WO2018036196A1 - 一种数据处理方法和无线网络控制器 - Google Patents

一种数据处理方法和无线网络控制器 Download PDF

Info

Publication number
WO2018036196A1
WO2018036196A1 PCT/CN2017/083067 CN2017083067W WO2018036196A1 WO 2018036196 A1 WO2018036196 A1 WO 2018036196A1 CN 2017083067 W CN2017083067 W CN 2017083067W WO 2018036196 A1 WO2018036196 A1 WO 2018036196A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency neighboring
neighboring cell
important
frequency
same
Prior art date
Application number
PCT/CN2017/083067
Other languages
English (en)
French (fr)
Inventor
罗茜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018036196A1 publication Critical patent/WO2018036196A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0077Transmission or use of information for re-establishing the radio link of access information of target access point

Definitions

  • the present invention relates to the field of communications, and in particular, to a data processing method and a radio network controller.
  • a radio network controller RNC configures two cells whose frequency points are close to or geographically close to each other to be in the same frequency neighboring cell relationship. If a large number of co-frequency neighboring areas are too dense, pilot pollution between cells may be caused, so that the soft handover area is increased, and the number of unnecessary soft handovers is increased, thereby causing the call drop rate of this area to increase.
  • the RNC may send a signaling of the same frequency measurement control to the terminal, where the same frequency measurement control includes multiple co-frequency neighboring cells, so that the terminal performs signal quality testing on the multiple co-frequency neighboring cells.
  • the same frequency measurement control can contain up to 31 co-frequency neighboring cells.
  • the number of intra-frequency neighboring cells included in the same-frequency test control received by too many terminals reaches or approaches 31 in the same period of time, it may cause dropped calls and consume too much time for delivery. This affects the delay in business establishment.
  • the data shows that the proportion of cells with the same frequency neighboring area reaching or exceeding 31 is quite large.
  • the specific operation process is as follows: 1. Deriving relevant data and parameters from the RNC; 2. Importing the relevant data and parameters into the network planning network optimization tool, and sorting the importance degree of the same frequency neighboring area of the cell; According to the sorting result, the tool obtains an important co-frequency neighboring area of a cell.
  • the embodiment of the invention provides a data processing method and a wireless network control, which are used for determining an important intra-frequency neighboring cell, so that the terminal performs signal quality testing only on the important intra-frequency neighboring cell.
  • the first aspect of the embodiments of the present invention provides a data processing method, including:
  • the same-frequency neighboring cell measurement control signaling carries only the same-frequency neighboring cell set, and does not carry the non-important co-frequency.
  • the set of neighboring cells enables the terminal to perform signal quality testing on the set of important co-frequency neighboring cells.
  • the wireless network controller can automatically realize the distinction between the important intra-frequency neighboring area and the non-important co-frequency neighboring area, without the need of the third-party network planning network optimization tool, the intelligence and convenience are embodied.
  • the first embodiment of the first aspect includes:
  • the handover-related data of the cell and then determining the important intra-frequency neighboring cell from the same-frequency neighboring cell set according to the handover-related data, to obtain the important co-frequency neighboring cell set, where it is required that the handover-related data may include The number of handover attempts and the number of successful handovers.
  • the data can be acquired in real time, which is more convenient and does not cause delay.
  • the second implementation manner of the first aspect includes:
  • the importance ranking of each intra-frequency neighboring cell in the same-frequency neighboring cell set is calculated according to the handover-related data, so that the same-frequency neighboring cell importance ranking table is obtained; and the important co-frequency can be determined according to the handover-related data.
  • the number of the same-frequency neighboring cells in the neighboring cell set obtains the number of the important intra-frequency neighboring cells.
  • the same-frequency neighboring cell importance ranking table and the number of the important co-frequency neighboring cells are determined to determine the important co-frequency neighboring cell, and the important co-frequency neighboring cell set is obtained.
  • the resulting set of important co-frequency neighbors is more in line with the corresponding requirements, and provides a specific operational method for how to use handover-related data.
  • the third implementation manner of the first aspect includes:
  • the non-important co-frequency neighboring cell may be determined, and the non-important co-frequency neighboring cell set is a co-frequency neighboring cell other than the important co-frequency neighboring cell set in the same-frequency neighboring cell set, and the non-important co-frequency neighboring cell zone
  • the collection joins the activity set from the detection set.
  • the non-important co-frequency neighboring cells are added to the active set, when the terminal fails to switch to the important intra-frequency neighboring cell, the non-important co-frequency neighboring cell may be considered, making it less likely to drop calls.
  • a second aspect of the embodiments of the present invention provides a radio network controller, including:
  • a configuration module configured to configure a co-frequency neighboring cell of a cell, to obtain a co-frequency neighboring cell set of the cell
  • a determining module configured to determine an important co-frequency neighboring cell from the co-frequency neighboring cell set, to obtain an important co-frequency neighboring cell
  • a sending module configured to: when the terminal that detects the cell switches to the new cell, send the same-frequency measurement control signaling to the terminal, where the same-frequency neighboring cell measurement control signaling carries only the important co-frequency neighboring cell set, Without carrying a non-important co-frequency neighbor set, the terminal performs signal quality test on the important co-frequency neighbor set.
  • the wireless network controller can automatically realize the distinction between the important intra-frequency neighboring area and the non-important co-frequency neighboring area, without the need of the third-party network planning network optimization tool, the intelligence and convenience are embodied.
  • the first embodiment of the second aspect includes:
  • Obtaining a sub-module configured to obtain the handover-related data of the cell, and then determine an important co-frequency neighboring cell from the same-frequency neighboring cell set according to the handover-related data, to obtain the important co-frequency neighboring cell set.
  • the handover related data may include the number of handover attempts and the number of handover successes.
  • the data can be acquired in real time, which is more convenient and does not cause delay.
  • the second implementation manner of the second aspect includes:
  • the calculating unit may be configured to calculate, according to the handover related data, an importance ranking of each co-frequency neighboring cell in the same-frequency neighboring cell set, thereby obtaining a co-frequency neighboring cell importance ranking table; and a first determining unit, configured to simultaneously Determining, by the handover related data, the number of the same-frequency neighboring cells in the set of the same-frequency neighboring cells, and obtaining the number of the same-frequency neighboring cells; the second determining unit is configured to use the same-frequency neighboring cell importance ranking table and the The number of important co-frequency neighboring cells determines the important co-frequency neighboring cell, and the important co-frequency neighboring cell set is obtained.
  • the resulting set of important co-frequency neighbors is more in line with the corresponding requirements, and provides a specific operational method for how to use handover-related data.
  • the first implementation manner of the second aspect includes:
  • the joining module may be used to determine a non-important co-frequency neighboring cell, where the non-important co-frequency neighboring cell set is a co-frequency neighboring cell other than the important co-frequency neighboring cell set in the same-frequency neighboring cell set, and the non-important co-frequency is not important.
  • the neighboring set joins the active set from the detection set.
  • the non-important co-frequency neighboring cells are added to the active set, when the terminal fails to switch to the important intra-frequency neighboring cell, the non-important co-frequency neighboring cell may be considered, making it less likely to drop calls.
  • a third aspect of the embodiments of the present invention provides a radio network controller, including:
  • transceiver a transceiver, a memory, a processor, and a bus; the transceiver, the memory, and the processor are connected by the bus; the processor is configured to configure an intra-frequency neighbor relationship between cells to obtain a co-frequency neighboring cell of a cell And determining, by the set, the important co-frequency neighboring cell in the same-frequency neighboring cell set, and obtaining an important co-frequency neighboring cell set; the transceiver, configured to send the same-frequency to the terminal when the terminal that detects the cell switches to the new cell Measuring control signaling, so that the terminal performs signal quality testing on the important co-frequency neighbor set, and does not perform signal quality test on the non-important co-frequency neighbor set; the memory is used to store the program and the processor configuration. a set of frequency neighboring cells, a set of the important co-frequency neighboring cells determined by the processor, and the same-frequency measurement control signaling sent by the transceiver.
  • the important co-frequency neighboring cell in the co-frequency neighboring cell set can be determined, and an important co-frequency neighboring cell set is obtained.
  • the terminal of the cell is detected, the terminal is switched to In the case of a new cell, the same-frequency measurement control signaling can be sent to the terminal, which is automatically implemented by the wireless network controller, and does not require the use of a third-party network planning network optimization tool, which embodies the intelligence and convenience.
  • FIG. 1 is a schematic structural diagram of a data processing system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of an embodiment of a data processing method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an interaction process of an embodiment of a radio network controller according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an interaction process of another embodiment of a radio network controller according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an interaction process of another embodiment of a radio network controller according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an interaction process of another embodiment of a radio network controller according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an interaction process of an embodiment of a radio network controller according to an embodiment of the present invention.
  • the embodiment of the invention provides a data processing method and a wireless network control, which are used for determining an important intra-frequency neighboring cell, so that the terminal performs signal quality testing only on the important intra-frequency neighboring cell.
