WO2016056499A1 - Ultrasonic plate thickness measurement device, machine tool provided with same, and ultrasonic plate thickness measurement method - Google Patents

Ultrasonic plate thickness measurement device, machine tool provided with same, and ultrasonic plate thickness measurement method Download PDF

Info

Publication number
WO2016056499A1
WO2016056499A1 PCT/JP2015/078165 JP2015078165W WO2016056499A1 WO 2016056499 A1 WO2016056499 A1 WO 2016056499A1 JP 2015078165 W JP2015078165 W JP 2015078165W WO 2016056499 A1 WO2016056499 A1 WO 2016056499A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
plate thickness
thickness measuring
workpiece
ultrasonic plate
Prior art date
Application number
PCT/JP2015/078165
Other languages
French (fr)
Japanese (ja)
Inventor
潤 江藤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2016056499A1 publication Critical patent/WO2016056499A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness

Definitions

  • the present invention relates to an ultrasonic plate thickness measuring apparatus that measures the thickness of a workpiece with ultrasonic waves, a machine tool equipped with the ultrasonic plate thickness measuring device, and an ultrasonic plate thickness measuring method.
  • an ultrasonic probe and a temperature sensor are connected by wire, and the plate thickness at a measurement point is measured based on the measurement result of the reflection time of the ultrasonic wave emitted from the ultrasonic probe.
  • a portable terminal that measures the plate temperature at the measurement point based on the measurement result of the temperature sensor, and a host computer that is wired or wirelessly connected to the portable terminal and transfers data from the portable terminal to be freely transmitted and received.
  • the portable terminal is configured to include a storage unit that stores an address (coordinates) of a measurement point in association with a plate thickness and a plate temperature at the measurement point.
  • Patent Document 2 there is known one in which a wireless touch probe is attached to the spindle of an NC machine tool instead of a tool.
  • the touch probe is brought into contact with the work set on the table, and a contact signal at that time is sent to the control unit of the NC machine tool to measure the position and dimensions of the work.
  • the touch probe of Patent Document 2 since the touch probe of Patent Document 2 is attached to the spindle of a machine tool, it can automatically measure the dimensions of a workpiece at a plurality of measurement points. In addition, since the measurement data can be sent to the control unit for automatic processing, measurement work and data processing are easy.
  • the thin plate when the workpiece is a thin plate such as an aircraft outer plate, the thin plate inevitably floats up from the table due to the characteristics of the thin plate or the influence of the molding shape, and from the predetermined starting point coordinates to the contact point to the workpiece. There is a problem that the touch probe using the distance of the distance cannot accurately measure the thickness.
  • the thin plate is measured while being fixed by applying a negative pressure vacuum on the table. However, since the suction force of the negative pressure vacuum is limited, the lift of the thin plate cannot be completely suppressed.
  • an ultrasonic probe in order to accurately measure the thickness of a thin plate.
  • a tool mounting portion such as a spindle of a machine tool and brought into contact with the workpiece
  • there is a method of supplying a contact medium applied between the ultrasonic probe and the workpiece It becomes a problem. For this reason, there has never been an example in which an ultrasonic probe is provided on a spindle of a machine tool or the like.
  • the present invention has been made in view of such circumstances, and it is possible to attach an ultrasonic probe to a tool mounting portion of a machine tool so that the thickness of a workpiece such as a thin plate can be accurately measured.
  • An object is to provide a sonic plate thickness measuring device, a machine tool equipped with the same, and an ultrasonic plate thickness measuring method.
  • the ultrasonic plate thickness measuring apparatus the machine tool including the ultrasonic plate thickness measuring device, and the ultrasonic plate thickness measuring method according to the present invention employ the following means.
  • the ultrasonic plate thickness measuring apparatus is provided in a machine tool in which a plurality of types of replaceable tools can be selectively attached to a tool attachment portion to exceed the thickness of the workpiece.
  • This ultrasonic plate thickness measuring device is for measuring the ultrasonic wave, and is provided with an attachment / detachment engagement portion engaged with and fixed to the tool attachment portion, and an ultrasonic wave provided at the tip of the attachment / detachment engagement portion.
  • An ultrasonic plate thickness measuring unit that transmits an ultrasonic wave while contacting a probe with the surface of the workpiece, detects an echo wave, and measures the thickness of the workpiece, and the machine tool includes the The coolant supplied when machining the workpiece with an exchangeable tool is used as a contact medium for improving the contact state between the ultrasonic probe and the surface of the workpiece during thickness measurement.
  • the ultrasonic plate thickness measuring apparatus having the above-described configuration can be attached to the tool attachment portion in the same manner as other replaceable tools by engaging and fixing the attachment / detachment engagement portion to the tool attachment portion of the machine tool.
  • the ultrasonic plate thickness measuring device attached to the tool mounting portion in this way transmits the ultrasonic wave by bringing the ultrasonic probe into contact with the surface of the work piece, and detects the echo wave, thereby detecting the thickness of the work piece. Measure the thickness.
  • coolant supplied when the machine tool cuts the surface of the workpiece with the exchangeable tool is supplied, and this coolant is directly contacted between the ultrasonic probe and the surface of the workpiece. Used as a contact medium to improve the state.
  • the coolant supplied when the machine tool performs the cutting process is used as the contact medium, so that the problem of supplying the contact medium, which has been a problem in the past, is solved, and the ultrasonic probe is used for the machine tool. It can be attached to the tool attachment portion, and the thickness of a workpiece such as a thin plate can be accurately measured.
  • the ultrasonic plate thickness measuring unit may wirelessly transmit measurement data of the thickness of the workpiece to the control unit.
  • the measured plate thickness data is wirelessly transmitted to the control unit and can be automatically processed, thereby facilitating measurement work and data processing.
  • the attachment / detachment engagement portion has the same shape as that provided in the replaceable tool. As a result, compatibility with other replaceable tools can be obtained, and replacement work can be facilitated.
  • a fluid ejecting unit that ejects the auxiliary fluid in the vicinity of the probe may be further provided.
  • the auxiliary fluid such as coolant and blow air supplied from the auxiliary fluid supply passage formed inside the tool mounting portion of the machine tool is fluidized through the communication passage formed in the ultrasonic plate thickness measuring device. It is injected from the injection unit to the vicinity of the ultrasonic probe. For this reason, auxiliary fluid such as coolant and blow air can be reliably injected in the vicinity of the ultrasonic probe, and the ultrasonic probe and the workpiece are reliably cleaned, and the contact state between the ultrasonic probe and the workpiece is improved. Thus, accurate plate thickness measurement can be performed.
  • the ultrasonic probe is biased in a direction protruding from the ultrasonic plate thickness measuring unit toward the workpiece via an impact absorbing mechanism.
  • the impact force or pressing force is absorbed by the impact absorbing mechanism.
  • the impact force and the pressing force are absorbed by the ultrasonic probe urged in the direction protruding from the ultrasonic plate thickness measuring unit toward the workpiece by the shock absorbing mechanism being retracted to the ultrasonic plate thickness measuring unit. For this reason, damage to the ultrasonic probe and the workpiece surface can be prevented, and the ultrasonic probe can always be pressed against the workpiece surface with a uniform surface pressure for accurate plate thickness measurement.
  • the machine tool according to the second aspect of the present invention includes any one of the above-described ultrasonic plate thickness measuring devices.
  • the ultrasonic plate thickness measuring device can be attached to the tool mounting portion in the same manner as other replaceable tools, and the thickness of the workpiece can be accurately measured while diverting the coolant as a contact medium. .
  • the ultrasonic plate thickness measuring method is an ultrasonic plate thickness measuring device in the tool mounting portion in a machine tool in which a plurality of types of replaceable tools can be selectively mounted on the tool mounting portion.
  • the thickness of the workpiece is measured ultrasonically, the coolant supplied when the machine tool is machining the surface of the workpiece with the replaceable tool, the ultrasonic plate thickness It is used as a contact medium for improving the contact state between the ultrasonic probe of the ultrasonic plate thickness measuring device and the surface of the workpiece when the thickness is measured by the measuring device.
  • an ultrasonic plate thickness measuring device is installed at the tool mounting portion of a machine tool, and a coolant is provided between the ultrasonic probe of the ultrasonic plate thickness measuring device and the surface of the workpiece.
  • a coolant is provided between the ultrasonic probe of the ultrasonic plate thickness measuring device and the surface of the workpiece.
  • the ultrasonic probe can be attached to the tool mounting portion of the machine tool and the thin plate It is possible to accurately measure the thickness of workpieces such as.
  • FIG. 1 is a side view of a main shaft and an ultrasonic plate thickness measuring device showing a first embodiment of the present invention. It is a longitudinal cross-sectional view of an ultrasonic plate thickness measuring apparatus (ultrasonic plate thickness measuring unit). It is a flowchart which shows the flow of control of an ultrasonic plate thickness measuring apparatus. It is a side view of the main axis
  • FIG. 1 is a side view of a machining center showing an example of a machine tool equipped with an ultrasonic plate thickness measuring apparatus according to the present invention.
  • the machining center 1 includes a spindle 2 (tool mounting portion) and an automatic tool changer 3.
  • the main shaft 2 extends in the vertical direction, for example, is driven to rotate by a motor (not shown), and can be moved up and down in the axial direction.
  • the automatic tool changer 3 includes a tool magazine 6 that is pivotally supported by a frame 5 and has a disk shape in plan view.
  • the tool magazine 6 has a plurality of tool holding holes 7 along the circumferential direction thereof. Is formed.
  • a plurality of types of replaceable tools 8 and an ultrasonic plate thickness measuring device 9 for measuring the thickness of the workpiece are held in these tool holding holes 7.
  • the tool magazine 6 can be index-rotated by an interval of the tool holding hole 7 by an index motor 11 installed on the frame 5.
  • the replaceable tool 8 and the ultrasonic plate thickness measuring device 9 each include a taper shank 13 (detachable engagement portion). These tapered shanks 13 desirably have the same shape. As shown in FIG. 2, the replaceable tool 8 has a tool portion 15 such as a drill or an end mill connected to the lower portion of the taper shank 13, and the ultrasonic plate thickness measuring device 9 has an ultrasonic plate below the tapered shank 13. A thickness measuring unit 16 is connected. As for the shape of the taper shank 13, a plurality of variations of common standard products such as BT-40, BT-50, and HSK-A100 shown in FIG. 2 are prepared (BT-50 type is illustrated in FIG. 1). ).
  • the male screw 19 formed on the taper shank 13 is screwed to the female screws 17 and 18 formed on the tool unit 15 and the ultrasonic plate thickness measuring unit 16, and both are connected.
  • the tool part 15 and the ultrasonic plate thickness measuring part 16 may be integrally formed.
  • the main shaft 2 is formed with a taper fitting hole 20 along the central axis for closely engaging the replaceable tool 8 and the taper shank 13 of the ultrasonic plate thickness measuring device 9.
  • a pull stud 22 provided at the tip of the taper shank 13 of the replaceable tool 8 and the ultrasonic plate thickness measuring device 9 is held by a clamp 21 provided in the back of the taper fitting hole 20.
  • the spindle 2 has one of a plurality of replaceable tools 8 and an ultrasonic plate thickness measuring device 9 selected and attached. That is, the tool magazine 6 is index-rotated by the index motor 11 so that any one of the selected replaceable tool 8 and the ultrasonic plate thickness measuring device 9 is directly below the main shaft 2, and then the main shaft 2 is lowered. The taper shank 13 is fitted into the taper fitting hole 20. At the same time, the pull stud 22 is held by the clamp 21, and then the main shaft 2 rises. As a result, the selected replaceable tool 8 or ultrasonic plate thickness measuring device 9 is removed from the tool magazine 6 and attached to the spindle 2.
  • FIG. 3 is a side view of the main shaft 2 and the ultrasonic plate thickness measuring device 9 showing the first embodiment of the present invention
  • FIG. 4 is a longitudinal section of the ultrasonic plate thickness measuring device 9 (ultrasonic plate thickness measuring unit 16).
  • the ultrasonic plate thickness measuring unit 16 of the ultrasonic plate thickness measuring device 9 includes a columnar base casing 23 that is a portion coupled to the taper shank 13, and a bottom surface of the base casing 23.
  • a shock absorber housing 24 having a small one-stage diameter connected thereto by screw connection or the like
  • an ultrasonic probe 25 (transducer) provided so as to protrude from the lower surface of the shock absorber housing 24.
  • the ultrasonic probe 25 transmits an ultrasonic wave while contacting the surface of the workpiece W, detects the reflected sound wave, and measures the thickness of the workpiece W.
  • a waterproof O-ring 27 is formed between the periphery of the female screw 18 formed on the base housing 23 and screwed into the male screw 19 of the taper shank 13, and between the base housing 23 and the shock absorber housing 24. , 28 are interposed.
  • An impact absorbing mechanism 31 is provided inside the impact absorbing unit housing 24.
  • the shock absorbing mechanism 31 is configured as follows. First, the ultrasonic probe 25 has a stepped columnar shape, and is inserted into a sliding cylinder 32 formed at the center of the shock absorber housing 24 so as to be slidable in the axial direction, and is formed on itself. 33 can be lowered until it abuts on the inner peripheral flange 34 at the lower end of the sliding cylinder 32, and the position of the tip at this time becomes the protruding position 25a shown in FIG.
