WO2016056788A2 - Glass substrate manufacturing method for increasing bonding force with electroless plating layer - Google Patents

Glass substrate manufacturing method for increasing bonding force with electroless plating layer Download PDF

Info

Publication number
WO2016056788A2
WO2016056788A2 PCT/KR2015/010420 KR2015010420W WO2016056788A2 WO 2016056788 A2 WO2016056788 A2 WO 2016056788A2 KR 2015010420 W KR2015010420 W KR 2015010420W WO 2016056788 A2 WO2016056788 A2 WO 2016056788A2
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
plating layer
electroless plating
etching step
solution
Prior art date
Application number
PCT/KR2015/010420
Other languages
French (fr)
Korean (ko)
Other versions
WO2016056788A3 (en
Inventor
김준수
김지만
이성찬
문형수
오정근
이지훈
최재영
Original Assignee
코닝정밀소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝정밀소재 주식회사 filed Critical 코닝정밀소재 주식회사
Publication of WO2016056788A2 publication Critical patent/WO2016056788A2/en
Publication of WO2016056788A3 publication Critical patent/WO2016056788A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching

Definitions

  • the present invention relates to a glass substrate manufacturing method, and more particularly, to a glass substrate manufacturing method that can increase the bonding strength with the electroless plating layer plated on the surface.
  • Glass exhibits high transmittance of materials, excellent thermal stability and mechanical properties, and has been applied to many fields such as various functional containers, automobiles, building materials, and electronic devices such as smart phones and displays.
  • the modern industry is a technology-intensive field, the demand for the material bonded to the application increases, so that there are continuous industrial fields that require such excellent properties of glass.
  • electrical devices such as touch screens, displays, and semiconductor substrate materials
  • electrical connections between devices forming fine electrical circuit patterns are important.
  • the deposition of a metal material such as copper (Cu) to implement the electrical circuit on the glass material is essential.
  • the step of plating to precipitate the Cu on the medium to be coated by chemical reduction of the Cu 2 + ions may be coated all of the entire sample
  • glass-based materials are basically poor in bonding strength with Cu, and thus, there is a demand for a method or technology capable of strengthening bonding strength between them.
  • EP-0507719 introduces metallizing pastes to increase the adhesion of the glass.
  • This patent describes a method of increasing the adhesion of glass by incorporating organic carriers, copper powder, alloy metals, and the like into the paste.
  • Korean Patent Publication No. 10-2009-0119500 describes a method for forming a seed layer for electroless copper plating with silver.
  • silane is used to form a self-assembled monolayer on the surface, and a silver seed layer is formed, followed by electroless copper plating to increase the bonding strength of the glass substrate and copper.
  • US Patent US6441213 which introduces a bonding enhancer as a method for increasing the bonding strength of a substrate such as glass, describes the contents of various bonding enhancers having low volatility.
  • International Publication WO2004 / 020525 introduces a bonding agent that can be cured at room temperature, and describes a material for adding bonding force.
  • an object of the present invention is to provide a method for manufacturing a glass substrate that can increase the bonding strength with the electroless plating layer to be plated on the surface.
  • the present invention the first etching step of immersing the glass substrate in hydrofluoric acid (HF) solution; And a second etching step of immersing the glass substrate etched through the first etching step in a saturated silica solution to form a three-dimensional network structure inwardly on the surface of the glass substrate on which the electroless plating layer is plated. It provides a glass substrate manufacturing method for increasing the bonding strength with the electroless plating layer, characterized in that.
  • HF hydrofluoric acid
  • the glass substrate may be immersed in the hydrofluoric acid (HF) solution of 1 to 3 wt.% For at least 2 minutes.
  • HF hydrofluoric acid
  • any one of soda-lime glass and alkali-free glass may be used.
  • the silica solution may be maintained at 30 to 50 ° C., and then the glass substrate may be immersed for 10 to 45 minutes.
  • the saturated silica solution is stirred in an excess of silica (SiO 2 ) or silicic acid (SiO 2 ⁇ H 2 O) powder in a solution of 10 to 25wt.% Silica fluoride (H 2 SiF 6 ), at least 10 ⁇ m or less It can be prepared by filtering.
  • boric acid solution B (OH) 2
  • potassium fluoride (KF) solution may be added to the saturated silica solution.
  • cleaning and drying of the glass substrate may be performed.
  • the three-dimensional network structure may be formed to a depth of 30 ⁇ 200nm in the inward direction from the surface of the glass substrate.
  • the anchoring effect on the electroless plating layer during plating for forming the electroless plating layer anchoring effect
  • FIG. 1 is a schematic diagram showing a glass substrate manufactured according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing a three-dimensional network structure formed on the surface of the glass substrate prepared according to the embodiment of the present invention.
  • FIG 3 is a photograph taken with a scanning electron microscope of the etched glass substrate surface (left) and the unetched glass substrate surface (right).
  • Figure 4 is a schematic diagram showing a state in which an electroless plating layer is plated on the surface of the glass substrate prepared according to the embodiment of the present invention.
  • FIG. 5 is a photograph taken with a scanning electron microscope of an electroless copper plating layer (left) plated on an etched glass substrate surface (left) and an electroless copper plating layer (right) plated on an unetched glass substrate surface.
  • Glass substrate manufacturing method unlike the conventional, glass substrate that can increase the bonding strength with the electroless plating layer (20 of FIG. 4) without using additional materials or media for strengthening the bonding (Fig. 1 of 100).
  • the glass substrate manufacturing method includes a first etching step and a second etching step.
  • the first etching step is a step of pre-etching the glass substrate (100 in FIG. 1) prior to the second etching step, which is the main etching.
  • the glass substrate (100 in FIG. 1) is immersed in a hydrofluoric acid (HF) solution.
  • HF hydrofluoric acid
  • the glass substrate (100 in FIG. 1) After immersing the glass substrate (100 in FIG. 1) in the hydrofluoric acid (HF) solution as described above, after removing the glass substrate (100 in FIG. 1) from the hydrofluoric acid (HF) solution, the glass substrate (100 in FIG. 1) After washing, it is dried.
  • This first etching step is carried out to remove the oxide film and contaminants on the surface of the glass substrate (100 in FIG. 1), that is, the surface on which the electroless plating layer (20 in FIG. 4) is to be plated.
  • the glass substrate (100 of FIG. 1) on which the electroless plating layer (20 of FIG. 4) is plated one of soda-lime glass and alkali-free glass may be used.
  • the second etching step is performed by pre-etching, ie, removing the surface oxide film and contaminants from the glass substrate 100 to the saturated silica solution. Immersion step.
  • the second etching step is a step of forming the three-dimensional network structure 110 inward on the surface of the glass substrate 100 on which the electroless plating layer 20 is plated. That is, in the second etching step, the glass substrate 100 is immersed in a saturated silica solution for a predetermined time, thereby removing alumina and boron, which are alkali and alkaline earth elements or meshes, on the surface of the glass substrate 100.
  • the three-dimensional network structure 110 is formed inward from the surface of the.
  • silica (SiO 2 ) or silicic acid (SiO 2 ⁇ H 2 O) powder is added to a 10-25 wt.% Silica fluoride (H 2 SiF 6 ) solution. After stirring, it can manufacture by filtering to at least 10 micrometers or less.
  • a boric acid solution (B (OH) 2 ) or potassium fluoride (KF) solution may be added to the prepared silica solution.
  • the saturated silica solution prepared as described above is maintained at 30 to 50 ° C., and then the glass substrate 100 pre-etched through the first etching step is applied to the saturated silica solution for 10 to 45 minutes. Immerse. Thereafter, the glass substrate 100 is taken out of the saturated silica solution, and then washed and dried.
  • the glass substrate 100 having the three-dimensional network structure 110 formed at a depth of 30 to 200 nm in the inward direction from the surface is manufactured.
  • the three-dimensional network 100 may be formed to a depth of about 100 to 120 nm. Can be.
  • FIG. 3 is a photograph of the etched glass substrate surface (left) and the unetched glass substrate surface (right) by scanning electron microscopy.
  • FIG. 3 Unlike the surface of the glass substrate which is not etched, it can be visually confirmed that a three-dimensional network structure is formed inward from the surface of the glass substrate to a depth of about 115 nm.
  • the metal for example, the electroless copper plating process on the surface of the glass substrate 100 manufactured according to an embodiment of the present invention
  • the metal for example, the electroless copper plating process on the surface of the glass substrate 100 manufactured according to an embodiment of the present invention
  • the copper plating solution penetrates or fills the irregular holes and grooves of the three-dimensional network structure 110 formed inward
  • the electroless plating layer 20 is plated and formed on the surface of the glass substrate 100.
  • the electroless plating layer 20 formed on the surface of the glass substrate 100 and the copper filled in the irregular hole and groove of the three-dimensional network structure 110 is present in the form of being connected to each other, in this case, electroless The plating layer 20 is fixed or supported by the copper filled in the irregular holes and grooves of the three-dimensional network structure 110, that is, the copper filled in the irregular holes and grooves of the three-dimensional network structure 110 are connected thereto. Since the electroless plating layer 20 is held, the bonding force between the glass substrate 100 and the electroless plating layer 20 is increased.
  • FIG. 5 is a photograph of an electroless copper plating layer (left) plated on an etched glass substrate surface and an electroless copper plating layer (right) plated on an unetched glass substrate surface by scanning electron microscope.
  • the electroless copper plating layer (right) plated on the surface of the glass substrate not etched it can be seen that there is no change in the interface between the glass substrate and the electroless copper plating layer.
  • the bonding strength This was measured at about 3.0 N / mm 2.
  • the bonding force between the glass substrate and the electroless copper plating layer was evaluated. As a result, the bonding force was measured to be about 1.5 N / mm 2. That is, when a glass substrate having a three-dimensional network structure is manufactured through the glass substrate manufacturing method according to the embodiment of the present invention, the bonding force with the electroless plating layer is increased by about two times or more than otherwise.