  • FIG. 1 is a schematic diagram of a data processing system including a radio network controller, a plurality of base stations, and a plurality of terminals.
  • a radio network controller (English: Radio Network Controller; abbreviation: RNC) is a main network element in a third generation wireless network, and is a component of an access network, and is responsible for mobility management, call processing, and Features such as link management and handover mechanisms.
  • RNC Radio Network Controller
  • the RNC is responsible for collecting handover related data reported by the terminal, and summarizing and calculating the handover related data to obtain an important co-frequency neighboring cell set, and then carrying the same-frequency measurement control sent to the terminal only carries important information.
  • the same-frequency neighboring cell in the same-frequency neighboring cell set does not carry the non-important co-frequency neighboring cell.
  • the RNC and the base station form a universal terrestrial radio access network (English: Universal Terrestrial Radio Access Network; UTRAN) in the third generation mobile communication (abbreviation: 3G) network, so the RNC is the switching and control network element of the UTRAN.
  • 3G third generation mobile communication
  • the RNC is mainly used to manage and control multiple base stations.
  • Radio resource management is mainly used to maintain the stability of wireless propagation and the quality of service of wireless connections; the control function includes all functions related to the establishment, maintenance and release of radio bearers.
  • a base station that is, a public mobile communication base station, refers to a radio transceiver station that performs information transmission between a mobile communication switching center and a mobile telephone terminal in a certain radio coverage area.
  • the structure of the base station may include a baseband processing unit (English: Building Base Band Unit; BBU) and a radio remote unit (English: Radio Remote Unit; abbreviation: RRU), an RRU, and an antenna feeder system ( antenna).
  • BBU Building Base Band Unit
  • RRU Radio Remote Unit
  • antenna feeder system antenna
  • the RNC and the base station may be shown in other more general structures.
  • the processor/processing circuit, the memory, and the interface may be mainly embodied.
  • the base station a processor/processing circuit, a memory, a transceiver, and the like can be embodied, which are not limited herein.
  • the terminal may include a bus, a processor, a memory, an input/output interface, a display device, and a communication interface.
  • a bus is a circuit that connects the elements described and implements transmission between these elements.
  • the processor receives commands from other elements over the bus, decrypts the received commands, and performs calculations or data based on the decrypted commands. deal with.
  • the "multi-sector" solution can be applied to UMTS, and can also be applied to long-term evolution (English: Long Term Evolution; abbreviation: LTE) and global mobile communication system (English: Global System for Mobile Communication) Abbreviation: GSM), not limited here.
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communication
  • the “multi-sector” solution addresses the problem of insufficient hotspot capacity in high-traffic urban areas to ensure a highly effective user experience.
  • a base station can be divided into three cells, called a "three-sector" solution.
  • the base station can be located in the center of the cell, and the omnidirectional antenna forms a circular coverage area, which is the "central excitation" mode.
  • the base station may also be located at three vertices of a hexagon of each cell, and each base station adopts three directional antennas of 120-degree fan-shaped radiation, respectively covering each one-third of the three adjacent cells, each of which The cell is covered by three pairs of 120-degree sector antennas, which is the "vertex excitation" mode, and the area covered by each antenna is a base station sector, and one base station sector is also called a cell.
  • a base station can also be divided into six sectors or nine sectors, known as a "six-sector” solution or a “nine-sector” solution.
  • the "nine-sector” solution uses spatial multiplexing technology and Huawei's unique algorithm to split a 120-degree sector into three 40-degree sectors in the horizontal direction through a self-developed three-beam high-gain splitting antenna.
  • the sector that is, now uses three sectors to cover the same area that originally used one sector, and the network capacity is increased to 2.2 to 2.7 times of the original "three sectors", and the coverage is increased by 2 to 3 dB.
  • the “nine-sector” solution improves the network capacity by 2.5 times that of the original three sectors without increasing the site and spectrum resources, effectively ensuring the user experience of high-traffic urban hotspots.
  • the launch of the “nine-sector” solution will help more operators maximize the use of existing network spectrum resources, effectively solve capacity problems, and build a more competitive high-quality user experience network.
  • the “nine-sector” solution is an important part of the “multi-sector” solution.
  • the "six-sector” solution has been deployed in more than 70 networks around the world, and the deployment of the "nine-sector” solution has gradually begun. Future multi-sector solutions will continue to innovate, enabling operators to increase network capacity to meet the growing number of users and data services in the future.
  • Frequency reuse means that after a certain distance, there are many cells using the same set of frequencies in a given coverage area. These cells are called co-frequency cells. Interference between co-frequency cells is called co-channel interference.
  • Frequency reuse techniques are generally employed to increase spectral efficiency.
  • the cell is continuously split and the base station service area is continuously reduced, and the same-frequency reuse factor is increased, a large amount of co-channel interference will replace artificial noise and other interference, which becomes the main constraint on the cell system.
  • the mobile radio environment will then change from a noise-constrained environment to an interference-constrained environment.
  • the terminal when the terminal needs to perform handover, it is necessary to determine which co-frequency neighboring region to switch to, and then perform signal quality testing on the same-frequency neighboring cell.
  • the base station finds that the terminal needs to switch the cell, it sends an intra-frequency measurement control signaling, where the same-frequency measurement signaling carries multiple co-frequency neighboring cells of the cell, so that the terminal pair A plurality of co-frequency measurement neighboring cells of the cell perform signal quality test to select a co-frequency neighboring cell with better signal quality for switching.
  • the protocol 331 stipulates that in order to ensure the normal switching of the terminal, the same frequency measurement control can carry at most All measurements were taken with 31 neighboring areas. However, if the same-frequency measurement control is too large, it will easily cause the dropped call of the signaling radio bearer (English: Signalling Radio Bearer; abbreviation: SRB), and it will also be issued due to excessive consumption of time, which affects the establishment of the service. Delay.
  • SRB Signalling Radio Bearer
  • the Globe Office of the Philippines 6 RNC statistics, 38% of the same frequency neighbors exceed 30; Thailand AIS Bureau: 50% of the neighbors exceed 31; Australia VHA Bureau: 14%
  • the number of neighboring areas is more than 31,58% of the number of neighboring areas is between 20-30.
  • the embodiment of the present invention provides that the same-frequency neighboring cell in the same-frequency neighboring cell set can be determined by configuring the same-frequency neighboring cell of the cell to obtain the same-frequency neighboring cell set, and the important co-frequency neighboring cell set is obtained.
  • the same-frequency measurement control signaling can be sent to the terminal without manual operation, but is automatically implemented by the wireless network controller, which embodies the intelligence and convenience.
  • an embodiment of a data processing method in the embodiment of the present invention includes:
  • the RNC may configure whether the intra-frequency neighbor relationship between the cells is configured. It should be noted that the same-frequency neighbor relationship is generally determined according to the geographical distance between two cells. If the geographic locations of the two cells are relatively close, the coverage overlaps, and the neighbors are generally configured as neighbors. Zone relationship, on the contrary, is not configured.
  • the cell and the source cell are generally used. Configured to be in the same frequency neighbor relationship. However, in other possible embodiments, when the surrounding wireless environment changes, such as adding or deleting a base station, or creating a new building, etc., the same-frequency neighbor relationship may change. However, without these improvements in the wireless environment, the same-frequency neighbor relationship will generally not send changes.
  • the cell A1 and the cell B1 are configured in a neighbor relationship.
  • the cell A1 of the base station A and the cell A2 of the base station A are also the same principle, generally, different cells of the same frequency point under one base station are configured in a neighbor relationship. After all the cells are configured with the corresponding intra-frequency neighbor relationship, each cell has a corresponding set of co-frequency neighbors. It should be noted that a cell does not have any co-frequency neighboring cell, that is, the co-frequency neighboring cell set may be an empty set.
  • more and more co-frequency neighboring cells of a cell are more and more.
  • the upper limit is 31 co-frequency neighbors. To this end, it is necessary to reduce the intra-frequency neighboring cells in which the probability of connection is small, leaving important co-frequency neighboring cells. In order to distinguish important co-frequency neighbors from non-important co-frequency neighbors, handover related data of the cells is required.
  • each time the terminal attempts to perform handover of the cell it is recorded, and then sent to the RNC when the timer or event is triggered, and the terminal may only send the number of attempts and the number of successes, or may calculate the success rate and then send the message.
  • the terminal may receive handover related data about the cell that is sent from the terminal to the base station and then transmitted by the base station.
  • the handover related data includes the number of handover attempts and is switched to The number of times of the work, in other possible embodiments, may also include the switching success rate, which is not limited herein.
  • the intra-frequency neighboring cells in the same-frequency neighboring cell set may be scored by the number of successes and the number of attempts, and ranked according to the scores to obtain a ranking table of the same-frequency neighboring regions.
  • the number of successful handovers to the different intra-frequency neighboring cells and the number of corresponding handover attempts may be calculated by counting the number of successful handovers/switching attempts. .
  • the intra-frequency neighboring value may be equal to: the switching success rate* the number of successful handovers. It can be understood that the handover success rate is an important reference standard indicating its importance, but it is not the only criterion, because if the number of implementation schemes is very small, such as 1 time, even if the success rate is 100%, it cannot be called For the same frequency neighborhood.
  • their scores can be normalized to values between 0 and 100.
  • the specific method may be to divide the scores of the respective intra-frequency neighbors by the score of the same-frequency neighbor with the largest score, and multiply by 100 to obtain a value between 0-100. It should be noted that if the number of handover attempts is 0, the direct handover part score is 0, and the handover success rate is not calculated.