  • a substantially disk-shaped fixed guide 36 is provided on the upper portion of the sliding cylinder 32, and the outer periphery of the cylindrical portion 37 formed on the lower surface thereof is screwed into the upper inner periphery of the sliding cylinder 32, for example.
  • the ultrasonic probe 25 can be raised until its upper surface comes into contact with the lower end of the cylindrical portion 37. At this time, the distal end portion of the ultrasonic probe 25 is in a position where it is retracted above the lower end surface of the shock absorber housing 24. Actually, the tip of the ultrasonic probe 25 pressed from the outside rises to the same height as the lower end surface of the shock absorber housing 24, and the position of the tip at this time becomes the retracted position 25b shown in FIG. .
  • a coil spring 38 is mounted between the ultrasonic probe 25 and the fixed guide 36, and the ultrasonic probe 25 is always on the protruding position 25 a side, that is, from the ultrasonic plate thickness measuring unit 16 by the biasing force. It is urged in the direction that protrudes to the side. For this reason, when the thickness of the workpiece W is measured by the ultrasonic plate thickness measuring device 9, when the ultrasonic probe 25 is strongly abutted against the surface of the workpiece W, the ultrasonic probe 25 is in the protruding position. The shock is absorbed by sliding from 25a to the retracted position 25b or higher than the retracted position 25b, and damage or failure of the ultrasonic probe 25 or damage to the surface of the workpiece W is avoided.
  • a flexible waterproof cover 40 is mounted between the distal end portion of the shock absorbing portion housing 24 and the distal end base portion of the ultrasonic probe 25, and the outer peripheral portion and the inner peripheral portion of the waterproof cover 40 are They are fixed to the shock absorber casing 24 and the ultrasonic probe 25 by O-rings 41 and 42 (or snap rings, respectively).
  • This waterproof cover 40 prevents coolant, which will be described later, from entering the inside of the ultrasonic plate thickness measuring device 9 from between the shock absorbing unit casing 24 and the ultrasonic probe 25.
  • the shock absorbing mechanism 31 is configured as described above.
  • a wireless communication unit 45 is built in the base housing 23, and a communication cable 46 extending from the wireless communication unit 45 passes through the center of the fixed guide 36 and is connected to the ultrasonic probe 25.
  • the communication cable 46 has a sufficient length and does not hinder the ultrasonic probe 25 from sliding between the protruding position 25a and the retracted position 25b.
  • Measurement data measured by the ultrasonic probe 25 is transmitted to the wireless communication unit 45 via the communication cable 46, and the wireless communication unit 45 wirelessly transmits the measurement data to the control unit 48 (see FIG. 3).
  • the control unit 48 may be incorporated in or programmed in the control device of the machining center 1 itself, or may be a separate and dedicated one.
  • the main shaft 2 is formed with an auxiliary fluid supply passage 51 for supplying auxiliary fluid such as coolant and blow air.
  • the auxiliary fluid supply passage 51 is branched from two passages 51a and 51b that connect between a coolant supply portion 52 and a blow air supply portion 53 provided in the machining center 1, for example, and an intermediate portion of the passage 51a.
  • a passage 51c connected to one or more main shaft injection nozzles 55 provided at the tip, and a passage 51d branched from an intermediate portion of the passage 51b and communicated with a passage 13a formed inside the taper shank 13 are provided.
  • the main shaft injection nozzle 55 is angled so as to inject coolant, blow air or the like in the vicinity of the cutting edge of the replaceable tool 8 or in the vicinity of the ultrasonic probe 25 of the ultrasonic plate thickness measuring device 9.
  • a communication passage 57 formed in the ultrasonic plate thickness measuring device 9 is waterproof as shown in FIG. Communication is made through an O-ring 58.
  • the communication passage 57 is connected to one or more measurement injection nozzles 60 (fluid injection units) provided on the lower surface of the base housing 23.
  • the measurement spray nozzle 60 is angled so as to spray the auxiliary fluid in the immediate vicinity of the ultrasonic probe 25.
  • the coolant supplied when the replaceable tool 8 is attached to the main spindle 2 and the workpiece W is cut the ultrasonic plate thickness measuring device 9 is attached to the main spindle 2 instead of the replaceable tool 8. Also supplied when measuring the thickness of the workpiece W.
  • the coolant is used as it is as a contact medium (measuring auxiliary liquid) for improving the contact state between the ultrasonic probe 25 of the ultrasonic plate thickness measuring device 9 and the surface of the workpiece W.
  • the ultrasonic wave is difficult to propagate in the air and reflects at the boundary with the surface of the workpiece W, a small amount of air is prevented so that no air is interposed between the ultrasonic probe 25 and the surface of the workpiece W. It is necessary to supply (apply) the contact medium in advance, and the coolant serves as the contact medium. As described above, the liquid coolant is interposed between the ultrasonic probe 25 and the surface of the workpiece W, so that the air is prevented from interfering, the transmission rate of the ultrasonic wave is remarkably improved, and the measurement accuracy is improved.
  • a plate thickness measurement instruction is issued (step S1), and then the ultrasonic plate thickness measuring device 9 is selected and attached to the spindle 2 (step S2).
  • the ultrasonic plate thickness measuring apparatus 9 is turned on (step S3).
  • the power may be turned on at the same time as the ultrasonic plate thickness measuring device 9 is mounted on the main shaft 2.
  • the position of the spindle 2 (or the position of the workpiece W) is changed so that the ultrasonic plate thickness measuring device 9 comes directly above the measurement point for measuring the thickness of the workpiece W (step S4).
  • the spindle 2 When the ultrasonic plate thickness measuring device 9 comes right above the measurement point of the workpiece W, the spindle 2 is lowered to such an extent that the ultrasonic probe 25 does not contact the workpiece W, and the spindle injection nozzle 55 or the measurement injection nozzle 60
  • the coolant is sprayed first from at least one, and then blow air is sprayed to clean the surface of the workpiece W and the ultrasonic probe 25 (step S5).
  • the number of nozzles to be ejected is appropriately set according to the degree of foreign matter removal. For example, you may inject from both the main axis
  • the cleaning may be performed by properly using the jet for mixing the coolant and the blow air and the jet not for mixing, or combining them in a cycle.
  • step S6 Even after the cleaning is completed, the supply of the coolant is continued (step S6). In this state, the spindle 2 is lowered (or until the ultrasonic probe 25 of the ultrasonic plate thickness measuring device 9 comes into contact with the measurement point of the workpiece W (or The workpiece W is raised) (step S7), and the thickness of the workpiece W is measured (step S8). Then, the measured data is wirelessly transmitted to the control unit 48 (step S9).
  • step S10 it is determined whether or not the measured data is within an appropriate range assigned in advance (step S10), and if it is within the appropriate range (step S10 ⁇ Yes), the measurement data is stored in the storage unit. (Step S11). Thereafter, the supply of the coolant is stopped (step S12), and it is then determined whether or not the measurement is finished (step S13). If the measurement is completed (step S13 ⁇ Yes), the ultrasonic plate thickness measuring apparatus 9 is turned off (step S14), and the control is completed. If the measurement has not been completed (step S13 ⁇ No), an instruction for the next measurement point is issued (step S15), the process returns to step S4, and the ultrasonic plate thickness measuring device 9 (main shaft 2) moves to the next measurement point. To do. Then, the routine from step S4 to S13 is repeated.
  • step S10 if the measured data deviates from the pre-assigned appropriate range (step S10 ⁇ No), a remeasurement instruction is issued (step S16), and the number of remeasurements so far is a predetermined number. It is determined whether or not (for example, four times) or more (step S17). If the number of remeasurements is within the predetermined number (step S17 ⁇ No), the process proceeds to step S5, and thereafter, the routines from steps S5 to S10, S16, and S17 are repeated. In step S17, if the number of re-measurements is equal to or greater than the predetermined number (step S17 ⁇ Yes), the measurement is stopped and an error is displayed (step S18).
  • the ultrasonic plate thickness measuring device 9 can be attached to the main shaft 2 in the same manner as the other replaceable tools 8 by the taper shank 13 being engaged and fixed to the main shaft 2 of the machining center 1. .
  • the ultrasonic plate thickness measuring device 9 attached to the spindle 2 in this way transmits the ultrasonic wave by bringing the ultrasonic probe 25 into contact with the surface of the workpiece W, and detects the reflected sound wave.
  • the measurement data is wirelessly transmitted to the control unit 48.
  • coolant supplied when the machining center 1 cuts the surface of the workpiece W with the replaceable tool 8 is supplied, and this coolant is used as it is for the surface of the ultrasonic probe 25 and the workpiece W. It is used as a contact medium that improves the contact state between the two.
  • the coolant supplied when cutting is performed by the machining center 1 is used as a contact medium used when the ultrasonic plate thickness measuring device 9 measures the ultrasonic plate thickness.
  • the problem of supplying the contact medium which has been a problem in the past, is solved, and the ultrasonic probe 25 can be attached to the spindle 2 of a machine tool such as the machining center 1 to reduce the thickness of the workpiece W such as a thin plate. It can measure with high accuracy. Since the measured plate thickness data is wirelessly transmitted to the control unit 48 and can be automatically processed, measurement work and data processing are easy.
  • the ultrasonic plate thickness measuring device 9 is a measurement that injects coolant and blow air from the communication passage 57 to the vicinity of the ultrasonic probe 25 through the communication passage 57 that communicates with the auxiliary fluid supply passage 51 formed inside the main shaft 2. And an injection nozzle 60. Then, auxiliary fluid such as coolant and blow air supplied from the auxiliary fluid supply passage 51 is jetted from the measurement jet nozzle 60 to the vicinity of the ultrasonic probe 25 through the communication passage 57.
  • auxiliary fluid such as coolant and blow air can be reliably jetted in the vicinity of the ultrasonic probe 25, the ultrasonic probe 25 and the workpiece W can be reliably cleaned, and the ultrasonic probe 25 and the workpiece W It is possible to improve the contact state of the plate and perform accurate plate thickness measurement.
  • the ultrasonic probe 25 is constantly urged in the direction protruding from the ultrasonic plate thickness measuring unit 16 toward the workpiece W (the protruding position 25a side) by the urging force of the coil spring 38 provided in the shock absorbing mechanism 31. Yes. For this reason, when the ultrasonic probe 25 abuts against the surface of the workpiece W with an excessive strength, the ultrasonic probe 25 is retracted toward the ultrasonic plate thickness measuring unit 16 side (retraction position 25b side) to cause an impact. Force and pressure are absorbed. Therefore, the ultrasonic probe 25 and the surface of the workpiece W can be prevented from being damaged, and the ultrasonic probe 25 can always be pressed against the surface of the workpiece W with a uniform surface pressure to perform accurate plate thickness measurement.
  • the ultrasonic plate thickness measuring device 9 is attached to the main shaft 2 in the same manner as other replaceable tools 8, and the coolant is used as a contact medium.
  • the thickness of the workpiece W can be measured with high accuracy, and the convenience is high.
  • FIG. 6 is a side view of an ultrasonic plate thickness measuring apparatus showing the second embodiment of the present invention.
  • the ultrasonic plate thickness measuring device 9 ′ is attached to the main shaft 2 ′ of the machining center 1 ′.
  • the main shaft 2 ′ is not provided with the main shaft injection nozzle 55 (see FIG. 3) provided on the main shaft 2 of the first embodiment.
  • the ultrasonic plate thickness measuring device 9 ′ is not provided with the measurement spray nozzle 60 of the first embodiment. Instead, a flexible hose 65 that supplies coolant from the outside is provided. Since the other configuration is the same as that of the first embodiment, the same reference numerals are given to the respective parts and the description thereof is omitted.
  • the thickness of the workpiece W is increased.
  • the coolant is supplied from the flexible hose 65.
  • the action and effect of the coolant is the same as in the first embodiment, and the coolant is used as a contact medium (measuring auxiliary liquid) when measuring the thickness of the workpiece W. In this way, the coolant need not necessarily be supplied by providing the injection nozzle on the main shaft 2 ′ or the ultrasonic plate thickness measuring device 9 ′.
  • the ultrasonic plate thickness measuring devices 9 and 9 ′ As described above, according to the ultrasonic plate thickness measuring devices 9 and 9 ′, the machining centers 1 and 1 ′ including the ultrasonic plate thickness measuring devices 9 and 9 ′, and the ultrasonic plate thickness measuring method according to the present embodiment, contact that has been difficult in the related art.
  • the problem of supplying the medium can be solved by using a coolant supplied at the time of cutting. For this reason, the ultrasonic probe 25 can be attached to the main shaft 2 of the machining center 1, and the thickness of the workpiece W such as a thin plate can be accurately measured.
  • the present invention is not limited only to the configuration of the above-described embodiment, and changes and improvements can be added as appropriate. Embodiments with such changes and improvements are also included in the scope of the present invention. .
  • the ultrasonic plate thickness measuring devices 9 and 9 ′ are attached to the main shafts 2 and 2 ′ of the machining centers 1 and 1 ′.
  • the present invention can be widely applied to many other types of machine tools such as lathes, grinders, drilling machines, lathes, turning centers, multi-task machines, and multi-axis robots.
  • the tool attachment portion to which the ultrasonic plate thickness measuring devices 9 and 9 ′ are attached is not limited to the rotary spindle, but may be a tool post for fixing a tool, a drill chuck, or the like.

