WO2016056642A1 - 血流シミュレーションのための血流解析機器、その方法及びコンピュータソフトウエアプログラム - Google Patents
血流シミュレーションのための血流解析機器、その方法及びコンピュータソフトウエアプログラム Download PDFInfo
- Publication number
- WO2016056642A1 WO2016056642A1 PCT/JP2015/078694 JP2015078694W WO2016056642A1 WO 2016056642 A1 WO2016056642 A1 WO 2016056642A1 JP 2015078694 W JP2015078694 W JP 2015078694W WO 2016056642 A1 WO2016056642 A1 WO 2016056642A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- calculation
- blood flow
- flow analysis
- blood
- target region
- Prior art date
Links
- 230000017531 blood circulation Effects 0.000 title claims abstract description 101
- 238000005206 flow analysis Methods 0.000 title claims abstract description 82
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000004088 simulation Methods 0.000 title claims description 11
- 238000004364 calculation method Methods 0.000 claims abstract description 212
- 239000012530 fluid Substances 0.000 claims abstract description 57
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 47
- 238000004458 analytical method Methods 0.000 claims abstract description 37
- 210000001627 cerebral artery Anatomy 0.000 claims description 11
- 238000002474 experimental method Methods 0.000 claims description 9
- 210000000709 aorta Anatomy 0.000 claims description 8
- 210000004351 coronary vessel Anatomy 0.000 claims description 7
- 210000001715 carotid artery Anatomy 0.000 claims description 6
- 239000000284 extract Substances 0.000 abstract 1
- 230000001133 acceleration Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 10
- 238000012404 In vitro experiment Methods 0.000 description 4
- 208000002352 blister Diseases 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000010200 validation analysis Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 201000008450 Intracranial aneurysm Diseases 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000011960 computer-aided design Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010205 computational analysis Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007631 vascular surgery Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/507—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/481—Diagnostic techniques involving the use of contrast agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/504—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
- G06T7/0016—Biomedical image inspection using an image reference approach involving temporal comparison
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/55—Depth or shape recovery from multiple images
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
- G06T2207/30104—Vascular flow; Blood flow; Perfusion
Definitions
- the present invention relates to a blood flow analysis device using computational fluid dynamics (CFD). More specifically, the present invention relates to a method for determining a calculation condition, which is one of those input by a user when using a blood flow analysis device based on numerical fluid dynamics in a medical field.
- CFD computational fluid dynamics
- computational fluid dynamics is an indispensable technology in the design and development of automobiles and aircraft in the industrial field.
- computational fluid dynamics is generally performed by so-called general-purpose software.
- the general purpose of general-purpose software does not mean “anyone”, but “any fluid” or “any flow”. In other words, it can be used universally in any fluid such as water, air, oil, and any flow such as laminar flow, transition flow, turbulent flow, etc. It means that it is up to the user, not the developer, to determine the calculation conditions. Therefore, even if it is general-purpose, the user is generally performed by an expert who is knowledgeable and experienced in computational fluid dynamics.
- a blood flow analysis method for executing a numerical fluid analysis of blood flow in a calculation target region and displaying the analysis result.
- the computer acquires the blood vessel shape data extracted from the medical image, the computer causes the user to specify the calculation target region from the blood vessel shape data, and the computer adds the calculation target region to the specified calculation target region.
- a step of extracting a template storing calculation conditions validated for blood flow analysis of the region, and a computer applies the calculation conditions to the blood vessel shape data, thereby allowing blood flow in the calculation target region.
- a blood flow analysis method characterized by comprising the steps of:
- the calculation condition template is prepared for each calculation target region, and includes templates for cerebral artery, carotid artery, coronary artery, and aorta.
- the calculation condition template is a condition that the developer side validates in advance by comparing with an experiment and has a preset value that cannot be changed by the user.
- the calculation condition template further includes different preconditions depending on the designated calculation target area.
- the precondition is determined in advance for each calculation target region with or without consideration of non-Newtonian fluid characteristics and blood vessel wall mobility.
- the blood vessel wall mobility of the precondition is inputted with a shape time change such as four-dimensional CTA data and a blood flow simulation is executed by a moving boundary method.
- the computer further includes a calculation accuracy specifying step for allowing the user to specify a calculation accuracy level having a different calculation time.
- the calculation condition included in the calculation condition template is a plurality of preset values corresponding to each calculation accuracy level, and the user specifies one of the plurality of preset values in the calculation accuracy specifying step. It is preferable that
- one of the calculation conditions included in the calculation condition template is steady flow analysis, which aims to analyze the flow field in a short time, and provides preset values based on an analysis method that emphasizes time rather than accuracy. It is preferable to do.