  • the handover related data is obtained from the RNC by using the network planning network optimization tool by hand, and the scores of each intra-frequency neighboring area are obtained by summarizing, analyzing and calculating, and then ranked according to the importance level.
  • the RNC automatically uses the summary, analysis, and calculation of the handover related data to obtain the scores of each of the intra-frequency neighboring cells, and then ranks according to the importance degree.
  • the same-frequency neighboring cells may be taken as important co-frequency neighboring cells.
  • important intra-frequency neighboring cell that is, the number of times that it is switched is sufficient, and the success rate is sufficiently high. For this reason, in the embodiment of the present invention, the number of the same-frequency neighboring cells in the set of important co-frequency neighboring cells can be determined. Methods.
  • the neighboring cell rank M corresponding to the threshold of the minimum intra-frequency neighboring cell number is set.
  • the general M can be set to 7 or 8, which is not limited herein.
  • the neighboring cell ranks from the highest to the lowest in the order of the number of successful handovers, and takes the same-frequency neighboring cell of the first 1-M.
  • the cumulative distribution function (English: Cumulative Distribution Function; abbreviation: CDF) is used to switch the neighboring rank N corresponding to the ratio threshold.
  • the CDF is the probability that the random variable is less than or equal to a certain value.
  • the CDF handover ratio refers to the ratio of the number of successful soft handovers of the two cells in the neighboring cell ranking ⁇ N to the total number of successful soft handover cumulative success of the source cell.
  • the value of the ranking of the neighboring area N corresponding to the threshold of the CDF switching is greater than or equal to the first of the statistical rankings of the neighboring areas corresponding to the threshold.
  • the CDF switching ratio is calculated from high to low, and the result is similar to the following table:
  • the important neighboring areas and the non-essential neighboring areas are distinguished.
  • the number of the same-frequency neighboring areas of the number of the same frequency, and the number of the same-frequency neighboring areas of the MAX(M,N) ⁇ are the number of important same-frequency neighbors.
  • the ranking of the quantity and the previous ones are important co-frequency neighboring areas, and the others are non-important neighboring areas, so as to obtain important co-frequency neighboring cell sets and non-important co-frequency neighboring cell sets.
  • the number of the same-frequency neighboring cells in the MIN ⁇ configuration, MAX(M,N) ⁇ is because the number of important co-frequency neighbors in the configuration cannot exceed the number of configured co-frequency neighbors. .
  • the same neighboring area is issued by the same-frequency measurement control optimization. It should be noted that the above is an ideal calculation method for obtaining an important intra-frequency neighboring area, and there are other calculation methods, which are not limited herein.
  • the important intra-frequency neighboring cell may be determined according to the above-mentioned co-frequency neighboring importance ranking table and the number of the important co-frequency neighboring cells to obtain an important co-frequency neighboring cell set. Specifically, it is preferable to take the same-frequency neighboring area of the number of the first important intra-frequency neighboring cells in the importance ranking table of the same-frequency neighboring area as the important intra-frequency neighboring area.
  • the ranking table of the importance level of the same frequency neighboring area and the number of the important same frequency neighboring areas can be calculated according to the above manner, or can be calculated by other methods, and the ranking table of the importance level of the frequency neighboring area is only ranked according to the success rate. Or, as the number of the number of handover attempts reaches the preset number, and the success rate reaches the preset value as the important intra-frequency neighboring area, and the number of the important intra-frequency neighboring cells can be set to 10 or 20 by default, which is not limited herein.
  • the RNC when the terminal needs to switch, or when other intra-frequency measurements are required, the RNC may be requested to send the same-frequency measurement control signaling.
  • the intra-frequency measurement control signaling sent by the RNC carries only a set of important co-frequency neighboring cells, and does not carry a non-important co-frequency neighboring cell set.
  • the terminal receives the same-frequency measurement control signaling, it can perform signal quality test on the important intra-frequency neighboring area, and select the signal with good signal quality to switch.
  • the same-frequency neighboring cells except the important intra-frequency neighboring cells in the same-frequency neighboring cell set are referred to as non-important co-frequency neighboring cells.
  • timely is an important co-frequency neighboring area, and there may still be a risk of dropped calls.
  • the non-important co-frequency neighboring area is not tested for signal quality, it can still be activated, so that it enters the active set.
  • important co-frequency neighbors are inaccessible, you can select non-important co-frequency neighbors to reduce call drop rate.
  • a data processing method in the embodiment of the present invention is described above.
  • the following describes the radio network controller in the embodiment of the present invention.
  • an embodiment of the present invention further provides a radio network controller 300, where the radio network controller 300 includes:
  • the configuration module 301 is configured to configure a co-frequency neighboring cell of the cell to obtain a co-frequency neighboring cell set of the cell.
  • the determining module 302 is configured to determine an important co-frequency neighboring cell in the same-frequency neighboring cell set obtained by the configuration module 301, to obtain an important co-frequency neighboring cell set.
  • the sending module 303 is configured to: when the terminal that detects the cell switches to the new cell, send the same-frequency measurement control signaling to the terminal, where the same-frequency measurement control signaling is used to indicate that the terminal obtains the determined module 302. Signal sets are tested for important co-frequency neighbors.
  • the determining module 302 includes:
  • the obtaining sub-module 3021 is configured to acquire handover related data of the cell.
  • the determining sub-module 3022 is configured to determine an important intra-frequency neighboring cell in the same-frequency neighboring cell set according to the handover-related data acquired by the acquiring sub-module 3021, to obtain the important co-frequency neighboring cell set.
  • the determining sub-module 3022 includes:
  • the calculating unit 30221 is configured to calculate, according to the handover related data acquired by the acquiring submodule 3021, the importance ranking of each co-frequency neighboring cell in the same-frequency neighboring cell set, and obtain a co-frequency neighboring cell importance ranking table.
  • the first determining unit 30222 is configured to determine, according to the handover related data acquired by the acquiring submodule 3021, the number of the same frequency neighboring cells in the important co-frequency neighboring cell set, and obtain the number of the important intra-frequency neighboring cells.
  • a second determining unit 30223 configured to determine, according to the same-frequency neighboring cell importance ranking table calculated by the calculating unit 30221, the first determining unit 30222, determining the important co-frequency neighboring cell number, and obtaining the important same-frequency neighboring cell. An important set of co-frequency neighbors.
  • the radio network controller further includes:
  • the adding module 204 is configured to add a non-important co-frequency neighboring cell set to the active set, where the non-important co-frequency neighboring cell set is other than the important co-frequency neighboring cell set determined by the first determining module. The same frequency neighboring area.
  • the wireless network controller 700 includes:
  • the transceiver 701, the memory 702, and the processor 703 are connected by the bus 704.
  • the processor 703 is configured to configure a co-frequency neighboring cell of the cell, obtain a co-frequency neighboring cell set of the cell, determine an important co-frequency neighboring cell in the co-frequency neighboring cell set, and obtain an important co-frequency neighboring cell set.
  • the processor 703 may be a central processing unit (English: central processing unit, abbreviated: CPU), a network processor (English: network processor, abbreviated: NP) or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • the processor 703 may further include a hardware chip.
  • the above hardware chip can be an ASIC (English: Application-specific integrated circuit (abbreviation: ASIC), programmable logic device (English: programmable logic device, abbreviation: PLD) or any combination thereof.
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any combination thereof.
  • the transceiver 701 is configured to: when the terminal that detects the cell switches to the new cell, send the same-frequency measurement control signaling to the terminal, where the same-frequency measurement control signaling is used to indicate that the terminal determines the Signal sets are tested for important co-frequency neighbors.
  • the transceiver 701 includes ZigBee, Wi-Fi, LTE (Long Term Evolution), RFID (Radio Freq terminal ncy identification, radio frequency identification technology), NFC (Near Field Communication), infrared, UWB.
  • One or more combinations of (Ultra Wideband), which are not limited herein; may also include a communication interface under the EIA-RS-232C standard, that is, Data Terminal Equipment (abbreviation: DTE) and The communication interface of the serial binary data exchange interface technology standard between the data communication device (English: Data Circuit-terminating Equipment, DCE) may also include the communication interface under the RS-485 protocol, which is not limited herein.
  • the memory 702 is configured to store a program, the same-frequency neighboring cell set configured by the processor, the important co-frequency neighboring cell set determined by the processor, and the same-frequency measurement control signaling sent by the transceiver.
  • the memory 702 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 702 may also include a non-volatile memory (English: non-volatile memory) For example, flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviated: HDD) or solid state drive (English: solid-state drive, abbreviation: SSD); the memory 702 may also include the above types of memory Any combination of these is not limited here.
  • a volatile memory English: volatile memory
  • RAM random access memory
  • non-volatile memory English: non-volatile memory
  • flash memory English: flash memory
  • hard disk English: hard disk drive, abbreviated: HDD
  • SSD solid state drive
  • the memory 702 can also be used to store program instructions, and the processor 703 can call the program instructions stored in the memory 702 to perform one or more steps in the embodiment shown in FIG. 2, or an optional implementation thereof.
  • the wireless network controller 300 is enabled to implement the functions of the above method.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or may be each Units exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明实施例公开了一种数据处理方法和无线网络控制,用于确定重要同频邻区,以使得终端仅对重要同频邻区进行信号质量测试。本发明实施例方法包括:配置小区的同频邻区,得到所述小区的同频邻区集合;确定所述同频邻区集合中的重要同频邻区,得到重要同频邻区集合;当检测到所述小区的终端切换至新小区时,向所述终端发送同频测量控制信令,所述同频测量控制信令用于指示所述终端对所述重要同频邻区集合进行信号质量测试。由于由无线网络控制器自动实现,而不需要借助第三方网规网优工具,体现了智能化以及便利性。