Abstract

An ultrasonic plate thickness measurement device (9) is provided with a taper shank (13) having the same shape as the taper shank of an interchangeable tool that is selectively attached to the main shaft (2) of a machine tool and an ultrasonic plate thickness measurement unit (16) that is provided on this taper shank (13), emits ultrasound while an ultrasonic probe (25) at the leading end thereof is made to be in contact with the surface of a workpiece (W), detects the resulting echo waves, measures the thickness of the workpiece (W), and wirelessly transmits the resulting measurement data to a control unit (48). Coolant supplied when the machine tool cuts the workpiece (W) using the interchangeable tool is used as a contact medium for enhancing the contact state between the ultrasonic probe (25) and workpiece (W) surface during thickness measurement. The coolant is ejected from a main shaft ejection nozzle (55) provided on the main shaft (2) and a measurement ejection nozzle (60) provided on the ultrasonic plate thickness measurement device (9).

Description

超音波板厚計測装置、これを備えた工作機械、および超音波板厚計測方法Ultrasonic plate thickness measuring device, machine tool equipped with the same, and ultrasonic plate thickness measuring method
 本発明は、超音波で加工物の厚さを測定する超音波板厚計測装置、これを備えた工作機械、および超音波板厚計測方法に関するものである。 The present invention relates to an ultrasonic plate thickness measuring apparatus that measures the thickness of a workpiece with ultrasonic waves, a machine tool equipped with the ultrasonic plate thickness measuring device, and an ultrasonic plate thickness measuring method.
 従来、航空機の外板のような薄板状の工作物の板厚を計測する場合は、作業者がハンディータイプの超音波板厚計測装置を持ち歩きながら、工作物の複数の座標位置における厚さを計って記録していた。このようなハンディータイプの超音波板厚計測装置として、特許文献1に開示されている板厚測定装置が挙げられる。 Conventionally, when measuring the thickness of a thin workpiece such as an outer skin of an aircraft, the operator can carry the thickness of the workpiece at multiple coordinate positions while carrying a handy type ultrasonic thickness measuring device. It was measured and recorded. As such a handy type ultrasonic plate thickness measuring device, a plate thickness measuring device disclosed in Patent Document 1 can be cited.
 特許文献1の板厚測定装置は、超音波プローブと温度センサとが有線接続され、超音波プローブが発した超音波の反射時間の測定結果に基づいて測定点の板厚を測定する。それと共に、温度センサの測定結果に基づいて測定点の板温を測定する携帯用端末と、この携帯用端末に有線、または無線接続されて携帯用端末からのデータを送受自在に転送するホストコンピュータとを備えている。携帯用端末は、測定点のアドレス(座標)とその測定点における板厚及び板温とを対応させて記憶する記憶部を有するように構成されている。 In the plate thickness measuring device of Patent Document 1, an ultrasonic probe and a temperature sensor are connected by wire, and the plate thickness at a measurement point is measured based on the measurement result of the reflection time of the ultrasonic wave emitted from the ultrasonic probe. At the same time, a portable terminal that measures the plate temperature at the measurement point based on the measurement result of the temperature sensor, and a host computer that is wired or wirelessly connected to the portable terminal and transfers data from the portable terminal to be freely transmitted and received. And. The portable terminal is configured to include a storage unit that stores an address (coordinates) of a measurement point in association with a plate thickness and a plate temperature at the measurement point.
 また、特許文献2等に開示されているように、NC工作機械の主軸に、工具の代わりに無線式のタッチプローブを取り付けたものが知られている。このタッチプローブをテーブル上に据え付けた工作物に接触させ、その時の接触信号をNC工作機械の制御部へ送って、工作物の位置や寸法等を測定する。 Also, as disclosed in Patent Document 2 and the like, there is known one in which a wireless touch probe is attached to the spindle of an NC machine tool instead of a tool. The touch probe is brought into contact with the work set on the table, and a contact signal at that time is sent to the control unit of the NC machine tool to measure the position and dimensions of the work.
特開平8-166229号公報JP-A-8-166229 特開平6-170698号公報JP-A-6-170698
 特許文献1の板厚測定装置では、作業者が板厚測定装置を持ち歩いて逐一計測作業を行う必要があることと、超音波プローブと工作物との間に空気が介在しないように液状(またはジェル状)の接触媒質を塗布する必要がある。このため、計測作業を自動化することが困難であり、しかも、板厚の計測結果を手動で打ち込んで整理する必要もあって、計測作業が煩雑であった。 In the plate thickness measuring device of Patent Document 1, it is necessary for an operator to carry the plate thickness measuring device and perform measurement work one by one, and liquid (or so that air does not intervene between the ultrasonic probe and the workpiece). It is necessary to apply a gel-like contact medium. For this reason, it is difficult to automate the measurement work, and the measurement work is complicated because it is necessary to manually input and organize the measurement results of the plate thickness.
 これに対し、特許文献2のタッチプローブは、工作機械の主軸に取り付けられるため、工作物の複数の測定点における寸法を自動的に測定することができる。しかも、その測定データを制御部に送って自動処理することができるので、計測作業やデータ処理が容易である。 On the other hand, since the touch probe of Patent Document 2 is attached to the spindle of a machine tool, it can automatically measure the dimensions of a workpiece at a plurality of measurement points. In addition, since the measurement data can be sent to the control unit for automatic processing, measurement work and data processing are easy.
 しかしながら、工作物が航空機の外板のような薄板状である場合、薄板の特性や成形形状の影響等により、どうしても薄板がテーブルから浮き上がってしまい、所定の起点座標から工作物への接触点までの距離を測定データとして用いるタッチプローブでは正確な板厚計測ができないという問題がある。薄板はテーブル上で負圧バキュームを掛けられて固定されながら計測が行われるが、負圧バキュームの吸引力には限界があるため、薄板の浮き上がりを完全に抑制することはできない。 However, when the workpiece is a thin plate such as an aircraft outer plate, the thin plate inevitably floats up from the table due to the characteristics of the thin plate or the influence of the molding shape, and from the predetermined starting point coordinates to the contact point to the workpiece. There is a problem that the touch probe using the distance of the distance cannot accurately measure the thickness. The thin plate is measured while being fixed by applying a negative pressure vacuum on the table. However, since the suction force of the negative pressure vacuum is limited, the lift of the thin plate cannot be completely suppressed.
 したがって、薄板の板厚を正確に計測するためには、やはり超音波プローブを用いることが望ましい。ところが、工作機械の主軸等の工具取付部に超音波プローブを取り付けて工作物に接触させるようにした場合、前述のように超音波プローブと工作物との間に塗布する接触媒質の供給方法が課題となる。このため、これまで超音波プローブを工作機械の主軸等に設けた例はなかった。 Therefore, it is desirable to use an ultrasonic probe in order to accurately measure the thickness of a thin plate. However, when an ultrasonic probe is attached to a tool mounting portion such as a spindle of a machine tool and brought into contact with the workpiece, as described above, there is a method of supplying a contact medium applied between the ultrasonic probe and the workpiece. It becomes a problem. For this reason, there has never been an example in which an ultrasonic probe is provided on a spindle of a machine tool or the like.
 本発明は、このような事情に鑑みてなされたものであって、超音波プローブを工作機械の工具取付部に取り付け可能にして薄板等の工作物の板厚を精度良く計測することのできる超音波板厚計測装置、これを備えた工作機械、および超音波板厚計測方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to attach an ultrasonic probe to a tool mounting portion of a machine tool so that the thickness of a workpiece such as a thin plate can be accurately measured. An object is to provide a sonic plate thickness measuring device, a machine tool equipped with the same, and an ultrasonic plate thickness measuring method.
 上記課題を解決するために、本発明に係る超音波板厚計測装置、これを備えた工作機械、および超音波板厚計測方法は、以下の手段を採用する。 In order to solve the above problems, the ultrasonic plate thickness measuring apparatus, the machine tool including the ultrasonic plate thickness measuring device, and the ultrasonic plate thickness measuring method according to the present invention employ the following means.
 即ち、本発明の第1態様に係る超音波板厚計測装置は、複数種類の交換式工具が工具取付部に選択的に取付可能とされた工作機械に備えられて工作物の厚さを超音波計測するものであって、この超音波板厚計測装置は、前記工具取付部に係合固定される着脱係合部と、前記着脱係合部に設けられ、その先端に設けられた超音波プローブを前記工作物の表面に接触させながら超音波を発信し、その反響音波を検知して前記工作物の厚さを計測する超音波板厚計測部と、を具備し、前記工作機械が前記交換式工具によって前記工作物を機械加工する際に供給されるクーラントを、厚さ計測時に前記超音波プローブと前記工作物の表面との間における接触状態を向上させる接触媒質として利用する。 That is, the ultrasonic plate thickness measuring apparatus according to the first aspect of the present invention is provided in a machine tool in which a plurality of types of replaceable tools can be selectively attached to a tool attachment portion to exceed the thickness of the workpiece. This ultrasonic plate thickness measuring device is for measuring the ultrasonic wave, and is provided with an attachment / detachment engagement portion engaged with and fixed to the tool attachment portion, and an ultrasonic wave provided at the tip of the attachment / detachment engagement portion. An ultrasonic plate thickness measuring unit that transmits an ultrasonic wave while contacting a probe with the surface of the workpiece, detects an echo wave, and measures the thickness of the workpiece, and the machine tool includes the The coolant supplied when machining the workpiece with an exchangeable tool is used as a contact medium for improving the contact state between the ultrasonic probe and the surface of the workpiece during thickness measurement.
 上記構成の超音波板厚計測装置は、その着脱係合部が工作機械の工具取付部に係合固定されることにより、他の交換式工具と同様に工具取付部に取り付けることができる。このように工具取付部に取り付けられた超音波板厚計測装置は、その超音波プローブを工作物の表面に接触させて超音波を発信し、その反響音波を検知することによって前記工作物の厚さを計測する。上記の超音波計測時には、工作機械が交換式工具によって工作物の表面を切削加工する際に供給されるクーラントが供給され、このクーラントが、そのまま超音波プローブと工作物の表面との間における接触状態を向上させる接触媒質として利用される。 The ultrasonic plate thickness measuring apparatus having the above-described configuration can be attached to the tool attachment portion in the same manner as other replaceable tools by engaging and fixing the attachment / detachment engagement portion to the tool attachment portion of the machine tool. The ultrasonic plate thickness measuring device attached to the tool mounting portion in this way transmits the ultrasonic wave by bringing the ultrasonic probe into contact with the surface of the work piece, and detects the echo wave, thereby detecting the thickness of the work piece. Measure the thickness. In the ultrasonic measurement described above, coolant supplied when the machine tool cuts the surface of the workpiece with the exchangeable tool is supplied, and this coolant is directly contacted between the ultrasonic probe and the surface of the workpiece. Used as a contact medium to improve the state.
 このように、工作機械が切削加工する際に供給されるクーラントを接触媒質として流用しているため、従来から課題とされていた接触媒質の供給の問題が解決され、超音波プローブを工作機械の工具取付部に取り付け可能にして薄板等の工作物の板厚を精度良く計測することができる。 As described above, the coolant supplied when the machine tool performs the cutting process is used as the contact medium, so that the problem of supplying the contact medium, which has been a problem in the past, is solved, and the ultrasonic probe is used for the machine tool. It can be attached to the tool attachment portion, and the thickness of a workpiece such as a thin plate can be accurately measured.
 上記構成の超音波板厚計測装置において、前記超音波板厚計測部は、前記工作物の厚さの計測データを制御部に無線送信するようにしてもよい。これにより、計測した板厚データが制御部に無線送信され、自動処理することができるので、計測作業やデータ処理を容易にすることができる。 In the ultrasonic plate thickness measuring apparatus having the above configuration, the ultrasonic plate thickness measuring unit may wirelessly transmit measurement data of the thickness of the workpiece to the control unit. As a result, the measured plate thickness data is wirelessly transmitted to the control unit and can be automatically processed, thereby facilitating measurement work and data processing.
 上記構成の超音波板厚計測装置において、前記着脱係合部は、前記交換式工具に設けられるものと同じ形状である方が好ましい。これにより、他の交換式工具との互換性が得られて交換作業を容易にすることができる。   In the ultrasonic thickness measuring apparatus having the above-described configuration, it is preferable that the attachment / detachment engagement portion has the same shape as that provided in the replaceable tool. As a result, compatibility with other replaceable tools can be obtained, and replacement work can be facilitated. *
 上記構成の超音波板厚計測装置において、前記工具取付部の内部に形成されて前記クーラントやブローエア等の補助流体を供給する補助流体供給通路に連通する連通路と、この連通路から前記超音波プローブの近傍に前記補助流体を噴射する流体噴射部と、をさらに設けてもよい。 In the ultrasonic plate thickness measuring apparatus having the above-described configuration, a communication path that is formed inside the tool mounting portion and communicates with an auxiliary fluid supply path that supplies an auxiliary fluid such as the coolant and blow air, and the ultrasonic wave from the communication path A fluid ejecting unit that ejects the auxiliary fluid in the vicinity of the probe may be further provided.