- one of the calculation conditions included in the calculation condition template is an unsteady flow analysis, and it is preferable to provide a plurality of preset values in the control of time and accuracy.
- a blood flow analysis device that executes a numerical fluid analysis of a blood flow in a calculation target region and displays the analysis result, which is extracted from a medical image by a computer.
- a calculation target display unit for acquiring blood vessel shape data, a computer for causing a user to specify a calculation target region from the blood vessel shape data, and a computer according to the specified calculation target region, A template in which calculation conditions validated for blood flow analysis in the region are stored and the calculation conditions are applied to the blood vessel shape data to perform blood flow for performing numerical fluid analysis of blood flow in the calculation target region.
- a blood flow analysis device characterized by having a flow analysis unit and a blood flow analysis result output unit for outputting a result of the analysis by a computer. That.
- a computer software program for executing a numerical fluid analysis of a blood flow in a calculation target region and displaying the analysis result, and comprising the following steps: medical image Acquiring blood vessel shape data extracted from the blood vessel shape data, allowing the user to specify a calculation target region from the blood vessel shape data, and a computer for blood flow analysis of the region according to the specified calculation target region
- a computer software program characterized by having instructions to execute
- FIG. 1 is a diagram illustrating computational fluid dynamics and calculation conditions.
- FIG. 2 is a diagram showing a flow of blood flow analysis by numerical fluid dynamics.
- FIG. 3A is a diagram showing a shear stress vector on a cerebral aneurysm in the case of a primary accuracy upwind difference, and
- FIG. 4 is a schematic configuration diagram showing an embodiment of the present invention.
- FIG. 5 is a diagram showing the input Internet in the present embodiment.
- FIG. 6 is a diagram illustrating an example of a calculation condition template in the present embodiment.
- FIG. 7 is a diagram illustrating an example of preset values for calculation conditions in the present embodiment.
- FIG. 8 is a diagram illustrating an example of calculation grid generation in the present embodiment.
- FIG. 9 is a diagram showing an example of confirmation of the validity of calculation conditions in the present embodiment.
- the present invention relates to a blood flow analysis apparatus 1 for blood flow analysis by computational fluid dynamics (CFD).
- CFD computational fluid dynamics
- the validity of the calculation condition by comparing the experimental value and the calculated value is verified in each target blood vessel region, and the validity is validated.
- it is an apparatus that enables a user such as a doctor who is not familiar with numerical fluid dynamics to perform an appropriate blood flow simulation.
- Computational fluid dynamics is a technique for acquiring fluid flow by computational analysis using a computer.
- a flow path shape 1 a fluid property 2, a boundary condition 3, and a calculation condition 4 are used as inputs. It is the pressure field / velocity field 5 in the blood flow space that is subjected to the computational fluid analysis calculation (CFD) based on these inputs and output.
- the computational fluid dynamics calculation (CFD) is executed as a time evolution type, and the pressure field / velocity field 5 in space-time is calculated.
- the flow channel shape 1 described above is constructed by extracting a blood vessel shape by performing image processing on a medical image, or by designing on a computer using CAD (computer-aided-design) or the like. It is.
- the fluid property 2 is density and viscosity.
- the boundary condition 3 is specifically a flow velocity / pressure distribution on the end face of each pipe line and a constraint condition on the wall surface. For example, the velocity is set to zero by ignoring the flow velocity distribution at the inlet and outlet of the pipeline and the fluid slip on the wall surface (non-slip condition).
- the calculation condition 4 is the subject of the present invention, the calculation condition 4 includes a calculation grid generation 6, an equation discretization 7 relating to an equation solution, and a simultaneous equation solution 8 for a given flow path shape 1.
- calculation grid generation 6, equation discretization 7, and simultaneous equation solving method 8 under calculation condition 4 will be described with reference to FIGS. 2 and 3 showing the flow of blood flow analysis.
- calculation grid generation 6 The calculation grid is generated in the process of FIG. 2C, but before that, the flow path shape 1 is constructed based on the medical image (a) in (b).
- the calculation grid generation is constructed as a volume mesh from minute elements inside the channel shape (b) provided as a surface mesh.
- the calculation lattice is determined in consideration of 1) size, 2) shape, 3) density, 4) distribution, 5) orientation, and the like.
- Equation discretization 7 and simultaneous equation solution 8 Next, an outline of the equation discretization 7 and the simultaneous equation solving method 8 will be described with reference to Equation 1.
- Equation discretization replaces differential equations with algebraic equations.
- the Navier-Stokes equations consist of nonlinear second-order differential equations, and no exact solution can be obtained mathematically. For this reason, it replaces with an algebraic equation by discretizing each element which constitutes a differential equation.