Description

一种数据处理方法和无线网络控制器
本申请要求于2016年8月24日提交中国专利局、申请号为CN201610719511.8、发明名称为“一种数据处理方法和无线网络控制器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及一种数据处理方法和无线网络控制器。
背景技术
随着通信技术的发展,一个基站可以引入的小区越来越多。若一个无线网络控制器RNC服务的区域中的大量基站引入了多个小区,则RNC会将频点接近或者地理位置接近的两个小区配置成同频邻区的关系。若大量同频邻区过于密集,则可能会导致小区之间的导频污染,使得软切换区域增大,不必要的软切换的次数增加,从而导致这一片区域的掉话率升高。
当终端需要切换小区时,RNC可以向终端下发一个同频测量控制的信令,该同频测量控制包含多个同频邻区,以使得终端对该多个同频邻区进行信号质量测试,以便选择信号质量良好的同频邻区进行切换。为了保证终端的正常切换,当下的通信协议规定,同频测量控制里面最多可以包含31个同频邻区。然而,若在同一段时间内,过多终端接收的同频测试控制包含的同频邻区的个数达到或者接近31,则会容易引起掉话,且会消耗过多的时间进行下发,从而影响业务建立的时延。数据显示,同频邻区的个数达到或者超过31的小区比例相当大。
为此,存在一些网规网优工具,可以为一个小区的同频邻区的重要程度进行排序,然后取一部分作为重要同频邻区,当RNC下发同频测量控制的信令时,该信令仅携带重要同频邻区,而不携带非重要同频邻区,以使得RNC下发的同频测量控制的信令携带的同频邻区的个数达到或者超过31的比例下降,从而改善容易引起掉话的情况,且会避免消耗过多的时间进行下发,从而降低业务建立的时延。其具体运作流程为:1、从RNC中导出相关数据和参数;2、将该相关数据和参数导入到网规网优工具中,进行该小区的同频邻区的重要程度进行排序;3、工具会根据排序结果,得到一个小区的重要同频邻区。
然而,由于是通过从RNC中导出相关数据和参数,并将该相关数据和参数导入到网规网优工具中,因此当确定一个小区的重要同频邻区时,相对麻烦,不够智能。
发明内容
本发明实施例提供了一种数据处理方法和无线网络控制,用于确定重要同频邻区,以使得终端仅对重要同频邻区进行信号质量测试。
有鉴于此,本发明实施例第一方面提供了一种数据处理方法,包括:
配置小区之间的同频邻区关系,得到一个小区的同频邻区集合,然后从该同频邻区集 合中确定重要同频邻区,得到重要同频邻区集合。当检测到该小区的终端切换至新小区时,通过向该终端发送同频测量控制信令,该同频邻区测量控制信令仅携带重要同频邻区集合,而不携带非重要同频邻区集合,使得该终端对该重要同频邻区集合进行信号质量测试。
由于可以由无线网络控制器自动实现区分重要同频邻区和非重要同频邻区,而不需要借助第三方网规网优工具,体现了智能化以及便利性。
结合第一方面,第一方面的第一种实施方式,包括:
通过获取该小区的切换相关数据,然后根据该切换相关数据从该同频邻区集合中确定重要同频邻区,得到该重要同频邻区集合,需要说明的是,该切换相关数据可以包括切换尝试次数和切换成功次数。
由于通过该小区的切换相关数据确定重要同频邻区集合,因此可以实时获取数据,更便捷以及不会造成时延。
结合第一方面的第一种实施方式,第一方面的第二种实施方式,包括:
优选的,可以根据该切换相关数据计算该同频邻区集合中各个同频邻区的重要程度排名,从而得到同频邻区重要程度排名表;同时可以根据该切换相关数据确定该重要同频邻区集合中同频邻区的个数,得到该重要同频邻区个数。然后通过该同频邻区重要程度排名表和该重要同频邻区个数确定重要同频邻区,得到该重要同频邻区集合。
由于通过一系列的操作,使得得到的重要同频邻区集合更加符合相应的需求,而且为如何使用切换相关数据提供一种具体可以操作的方法。
结合第一方面、第一方面的第一种实施方式,第一方面的第三种实施方式,包括:
优选的,可以确定非重要同频邻区,该非重要同频邻区集合为该同频邻区集合中除该重要同频邻区集合以外的同频邻区,将非重要同频邻区集合从检测集加入活动集。
由于将非重要同频邻区加入活动集,因而当终端对重要同频邻区的切换都失败的时候,可以考虑选择非重要同频邻区,使得更不容易掉话。
本发明实施例第二方面提供了一种无线网络控制器,包括:
配置模块,用于配置一个小区的同频邻区,得到该小区的同频邻区集合;确定模块,用于从该同频邻区集合中确定重要同频邻区,得到重要同频邻区集合;发送模块,用于当检测到该小区的终端切换至新小区时,通过向该终端发送同频测量控制信令,该同频邻区测量控制信令仅携带重要同频邻区集合,而不携带非重要同频邻区集合,使得该终端对该重要同频邻区集合进行信号质量测试
由于可以由无线网络控制器自动实现区分重要同频邻区和非重要同频邻区,而不需要借助第三方网规网优工具,体现了智能化以及便利性。
结合第二方面,第二方面的第一种实施方式,包括:
获取子模块,用于通过获取该小区的切换相关数据,然后根据该切换相关数据从该同频邻区集合中确定重要同频邻区,得到该重要同频邻区集合,需要说明的是,该切换相关数据可以包括切换尝试次数和切换成功次数。
由于通过该小区的切换相关数据确定重要同频邻区集合,因此可以实时获取数据,更便捷以及不会造成时延。
结合第二方面的第一种实施方式,第二方面的第二种实施方式,包括:
计算单元,可以用于根据该切换相关数据计算该同频邻区集合中各个同频邻区的重要程度排名,从而得到同频邻区重要程度排名表;第一确定单元,用于同时可以根据该切换相关数据确定该重要同频邻区集合中同频邻区的个数,得到该重要同频邻区个数;第二确定单元,用于通过该同频邻区重要程度排名表和该重要同频邻区个数确定重要同频邻区,得到该重要同频邻区集合。
由于通过一系列的操作,使得得到的重要同频邻区集合更加符合相应的需求,而且为如何使用切换相关数据提供一种具体可以操作的方法。
结合第二方面、第二方面的第一种实施方式,第二方面的第三种实施方式,包括:
加入模块,可以用于确定非重要同频邻区,该非重要同频邻区集合为该同频邻区集合中除该重要同频邻区集合以外的同频邻区,将非重要同频邻区集合从检测集加入活动集。
由于将非重要同频邻区加入活动集,因而当终端对重要同频邻区的切换都失败的时候,可以考虑选择非重要同频邻区,使得更不容易掉话。
本发明实施例第三方面提供了一种无线网络控制器,包括:
收发器、存储器、处理器以及总线;该收发器、该存储器以及该处理器通过该总线连接;该处理器,用于配置小区之间的同频邻区关系,得到一个小区的同频邻区集合,确定该同频邻区集合中的重要同频邻区,得到重要同频邻区集合;该收发器,用于当检测到该小区的终端切换至新小区时,向该终端发送同频测量控制信令,使得该终端对该重要同频邻区集合进行信号质量测试,而不对非重要同频邻区集合进行信号质量测试;该存储器,用于存储程序、该处理器配置的该同频邻区集合、该处理器确定的该重要同频邻区集合、该收发器发送的该同频测量控制信令。
从以上技术方案可以看出,本发明实施例具有以下优点:
由于确定小区的同频邻区,得到同频邻区集合后,可以确定该同频邻区集合中的重要同频邻区,得到重要同频邻区集合,当检测到该小区的终端切换至新小区时,可以向该终端发送同频测量控制信令,由于由无线网络控制器自动实现,而不需要借助第三方网规网优工具,体现了智能化以及便利性。
附图说明
图1为本发明实施例中一种数据处理系统的架构示意图;
图2为本发明实施例中一种数据处理方法的一个实施例的流程示意图;
图3为本发明实施例中一种无线网络控制器的一个实施例的交互流程示意图;
图4为本发明实施例中一种无线网络控制器的另一个实施例的交互流程示意图;
图5为本发明实施例中一种无线网络控制器的另一个实施例的交互流程示意图;
图6为本发明实施例中一种无线网络控制器的另一个实施例的交互流程示意图;
图7为本发明实施例中一种无线网络控制器的一个实施例的交互流程示意图。
具体实施方式
本发明实施例提供了一种数据处理方法和无线网络控制,用于确定重要同频邻区,以使得终端仅对重要同频邻区进行信号质量测试。
