WO2016058147A1 - 异构网中负载分流的方法和网络侧设备 - Google Patents

异构网中负载分流的方法和网络侧设备 Download PDF

Info

Publication number
WO2016058147A1
WO2016058147A1 PCT/CN2014/088669 CN2014088669W WO2016058147A1 WO 2016058147 A1 WO2016058147 A1 WO 2016058147A1 CN 2014088669 W CN2014088669 W CN 2014088669W WO 2016058147 A1 WO2016058147 A1 WO 2016058147A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
micro cell
cell
target
offloaded
Prior art date
Application number
PCT/CN2014/088669
Other languages
English (en)
French (fr)
Inventor
罗泽宙
庄宏成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14904175.8A priority Critical patent/EP3182757B1/en
Priority to PCT/CN2014/088669 priority patent/WO2016058147A1/zh
Priority to CN201480079642.3A priority patent/CN106465207B/zh
Publication of WO2016058147A1 publication Critical patent/WO2016058147A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a network side device for load splitting in a heterogeneous network.
  • the Heterogeneous Network (English HetNet) defined by the 3rd Generation Partnership Project (3GPP) includes two layers of networks: the first layer is provided The basic wide-area continuously covered macro cell, and the second layer is a micro cell that provides local large-capacity coverage. The coverage of the second layer of micro cells is superimposed on the coverage of the first layer of the macro cell, and provides a local large-capacity access service for the service hotspot area.
  • the micro cell By adjusting the service range of the micro cell, the micro cell can provide a certain load shunt when the macro cell has a large load. Reasonable use of the micro cell as a macro cell shunt load can coordinate resource utilization of the macro cell and the micro cell, thereby improving resource utilization of the entire network.
  • the method for offloading the load of the macro cell is to perform a cell association decision on the active user equipment that generates the service in the current macro cell, and to activate the user equipment to the respective associated cell according to the result of the cell association decision.
  • this method only performs offloading for the active user equipment that generates the service in the macro cell. If a new user equipment access or an idle user equipment is converted into an active user equipment, the cell association decision needs to be re-established for all user equipments. Therefore, when the user equipments in different states are shunted, the process of the method is cumbersome.
  • the embodiment of the invention provides a load splitting method and a network side device in a heterogeneous network, which can easily perform load splitting on user equipments in different states.
  • the first aspect provides a network side device, where the heterogeneous network in which the network side device is located includes a macro cell and at least one micro cell in the macro cell, where the network side device includes: an acquiring unit, configured to acquire the at least one The load information of the target micro cell in the micro cell and the service distribution information of the at least one user equipment in the first preset range around the target micro cell in the macro cell; a unit, configured to determine, according to load information of the target micro cell and the service distribution information, a shunt threshold value corresponding to a parameter indicating a propagation environment of the target micro cell; and a shunting unit configured to perform the shunt according to the shunt The threshold value determines whether the user equipment to be offloaded communicates through the macro cell or through the target micro cell.
  • the determining unit is configured to determine, according to the service distribution information, at least one user that is located in a first preset range around the target micro cell.
  • the load occupancy of the user equipment to be offloaded to the target micro cell in the target micro cell; and the shunt threshold value is determined according to the load occupancy amount and the load information of the target micro cell.
  • the load information of the target micro cell includes a load margin of the target micro cell, and the determining unit is specifically used
  • the shunt threshold is determined when the load occupancy is less than the load margin of the target microcell.
  • the method further includes: selecting a unit, For selecting the target micro cell from the at least one micro cell, wherein a macro service density of the target micro cell is a maximum value of a macro service density of the at least one micro cell, and the macro service density indicates that the macro cell is located in the micro cell.
  • the business density of the user equipment of the surrounding macro cell is not limited to the first aspect, or any one of the possible implementations of the first to the second possible implementations of the first aspect.
  • the acquiring unit is specifically used Rasterizing the coverage area of the macro cell to obtain at least one grid; determining at least one target grid in the at least one grid, the at least one target grid is located at a second preset around the target micro area Within the range; determining that the at least one average traffic corresponding to the at least one target raster is the service distribution information.
  • the acquiring unit is specifically used And classifying the network coverage area of the macro cell to obtain at least one class; determining at least one target class in the at least one class, the at least one target class being located in a second preset range around the target micro cell; determining the At least one average traffic corresponding to the at least one target class is the service distribution information.
  • the parameter indicating the propagation environment of the target micro cell is a path loss
  • the offloading unit is specifically configured to: when the user equipment to be offloaded and the target When the path loss between the micro base stations of the micro cell is less than or equal to the shunt threshold, it is determined that the user equipment to be offloaded communicates through the target micro cell, or when the user equipment to be offloaded and the micro base station of the target micro cell When the path loss between the two is greater than the split threshold, it is determined that the user equipment to be offloaded communicates through the macro cell.
  • the representative micro cell The parameter of the propagation environment is the channel gain
  • the splitting unit is specifically configured to: when the channel gain between the user equipment to be offloaded and the micro base station of the target micro cell is less than the shunt threshold, determine that the user equipment to be offloaded passes the The macro cell performs communication, or when the channel gain between the user equipment to be offloaded and the micro base station of the target micro cell is greater than or equal to the shunt threshold, it is determined that the user equipment to be offloaded communicates through the target micro cell.
  • the shunting unit is further configured to switch the user equipment to be offloaded when the user equipment to be offloaded is in an active state, so that the user equipment to be offloaded switches to the target
  • the cell to be offloaded is subjected to cell reselection, so that the user equipment to be offloaded selects the target micro cell; or when the user equipment to be offloaded attempts to access
  • the user equipment to be offloaded is subjected to access control, so that the user equipment to be offloaded accesses the target micro cell.
  • a second aspect provides a method for load offloading in a heterogeneous network, the heterogeneous network including a macro cell and at least one micro cell in the macro cell, the method comprising: acquiring a target micro cell in the at least one micro cell The load information and the service distribution information of the at least one user equipment in the first preset range around the target micro cell in the macro cell; determining the shunt threshold according to the load information of the target micro cell and the service distribution information The shunt threshold corresponds to a parameter indicating a propagation environment of the target micro cell; and determining, according to the shunt threshold, whether the user equipment to be offloaded communicates through the macro cell or through the target micro cell.
  • determining, according to the load information of the target micro cell and the service distribution information, the split threshold value including: determining, according to the service distribution information, At least one user setting within a first preset range around the target microcell The load occupancy of the user equipment to be offloaded to the target micro cell in the target micro cell; and the shunt threshold value is determined according to the load occupancy amount and the load information of the target micro cell.
  • the load information of the target micro cell includes a load margin of the target micro cell, and the load is occupied according to the load. And determining, by the load information of the target micro cell, the shunt threshold, including: when the load occupancy is less than a load margin of the target micro cell, determining the shunt threshold.
  • a third possible implementation manner of the second aspect Selecting the target micro cell in a micro cell, wherein a macro service density of the target micro cell is a maximum value of a macro service density of the at least one micro cell, and the macro service density indicates a macro cell located around the micro cell.
  • a macro service density of the target micro cell is a maximum value of a macro service density of the at least one micro cell, and the macro service density indicates a macro cell located around the micro cell.
  • the service distribution information of the at least one user equipment in the first preset range around the target micro area includes: rasterizing the coverage area of the macro cell to obtain at least one grid; determining the at least one grid At least one target grid, the at least one target grid is located in a second preset range around the target microcell; and determining that the at least one average traffic corresponding to the at least one target grid is the service distribution information.
  • the service distribution information of the at least one user equipment in the first preset range around the target micro area includes: classifying the network coverage area of the macro cell to obtain at least one class; and determining at least one of the at least one class a target class, the at least one target class is located in a second preset range around the target micro cell; and determining that the at least one average traffic corresponding to the at least one target class is the service distribution information.
  • the sixth possible implementation manner of the second aspect Determining whether the user equipment to be offloaded communicates through the macro cell or through the target micro cell, including: the parameter indicating the propagation environment of the target micro cell is path loss, when the user equipment to be offloaded and the target micro cell When the path loss between the micro base stations is less than or equal to the shunt threshold, it is determined that the user equipment to be offloaded communicates through the target micro cell, or when And determining, by the macro cell, that the to-be-divided user equipment communicates when the path loss between the user equipment to be offloaded and the micro-base station of the target micro-area is greater than the off-limit threshold.
  • the seventh possible implementation manner of the second aspect Determining whether the user equipment to be offloaded communicates through the macro cell or through the target micro cell, including: the parameter indicating the propagation environment of the target micro cell is a channel gain, when the user equipment to be offloaded and the target micro cell When the channel gain between the micro base stations is less than the split threshold, it is determined that the user equipment to be offloaded communicates through the macro cell, or when the channel gain between the user equipment to be offloaded and the micro base station in the target micro area is greater than Or equal to the offload threshold, determining that the user equipment to be offloaded communicates through the target micro cell.
  • the method further includes: when the user equipment to be offloaded is in an active state, the user equipment to be offloaded is switched, so that the user equipment to be offloaded switches to the target micro cell; or When the user equipment to be offloaded is in an idle state, performing cell reselection on the user equipment to be offloaded, so that the user equipment to be offloaded selects the target micro cell; or when the user equipment to be offloaded attempts to access the macro cell. And performing access control on the user equipment to be offloaded, so that the user equipment to be offloaded accesses the target micro cell.
  • the network side device in the embodiment of the present invention determines the traffic distribution threshold according to the service distribution information of the user equipment located in the macro cell and the load state of the micro cell itself. In this way, when the user equipments in different states are offloaded, it is not necessary to re-determine all the user equipments.
  • the user equipment of different states in the macro cell only needs to be compared with the shunt threshold, so that the user equipment that meets the shunt condition is offloaded to the micro cell. Therefore, the method can easily perform load splitting for user equipments in different states.
  • FIG. 1 is a schematic diagram of a scenario in which an embodiment of the present invention is applicable.
  • FIG. 2 is a schematic block diagram of a network side device according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of triggering macro cell load offloading according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of triggering target micro cell load splitting according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a network side device according to another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for load offloading in a heterogeneous network according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a process of load offloading in a heterogeneous network according to an embodiment of the present invention.
  • FIG. 8 is a block diagram of a network side device according to another embodiment of the present invention.
  • GSM Global Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Global Interconnected Microwave Access
  • UE User equipment
  • MT mobile terminal
  • MT English Mobile Terminal
  • mobile user equipment can be accessed via a radio access network (for example, RAN, English Radio Access Network)
  • RAN English Radio Access Network
  • the user equipment can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, can be portable, pocket, handheld, built-in computer Or a mobile device on the car.
  • the base station may be a base station in GSM or CDMA (BTS, English Base Transceiver Station), a base station (NodeB) in WCDMA, or an evolution in LTE.
  • BTS Global System for Mobile Communications
  • NodeB base station
  • a type of base station (eNB or e-NodeB, evolved Node B) is not limited in the present invention.
  • FIG. 1 is a schematic diagram of a scenario in which an embodiment of the present invention is applicable.
  • the scenario shown in Figure 1 is a heterogeneous network scenario.
  • a micro base station 12 is provided, which can be used to provide local high-capacity coverage for hotspot areas.
  • the coverage of the micro base station 12 is small and superimposed on the coverage of the macro base station 11.
  • the heterogeneous network may further include at least one macro base station and at least one micro base station.
  • the number of micro base stations in one macro base station is not limited to one, and may include two or more micro base stations.
  • the coverage of one micro base station may also be located in an overlapping area of coverage of multiple macro base stations.
  • one macro base station may correspond to one macro cell
  • one micro base station may correspond to one micro cell.
  • the macro cell in which the macro base station 11 is located in FIG. 1 may include the micro cell in which the micro base station 12 is located. By adjusting the service range of the micro cell, the micro cell can provide a certain load shunt when the macro cell has a large load.
  • FIG. 2 is a schematic block diagram of a network side device according to an embodiment of the present invention.
  • the network side device shown in FIG. 2 may be a centralized controller in a heterogeneous network system.
  • the heterogeneous network where the network side device 20 is located may include a macro cell and at least one micro cell in the macro cell, and the network side device 20 may include:
  • the obtaining unit 21 is configured to acquire load information of the target micro cell in the at least one micro cell and service distribution information of the at least one user equipment in the first preset range around the target micro cell in the macro cell;
  • the determining unit 22 is configured to determine, according to the load information of the target micro cell and the service distribution information, a shunt threshold value, where the shunt threshold value corresponds to a parameter indicating a propagation environment of the target micro cell;
  • the offloading unit 23 is configured to determine, according to the offloading threshold, whether the user equipment to be offloaded communicates through the macro cell or through the target micro cell.
  • the network side device in the embodiment of the present invention determines the traffic distribution threshold according to the service distribution information of the user equipment located in the macro cell and the load state of the micro cell itself. In this way, when the user equipments in different states are offloaded, it is not necessary to re-determine all the user equipments.
  • the user equipment of different states in the macro cell only needs to be compared with the shunt threshold, so that the user equipment that meets the shunt condition is offloaded to the micro cell. Therefore, the method can easily perform load splitting for user equipments in different states.
  • the centralized controller may be connected to the macro cell and the micro cell, and obtain the service distribution information of the user equipment of the macro cell and the micro cell and the information of the micro cell load through the connection, and send the determined diversion gate to the macro cell and the micro cell through the connection. Limit.
  • the macro cell in the embodiment of the present invention is a cell to be divided by a load. At least one micro cell may be included in the macro cell.
  • the load of the macro cell needs to be offloaded to the target micro cell included in the at least one micro cell, that is, the service range of the target micro cell is expanded to access more user equipments to alleviate load blocking of the macro cell.
  • the embodiment of the present invention describes only one target micro cell. It should be understood that the embodiment of the present invention may utilize multiple target micro cells to offload the macro cell.
  • the first preset range can be preset according to actual needs. For example, if the number of user equipments to be offloaded is large, the first preset range may take a larger value; if the number of user equipments to be offloaded is small, the first preset range may take a smaller value.
  • the first preset range may also be preset according to the access capability of the micro base station. For example, the first preset range may be preset according to the access capability of the micro base station. If the access capability of the micro base station in the target micro cell is strong, the first preset range may take a larger value; if the access capability of the micro base station in the target micro cell is weak, the first preset range may take a corresponding Smaller value.
  • the service distribution information of the at least one user equipment may represent the service distribution status of the at least one user equipment.
  • the service distribution status may include location information and traffic volume of the user equipment.
  • the load of the cell can be divided into air interface load and backhaul load.
  • the air interface load can be defined as the usage of radio resources
  • the backhaul load can be defined as the ratio of the average rate of the backhaul link to the maximum nominal rate.
  • the air interface load can be defined as the ratio of the number of average allocated resource blocks (abbreviated as RB, English Resource Block) to the total number of RBs.
  • the base station of the cellular network has two hops of air interface link and backhaul link to complete data transmission between the user equipment and the core network.
  • the load blocking of any one of the two hop links of the air interface link and the backhaul link affects the service capability of the cell. Therefore, each cell has two load thresholds: the air interface load threshold and the backhaul load threshold.
  • the load information of the target micro cell may represent the load state of the target micro cell.
  • the load information of the target micro cell may be a load occupancy of the target micro cell and a load threshold of the target micro cell, or may be a load margin of the target micro cell.
  • the load is The amount can be determined by the difference between the load threshold and the load occupancy, indicating the remaining occupable load.
  • the load occupancy of the target micro cell may include the air interface load occupancy and the backhaul load occupancy of the target micro cell.
  • the load threshold of the target micro cell may include an air interface load threshold and a backhaul load threshold of the target micro cell.
  • the load margin of the target microcell may include an air interface load margin and a backhaul load margin.