Abstract

The present invention relates to a glass substrate manufacturing method and, more specifically, to a glass substrate manufacturing method capable of increasing a bonding force with an electroless plating layer to be plated on the surface. To this end, the present invention provides a glass substrate manufacturing method for increasing a bonding force with an electroless plating layer, comprising: a first etching step of immersing a glass substrate into a hydrofluoric acid (HF) solution; and a second etching step of forming a three-dimensional network structure in the inner direction on the surface of the glass substrate on which the electroless plating layer is to be plated, by immersing, into a saturated silica solution, the glass substrate etched through the first etching step.

Description

무전해 도금층과의 접합력 증대를 위한 유리기판 제조방법Glass substrate manufacturing method for increasing the bonding strength with the electroless plating layer
본 발명은 유리기판 제조방법에 관한 것으로서 더욱 상세하게는 표면에 도금되는 무전해 도금층과의 접합력을 증대시킬 수 있는 유리기판 제조방법에 관한 것이다.The present invention relates to a glass substrate manufacturing method, and more particularly, to a glass substrate manufacturing method that can increase the bonding strength with the electroless plating layer plated on the surface.
유리는 재료의 높은 투과율과 우수한 열적 안정성 및 기계적 특성을 나타내어, 각종 기능성 용기, 자동차, 건축자재, 그리고 스마트 폰, 디스플레이와 같은 전자소자 분야 등 많은 분야에 응용되어 오고 있다. 현대 산업은 기술 집약적인 분야일수록, 응용에 접합한 소재에 대한 요구가 증가되기 때문에, 유리의 상기와 같은 우수한 특성을 필요로 하는 산업 분야들이 지속적으로 발생하고 있다. 특히, 터치 스크린, 디스플레이 및 반도체 기판 소재 등과 같은 전기 소자들에서는 미세한 전기적 회로 패턴을 형성하는 소자들 간의 전기적 연결이 중요하다. 이때, 상기와 같은 전기 소자들에 유리 소재를 사용하는 경우, 유리 소재 위에 전기 회로를 구현하기 위한 구리(Cu)와 같은 금속 소재의 증착이 필수적이다.Glass exhibits high transmittance of materials, excellent thermal stability and mechanical properties, and has been applied to many fields such as various functional containers, automobiles, building materials, and electronic devices such as smart phones and displays. As the modern industry is a technology-intensive field, the demand for the material bonded to the application increases, so that there are continuous industrial fields that require such excellent properties of glass. In particular, in electrical devices such as touch screens, displays, and semiconductor substrate materials, electrical connections between devices forming fine electrical circuit patterns are important. In this case, when the glass material is used for the electrical devices as described above, the deposition of a metal material such as copper (Cu) to implement the electrical circuit on the glass material is essential.
일반적으로, 유리를 디스플레이 공정에 적용하는 경우, 스퍼터(sputter) 장비를 이용하여, 유리 위에 접합력 강화를 위한 시드층(seed layer)을 형성한 후, 그 위에 구리를 증착시킨다. 하지만, 스퍼터와 같은 진공 장비를 사용하게 되면, 장비 및 장비 운용 비용이 고가이고, 장비가 차지하는 부피도 크며, 전체 공정시간 또한 상당히 소요되는 등 많은 문제점들이 발생된다. 특히, 종래에는 주로 2차원적인 즉, 한 방향만으로 구리를 증착한 관계로, 3차원적인 모든 방면에 균질한 증착을 위해서는 장비의 구조적 변형이 필요한데, 이는 추가적인 비용 발생과 설비 부피의 증가를 초래하게 된다.In general, when glass is applied to a display process, sputter equipment is used to form a seed layer on the glass for strengthening bonding strength, and then copper is deposited thereon. However, the use of vacuum equipment, such as sputters, are expensive, equipment and operating cost of the equipment, the equipment occupies a large volume, and the overall process time also takes a lot of problems occur. In particular, conventionally, since copper is mainly deposited in two dimensions, i.e., in one direction, structural modification of equipment is required for homogeneous deposition in all three dimensions, which leads to additional cost and increase in equipment volume. do.
한편, 무전해 Cu 도금의 경우, Cu2 + 이온의 화학적 환원반응을 통해 도금하고자 하는 매질에 Cu를 석출시켜 도금시키는 공정으로, 전체 공정이 용액기반으로 이루어지고, 전체 시료를 모두 도금할 수 있으며, 대량 생산 공정이 가능하기 때문에, 다양한 산업 분야에 적용되고 있다. 하지만, 유리 기반 재료는 기본적으로 Cu와의 접합력이 좋지 않기 때문에, 서로 간의 접합력을 강화시킬 수 있는 방법이나 기술이 요구되고 있는 상황이다.On the other hand, electroless case of Cu plating, the step of plating to precipitate the Cu on the medium to be coated by chemical reduction of the Cu 2 + ions, being the whole procedure performed in solution-based, may be coated all of the entire sample As it is possible to mass-produce processes, it is applied to various industrial fields. However, glass-based materials are basically poor in bonding strength with Cu, and thus, there is a demand for a method or technology capable of strengthening bonding strength between them.