 上記構成によれば、工作機械の工具取付部の内部に形成された補助流体供給通路から供給されたクーラントやブローエア等の補助流体が、超音波板厚計測装置に形成された連通路を経て流体噴射部から超音波プローブの付近に噴射される。このため、クーラントやブローエア等の補助流体を超音波プローブの近傍に確実に噴射させることができ、超音波プローブや工作物を確実にクリーニングするとともに、超音波プローブと工作物との接触状態を向上させて精度の良い板厚計測を行うことができる。 According to the above configuration, the auxiliary fluid such as coolant and blow air supplied from the auxiliary fluid supply passage formed inside the tool mounting portion of the machine tool is fluidized through the communication passage formed in the ultrasonic plate thickness measuring device. It is injected from the injection unit to the vicinity of the ultrasonic probe. For this reason, auxiliary fluid such as coolant and blow air can be reliably injected in the vicinity of the ultrasonic probe, and the ultrasonic probe and the workpiece are reliably cleaned, and the contact state between the ultrasonic probe and the workpiece is improved. Thus, accurate plate thickness measurement can be performed.
 上記構成の超音波板厚計測装置において、前記超音波プローブは衝撃吸収機構を介して前記超音波板厚計測部から前記工作物側に突出する方向に付勢されていることが望ましい。 In the ultrasonic plate thickness measuring apparatus having the above-described configuration, it is desirable that the ultrasonic probe is biased in a direction protruding from the ultrasonic plate thickness measuring unit toward the workpiece via an impact absorbing mechanism.
 上記構成によれば、超音波プローブが工作物の表面に過剰な強さで当接した場合には、その衝撃力や押圧力が衝撃吸収機構によって吸収される。即ち、衝撃吸収機構によって超音波板厚計測部から工作物側に突出する方向に付勢された超音波プローブが超音波板厚計測部側に引っ込むことによって衝撃力や押圧力が吸収される。このため、超音波プローブや工作物表面の損傷を防ぐとともに、常に均一な面圧で超音波プローブを工作物表面に押し付けて精度のよい板厚計測を行うことができる。 According to the above configuration, when the ultrasonic probe comes into contact with the surface of the workpiece with excessive strength, the impact force or pressing force is absorbed by the impact absorbing mechanism. In other words, the impact force and the pressing force are absorbed by the ultrasonic probe urged in the direction protruding from the ultrasonic plate thickness measuring unit toward the workpiece by the shock absorbing mechanism being retracted to the ultrasonic plate thickness measuring unit. For this reason, damage to the ultrasonic probe and the workpiece surface can be prevented, and the ultrasonic probe can always be pressed against the workpiece surface with a uniform surface pressure for accurate plate thickness measurement.
 本発明の第2態様に係る工作機械は、上記のいずれかの超音波板厚計測装置を備えている。この工作機械によれば、他の交換式工具と同様に超音波板厚計測装置を工具取付部に取り付けて、クーラントを接触媒質として流用しながら工作物の板厚を精度良く計測することができる。 The machine tool according to the second aspect of the present invention includes any one of the above-described ultrasonic plate thickness measuring devices. According to this machine tool, the ultrasonic plate thickness measuring device can be attached to the tool mounting portion in the same manner as other replaceable tools, and the thickness of the workpiece can be accurately measured while diverting the coolant as a contact medium. .
 本発明の第3態様に係る超音波板厚計測方法は、複数種類の交換式工具が工具取付部に選択的に取付可能とされた工作機械において、前記工具取付部に超音波板厚計測装置を設置して工作物の厚さを超音波計測する方法であって、前記工作機械が前記交換式工具によって前記工作物の表面を機械加工する際に供給されるクーラントを、前記超音波板厚計測装置による厚さ計測時に該超音波板厚計測装置の超音波プローブと前記工作物の表面との間における接触状態を向上させる接触媒質として利用する。 The ultrasonic plate thickness measuring method according to the third aspect of the present invention is an ultrasonic plate thickness measuring device in the tool mounting portion in a machine tool in which a plurality of types of replaceable tools can be selectively mounted on the tool mounting portion. In which the thickness of the workpiece is measured ultrasonically, the coolant supplied when the machine tool is machining the surface of the workpiece with the replaceable tool, the ultrasonic plate thickness It is used as a contact medium for improving the contact state between the ultrasonic probe of the ultrasonic plate thickness measuring device and the surface of the workpiece when the thickness is measured by the measuring device.
 この超音波板厚計測方法によれば、工作機械の工具取付部に超音波板厚計測装置を設置し、この超音波板厚計測装置の超音波プローブと工作物の表面との間にクーラントを供給することによって、超音波板厚計測装置の超音波プローブと工作物の表面との間における接触状態を向上させることができる。このため、専用の接触媒質を供給する必要がなくなり、超音波板厚計測装置を工作機械に取り付けることの困難性が排除されて、薄板等の工作物の板厚を精度良く計測することができる。 According to this ultrasonic plate thickness measuring method, an ultrasonic plate thickness measuring device is installed at the tool mounting portion of a machine tool, and a coolant is provided between the ultrasonic probe of the ultrasonic plate thickness measuring device and the surface of the workpiece. By supplying, the contact state between the ultrasonic probe of the ultrasonic plate thickness measuring apparatus and the surface of the workpiece can be improved. This eliminates the need to supply a dedicated contact medium, eliminates the difficulty of attaching the ultrasonic thickness measuring device to the machine tool, and can accurately measure the thickness of a workpiece such as a thin plate. .
 以上のように、本発明に係る超音波板厚計測装置、これを備えた工作機械、および超音波板厚計測方法によれば、超音波プローブを工作機械の工具取付部に取り付け可能にして薄板等の工作物の板厚を精度良く計測することができる。 As described above, according to the ultrasonic plate thickness measuring apparatus, the machine tool equipped with the ultrasonic plate thickness measuring method, and the ultrasonic plate thickness measuring method according to the present invention, the ultrasonic probe can be attached to the tool mounting portion of the machine tool and the thin plate It is possible to accurately measure the thickness of workpieces such as.
本発明に係る超音波板厚計測装置を備えた工作機械の一例を示すマシニングセンターの側面図である。[BRIEF DESCRIPTION OF THE DRAWINGS] It is a side view of the machining center which shows an example of the machine tool provided with the ultrasonic plate thickness measuring apparatus based on this invention. テーパーシャンク(着脱係合部)のバリエーションを示す図である。It is a figure which shows the variation of a taper shank (detachable engagement part). 本発明の第1実施形態を示す主軸および超音波板厚計測装置の側面図である。1 is a side view of a main shaft and an ultrasonic plate thickness measuring device showing a first embodiment of the present invention. 超音波板厚計測装置(超音波板厚計測部)の縦断面図である。It is a longitudinal cross-sectional view of an ultrasonic plate thickness measuring apparatus (ultrasonic plate thickness measuring unit). 超音波板厚計測装置の制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control of an ultrasonic plate thickness measuring apparatus. 本発明の第2実施形態を示す主軸および超音波板厚計測装置の側面図である。It is a side view of the main axis | shaft and ultrasonic plate | board thickness measuring apparatus which show 2nd Embodiment of this invention.
 以下に、本発明に係る実施形態について、図面を参照しながら説明する。 Embodiments according to the present invention will be described below with reference to the drawings.
 図1は、本発明に係る超音波板厚計測装置を備えた工作機械の一例を示すマシニングセンターの側面図である。このマシニングセンター1は、主軸2(工具取付部)と、自動工具交換装置3とを具備している。主軸2は、例えば鉛直方向に延びており、図示しないモーターによって回転駆動されるとともに、軸方向に昇降することができる。 FIG. 1 is a side view of a machining center showing an example of a machine tool equipped with an ultrasonic plate thickness measuring apparatus according to the present invention. The machining center 1 includes a spindle 2 (tool mounting portion) and an automatic tool changer 3. The main shaft 2 extends in the vertical direction, for example, is driven to rotate by a motor (not shown), and can be moved up and down in the axial direction.
 自動工具交換装置3は、フレーム5に軸支されて平面視で円盤状をなすツールマガジン6を備えており、このツールマガジン6には、その円周方向に沿って複数の工具保持穴7が形成されている。これらの工具保持穴7に複数種類の交換式工具8と、工作物の厚さを計測する超音波板厚計測装置9とが保持されている。ツールマガジン6は、フレーム5に設置されたインデックスモーター11によって工具保持穴7の間隔分ずつインデックス回転させることができる。 The automatic tool changer 3 includes a tool magazine 6 that is pivotally supported by a frame 5 and has a disk shape in plan view. The tool magazine 6 has a plurality of tool holding holes 7 along the circumferential direction thereof. Is formed. A plurality of types of replaceable tools 8 and an ultrasonic plate thickness measuring device 9 for measuring the thickness of the workpiece are held in these tool holding holes 7. The tool magazine 6 can be index-rotated by an interval of the tool holding hole 7 by an index motor 11 installed on the frame 5.
 交換式工具8および超音波板厚計測装置9は、それぞれテーパーシャンク13(着脱係合部)を備えている。これらのテーパーシャンク13の形状は同じであることが望ましい。図2にも示すように、交換式工具8はテーパーシャンク13の下部にドリルやエンドミル等の工具部15が連結されており、超音波板厚計測装置9はテーパーシャンク13の下部に超音波板厚計測部16が連結されている。
 テーパーシャンク13の形状としては、図2に示すBT-40,BT-50,HSK-A100といった複数のバリエーションの共通規格品が用意されている(図1にはBT-50型が例示されている)。
 例えば、工具部15および超音波板厚計測部16に形成された雌ネジ17,18に、テーパーシャンク13に形成された雄ネジ19が螺合されて両者が連結されるが、テーパーシャンク13と工具部15および超音波板厚計測部16とを一体に形成してもよい。
The replaceable tool 8 and the ultrasonic plate thickness measuring device 9 each include a taper shank 13 (detachable engagement portion). These tapered shanks 13 desirably have the same shape. As shown in FIG. 2, the replaceable tool 8 has a tool portion 15 such as a drill or an end mill connected to the lower portion of the taper shank 13, and the ultrasonic plate thickness measuring device 9 has an ultrasonic plate below the tapered shank 13. A thickness measuring unit 16 is connected.
As for the shape of the taper shank 13, a plurality of variations of common standard products such as BT-40, BT-50, and HSK-A100 shown in FIG. 2 are prepared (BT-50 type is illustrated in FIG. 1). ).
For example, the male screw 19 formed on the taper shank 13 is screwed to the female screws 17 and 18 formed on the tool unit 15 and the ultrasonic plate thickness measuring unit 16, and both are connected. The tool part 15 and the ultrasonic plate thickness measuring part 16 may be integrally formed.
 図1に示すように、主軸2には、交換式工具8や超音波板厚計測装置9のテーパーシャンク13を密に係合させるテーパー嵌合穴20が中心軸線に沿って形成されている。このテーパー嵌合穴20の奥に設けられたクランプ21に、交換式工具8および超音波板厚計測装置9のテーパーシャンク13先端に設けられたプルスタッド22が保持されるようになっている。 As shown in FIG. 1, the main shaft 2 is formed with a taper fitting hole 20 along the central axis for closely engaging the replaceable tool 8 and the taper shank 13 of the ultrasonic plate thickness measuring device 9. A pull stud 22 provided at the tip of the taper shank 13 of the replaceable tool 8 and the ultrasonic plate thickness measuring device 9 is held by a clamp 21 provided in the back of the taper fitting hole 20.
 主軸2には、複数の交換式工具8および超音波板厚計測装置9のいずれか1つが選択されて取り付けられる。即ち、選択された交換式工具8および超音波板厚計測装置9のいずれか1つが主軸2の真下に来るようにインデックスモーター11によってツールマガジン6がインデックス回転され、次に主軸2が下降してテーパー嵌合穴20にテーパーシャンク13が嵌合される。これと同時にクランプ21によってプルスタッド22が保持され、次に主軸2が上昇する。これにより、選択された交換式工具8または超音波板厚計測装置9がツールマガジン6から取り外されて主軸2に装着される。 The spindle 2 has one of a plurality of replaceable tools 8 and an ultrasonic plate thickness measuring device 9 selected and attached. That is, the tool magazine 6 is index-rotated by the index motor 11 so that any one of the selected replaceable tool 8 and the ultrasonic plate thickness measuring device 9 is directly below the main shaft 2, and then the main shaft 2 is lowered. The taper shank 13 is fitted into the taper fitting hole 20. At the same time, the pull stud 22 is held by the clamp 21, and then the main shaft 2 rises. As a result, the selected replaceable tool 8 or ultrasonic plate thickness measuring device 9 is removed from the tool magazine 6 and attached to the spindle 2.
[第1実施形態]
 図3は本発明の第1実施形態を示す主軸2および超音波板厚計測装置9の側面図であり、図4は超音波板厚計測装置9(超音波板厚計測部16)の縦断面図である。
[First Embodiment]
FIG. 3 is a side view of the main shaft 2 and the ultrasonic plate thickness measuring device 9 showing the first embodiment of the present invention, and FIG. 4 is a longitudinal section of the ultrasonic plate thickness measuring device 9 (ultrasonic plate thickness measuring unit 16). FIG.
 図4に示すように、超音波板厚計測装置9の超音波板厚計測部16は、テーパーシャンク13に結合される部分である円柱状の基部筐体23と、この基部筐体23の下面にネジ結合等により連結される一段径の小さな衝撃吸収部筐体24と、さらに衝撃吸収部筐体24の下面から出没するように設けられた超音波プローブ25(トランスデューサ)とを備えている。超音波プローブ25は、工作物Wの表面に接触しながら超音波を発信し、その反響音波を検知して工作物Wの厚さを計測する。基部筐体23に形成されてテーパーシャンク13の雄ネジ19に螺合する雌ネジ18の周囲と、基部筐体23と衝撃吸収部筐体24との間には、それぞれ防水用のOリング27,28が介装されている。 As shown in FIG. 4, the ultrasonic plate thickness measuring unit 16 of the ultrasonic plate thickness measuring device 9 includes a columnar base casing 23 that is a portion coupled to the taper shank 13, and a bottom surface of the base casing 23. Are provided with a shock absorber housing 24 having a small one-stage diameter connected thereto by screw connection or the like, and an ultrasonic probe 25 (transducer) provided so as to protrude from the lower surface of the shock absorber housing 24. The ultrasonic probe 25 transmits an ultrasonic wave while contacting the surface of the workpiece W, detects the reflected sound wave, and measures the thickness of the workpiece W. A waterproof O-ring 27 is formed between the periphery of the female screw 18 formed on the base housing 23 and screwed into the male screw 19 of the taper shank 13, and between the base housing 23 and the shock absorber housing 24. , 28 are interposed.