  • the determining unit 22 in the embodiment of the present invention may directly calculate the shunt threshold based on the traffic volume of the at least one user equipment and the load information of the target micro cell based on an existing algorithm.
  • the determining unit 22 in the embodiment of the present invention may also select an optimal one of the specified multiple split thresholds according to the traffic volume of the at least one user equipment and the load information of the target microcell. Split threshold.
  • the determining unit 22 in the embodiment of the present invention may further determine an adjustment step size of the shunt threshold according to the traffic volume of the at least one user equipment and the load information of the target micro cell, according to the step. Long search to get the shunt threshold.
  • the embodiment of the present invention is not limited to the method for determining the split threshold according to the service distribution information of the at least one user equipment and the load information of the target micro cell.
  • the shunt threshold corresponds to a parameter indicative of the propagation environment of the target microcell.
  • the shunt threshold may be a path loss or a channel gain.
  • the offloading unit 23 may determine, according to the offloading threshold, whether the user equipment to be offloaded communicates through the macro cell or through the target micro cell. That is, when the user equipment communicates through the target micro cell, the user equipment of the macro cell is offloaded.
  • the user equipment to be offloaded may be user equipments in different states.
  • the user equipment to be offloaded may be an active user equipment of the current macro cell, that is, a user equipment that generates a service, or an idle user equipment of the current macro cell, that is, a user equipment that does not generate a service, or may be a current macro cell. Try to access the user equipment of the macro cell.
  • the state of the user equipment to be offloaded in the embodiment of the present invention is not limited.
  • the network side device in the embodiment of the present invention determines the traffic distribution threshold according to the service distribution information of the user equipment located in the macro cell and the load state of the micro cell itself. In this way, when the user equipments in different states are offloaded, it is not necessary to re-determine all the user equipments.
  • the user equipment of different states in the macro cell only needs to be compared with the shunt threshold, so that the user equipment that meets the shunt condition is offloaded to the micro cell. Therefore, the method can be easily performed on user equipments in different states. Load splitting.
  • the load of any one of the air interface load and the backhaul load exceeds the corresponding load threshold, the load of the macro cell exceeds the normal level, and a corresponding mechanism, such as triggering the offload macro cell load, is required to ensure the macro cell.
  • the load remains stable.
  • FIG. 3 is a flowchart of triggering macro cell load offloading according to an embodiment of the present invention.
  • the process of triggering macro cell load offloading shown in FIG. 3 may be performed by a network side device.
  • the macro cell includes an air interface load threshold and a backhaul load threshold.
  • the network side device triggers load offloading, that is, the network side device offloads the load of the macro cell.
  • the condition 1 is that the air interface load of the macro cell is greater than the air port load threshold
  • the second condition is that the backhaul load of the macro cell is greater than the backhaul load threshold.
  • the network side device may periodically determine the condition 1 and the condition 2.
  • the macro cell may measure the air interface load and the backhaul load and actively report to the network side device.
  • the network side device may also request the macro cell to report the air interface load and the backhaul load of the macro cell.
  • the embodiment of the present invention is not limited to how to trigger load splitting of a macro cell.
  • the micro cell also includes an air interface load threshold and a backhaul load threshold, and when the micro cell has idle resources, the load of the macro cell can be shunted.
  • the micro cell has an idle resource indicating that the two hops of the air interface load and the backhaul load of the micro cell are smaller than the corresponding load threshold.
  • FIG. 4 is a flow chart of initiating microcell load splitting according to an embodiment of the present invention.
  • the process of starting the micro cell load offloading shown in FIG. 4 can be performed by the network side device.
  • the micro cell includes an air interface load threshold and a backhaul load threshold. As shown in Figure 4,
  • the network side device starts the micro cell load offload, that is, the network side device offloads the load of the macro cell to the micro cell.
  • the third condition is that the air interface load of the micro cell is smaller than the air port load threshold
  • the fourth condition is that the backhaul load of the micro cell is less than the backhaul load threshold.
  • condition three and condition four are satisfied, the network side device starts the micro area load splitting. Therefore, when either of Condition 3 and Condition 4 is not satisfied, the micro cell is not capable of load shunting.
  • the micro cell can measure the air interface load and the backhaul load and actively Reported to the network side device.
  • the network side device may also request the micro cell to report the air interface load and the backhaul load of the micro cell.
  • the embodiment of the present invention is not limited to how to initiate load splitting of the micro cell.
  • FIG. 5 is a schematic block diagram of a network side device according to another embodiment of the present invention.
  • the network side device 20 also includes a selection unit 24.
  • the same devices in Fig. 5 as those in Fig. 2 have the same names and labels as those used in the device of Fig. 2.
  • the selecting unit 24 is configured to select a target micro cell from the at least one micro cell, wherein a macro service density of the target micro cell is a maximum value of a macro service density of the at least one micro cell, where the macro service density indicates The business density of the user equipment of the macro cell around the micro cell.
  • the network side device in the embodiment of the present invention determines the shunt threshold value according to the traffic volume of the user equipment located around the micro cell in the macro cell and the load state of the micro cell itself. In this way, when the user equipments in different states are offloaded, it is not necessary to re-determine all the user equipments.
  • the user equipment of different states in the macro cell only needs to be compared with the shunt threshold, so that the user equipment that meets the shunt condition is offloaded to the micro cell. Therefore, the method can easily perform load splitting for user equipments in different states.
  • the network side device may select a micro cell with the largest business density from among the plurality of micro cells to perform offloading.
  • the method can effectively improve the shunt efficiency and improve the service quality of the entire network.
  • the target micro cell for offloading the macro cell load has the load of the idle resource offload macro cell when the condition three and the condition four shown in FIG. 4 are simultaneously satisfied.
  • the target microcell in at least one of the microcells is used to offload the macrocell.
  • the network side device in the embodiment of the present invention may select the target micro cell based on the access capability of the micro base station. For example, if the access capability of the micro base station of the micro cell is strong, the micro cell is selected as the target micro cell.
  • the network side device in the embodiment of the present invention may also select the target micro cell based on the traffic volume of the user equipment of the macro cell around the micro cell. For example, if the service of the user equipment of the macro cell around the micro cell is dense, the micro cell is selected as the target micro cell.
  • the process of selecting the target micro cell by the selecting unit 24 may be as follows:
  • Determining that the micro cell corresponding to the maximum value of the at least one dense parameter is the target micro cell.
  • the area around at least one micro area can be preset according to actual needs. For example, if there are many user equipments to be offloaded, the area around the at least one micro area may take a larger value; if there are fewer user equipments to be offloaded, the area around the at least one micro area may take a smaller value.
  • the area around the at least one micro cell may also be preset according to the access capability of the micro base station. For example, an area around the at least one micro cell may be preset according to an access capability of the micro base station.
  • the area around the at least one micro cell may take a larger value; if the access capability of the micro base station in the target micro cell is weak, the area around the at least one micro cell You can take the corresponding smaller value.
  • the method for the network side device to acquire the traffic volume of the at least one user equipment of the macro cell and the traffic volume of the user equipment of the macro cell surrounding the at least one micro cell of the macro cell may be the same.
  • the user device of the macro cell around the at least one micro cell is located around the at least one micro cell. The following describes in detail the flow of the network side device acquiring the traffic volume of at least one user equipment.
  • the network side device 20 may perform rasterization on a coverage area of the macro cell to obtain at least one grid; and determine at least one target grid in the at least one grid, the at least one target grid The cell is located in a second preset range around the target micro cell; and the at least one average traffic corresponding to the at least one target cell is determined as the service distribution information.
  • At least one user equipment may be included in each grid, and a user equipment in the grid and a micro base station in the target micro cell respectively correspond to one channel.
  • the channels between different user equipments in the grid and the micro base stations in the target microcells have similarities.
  • the grid is a geographically continuous smaller area, and channels between different user equipments to base stations in the area have strong similarities.
  • the network side may obtain the geographic location of the user equipment from the user equipment, and determine a grid to which each user equipment belongs according to the geographic location.
  • the network side device may determine at least one target grid from the at least one grid, the at least one target grid being located within a second predetermined range around the target microcell.
  • the network side device may determine an average traffic volume of user equipment within each target grid in the at least one target grid. Therefore, the at least one average traffic corresponding to the at least one target grid constitutes service distribution information of the at least one user equipment of the macro cell.
  • the network side device 20 may further classify a coverage area of the macro cell to obtain at least one class, and determine at least one target class in the at least one class, where One less target class is located in a second preset range around the target micro cell; and determining that at least one average traffic corresponding to the at least one target class is the service distribution information.
  • each class may include at least one user equipment, and a user equipment in the class and a micro base station in the target micro cell respectively correspond to one channel.
  • the channels between different user equipments in this class and the micro base stations in the target microcells have similarities.
  • the network side device may determine at least one target class from the at least one class, the at least one target class being located within a second predetermined range around the target micro cell.
  • the network side device may determine an average traffic volume of the user equipment in each of the target classes in the at least one target class. Therefore, the at least one average traffic corresponding to the at least one target class constitutes service distribution information of the at least one user equipment of the macro cell.
  • the process of acquiring the service distribution information of the at least one user equipment of the macro cell may be referred to, and is not described in detail herein.
  • At least one target grid or class is located within a second predetermined range around the target microcell.
  • the second preset range can be preset according to actual needs. For example, if the number of user equipments to be offloaded is large, the second preset range may take a larger value; if the number of user equipments to be offloaded is small, the second preset range may take a smaller value.
  • the second preset range may also be preset according to the access capability of the micro base station. For example, the second preset range may be preset according to the access capability of the micro base station. If the access capability of the micro base station in the target micro area is strong, the second preset range may take a larger value; if the access capability of the micro base station in the target micro area is weak, the second preset range may take corresponding Smaller value.
  • one micro cell may correspond to one dense parameter, and one micro cell corresponds to at least one grid or class.
  • the dense parameter may represent the traffic density of the user equipment of the macro cell around the micro cell.
  • the calculation formula for this intensive parameter can be as follows:
  • g n,i is the channel gain of the grid n or the class n to the corresponding microcell i
  • w n is the average traffic of the grid n or the class n
  • U i is at least A collection of raster n or class n of macro cells around a microcell.
  • n is the number of rasters or classes.
  • g n,i can be divided into an uplink channel gain or a downlink channel gain.
  • the upstream channel gain can be measured by the base station and the downstream channel gain can be measured by the user equipment. The larger the value of the dense parameter utility i , the denser the user equipment of the macro cell around the micro cell i.
  • the network side device in the embodiment of the present invention may mark the undivided micro cell and the shunt micro cell in the at least one micro cell.
  • the network side device may sort the plurality of dense parameters of the undivided micro cell from large to small.
  • the target micro cell is selected, the micro cell with the largest intensive parameter is selected as the target micro cell to offload the macro cell. It should be understood that, after the current target micro cell is offloaded, if the macro cell still satisfies the trigger macro cell load offload, the target micro cell is again selected from the remaining undivided micro cells to perform offloading again, until the macro cell does not satisfy the triggered macro cell load.
  • a shunt condition or a microcell without unsplit is available.
  • the determining unit 22 is specifically configured to be used
  • the shunt threshold is determined according to the load occupancy and the load information of the target micro cell.
  • the load information of the target micro cell may include a load margin of the target micro cell, and the determining unit 22 is specifically configured to
  • the shunt threshold is determined.
  • the user equipment to be offloaded to the target micro cell is determined according to the service distribution information of the at least one user equipment.
  • the user equipment can be located in the current service area of the target micro cell.
  • the current service range of the target micro cell may be determined by the prior art, or the current service scope may be obtained by using the method of the embodiment of the present invention before the load diversion is triggered. It should be understood that at least one user equipment to be offloaded to the target micro cell in the current service scope has not been offloaded, and the current service scope may not be the optimal service scope. Therefore, the optimal shunt threshold can be determined by the method of the embodiment of the present invention.
  • the load occupancy of each user equipment in the target micro cell is calculated.
  • the load occupancy may include air interface load occupancy and backhaul load occupancy. To calculate the air interface load occupancy and the backhaul load occupancy, it is necessary to first obtain the rate and the number of resources occupied by the user equipment in the target micro area.
  • the specific formula can be as follows:
  • r macro is the rate obtained by any user equipment in the user equipment to be offloaded to the target micro cell in the macro cell
  • r pico is offloaded to the target device in any user equipment to be offloaded to the target micro cell.
  • w pico is the number of resources to be offloaded to the user equipment of the target micro cell.
  • the number of resources occupied by a user equipment in the target micro cell, p macro is the maximum transmit power of the macro cell, p pico is the maximum transmit power of the target micro cell, and
  • g macro is any user in the user equipment to be offloaded to the target micro cell.
  • the channel gain between the device and the macro base station of the macro cell, g pico is the channel gain between any user equipment to be handed over to the target micro cell to the micro base station of the micro cell.
  • the delta_load_air is the air interface load occupancy of the user equipment to be offloaded to the target micro cell in the target micro cell
  • the delta_load_backhaul is the backhaul load occupancy of the user equipment to be offloaded to the target micro cell in the target micro cell
  • w i The pico indicates the number of resources occupied by the user equipment i in the user equipment to be offloaded to the target micro cell
  • the r i, pico is at least one user equipment i in the user equipment to be offloaded to the target micro cell.
  • the rate at which the target microcell can be obtained, W is the total number of resources of the target microcell, and R is the maximum nominal rate of the backhaul link of the target microcell.
  • the network side device of the embodiment of the present invention may further acquire at least one grid or class including at least one user equipment to be offloaded to the target micro cell.
  • calculating the load occupancy of each user equipment of the at least one user equipment to be offloaded to the target micro cell in the target micro cell may be replaced by calculating the level of the at least one grid or class in the target micro cell. Average load occupancy.
  • r macro is the average rate obtained by the user equipment in any of the at least one grid or class in the macro cell
  • r pico is any of the at least one grid or class or The average rate that can be obtained when the user equipment in the class is offloaded to the target microcell
  • w macro is the average number of resources occupied by the user equipment in the at least one grid or class in the macro cell
  • w Pico is the average number of resources occupied by the user equipment in any of the at least one grid or class in the target microcell
  • p macro is the maximum transmit power of the macro cell
  • p pico is the maximum transmit of the target microcell Power
  • g macro is the channel gain between any of the at least one grid or class or macro base station of the class to the macro cell
  • g pico is any grid or class of the at least one grid or class Channel gain between micro base stations to the micro cell.
  • the optimization formula of the shunt threshold may be as follows:
  • the max function takes the maximum value function
  • ⁇ 1 is the air interface load margin of the target micro cell
  • ⁇ 2 is the backhaul load margin of the target micro cell.
  • the max function can be replaced by a min function, which is a minimum function.
  • the parameter indicating the propagation environment of the target micro cell is a path loss
  • the offloading unit 23 is specifically configured to: perform path loss between the user equipment to be offloaded and the micro base station of the target micro cell.
  • the threshold is less than or equal to the threshold
  • the user equipment to be offloaded is determined to communicate through the target micro cell, or the path loss between the user equipment to be offloaded and the micro base station in the target micro cell is greater than the shunt threshold.
  • the user equipment to be offloaded communicates through the macro cell.
  • the parameter indicating the propagation environment of the target micro cell is a channel gain
  • the offloading unit 23 is specifically configured to: when the channel between the user equipment to be offloaded and the micro base station of the target micro cell When the gain is less than the shunt threshold, determining that the user equipment to be offloaded communicates through the macro cell, or when the user equipment to be offloaded and the micro base station of the target micro cell When the channel gain is greater than or equal to the shunt threshold, it is determined that the user equipment to be offloaded communicates through the target micro cell.
  • the shunting unit is further used to
  • the user equipment to be offloaded When the user equipment to be offloaded is in an active state, the user equipment to be offloaded is switched, so that the user equipment to be offloaded switches to the target microcell; or
  • the network side device may enable the activated user equipment to select to switch to the target micro cell by modifying the cell selection offset of the activated user equipment.
  • the network side may also directly send an indication message to the active user equipment, indicating that the activated user equipment switches to the target micro cell.