유럽공개특허 제0507719호는 유리의 접착성을 증가시키기 위해, 메탈라이징 페이스트를 소개한다. 이 특허에서는 페이스트에 유기 캐리어, 구리 분말 및 합금 금속 등을 포함시켜, 유리의 접착성을 증가시키는 방법을 기술하고 있다. 또한, 한국 공개특허 제10-2009-0119500호는 무전해 동 도금을 위한 시드층을 은으로 형성하는 방법에 대해 기술하고 있다. 이 특허에서는 실란을 이용하여 표면에 자기조립단분자막을 형성시키고, 은 시드층을 형성한 후 무전해 동 도금을 진행하여 유리 기판과 구리의 접합력을 증가시킨다. 그리고 유리와 같은 기판의 접합력을 증가시키기 위한 방법으로 접합 강화제를 소개하는 미국등록특허 US6441213은 휘발성이 약한 다양한 접합 강화제에 대한 내용을 기술하고 있다. 또한, 국제공개특허 WO2004/020525는 상온에서 경화가 가능한 접합제를 소개하고 있으며, 접합력을 부가하기 위한 소재를 기술하고 있다.EP-0507719 introduces metallizing pastes to increase the adhesion of the glass. This patent describes a method of increasing the adhesion of glass by incorporating organic carriers, copper powder, alloy metals, and the like into the paste. In addition, Korean Patent Publication No. 10-2009-0119500 describes a method for forming a seed layer for electroless copper plating with silver. In this patent, silane is used to form a self-assembled monolayer on the surface, and a silver seed layer is formed, followed by electroless copper plating to increase the bonding strength of the glass substrate and copper. In addition, US Patent US6441213, which introduces a bonding enhancer as a method for increasing the bonding strength of a substrate such as glass, describes the contents of various bonding enhancers having low volatility. In addition, International Publication WO2004 / 020525 introduces a bonding agent that can be cured at room temperature, and describes a material for adding bonding force.
하지만, 상기의 선행 특허 문헌들은 모두 유리 표면에 부가적인 코팅 및 시드층을 형성하여 접합력을 증대시키는 기술에 관한 것들로, 구성 및 공정이 복잡하고, 이에 따른 공정 시간 및 비용이 증가되는 문제가 있다.However, the above-mentioned prior patent documents are all related to a technique for increasing adhesion by forming additional coatings and seed layers on the glass surface, and there is a problem in that the construction and processing are complicated, and thus the process time and cost are increased. .
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 표면에 도금되는 무전해 도금층과의 접합력을 증대시킬 수 있는 유리기판 제조방법을 제공하는 것이다.The present invention has been made to solve the problems of the prior art as described above, an object of the present invention is to provide a method for manufacturing a glass substrate that can increase the bonding strength with the electroless plating layer to be plated on the surface.
이를 위해, 본 발명은, 불산(HF) 용액에 유리기판을 침지시키는 제1 에칭단계; 및 상기 제1 에칭단계를 통해 에칭된 상기 유리기판을 포화된 실리카 용액에 침지시켜, 무전해 도금층이 도금되는 상기 유리기판의 표면에 내측 방향으로 3차원 망목구조를 형성하는 제2 에칭단계를 포함하는 것을 특징으로 하는 무전해 도금층과의 접합력 증대를 위한 유리기판 제조방법을 제공한다.To this end, the present invention, the first etching step of immersing the glass substrate in hydrofluoric acid (HF) solution; And a second etching step of immersing the glass substrate etched through the first etching step in a saturated silica solution to form a three-dimensional network structure inwardly on the surface of the glass substrate on which the electroless plating layer is plated. It provides a glass substrate manufacturing method for increasing the bonding strength with the electroless plating layer, characterized in that.
여기서, 상기 제1 에칭단계에서는 1~3wt.%의 상기 불산(HF) 용액에 상기 유리기판을 적어도 2분 이상 침지시킬 수 있다.In the first etching step, the glass substrate may be immersed in the hydrofluoric acid (HF) solution of 1 to 3 wt.% For at least 2 minutes.
또한, 상기 유리기판으로는 소다라임 유리, 무알칼리 유리 중 어느 하나의 유리를 사용할 수 있다.As the glass substrate, any one of soda-lime glass and alkali-free glass may be used.
그리고 상기 제2 에칭단계에서는 상기 실리카 용액을 30~50℃로 유지시킨 후, 상기 유리기판을 10~45분간 침지시킬 수 있다.In the second etching step, the silica solution may be maintained at 30 to 50 ° C., and then the glass substrate may be immersed for 10 to 45 minutes.
게다가, 상기 포화된 실리카 용액은 10~25wt.%의 불화규산(H2SiF6) 용액에 실리카(SiO2) 또는 규산(SiO2·H2O) 분말을 과량 넣어 교반한 후, 적어도 10㎛ 이하로 필터링하여 제조할 수 있다.In addition, the saturated silica solution is stirred in an excess of silica (SiO 2 ) or silicic acid (SiO 2 · H 2 O) powder in a solution of 10 to 25wt.% Silica fluoride (H 2 SiF 6 ), at least 10㎛ or less It can be prepared by filtering.
이때, 상기 포화된 실리카 용액에 붕산용액(B(OH)2) 또는 불화칼륨(KF) 용액을 첨가할 수 있다.In this case, a boric acid solution (B (OH) 2 ) or potassium fluoride (KF) solution may be added to the saturated silica solution.
또한, 상기 제1 에칭단계 및 상기 제2 에칭단계 후에는 상기 유리기판에 대한 세정 및 건조 공정이 수반될 수 있다.In addition, after the first etching step and the second etching step, cleaning and drying of the glass substrate may be performed.
그리고 상기 3차원 망목구조는 상기 유리기판의 표면으로부터 내측 방향으로 30~200㎚ 깊이로 형성될 수 있다.The three-dimensional network structure may be formed to a depth of 30 ~ 200nm in the inward direction from the surface of the glass substrate.