 衝撃吸収部筐体24の内部には衝撃吸収機構31が設けられている。この衝撃吸収機構31は次のように構成されている。
 まず、超音波プローブ25は、段付き円柱形状であり、衝撃吸収部筐体24の中心部に形成された摺動シリンダ32に軸方向に摺動自在に挿入され、自身に形成された段部33が摺動シリンダ32下端の内周フランジ34に当接するまで下降でき、この時の先端部の位置が図4に示す突出位置25aとなる。
An impact absorbing mechanism 31 is provided inside the impact absorbing unit housing 24. The shock absorbing mechanism 31 is configured as follows.
First, the ultrasonic probe 25 has a stepped columnar shape, and is inserted into a sliding cylinder 32 formed at the center of the shock absorber housing 24 so as to be slidable in the axial direction, and is formed on itself. 33 can be lowered until it abuts on the inner peripheral flange 34 at the lower end of the sliding cylinder 32, and the position of the tip at this time becomes the protruding position 25a shown in FIG.
 摺動シリンダ32の上部には略円盤状の固定ガイド36が設けられており、例えばその下面に形成された円筒部37の外周が摺動シリンダ32の上部内周に螺合されている。超音波プローブ25は、その上面が円筒部37の下端に当接するまで上昇することができる。この時の超音波プローブ25の先端部は、衝撃吸収部筐体24の下端面よりも上まで引っ込んだ位置となる。実際には、外部から押圧された超音波プローブ25の先端部は衝撃吸収部筐体24の下端面と同じ高さまで上昇し、この時の先端部の位置が図4に示す引込位置25bとなる。 A substantially disk-shaped fixed guide 36 is provided on the upper portion of the sliding cylinder 32, and the outer periphery of the cylindrical portion 37 formed on the lower surface thereof is screwed into the upper inner periphery of the sliding cylinder 32, for example. The ultrasonic probe 25 can be raised until its upper surface comes into contact with the lower end of the cylindrical portion 37. At this time, the distal end portion of the ultrasonic probe 25 is in a position where it is retracted above the lower end surface of the shock absorber housing 24. Actually, the tip of the ultrasonic probe 25 pressed from the outside rises to the same height as the lower end surface of the shock absorber housing 24, and the position of the tip at this time becomes the retracted position 25b shown in FIG. .
 超音波プローブ25と固定ガイド36との間にはコイルスプリング38が弾装されており、その付勢力によって超音波プローブ25は常に突出位置25a側、即ち超音波板厚計測部16から工作物W側に突出する方向に付勢されている。このため、超音波板厚計測装置9によって工作物Wの厚さを計測する時に、超音波プローブ25が強めに工作物Wの表面に当接された場合には、超音波プローブ25が突出位置25aから引込位置25bまで、あるいは引込位置25bよりも高い位置まで摺動することによってショックが吸収され、超音波プローブ25の破損や故障、あるいは工作物Wの表面の受傷が回避される。 A coil spring 38 is mounted between the ultrasonic probe 25 and the fixed guide 36, and the ultrasonic probe 25 is always on the protruding position 25 a side, that is, from the ultrasonic plate thickness measuring unit 16 by the biasing force. It is urged in the direction that protrudes to the side. For this reason, when the thickness of the workpiece W is measured by the ultrasonic plate thickness measuring device 9, when the ultrasonic probe 25 is strongly abutted against the surface of the workpiece W, the ultrasonic probe 25 is in the protruding position. The shock is absorbed by sliding from 25a to the retracted position 25b or higher than the retracted position 25b, and damage or failure of the ultrasonic probe 25 or damage to the surface of the workpiece W is avoided.
 衝撃吸収部筐体24の先端部と超音波プローブ25の先端基部との間にかけて可撓性のある防水カバー40が被装されており、この防水カバー40の外周部と内周部とが、それぞれOリング41,42(またはスナップリング等)によって衝撃吸収部筐体24と超音波プローブ25とに固定されている。この防水カバー40により、後述するクーラントが衝撃吸収部筐体24と超音波プローブ25との間から超音波板厚計測装置9の内部に浸入することが防止される。衝撃吸収機構31は以上のように構成されている。 A flexible waterproof cover 40 is mounted between the distal end portion of the shock absorbing portion housing 24 and the distal end base portion of the ultrasonic probe 25, and the outer peripheral portion and the inner peripheral portion of the waterproof cover 40 are They are fixed to the shock absorber casing 24 and the ultrasonic probe 25 by O-rings 41 and 42 (or snap rings, respectively). This waterproof cover 40 prevents coolant, which will be described later, from entering the inside of the ultrasonic plate thickness measuring device 9 from between the shock absorbing unit casing 24 and the ultrasonic probe 25. The shock absorbing mechanism 31 is configured as described above.
 基部筐体23には無線通信部45が内蔵されており、この無線通信部45から延びる通信ケーブル46が固定ガイド36の中央部を貫通して超音波プローブ25に接続されている。通信ケーブル46は長さに余裕があり、超音波プローブ25が突出位置25aと引込位置25bとの間を摺動することを阻害しない。超音波プローブ25によって計測された計測データは通信ケーブル46を経て無線通信部45に伝達され、無線通信部45は計測データを制御部48(図3参照)に無線送信する。制御部48は、マシニングセンター1自身の制御装置に組み込まれるかプログラムされていてもよいし、別体且つ専用のものであってもよい。 A wireless communication unit 45 is built in the base housing 23, and a communication cable 46 extending from the wireless communication unit 45 passes through the center of the fixed guide 36 and is connected to the ultrasonic probe 25. The communication cable 46 has a sufficient length and does not hinder the ultrasonic probe 25 from sliding between the protruding position 25a and the retracted position 25b. Measurement data measured by the ultrasonic probe 25 is transmitted to the wireless communication unit 45 via the communication cable 46, and the wireless communication unit 45 wirelessly transmits the measurement data to the control unit 48 (see FIG. 3). The control unit 48 may be incorporated in or programmed in the control device of the machining center 1 itself, or may be a separate and dedicated one.
 図3に示すように、主軸2には、クーラントやブローエア等の補助流体を供給する補助流体供給通路51が形成されている。この補助流体供給通路51は、例えばマシニングセンター1に設けられたクーラント供給部52とブローエア供給部53との間を繋ぐ2本の通路51a,51bと、通路51aの中間部から分岐して主軸2の先端部に設けられた1つ以上の主軸噴射ノズル55に繋がる通路51cと、通路51bの中間部から分岐してテーパーシャンク13の内部に形成された通路13aに連通する通路51dとを備えて構成されている。主軸噴射ノズル55は、交換式工具8の刃先付近、または超音波板厚計測装置9の超音波プローブ25の近傍にクーラントやブローエア等を噴射するように角度付けられている。 As shown in FIG. 3, the main shaft 2 is formed with an auxiliary fluid supply passage 51 for supplying auxiliary fluid such as coolant and blow air. The auxiliary fluid supply passage 51 is branched from two passages 51a and 51b that connect between a coolant supply portion 52 and a blow air supply portion 53 provided in the machining center 1, for example, and an intermediate portion of the passage 51a. A passage 51c connected to one or more main shaft injection nozzles 55 provided at the tip, and a passage 51d branched from an intermediate portion of the passage 51b and communicated with a passage 13a formed inside the taper shank 13 are provided. Has been. The main shaft injection nozzle 55 is angled so as to inject coolant, blow air or the like in the vicinity of the cutting edge of the replaceable tool 8 or in the vicinity of the ultrasonic probe 25 of the ultrasonic plate thickness measuring device 9.
 テーパーシャンク13の内部に形成された通路13aには、図4にも示すように超音波板厚計測装置9(超音波板厚計測部16)の内部に形成された連通路57が防水用のOリング58を介して連通するようになっている。この連通路57は、基部筐体23の下面に設けられた1つ以上の測定噴射ノズル60(流体噴射部)に繋がっている。測定噴射ノズル60は超音波プローブ25の直近部に補助流体を噴射するように角度付けられている。 In the passage 13a formed in the taper shank 13, a communication passage 57 formed in the ultrasonic plate thickness measuring device 9 (ultrasonic plate thickness measuring unit 16) is waterproof as shown in FIG. Communication is made through an O-ring 58. The communication passage 57 is connected to one or more measurement injection nozzles 60 (fluid injection units) provided on the lower surface of the base housing 23. The measurement spray nozzle 60 is angled so as to spray the auxiliary fluid in the immediate vicinity of the ultrasonic probe 25.
 主軸2に交換式工具8が取り付けられて工作物Wの切削加工が行われる時には、主軸噴射ノズル55から交換式工具8の刃先に向かってクーラントおよびブローエアが噴射される。クーラントにより刃先の冷却や潤滑が行われ、ブローエアにより切屑が吹き払われる。クーラントを噴射するかブローエアを噴射するかの選択は、クーラント供給部52とブローエア供給部53に繋がる通路51a,51b等に設けられた図示しない開閉弁や流量調整弁の開度を適宜設定することによって行われる。 When the replaceable tool 8 is attached to the spindle 2 and the workpiece W is cut, coolant and blow air are sprayed from the spindle spray nozzle 55 toward the cutting edge of the replaceable tool 8. The cutting edge is cooled and lubricated by the coolant, and the chips are blown away by the blow air. Selection of whether to inject the coolant or the blow air is performed by appropriately setting the opening degree of an on-off valve or a flow rate adjusting valve (not shown) provided in the passages 51a and 51b connected to the coolant supply section 52 and the blow air supply section 53. Is done by.
 上記のように、主軸2に交換式工具8を取り付けて工作物Wの切削加工を行う時に供給されるクーラントは、交換式工具8の代わりに超音波板厚計測装置9を主軸2に取り付けて工作物Wの厚さを計測する時においても供給される。クーラントは、超音波板厚計測装置9の超音波プローブ25と工作物Wの表面との間における接触状態を向上させる接触媒質(計測補助液)としてそのまま利用される。 As described above, the coolant supplied when the replaceable tool 8 is attached to the main spindle 2 and the workpiece W is cut, the ultrasonic plate thickness measuring device 9 is attached to the main spindle 2 instead of the replaceable tool 8. Also supplied when measuring the thickness of the workpiece W. The coolant is used as it is as a contact medium (measuring auxiliary liquid) for improving the contact state between the ultrasonic probe 25 of the ultrasonic plate thickness measuring device 9 and the surface of the workpiece W.
 即ち、超音波は空気中を伝わりづらく、また工作物Wの表面との境界で反射する性質があるため、超音波プローブ25と工作物Wの表面との間に空気が介在しないように少量の接触媒質を供給(塗布)しておく必要があり、クーラントがこの接触媒質としての役割を果たす。このように液状のクーラントが超音波プローブ25と工作物Wの表面との間に介在することにより、空気の介在が阻止され、超音波の伝達率が格段に向上して計測精度が向上する。 That is, since the ultrasonic wave is difficult to propagate in the air and reflects at the boundary with the surface of the workpiece W, a small amount of air is prevented so that no air is interposed between the ultrasonic probe 25 and the surface of the workpiece W. It is necessary to supply (apply) the contact medium in advance, and the coolant serves as the contact medium. As described above, the liquid coolant is interposed between the ultrasonic probe 25 and the surface of the workpiece W, so that the air is prevented from interfering, the transmission rate of the ultrasonic wave is remarkably improved, and the measurement accuracy is improved.
 次に、上記のように構成されたマシニングセンター1および超音波板厚計測装置9によって工作物Wの板厚を計測する時における制御の流れおよび作用を、図5に示すフローチャートを参照しながら説明する。 Next, the control flow and action when measuring the thickness of the workpiece W by the machining center 1 and the ultrasonic thickness measuring device 9 configured as described above will be described with reference to the flowchart shown in FIG. .
 制御が開始されると、板厚計測指示が出され(ステップS1)、次に超音波板厚計測装置9が選択されて主軸2に装着される(ステップS2)。次に、超音波板厚計測装置9の電源が投入される(ステップS3)。電源の投入は超音波板厚計測装置9が主軸2に装着されると同時に行われるようにしてもよい。次に、超音波板厚計測装置9が工作物Wの厚さを計測する計測点の真上に来るように主軸2の位置(もしくは工作物Wの位置)が変更される(ステップS4)。 When the control is started, a plate thickness measurement instruction is issued (step S1), and then the ultrasonic plate thickness measuring device 9 is selected and attached to the spindle 2 (step S2). Next, the ultrasonic plate thickness measuring apparatus 9 is turned on (step S3). The power may be turned on at the same time as the ultrasonic plate thickness measuring device 9 is mounted on the main shaft 2. Next, the position of the spindle 2 (or the position of the workpiece W) is changed so that the ultrasonic plate thickness measuring device 9 comes directly above the measurement point for measuring the thickness of the workpiece W (step S4).
 超音波板厚計測装置9が工作物Wの計測点の真上に来たら、超音波プローブ25が工作物Wに接触しない程度に主軸2が降下し、主軸噴射ノズル55または測定噴射ノズル60の少なくとも一方から、例えば先にクーラントが噴射され、次にブローエアが噴射されて工作物Wの表面と超音波プローブ25とがクリーニングされる(ステップS5)。このクリーニング時には、異物除去の程度等に応じて噴射するノズルの数が適宜設定される。例えば、主軸噴射ノズル55および測定噴射ノズル60の両方から噴射させてもよいし、どちらか一方のみから噴射させてもよい。あるいは、クーラントとブローエアを混合させる噴射と、混合させない噴射とを使い分けたり、これらをサイクル的に組み合わせたりしてクリーニングを行ってもよい。 When the ultrasonic plate thickness measuring device 9 comes right above the measurement point of the workpiece W, the spindle 2 is lowered to such an extent that the ultrasonic probe 25 does not contact the workpiece W, and the spindle injection nozzle 55 or the measurement injection nozzle 60 For example, the coolant is sprayed first from at least one, and then blow air is sprayed to clean the surface of the workpiece W and the ultrasonic probe 25 (step S5). At the time of this cleaning, the number of nozzles to be ejected is appropriately set according to the degree of foreign matter removal. For example, you may inject from both the main axis | shaft injection nozzle 55 and the measurement injection nozzle 60, and you may make it inject from either one. Alternatively, the cleaning may be performed by properly using the jet for mixing the coolant and the blow air and the jet not for mixing, or combining them in a cycle.