  • the network side device may modify the cell selection offset of the idle user equipment, so that the idle user equipment may actively select the target micro cell as the serving cell.
  • the network side device may send indication information to the user equipment that attempts to access the macro cell, indicating that the user equipment accesses the target micro cell.
  • FIG. 6 is a schematic flowchart of a method for load offloading in a heterogeneous network according to an embodiment of the present invention.
  • the heterogeneous network includes a macro cell and at least one micro cell in the macro cell.
  • the method includes:
  • the network side device in the embodiment of the present invention determines the traffic distribution threshold according to the service distribution information of the user equipment located in the macro cell and the load state of the micro cell itself. In this way, when the user equipments in different states are offloaded, it is not necessary to re-determine all the user equipments.
  • the user equipments in different states in the macro cell only need to be compared with the shunt threshold, so that the shunt condition is satisfied.
  • the device is shunted to the micro cell. Therefore, the method can easily perform load splitting for user equipments in different states.
  • FIG. 6 can be performed by the network side devices involved in FIGS. 1 through 5. To avoid repetition, it will not be described in detail here.
  • the network side device may determine, according to the service distribution information, that at least one user equipment located in a first preset range around the target micro area is to be offloaded to the target micro The load occupancy of the user equipment of the area in the target micro area; determining the shunt threshold according to the load occupancy and the load information of the target micro area.
  • the network side device may determine the shunt threshold when the load occupancy is less than a load margin of the target micro cell.
  • the method may further include: selecting the target micro cell from the at least one micro cell, wherein a macro service density of the target micro cell is a macro service density of the at least one micro cell.
  • the maximum value in the macro service density indicates the service density of the user equipment of the macro cell located in the service area of the micro cell.
  • the network side device may perform rasterization on the coverage area of the macro cell to obtain at least one grid; and determine at least one target raster in the at least one grid, The at least one target grid is located in a second preset range around the target micro cell; and determining that the at least one average traffic corresponding to the at least one target raster is the service distribution information.
  • the network side device may classify the network coverage area of the macro cell to obtain at least one class, and determine at least one target class in the at least one class, the at least one target.
  • the class is located in a second preset range around the target micro cell; and determining that the at least one average traffic corresponding to the at least one target class is the service distribution information.
  • the parameter indicating the propagation environment of the target micro cell is path loss, and the path loss between the user equipment to be offloaded and the micro base station of the target micro cell is less than or
  • the splitting threshold is equal to the shunting threshold, it is determined that the user equipment to be offloaded communicates through the target microcell, or when the path loss between the user equipment to be offloaded and the micro base station in the target microcell is greater than the shunting threshold. Determining that the user equipment to be offloaded communicates through the macro cell.
  • the parameter indicating the propagation environment of the target micro cell is a channel gain, and a channel gain between the user equipment to be offloaded and the micro base station of the target micro cell is smaller than the channel gain.
  • the threshold is divided, it is determined that the user equipment to be offloaded communicates through the macro cell, or when the channel gain between the user equipment to be offloaded and the micro base station in the target micro area is greater than Or equal to the offload threshold, determining that the user equipment to be offloaded communicates through the target micro cell.
  • the method further includes:
  • the user equipment to be offloaded When the user equipment to be offloaded is in an active state, the user equipment to be offloaded is switched, so that the user equipment to be offloaded switches to the target microcell; or
  • FIG. 7 is a flowchart of a process of load offloading in a heterogeneous network according to an embodiment of the present invention. As shown in FIG. 7, the process of the load splitting can be performed by the network side device involved in FIG.
  • the heterogeneous network includes a macro cell and at least one micro cell of the macro cell. The process includes:
  • the network side device may rasterize the coverage area of the macro cell, and select a grid located around the micro cell from the obtained multiple grids.
  • the channels between different user equipments in the grid and the micro base stations in the microcells have similarities.
  • the network side device acquires the geographic location of the user equipment of the macro cell, identifies the grid to which each user equipment belongs according to the geographic location of the user equipment, and counts the average traffic volume of the user equipment in each grid.
  • the average traffic volume of the grid around the micro cell constitutes traffic distribution information of the user equipment of the macro cell around at least one micro cell.
  • the network side device may classify the coverage area of the macro cell, and select a class located around the micro cell from the obtained multiple classes.
  • the channels between different user equipments in this class and the micro base stations in the micro cell have similarities.
  • the average traffic of the classes around the micro cell constitutes traffic distribution information of the user equipment of the macro cell around at least one micro cell.
  • Trigger a macro cell load offload Trigger a macro cell load offload.
  • the method for triggering the macro cell load offload is the same as the method of FIG. 3. To avoid repetition, it will not be described in detail here.
  • the network side device triggers the macro cell load offload.
  • the method of triggering the micro cell load shunt is the same as the method of FIG. 4. To avoid duplication, It will not be described in detail here.
  • the network side device triggers the micro cell load shunt.
  • a microcell can correspond to a dense parameter, and a microcell corresponds to at least one grid or class.
  • the dense parameter may represent the traffic density of the user equipment of the macro cell around the micro cell.
  • the calculation formula for this intensive parameter can be as follows:
  • g n,i is the channel gain of the grid n or the class n to the corresponding microcell i
  • w n is the average traffic of the grid n or the class n
  • U i is at least A collection of raster n or class n of macro cells around a microcell.
  • n is the number of rasters or classes.
  • g n,i can be divided into an uplink channel gain or a downlink channel gain.
  • the upstream channel gain can be measured by the base station and the downstream channel gain can be measured by the user equipment. The larger the value of the dense parameter utility i , the denser the user equipment of the macro cell around the micro cell i.
  • the network side device in the embodiment of the present invention may mark the undivided micro cell and the shunt micro cell in the at least one micro cell.
  • the network side device may sort the plurality of dense parameters of the undivided micro cell from large to small.
  • the target micro cell is selected, the micro cell with the largest intensive parameter is selected as the target micro cell to offload the macro cell. It should be understood that, after the current target micro cell is offloaded, if the macro cell still satisfies the trigger macro cell load offload, the target micro cell is again selected from the remaining undivided micro cells to perform offloading again, until the macro cell does not satisfy the triggered macro cell load.
  • a shunt condition or a microcell without unsplit is available.
  • the user equipment to be offloaded to the target micro cell is determined according to the service distribution information of the user equipment around the target micro cell.
  • the user equipment to be offloaded to the target micro cell may be located in the current service range of the target micro cell.
  • the current service range of the target micro cell may be determined by the prior art, or the current service scope may be obtained by using the method of the embodiment of the present invention before the load diversion is triggered. It should be understood that the user equipment to be offloaded to the target micro cell in the current service scope has not been offloaded, and the current service scope may not be the optimal service scope. Therefore, the optimal shunt threshold can be determined by the method of the embodiment of the present invention.
  • the load occupancy of each user equipment in the target micro cell is calculated.
  • the load occupancy may include air interface load occupancy and backhaul load occupancy.
  • the air interface load occupancy and the backhaul load occupancy need to be obtained first to obtain the rate and the number of resources occupied by the user equipment to be offloaded to the target micro cell in the target micro cell.
  • the specific formula can be as follows:
  • the r maero is a rate obtained by any user equipment in the user equipment to be offloaded to the target micro cell in the macro cell, and r pico is used to offload any user equipment in the user equipment to be offloaded to the target micro cell.
  • the rate that can be obtained by the macro cell in the user equipment to be offloaded to the target micro cell, w pico is the number of resources to be offloaded to the target micro cell.
  • the number of resources occupied by any user equipment in the target micro-cell, p macro is the maximum transmit power of the macro cell, p pico is the maximum transmit power of the target micro-cell, and g macro is the target to be shunted to the target micro-cell.
  • Channel gain between any user equipment in the user equipment to the macro base station of the macro cell, g pico is the channel gain between any user equipment to be handed off to the micro base station of the user equipment of the target micro cell .
  • the delta_load_air is the air interface load occupancy of the user equipment to be offloaded to the target micro cell in the target micro cell
  • the delta_load_backhaul is the backhaul load occupancy of the user equipment to be offloaded to the target micro cell in the target micro cell
  • w i, pico The number of resources occupied by the user equipment i in the user equipment to be offloaded to the target micro cell, r i, pico is the user equipment i in the user equipment to be offloaded to the target micro cell in the target micro cell.
  • the obtained rate, W is the total number of resources of the target micro cell
  • R is the maximum nominal rate of the backhaul link of the target micro cell.
  • the network side device of the embodiment of the present invention may further acquire at least one grid or class that includes the user equipment to be offloaded to the target micro cell.
  • the load occupancy of each user equipment of the user equipment to be offloaded to the target micro cell in the target micro cell may be replaced by calculating the average load occupancy of the at least one cell or class in the target micro cell.
  • r macro is the average rate obtained by the user equipment in any of the at least one grid or class in the macro cell
  • r pico is any of the at least one grid or class or The average rate that can be obtained when the user equipment in the class is offloaded to the target microcell
  • w macro is the average number of resources occupied by the user equipment in the at least one grid or class in the macro cell
  • w Pico is the average number of resources occupied by the user equipment in any of the at least one grid or class in the target microcell
  • p macro is the maximum transmit power of the macro cell
  • p pico is the maximum transmit of the target microcell Power
  • g macro is the channel gain between any of the at least one grid or class or macro base station of the class to the macro cell
  • g pico is any grid or class of the at least one grid or class Channel gain between micro base stations to the micro cell.
  • the optimization formula of the shunt threshold may be as follows:
  • the max function takes the maximum value function
  • ⁇ 1 is the air interface load margin of the target micro cell
  • ⁇ 2 is the backhaul load margin of the target micro cell.
  • the max function can be replaced by a min function, which is a minimum function.
  • the user equipment to be offloaded is offloaded.
  • a parameter indicating a propagation environment of the target micro cell is a path loss.
  • the network side device determines that the user equipment to be offloaded communicates through the target micro cell, or when The path loss between the user equipment to be offloaded and the micro base station of the target micro cell is greater than the When the threshold is divided, it is determined that the user equipment to be offloaded communicates through the macro cell.
  • the parameter indicating the propagation environment of the target micro cell is the channel gain.
  • the channel gain between the user equipment to be offloaded and the micro base station of the target micro cell is less than the traffic threshold, determining that the user equipment to be offloaded communicates through the macro cell, or when the user equipment to be offloaded When the channel gain between the micro base stations of the target micro cell is greater than or equal to the shunt threshold, it is determined that the user equipment to be offloaded communicates through the target micro cell.
  • the network side device switches the user equipment to be offloaded, so that the user equipment to be offloaded switches to the target micro cell;
  • the network side device performs cell reselection on the user equipment to be offloaded, so that the user equipment to be offloaded selects the target micro cell;
  • the network side device performs access control on the user equipment to be offloaded, so that the user equipment to be offloaded accesses the target micro cell.
  • the network side device may enable the activated user equipment to select to switch to the target micro cell by modifying the cell selection offset of the activated user equipment.
  • the network side may also directly send an indication message to the active user equipment, indicating that the activated user equipment switches to the target micro cell.
  • the network side device may modify the cell selection offset of the idle user equipment, so that the idle user equipment may actively select the target micro cell as the serving cell.
  • the network side device may send indication information to the user equipment that attempts to access the macro cell, indicating that the user equipment accesses the target micro cell.
  • the network side device in the embodiment of the present invention determines the traffic distribution threshold according to the service distribution information of the user equipment located in the macro cell and the load state of the micro cell itself. In this way, when the user equipments in different states are offloaded, it is not necessary to re-determine all the user equipments.
  • the user equipment of different states in the macro cell only needs to be compared with the shunt threshold, so that the user equipment that meets the shunt condition is offloaded to the micro cell. Therefore, the method can easily perform load splitting for user equipments in different states.
  • FIG. 8 is a block diagram of a network side device according to another embodiment of the present invention.
  • the network side device 80 of FIG. 8 can be used to implement the steps and methods in the foregoing method embodiments.
  • the heterogeneous network in which the network side device is located includes a macro cell and at least one micro cell in the macro cell.
  • the network side device 80 of FIG. 8 includes a processor 81, a memory 82, and a receiving circuit 83.
  • the processor 81, the memory 82, and the receiving circuit 83 pass The bus system 89 is connected.
  • the network side device 80 may further include an antenna 115 and the like.
  • the processor 81 controls the operation of the network side device 80.
  • Memory 82 can include read only memory and random access memory and provides instructions and data to processor 81.
  • a portion of memory 82 may also include non-volatile line random access memory (NVRAM).
  • transmit circuitry 114 and receive circuitry 83 can be coupled to antenna 115.
  • the various components of network side device 80 are coupled together by a bus system 89, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 89 in the figure.
  • Processor 81 may be an integrated circuit chip with signal processing capabilities.
  • the processor 81 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 81 reads the information in the memory 82 and controls the various components of the network side device 80 in conjunction with its hardware.
  • the method of FIG. 6 can be implemented in the network side device 80 of FIG. 8. To avoid repetition, it will not be described in detail.
  • the network side device 80 performs the following operations:
  • shunt threshold value corresponds to a parameter indicating a propagation environment of the target micro cell
  • the network side device in the embodiment of the present invention determines the shunt threshold value according to the traffic volume of the user equipment located around the micro cell in the macro cell and the load state of the micro cell itself. In this way, when the user equipments in different states are offloaded, it is not necessary to re-determine all the user equipments.
  • the user equipment of different states in the macro cell only needs to be compared with the shunt threshold, so that the user equipment that meets the shunt condition is offloaded to the micro cell. Therefore, the method can easily perform load splitting for user equipments in different states.
  • the processor 81 may determine, according to the service distribution information, The load occupancy of the user equipment to be offloaded to the target micro area in the at least one user equipment in the first preset range around the target micro area in the target micro area; according to the load occupancy amount and the target micro area Load information to determine the shunt threshold.
  • the shunt threshold is determined.
  • the processor 81 may select the target micro cell from the at least one micro cell, where a macro service density of the target micro cell is in a macro service density of the at least one micro cell.
  • the maximum value, the macro traffic density indicates the traffic density of the user equipment of the macro cell located around the micro cell.
  • the processor 81 may perform rasterization on the coverage area of the macro cell to obtain at least one grid; and determine at least one target grid in the at least one grid, the at least one target The grid is located in a second preset range around the target micro cell; and determining that the at least one average traffic corresponding to the at least one target raster is the service distribution information.
  • the processor 81 may classify the network coverage area of the macro cell to obtain at least one class; determine at least one target class in the at least one class, where the at least one target class is located in the target The second preset range around the micro cell; determining that the at least one average traffic corresponding to the at least one target class is the service distribution information.
  • the parameter indicating the propagation environment of the target micro cell is a path loss
  • the processor 81 may be that the path loss between the user equipment to be offloaded and the micro base station of the target micro cell is less than or equal to Determining, by the shunting threshold, that the user equipment to be offloaded communicates through the target micro cell, or when the path loss between the user equipment to be offloaded and the micro base station in the target micro cell is greater than the shunt threshold The user equipment to be offloaded communicates through the macro cell.
  • the parameter indicating the propagation environment of the target micro cell is a channel gain
  • the processor 81 has a channel gain between the user equipment to be offloaded and the micro base station of the target micro cell is smaller than the split gate.
  • the user equipment to be offloaded is determined to communicate through the macro cell, or when the channel gain between the user equipment to be offloaded and the micro base station in the target micro cell is greater than or equal to the shunt threshold, The offload user equipment communicates through the target microcell.
  • the processor 81 may further: when the user equipment to be offloaded is in an active state, the to be offloaded User equipment performs handover, so that the user equipment to be offloaded switches to the target When the user equipment to be offloaded is in an idle state, the cell to be offloaded is subjected to cell reselection, so that the user equipment to be offloaded selects the target micro cell; or when the user equipment to be offloaded attempts to access During the state of the macro cell, the user equipment to be offloaded is subjected to access control, so that the user equipment to be offloaded accesses the target micro cell.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be Ignore, or not execute.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Abstract