为了使本技术领域的人员更好地理解本发明实施例方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
如图1所示,是一种数据处理系统的示意图,该数据处理系统包括无线网络控制器、多个基站和多个终端。
在本发明实施例中,无线网络控制器(英文:Radio Network Controller;缩写:RNC)是第三代无线网络中的主要网元,是接入网络的组成部分,负责移动性管理、呼叫处理、链路管理和移交机制等功能。
在本发明实施例中,该RNC负责收集终端上报的切换相关数据,并且把切换相关数据进行汇总和计算,得到重要同频邻区集合,然后给终端下发的同频测量控制里面只携带重要同频邻区集合中的同频邻区,而不携带非重要同频邻区。
RNC和基站组成了第三代移动通信(缩写:3G)网络中的通用地面无线接入网(英文:Universal Terrestrial Radio Access Network;缩写:UTRAN),所以RNC是UTRAN的交换和控制网元。作为3G网络的一个关键网元,RNC主要用于管理和控制多个基站。需要说明的是,RNC的整个功能分为两部分:无线资源管理功能和控制功能。无线资源管理主要用于保持无线传播的稳定性和无线连接的服务质量;控制功能包含了所有和无线承载建立、保持和释放相关的功能。
在本发明实施例中,基站即公用移动通信基站,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。在本发明实施例中,基站的结构可以包括基带处理单元(英文:Building Base band Unit;缩写:BBU)和射频拉远单元(英文:Radio Remote Unit;缩写:RRU),RRU和天馈系统(天线)。
在一些可行的实施例中,除上述对于RNC和基站的描述外,还可以以其它更为概括的结构来展示RNC和基站。对于RNC,可主要体现处理器/处理电路,存储器,以及接口(包括与核心网设备连接的接口,与基站连接的接口)。对于基站,可以体现处理器/处理电路、存储器,以及收发器等,此处不作限定。
在本发明实施例中,终端可以包括总线、处理器、存储器、输入输出接口、显示设备和通信接口。总线是连接所描述的元素的电路并且在这些元素之间实现传输。例如,处理器通过总线从其它元素接收到命令,解密接收到的命令,根据解密的命令执行计算或数据 处理。
在本发明实施例中,“多扇区”解决方案即可以应用于UMTS,也可以应用于长期演进(英文:Long Term Evolution;缩写:LTE)和全球移动通信系统(英文:Global System for Mobile Communication;缩写:GSM),此处不作限定。
随着移动宽带的快速发展和用户的增加,运营商在网络容量方面面临巨大挑战,特别是在高话务城区热点,流量需求被严重压抑,用户体验难以保障。受限于新站址获取困难、频谱资源有限等因素,运营商难以通过增加站点或增加频谱扩充载波等传统方式提升网络容量。
针对这些挑战,“多扇区”解决方案解决高话务城区热点容量不足问题,以高效保障用户体验。在蜂窝通信网中,一个基站可以分为三个小区,称为“三扇区”解决方案。基站可设在小区的中心,用全向天线形成圆形的覆盖区,这就是“中心激励”方式。也可将基站设在每个小区六边形的三个顶点上,每个基站采用三副120度扇形辐射的定向天线,分别覆盖三个相邻小区的各三分之一的区域,每个小区由三副120度扇形天线共同覆盖,这就是“顶点激励”方式,而每副天线覆盖的区域就是一个基站扇区,一个基站扇区也称为一个小区。
一个基站也可以分为六个扇区或者九个扇区,被称为“六扇区”解决方案或者“九扇区”解决方案。其中,“九扇区”解决方案运用空间复用技术及华为独特算法,通过自行研发的三波束高增益劈裂天线,在水平方向上将一个120度的扇区劈裂为三个40度的扇区,即现在使用三个扇区对原来使用一个扇区的同一片区域进行覆盖,实现网络容量提升到原有“三扇区”的2.2~2.7倍,覆盖提升2~3dB。“九扇区”解决方案在不增加站点和频谱资源的情况下,提升网络容量为原有三扇区的2.5倍,有效保障高话务城区热点的用户体验。
“九扇区”解决方案的推出,帮助更多运营商最大化利用现有网络频谱资源,有效解决容量问题,建设更有竞争力的高质量用户体验网络。“九扇区”解决方案是“多扇区”解决方案的重要组成部分。截止目前,“六扇区”解决方案已在全球70多张网络部署,“九扇区”解决方案部署逐渐拉开帷幕。未来多扇区解决方案将持续创新,助力运营商提升网络容量,满足未来不断增长的用户数及数据业务需求。
在移动通信系统中,为了提高频率利用率,增加系统的容量,常常采用频率复用技术。频率复用是指在相隔一定距离后,在给定的覆盖区域内,存在着许多使用同一组频率的小区,这些小区称为同频小区。同频小区之间的干扰称为同频干扰。
一般采用频率复用的技术以增加频谱效率。当小区不断分裂使基站服务区不断缩小,同频复用系数增加时,大量的同频干扰将取代人为噪声和其它干扰,成为对小区制的主要约束。这时移动无线电环境将由噪声受限环境变为干扰受限环境。
在本发明实施例中,当终端需要进行切换小区时,需要确定切换至哪个同频邻区,则需要对同频邻区进行信号质量测试。在一些可行的实施例中,当基站发现终端需要切换小区时,会下发一个同频测量控制信令,该同频测量信令里携带该小区的多个同频邻区,以使得终端对该小区的多个同频测量邻区进行信号质量测试,以选择信号质量较好的同频邻区进行切换。
然而,协议331里规定,为了保证终端的正常的切换,同频测量控制里面最多可以携 带31个邻区全部进行下发测量。但是同频测量控制过大的话,会容易引起信令无线承载(英文:Signalling Radio Bearer;缩写:SRB)复位的掉话,同时也会由于消耗过多的时间进行下发,影响业务的建立的时延。
根据数据统计,菲律宾Globe局点:6个RNC的统计结果,38%的同频邻区个数超过30;泰国AIS局点:50%的邻区个数超过31;澳洲VHA局点:14%的邻区个数超过31,58%的邻区个数在20-30之间。
随着多扇区的发展,引入的小区个数增多,同频邻区个数超过31的比例增长,小区间的导频污染,软切换区域增加,不必要的软切换增加,导致掉话率升高。
本发明实施例通过提出了通过配置小区的同频邻区,得到同频邻区集合后,可以确定该同频邻区集合中的重要同频邻区,得到重要同频邻区集合,当检测到该小区的终端切换至新小区时,可以向该终端发送同频测量控制信令,而不需要手动操作,而是由无线网络控制器自动实现,体现了智能化以及便利性。
为便于理解,下面对本发明实施例中的具体流程进行描述,请参阅图2,本发明实施例中一种数据处理方法一个实施例包括:
201、配置小区的同频邻区,得到该小区的同频邻区集合。
在本发明实施例中,RNC可以对小区之间是否同频邻区关系进行配置。需要说明的是,同频邻区关系一般都是根据两个小区的之间的地理位置的远近决定的,如果两个小区的地理位置比较接近,覆盖范围有交叠,一般就会配置成邻区关系,反之,就不配置。
在一些可行的实施例中,一般是会根据终端上报的测量到小区的信号,有源小区的和其他小区的关系的信号,如果有些小区的信号比较强,一般就会将该小区和源小区配置成同频邻区关系。然而,在另一些可行的实施例中,当周围的无线环境发生改变的话,如新增或删除了一个基站,或者新建了一栋楼等等,同频邻区关系就可能发生一些变化。然而若没有这些无线环境的改进,则同频邻区关系一般就不会发送改变。
例如,若基站A的小区A1和基站B的小区B1的之间的间隔比较接近,信号比较强,则会将小区A1和小区B1配置成邻区关系。同样的,如果基站A的小区A1和基站A的小区A2也是同样的原则,一般一个基站下面的同一个频点的不同小区都是会配置成邻区关系的。当为所有小区配置了相应的同频邻区的关系后,每个小区都有相应的同频邻区集合。需要说明的是,一个小区没有任何一个同频邻区,即该同频邻区集合可以为空集。
202、获取该小区的切换相关数据。