- the simultaneous equation solving method is a method in which a continuous equation and a Navier-Stokes equation are combined.
- the calculation grid is determined in consideration of 1) size, 2) shape, 3) density, 4) distribution, 5) orientation, and the like.
- the correspondence is different in the boundary layer in the vicinity of the wall, and a fine calculation grid is required in a region having a strong velocity gradient such as the boundary layer.
- the discontinuity and distortion of the calculation grid cause a decrease in convergence and a deterioration in calculation accuracy.
- calculation grids such as prism, tetra, and hexa. If an excessively fine calculation grid is arranged, the calculation time increases meaninglessly. Necessary and sufficient calculation grids are required while paying attention to the balance between time and accuracy.
- the Navier-Stokes equations are composed of nonlinear second-order differential equations, and an exact solution cannot be obtained mathematically. For this reason, it replaces with an algebraic equation by discretizing each element which constitutes a differential equation.
- each term of the Navier-Stokes equation is handled differently.
- time acceleration and advection acceleration are important.
- Discretization of time acceleration includes a primary and secondary backward Euler method.
- u is the velocity
- ⁇ x is the size of the lattice.
- the Courant number may not be 1 or less, but an excessively large value causes a divergence. It is discretization of advection acceleration that has the most influence on the analysis result.
- Advection acceleration is related to the non-linearity of the flow and strongly affects the accuracy and convergence.
- Upwind difference is often used for discretization of advection acceleration, but selection of the primary or secondary accuracy of upwind difference must be done in consideration of numerical viscosity and convergence.
- the simultaneous equation solving method is a method of simultaneously connecting a continuous equation and a Navier-Stokes equation, but there are a plurality of methods as described above, and high expertise is also required. Therefore, it is difficult for a user who is not familiar with numerical fluid dynamics such as a doctor to perform an appropriate blood flow simulation.
- FIGS. 3 (a) and 3 (b) show the difference in shear stress vector on the cerebral aneurysm caused by the difference in advection acceleration (in the figure, the shear stress vector is displayed as a unit vector).
- (A) is the primary accuracy upwind difference
- (b) is the discretization of the advection acceleration term with the secondary accuracy upwind difference. All other conditions are the same.
- the flow is smoothed by numerical viscosity, but in the secondary accuracy, the merging and collision of the flow near the bleb can be reproduced.
- the validity of the calculation conditions by comparing the experimental value and the calculated value is verified in each target blood vessel region, and the validity is validated.
- a user such as a doctor who is not familiar with numerical fluid dynamics can perform an appropriate blood flow simulation.
- FIG. 4 is a schematic configuration diagram showing a blood flow analysis device according to this embodiment.
- the blood flow analysis device 10 includes a program storage unit 60 and a data storage unit 70 connected to a bus 50 to which a CPU 20, a memory 30, and an input / output unit 40 are connected.
- the program storage unit 60 includes a calculation object display unit 11, a calculation region designation unit 12, a calculation accuracy designation unit 13, a blood flow analysis unit 14, and a blood flow analysis result output unit 15.
- the data storage unit 7 includes blood vessel shape information 21, fluid physical properties 22, boundary conditions 23, and calculation condition templates 24.
- the configuration requirements (calculation target display unit 11, calculation region designation unit 12, calculation accuracy designation unit 13, blood flow analysis unit 14, blood flow analysis result output unit 15) are actually stored in the storage area of the hard disk. It is configured by computer software, and is configured to function as each component of the present invention by being called up by the CPU 20 and expanded and executed on the memory 30.
- This input interface has an area a displayed by the calculation object display unit 11, an area b displayed by the calculation region specifying unit 12, and an area c displayed by the calculation accuracy specifying unit 13.
- the area a displayed by the calculation target display unit 11 blood vessel shape data extracted from the medical image is extracted from the blood vessel shape information unit 21 and displayed.
- the calculation target areas (cerebral artery, carotid, coronary artery, aorta) are displayed so that the user can select them.
- the area c displayed by the calculation accuracy designation unit 13 is calculated by On-site (up to 10 minutes), Quick (up to 2 hours), and Precision (up to 1 day) in consideration of the balance between analysis accuracy and time. Displayed for selection.
- the blood flow analysis unit 14 takes out the calculation condition template 24 for the calculation conditions corresponding to the user's designation.
- the blood flow analysis unit 14 performs blood flow analysis using numerical fluid dynamics by applying this calculation condition to the blood vessel shape data of the calculation target region displayed in the area a.
- the blood flow analysis result performed by the blood flow analysis unit 14 is output by the blood flow analysis result output unit 15.
- the user simply designates the calculation target region and the calculation accuracy, and the computational fluid dynamics is executed by the computer extracting the template of the optimum calculation condition for each condition from the information stored in the memory.