本发明公开了一种异构网中负载分流的方法和网络侧设备。该网络侧设备包括:获取单元,用于获取目标微小区的负载信息和宏小区中位于目标微小区周围的第一预设范围内的至少一个用户设备的业务分布信息;确定单元,用于根据负载信息和业务分布信息,确定分流门限值,分流门限值对应于表示目标微小区的传播环境的参数;分流单元,用于根据分流门限值确定待分流用户设备是通过宏小区进行通信还是通过目标微小区进行通信。本发明实施例根据宏小区中位于微小区周围的用户设备的业务分布信息和微小区自身的负载状态,确定分流门限值。宏小区中不同状态的用户设备仅需要与该分流门限值进行对比,能够简便地对不同状态的用户设备进行负载分流。

Description

异构网中负载分流的方法和网络侧设备 技术领域
本发明涉及通信技术领域,具体地,涉及异构网中负载分流的方法和网络侧设备。
背景技术
随着移动业务的飞速发展,未来无线网络需要在提供广域连续覆盖的基础上,为业务热点区域提供局部的大容量覆盖。为了满足基本的连续广域覆盖和局部的大容量覆盖,第三代合作伙伴计划(简称3GPP,英文3rd Generation Partnership Project)定义的异构网(英文HetNet)包括两层网络:第一层是提供基本的广域连续覆盖的宏小区,第二层是提供局部的大容量覆盖的微小区。第二层微小区的覆盖范围叠加在第一层宏小区的覆盖范围之上,为业务热点区域提供局部的大容量接入服务。
通过调整微小区的服务范围,微小区可以在宏小区负载较多时提供一定的负载分流。合理地利用微小区为宏小区分流负载,可以协调宏小区和微小区的资源利用率,进而提高整网的资源利用率。
目前,对宏小区的负载进行分流的方法为对当前宏小区中产生业务的激活用户设备进行小区关联判决,并基于该小区关联判决的结果分流激活用户设备到各自关联的小区。但是,这种方法仅针对宏小区中产生业务的激活用户设备进行分流,若有新用户设备接入或空闲用户设备转成激活用户设备时,需要对所有用户设备重新进行小区关联判决。因此,当对不同状态的用户设备进行分流时,该方法的过程较为繁琐。
发明内容
本发明实施例提供了一种异构网中负载分流的方法和网络侧设备,能够简便地对不同状态的用户设备进行负载分流。
第一方面,提供了一种网络侧设备,该网络侧设备所在的异构网包括宏小区和该宏小区中的至少一个微小区,该网络侧设备包括:获取单元,用于获取该至少一个微小区中的目标微小区的负载信息和该宏小区中位于该目标微小区周围的第一预设范围内的至少一个用户设备的业务分布信息;确定 单元,用于根据该目标微小区的负载信息和该业务分布信息,确定分流门限值,该分流门限值对应于表示该目标微小区的传播环境的参数;分流单元,用于根据该分流门限值确定待分流用户设备是通过该宏小区进行通信还是通过该目标微小区进行通信。
结合第一方面,在第一方面的第一种可能的实现方式中,该确定单元,具体用于根据该业务分布信息,确定位于该目标微小区周围的第一预设范围内的至少一个用户设备中待分流到该目标微小区的用户设备在该目标微小区的负载占用量;根据该负载占用量和该目标微小区的负载信息,确定该分流门限值。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,该目标微小区的负载信息包括该目标微小区的负载余量,该确定单元,具体用于当该负载占用量小于该目标微小区的负载余量时,确定该分流门限值。
结合第一方面或第一方面的第一种至第二种可能的实现方式中的任一种可能的实现方式,在第一方面的第三种可能的实现方式中,还包括:选择单元,用于从该至少一个微小区中选择该目标微小区,其中该目标微小区的宏业务密集度为该至少一个微小区的宏业务密集度中的最大值,该宏业务密集度表示位于微小区周围的宏小区的用户设备的业务密集度。
结合第一方面或第一方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第一方面的第四种可能的实现方式中,该获取单元,具体用于对该宏小区的覆盖区域进行栅格化,得到至少一个栅格;确定该至少一个栅格中的至少一个目标栅格,该至少一个目标栅格位于该目标微小区周围的第二预设范围内;确定该至少一个目标栅格对应的至少一个平均业务量为该业务分布信息。
结合第一方面或第一方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第一方面的第五种可能的实现方式中,该获取单元,具体用于对该宏小区的网络覆盖区域进行分类,得到至少一个类;确定该至少一个类中的至少一个目标类,该至少一个目标类位于该目标微小区周围的第二预设范围内;确定该至少一个目标类对应的至少一个平均业务量为该业务分布信息。
结合第一方面或第一方面的第一种至第五种可能的实现方式中的任一 种可能的实现方式,在第一方面的第六种可能的实现方式中,该表示该目标微小区的传播环境的参数为路径损耗,该分流单元具体用于当该待分流用户设备与该目标微小区的微基站之间的路径损耗小于或等于该分流门限值时,确定该待分流用户设备通过该目标微小区进行通信,或者当该待分流用户设备与该目标微小区的微基站之间的路径损耗大于该分流门限值时,确定该待分流用户设备通过该宏小区进行通信。
结合第一方面或第一方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,该表示该目标微小区的传播环境的参数为信道增益,该分流单元具体用于当该待分流用户设备与该目标微小区的微基站之间的信道增益小于该分流门限值时,确定该待分流用户设备通过该宏小区进行通信,或者当该待分流用户设备与该目标微小区的微基站之间的信道增益大于或等于该分流门限值时,确定该待分流用户设备通过该目标微小区进行通信。
结合第一方面或第一方面的第一种至第七种可能的实现方式中的任一种可能的实现方式,在第一方面的第八种可能的实现方式中,当该分流单元确定该待分流用户设备通过该目标微小区进行通信时,该分流单元,还用于当该待分流用户设备为激活状态时,对该待分流用户设备进行切换,使得该待分流用户设备切换到该目标微小区;或当该待分流用户设备为空闲状态时,对该待分流用户设备进行小区重选,使得该待分流用户设备选择到该目标微小区;或当该待分流用户设备为尝试接入宏小区的状态时,对该待分流用户设备进行接入控制,使得该待分流用户设备接入到该目标微小区。
第二方面,提供了一种异构网中负载分流的方法,该异构网包括宏小区和该宏小区中的至少一个微小区,该方法包括:获取该至少一个微小区中的目标微小区的负载信息和该宏小区中位于该目标微小区周围的第一预设范围内的至少一个用户设备的业务分布信息;根据该目标微小区的负载信息和该业务分布信息,确定分流门限值,该分流门限值对应于表示该目标微小区的传播环境的参数;根据该分流门限值确定待分流用户设备是通过该宏小区进行通信还是通过该目标微小区进行通信。
结合第二方面,在第二方面的第一种可能的实现方式中,该根据该目标微小区的负载信息和该业务分布信息,确定分流门限值,包括:根据该业务分布信息,确定位于该目标微小区周围的第一预设范围内的至少一个用户设 备中待分流到该目标微小区的用户设备在该目标微小区的负载占用量;根据该负载占用量和该目标微小区的负载信息,确定该分流门限值。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,该目标微小区的负载信息包括该目标微小区的负载余量,该根据该负载占用量和该目标微小区的负载信息,确定该分流门限值,包括:当该负载占用量小于该目标微小区的负载余量时,确定该分流门限值。
结合第二方面或第二方面的第一种至第二种可能的实现方式中的任一种可能的实现方式,在第二方面的第三种可能的实现方式中,还包括:从该至少一个微小区中选择该目标微小区,其中该目标微小区的宏业务密集度为该至少一个微小区的宏业务密集度中的最大值,该宏业务密集度表示位于微小区周围的宏小区的用户设备的业务密集度。
结合第二方面或第二方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第二方面的第四种可能的实现方式中,该获取该宏小区中位于该目标微小区周围的第一预设范围内的至少一个用户设备的业务分布信息,包括:对该宏小区的覆盖区域进行栅格化,得到至少一个栅格;确定该至少一个栅格中的至少一个目标栅格,该至少一个目标栅格位于该目标微小区周围的第二预设范围内;确定该至少一个目标栅格对应的至少一个平均业务量为该业务分布信息。
结合第二方面或第二方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第二方面的第五种可能的实现方式中,该获取该宏小区中位于该目标微小区周围的第一预设范围内的至少一个用户设备的业务分布信息,包括:对该宏小区的网络覆盖区域进行分类,得到至少一个类;确定该至少一个类中的至少一个目标类,该至少一个目标类位于该目标微小区周围的第二预设范围内;确定该至少一个目标类对应的至少一个平均业务量为该业务分布信息。
结合第二方面或第二方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第二方面的第六种可能的实现方式中,该根据该分流门限值确定待分流用户设备是通过该宏小区进行通信还是通过该目标微小区进行通信,包括:该表示该目标微小区的传播环境的参数为路径损耗,当该待分流用户设备与该目标微小区的微基站之间的路径损耗小于或等于该分流门限值时,确定该待分流用户设备通过该目标微小区进行通信,或者当 该待分流用户设备与该目标微小区的微基站之间的路径损耗大于该分流门限值时,确定该待分流用户设备通过该宏小区进行通信。
结合第二方面或第二方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第二方面的第七种可能的实现方式中,该根据该分流门限值确定待分流用户设备是通过该宏小区进行通信还是通过该目标微小区进行通信,包括:该表示该目标微小区的传播环境的参数为信道增益,当该待分流用户设备与该目标微小区的微基站之间的信道增益小于该分流门限值时,确定该待分流用户设备通过该宏小区进行通信,或者当该待分流用户设备与该目标微小区的微基站之间的信道增益大于或等于该分流门限值时,确定该待分流用户设备通过该目标微小区进行通信。
结合第二方面或第二方面的第一种至第七种可能的实现方式中的任一种可能的实现方式,在第二方面的第八种可能的实现方式中,当该分流单元确定该待分流用户设备通过该目标微小区进行通信时,还包括:当该待分流用户设备为激活状态时,对该待分流用户设备进行切换,使得该待分流用户设备切换到该目标微小区;或当该待分流用户设备为空闲状态时,对该待分流用户设备进行小区重选,使得该待分流用户设备选择到该目标微小区;或当该待分流用户设备为尝试接入宏小区的状态时,对该待分流用户设备进行接入控制,使得该待分流用户设备接入到该目标微小区。
本发明实施例中的网络侧设备根据宏小区中位于微小区周围的用户设备的业务分布信息和微小区自身的负载状态,确定分流门限值。这样,对不同状态的用户设备进行分流时,不需要将全部用户设备重新判决。宏小区中不同状态的用户设备仅需要与该分流门限进行对比,使得满足分流条件的用户设备分流到微小区。因此,该方法能够简便地对不同状态的用户设备进行负载分流。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为可应用本发明实施例的场景的示意图。
图2为本发明一个实施例的网络侧设备的示意框图。
图3为本发明一个实施例的触发宏小区负载分流的流程图。
图4为本发明一个实施例的触发目标微小区负载分流的流程图。
图5是本发明另一实施例的网络侧设备的示意框图。
图6为本发明一个实施例的异构网中负载分流的方法的示意性流程图。
图7为本发明一个实施例的异构网中负载分流的过程的流程图。
图8是本发明另一实施例的网络侧设备的框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(简称GSM,英文Global System of Mobile communication)系统、码分多址(简称CDMA,英文Code Division Multiple Access)系统、宽带码分多址(简称WCDMA,英文Wideband Code Division Multiple Access)系统、通用分组无线业务(简称GPRS,英文General Packet Radio Service)、长期演进(简称LTE,英文Long Term Evolution)系统、LTE频分双工(简称FDD,英文Frequency Division Duplex)系统、LTE时分双工(简称TDD,英文Time Division Duplex)、通用移动通信系统(简称UMTS,英文Universal Mobile Telecommunication System)或全球互联微波接入(简称WiMAX,英文Worldwide Interoperability for Microwave Access)通信系统等。
用户设备(简称UE,英文User Equipment),也可称之为移动终端(简称MT,英文Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,简称RAN,英文Radio Access Network)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
基站,可以是GSM或CDMA中的基站(简称BTS,英文Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进 型基站(eNB或e-NodeB,evolved Node B),本发明并不限定。
图1为可应用本发明实施例的场景的示意图。
图1所示的场景为异构网场景。在图1中,在宏基站11的覆盖范围内,设置有微基站12,可以用来为热点区域提供局部的大容量覆盖。微基站12的覆盖范围较小,叠加在宏基站11的覆盖范围之上。
应理解,为了描述方便,图1中仅描述了一个宏基站和一个微基站。在本发明实施例中,异构网还可以包括至少一个宏基站和至少一个微基站。另外,一个宏基站中的微基站的数目也不限于一个,可以包括两个或者更多的微基站。可选地,作为另一实施例,一个微基站的覆盖范围还可以位于多个宏基站的覆盖范围的重叠区域。
还应理解,一个宏基站可以对应一个宏小区,一个微基站可以对应一个微小区。图1中宏基站11所在的宏小区中可以包括微基站12所在的微小区。通过调整微小区的服务范围,微小区可以在宏小区的负载较多时提供一定的负载分流。
图2为本发明一个实施例的网络侧设备的示意框图。图2所示的网络侧设备可以为异构网系统中的集中控制器。如图2所示,该网络侧设备20所在的异构网可以包括宏小区和该宏小区中的至少一个微小区,该网络侧设备20可以包括:
获取单元21用于获取该至少一个微小区中的目标微小区的负载信息和该宏小区中位于该目标微小区周围的第一预设范围内的至少一个用户设备的业务分布信息;
确定单元22用于根据该目标微小区的负载信息和该业务分布信息,确定分流门限值,该分流门限值对应于表示该目标微小区的传播环境的参数;
分流单元23用于根据该分流门限值确定待分流用户设备是通过该宏小区进行通信还是通过该目标微小区进行通信。
本发明实施例中的网络侧设备根据宏小区中位于微小区周围的用户设备的业务分布信息和微小区自身的负载状态,确定分流门限值。这样,对不同状态的用户设备进行分流时,不需要将全部用户设备重新判决。宏小区中不同状态的用户设备仅需要与该分流门限进行对比,使得满足分流条件的用户设备分流到微小区。因此,该方法能够简便地对不同状态的用户设备进行负载分流。
该集中控制器可以与宏小区和微小区存在连接,通过连接获取宏小区和微小区的用户设备的业务分布信息和微小区负载的信息,并通过连接向宏小区和微小区发送确定的分流门限值。