在一些可行的实施例中,由于一个基站下的小区越来越多,一个小区的同频邻区也越来越多,当需要下发同频测量控制时,大量的同频测量控制都携带上限31个同频邻区。为此,则需要减少其中连接的概率较小的同频邻区,留下重要同频邻区。为了区分重要同频邻区和非重要同频邻区,则需要小区的切换相关数据。
在一些可行的实施例中,终端每次尝试进行切换小区,都会记录下来,然后定时或者事件触发时发送到RNC,终端可以只发送尝试次数和成功次数,也可以计算得到成功率之后发送,此处不作限定。终端可以接收来自终端发送至基站,然后通过基站发送的关于小区的切换相关数据。在一些可行的实施例中,该切换相关数据包括切换尝试次数和切换成 功次数,在另一些可行的实施例中,还可以包括切换成功率,此处不作限定。
203、根据该切换相关数据计算该同频邻区集合中各个同频邻区的重要程度排名,得到同频邻区重要程度排名表。
在一些可行的实施例中,可以通过成功次数以及尝试次数的切换相关数据对同频邻区集合中的同频邻区进行评分,根据评分进行排名,得到同频邻区重要程度排名表。
在一些可行的实施例中,可以通过统计源小区到配置中切换至不同的同频邻区的切换成功次数以及对应的切换尝试次数,通过切换成功次数/切换尝试次数计算得到同频切换成功率。
在一些可行的实施例中,可以使得同频邻区分值等于:切换成功率*切换成功次数。可以理解的是,切换成功率是表示其重要程度的重要参考标准,但是不是唯一的标准,因为如果实施的方案的次数非常少,如1次,则即使成功率是100%,也不能称之为是重要的同频邻区。
在一些可行的实施例中,为了更好地对分值进行比较,可以将其分值归化为0-100之间的数值。具体方法可以为将各个同频邻区的分值除以分值最大的同频邻区的分值,再乘以100,得到0-100之间的数值。需要说明的是,如果切换尝试次数为0的,直接切换部分得分为0,不用计算切换成功率。
需要说明的是,原来的技术下是通过人手使用网规网优工具从RNC中获取切换相关数据,经过汇总、分析和计算得出每个同频邻区的分数,再根据进行重要程度的排名。而在本发明实施例中,仅依靠RNC自动使用汇总、分析和计算切换相关数据得到得出每个同频邻区的分数,再根据进行重要程度的排名。
204、根据该切换相关数据确定该重要同频邻区集合中同频邻区的个数,得到该重要同频邻区个数。
在一些可行的实施例中,当得到不同的同频邻区的重要程度排名之后,可以取其中若干个同频邻区作为重要同频邻区。然而,在如果仅取其中固定个数的同频邻区作为重要同频邻区,则有可能产生某些分值很低的也可能是重要同频邻区,分值很高的却不是重要同频邻区。所谓重要同频邻区,即其被切换的次数足够多,同时成功率足够高,为此,本发明实施例中提供一种可以确定其重要同频邻区集合中同频邻区的个数的方法。
具体为,首先设置最小同频邻区个数门限对应的邻区排名M。如一般M可以设置为7个或者8个,此处不作限定。根据最小同频邻区个数门限,邻区按照切换成功次数的排序从高到低,取排名前1-M的同频邻区。
然后获取累积分布函数(英文:Cumulative Distribution Function;缩写:CDF)切换占比门限对应的邻区排名N。CDF为随机变量小于等于某个数值的概率,此处CDF切换占比指邻区排名≤N的两两小区软切换成功次数占源小区总软切换累积成功数的比例。CDF切换占比门限对应的邻区排名N的取值办法:大于等于该门限对应的邻区统计排名的第一个。例如,若CDF切换占比门限设置为90%,则如下表格小区标识为18431的小区对应的切换占比90%邻区是排名11的同频邻区,即N=11。需要说明的是,其CDF切换占比门限可以根据需要进行设备,如80%,70%,以适应网络的需求,此处不作限定。
按照切换成功次数由高到低统计CDF切换占比,得到结果类似下面的表格:
小区 同频邻区 切换成功次数 累计成功次数 邻区排名 CDF
18431 18433 752 752 1 0.246962
18431 28331 440 1192 2 0.391461
18431 18432 417 1609 3 0.528407
…… …… …… …… …… ……
18431 47282 127 2649 10 0.869951
18431 35343 122 2771 11 0.910016
18431 28247 121 2892 12 0.949754
…… …… …… …… …… ……
18431 28243 3 3042 21 0.999015
18431 28083 2 3044 22 0.999672
18431 47272 1 3045 23 1
接着,区分重要邻区和非重要邻区,按照邻区排名,取MIN{配置的同频邻区个数,MAX(M,N)}数量的同频邻区为重要同频邻区的数量,在该数量的排名以及之前的都是重要同频邻区,其他的为非重要邻区,以此得到重要同频邻区集合和非重要同频邻区集合。需要说明的是,之所以取MIN{配置的同频邻区个数,MAX(M,N)},是因为配置的重要同频邻区的个数不可能超过配置的同频邻区个数。获取同频的重要邻区后,同频测量控制优化的下发邻区就是下发重要的邻区关系。需要说明的是,以上是一个较为理想的得到重要同频邻区的计算方式,还可以有其他计算方式,此处不作限定。
205、根据该同频邻区重要程度排名表和该重要同频邻区个数确定重要同频邻区,得到该重要同频邻区集合。
在一些可行的实施例中,可以根据以上的同频邻区重要程度排名表以及该重要同频邻区个数确定重要同频邻区,以得到重要同频邻区集合。具体的为,优选的,取同频邻区重要程度排名表中前重要同频邻区个数的同频邻区作为重要同频邻区。
需要说明的是,同频邻区重要程度排名表以及该重要同频邻区个数可以按照以上方式计算得到,也可以通过其他方式计算得到,如同频邻区重要程度排名表仅根据成功率排名,或者仅根据切换尝试次数到达预置个数并成功率到达预置数值的作为重要同频邻区,而该重要同频邻区个数可以通过人为设置为10或者20,此处不作限定。
206、当检测到该小区的终端切换至新小区时,向该终端发送同频测量控制信令,该同频测量控制信令用于指示该终端对该重要同频邻区集合进行信号质量测试。
在一些可行的实施例中,当终端需要切换的时候,或者其他需要进行同频测量的时候,可以请求RNC发送同频测量控制信令。在本发明实施例中,RNC下发的同频测量控制信令里仅携带重要同频邻区集合,不携带非重要同频邻区集合。当终端接收到同频测量控制信令时,即可对重要同频邻区进行信号质量测试,选择其中信号质量较好的进行切换。
207、将非重要同频邻区集合加入活动集,该非重要同频邻区集合为该同频邻区集合中除该重要同频邻区集合以外的同频邻区。
在本发明实施例中,同频邻区集合中除了重要同频邻区之外的同频邻区均被称为非重要同频邻区。在一些情境下,及时是重要同频邻区,仍然有可能会有掉话风险,则非重要同频邻区即使没有进行信号质量测试,仍然可以对其进行激活,使得其进入活动集,当重要同频邻区都不可进入时,则可以选择非重要同频邻区,降低掉话率。
上面对本发明实施例中一种数据处理方法进行描述,下面对本发明实施例中的无线网络控制器进行描述。
请参考图3,本发明实施例还提供一种无线网络控制器300,该无线网络控制器300包括:
配置模块301,用于配置小区的同频邻区,得到该小区的同频邻区集合。
确定模块302,用于确定该配置模块301得到的该同频邻区集合中的重要同频邻区,得到重要同频邻区集合。
发送模块303,用于当检测到该小区的终端切换至新小区时,向该终端发送同频测量控制信令,该同频测量控制信令用于指示该终端对该确定模块302得到的该重要同频邻区集合进行信号质量测试。
请参考图4,该确定模块302包括:
获取子模块3021,用于获取该小区的切换相关数据。
确定子模块3022,用于根据该获取子模块3021获取的该切换相关数据确定该同频邻区集合中的重要同频邻区,得到该重要同频邻区集合。
请参考图5,该确定子模块3022包括:
计算单元30221,用于根据该获取子模块3021获取的该切换相关数据计算该同频邻区集合中各个同频邻区的重要程度排名,得到同频邻区重要程度排名表。
第一确定单元30222,用于根据该获取子模块3021获取的该切换相关数据确定该重要同频邻区集合中同频邻区的个数,得到该重要同频邻区个数。
