047572)example 6条件进行聚合得到的油状聚乙烯。
Polyethylene Hydrogenation conversion(%)
P1 100
P2 100
P3 63
在上述条件下,P1、P2氢化转化率100%,P3氢化转化率63%。其中P1氢化后烷烃混合物支链类型分析见图7。
实施例246
利用Auton Parr旋转流变仪(MCR 302,同心圆桶转子CC27)测试实施例244中氢化后的聚合物以及245中油状样品氢化后产物P1-hydrogenation和P2-hydrogenation的流变性质。结果如图8中所示。结果表明,在40-120℃区间,样品的粘度不随剪切速率增加而变化,具备牛顿流体的性质,也说明该类聚合物具有超支化的结构特点。
实施例247
250mL蛋形瓶中,加入实施例201中得到的高支化油状聚乙烯10.0g,加入Pd/C 150mg,正己烷100mL+30mL乙酸乙酯,抽换气三次后,在常压氢气氛围下,室温反应过夜,取样核磁氢谱发现原料已经氢化完全,停止氢化,过滤并除去溶剂后得到油状高支化烷烃,溴值为0.33g/100g,1000个亚甲基中对应的甲基数为274,粘度指数VI为253,100℃的运动粘度为8.4cSt,表面张力为24.6mM/m。
实施例248
2L反应瓶中,加入实施例201中得到的高支化油状聚乙烯500g,加入Pd/C 1.5g,正己烷1L+300mL乙酸乙酯,抽换气三次后,在常压氢气氛围下,50℃反应过夜,取样核磁氢谱发现原料已经氢化完全,停止氢化,过滤并除去溶剂后得到油状高支化烷烃,溴值为0.38g/100g,1000个亚甲基中对应的甲基数为269,粘度指数VI为259,100℃的运动粘度为8.6cSt,表面张力为24.0mM/m。
油状高支化烷烃的实物图如图9中所示,为无色透明的油状物。
实施例249
2L高压釜中,加入实施例201中得到的高支化油状聚乙烯500g,加入Pd/C 1.5g,正己烷1L+300mL乙酸乙酯,抽换气三次后,在20bar氢气氛围下,50℃反应6小时,取样核磁氢谱发现原料已经氢化完全,停止氢化,过滤并除去溶剂后得到油状高支化烷烃,溴值为0.40g/100g,1000个亚甲基中对应的甲基数为273,粘度指数VI为261,100℃的运动粘度为8.2cSt,表面张力为24.7mM/m。
实施例250
2L高压釜中,加入实施例208中得到的高支化油状聚乙烯500g,加入Pd/C 1.5g,正己烷1L+300mL乙酸乙酯,抽换气三次后,在20bar氢气氛围下,50℃反应6小时,取样核磁氢谱发现原料已经氢化完全,停止氢化,过滤并除去溶剂后得到油状高支化烷烃,溴值为0.50g/100g,1000个亚甲基中对应的甲基数为287,粘度指数VI为272,100℃的运动粘度为4.2cSt,表面张力为22.0mM/m。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (41)