应理解,本发明实施例中的宏小区为待进行负载分流的小区。该宏小区中可以包括至少一个微小区。该宏小区的负载需要分流到该至少一个微小区中包括的目标微小区,即扩大了该目标微小区的服务范围来接入更多的用户设备,以减轻宏小区的负载阻塞。
为描述简便,本发明实施例仅对一个目标微小区进行描述。应理解,本发明实施例可以利用多个目标微小区进行分流宏小区的负载。
第一预设范围可以根据实际需求进行预设。例如,若需要分流的用户设备较多时,该第一预设范围可以取较大值;若需要分流的用户设备较少时,该第一预设范围可以取较小值。该第一预设范围还可以根据微基站的接入能力进行预设。例如,可以根据微基站的接入能力进行预设该第一预设范围。若目标微小区的微基站的接入能力较强,该第一预设范围可以取较大值;若目标微小区的微基站的接入能力较弱,该第一预设范围可以取相应的较小值。
应理解,至少一个用户设备的业务分布信息可以表示该至少一个用户设备的业务分布状态。该业务分布状态可以包含该用户设备的位置信息和业务量。
小区的负载可以分为空口负载和回程负载。通常地,空口负载可以定义为无线资源的使用率,回程负载可以定义为回程链路的平均速率与最大标称速率的比值。例如,在长期演进(简称LTE,英文Long Term Evolution)网络中,空口负载可以定义为平均分配资源块(简称RB,英文Resource Block)数和总RB数的比值。
蜂窝网络的基站具有空口链路和回程链路两跳来完成用户设备与核心网之间的数据传输。对于每个小区来说,空口链路和回程链路这两跳链路中任一跳发生负载阻塞都会影响该小区的服务能力。因此,每个小区都具有两个负载门限:空口负载门限和回程负载门限。
应理解,目标微小区的负载信息可以表示该目标微小区的负载状态。具体地,该目标微小区的负载信息可以为该目标微小区的负载占用量和该目标微小区的负载门限,也可以为该目标微小区的负载余量。应理解,该负载余 量可以由负载门限和负载占用量的差值确定,表示剩余的可占用负载量。
具体地,目标微小区的负载占用量可以包括目标微小区的空口负载占用量和回程负载占用量。该目标微小区的负载门限可以包括目标微小区的空口负载门限和回程负载门限。目标微小区的负载余量可以包括空口负载余量和回程负载余量。
可选地,作为一个实施例,本发明实施例中的确定单元22可以根据至少一个用户设备的业务量和目标微小区的负载信息,基于现有算法直接计算得出该分流门限值。
可选地,作为另一实施例,本发明实施例中的确定单元22也可以根据至少一个用户设备的业务量和目标微小区的负载信息,从指定的多个分流门限值中选择最优分流门限值。
可选地,作为另一实施例,本发明实施例中的确定单元22还可以根据至少一个用户设备的业务量和目标微小区的负载信息,确定分流门限值的调整步长,根据该步长进行寻优得到该分流门限值。
对于如何根据该至少一个用户设备的业务分布信息和目标微小区的负载信息,确定分流门限值,本发明实施例并不限于此。
应理解,该分流门限值对应于表示目标微小区的传播环境的参数。实际应用中,该分流门限值可以为路径损耗,也可以为信道增益。
可选地,作为一个实施例,分流单元23可以根据该分流门限值,确定待分流用户设备是通过该宏小区进行通信还是通过目标微小区进行通信。即用户设备通过目标微小区进行通信时,完成了对宏小区的用户设备的分流。应理解,该待分流用户设备可以为不同状态的用户设备。例如,该待分流用户设备可以为当前宏小区的激活用户设备,即产生业务的用户设备,也可以为当前宏小区的空闲用户设备,即未产生业务的用户设备,还可以为当前宏小区的尝试接入宏小区的用户设备。本发明实施例对待分流用户设备的状态不做限定。
本发明实施例中的网络侧设备根据宏小区中位于微小区周围的用户设备的业务分布信息和微小区自身的负载状态,确定分流门限值。这样,对不同状态的用户设备进行分流时,不需要将全部用户设备重新判决。宏小区中不同状态的用户设备仅需要与该分流门限进行对比,使得满足分流条件的用户设备分流到微小区。因此,该方法能够简便地对不同状态的用户设备进行 负载分流。
对于宏小区来说,当空口负载和回程负载中任一跳的负载超过相应的负载门限,则该宏小区的负载超过正常水平,需要启动例如触发分流宏小区负载等的相应机制来保证宏小区的负载保持稳定。
图3为本发明一个实施例的触发宏小区负载分流的流程图。图3所示的触发宏小区负载分流的过程可以由网络侧设备执行。宏小区包括空口负载门限和回程负载门限。如图3所示,在满足条件一或满足条件二时,网络侧设备触发负载分流,即网络侧设备对该宏小区的负载进行分流。该条件一为宏小区的空口负载大于空口负载门限,该条件二为宏小区的回程负载大于回程负载门限。
应理解,满足条件一和条件二中的任一个,网络侧设备即触发负载分流。因此,当条件一和条件二同时不满足时,网络侧设备不触发负载分流。可选地,网络侧设备可以进行周期性判别该条件一和条件二。
可选地,作为一个实施例,宏小区可以测量空口负载和回程负载并主动上报给网络侧设备。可选地,作为另一实施例,网络侧设备也可以请求该宏小区上报该宏小区的空口负载和回程负载。
对于如何触发宏小区的负载分流,本发明实施例并不限于此。
相应地,微小区也包括空口负载门限和回程负载门限,当微小区具有空闲资源时,能够分流宏小区的负载。微小区具有空闲资源表示该微小区的空口负载和回程负载的两跳小于相应的负载门限。具体地,下面将结合图4进行详细描述。
图4为本发明一个实施例的启动微小区负载分流的流程图。图4所示的启动微小区负载分流的过程可以由网络侧设备执行。微小区包括空口负载门限和回程负载门限。如图4所示,
在满足条件三且满足条件四时,网络侧设备启动微小区负载分流,即网络侧设备将宏小区的负载分流到微小区。该条件三为微小区的空口负载小于空口负载门限,该条件四为微小区的回程负载小于回程负载门限。
应理解,同时满足条件三和条件四,网络侧设备即启动微小区负载分流。因此,当条件三和条件四中的任一个不满足时,该微小区不能够进行负载分流。
可选地,作为一个实施例,微小区可以测量空口负载和回程负载并主动 上报给网络侧设备。可选地,作为另一实施例,网络侧设备也可以请求该微小区上报该微小区的空口负载和回程负载。
对于如何启动微小区的负载分流,本发明实施例并不限于此。
图5是本发明另一实施例的网络侧设备的示意框图。该网络侧设备20还包括选择单元24。图5中与图2中相同的设备采用的名称和标号与图2中的设备采用的名称和标号相同。
选择单元24用于从该至少一个微小区中选择目标微小区,其中该目标微小区的宏业务密集度为该至少一个微小区的宏业务密集度中的最大值,该宏业务密集度表示位于微小区周围的宏小区的用户设备的业务密集度。
本发明实施例中的网络侧设备根据宏小区中位于微小区周围的用户设备的业务量和微小区自身的负载状态,确定分流门限值。这样,对不同状态的用户设备进行分流时,不需要将全部用户设备重新判决。宏小区中不同状态的用户设备仅需要与该分流门限进行对比,使得满足分流条件的用户设备分流到微小区。因此,该方法能够简便地对不同状态的用户设备进行负载分流。
另外,网络侧设备可以从多个微小区中选择业务密集度最大的微小区进行分流。该方法可以有效提高分流效率,提高整个网络的服务质量。
应理解,用于分流宏小区的负载的目标微小区在同时满足图4所示的条件三和条件四时,才具有空闲资源分流宏小区的负载。
还应理解,至少一个微小区中的目标微小区用于分流宏小区的负载。可选地,本发明实施例的网络侧设备可以基于微基站的接入能力来选择目标微小区。例如,微小区的微基站的接入能力强,则选择该微小区为目标微小区。本发明实施例的网络侧设备也可以基于微小区周围的宏小区的用户设备的业务量来选择目标微小区。例如,若微小区周围的宏小区的用户设备的业务密集,则选择该微小区为目标微小区。
可选地,作为另一实施例,选择单元24选择目标微小区的流程可以如下:
获取至少一个微小区周围的宏小区的用户设备的业务分布信息,每个微小区对应一个业务分布信息;
根据该用户设备的业务分布信息,确定该至少一个微小区对应的至少一个密集参数,该至少一个密集参数分别表示对应的该至少一个微小区周围的 业务密集度;
确定该至少一个密集参数中的最大值对应的微小区为该目标微小区。
至少一个微小区周围的区域可以根据实际需求进行预设。例如,若需要分流的用户设备较多时,该至少一个微小区周围的区域可以取较大值;若需要分流的用户设备较少时,该至少一个微小区周围的区域可以取较小值。该至少一个微小区周围的区域还可以根据微基站的接入能力进行预设。例如,可以根据微基站的接入能力进行预设该至少一个微小区周围的区域。若目标微小区的微基站的接入能力较强,该至少一个微小区周围的区域可以取较大值;若目标微小区的微基站的接入能力较弱,该至少一个微小区周围的区域可以取相应的较小值。
网络侧设备获取宏小区的至少一个用户设备的业务量和获取宏小区的至少一个微小区周围的宏小区的用户设备的业务量的方法可以相同。不同的是,该至少一个用户设备位于一个微小区周围,即目标微小区周围,至少一个微小区周围的宏小区的用户设备分别位于该至少一个微小区周围。下面针对网络侧设备获取至少一个用户设备的业务量的流程进行详细描述。
可选地,作为一个实施例,网络侧设备20可以对宏小区的覆盖区域进行栅格化,得到至少一个栅格;确定该至少一个栅格中的至少一个目标栅格,该至少一个目标栅格位于该目标微小区周围的第二预设范围内;确定该至少一个目标栅格对应的至少一个平均业务量为该业务分布信息。
应理解,每个栅格中可以包括至少一个用户设备,该栅格中的用户设备与该目标微小区的微基站之间分别对应一个信道。该栅格中不同的用户设备与目标微小区的微基站之间的信道具有相似性。
具体地,栅格是地理上连续的较小区域,该区域内的不同用户设备到基站之间的信道具有较强的相似性。网络侧可以从用户设备获取该用户设备的地理位置,并根据该地理位置确定每个用户设备所属的栅格。网络侧设备可以从该至少一个栅格中确定至少一个目标栅格,该至少一个目标栅格位于目标微小区周围的第二预设范围内。网络侧设备可以确定该至少一个目标栅格中每个目标栅格内用户设备的平均业务量。因此,至少一个目标栅格对应的至少一个平均业务量构成了该宏小区的至少一个用户设备的业务分布信息。
可选地,作为另一实施例,网络侧设备20还可以对宏小区的覆盖区域进行分类,得到至少一个类;确定该至少一个类中的至少一个目标类,该至 少一个目标类位于该目标微小区周围的第二预设范围内;确定该至少一个目标类对应的至少一个平均业务量为该业务分布信息。
应理解,每个类中可以包括至少一个用户设备,该类中的用户设备与该目标微小区的微基站之间分别对应一个信道。该类中不同的用户设备与目标微小区的微基站之间的信道具有相似性。
具体地,同一类的不同用户设备到基站之间的信道具有较强的相似性。网络侧设备可以从该至少一个类中确定至少一个目标类,该至少一个目标类位于目标微小区周围的第二预设范围内。网络侧设备可以确定该至少一个目标类中每个目标类内用户设备的平均业务量。因此,至少一个目标类对应的至少一个平均业务量构成了该宏小区的至少一个用户设备的业务分布信息。
相应地,对于网络侧设备获取宏小区的至少一个微小区周围的用户设备的业务分布信息也可以参照上述获取宏小区的至少一个用户设备的业务分布信息的流程,在此不详细加以描述。
至少一个目标栅格或类位于目标微小区周围的第二预设范围内。该第二预设范围可以根据实际需求进行预设。例如,若需要分流的用户设备较多时,该第二预设范围可以取较大值;若需要分流的用户设备较少时,该第二预设范围可以取较小值。该第二预设范围还可以根据微基站的接入能力进行预设。例如,可以根据微基站的接入能力进行预设该第二预设范围。若目标微小区的微基站的接入能力较强,该第二预设范围可以取较大值;若目标微小区的微基站的接入能力较弱,该第二预设范围可以取相应的较小值。
可选地,作为另一实施例,一个微小区可以对应一个密集参数,一个微小区周围对应至少一个栅格或类。该密集参数可以表示该微小区周围的宏小区的用户设备的业务密集度。该密集参数的计算公式可以如下:
Figure PCTCN2014088669-appb-000001
其中,i为至少一个微小区的编号,gn,i为栅格n或类n到对应的微小区i的信道增益,wn为栅格n或类n的平均业务量,Ui为至少一个微小区周围的宏小区的栅格n或类n的集合。n为栅格或类的个数。gn,i可以分为上行信道增益或者下行信道增益。上行信道增益可以由基站测量,下行信道增益可以由用户设备测量。该密集参数utilityi的值越大,表明该微小区i周围的宏小区的用户设备的业务越密集。
可选地,作为另一实施例,本发明实施例的网络侧设备可以标记至少一个微小区中未分流的微小区和已分流的微小区。对于未分流的微小区,网络侧设备可以对该未分流的微小区的多个密集参数进行由大到小排序。在选择目标微小区时,每次均选择密集参数最大的微小区作为目标微小区对宏小区的负载进行分流。应理解,当前目标微小区进行分流之后,若宏小区仍然满足触发宏小区负载分流,则再次从剩余的未分流的微小区中选择目标微小区再次进行分流,直到宏小区不满足触发宏小区负载分流条件或没有未分流的微小区可用。
可选地,作为一个实施例,确定单元22具体用于
根据该业务分布信息,确定位于该目标微小区周围的第一预设范围内的至少一个用户设备中待分流到该目标微小区的用户设备在该目标微小区的负载占用量;
根据该负载占用量和该目标微小区的负载信息,确定该分流门限值。
目标微小区的负载信息可以包括该目标微小区的负载余量,该确定单元22,具体用于
当负载占用量小于该目标微小区的负载余量时,确定分流门限值。
下面将对如何确定分流门限值进行详细描述。
具体地,首先,根据至少一个用户设备的业务分布信息,确定待分流到该目标微小区的用户设备。该用户设备可以位于目标微小区的当前服务范围。该目标微小区的当前服务范围可以由现有技术确定,也可以在此次触发负载分流之前采用本发明实施例的方法得到该当前服务范围。应理解,该当前服务范围内的至少一个待分流到目标微小区的用户设备尚未进行分流,且该当前服务范围可能不是最优的服务范围。因此,采用本发明实施例的方法可以确定最优分流门限值。
进而,对于该待分流到目标微小区的用户设备中的每一个用户设备,计算该每一个用户设备在目标微小区的负载占用量。该负载占用量可以包括空口负载占用量和回程负载占用量。计算空口负载占用量和回程负载占用量需要先得到该用户设备在目标微小区内可获得的速率和占用资源数。具体公式可以如下:
Figure PCTCN2014088669-appb-000002
Figure PCTCN2014088669-appb-000003
其中,rmacro为待分流到目标微小区的用户设备中的任一用户设备在宏小区时获得的速率,rpico为待分流到目标微小区的用户设备中的任一用户设备分流到该目标微小区时可获得的速率,wmacro为待分流到目标微小区的用户设备中的任一用户设备在宏小区占用的资源数,wpico为该待分流到目标微小区的用户设备中的任一用户设备在目标微小区占用的资源数,pmacro为宏小区的最大发射功率,ppico为目标微小区的最大发射功率,gmacro为待分流到目标微小区的用户设备中的任一用户设备到宏小区的宏基站之间的信道增益,gpico为待分流到目标微小区的用户设备中的任一用户设备到微小区的微基站之间的信道增益。
pmacro和ppico为已知量,wmacro、gmacro和gpico可以由用户设备测量并上报给网络侧设备。通过条件rpico=rmacro可以得到wpico
最后,计算当前分流门限值下将被分流到目标微小区的待分流到目标微小区的用户设备在目标微小区的负载占用量。计算公式可以如下:
Figure PCTCN2014088669-appb-000004
Figure PCTCN2014088669-appb-000005