第二确定单元30223,用于根据该计算单元30221计算得到的该同频邻区重要程度排名表和该第一确定单元30222得到该重要同频邻区个数确定重要同频邻区,得到该重要同频邻区集合。
请参考图6,该无线网络控制器还包括:
加入模块204,用于将非重要同频邻区集合加入活动集,该非重要同频邻区集合为该同频邻区集合中除该第一确定模块确定的该重要同频邻区集合以外的同频邻区。
请参考图7,该无线网络控制器700包括:
收发器701、存储器702、处理器703以及总线704。
该收发器701、该存储器702以及该处理器703通过该总线704连接。
该处理器703,用于配置小区的同频邻区,得到该小区的同频邻区集合,确定该同频邻区集合中的重要同频邻区,得到重要同频邻区集合。
处理器703可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。
处理器703还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文: application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其任意组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。
该收发器701,用于当检测到该小区的终端切换至新小区时,向该终端发送同频测量控制信令,该同频测量控制信令用于指示该终端对该处理器确定的该重要同频邻区集合进行信号质量测试。
进一步的,收发器701包括ZigBee、Wi-Fi、LTE(Long Term Evolution,长期演进)、RFID(Radio Freq终端ncy Identification,射频识别技术)、NFC(Near Field Communication,近场通信)、红外、UWB(Ultra Wideband,超宽带)的一种或多种组合,此处不作限定;也可以包括EIA-RS-232C标准下的通信接口,即数据终端设备(英文:Data Terminal Equipment,缩写:DTE)和数据通信设备(英文:Data Circuit-terminating Equipment,缩写:DCE)之间串行二进制数据交换接口技术标准的通信接口,也可以包括RS-485协议下的通信接口,此处不作限定。
该存储器702,用于存储程序、该处理器配置的该同频邻区集合、该处理器确定的该重要同频邻区集合、该收发器发送的该同频测量控制信令。
存储器702可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器702也可以包括非易失性存储器(英文:non-volatile memory),例如快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器702还可以包括上述种类的存储器的任意组合,此处不作限定。
可选地,存储器702还可以用于存储程序指令,处理器703可以调用该存储器702中存储的程序指令,执行图2所示实施例中的一个或多个步骤,或其中可选的实施方式,使得该无线网络控制器300实现上述方法的功能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各 个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种数据处理方法,其特征在于,包括:
    配置小区的同频邻区,得到所述小区的同频邻区集合;
    确定所述同频邻区集合中的重要同频邻区,得到重要同频邻区集合;
    当检测到所述小区的终端切换至新小区时,向所述终端发送同频测量控制信令,所述同频测量控制信令用于指示所述终端对所述重要同频邻区集合进行信号质量测试。
  2. 根据所述权利要求1所述方法,其特征在于,所述确定所述同频邻区集合中的重要同频邻区,得到重要同频邻区集合包括:
    获取所述小区的切换相关数据;
    根据所述切换相关数据确定所述同频邻区集合中的重要同频邻区,得到所述重要同频邻区集合。
  3. 根据所述权利要求2所述方法,其特征在于,所述根据所述切换相关数据确定所述同频邻区集合中的重要同频邻区包括:
    根据所述切换相关数据计算所述同频邻区集合中各个同频邻区的重要程度排名,得到同频邻区重要程度排名表;
    根据所述切换相关数据确定所述重要同频邻区集合中同频邻区的个数,得到所述重要同频邻区个数;
    根据所述同频邻区重要程度排名表和所述重要同频邻区个数确定重要同频邻区,得到所述重要同频邻区集合。
  4. 根据所述权利要求2所述方法,其特征在于,所述切换相关数据包括切换尝试次数和切换成功次数。
  5. 根据所述权利要求1至4中任一项所述方法,其特征在于,所述确定所述同频邻区集合中的重要同频邻区,得到重要同频邻区集合之后,还包括:
    将非重要同频邻区集合加入活动集,所述非重要同频邻区集合为所述同频邻区集合中除所述重要同频邻区集合以外的同频邻区。
  6. 一种无线网络控制器,其特征在于,包括:
    配置模块,用于配置小区的同频邻区,得到所述小区的同频邻区集合;
    确定模块,用于确定所述配置模块得到的所述同频邻区集合中的重要同频邻区,得到重要同频邻区集合;
    发送模块,用于当检测到所述小区的终端切换至新小区时,向所述终端发送同频测量控制信令,所述同频测量控制信令用于指示所述终端对所述确定模块得到的所述重要同频邻区集合进行信号质量测试。
  7. 根据所述权利要求6所述无线网络控制器,其特征在于,所述确定模块包括:
    获取子模块,用于获取所述小区的切换相关数据;
    确定子模块,用于根据所述获取子模块获取的所述切换相关数据确定所述同频邻区集合中的重要同频邻区,得到所述重要同频邻区集合。
  8. 根据所述权利要求7所述无线网络控制器,其特征在于,所述确定子模块包括:
    计算单元,用于根据所述获取子模块获取的所述切换相关数据计算所述同频邻区集合中各个同频邻区的重要程度排名,得到同频邻区重要程度排名表;
    第一确定单元,用于根据所述获取子模块获取的所述切换相关数据确定所述重要同频邻区集合中同频邻区的个数,得到所述重要同频邻区个数;
    第二确定单元,用于根据所述计算单元计算得到的所述同频邻区重要程度排名表和所述第一确定单元得到所述重要同频邻区个数确定重要同频邻区,得到所述重要同频邻区集合。
  9. 根据所述权利要求6至8中任一项所述无线网络控制器,其特征在于,所述无线网络控制器,还包括:
    加入模块,用于将非重要同频邻区集合加入活动集,所述非重要同频邻区集合为所述同频邻区集合中除所述第一确定模块确定的所述重要同频邻区集合以外的同频邻区。
  10. 一种无线网络控制器,其特征在于,包括:
    收发器、存储器、处理器以及总线;
    所述收发器、所述存储器以及所述处理器通过所述总线连接;
    所述处理器,用于配置小区的同频邻区,得到所述小区的同频邻区集合,确定所述同频邻区集合中的重要同频邻区,得到重要同频邻区集合;
    所述收发器,用于当检测到所述小区的终端切换至新小区时,向所述终端发送同频测量控制信令,所述同频测量控制信令用于指示所述终端对所述处理器确定的所述重要同频邻区集合进行信号质量测试;
    所述存储器,用于存储程序、所述处理器配置的所述同频邻区集合、所述处理器确定的所述重要同频邻区集合、所述收发器发送的所述同频测量控制信令。
PCT/CN2017/083067 2016-08-24 2017-05-04 一种数据处理方法和无线网络控制器 WO2018036196A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610719511.8 2016-08-24
CN201610719511.8A CN106332136A (zh) 2016-08-24 2016-08-24 一种数据处理方法和无线网络控制器