- FIG. 6 shows the configuration of the calculation condition template of this embodiment.
- Each condition value stored in the calculation condition template is given as a preset value or preset condition that cannot be changed by the user.
- This calculation condition template has a three-stage configuration of a target area 31, a precondition 32, and a calculation condition 33.
- the target area 31 is, for example, the cerebral artery 35, the carotid artery 36, the coronary artery 37, and the aorta 38 in this example.
- the precondition 32 and the calculation condition 33 are preset for each target region, but in the example of FIG. 6, only the example of the cerebral artery is shown.
- the precondition 32 differs depending on the type of the target region, the example of the cerebral artery 35 includes a non-Newtonian fluid characteristic 41 and a vascular wall mobility 42.
- the non-Newtonian fluid characteristic 41 is information as to whether or not to make the blood viscosity a shear rate-dependent type at a corresponding location. If it is not dependent, it will be a constant value. If it is made dependent, one iteration loop is added.
- the mobility 2 (existence / absence) of the blood vessel wall is adopted for a region where the shape change of a blood vessel such as an aorta is remarkable. It is clarified by validation that it is unnecessary in the cerebral artery and the like. In this embodiment, if the target region 31 is determined, the precondition 32 is automatically determined.
- the calculation conditions 33 are the conditions of calculation grid generation 6, equation discretization 7, and simultaneous equation solving method 8.
- the mainstream 43 and the boundary layer 44 are included as conditions for the calculation grid generation 6.
- the main stream 43 further includes a condition of a lattice type 61 and a lattice maximum length 62.
- the conditions for the equation discretization 7 include time acceleration 45, advection acceleration 46, pressure dependence term 47, viscosity dependence term 48, external force dependence term 51, and turbulence model 52.
- the time acceleration 45 further includes none 67 and Euler method 68.
- the advection acceleration 46 further includes a primary upwind difference 69, a secondary upwind difference 71, and a center difference 72.
- the turbulence model 52 further includes none 73 and LES method 74.
- each value of the calculation condition 33 depends on the required calculation time setting, On-site 81 ( ⁇ 10 minutes), Quick 82 ( ⁇ 2 hours), Precision 83 ( ⁇ 1 day). Multiple patterns are prepared. That is, the user selects a desired calculation time after selecting the target area 31.
- FIG. 7 shows an example of preset value templates for the calculation conditions 6 to 74 for each of On-site 81 (up to 10 minutes), Quick 82 (up to 2 hours), and Precision 83 (up to 1 day).
- On-site 81 is a template for calculation conditions that does not consider the degree of time acceleration 45 in the equation discretization 7.
- Quick 82 and Precision 83 are templates for calculation conditions considering the degree of temporal acceleration 45.
- the non-Newtonian fluid characteristic 41, the vascular wall mobility 42, and the external force dependency term 51 are not considered in the total calculation time, but other calculation conditions are set as shown in the figure.
- each value of the prepared calculation conditions is a validated calculation condition (calculation grid generation, equation discretization, simultaneous equation solving method (6, 7, 8 in FIG. 6). Will be described.
- FIG. 8 shows an example of a calculation grid 85 generated for the cerebral artery. Based on this, validation is performed by each step shown in FIG.
- This example shows a comparison with the experimental solution as one of the methods to validate the calculation conditions.
- in vivo and in vitro experiments There are two types of experiments: in vivo and in vitro experiments.
- the flow velocity is measured by a phase contrast MRI method or the like and compared with the calculated value.
- the in vitro experiment is based on the blood vessel model constructed as described above (FIG. 9A), creating an in vitro blood vessel model as shown in FIG. 9C, and restoring the reproducible flow field.
- the measurement was performed by measuring the flow velocity by a measurement method (PIV method) or the like.
- PAV method measurement method
- In vivo experiments are limited to the order of resolution of 0.5-1.0 mm, and in vitro experiments are effective because important indicators such as wall shear stress cannot be measured with high accuracy.
- the flow velocity was measured at a spatial resolution of 0.1 mm by an in vitro experiment (JR Soc. Interface, 2013.10, T. Yagi et al.).
- the method of the PIV method is shown in (d). That is, the blood mimic substance is seeded as fluorescent tracer particles. The amount of movement of each particle is measured with two cameras, and the three components of velocity are measured. The three-dimensional structure of the flow field is measured by performing this measurement with multiple cross sections (FIG. 9B).
- FIG. 9 (e) and FIG. 9 (f) show a comparison between the experimental solution and the calculated solution for the wall shear stress calculated by such an experiment.