其中,delta_load_air为至少一个待分流到目标微小区的用户设备在目标微小区的空口负载占用量,delta_load_backhaul为至少一个待分流到目标微小区的用户设备在目标微小区的回程负载占用量,wi,pico表示至少一个待分流到目标微小区的用户设备中的用户设备i在目标微小区占用的资源数,ri,pico为至少一个待分流到目标微小区的用户设备中的用户设备i在目标微小区可获得的速率,W为目标微小区的总资源数,R为目标微小区的回程链路的最大标称速率。
可选地,作为另一实施例,本发明实施例的网络侧设备还可以获取包括至少一个待分流到目标微小区的用户设备的至少一个栅格或类。这样,计算该至少一个待分流到目标微小区的用户设备的每一个用户设备在目标微小区的负载占用量则可以替换为计算该至少一个栅格或类在目标微小区的平 均负载占用量。
其中,rmacro为该至少一个栅格或类中的任一栅格或类中的用户设备在宏小区时获得的平均速率,rpico为该至少一个栅格或类中的任一栅格或类中的用户设备分流到该目标微小区时可获得的平均速率,wmacro为该至少一个栅格或类中的任一栅格或类中的用户设备在宏小区占用的平均资源数,wpico为该至少一个栅格或类中的任一栅格或类中的用户设备在目标微小区占用的平均资源数,pmacro为宏小区的最大发射功率,ppico为目标微小区的最大发射功率,gmacro为该至少一个栅格或类中的任一栅格或类到宏小区的宏基站之间的信道增益,gpico为该至少一个栅格或类中的任一栅格或类到微小区的微基站之间的信道增益。
具体地,分流门限值以路径损耗表示时,分流门限值的优化公式可以如下:
Figure PCTCN2014088669-appb-000006
其中,max函数为取最大值函数,δ1为目标微小区的空口负载余量,δ2为目标微小区的回程负载余量。上述公式表示,当满足delta_load-air小于目标微小区的空口负载余量且delta_load_backhaul小于目标微小区的回程负载余量时,取的该分流门限值的最大值为最优分流门限值。
同理,分流门限值以信道增益表示时,该max函数可以替换为min函数,该min函数为取最小值函数。
可选地,作为另一实施例,表示该目标微小区的传播环境的参数为路径损耗,该分流单元23具体用于当该待分流用户设备与该目标微小区的微基站之间的路径损耗小于或等于该分流门限值时,确定该待分流用户设备通过该目标微小区进行通信,或者当该待分流用户设备与该目标微小区的微基站之间的路径损耗大于该分流门限值时,确定该待分流用户设备通过该宏小区进行通信。
可选地,作为另一实施例,该表示该目标微小区的传播环境的参数为信道增益,该分流单元23具体用于当该待分流用户设备与该目标微小区的微基站之间的信道增益小于该分流门限值时,确定该待分流用户设备通过该宏小区进行通信,或者当该待分流用户设备与该目标微小区的微基站之间的信 道增益大于或等于该分流门限值时,确定该待分流用户设备通过该目标微小区进行通信。
可选地,作为另一实施例,当分流单元23确定该待分流用户设备通过该目标微小区进行通信时,该分流单元,还用于
当该待分流用户设备为激活状态时,对该待分流用户设备进行切换,使得该待分流用户设备切换到该目标微小区;或
当该待分流用户设备为空闲状态时,对该待分流用户设备进行小区重选,使得该待分流用户设备选择到该目标微小区;或
当该待分流用户设备为尝试接入宏小区的状态时,对该待分流用户设备进行接入控制,使得该待分流用户设备接入到该目标微小区。
具体地,网络侧设备将激活用户设备切换到目标微小区的方式有多种。例如,网络侧设备可以通过修改激活用户设备的小区选择偏置,让激活用户设备选择切换到目标微小区。网络侧也可以直接向激活用户设备发送指示信息,指示该激活用户设备切换到目标微小区。
可选地,网络侧设备可以修改空闲用户设备的小区选择偏置,使得该空闲用户设备可以主动选择该目标微小区为服务小区。
可选地,网络侧设备可以向尝试接入宏小区的用户设备发送指示信息,指示该用户设备接入目标微小区。
图6为本发明一个实施例的异构网中负载分流的方法的示意性流程图。该异构网包括宏小区和该宏小区中的至少一个微小区。该方法包括:
601,获取该至少一个微小区中的目标微小区的负载信息和该宏小区中位于该目标微小区周围的第一预设范围内的至少一个用户设备的业务分布信息;
602,根据该目标微小区的负载信息和该业务分布信息,确定分流门限值,该分流门限值对应于表示该目标微小区的传播环境的参数;
603,根据该分流门限值确定待分流用户设备是通过该宏小区进行通信还是通过该目标微小区进行通信。
本发明实施例中的网络侧设备根据宏小区中位于微小区周围的用户设备的业务分布信息和微小区自身的负载状态,确定分流门限值。这样,对不同状态的用户设备进行分流时,不需要将全部用户设备重新判决。宏小区中不同状态的用户设备仅需要与该分流门限进行对比,使得满足分流条件的用 户设备分流到微小区。因此,该方法能够简便地对不同状态的用户设备进行负载分流。
应理解,图6的方法可以由图1至图5涉及的网络侧设备执行。为避免重复,此处不再详细描述。
可选地,作为另一实施例,在602中,网络侧设备可以根据该业务分布信息,确定位于该目标微小区周围的第一预设范围内的至少一个用户设备中待分流到该目标微小区的用户设备在该目标微小区的负载占用量;根据该负载占用量和该目标微小区的负载信息,确定该分流门限值。
可选地,作为另一实施例,网络侧设备可以当该负载占用量小于该目标微小区的负载余量时,确定该分流门限值。
可选地,作为另一实施例,该方法还可以包括:从该至少一个微小区中选择该目标微小区,其中该目标微小区的宏业务密集度为该至少一个微小区的宏业务密集度中的最大值,该宏业务密集度表示位于微小区的服务范围内的宏小区的用户设备的业务密集度。
可选地,作为另一实施例,在601中,网络侧设备可以对该宏小区的覆盖区域进行栅格化,得到至少一个栅格;确定该至少一个栅格中的至少一个目标栅格,该至少一个目标栅格位于该目标微小区周围的第二预设范围内;确定该至少一个目标栅格对应的至少一个平均业务量为该业务分布信息。
可选地,作为另一实施例,在601中,网络侧设备可以对该宏小区的网络覆盖区域进行分类,得到至少一个类;确定该至少一个类中的至少一个目标类,该至少一个目标类位于该目标微小区周围的第二预设范围内;确定该至少一个目标类对应的至少一个平均业务量为该业务分布信息。
可选地,作为另一实施例,在603中,该表示该目标微小区的传播环境的参数为路径损耗,当该待分流用户设备与该目标微小区的微基站之间的路径损耗小于或等于该分流门限值时,确定该待分流用户设备通过该目标微小区进行通信,或者当该待分流用户设备与该目标微小区的微基站之间的路径损耗大于该分流门限值时,确定该待分流用户设备通过该宏小区进行通信。
可选地,作为另一实施例,在603中,该表示该目标微小区的传播环境的参数为信道增益,当该待分流用户设备与该目标微小区的微基站之间的信道增益小于该分流门限值时,确定该待分流用户设备通过该宏小区进行通信,或者当该待分流用户设备与该目标微小区的微基站之间的信道增益大于 或等于该分流门限值时,确定该待分流用户设备通过该目标微小区进行通信。
可选地,作为另一实施例,当该分流单元确定该待分流用户设备通过该目标微小区进行通信时,还包括:
当该待分流用户设备为激活状态时,对该待分流用户设备进行切换,使得该待分流用户设备切换到该目标微小区;或
当该待分流用户设备为空闲状态时,对该待分流用户设备进行小区重选,使得该待分流用户设备选择到该目标微小区;或
当该待分流用户设备为尝试接入宏小区的状态时,对该待分流用户设备进行接入控制,使得该待分流用户设备接入到该目标微小区。
图7为本发明一个实施例的异构网中负载分流的过程的流程图。如图7所示,该负载分流的过程可以由图1-图6涉及的网络侧设备执行。异构网中包括宏小区和该宏小区的至少一个微小区。该过程包括:
701,获取至少一个微小区周围的宏小区的用户设备的业务分布信息。
可选地,网络侧设备可以对宏小区的覆盖区域进行栅格化,从得到的多个栅格中选择位于微小区周围的栅格。该栅格中不同的用户设备与微小区的微基站之间的信道具有相似性。具体地,网络侧设备获取宏小区的用户设备的地理位置,根据用户设备的地理位置识别每个用户设备属于的栅格,并统计每个栅格内的用户设备的平均业务量。该微小区周围的栅格的平均业务量构成了至少一个微小区周围的宏小区的用户设备的业务分布信息。
可选地,网络侧设备可以对宏小区的覆盖区域进行分类,从得到的多个类中选择位于微小区周围的类。该类中不同的用户设备与微小区的微基站之间的信道具有相似性。该微小区周围的类的平均业务量构成了至少一个微小区周围的宏小区的用户设备的业务分布信息。
702,触发宏小区负载分流。
具体地,该触发宏小区负载分流的方法与图3的方法相同。为避免重复,此处不再详细描述。
当宏小区的空口负载大于空口负载门限或宏小区的回程负载大于回程负载门限时,网络侧设备触发宏小区负载分流。
703,触发微小区负载分流。
具体地,该触发微小区负载分流的方法与图4的方法相同。为避免重复, 此处不再详细描述。
当微小区的空口负载小于空口负载门限且微小区的回程负载小于回程负载门限时,网络侧设备触发微小区负载分流。
704,选择待分流的目标微小区。
一个微小区可以对应一个密集参数,一个微小区周围对应至少一个栅格或类。该密集参数可以表示该微小区周围的宏小区的用户设备的业务密集度。该密集参数的计算公式可以如下:
Figure PCTCN2014088669-appb-000007
其中,i为至少一个微小区的编号,gn,i为栅格n或类n到对应的微小区i的信道增益,wn为栅格n或类n的平均业务量,Ui为至少一个微小区周围的宏小区的栅格n或类n的集合。n为栅格或类的个数。gn,i可以分为上行信道增益或者下行信道增益。上行信道增益可以由基站测量,下行信道增益可以由用户设备测量。该密集参数utilityi的值越大,表明该微小区i周围的宏小区的用户设备的业务越密集。
可选地,作为另一实施例,本发明实施例的网络侧设备可以标记至少一个微小区中未分流的微小区和已分流的微小区。对于未分流的微小区,网络侧设备可以对该未分流的微小区的多个密集参数进行由大到小排序。在选择目标微小区时,每次均选择密集参数最大的微小区作为目标微小区对宏小区的负载进行分流。应理解,当前目标微小区进行分流之后,若宏小区仍然满足触发宏小区负载分流,则再次从剩余的未分流的微小区中选择目标微小区再次进行分流,直到宏小区不满足触发宏小区负载分流条件或没有未分流的微小区可用。
705,计算分流门限值。
具体地,首先,根据目标微小区周围的用户设备的业务分布信息,确定待分流到该目标微小区的用户设备。该待分流到该目标微小区的用户设备可以位于目标微小区的当前服务范围。该目标微小区的当前服务范围可以由现有技术确定,也可以在此次触发负载分流之前采用本发明实施例的方法得到该当前服务范围。应理解,该当前服务范围内的待分流到该目标微小区的用户设备尚未进行分流,且该当前服务范围可能不是最优的服务范围。因此,采用本发明实施例的方法可以确定最优分流门限值。
进而,对于待分流到该目标微小区的用户设备中的每一个用户设备,计算该每一个用户设备在目标微小区的负载占用量。该负载占用量可以包括空口负载占用量和回程负载占用量。计算空口负载占用量和回程负载占用量需要先得到待分流到该目标微小区的用户设备在目标微小区内可获得的速率和占用资源数。具体公式可以如下:
Figure PCTCN2014088669-appb-000008
Figure PCTCN2014088669-appb-000009
其中,rmaero为待分流到该目标微小区的用户设备中的任一用户设备在宏小区时获得的速率,rpico为该待分流到该目标微小区的用户设备中的任一用户设备分流到该目标微小区时可获得的速率,wmacro为该待分流到该目标微小区的用户设备中的任一用户设备在宏小区占用的资源数,wpico为该待分流到该目标微小区的用户设备中的任一用户设备在目标微小区占用的资源数,pmacro为宏小区的最大发射功率,ppico为目标微小区的最大发射功率,gmacro为待分流到该目标微小区的用户设备中的任一用户设备到宏小区的宏基站之间的信道增益,gpico为待分流到该目标微小区的用户设备中的任一用户设备到微小区的微基站之间的信道增益。
pmacro和ppico为已知量,wmacro、gmacro和gpico可以由用户设备测量并上报给网络侧设备。通过条件rpico=rmacro可以得到wpico
最后,计算当前分流门限值下将被分流到目标微小区的用户设备在目标微小区的负载占用量。计算公式可以如下:
Figure PCTCN2014088669-appb-000010
Figure PCTCN2014088669-appb-000011
其中,delta_load_air为待分流到该目标微小区的用户设备在目标微小区的空口负载占用量,delta_load_backhaul为待分流到该目标微小区的用户设备在目标微小区的回程负载占用量,wi,pico表示待分流到该目标微小区的用户设备中的用户设备i在目标微小区占用的资源数,ri,pico为待分流到该目标微小区 的用户设备中的用户设备i在目标微小区可获得的速率,W为目标微小区的总资源数,R为目标微小区的回程链路的最大标称速率。
可选地,作为另一实施例,本发明实施例的网络侧设备还可以获取包括待分流到该目标微小区的用户设备的至少一个栅格或类。这样,计算该待分流到该目标微小区的用户设备的每一个用户设备在目标微小区的负载占用量则可以替换为计算该至少一个栅格或类在目标微小区的平均负载占用量。
其中,rmacro为该至少一个栅格或类中的任一栅格或类中的用户设备在宏小区时获得的平均速率,rpico为该至少一个栅格或类中的任一栅格或类中的用户设备分流到该目标微小区时可获得的平均速率,wmacro为该至少一个栅格或类中的任一栅格或类中的用户设备在宏小区占用的平均资源数,wpico为该至少一个栅格或类中的任一栅格或类中的用户设备在目标微小区占用的平均资源数,pmacro为宏小区的最大发射功率,ppico为目标微小区的最大发射功率,gmacro为该至少一个栅格或类中的任一栅格或类到宏小区的宏基站之间的信道增益,gpico为该至少一个栅格或类中的任一栅格或类到微小区的微基站之间的信道增益。
具体地,分流门限值以路径损耗表示时,分流门限值的优化公式可以如下:
Figure PCTCN2014088669-appb-000012
其中,max函数为取最大值函数,δ1为目标微小区的空口负载余量,δ2为目标微小区的回程负载余量。上述公式表示,当满足delta_load_air小于目标微小区的空口负载余量且delta_load_backhaul小于目标微小区的回程负载余量时,取的该分流门限值的最大值为最优分流门限值。
同理,分流门限值以信道增益表示时,该max函数可以替换为min函数,该min函数为取最小值函数。
706,将待分流用户设备进行分流。
具体地,若表示该目标微小区的传播环境的参数为路径损耗。则当该待分流用户设备与该目标微小区的微基站之间的路径损耗小于或等于该分流门限值时,网络侧设备确定该待分流用户设备通过该目标微小区进行通信,或者当该待分流用户设备与该目标微小区的微基站之间的路径损耗大于该 分流门限值时,确定该待分流用户设备通过该宏小区进行通信。
若表示该目标微小区的传播环境的参数为信道增益。则当该待分流用户设备与该目标微小区的微基站之间的信道增益小于该分流门限值时,确定该待分流用户设备通过该宏小区进行通信,或者当该待分流用户设备与该目标微小区的微基站之间的信道增益大于或等于该分流门限值时,确定该待分流用户设备通过该目标微小区进行通信。
当网络侧设备确定该待分流用户设备通过该目标微小区进行通信时,
若待分流用户设备为激活状态时,网络侧设备对该待分流用户设备进行切换,使得该待分流用户设备切换到该目标微小区;或