Publications (1)

Publication Number Publication Date
WO2018036196A1 true WO2018036196A1 (zh) 2018-03-01

Family

ID=57791829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083067 WO2018036196A1 (zh) 2016-08-24 2017-05-04 一种数据处理方法和无线网络控制器

Country Status (2)

Country Link
CN (1) CN106332136A (zh)
WO (1) WO2018036196A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106332136A (zh) * 2016-08-24 2017-01-11 上海华为技术有限公司 一种数据处理方法和无线网络控制器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005759A1 (en) * 2001-07-03 2003-01-16 Telefonaktiebolaget Lm Ericsson (Publ) A method of ranking neighbour cells as candidates for an hand over
CN1863390A (zh) * 2005-12-29 2006-11-15 华为技术有限公司 软切换的邻区策略的实现方法
CN101080103A (zh) * 2007-07-18 2007-11-28 华为技术有限公司 蜂窝小区的邻区选择方法、邻区信息下发方法及设备
CN102075981A (zh) * 2009-11-20 2011-05-25 普天信息技术研究院有限公司 邻区配置优化方法和系统
CN106332136A (zh) * 2016-08-24 2017-01-11 上海华为技术有限公司 一种数据处理方法和无线网络控制器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366126C (zh) * 2004-11-08 2008-01-30 华为技术有限公司 一种选择非同频测量邻区进行测量的方法
CN101321355B (zh) * 2007-06-05 2012-05-09 中兴通讯股份有限公司 一种邻区漏配置检测方法
CN101600221B (zh) * 2008-06-03 2012-02-29 中兴通讯股份有限公司 终端获知同频邻区属性的方法及对其进行测量的方法
CN102300214B (zh) * 2010-06-28 2014-01-01 鼎桥通信技术有限公司 强邻区列表生成方法及装置、信道选择方法及装置
CN102547753A (zh) * 2010-12-22 2012-07-04 中兴通讯股份有限公司 邻区优化方法及装置
CN102595526B (zh) * 2012-02-23 2017-12-12 盐城中咏投资发展有限公司 终端邻区列表的处理方法和基站控制器
CN103458473B (zh) * 2012-05-29 2016-08-24 广东技术师范学院 一种邻区优化方法及邻区优化装置
EP3070971B1 (en) * 2013-12-12 2018-09-19 Huawei Technologies Co., Ltd. Method and device for optimizing neighbour relation
CN105228161B (zh) * 2014-06-24 2019-05-17 普天信息技术有限公司 一种邻区规划方法
CN105323804A (zh) * 2014-07-07 2016-02-10 普天信息技术有限公司 一种用于实现邻区规划的方法及装置
CN105578443A (zh) * 2014-10-09 2016-05-11 中兴通讯股份有限公司 邻区维护方法及装置
CN105792245A (zh) * 2014-12-22 2016-07-20 中兴通讯股份有限公司 邻区切换的调整方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005759A1 (en) * 2001-07-03 2003-01-16 Telefonaktiebolaget Lm Ericsson (Publ) A method of ranking neighbour cells as candidates for an hand over
CN1863390A (zh) * 2005-12-29 2006-11-15 华为技术有限公司 软切换的邻区策略的实现方法
CN101080103A (zh) * 2007-07-18 2007-11-28 华为技术有限公司 蜂窝小区的邻区选择方法、邻区信息下发方法及设备
CN102075981A (zh) * 2009-11-20 2011-05-25 普天信息技术研究院有限公司 邻区配置优化方法和系统
CN106332136A (zh) * 2016-08-24 2017-01-11 上海华为技术有限公司 一种数据处理方法和无线网络控制器

Also Published As

Publication number Publication date
CN106332136A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
US20200022061A1 (en) Handover Method in Mobile Network and Communications Apparatus
CN106231628B (zh) 用于地理区块数据收集和报告的方法和演进型节点b
TWI683584B (zh) 通信方法、終端設備和網絡設備
US20120244869A1 (en) Network scaling for network energy savings
US8768369B2 (en) Network map for location-based mobility decisions
KR101649861B1 (ko) 핸드오버 및 리다이렉션 절차들을 위한 프로액티브, 위치-기반 트리거
CN104620634A (zh) 用于异构无线网络的用户移动性控制
EP3648505B1 (en) Device and method for load distribution of base station in wireless communication system
CN105208593A (zh) 非授权频谱上的辅服务小区的管理方法、系统及基站
TW201818677A (zh) 波束測量的方法、終端和網路設備
WO2015147707A1 (en) Method and network node for providing overlap information in a cellular network
US20220210706A1 (en) Method and apparatus for identifying target neighbor cell for handover of user equipment (ue)
WO2022011642A1 (zh) 小区重选的方法、终端设备和网络设备
CN101541009A (zh) 一种优化邻区列表的方法、装置及系统
US8929897B2 (en) Method and apparatus for providing improved mobility procedure
CN104955127A (zh) 一种跨系统网络信息交互的方法、终端系统网络网元
CN102572948A (zh) 一种优化负荷均衡的方法和装置
US10045289B2 (en) Method and apparatus for controlling enabling of station
WO2022021131A1 (zh) 重选初始带宽部分bwp的方法、终端设备和网络设备
CN102833800A (zh) 小区切换方法和装置
JP6002844B2 (ja) 端末選択方法、及び自己組織化ネットワークに基づくシステム、並びにネットワークエンティティ
WO2018036196A1 (zh) 一种数据处理方法和无线网络控制器
CN104301961A (zh) 一种切换判决方法及装置
JP2014179690A (ja) 移動通信ネットワーク、無線基地局、制御局および負荷分散制御方法
WO2016065840A1 (zh) 无线接入网节点的邻区关系建立方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842621

Country of ref document: EP

Kind code of ref document: A1