 クリーニングが完了しても、クーラントの供給は続けられ(ステップS6)、この状態で超音波板厚計測装置9の超音波プローブ25が工作物Wの計測点に接触するまで主軸2が降下(もしくは工作物Wが上昇)し(ステップS7)、工作物Wの板厚が計測される(ステップS8)。そして、計測されたデータが制御部48へ無線送信される(ステップS9)。 Even after the cleaning is completed, the supply of the coolant is continued (step S6). In this state, the spindle 2 is lowered (or until the ultrasonic probe 25 of the ultrasonic plate thickness measuring device 9 comes into contact with the measurement point of the workpiece W (or The workpiece W is raised) (step S7), and the thickness of the workpiece W is measured (step S8). Then, the measured data is wirelessly transmitted to the control unit 48 (step S9).
 制御部48では、計測されたデータが、予め代入された適正範囲内であるか否かが判定され(ステップS10)、適正範囲内であれば(ステップS10→Yes)計測データが記憶部に格納される(ステップS11)。その後、クーラントの供給が停止され(ステップS12)、次に計測が終了したか否かが判定される(ステップS13)。計測が終了したのであれば(ステップS13→Yes)超音波板厚計測装置9の電源がOFFになり(ステップS14)、制御が終了する。
 計測が終了していなければ(ステップS13→No)次の計測点の指示が出され(ステップS15)、ステップS4に戻って超音波板厚計測装置9(主軸2)が次の計測点へ移動する。そして、ステップS4~S13までのルーティンが反復される。
In the control unit 48, it is determined whether or not the measured data is within an appropriate range assigned in advance (step S10), and if it is within the appropriate range (step S10 → Yes), the measurement data is stored in the storage unit. (Step S11). Thereafter, the supply of the coolant is stopped (step S12), and it is then determined whether or not the measurement is finished (step S13). If the measurement is completed (step S13 → Yes), the ultrasonic plate thickness measuring apparatus 9 is turned off (step S14), and the control is completed.
If the measurement has not been completed (step S13 → No), an instruction for the next measurement point is issued (step S15), the process returns to step S4, and the ultrasonic plate thickness measuring device 9 (main shaft 2) moves to the next measurement point. To do. Then, the routine from step S4 to S13 is repeated.
 ステップS10において、計測されたデータが、予め代入された適正範囲から逸脱している場合(ステップS10→No)には再計測指示が出され(ステップS16)、これまでの再計測回数が所定回数(例えば4回)以上か否かが判定される(ステップS17)。再計測回数が所定回数以内であれば(ステップS17→No)ステップS5に移行し、以後、ステップS5~S10,S16,S17までのルーティンが反復される。ステップS17において、再計測回数が所定回数以上であれば(ステップS17→Yes)計測が停止されてエラー表示がなされる(ステップS18)。 In step S10, if the measured data deviates from the pre-assigned appropriate range (step S10 → No), a remeasurement instruction is issued (step S16), and the number of remeasurements so far is a predetermined number. It is determined whether or not (for example, four times) or more (step S17). If the number of remeasurements is within the predetermined number (step S17 → No), the process proceeds to step S5, and thereafter, the routines from steps S5 to S10, S16, and S17 are repeated. In step S17, if the number of re-measurements is equal to or greater than the predetermined number (step S17 → Yes), the measurement is stopped and an error is displayed (step S18).
 以上のように、この超音波板厚計測装置9は、そのテーパーシャンク13がマシニングセンター1の主軸2に係合固定されることにより、他の交換式工具8と同様に主軸2に取り付けることができる。このように主軸2に取り付けられた超音波板厚計測装置9は、その超音波プローブ25を工作物Wの表面に接触させて超音波を発信し、その反響音波を検知することによって工作物Wの厚さを計測し、その計測データを制御部48に無線送信する。この超音波板厚計測時には、マシニングセンター1が交換式工具8によって工作物Wの表面を切削加工する際に供給されるクーラントが供給され、このクーラントが、そのまま超音波プローブ25と工作物Wの表面との間における接触状態を向上させる接触媒質として利用される。 As described above, the ultrasonic plate thickness measuring device 9 can be attached to the main shaft 2 in the same manner as the other replaceable tools 8 by the taper shank 13 being engaged and fixed to the main shaft 2 of the machining center 1. . The ultrasonic plate thickness measuring device 9 attached to the spindle 2 in this way transmits the ultrasonic wave by bringing the ultrasonic probe 25 into contact with the surface of the workpiece W, and detects the reflected sound wave. The measurement data is wirelessly transmitted to the control unit 48. At the time of this ultrasonic plate thickness measurement, coolant supplied when the machining center 1 cuts the surface of the workpiece W with the replaceable tool 8 is supplied, and this coolant is used as it is for the surface of the ultrasonic probe 25 and the workpiece W. It is used as a contact medium that improves the contact state between the two.
 このように、マシニングセンター1によって切削加工を行う際に供給されるクーラントを、超音波板厚計測装置9によって超音波板厚計測する時において使用する接触媒質として流用している。このため、従来から課題とされていた接触媒質の供給の問題が解決され、超音波プローブ25をマシニングセンター1のような工作機械の主軸2に取り付け可能にして薄板等の工作物Wの板厚を精度良く計測することができる。計測した板厚データは制御部48に無線送信され、自動処理することができるので、計測作業やデータ処理が容易である。 As described above, the coolant supplied when cutting is performed by the machining center 1 is used as a contact medium used when the ultrasonic plate thickness measuring device 9 measures the ultrasonic plate thickness. For this reason, the problem of supplying the contact medium, which has been a problem in the past, is solved, and the ultrasonic probe 25 can be attached to the spindle 2 of a machine tool such as the machining center 1 to reduce the thickness of the workpiece W such as a thin plate. It can measure with high accuracy. Since the measured plate thickness data is wirelessly transmitted to the control unit 48 and can be automatically processed, measurement work and data processing are easy.
 この超音波板厚計測装置9は、主軸2の内部に形成された補助流体供給通路51に連通する連通路57と、この連通路57から超音波プローブ25の近傍にクーラントやブローエアを噴射する測定噴射ノズル60とを備えている。そして、補助流体供給通路51から供給されたクーラントやブローエア等の補助流体が連通路57を経て測定噴射ノズル60から超音波プローブ25の付近に噴射されるようになっている。 The ultrasonic plate thickness measuring device 9 is a measurement that injects coolant and blow air from the communication passage 57 to the vicinity of the ultrasonic probe 25 through the communication passage 57 that communicates with the auxiliary fluid supply passage 51 formed inside the main shaft 2. And an injection nozzle 60. Then, auxiliary fluid such as coolant and blow air supplied from the auxiliary fluid supply passage 51 is jetted from the measurement jet nozzle 60 to the vicinity of the ultrasonic probe 25 through the communication passage 57.
 このため、クーラントやブローエア等の補助流体を超音波プローブ25の近傍に確実に噴射させることができ、超音波プローブ25や工作物Wを確実にクリーニングするとともに、超音波プローブ25と工作物Wとの接触状態を向上させて精度の良い板厚計測を行うことができる。 For this reason, auxiliary fluid such as coolant and blow air can be reliably jetted in the vicinity of the ultrasonic probe 25, the ultrasonic probe 25 and the workpiece W can be reliably cleaned, and the ultrasonic probe 25 and the workpiece W It is possible to improve the contact state of the plate and perform accurate plate thickness measurement.
 さらに、超音波プローブ25は衝撃吸収機構31に設けられたコイルスプリング38の付勢力によって超音波板厚計測部16から工作物W側に突出する方向(突出位置25a側)に常時付勢されている。このため、超音波プローブ25が工作物Wの表面に過剰な強さで当接した場合には、超音波プローブ25が超音波板厚計測部16側(引込位置25b側)に引っ込むことによって衝撃力や押圧力が吸収される。したがって、超音波プローブ25や工作物Wの表面の損傷を防ぐとともに、常に均一な面圧で超音波プローブ25を工作物Wの表面に押し付けて精度のよい板厚計測を行うことができる。 Further, the ultrasonic probe 25 is constantly urged in the direction protruding from the ultrasonic plate thickness measuring unit 16 toward the workpiece W (the protruding position 25a side) by the urging force of the coil spring 38 provided in the shock absorbing mechanism 31. Yes. For this reason, when the ultrasonic probe 25 abuts against the surface of the workpiece W with an excessive strength, the ultrasonic probe 25 is retracted toward the ultrasonic plate thickness measuring unit 16 side (retraction position 25b side) to cause an impact. Force and pressure are absorbed. Therefore, the ultrasonic probe 25 and the surface of the workpiece W can be prevented from being damaged, and the ultrasonic probe 25 can always be pressed against the surface of the workpiece W with a uniform surface pressure to perform accurate plate thickness measurement.
 このような超音波板厚計測装置9を備えたマシニングセンター1によれば、他の交換式工具8と同様に超音波板厚計測装置9を主軸2に取り付けて、クーラントを接触媒質として流用しながら工作物Wの板厚を精度良く計測することができ、利便性が高い。 According to the machining center 1 provided with such an ultrasonic plate thickness measuring device 9, the ultrasonic plate thickness measuring device 9 is attached to the main shaft 2 in the same manner as other replaceable tools 8, and the coolant is used as a contact medium. The thickness of the workpiece W can be measured with high accuracy, and the convenience is high.
[第2実施形態]
 図6は、本発明の第2実施形態を示す超音波板厚計測装置の側面図である。
 この超音波板厚計測装置9'は、マシニングセンター1'の主軸2'に取り付けられている。主軸2'には、第1実施形態の主軸2に設けられた主軸噴射ノズル55(図3参照)が設けられていない。また、超音波板厚計測装置9'には、第1実施形態の測定噴射ノズル60が設けられていない。その代わりに、外部からクーラントを供給するフレキシブルホース65が設けられている。その他の構成は第1実施形態と同様であるため、各部に同一符号を付して説明を省略する。
[Second Embodiment]
FIG. 6 is a side view of an ultrasonic plate thickness measuring apparatus showing the second embodiment of the present invention.
The ultrasonic plate thickness measuring device 9 ′ is attached to the main shaft 2 ′ of the machining center 1 ′. The main shaft 2 ′ is not provided with the main shaft injection nozzle 55 (see FIG. 3) provided on the main shaft 2 of the first embodiment. Further, the ultrasonic plate thickness measuring device 9 ′ is not provided with the measurement spray nozzle 60 of the first embodiment. Instead, a flexible hose 65 that supplies coolant from the outside is provided. Since the other configuration is the same as that of the first embodiment, the same reference numerals are given to the respective parts and the description thereof is omitted.
 主軸2'に図示しない交換式工具(非図示)が取り付けられて工作物Wの切削加工が行われる時や、主軸2'に超音波板厚計測装置9'が取り付けられて工作物Wの厚さが計測される時には、フレキシブルホース65からクーラントが供給される。クーラントの作用・効果は第1実施形態と同様であり、工作物Wの厚さ計測時にはクーラントが接触媒質(計測補助液)として利用される。
 このように、クーラントの供給は、必ずしも主軸2'や超音波板厚計測装置9'に噴射ノズルを設けて行わなくてもよい。
When an exchangeable tool (not shown) (not shown) is attached to the spindle 2 'to cut the workpiece W, or when the ultrasonic plate thickness measuring device 9' is attached to the spindle 2 ', the thickness of the workpiece W is increased. When the length is measured, the coolant is supplied from the flexible hose 65. The action and effect of the coolant is the same as in the first embodiment, and the coolant is used as a contact medium (measuring auxiliary liquid) when measuring the thickness of the workpiece W.
In this way, the coolant need not necessarily be supplied by providing the injection nozzle on the main shaft 2 ′ or the ultrasonic plate thickness measuring device 9 ′.
 以上説明したように、本実施形態に係る超音波板厚計測装置9,9'、これを備えたマシニングセンター1,1'、および超音波板厚計測方法によれば、従来では困難であった接触媒質の供給という問題を、切削加工時に供給されるクーラントを利用することによって解消することができる。このため、超音波プローブ25をマシニングセンター1の主軸2に取り付け可能にし、薄板等の工作物Wの板厚を精度良く計測することができる。 As described above, according to the ultrasonic plate thickness measuring devices 9 and 9 ′, the machining centers 1 and 1 ′ including the ultrasonic plate thickness measuring devices 9 and 9 ′, and the ultrasonic plate thickness measuring method according to the present embodiment, contact that has been difficult in the related art. The problem of supplying the medium can be solved by using a coolant supplied at the time of cutting. For this reason, the ultrasonic probe 25 can be attached to the main shaft 2 of the machining center 1, and the thickness of the workpiece W such as a thin plate can be accurately measured.
 本発明は上記実施形態の構成のみに限定されるものではなく、適宜変更や改良を加えることができ、このように変更や改良を加えた実施形態も本発明の権利範囲に含まれるものとする。 The present invention is not limited only to the configuration of the above-described embodiment, and changes and improvements can be added as appropriate. Embodiments with such changes and improvements are also included in the scope of the present invention. .
 例えば、上記実施形態では、超音波板厚計測装置9,9'をマシニングセンター1,1'の主軸2,2'に取り付けた例について説明したが、マシニングセンターに限らず、縦・横フライス盤、形削り盤、研削盤、ボール盤、旋盤、ターニングセンター、複合加工機、多軸ロボット等、他の多くの種類の工作機械にも幅広く適用することができる。また、超音波板厚計測装置9,9'が取り付けられる工具取付部は、回転式の主軸に限らず、刃物工具を固定する刃物台や、ドリルチャック等であってもよい。 For example, in the above embodiment, the example in which the ultrasonic plate thickness measuring devices 9 and 9 ′ are attached to the main shafts 2 and 2 ′ of the machining centers 1 and 1 ′ has been described. The present invention can be widely applied to many other types of machine tools such as lathes, grinders, drilling machines, lathes, turning centers, multi-task machines, and multi-axis robots. Further, the tool attachment portion to which the ultrasonic plate thickness measuring devices 9 and 9 ′ are attached is not limited to the rotary spindle, but may be a tool post for fixing a tool, a drill chuck, or the like.
1 マシニングセンター(工作機械)
2 主軸(工具取付部)
8 交換式工具
9 超音波板厚計測装置
13 テーパーシャンク(着脱係合部)
15 工具部
16 超音波板厚計測部
25 超音波プローブ
31 衝撃吸収機構
45 無線通信部
48 制御部
51 補助流体供給通路
57 連通路
60 測定噴射ノズル(流体噴射部)
W 工作物
1 Machining center (machine tool)
2 Spindle (tool mounting part)
8 Replaceable tool 9 Ultrasonic plate thickness measuring device 13 Taper shank (detachable engagement part)
DESCRIPTION OF SYMBOLS 15 Tool part 16 Ultrasonic board thickness measurement part 25 Ultrasonic probe 31 Shock absorption mechanism 45 Wireless communication part 48 Control part 51 Auxiliary fluid supply path 57 Communication path 60 Measurement injection nozzle (fluid injection part)
W Workpiece