  1. 一种下式I所示的化合物,
    Figure PCTCN2015092201-appb-100001
    式中,
    Y1分别为氢、C1-C8烷基或C1-C8卤代烷基、未取代或取代的苯基;
    Y2分别为CR4R5、NR6、O或S,R4、R5、R6各自独立地为H、C1-C4烷基或卤代烷基;
    或者Y1与Y2,及两者共同相连的C-C键共同形成未取代或取代的5-12元环;
    Figure PCTCN2015092201-appb-100002
    为与Y2共同构成的未取代或取代的5-7元单环、或含所述5-7元单环的双环或三环基团,其中该5-7元单环含有1-3个N、O或S原子且含有至少一个N;
    Y3为位于所述5-7元单环或含所述5-7元单环的双环或三环基团上的一个或多个任意取代基团,各Y3独立为氢、C1-C8烷基或C1-C8卤代烷基、未取代或取代的苯基、未取代或取代的苄基;
    Z分别为C1-C8烷基、C1-C8卤代烷基、未取代或取代的苯基、未取代或取代的萘基;
    其中,上述各定义中所述的“取代的”指所述基团具有1-5个选自下组的取代基:C1-C4烷基和C1-C4卤代烷基、卤素、硝基、氰基、CF3、-O-R1、-N(R2)2、-Si(R3)3、-CH2-O-R8、-SR9、-CH2-S-R10、-CH-(R10)2、或未取代或被1-5个选自下组的取代基取代的苯基:C1-C4烷基和C1-C4卤代烷基,其中R1、R2、R3各自独立地为C1-C4烷基或卤代烷基;而R8、R9和R10分别为C1-C8烷基或苯基。
  2. 如权利要求1所述的化合物,其特征在于,
    Figure PCTCN2015092201-appb-100003
    选自下组:
    Figure PCTCN2015092201-appb-100004
    Figure PCTCN2015092201-appb-100005
    Y4、Y5、Y6、Y7、Y8、Y9、Y10和Y11分别为H、卤素、C1-C8烷基、C1-C8卤代烷基、未取代或取代的苯基、未取代或取代的苄基、-O-R7、-CH2-O-R8、-SR9或-CH2-S-R10,其中R7、R8、R9和R10分别为C1-C8烷基、未取代或取代的苯基;Y12为H、C1-C8烷基、C1-C8卤代烷基、未取代或取代的苯基、未取代或取代的苄基。
  3. 如权利要求1所述的化合物,其特征在于,Y1和Y2可以与两者共同相连的C-C键共同构成未取代或取代的C6-C8环,其中,所述的“取代的”的定义如上。
  4. 如权利要求3所述的化合物,其特征在于,所述化合物具有下式结构:
    Figure PCTCN2015092201-appb-100006
    其中,Y3或Z的定义如权利要求1中所述;
    n为0、1、2或3;
    Figure PCTCN2015092201-appb-100007
    为未取代或取代的5-7元单环、或含所述5-7元单环的双环或三环基团;
    G1、G2、G3和G4分别为H、卤素、C1-C8烷基、C1-C8卤代烷基、硅基、未取代或取代的苯基、未取代或取代的苄基、-O-R7、-CH2-O-R8、-SR9或-CH2-S-R10,其中R7、R8、R9和R10分别为C1-C8烷基、未取代或取代的苯基;其中所述的“取代的”定义如上。
  5. 如权利要求1所述的化合物,其特征在于,所述的含所述5-7元单环的双环为螺环或并环,较佳地所述化合物具有下式任一结构:
    Figure PCTCN2015092201-appb-100008
    其中,各n分别为1、2、3或4;
    Y1、Y2、和Z的定义如权利要求1中所述;
    Y4、Y5分别为H、卤素、C1-C8烷基、C1-C8卤代烷基、未取代或取代的苯基、未取代或取代的苄基、-O-R7、-CH2-O-R8、-SR9或-CH2-S-R10,其中R7、R8、R9和R10分别为C1-C8烷基、未取代或取代的苯基;其中,Y4和Y5不能同时为卤素、-O-R7或-SR9
  6. 如权利要求1所述的化合物,其特征在于,所述的Z为未取代或取代的苯基,或未取代或取代的萘基,其中,所述取代是指基团上具有1-5个选自下组的取代基:C1-C4烷基和C1-C4卤代烷基、卤素、硝基、氰基、CF3、-O-R1、-N(R2)2、-Si(R3)3、-CH2-O-R8、-SR9、-CH2-S-R10、-CH-(R10)2、或未取代或被1-5个选自下组的取代基取代的苯基:C1-C4烷基和C1-C4卤代烷基,其中R1、R2、R3各自独立地为C1-C4烷基或卤代烷基;而R8、R9和R10分别为C1-C8烷基或苯基;