본 발명에 따르면, 무전해 도금층이 도금되는 유리기판의 표면으로부터 내측 방향으로 에칭을 통해 3차원 망목구조를 형성함으로써, 무전해 도금층 형성을 위한 도금 시 무전해 도금층에 대한 닻내림 효과(anchoring effect)를 구현할 수 있고, 이를 통해, 접합 강화를 위한 부가적인 소재 혹은 매개체를 사용하지 않고도 무전해 도금층과의 접합력을 증대시킬 수 있다.According to the present invention, by forming the three-dimensional network structure by etching inward from the surface of the glass substrate on which the electroless plating layer is plated, the anchoring effect on the electroless plating layer during plating for forming the electroless plating layer (anchoring effect) It is possible to implement, through which, it is possible to increase the bonding strength with the electroless plating layer without using additional materials or media for strengthening the bonding.
도 1은 본 발명의 실시 예에 따라 제조된 유리기판을 나타낸 모식도.1 is a schematic diagram showing a glass substrate manufactured according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따라 제조된 유리기판의 표면에 형성되어 있는 3차원 망목구조를 나타낸 모식도.Figure 2 is a schematic diagram showing a three-dimensional network structure formed on the surface of the glass substrate prepared according to the embodiment of the present invention.
도 3은 에칭된 유리기판 표면(좌)과 에칭처리 하지 않은 유리기판 표면(우)을 주사전자현미경으로 촬영한 사진.3 is a photograph taken with a scanning electron microscope of the etched glass substrate surface (left) and the unetched glass substrate surface (right).
도 4는 본 발명의 실시 예에 따라 제조된 유리기판의 표면에 무전해 도금층이 도금된 상태를 나타낸 모식도.Figure 4 is a schematic diagram showing a state in which an electroless plating layer is plated on the surface of the glass substrate prepared according to the embodiment of the present invention.
도 5는 에칭된 유리기판 표면에 도금된 무전해 구리 도금층(좌)과 에칭처리 하지 않은 유리기판 표면에 도금된 무전해 구리 도금층(우)을 주사전자현미경으로 촬영한 사진.5 is a photograph taken with a scanning electron microscope of an electroless copper plating layer (left) plated on an etched glass substrate surface (left) and an electroless copper plating layer (right) plated on an unetched glass substrate surface.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 유리기판 제조방법에 대해 상세히 설명한다.Hereinafter, a glass substrate manufacturing method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.In addition, in describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
본 발명의 실시 예에 따른 유리기판 제조방법은 종래와 달리, 접합 강화를 위한 부가적인 소재 혹은 매개체를 사용하지 않고도 무전해 도금층(도 4의 20)과의 접합력을 증대시킬 수 있는 유리기판(도 1의 100)을 제조하는 방법이다. 이러한 유리기판 제조방법은 제1 에칭단계 및 제2 에칭단계를 포함한다.Glass substrate manufacturing method according to an embodiment of the present invention, unlike the conventional, glass substrate that can increase the bonding strength with the electroless plating layer (20 of FIG. 4) without using additional materials or media for strengthening the bonding (Fig. 1 of 100). The glass substrate manufacturing method includes a first etching step and a second etching step.
먼저, 제1 에칭단계는 본 에칭인 제2 에칭단계에 앞서, 유리기판(도 1의 100)을 프리에칭(pre-etching)하는 단계이다. 이러한 제1 에칭단계에서는 불산(HF) 용액에 유리기판(도 1의 100)을 침지시킨다. 구체적으로, 제1 에칭단계에서는 1~3wt.%의 상기 불산(HF) 용액에 유리기판(도 1의 100)을 적어도 2분 이상 침지시키는 것이 바람직하다. 이때, 상기와 같이 유리기판(도 1의 100)을 불산(HF) 용액에 침지시킨 후에는 불산(HF) 용액으로부터 유리기판(도 1의 100)을 꺼낸 후, 유리기판(도 1의 100)을 세정한 다음 이를 건조시킨다.First, the first etching step is a step of pre-etching the glass substrate (100 in FIG. 1) prior to the second etching step, which is the main etching. In this first etching step, the glass substrate (100 in FIG. 1) is immersed in a hydrofluoric acid (HF) solution. Specifically, in the first etching step, it is preferable to immerse the glass substrate (100 in FIG. 1) for at least 2 minutes in the hydrofluoric acid (HF) solution of 1 to 3 wt.%. At this time, after immersing the glass substrate (100 in FIG. 1) in the hydrofluoric acid (HF) solution as described above, after removing the glass substrate (100 in FIG. 1) from the hydrofluoric acid (HF) solution, the glass substrate (100 in FIG. 1) After washing, it is dried.
이와 같은 제1 에칭단계는 본 에칭 전에, 유리기판(도 1의 100) 표면, 즉, 무전해 도금층(도 4의 20)이 도금될 면의 산화막 및 오염물을 제거하기 위해 진행된다.This first etching step is carried out to remove the oxide film and contaminants on the surface of the glass substrate (100 in FIG. 1), that is, the surface on which the electroless plating layer (20 in FIG. 4) is to be plated.
한편, 본 발명의 실시 예에서, 무전해 도금층(도 4의 20)이 도금되는 유리기판(도 1의 100)으로는 소다라임 유리, 무알칼리 유리 중 어느 하나의 유리를 사용할 수 있다.On the other hand, in the embodiment of the present invention, as the glass substrate (100 of FIG. 1) on which the electroless plating layer (20 of FIG. 4) is plated, one of soda-lime glass and alkali-free glass may be used.
다음으로, 도 1 및 도 2에 도시한 바와 같이, 제2 에칭단계는 제1 에칭단계를 통해 프리에칭된, 즉, 표면의 산화막 및 오염물이 제거된 유리기판(100)을 포화된 실리카 용액에 침지시키는 단계이다. 또한, 제2 에칭단계는 이를 통해, 무전해 도금층(20)이 도금되는 유리기판(100)의 표면에 내측 방향으로 3차원 망목구조(110)를 형성하는 단계이다. 즉, 제2 에칭단계에서는 포화된 실리카 용액에 유리기판(100)을 일정시간 침지시켜, 유리기판(100) 표면의 알칼리 및 알칼리토 원소 또는 망목제인 알루미나 및 보론을 제거함으로써, 유리기판(100)의 표면으로부터 내측 방향으로 3차원 망목구조(110)를 형성한다.Next, as shown in FIGS. 1 and 2, the second etching step is performed by pre-etching, ie, removing the surface oxide film and contaminants from the glass substrate 100 to the saturated silica solution. Immersion step. In addition, the second etching step is a step of forming the three-dimensional network structure 110 inward on the surface of the glass substrate 100 on which the electroless plating layer 20 is plated. That is, in the second etching step, the glass substrate 100 is immersed in a saturated silica solution for a predetermined time, thereby removing alumina and boron, which are alkali and alkaline earth elements or meshes, on the surface of the glass substrate 100. The three-dimensional network structure 110 is formed inward from the surface of the.
여기서, 유리기판(100) 에칭에 사용되는 포화된 실리카 용액은 10~25wt.%의 불화규산(H2SiF6) 용액에 실리카(SiO2) 또는 규산(SiO2·H2O) 분말을 과량 넣어 교반한 후, 적어도 10㎛ 이하로 필터링하여 제조할 수 있다. 이때, 사용되는 유리기판(100)의 종류에 따라 또는 반응 속도 조절을 위해, 제조된 실리카 용액에는 붕산용액(B(OH)2) 또는 불화칼륨(KF) 용액을 첨가할 수 있다.Here, in the saturated silica solution used for etching the glass substrate 100, an excessive amount of silica (SiO 2 ) or silicic acid (SiO 2 · H 2 O) powder is added to a 10-25 wt.% Silica fluoride (H 2 SiF 6 ) solution. After stirring, it can manufacture by filtering to at least 10 micrometers or less. In this case, depending on the type of glass substrate 100 used or for controlling the reaction rate, a boric acid solution (B (OH) 2 ) or potassium fluoride (KF) solution may be added to the prepared silica solution.
구체적으로, 제2 에칭단계에서는 상기와 같이 만들어진 포화된 실리카 용액을 30~50℃로 유지시킨 후, 제1 에칭단계를 통해 프리에칭된 유리기판(100)을 포화된 실리카 용액에 10~45분간 침지시킨다. 그 후에는 포화된 실리카 용액으로부터 유리기판(100)을 꺼낸 다음 이를 세정 및 건조한다.Specifically, in the second etching step, the saturated silica solution prepared as described above is maintained at 30 to 50 ° C., and then the glass substrate 100 pre-etched through the first etching step is applied to the saturated silica solution for 10 to 45 minutes. Immerse. Thereafter, the glass substrate 100 is taken out of the saturated silica solution, and then washed and dried.
이와 같이, 제1 에칭단계 및 제2 에칭단계를 차례로 진행하면, 표면으로부터 내측 방향으로 3차원 망목구조(110)가 30~200㎚ 깊이로 형성되어 있는 유리기판(100)이 제조된다.As such, when the first etching step and the second etching step are performed in sequence, the glass substrate 100 having the three-dimensional network structure 110 formed at a depth of 30 to 200 nm in the inward direction from the surface is manufactured.
예를 들어, 소다라임 유리로 이루어진 유리기판(100)을 사용하고, 이를 45℃의 포화된 실리카 용액에 45분간 침지시킨 경우에는 3차원 망목구조(100)가 약 100~120㎚ 깊이로 형성될 수 있다.For example, when a glass substrate 100 made of soda-lime glass is used and immersed in a saturated silica solution at 45 ° C. for 45 minutes, the three-dimensional network 100 may be formed to a depth of about 100 to 120 nm. Can be.
도 3은 에칭된 유리기판 표면(좌)과 에칭처리 하지 않은 유리기판 표면(우)을 주사전자현미경으로 촬영한 사진으로, 본 발명의 실시 예에 따른 유리기판 제조방법을 통해 유리기판을 제조하면, 에칭처리 하지 않은 유리기판의 표면과 달리, 약 115㎚ 깊이로 유리기판의 표면으로부터 내측 방향으로 3차원 망목구조가 형성된 것을 육안으로 확인할 수 있다.3 is a photograph of the etched glass substrate surface (left) and the unetched glass substrate surface (right) by scanning electron microscopy. When the glass substrate is manufactured by the glass substrate manufacturing method according to an embodiment of the present invention, FIG. Unlike the surface of the glass substrate which is not etched, it can be visually confirmed that a three-dimensional network structure is formed inward from the surface of the glass substrate to a depth of about 115 nm.
한편, 도 4에 도시한 바와 같이, 본 발명의 실시 예에 따라 제조된 유리기판(100)의 표면에 금속, 예컨대, 무전해 구리 도금 처리를 진행하게 되면, 먼저, 유리기판(100) 표면으로부터 내측 방향으로 형성되어 있는 3차원 망목구조(110)의 부정형적인 구멍과 홈으로 구리 도금액이 침투 혹은 채워진 후, 유리기판(100)의 표면 상에 무전해 도금층(20)이 도금 및 형성된다. 이때, 3차원 망목구조(110)의 부정형적인 구멍과 홈에 채워진 구리와 유리기판(100)의 표면에 형성된 무전해 도금층(20)은 서로 연결되어 있는 형태로 존재하게 되고, 이 경우, 무전해 도금층(20)이 3차원 망목구조(110)의 부정형적인 구멍과 홈에 채워져 있는 구리에 의해 고정 혹은 지지, 즉, 3차원 망목구조(110)의 부정형적인 구멍과 홈에 채워져 있는 구리가 이와 연결되어 있는 무전해 도금층(20)을 잡고 있는 구조가 되므로, 유리기판(100)과 무전해 도금층(20) 간의 접합력은 증대된다.On the other hand, as shown in Figure 4, when the metal, for example, the electroless copper plating process on the surface of the glass substrate 100 manufactured according to an embodiment of the present invention, first, from the surface of the glass substrate 100 After the copper plating solution penetrates or fills the irregular holes and grooves of the three-dimensional network structure 110 formed inward, the electroless plating layer 20 is plated and formed on the surface of the glass substrate 100. In this case, the electroless plating layer 20 formed on the surface of the glass substrate 100 and the copper filled in the irregular hole and groove of the three-dimensional network structure 110 is present in the form of being connected to each other, in this case, electroless The plating layer 20 is fixed or supported by the copper filled in the irregular holes and grooves of the three-dimensional network structure 110, that is, the copper filled in the irregular holes and grooves of the three-dimensional network structure 110 are connected thereto. Since the electroless plating layer 20 is held, the bonding force between the glass substrate 100 and the electroless plating layer 20 is increased.
즉, 본 발명의 실시 예에 따른 유리기판 제조방법을 통해 유리기판(100)의 표면으로부터 내측 방향으로 3차원 망목구조(110)를 형성한 다음, 그 위에 구리 도금 처리를 진행하면, 상기와 같은 무전해 도금층(20)에 대한 닻내림 효과(anchoring effect)를 구현할 수 있고, 이를 통해, 접합 강화를 위한 부가적인 소재 혹은 매개체를 사용하지 않고도 무전해 도금층(20)과의 접합력을 증대시킬 수 있다.That is, after forming the three-dimensional network structure 110 in the inward direction from the surface of the glass substrate 100 through the glass substrate manufacturing method according to an embodiment of the present invention, if the copper plating process thereon, as described above Anchoring effect on the electroless plating layer 20 can be realized, and through this, bonding strength with the electroless plating layer 20 can be increased without using additional materials or media for strengthening the bonding. .
도 5는 에칭된 유리기판 표면에 도금된 무전해 구리 도금층(좌)과 에칭처리 하지 않은 유리기판 표면에 도금된 무전해 구리 도금층(우)을 주사전자현미경으로 촬영한 사진이다. 먼저, 에칭된 유리기판 표면에 도금된 무전해 구리 도금층(좌) 사진을 보면, 3차원 망목구조가 형성되어 있는 유리기판에 무전해 구리 도금층의 닿내림 효과가 발생되었음을 육안으로 확인할 수 있다. 반면, 에칭처리 하지 않은 유리기판 표면에 도금된 무전해 구리 도금층(우) 사진을 보면, 유리기판과 무전해 구리 도금층 간의 계면에 어떠한 변화도 없는 것을 확인할 수 있다.FIG. 5 is a photograph of an electroless copper plating layer (left) plated on an etched glass substrate surface and an electroless copper plating layer (right) plated on an unetched glass substrate surface by scanning electron microscope. First, looking at the electroless copper plated layer (left) photograph plated on the surface of the etched glass substrate, it can be visually confirmed that the falling effect of the electroless copper plated layer is generated on the glass substrate on which the three-dimensional network structure is formed. On the other hand, when looking at the electroless copper plating layer (right) plated on the surface of the glass substrate not etched, it can be seen that there is no change in the interface between the glass substrate and the electroless copper plating layer.
한편, 본 발명의 실시 예에 따른 유리기판 제조방법을 통해 제조한 유리기판 표면에 무전해 구리 도금층을 도금한 후, 유리기판과 무전해 구리 도금층과의 접합력(adhesion strength)을 평가한 결과, 접합력이 약 3.0N/㎟로 측정되었다. 반면, 에칭처리 하지 않은 유리기판 표면에 무전해 구리 도금층을 도금한 후, 유리기판과 무전해 구리 도금층과의 접합력을 평가한 결과, 접합력이 약 1.5N/㎟로 측정되었다. 즉, 본 발명의 실시 예에 따른 유리기판 제조방법을 통해 3차원 망목구조를 갖는 유리기판을 제조하면, 무전해 도금층과의 접합력이 그렇지 않은 경우보다 약 2배 이상 증가되는 것으로 나타났다.On the other hand, after plating the electroless copper plating layer on the surface of the glass substrate prepared by the glass substrate manufacturing method according to an embodiment of the present invention, as a result of evaluating the adhesion strength (adhesion strength) of the glass substrate and the electroless copper plating layer, the bonding strength This was measured at about 3.0 N / mm 2. On the other hand, after the electroless copper plating layer was plated on the surface of the non-etched glass substrate, the bonding force between the glass substrate and the electroless copper plating layer was evaluated. As a result, the bonding force was measured to be about 1.5 N / mm 2. That is, when a glass substrate having a three-dimensional network structure is manufactured through the glass substrate manufacturing method according to the embodiment of the present invention, the bonding force with the electroless plating layer is increased by about two times or more than otherwise.
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, although the present invention has been described with reference to the limited embodiments and the drawings, the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.

Claims (8)

  1. 불산(HF) 용액에 유리기판을 침지시키는 제1 에칭단계; 및A first etching step of dipping the glass substrate in a hydrofluoric acid (HF) solution; And
    상기 제1 에칭단계를 통해 에칭된 상기 유리기판을 포화된 실리카 용액에 침지시켜, 무전해 도금층이 도금되는 상기 유리기판의 표면에 내측 방향으로 3차원 망목구조를 형성하는 제2 에칭단계;A second etching step of immersing the glass substrate etched through the first etching step in a saturated silica solution to form a three-dimensional network structure inwardly on the surface of the glass substrate on which the electroless plating layer is plated;
    를 포함하는 것을 특징으로 하는 무전해 도금층과의 접합력 증대를 위한 유리기판 제조방법.Glass substrate manufacturing method for increasing the bonding strength with the electroless plating layer comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 에칭단계에서는 1~3wt.%의 상기 불산(HF) 용액에 상기 유리기판을 적어도 2분 이상 침지시키는 것을 특징으로 하는 무전해 도금층과의 접합력 증대를 위한 유리기판 제조방법.And in the first etching step, the glass substrate is immersed in the hydrofluoric acid (HF) solution at 1 to 3 wt.% For at least 2 minutes or more.
  3. 제1항에 있어서,The method of claim 1,
    상기 유리기판으로는 소다라임 유리, 무알칼리 유리 중 어느 하나의 유리를 사용하는 것을 특징으로 하는 무전해 도금층과의 접합력 증대를 위한 유리기판 제조방법.The glass substrate is a glass substrate manufacturing method for increasing the bonding strength with the electroless plating layer, characterized in that using any one of soda-lime glass, alkali-free glass as the glass substrate.
  4. 제1항에 있어서,The method of claim 1,
    상기 제2 에칭단계에서는 상기 실리카 용액을 30~50℃로 유지시킨 후, 상기 유리기판을 10~45분간 침지시키는 것을 특징으로 하는 무전해 도금층과의 접합력 증대를 위한 유리기판 제조방법.In the second etching step, after maintaining the silica solution at 30 ~ 50 ℃, the glass substrate manufacturing method for increasing the bonding strength with the electroless plating layer, characterized in that the glass substrate is immersed for 10 to 45 minutes.
  5. 제1항에 있어서,The method of claim 1,
    상기 포화된 실리카 용액은 10~25wt.%의 불화규산(H2SiF6) 용액에 실리카(SiO2) 또는 규산(SiO2·H2O) 분말을 과량 넣어 교반한 후, 적어도 10㎛ 이하로 필터링하여 제조하는 것을 특징으로 하는 무전해 도금층과의 접합력 증대를 위한 유리기판 제조방법.The saturated silica solution was stirred with an excess of silica (SiO 2 ) or silicic acid (SiO 2 · H 2 O) powder in a 10-25 wt.% Silica fluoride (H 2 SiF 6 ) solution, followed by filtering at least 10 μm. A glass substrate manufacturing method for increasing the bonding strength with the electroless plating layer, characterized in that the manufacturing.
  6. 제5항에 있어서,The method of claim 5,
    상기 포화된 실리카 용액에 붕산용액(B(OH)2) 또는 불화칼륨(KF) 용액을 첨가하는 것을 특징으로 하는 무전해 도금층과의 접합력 증대를 위한 유리기판 제조방법.Boric acid solution (B (OH) 2 ) or potassium fluoride (KF) solution is added to the saturated silica solution, glass substrate manufacturing method for increasing the bonding strength with the electroless plating layer.
  7. 제1항에 있어서,The method of claim 1,
    상기 제1 에칭단계 및 상기 제2 에칭단계 후에는 상기 유리기판에 대한 세정 및 건조 공정이 수반되는 것을 특징으로 하는 무전해 도금층과의 접합력 증대를 위한 유리기판 제조방법.After the first etching step and the second etching step, the glass substrate manufacturing method for increasing the bonding strength with the electroless plating layer, characterized in that the cleaning and drying process for the glass substrate is involved.
  8. 제1항에 있어서,The method of claim 1,
    상기 3차원 망목구조는 상기 유리기판의 표면으로부터 내측 방향으로 30~200㎚ 깊이로 형성되는 것을 특징으로 하는 무전해 도금층과의 접합력 증대를 위한 유리기판 제조방법.The three-dimensional network structure is a glass substrate manufacturing method for increasing the bonding strength with the electroless plating layer, characterized in that formed in a depth of 30 ~ 200nm inward direction from the surface of the glass substrate.
PCT/KR2015/010420 2014-10-08 2015-10-02 Glass substrate manufacturing method for increasing bonding force with electroless plating layer WO2016056788A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140135808 2014-10-08
KR10-2014-0135808 2014-10-08

Publications (2)

Publication Number Publication Date
WO2016056788A2 true WO2016056788A2 (en) 2016-04-14
WO2016056788A3 WO2016056788A3 (en) 2017-04-27

Family

ID=55653922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010420 WO2016056788A2 (en) 2014-10-08 2015-10-02 Glass substrate manufacturing method for increasing bonding force with electroless plating layer

Country Status (2)

Country Link
TW (1) TW201630843A (en)
WO (1) WO2016056788A2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4034056B2 (en) * 2000-09-13 2008-01-16 日本板硝子株式会社 Method for processing amorphous material
JP2006338837A (en) * 2005-06-06 2006-12-14 Fuji Electric Device Technology Co Ltd Plating method on glass substrate, method for manufacturing disk substrate for vertical magnetic recording medium, disk substrate for vertical magnetic recording medium, and the vertical magnetic recording medium
EP2512186A1 (en) * 2007-06-18 2012-10-17 Interdigital Technology Corporation Method for inter-radio access technology cell reselection
KR101228094B1 (en) * 2010-11-23 2013-01-31 삼성코닝정밀소재 주식회사 Method for etching glass substrate and glass substrate

Also Published As

Publication number Publication date
WO2016056788A3 (en) 2017-04-27
TW201630843A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
WO2017172677A1 (en) Methods for metalizing vias within a substrate
JP6016582B2 (en) Manufacturing method of optical member
JP2006298755A (en) Glaze coating structure of chip element and method of forming the same
US20190024237A1 (en) Methods for metalizing vias within a substrate
CN107531562B (en) Conductive articles having discrete metallic silver layers and methods of making the same
WO2017108939A1 (en) Thick-film paste mediated ceramics bonded with metal or metal hybrid foils
WO2016056788A2 (en) Glass substrate manufacturing method for increasing bonding force with electroless plating layer
KR100978737B1 (en) A conductive paste composition having superior chemical-resistance and adhesive for PDP electrode and manufacturing method thereof
US20210360797A1 (en) Copper metallization for through-glass vias on thin glass
EP3028549B1 (en) Conductive trace and method of forming conductive trace
CN111757856B (en) Alkali-free borosilicate glass with low HF post-etch roughness
US20180015699A1 (en) Metal-bonded substrate
JP6490012B2 (en) Circuit board manufacturing method
US20190304684A1 (en) Method for selectively coating electronic component with coating material, and method for manufacturing electronic component
WO2016140188A1 (en) Glass substrate with modified layer and glass substrate with wiring circuit
US20190144686A1 (en) Surface treatment compositions and coated articles prepared therefrom
CN112047637B (en) Powder material and powder material paste
JP3846708B2 (en) Electronic component plating method and electronic component manufacturing method
JP6444118B2 (en) Circuit board manufacturing method
JP2009203505A (en) Electroless plating method, and electronic component
JP2017157601A (en) Wiring board and manufacturing method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848193

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848193

Country of ref document: EP

Kind code of ref document: A2