Claims (7)

  1.  複数種類の交換式工具が工具取付部に選択的に取付可能とされた工作機械に備えられて工作物の厚さを超音波計測する超音波板厚計測装置であって、
     該超音波板厚計測装置は、
     前記工具取付部に係合固定される着脱係合部と、
     前記着脱係合部に設けられ、その先端に設けられた超音波プローブを前記工作物の表面に接触させながら超音波を発信し、その反響音波を検知して前記工作物の厚さを計測する超音波板厚計測部と、を具備し、
     前記工作機械が前記交換式工具によって前記工作物を機械加工する際に供給されるクーラントを、厚さ計測時に前記超音波プローブと前記工作物の表面との間における接触状態を向上させる接触媒質として利用する超音波板厚計測装置。
    An ultrasonic plate thickness measuring device for ultrasonically measuring the thickness of a workpiece provided on a machine tool in which a plurality of types of replaceable tools can be selectively attached to a tool mounting portion,
    The ultrasonic plate thickness measuring device is:
    A detachable engagement portion engaged and fixed to the tool attachment portion;
    The ultrasonic wave is provided while the ultrasonic probe provided at the tip of the attachment / detachment engagement portion is in contact with the surface of the workpiece, and the thickness of the workpiece is measured by detecting the echo sound wave. An ultrasonic plate thickness measuring unit,
    The coolant supplied when the machine tool is machining the workpiece with the exchangeable tool is used as a contact medium for improving the contact state between the ultrasonic probe and the surface of the workpiece during thickness measurement. Ultrasonic plate thickness measurement device to be used.
  2.  前記超音波板厚計測部は、前記工作物の厚さの計測データを制御部に無線送信する請求項1に記載の超音波板厚計測装置。 The ultrasonic plate thickness measuring device according to claim 1, wherein the ultrasonic plate thickness measuring unit wirelessly transmits measurement data of the thickness of the workpiece to the control unit.
  3.  前記着脱係合部は、前記交換式工具に設けられるものと同じ形状である請求項1または2に記載の超音波板厚計測装置。 The ultrasonic plate thickness measuring apparatus according to claim 1 or 2, wherein the attachment / detachment engagement portion has the same shape as that provided in the replaceable tool.
  4.  前記工具取付部の内部に形成されて前記クーラントやブローエア等の補助流体を供給する補助流体供給通路に連通する連通路と、この連通路から前記超音波プローブの近傍に前記補助流体を噴射する流体噴射部と、をさらに備えている請求項1から3のいずれかに記載の超音波板厚計測装置。 A communication path that is formed inside the tool mounting portion and communicates with an auxiliary fluid supply passage that supplies auxiliary fluid such as coolant and blow air, and a fluid that ejects the auxiliary fluid from the communication path to the vicinity of the ultrasonic probe The ultrasonic plate | board thickness measuring device in any one of Claim 1 to 3 further equipped with the injection part.
  5.  前記超音波プローブは衝撃吸収機構を介して前記超音波板厚計測部から前記工作物側に突出する方向に付勢されている請求項1から4のいずれかに記載の超音波板厚計測装置。 5. The ultrasonic plate thickness measuring apparatus according to claim 1, wherein the ultrasonic probe is biased in a direction protruding from the ultrasonic plate thickness measuring unit toward the workpiece through an impact absorbing mechanism. .
  6.  請求項1から5のいずれかに記載の超音波板厚計測装置を備えた工作機械。 A machine tool comprising the ultrasonic plate thickness measuring device according to any one of claims 1 to 5.
  7.  複数種類の交換式工具が工具取付部に選択的に取付可能とされた工作機械において、前記工具取付部に超音波板厚計測装置を設置して工作物の厚さを超音波計測する超音波板厚計測方法であって、
     前記工作機械が前記交換式工具によって前記工作物の表面を機械加工する際に供給されるクーラントを、前記超音波板厚計測装置による厚さ計測時に該超音波板厚計測装置の超音波プローブと前記工作物の表面との間における接触状態を向上させる接触媒質として利用する超音波板厚計測方法。
    In a machine tool in which a plurality of types of replaceable tools can be selectively attached to the tool attachment part, an ultrasonic wave ultrasonic measurement is performed by installing an ultrasonic plate thickness measuring device on the tool attachment part. A thickness measurement method,
    The coolant supplied when the machine tool is machining the surface of the workpiece with the replaceable tool, the ultrasonic probe of the ultrasonic plate thickness measuring device when the thickness is measured by the ultrasonic plate thickness measuring device, An ultrasonic plate thickness measuring method used as a contact medium for improving a contact state with the surface of the workpiece.
PCT/JP2015/078165 2014-10-07 2015-10-05 Ultrasonic plate thickness measurement device, machine tool provided with same, and ultrasonic plate thickness measurement method WO2016056499A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014206304A JP2016075584A (en) 2014-10-07 2014-10-07 Ultrasonic plate thickness measuring device, machine tool having the same, and ultrasonic plate thickness measuring method
JP2014-206304 2014-10-07

Publications (1)

Publication Number Publication Date
WO2016056499A1 true WO2016056499A1 (en) 2016-04-14

Family

ID=55653110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078165 WO2016056499A1 (en) 2014-10-07 2015-10-05 Ultrasonic plate thickness measurement device, machine tool provided with same, and ultrasonic plate thickness measurement method

Country Status (2)

Country Link
JP (1) JP2016075584A (en)
WO (1) WO2016056499A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108375357A (en) * 2018-04-13 2018-08-07 广东省特种设备检测研究院惠州检测院 A kind of measuring thickness device with ultrasonic detecting probe
CN108645358A (en) * 2018-04-26 2018-10-12 大连理工大学 It is a kind of ultrasonic in machine thickness measuring contact condition control method
DE112016007342T5 (en) 2016-11-16 2019-06-27 Makino Milling Machine Co., Ltd. Workpiece thickness measuring device and processing machine
TWI740724B (en) * 2020-11-20 2021-09-21 財團法人工業技術研究院 Ultrasonic cutter handle and ultrasonic cutter handle cooling and chip diversion system
US11287400B2 (en) * 2019-03-27 2022-03-29 Dalian University Of Technology Large-panel ultrasonic on-machine non-contact scanning thickness measurement equipment and thickness measurement method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102029681B1 (en) * 2017-12-12 2019-10-10 한국생산기술연구원 Ultrasonic vibration cutting device having flow channels
CN112212676B (en) * 2020-09-29 2022-06-07 安德里茨(中国)有限公司 Material thickness measuring mechanism, closed-loop control distributing device and dryer
KR20230061092A (en) * 2021-10-28 2023-05-08 (주)피아이이 Inspection System of Ultrasonic Waterfall Type
KR20230061093A (en) * 2021-10-28 2023-05-08 (주)피아이이 Inspection System of Ultrasonic Waterfall Type

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209U (en) * 1986-06-18 1988-01-05
JPH02110309A (en) * 1988-10-19 1990-04-23 Toshiba Mach Co Ltd Measurement using ultrasonic thickness gage and measuring apparatus therefor
WO2010020940A1 (en) * 2008-08-19 2010-02-25 Breton Spa Method and device for measuring and verifying the thickness of structures
JP2010052103A (en) * 2008-08-29 2010-03-11 Mitsubishi Heavy Ind Ltd Method and device for measuring surface roughness and processing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209U (en) * 1986-06-18 1988-01-05
JPH02110309A (en) * 1988-10-19 1990-04-23 Toshiba Mach Co Ltd Measurement using ultrasonic thickness gage and measuring apparatus therefor
WO2010020940A1 (en) * 2008-08-19 2010-02-25 Breton Spa Method and device for measuring and verifying the thickness of structures
JP2010052103A (en) * 2008-08-29 2010-03-11 Mitsubishi Heavy Ind Ltd Method and device for measuring surface roughness and processing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016007342T5 (en) 2016-11-16 2019-06-27 Makino Milling Machine Co., Ltd. Workpiece thickness measuring device and processing machine
CN108375357A (en) * 2018-04-13 2018-08-07 广东省特种设备检测研究院惠州检测院 A kind of measuring thickness device with ultrasonic detecting probe
CN108375357B (en) * 2018-04-13 2024-03-12 广东省特种设备检测研究院惠州检测院 Thickness measuring device with ultrasonic detection probe
CN108645358A (en) * 2018-04-26 2018-10-12 大连理工大学 It is a kind of ultrasonic in machine thickness measuring contact condition control method
US11287400B2 (en) * 2019-03-27 2022-03-29 Dalian University Of Technology Large-panel ultrasonic on-machine non-contact scanning thickness measurement equipment and thickness measurement method
TWI740724B (en) * 2020-11-20 2021-09-21 財團法人工業技術研究院 Ultrasonic cutter handle and ultrasonic cutter handle cooling and chip diversion system

Also Published As

Publication number Publication date
JP2016075584A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
WO2016056499A1 (en) Ultrasonic plate thickness measurement device, machine tool provided with same, and ultrasonic plate thickness measurement method
US10369673B2 (en) Spindle device for a program-controlled machine tool
JP3761545B2 (en) Automatic tool changer for machine tools
CN109365793B (en) Automatic grinding and polishing process for titanium alloy annular casting
ATE391579T1 (en) TOOL SPINDLE HEAD WITH A MEASURING DEVICE FOR DEPTH CONTROL
JP7083232B2 (en) Automatic grinding equipment
KR20150082620A (en) Method and apparatus for measuring a workpiece with a machine tool
US20130195573A1 (en) Machine tool comprising an ultrasonic sensor
US7252466B1 (en) Tool position referencing for CNC machines
US10890427B2 (en) Nozzle inspection method and apparatus
JP2020110893A (en) Automatic grinding apparatus
JPH07276184A (en) Device and method for feeding coolant
JP3874872B2 (en) Spindle head 3-axis moving CNC lathe
JP5944754B2 (en) End polishing machine
KR101964014B1 (en) pin processing machine
CN212599634U (en) Laser processing head with material identification function
KR101922052B1 (en) Device for working lathe
JP2001062666A (en) Machining and washing composite device
JP6628899B2 (en) Work thickness measuring device and machine tool
JP2003071662A (en) Method for working screw hole for spacer fitting of main spindle tip surface, and spacer fitting method
CN210024672U (en) Horizontal cylindrical grinder
JPS5942644Y2 (en) Contact detection head
JPS59561Y2 (en) Contact detection head
JP2010089174A (en) Honing head
JP2007098477A (en) Machining apparatus and machining method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848842

Country of ref document: EP

Kind code of ref document: A1