若该待分流用户设备为空闲状态时,网络侧设备对该待分流用户设备进行小区重选,使得该待分流用户设备选择到该目标微小区;或
若该待分流用户设备为尝试接入宏小区的状态时,网络侧设备对该待分流用户设备进行接入控制,使得该待分流用户设备接入到该目标微小区。
具体地,网络侧设备将激活用户设备切换到目标微小区的方式有多种。例如,网络侧设备可以通过修改激活用户设备的小区选择偏置,让激活用户设备选择切换到目标微小区。网络侧也可以直接向激活用户设备发送指示信息,指示该激活用户设备切换到目标微小区。
可选地,网络侧设备可以修改空闲用户设备的小区选择偏置,使得该空闲用户设备可以主动选择该目标微小区为服务小区。
可选地,网络侧设备可以向尝试接入宏小区的用户设备发送指示信息,指示该用户设备接入目标微小区。
本发明实施例中的网络侧设备根据宏小区中位于微小区周围的用户设备的业务分布信息和微小区自身的负载状态,确定分流门限值。这样,对不同状态的用户设备进行分流时,不需要将全部用户设备重新判决。宏小区中不同状态的用户设备仅需要与该分流门限进行对比,使得满足分流条件的用户设备分流到微小区。因此,该方法能够简便地对不同状态的用户设备进行负载分流。
图8是本发明另一实施例的网络侧设备的框图。图8的网络侧设备80可用于实现上述方法实施例中各步骤及方法。该网络侧设备所在的异构网包括宏小区和该宏小区中的至少一个微小区。图8的网络侧设备80包括处理器81、存储器82和接收电路83。处理器81、存储器82和接收电路83通过 总线系统89连接。
此外,网络侧设备80还可以包括天线115等。处理器81控制网络侧设备80的操作。存储器82可以包括只读存储器和随机存取存储器,并向处理器81提供指令和数据。存储器82的一部分还可以包括非易失行随机存取存储器(NVRAM)。具体的应用中,发射电路114和接收电路83可以耦合到天线115。网络侧设备80的各个组件通过总线系统89耦合在一起,其中总线系统89除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统89。
处理器81可能是一种集成电路芯片,具有信号的处理能力。上述的处理器81可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。处理器81读取存储器82中的信息,结合其硬件控制网络侧设备80的各个部件。
图6的方法可以在图8的网络侧设备80中实现,为避免重复,不再详细描述。
具体地,在处理器81的控制之下,网络侧设备80完成以下操作:
获取该至少一个微小区中的目标微小区的负载信息和该宏小区中位于该目标微小区周围的第一预设范围内的至少一个用户设备的业务分布信息;
根据该目标微小区的负载信息和该业务分布信息,确定分流门限值,该分流门限值对应于表示该目标微小区的传播环境的参数;
根据该分流门限值确定待分流用户设备是通过该宏小区进行通信还是通过该目标微小区进行通信。
本发明实施例中的网络侧设备根据宏小区中位于微小区周围的用户设备的业务量和微小区自身的负载状态,确定分流门限值。这样,对不同状态的用户设备进行分流时,不需要将全部用户设备重新判决。宏小区中不同状态的用户设备仅需要与该分流门限进行对比,使得满足分流条件的用户设备分流到微小区。因此,该方法能够简便地对不同状态的用户设备进行负载分流。
可选地,作为另一实施例,处理器81可以根据该业务分布信息,确定 位于该目标微小区周围的第一预设范围内的至少一个用户设备中待分流到该目标微小区的用户设备在该目标微小区的负载占用量;根据该负载占用量和该目标微小区的负载信息,确定该分流门限值。
可选地,作为另一实施例,当该负载占用量小于该目标微小区的负载余量时,确定该分流门限值。
可选地,作为另一实施例,处理器81可以从该至少一个微小区中选择该目标微小区,其中该目标微小区的宏业务密集度为该至少一个微小区的宏业务密集度中的最大值,该宏业务密集度表示位于微小区周围的宏小区的用户设备的业务密集度。
可选地,作为另一实施例,处理器81可以对该宏小区的覆盖区域进行栅格化,得到至少一个栅格;确定该至少一个栅格中的至少一个目标栅格,该至少一个目标栅格位于该目标微小区周围的第二预设范围内;确定该至少一个目标栅格对应的至少一个平均业务量为该业务分布信息。
可选地,作为另一实施例,处理器81可以对该宏小区的网络覆盖区域进行分类,得到至少一个类;确定该至少一个类中的至少一个目标类,该至少一个目标类位于该目标微小区周围的第二预设范围内;确定该至少一个目标类对应的至少一个平均业务量为该业务分布信息。
可选地,作为另一实施例,表示该目标微小区的传播环境的参数为路径损耗,处理器81可以当该待分流用户设备与该目标微小区的微基站之间的路径损耗小于或等于该分流门限值时,确定该待分流用户设备通过该目标微小区进行通信,或者当该待分流用户设备与该目标微小区的微基站之间的路径损耗大于该分流门限值时,确定该待分流用户设备通过该宏小区进行通信。
可选地,作为另一实施例,表示该目标微小区的传播环境的参数为信道增益,处理器81当该待分流用户设备与该目标微小区的微基站之间的信道增益小于该分流门限值时,确定该待分流用户设备通过该宏小区进行通信,或者当该待分流用户设备与该目标微小区的微基站之间的信道增益大于或等于该分流门限值时,确定该待分流用户设备通过该目标微小区进行通信。
可选地,作为另一实施例,当该分流单元确定该待分流用户设备通过该目标微小区进行通信时,处理器81还可以:当该待分流用户设备为激活状态时,对该待分流用户设备进行切换,使得该待分流用户设备切换到该目标 微小区;或当该待分流用户设备为空闲状态时,对该待分流用户设备进行小区重选,使得该待分流用户设备选择到该目标微小区;或当该待分流用户设备为尝试接入宏小区的状态时,对该待分流用户设备进行接入控制,使得该待分流用户设备接入到该目标微小区。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示 意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定 本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种网络侧设备,其特征在于,所述网络侧设备所在的异构网包括宏小区和所述宏小区中的至少一个微小区,所述网络侧设备包括:
    获取单元,用于获取所述至少一个微小区中的目标微小区的负载信息和所述宏小区中位于所述目标微小区周围的第一预设范围内的至少一个用户设备的业务分布信息;
    确定单元,用于根据所述目标微小区的负载信息和所述业务分布信息,确定分流门限值,所述分流门限值对应于表示所述目标微小区的传播环境的参数;
    分流单元,用于根据所述分流门限值确定待分流用户设备是通过所述宏小区进行通信还是通过所述目标微小区进行通信。
  2. 根据权利要求1所述的网络侧设备,其特征在于,所述确定单元,具体用于
    根据所述业务分布信息,确定位于所述目标微小区周围的第一预设范围内的至少一个用户设备中待分流到所述目标微小区的用户设备在所述目标微小区的负载占用量;
    根据所述负载占用量和所述目标微小区的负载信息,确定所述分流门限值。
  3. 根据权利要求2所述的网络侧设备,其特征在于,所述目标微小区的负载信息包括所述目标微小区的负载余量,所述确定单元,具体用于
    当所述负载占用量小于所述目标微小区的负载余量时,确定所述分流门限值。
  4. 根据权利要求1-3中任一项所述的网络侧设备,其特征在于,还包括:
    选择单元,用于从所述至少一个微小区中选择所述目标微小区,其中所述目标微小区的宏业务密集度为所述至少一个微小区的宏业务密集度中的最大值,所述宏业务密集度表示位于微小区周围的宏小区的用户设备的业务密集度。
  5. 根据权利要求1-4中任一项所述的网络侧设备,其特征在于,所述获取单元,具体用于
    对所述宏小区的覆盖区域进行栅格化,得到至少一个栅格;
    确定所述至少一个栅格中的至少一个目标栅格,所述至少一个目标栅格位于所述目标微小区周围的第二预设范围内;
    确定所述至少一个目标栅格对应的至少一个平均业务量为所述业务分布信息。
  6. 根据权利要求1-4中任一项所述的网络侧设备,其特征在于,所述获取单元,具体用于
    对所述宏小区的网络覆盖区域进行分类,得到至少一个类;
    确定所述至少一个类中的至少一个目标类,所述至少一个目标类位于所述目标微小区周围的第二预设范围内;
    确定所述至少一个目标类对应的至少一个平均业务量为所述业务分布信息。
  7. 根据权利要求1-6中任一项所述的网络侧设备,其特征在于,所述表示所述目标微小区的传播环境的参数为路径损耗,所述分流单元具体用于当所述待分流用户设备与所述目标微小区的微基站之间的路径损耗小于或等于所述分流门限值时,确定所述待分流用户设备通过所述目标微小区进行通信,或者当所述待分流用户设备与所述目标微小区的微基站之间的路径损耗大于所述分流门限值时,确定所述待分流用户设备通过所述宏小区进行通信。
  8. 根据权利要求1-6中任一项所述的网络侧设备,其特征在于,所述表示所述目标微小区的传播环境的参数为信道增益,所述分流单元具体用于当所述待分流用户设备与所述目标微小区的微基站之间的信道增益小于所述分流门限值时,确定所述待分流用户设备通过所述宏小区进行通信,或者当所述待分流用户设备与所述目标微小区的微基站之间的信道增益大于或等于所述分流门限值时,确定所述待分流用户设备通过所述目标微小区进行通信。
  9. 根据权利要求1-8中任一项所述的网络侧设备,其特征在于,当所述分流单元确定所述待分流用户设备通过所述目标微小区进行通信时,所述分流单元,还用于
    当所述待分流用户设备为激活状态时,对所述待分流用户设备进行切换,使得所述待分流用户设备切换到所述目标微小区;或
    当所述待分流用户设备为空闲状态时,对所述待分流用户设备进行小区 重选,使得所述待分流用户设备选择到所述目标微小区;或
    当所述待分流用户设备为尝试接入宏小区的状态时,对所述待分流用户设备进行接入控制,使得所述待分流用户设备接入到所述目标微小区。
  10. 一种异构网中负载分流的方法,其特征在于,所述异构网包括宏小区和所述宏小区中的至少一个微小区,所述方法包括:
    获取所述至少一个微小区中的目标微小区的负载信息和所述宏小区中位于所述目标微小区周围的第一预设范围内的至少一个用户设备的业务分布信息;
    根据所述目标微小区的负载信息和所述业务分布信息,确定分流门限值,所述分流门限值对应于表示所述目标微小区的传播环境的参数;
    根据所述分流门限值确定待分流用户设备是通过所述宏小区进行通信还是通过所述目标微小区进行通信。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述目标微小区的负载信息和所述业务分布信息,确定分流门限值,包括:
    根据所述业务分布信息,确定位于所述目标微小区周围的第一预设范围内的至少一个用户设备中待分流到所述目标微小区的用户设备在所述目标微小区的负载占用量;
    根据所述负载占用量和所述目标微小区的负载信息,确定所述分流门限值。
  12. 根据权利要求11所述的方法,其特征在于,所述目标微小区的负载信息包括所述目标微小区的负载余量,所述根据所述负载占用量和所述目标微小区的负载信息,确定所述分流门限值,包括:
    当所述负载占用量小于所述目标微小区的负载余量时,确定所述分流门限值。
  13. 根据权利要求10-12中任一项所述的方法,其特征在于,还包括:
    从所述至少一个微小区中选择所述目标微小区,其中所述目标微小区的宏业务密集度为所述至少一个微小区的宏业务密集度中的最大值,所述宏业务密集度表示位于微小区周围的宏小区的用户设备的业务密集度。
  14. 根据权利要求10-13中任一项所述的方法,其特征在于,所述获取所述宏小区中位于所述目标微小区周围的第一预设范围内的至少一个用户设备的业务分布信息,包括:
    对所述宏小区的覆盖区域进行栅格化,得到至少一个栅格;
    确定所述至少一个栅格中的至少一个目标栅格,所述至少一个目标栅格位于所述目标微小区周围的第二预设范围内;
    确定所述至少一个目标栅格对应的至少一个平均业务量为所述业务分布信息。
  15. 根据权利要求10-13中任一项所述的方法,其特征在于,所述获取所述宏小区中位于所述目标微小区周围的第一预设范围内的至少一个用户设备的业务分布信息,包括:
    对所述宏小区的网络覆盖区域进行分类,得到至少一个类;
    确定所述至少一个类中的至少一个目标类,所述至少一个目标类位于所述目标微小区周围的第二预设范围内;
    确定所述至少一个目标类对应的至少一个平均业务量为所述业务分布信息。
  16. 根据权利要求10-15中任一项所述的方法,其特征在于,所述根据所述分流门限值确定待分流用户设备是通过所述宏小区进行通信还是通过所述目标微小区进行通信,包括:
    所述表示所述目标微小区的传播环境的参数为路径损耗,当所述待分流用户设备与所述目标微小区的微基站之间的路径损耗小于或等于所述分流门限值时,确定所述待分流用户设备通过所述目标微小区进行通信,或者当所述待分流用户设备与所述目标微小区的微基站之间的路径损耗大于所述分流门限值时,确定所述待分流用户设备通过所述宏小区进行通信。
  17. 根据权利要求10-15中任一项所述的方法,其特征在于,所述根据所述分流门限值确定待分流用户设备是通过所述宏小区进行通信还是通过所述目标微小区进行通信,包括:
    所述表示所述目标微小区的传播环境的参数为信道增益,当所述待分流用户设备与所述目标微小区的微基站之间的信道增益小于所述分流门限值时,确定所述待分流用户设备通过所述宏小区进行通信,或者当所述待分流用户设备与所述目标微小区的微基站之间的信道增益大于或等于所述分流门限值时,确定所述待分流用户设备通过所述目标微小区进行通信。
  18. 根据权利要求10-17中任一项所述的方法,其特征在于,当所述分流单元确定所述待分流用户设备通过所述目标微小区进行通信时,还包括:
    当所述待分流用户设备为激活状态时,对所述待分流用户设备进行切换,使得所述待分流用户设备切换到所述目标微小区;或
    当所述待分流用户设备为空闲状态时,对所述待分流用户设备进行小区重选,使得所述待分流用户设备选择到所述目标微小区;或
    当所述待分流用户设备为尝试接入宏小区的状态时,对所述待分流用户设备进行接入控制,使得所述待分流用户设备接入到所述目标微小区。
PCT/CN2014/088669 2014-10-15 2014-10-15 异构网中负载分流的方法和网络侧设备 WO2016058147A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14904175.8A EP3182757B1 (en) 2014-10-15 2014-10-15 Load distributing method and network-side device in heterogeneous network
PCT/CN2014/088669 WO2016058147A1 (zh) 2014-10-15 2014-10-15 异构网中负载分流的方法和网络侧设备
CN201480079642.3A CN106465207B (zh) 2014-10-15 2014-10-15 异构网中负载分流的方法和网络侧设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088669 WO2016058147A1 (zh) 2014-10-15 2014-10-15 异构网中负载分流的方法和网络侧设备