- the calculation solution is a preset value set in the template. Thus, it is confirmed that both agree well and validated is used as a preset value.
- the mobility of the blood vessel wall is taken into account by the elastic wall. In the calculation, it is a rigid wall. Both are Newtonian fluids. The comparison between the two shows that there is no need to consider the mobility of the blood vessel wall in the cerebral artery region. It is a feature of the present invention to use preset calculation conditions validated one by one in this way.
- the developer side provides dedicated software responsible for both verification and validation. Also, in the development stage, the developer clarifies the optimum value of the calculation condition while comparing it with the experimental solution, stores each detailed condition in the memory, and loads the preset calculation condition when using it to perform the calculation.
- the calculation conditions are templated by limiting the range of application of computational fluid dynamics (brain artery, carotid artery, coronary artery, aorta, etc.).
- the present invention can be variously modified, and is not limited to the above-described embodiment, and can be variously modified without changing the gist of the invention.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- High Energy & Nuclear Physics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Physiology (AREA)
- General Physics & Mathematics (AREA)
- Pulmonology (AREA)
- Vascular Medicine (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Hematology (AREA)
- Cardiology (AREA)
- Quality & Reliability (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
数値流体力学(computational fluid dynamics,CFD)とは、流体の流れをコンピュータによる演算解析により取得する技術である。この例では、図1に示すように、入力として、流路形状1、流体物性2、境界条件3、計算条件4を用いる。これらの入力に基づき数値流体解析演算(CFD)がされて出力されるのは、血流の空間における圧力場・流速場5である。この例では、数値流体解析演算(CFD)は時間発展型として実行され、時空間での圧力場・流速場5が算出される。
計算格子は図2(c)の工程で生成されるが、その前に、(b)において流路形状1が医用画像(a)をベースに構築される。ここで、計算格子生成は、サーフェスメッシュとして提供される流路形状(b)の内部を微小要素からボリュームメッシュとして構築される。計算格子は、1)大小、2)形状、3)密度、4)分布、5)配向などに配慮して決定する。
次に方程式離散化7と連立方程式解法8の概要について数1を参照して説明する。
(本願発明の実施形態)
図4は、この実施形態に係る血流解析装置を示す概略構成図である。
次に、この実施形態に係る血流解析専用ソフトウェアの入力インターフェースを図5を参照して説明する。
Claims (30)
- 計算対象領域の血流の数値流体解析を実行して、その解析結果を表示するための血流解析方法であって、
コンピュータが、医用画像から抽出した血管の形状データを取得する工程と、
コンピュータが、前記血管形状データから計算対象領域をユーザに指定させる工程と、
コンピュータが、前記指定された計算対象領域に応じて、その領域の血流解析用にValidationされた計算条件が格納されたテンプレートを取り出す工程と、
コンピュータが、前記血管形状データに前記計算条件を適用することにより、前記計算対象領域における血流の数値流体解析を実行し、その解析結果を出力する工程と、
を有することを特徴とする血流解析方法。 - 請求項1記載の血流解析方法において、
前記計算条件テンプレートは、各計算対象領域ごとに用意されたものであり、脳動脈、頸動脈、冠動脈、大動脈用の各テンプレートを含む
ことを特徴とする血流解析方法。 - 請求項1記載の血流解析方法において、
前記計算条件テンプレートは、事前に開発者側が実験との比較により妥当性を確認しValidationした条件であり、ユーザが変更できないプリセット値を有する
ことを特徴とする血流解析方法。 - 請求項1記載の血流解析方法において、
前記計算条件テンプレートは、前記指定された計算対象領域に応じて異なる前提条件をさらに含む
ことを特徴とする血流解析方法。 - 請求項4記載の血流解析方法において、
前記前提条件とは、非ニュートン流体特性及び血管壁可動性の考慮の有無を計算対象領域ごとに事前に決めたものである
ことを特徴とする血流解析方法。 - 請求項5記載の血流解析方法において、
前記前提条件の血管壁可動性は、4次元CTAデータなどの形状時間変化を入力し、移動境界法により血流シミュレーションを実行する
ことを特徴とする血流解析方法。 - 請求項1記載の血流解析方法は、
コンピュータが、ユーザに計算時間が異なる計算精度レベルを指定させる計算精度指定工程をさらに有する
ことを特徴とする血流解析方法。 - 請求項7記載の血流解析方法において、
前記計算条件テンプレートに含まれる計算条件は、各計算精度レベルに応じた複数のプリセット値であり、前記計算精度指定工程でユーザが複数のプリセット値のうち1つを指定するように構成されている
ことを特徴とする血流解析方法。 - 請求項8記載の血流解析方法において、
前記の計算条件テンプレートに含まれる計算条件の一つは、定常流解析であり、流れ場を短時間で解析することを目的とし、精度より時間を重視した解析手法に基づくプリセット値を提供する
ことを特徴とする血流解析方法。 - 請求項8記載の血流解析方法において、
前記の計算条件テンプレートに含まれる計算条件の一つは、非定常流解析であり、時間と精度のコントロールにおいて複数のプリセット値を提供する
ことを特徴とする血流解析方法。 - 計算対象領域の血流の数値流体解析を実行して、その解析結果を表示する血流解析機器であって、
コンピュータが、医用画像から抽出した血管の形状データを取得する計算対象表示部と、
コンピュータが、前記血管形状データから計算対象領域をユーザに指定させる計算対象領域指定部と、
コンピュータが、前記指定された計算対象領域に応じて、その領域の血流解析用にValidationされた計算条件が格納されたテンプレートを取り出し、前記血管形状データに前記計算条件を適用することにより、前記計算対象領域における血流の数値流体解析を実行する血流解析部と、
コンピュータが、その解析結果を出力する血流解析結果出力部と、
を有することを特徴とする血流解析機器。 - 請求項11記載の血流解析機器において、
前記計算条件テンプレートは、各計算対象領域ごとに用意されたものであり、脳動脈、頸動脈、冠動脈、大動脈用の各テンプレートを含む
ことを特徴とする血流解析機器。 - 請求項11記載の血流解析機器において、
前記計算条件テンプレートは、事前に開発者側が実験との比較により妥当性を確認しValidationした条件であり、ユーザが変更できないプリセット値を有する
ことを特徴とする血流解析機器。 - 請求項11記載の血流解析機器において、
前記計算条件テンプレートは、前記指定された計算対象領域に応じて異なる前提条件をさらに含む
ことを特徴とする血流解析機器。 - 請求項14記載の血流解析機器において、
前記前提条件とは、非ニュートン流体特性及び血管壁可動性の考慮の有無を計算対象領域ごとに事前に決めたものである
ことを特徴とする血流解析機器。 - 請求項15記載の血流解析機器において、
前記前提条件の血管壁可動性は、4次元CTAデータなどの形状時間変化を入力し、移動境界法により血流シミュレーションを実行する
ことを特徴とする血流解析機器。 - 請求項11記載の血流解析機器は、
コンピュータが、ユーザに計算時間が異なる計算精度レベルを指定させる計算精度指定部をさらに有する
ことを特徴とする血流解析機器。 - 請求項17記載の血流解析機器において、
前記計算条件テンプレートに含まれる計算条件は、各計算精度レベルに応じた複数のプリセット値であり、前記計算精度指定部でユーザが複数のプリセット値のうち1つを指定するように構成されている
ことを特徴とする血流解析機器。 - 請求項18記載の血流解析機器において、
前記の計算条件テンプレートに含まれる計算条件の一つは、定常流解析であり、流れ場を短時間で解析することを目的とし、精度より時間を重視した解析手法に基づくプリセット値を提供する
ことを特徴とする血流解析機器。 - 請求項18記載の血流解析機器において、
前記の計算条件テンプレートに含まれる計算条件の一つは、非定常流解析であり、時間と精度のコントロールにおいて複数のプリセット値を提供する
ことを特徴とする血流解析機器。 - 計算対象領域の血流の数値流体解析を実行して、その解析結果を表示するためのコンピュータソフトウエアプログラムであって、以下の工程:
医用画像から抽出した血管の形状データを取得する工程と、
前記血管形状データから計算対象領域をユーザに指定させる工程と、
コンピュータが、前記指定された計算対象領域に応じて、その領域の血流解析用にValidationされた計算条件が格納されたテンプレートを取り出す工程と、
前記血管形状データに前記計算条件を適用することにより、前記計算対象領域における血流の数値流体解析を実行し、その解析結果を出力する工程と、
を実行する命令を有することを特徴とするコンピュータソフトウエアプログラム。 - 請求項21記載のコンピュータソフトウエアプログラムにおいて、
前記計算条件テンプレートは、各計算対象領域ごとに用意されたものであり、脳動脈、頸動脈、冠動脈、大動脈用の各テンプレートを含む
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項21記載のコンピュータソフトウエアプログラムにおいて、
前記計算条件テンプレートは、事前に開発者側が実験との比較により妥当性を確認しValidationした条件であり、ユーザが変更できないプリセット値を有する
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項21記載のコンピュータソフトウエアプログラムにおいて、
前記計算条件テンプレートは、前記指定された計算対象領域に応じて異なる前提条件をさらに含む
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項24記載のコンピュータソフトウエアプログラムにおいて、
前記前提条件とは、非ニュートン流体特性及び血管壁可動性の考慮の有無を計算対象領域ごとに事前に決めたものである
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項25記載のコンピュータソフトウエアプログラムにおいて、
前記前提条件の血管壁可動性は、4次元CTAデータなどの形状時間変化を入力し、移動境界法により血流シミュレーションを実行する
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項21記載のコンピュータソフトウエアプログラムは、
ユーザが計算時間が異なる計算精度レベルを指定する計算精度指定工程を実行する命令をさらに有する
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項27記載のコンピュータソフトウエアプログラムにおいて、
前記計算条件テンプレートに含まれる計算条件は、各計算精度レベルに応じた複数のプリセット値であり、前記計算精度指定工程でユーザが複数のプリセット値のうち1つを指定するように構成されている
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項28記載のコンピュータソフトウエアプログラムにおいて、
前記の計算条件テンプレートに含まれる計算条件の一つは、定常流解析であり、流れ場を短時間で解析することを目的とし、精度より時間を重視した解析手法に基づくプリセット値を提供する
ことを特徴とするコンピュータソフトウエアプログラム。 - 請求項28記載のコンピュータソフトウエアプログラムにおいて、
前記の計算条件テンプレートに含まれる計算条件の一つは、非定常流解析であり、時間と精度のコントロールにおいて複数のプリセット値を提供する
ことを特徴とするコンピュータソフトウエアプログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016553164A JP6561348B2 (ja) | 2014-10-08 | 2015-10-08 | 血流シミュレーションのための血流解析機器、その方法及びコンピュータソフトウエアプログラム |
US15/503,620 US20170311916A1 (en) | 2014-10-08 | 2015-10-08 | Blood-flow analysis device for blood-flow simulation, method therefor, and computer software program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462061435P | 2014-10-08 | 2014-10-08 | |
US62/061,435 | 2014-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016056642A1 true WO2016056642A1 (ja) | 2016-04-14 |
Family
ID=55653246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078694 WO2016056642A1 (ja) | 2014-10-08 | 2015-10-08 | 血流シミュレーションのための血流解析機器、その方法及びコンピュータソフトウエアプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20170311916A1 (ja) |
JP (1) | JP6561348B2 (ja) |
WO (1) | WO2016056642A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106228561A (zh) * | 2016-07-29 | 2016-12-14 | 上海联影医疗科技有限公司 | 血管提取方法 |
US20180157772A1 (en) | 2016-12-06 | 2018-06-07 | Fujitsu Limited | Streakline visualization apparatus and method |
EP3333738A1 (en) | 2016-12-06 | 2018-06-13 | Fujitsu Limited | Streakline visualization apparatus, method, and program |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6561348B2 (ja) * | 2014-10-08 | 2019-08-21 | イービーエム株式会社 | 血流シミュレーションのための血流解析機器、その方法及びコンピュータソフトウエアプログラム |
WO2018001099A1 (zh) | 2016-06-30 | 2018-01-04 | 上海联影医疗科技有限公司 | 一种血管提取方法与系统 |
CN113887147A (zh) * | 2020-07-02 | 2022-01-04 | 复旦大学附属华山医院 | 一种基于mri数据的脑血流自动化分析系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006119022A (ja) * | 2004-10-22 | 2006-05-11 | Daiichi Radioisotope Labs Ltd | 脳血流定量解析プログラム、記録媒体および脳血流定量解析方法 |
JP2012234405A (ja) * | 2011-05-02 | 2012-11-29 | Panasonic Corp | コンテンツ評価装置、方法、及びそのプログラム |
WO2013031744A1 (ja) * | 2011-08-26 | 2013-03-07 | イービーエム株式会社 | 血流性状診断のためのシステム、その方法及びコンピュータソフトウエアプログラム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010106691A1 (ja) * | 2009-03-20 | 2010-09-23 | 学校法人早稲田大学 | 医療訓練用血管モデル及びその製造方法 |
US8315812B2 (en) * | 2010-08-12 | 2012-11-20 | Heartflow, Inc. | Method and system for patient-specific modeling of blood flow |
JP6091870B2 (ja) * | 2012-12-07 | 2017-03-08 | 東芝メディカルシステムズ株式会社 | 血管解析装置、医用画像診断装置、血管解析方法、及び血管解析プログラム |
JP2015171486A (ja) * | 2014-03-12 | 2015-10-01 | 国立大学法人大阪大学 | 血流解析システムおよび血流解析プログラム |
JP6561348B2 (ja) * | 2014-10-08 | 2019-08-21 | イービーエム株式会社 | 血流シミュレーションのための血流解析機器、その方法及びコンピュータソフトウエアプログラム |
-
2015
- 2015-10-08 JP JP2016553164A patent/JP6561348B2/ja active Active
- 2015-10-08 WO PCT/JP2015/078694 patent/WO2016056642A1/ja active Application Filing
- 2015-10-08 US US15/503,620 patent/US20170311916A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006119022A (ja) * | 2004-10-22 | 2006-05-11 | Daiichi Radioisotope Labs Ltd | 脳血流定量解析プログラム、記録媒体および脳血流定量解析方法 |
JP2012234405A (ja) * | 2011-05-02 | 2012-11-29 | Panasonic Corp | コンテンツ評価装置、方法、及びそのプログラム |
WO2013031744A1 (ja) * | 2011-08-26 | 2013-03-07 | イービーエム株式会社 | 血流性状診断のためのシステム、その方法及びコンピュータソフトウエアプログラム |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106228561A (zh) * | 2016-07-29 | 2016-12-14 | 上海联影医疗科技有限公司 | 血管提取方法 |
CN106228561B (zh) * | 2016-07-29 | 2019-04-23 | 上海联影医疗科技有限公司 | 血管提取方法 |
US20180157772A1 (en) | 2016-12-06 | 2018-06-07 | Fujitsu Limited | Streakline visualization apparatus and method |
EP3333738A1 (en) | 2016-12-06 | 2018-06-13 | Fujitsu Limited | Streakline visualization apparatus, method, and program |
EP3333737A1 (en) | 2016-12-06 | 2018-06-13 | Fujitsu Limited | Streakline visualization apparatus, method, and program |
US10799191B2 (en) | 2016-12-06 | 2020-10-13 | Fujitsu Limited | Streakline visualization apparatus and method |
US10867086B2 (en) | 2016-12-06 | 2020-12-15 | Fujitsu Limited | Streakline visualization apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016056642A1 (ja) | 2017-07-27 |
US20170311916A1 (en) | 2017-11-02 |
JP6561348B2 (ja) | 2019-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6561348B2 (ja) | 血流シミュレーションのための血流解析機器、その方法及びコンピュータソフトウエアプログラム | |
Berg et al. | The computational fluid dynamics rupture challenge 2013—phase II: variability of hemodynamic simulations in two intracranial aneurysms | |
Bodnár et al. | On the shear-thinning and viscoelastic effects of blood flow under various flow rates | |
Castilla et al. | Numerical simulation of turbulent flow in the suction chamber of a gearpump using deforming mesh and mesh replacement | |
Pauli et al. | On stabilized space‐time FEM for anisotropic meshes: incompressible Navier–Stokes equations and applications to blood flow in medical devices | |
Marrero et al. | Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm | |
Bull et al. | Simulation of the compressible taylor green vortex using high-order flux reconstruction schemes | |
Varghese et al. | Modeling transition to turbulence in eccentric stenotic flows | |
Carvalho et al. | Hemodynamic study in 3D printed stenotic coronary artery models: Experimental validation and transient simulation | |
Anzai et al. | Optimization of strut placement in flow diverter stents for four different aneurysm configurations | |
Freeman et al. | Verification and validation of Reynolds-averaged Navier–Stokes turbulence models for external flow | |
Venkatachari et al. | Toward Verification of γ-Reθt Transition Model in OVERFLOW and FUN3D | |
Evju et al. | Robustness of common hemodynamic indicators with respect to numerical resolution in 38 middle cerebral artery aneurysms | |
Zhang et al. | An alternative second order scheme for curved boundary condition in lattice Boltzmann method | |
Li et al. | The application of the screen-model based approach for stents in cerebral aneurysms | |
Sampaio et al. | The challenging case of the turbulent flow around a thin plate wind deflector, and its numerical prediction by LES and RANS models | |
Gracia et al. | Accurate interfacing schemes for the coupling of CFD data with high order DG methods for aeroacoustic propagation | |
KR101545154B1 (ko) | 중첩 격자에서의 필드라인 생성 장치 및 그 방법 | |
Kjeldsberg et al. | A verified and validated moving domain computational fluid dynamics solver with applications to cardiovascular flows | |
Moratilla-Vega et al. | A coupled LES-APE approach for jet noise prediction | |
Takizawa et al. | Fluid–structure interaction modeling of patient-specific cerebral aneurysms | |
Mokhtar et al. | A review on fluid simulation method for blood flow representation | |
Bartesaghi et al. | Embedded CFD simulation for blood flow | |
Menter | Elements and applications of Scale-Resolving Simulation methods in industrial CFD | |
Quan et al. | Anisotropic adaptive nearly body-fitted meshes for CFD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15848408 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016553164 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15503620 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15848408 Country of ref document: EP Kind code of ref document: A1 |