    且取代的苯基上最多只能有一个硝基或氰基基团;
    更佳地,Z选自下组之一:
    Figure PCTCN2015092201-appb-100009
  7. 一种配合物,其特征在于,所述的配合物是权利要求1-6中任一所述的化合物与二价或三价金属盐形成的配合物;
    较佳地,所述金属盐含有选自下组金属:铁、钴、镍、钯、铂或其组合,更佳地,所述的金属盐含有镍或钯。
  8. 如权利要求7所述的配合物,其特征在于,所述金属盐为二价金属盐,且所述配合物具有下式II所示结构:
    Figure PCTCN2015092201-appb-100010
    式中,
    Y1、Y2、Y3和Z的定义如权利要求1中所述;
    M为铁、钴、镍、钯、铂或其组合;
    X独立为卤素、C1-C4烷基、C2-C6烯基、烯丙基
    Figure PCTCN2015092201-appb-100011
    -OAc、-OTf或苄基。
  9. 一种制备权利要求7所述的配合物的方法,其特征在于,包括步骤:
    在惰性溶剂中,将权利要求1所述的化合物与二价或三价金属盐进行反应,从而形成权利要求7所述的配合物。
  10. 如权利要求9所述的方法,其特征在于,所述的金属盐选自下组:NiCl2、NiBr2、NiI2、(DME)NiBr2、PdCl2、PdBr2、Pd(OTf)2、Pd(OAc)2、(COD)PdMeCl或其组合。
  11. 一种制备式I化合物的方法,其特征在于,包括步骤:
    (a)在碱性条件下,将式A所示的杂环化合物氧化成式B化合物;
    Figure PCTCN2015092201-appb-100012
    (b)将式B化合物与式C化合物反应,形成式I化合物;
    Figure PCTCN2015092201-appb-100013
    上述各式中,Y1、Y2、Y3、Z和
    Figure PCTCN2015092201-appb-100014
    的定义如权利要求1中所述。
  12. 一种油状烯烃聚合物的制备方法,其特征在于,包括步骤:
    (a)在权利要求7所述的配合物作为烯烃聚合催化剂存在下,以烷基铝化合物为助催化剂对烯烃进行催化聚合,形成油状聚烯烃。
  13. 如权利要求12所述的方法,其特征在于,还包括步骤:
    (b)对步骤(a)获得的油状聚烯烃进行加氢反应,从而获得加氢的油状烷烃混合物。
  14. 如权利要求12所述的方法,其特征在于,所述的烯烃是乙烯、丙烯以及C4-C20的端烯烃、内烯烃、双烯烃或其混合物。
  15. 如权利要求12所述的方法,其特征在于,所述的烯烃为极性单体,较佳地,所述的极性单体是含有极性基团的C3-C50的烯烃,所述的极性基团选自下组:羰基、羟基、-COOH、酯基-COOR11、烷氧基-OR12、胺基-NR13R14、酰胺基-CONR15R16、硫醚-SR17、硒醚-SeR18、-PR19R20、-P(=O)R19R20或其组合;其中,R11和R12独立地为C1-C10的烷基或C6-C20芳基;R13、R14、R15、R16、R17或R18独立地为氢、C1-C10的烷基,或C6-C20芳基;R19或R20独立地为C1-C10的烷基或C6-C20芳基。
  16. 如权利要求15所述的方法,其特征在于,所述的方法在所述的步骤(a)之前还包括:
    将所述的极性单体和助催化剂进行混合,形成混合物,然后将所述混合物用于步骤(a);
    或用所述的极性单体与官能团保护试剂进行反应,形成官能团保护的极性单体,然后所述受保护的极性单体用于步骤(a)。
  17. 一种油状烯烃聚合物的氢化产物,其特征在于,所述的油状烯烃聚合物氢化产物是乙烯按照如权利要求12和13所述的步骤(a)和(b)得到的油状烷烃混合物。
  18. 一种油状烯烃聚合物或其加氢的氢化产物,其特征在于,所述的油状烯烃聚合物或其氢化产物含有选自下组的极性基团:羰基、羟基、-COOH、酯基-COOR11、烷氧基-OR12、胺基-NR13R14、酰胺基-CONR15R16、硫醚-SR17、硒醚-SeR18、-PR19R20、-P(=O)R19R20或其组合;其中,R11和R12独立地为C1-C10的烷基或C6-C20芳基;R13、R14、R15、R16、R17或R18独立地为氢或C1-C10的烷基或C6-C20芳基;R19或R20独立地为C1-C10的烷基或C6-C20芳基。
  19. 如权利要求17所述的氢化产物,其特征在于,它被用作润滑油的基础油、润滑油的添加剂、增塑剂或树脂的加工助剂。
  20. 如权利要求18所述的聚合物,其特征在于,所述聚合物中极性基团的数量为:1000个亚甲基对应的极性基团数为5-200个;优选地,1000个亚甲基对应的极性基团数为5-50个。
  21. 如权利要求18所述的油状烯烃聚合物或其加氢的氢化产物,其特征在于,它被用作润滑油的基础油、润滑油的添加剂、增塑剂或树脂的加工助剂。
  22. 如权利要求17所述的聚合物,其特征在于,在惰性气氛下,所述在-40℃至350℃的温度范围内为无色透明油状物。
  23. 如权利要求17所述的氢化产物,其特征在于,所述油状烷烃混合物的100℃运动粘度为4-50mm2/s,粘度指数(VI值)160-300,每1000个亚甲基对应的甲基数(CH3)为100-300个。
  24. 如权利要求17所述的氢化产物,其特征在于,所述的油状烷烃混合物中,1000个碳对应的具有多末端的烷基侧链数为20-100个。
  25. 如权利要求17所述的氢化产物,其特征在于,所述的油状烷烃混合物中,1000个碳对应的具有多末端的烷基侧链数为40-70个。
  26. 一种油状烷烃混合物,其特征在于,所述的油状烷烃混合物是用如权利要求13所述方法得到的。
  27. 一种油状烷烃混合物,其特征在于,所述的油状烷烃混合物中,1000个碳所含具有多末端的烷基侧链数为20-100个。
  28. 如权利要求26或27所述的油状烷烃混合物,其特征在于,所述的油状烷烃混合物中,每1000个亚甲基对应的甲基数(CH3)为100-300个。
  29. 如权利要求26或27所述的油状烷烃混合物,其特征在于,所述的油状烷烃混合物的倾点为-40~-20℃。
  30. 如权利要求27所述的油状烷烃混合物,其特征在于,所述油状烷烃混合物的分子量为500-50,000克/摩尔。
  31. 如权利要求26或27所述的油状烷烃混合物,其特征在于,所述油状烷烃混合物的分子量为500-10,000克/摩尔。
  32. 如权利要求26或27所述的油状烷烃混合物,其特征在于,所述油状烷烃混合物每1000个亚甲基对应的甲基数(CH3)为100-300个。
  33. 如权利要求26或27所述的油状烷烃混合物,其特征在于,所述油状烷烃混合物的倾点为-60℃至-20℃。
  34. 如权利要求26或27所述的油状烷烃混合物,其特征在于,所述的油状烷烃混合物在100℃下的运动粘度为4-50mm2/s。
  35. 如权利要求26或27所述的油状烷烃混合物,其特征在于,所述的油状烷烃混合物的粘度指数(VI值)为160-300。
  36. 如权利要求26或27所述的油状烷烃混合物,其特征在于,所述的油状烷烃混合物表面张力大于20mM/m。
  37. 如权利要求26或27所述的油状烷烃混合物,其特征在于,所述的油状烷烃混合物密度为0.75-0.91g/mol。
  38. 如权利要求26或27所述的油状烷烃混合物,其特征在于,所述的油状烷烃混合物在-50℃至200℃温度范围内为无色透明油状物;优选地在-40℃至50℃的温度范围内为无色透明油状物。
  39. 一种润滑油,其特征在于,所述的润滑油含有权利要求17所述的加氢的油状烷烃混合物,或所述的润滑油含有如权利要求26所述的加氢的油状烷烃混合物。
  40. 如权利要求26或27所述的油状烷烃混合物的用途,其特征在于,作为润滑油的基础油、润滑油的添加剂、增塑剂或树脂的加工助剂。
  41. 如权利要求7所述的配合物的用途,其特征在于,它被用作烯烃聚合的催化剂。
PCT/CN2015/092201 2014-10-17 2015-10-19 新型聚烯烃催化剂及其应用 WO2016058559A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15850627.9A EP3208265A4 (en) 2014-10-17 2015-10-19 New polyolefin catalyst and use thereof
US15/519,679 US10961329B2 (en) 2014-10-17 2015-10-19 Polyolefin catalyst and use thereof
JP2017520904A JP2017532345A (ja) 2014-10-17 2015-10-19 新規なポリオレフィン触媒およびその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410555078.XA CN105503763B (zh) 2014-10-17 2014-10-17 聚烯烃油催化剂及其应用
CN201410555078.X 2014-10-17

Publications (1)

Publication Number Publication Date
WO2016058559A1 true WO2016058559A1 (zh) 2016-04-21

Family

ID=55712132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092201 WO2016058559A1 (zh) 2014-10-17 2015-10-19 新型聚烯烃催化剂及其应用

Country Status (5)

Country Link
US (1) US10961329B2 (zh)
EP (1) EP3208265A4 (zh)
JP (3) JP2017532345A (zh)
CN (1) CN105503763B (zh)
WO (1) WO2016058559A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021500449A (ja) * 2017-10-24 2021-01-07 中国石油化工股▲ふん▼有限公司 オレフィン−オレフィンアルコール共重合体及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107556246A (zh) * 2017-09-26 2018-01-09 中国科学院青岛生物能源与过程研究所 咪唑亚胺类配体、其铁/钴配合物及其在聚异戊二烯合成中的应用
CN107522660A (zh) * 2017-09-26 2017-12-29 中国科学院青岛生物能源与过程研究所 咪唑亚胺类配体、其镍配合物及其在聚异戊二烯合成中的应用
CN108586641B (zh) * 2018-04-28 2020-08-07 中国科学院青岛生物能源与过程研究所 一种催化异戊二烯聚合的高效铁系催化剂及其制备方法与应用
CN109569724B (zh) * 2018-11-02 2021-11-02 中山大学 一种饱和的聚烯烃润滑油基础油及其制备方法
CN112725055B (zh) * 2019-10-28 2023-10-20 南京中科康润新材料科技有限公司 一种低碳烯烃经聚合直接合成高性能中等粘度基础油的工艺方法
CN112725054B (zh) * 2019-10-28 2023-10-20 南京中科康润新材料科技有限公司 一种低碳烯烃经聚合直接合成高性能高粘度基础油的工艺方法
CN112725028B (zh) * 2019-10-28 2023-07-28 南京中科康润新材料科技有限公司 一种低碳烯烃经聚合直接合成高性能低粘度基础油的工艺方法
CN114478652A (zh) * 2022-02-10 2022-05-13 郑州大学 一种噻唑亚胺-钴化合物及其合成方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007062790A2 (en) * 2005-11-30 2007-06-07 Basell Polyolefine Gmbh Transition metal compound, ligand system, catalyst system and process for preparing polyolefins
CN102786435A (zh) * 2011-05-16 2012-11-21 中国科学院上海有机化学研究所 一类由烯烃制备高支化烷烃的催化体系

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913514B2 (ja) 1975-12-02 1984-03-30 三井東圧化学株式会社 オキサゾリルエチレンカゴウブツ ノ セイゾウホウ
JPS57130973A (en) 1981-02-05 1982-08-13 Usv Pharma Corp Novel heterocyclic compounds useful as antiallergic
JPS60142929A (ja) 1983-12-28 1985-07-29 Tokuyama Soda Co Ltd シツフ塩基の製造方法
US6200925B1 (en) * 1997-03-13 2001-03-13 Eastman Chemical Company Catalyst compositions for the polymerization of olefins
JP2001519841A (ja) * 1997-03-13 2001-10-23 イーストマン ケミカル カンパニー オレフィンの重合用触媒組成物
JPH10324710A (ja) 1997-03-21 1998-12-08 Mitsui Chem Inc オレフィン重合用触媒およびオレフィンの重合方法
US6136748A (en) 1997-07-02 2000-10-24 Union Carbide Chemicals & Plastics Technology Corporation Catalyst composition for the polymerization of olefins
WO1999047572A1 (en) 1998-03-17 1999-09-23 E.I. Du Pont De Nemours And Company Polyolefins with new structures
US6340730B1 (en) * 1999-12-06 2002-01-22 Univation Technologies, Llc Multiple catalyst system
JP2003301121A (ja) 2002-04-11 2003-10-21 Konica Minolta Holdings Inc 着色組成物、着色微粒子分散物、インクジェット用インク及びインクジェット記録方法
DE10231368A1 (de) 2002-07-11 2004-02-05 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von Imidazoliumsalzen
CN1292007C (zh) 2003-07-31 2006-12-27 中国石油化工股份有限公司 双活性组分聚烯烃催化剂及制备方法与应用
JP4365245B2 (ja) * 2004-03-16 2009-11-18 日本原子力発電株式会社 ダストモニタ
JP2005306979A (ja) * 2004-04-21 2005-11-04 Sumitomo Chemical Co Ltd オレフィン重合触媒成分及びオレフィン重合体の製造方法
EP1794196A2 (en) 2004-09-22 2007-06-13 Symyx Technologies, Inc. Heterocycle-amine ligands, compositions, complexes, and catalysts, and methods of making and using the same
US7252127B2 (en) * 2004-09-27 2007-08-07 Mark Goetz Reflecting bicycle tires
WO2012109343A2 (en) * 2011-02-08 2012-08-16 President And Fellows Of Harvard College Iron complexes and methods for polymerization
EP2711356B1 (en) 2011-05-16 2020-02-19 Shanghai ChemRun Co. Ltd Catalytic system for preparation of high branched alkane from olefins
CN103360517B (zh) * 2012-04-05 2017-12-08 中国科学院上海有机化学研究所 高支化油状烷烃聚合物及其制法和应用
GB201116559D0 (en) 2011-09-26 2011-11-09 Univ Leuven Kath Novel viral replication inhibitors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007062790A2 (en) * 2005-11-30 2007-06-07 Basell Polyolefine Gmbh Transition metal compound, ligand system, catalyst system and process for preparing polyolefins
CN102786435A (zh) * 2011-05-16 2012-11-21 中国科学院上海有机化学研究所 一类由烯烃制备高支化烷烃的催化体系

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3208265A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021500449A (ja) * 2017-10-24 2021-01-07 中国石油化工股▲ふん▼有限公司 オレフィン−オレフィンアルコール共重合体及びその製造方法
JP7366013B2 (ja) 2017-10-24 2023-10-20 中国石油化工股▲ふん▼有限公司 オレフィン-オレフィンアルコール共重合体及びその製造方法

Also Published As

Publication number Publication date
US10961329B2 (en) 2021-03-30
EP3208265A4 (en) 2018-08-15
CN105503763A (zh) 2016-04-20
CN105503763B (zh) 2020-11-03
JP2021185164A (ja) 2021-12-09
JP6931378B2 (ja) 2021-09-01
JP2017532345A (ja) 2017-11-02
JP2020019771A (ja) 2020-02-06
JP7441199B2 (ja) 2024-02-29
EP3208265A1 (en) 2017-08-23
US20170349675A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
WO2016058559A1 (zh) 新型聚烯烃催化剂及其应用
JP6215391B2 (ja) オレフィンから高分岐アルカンを製造する触媒系
CN102786435B (zh) 一类由烯烃制备高支化烷烃的催化体系
EP3181225B1 (en) Catalyst compositions for selective dimerization of ethylene
JP2014520078A5 (zh)
CN103360517B (zh) 高支化油状烷烃聚合物及其制法和应用
US10968290B2 (en) Metallocene-catalyzed polyalpha-olefins
US20180282359A1 (en) Metallocene Compounds
CN105722846A (zh) 配体化合物、用于烯烃低聚反应的催化剂体系及使用该催化剂体系的烯烃低聚方法
WO2018182984A1 (en) Metallocene compounds
US10472302B2 (en) Ligand compound, organic chromium compound, catalyst system for oligomerization of olefins, and method for oligomerization of olefins using the catalyst system
EP3601381A2 (en) Metallocene-catalyzed polyalpha-olefins
EP3190118B1 (en) Ligand compound, organic chrome compound, catalyst system for olefin oligomerization, and method for oligomerizing olefin using same
US10400047B2 (en) Olefin polymerization catalyst and method for producing olefin oligomer
WO2016200000A1 (ko) 리간드 화합물, 유기 크롬 화합물, 올레핀 올리고머화용 촉매 시스템, 및 이를 이용한 올레핀의 올리고머화 방법
CN108137625B (zh) 配体化合物、有机铬化合物、用于烯烃低聚的催化剂体系及使用其使烯烃低聚的方法
CN114471718B (zh) 用于乙烯选择性齐聚的催化体系、乙烯选择性齐聚的方法
KR101676834B1 (ko) 리간드 화합물, 유기크롬 화합물, 올레핀 올리고머화용 촉매 시스템, 및 이를 이용한 올레핀의 올리고머화 방법
WO2024226497A1 (en) Catalyst system and ethylene oligomerization process for the preparation of linear alpha olefins
EP3601306A1 (en) Metallocene compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520904

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015850627

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15519679

Country of ref document: US