Publications (1)

Publication Number Publication Date
WO2016058147A1 true WO2016058147A1 (zh) 2016-04-21

Family

ID=55745962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088669 WO2016058147A1 (zh) 2014-10-15 2014-10-15 异构网中负载分流的方法和网络侧设备

Country Status (3)

Country Link
EP (1) EP3182757B1 (zh)
CN (1) CN106465207B (zh)
WO (1) WO2016058147A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111093236B (zh) * 2019-11-08 2023-10-20 中兴通讯股份有限公司 一种信息发送、接收方法、装置、设备和存储介质
CN115442846A (zh) * 2021-06-02 2022-12-06 中国移动通信集团黑龙江有限公司 一种数据分流方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102724721A (zh) * 2012-06-28 2012-10-10 华为技术有限公司 小区切换的方法和基站
US20130189996A1 (en) * 2012-01-25 2013-07-25 Kamakshi Sridhar Method and apparatus for dynamically modifying cell reselection and/or handover parameters
CN103596250A (zh) * 2013-11-15 2014-02-19 东南大学 一种lte-a异构网络中的基于动态偏置的终端接入方法
CN103918303A (zh) * 2013-09-18 2014-07-09 华为技术有限公司 时域干扰协调方法及网络设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8644841B1 (en) * 2011-03-03 2014-02-04 Sprint Spectrum L.P. Dynamic adjustment of handoff bias based on load
WO2012166029A1 (en) * 2011-06-01 2012-12-06 Telefonaktiebolaget L M Ericsson (Publ) Method and base station for handover control in a heterogenous network having cell layers with different, i.e. symmetric and asymmetric, uplink (ul) and downlink (dl) resource allocations
EP2767121A4 (en) * 2011-09-29 2015-12-02 Nokia Solutions & Networks Oy TRANSFER MANAGEMENT LASTENBASIS
WO2013135269A1 (en) * 2012-03-12 2013-09-19 Nokia Siemens Networks Oy Pico cell-selection / handover for tdm eicic heterogenous networks
US9155013B2 (en) * 2013-01-14 2015-10-06 Qualcomm Incorporated Cell range expansion elasticity control
CN103974331B (zh) * 2013-02-06 2018-04-17 电信科学技术研究院 一种异构网络的负载均衡方法、设备及系统
CN103731883B (zh) * 2014-01-20 2017-06-09 中国联合网络通信集团有限公司 一种负载均衡的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130189996A1 (en) * 2012-01-25 2013-07-25 Kamakshi Sridhar Method and apparatus for dynamically modifying cell reselection and/or handover parameters
CN102724721A (zh) * 2012-06-28 2012-10-10 华为技术有限公司 小区切换的方法和基站
CN103918303A (zh) * 2013-09-18 2014-07-09 华为技术有限公司 时域干扰协调方法及网络设备
CN103596250A (zh) * 2013-11-15 2014-02-19 东南大学 一种lte-a异构网络中的基于动态偏置的终端接入方法

Also Published As

Publication number Publication date
EP3182757A1 (en) 2017-06-21
EP3182757A4 (en) 2017-08-09
EP3182757B1 (en) 2020-05-20
CN106465207A (zh) 2017-02-22
CN106465207B (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
CN104041118B (zh) 无线网络中的高速切换
JP6824178B2 (ja) 特定セル確率負荷分散の装置、システム及び方法
US11218922B2 (en) Method and user equipment for mobility and classification based restricted measurement list creation in virtual cells
JP2021114768A (ja) チャネル測定と測定結果報告の方法及び装置
WO2017067003A1 (zh) 选择驻留小区的方法和装置
EP3516781A1 (en) Communications device and method
CN104854906B (zh) 一种切换小区的方法及装置
CN108370516B (zh) 一种小区测量报告的方法及用户设备
KR102386570B1 (ko) 채널 측정 및 측정 결과 리포팅 방법 및 장치
WO2014074391A1 (en) Cell loading-based cell transition
KR20150089893A (ko) 무선 통신 시스템에서 셀 간 부하 분산 및 간섭 완화를 위한 방법 및 장치
US10681605B2 (en) Handover for video or other streaming services
CN105103615A (zh) 对于切换的增强解决方案
JP6414208B2 (ja) 基地局、無線通信システム、通信方法
US20170303175A1 (en) Method and Device for Dynamically Constructing Virtual Cell
CN108064050B (zh) 配置方法及装置
KR20160002150A (ko) 무선 통신 시스템에서 서비스 연속성을 제어하는 방법 및 장치
JP6926165B2 (ja) 滞留セルの選択方法及び装置
US20140295859A1 (en) Method of selecting a plurality of cells and method of distributed-transmitting data for enhancing transmission rate of mobile data in wireless overplay network
CN104105154A (zh) 一种网络切换判断方法及装置
WO2016058147A1 (zh) 异构网中负载分流的方法和网络侧设备
CN104113874A (zh) 一种进行测量上报的方法及装置
JP2018526943A (ja) 異周波数測定の管理
WO2018036196A1 (zh) 一种数据处理方法和无线网络控制器
WO2022226921A1 (zh) 无线通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904175

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014904175

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014904175

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE