WO2016056207A1 - Plant-based board production method and plant-based board - Google Patents

Plant-based board production method and plant-based board Download PDF

Info

Publication number
WO2016056207A1
WO2016056207A1 PCT/JP2015/004997 JP2015004997W WO2016056207A1 WO 2016056207 A1 WO2016056207 A1 WO 2016056207A1 JP 2015004997 W JP2015004997 W JP 2015004997W WO 2016056207 A1 WO2016056207 A1 WO 2016056207A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
pieces
orientation
adhesive
board
Prior art date
Application number
PCT/JP2015/004997
Other languages
French (fr)
Japanese (ja)
Inventor
菅原 亮
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016056207A1 publication Critical patent/WO2016056207A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/02Manufacture of substantially flat articles, e.g. boards, from particles or fibres from particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/02Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board the layer being formed of fibres, chips, or particles, e.g. MDF, HDF, OSB, chipboard, particle board, hardboard

Definitions

  • the present disclosure relates to a method for producing a plant board and a plant board.
  • Patent Document 1 A method of manufacturing a fiberboard by hot-pressing long kenaf fibers dispersed in an adhesive is known (Patent Document 1).
  • the content of lignin is 15 wt% or more, 20 wt% or less, and density of 0.15 g / cm 3 or more, a plurality of plant pieces is 0.20 g / cm 3 or less,
  • the adhesive applied to each of the plurality of plant pieces is hot-press molded, and each of the plurality of plant pieces is bonded to each other by curing of the adhesive.
  • FIG. 1 is a partial cross-sectional view of a plant board before hot pressing according to an embodiment.
  • FIG. 2 is a partial cross-sectional view of the plant board after hot pressing according to the embodiment.
  • Drawing 3 is a figure explaining orientation of a plurality of plant pieces in each layer of a plurality of layers of plant boards concerning an embodiment.
  • a plant-based board is formed by hot-pressing long kenaf fibers dispersed in an adhesive. Therefore, it has been difficult to uniformly disperse the long fiber kenaf and cure the adhesive. If the distribution of kenaf in the plant board becomes non-uniform, it will cause a decrease in bending strength. In addition, it has been difficult to lower the rate of expansion of the absorption thickness of plant-based boards containing long fiber kenaf.
  • constituent elements in the embodiment constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are described as arbitrary constituent elements. Accordingly, numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and do not limit the present disclosure.
  • FIG. 1 is a cross-sectional view of a plant board before hot pressing according to this embodiment.
  • FIG. 2 is a cross-sectional view of the plant board after hot pressing according to the present embodiment.
  • FIG. 3 is a diagram for explaining the orientation of a plurality of plant pieces in each layer of a plurality of plant-based boards according to this embodiment.
  • the plant-based board 10 includes a plurality of plant pieces 1 having a lignin content of 15 wt% or more and 20 wt% or less and a density of 0.15 g / cm 3 or more and 0.20 g / cm 3 or less. It is formed by hot-pressing the adhesive 2 attached to each of the plurality of plant pieces 1. Each of the plurality of plant pieces 1 is bonded by curing the adhesive 2.
  • the plant piece 1 has an elongated flake shape, and is obtained by cutting and pulverizing a plant with a flaker, a hammer mill, a ring breaker, or the like.
  • any part such as a stem, a bark, a seed, or a leaf of a herbaceous plant or a woody plant can be used, and one kind may be used, or two or more kinds may be used at the same time. .
  • the plant used for the plant piece 1 can be used in various states such as unused ones, wastes, and recycled materials.
  • the plant piece 1 having a lignin content of 20 wt% or less and a density of 0.20 g / cm 3 or less obtained by pulverizing and cutting the stem core of a herbaceous plant is used.
  • the lower limit of the preferred lignin content is 15 wt%.
  • the lower limit of the preferred density is 0.15 g / cm 3 .
  • Herbaceous plants include kenaf, jute such as Kuma and Shimatsunaso.
  • the stem core part of the herbaceous plant can be obtained by removing the bast fibers existing in the outer peripheral part such as kenaf and jute.
  • Adhesives 2 include thermosetting resins such as urea resins, melamine resins, phenol resins, resorcinol resins, epoxy resins, urethane resins, furfural resins, isocyanate resins, and sugars such as sucrose. And a heat-curing binder obtained by reacting a polyvalent carboxylic acid such as citric acid with an acid such as p-toluenesulfonic acid.
  • the adhesive 2 is attached to the plant piece 1.
  • the deposition method include the following methods. A method of spraying the liquid adhesive 2 while rotating the plant piece 1 in the drum using an apparatus such as a drum blender. A method of immersing the plant piece 1 in a tank filled with the liquid adhesive 2. The method of mixing the plant piece 1 and the powdery adhesive 2 using apparatuses, such as a mixer. The amount of the adhesive 2 is not particularly limited as long as the plurality of plant pieces 1 are bonded to each other with sufficient strength. In this embodiment, 10 to 15 wt% of the adhesive is used with respect to the total weight of the plant piece 1.
  • the plant piece 1 to which the adhesive 2 is applied is placed in a plate shape as shown in FIG. 1 and then hot-press molded, and the plant pieces 1 are bonded to each other so that the plant-based board is formed as shown in FIG. can get.
  • the plant piece 1 preferably has an elongated shape with a length of 50 mm or more. Thereby, compared with the case where the plant piece 1 less than 50 mm in length is used, the plant-type board 10 of high bending strength is obtained. There is no particular upper limit on the length of the plant piece 1, but considering the productivity, the length of the plant piece 1 is preferably 200 mm or less. Considering that part of the plant piece 1 is crushed in the production process, the majority of the plant pieces 1 included in the plant board 10 are preferably 50 mm in length and 200 mm or less in length.
  • the plant pieces 1 to which the adhesive 2 is applied may be arranged randomly or may be arranged with the plant pieces 1 oriented in an arbitrary direction. Moreover, the plant piece 1 to which the adhesive 2 is adhered may be arranged in a single plate shape, or may be arranged so as to laminate a plurality of layers.
  • each layer may be composed of the same or different plant pieces 1. Moreover, when laminating
  • FIG. 3 is a perspective view showing a state in which each layer is developed in a direction perpendicular to the plane direction (XY plane) (Z axis) in order to explain the configuration of the plant-based board 20.
  • the plant-based board 20 having a plurality of layers includes a first plurality of plant pieces 11 constituting the first surface layer 20A1, a second plurality of plant pieces 12 constituting the second surface layer 20A2, and a first surface layer.
  • a plurality of plant pieces that are provided between 20A1 and the second surface layer 20A2 and are composed of a plurality of third plant pieces 13 constituting the core layer 20B, and an adhesive (not shown) are hot-press molded. Is formed.
  • the first plurality of plant pieces 11, the third plurality of plant pieces 13, and the second plurality of plant pieces 12 overlap in this order, and are bonded by curing the adhesive.
  • the plant pieces constituting each layer have the same orientation.
  • the orientation indicates the longest length direction of the elongated plant piece.
  • the first plurality of plant pieces 11 are aligned in the first orientation D1
  • the second plurality of plant pieces 12 are aligned in the second orientation D2
  • the third plurality of plant pieces 13 are It is aligned with the third orientation D3.
  • first orientation D1 and the second orientation D2 are preferably orthogonal to the third orientation D3.
  • first orientation D1 and the second orientation D2 are oriented in the Y-axis direction.
  • the third orientation D3 is oriented in the X-axis direction.
  • Hot pressing is performed by batch type flat plate press or continuous press.
  • the pressing temperature, pressing time, pressing pressure, and the like are appropriately set according to the type of the adhesive 2 to be used and the thickness of the plant board to be molded.
  • Example 1 a crushed stalk core obtained by pulverizing a stalk core with a hammer mill was used as the plant piece 1.
  • the lignin content of the june stalk core was 15 wt%, and the density of the june stalk core was 0.17 g / cm 3 .
  • the content of lignin can be quantified by, for example, the Van Soest method.
  • As the adhesive 2 a urea melamine resin adhesive (for example, TB103 manufactured by Oshika) was used.
  • the average particle size of the ground stalk core used in this example was 2.2 mm. For example, the average particle diameter can be determined by a screening test based on JISZ8815.
  • a urea melamine resin-based adhesive was spray-applied to the crushed stalk core and adhered.
  • the weight of the urea melamine resin-based adhesive was 15 wt% with respect to the weight of the crushed stalk core.
  • crushed stalk cores coated with a urea melamine resin adhesive were randomly arranged in a single-layer plate shape.
  • a hot-pressure molding machine for example, SF60 manufactured by Shinfuji Metal Industry
  • Example 2 In the present example, as the plant piece 1, a pulverized pine shoot stem core obtained by pulverizing a pine shoot stem core with a ring flaker was used. The content of lignin in the pine stem stem core was 14 wt%, and the density of the pine stem stem core was 0.16 g / cm 3 .
  • the adhesive 2 10 parts by mass of sucrose (for example, manufactured by Wako Pure Chemical), 4 parts by mass of citric acid (for example, manufactured by Wako Pure Chemical) and p-toluenesulfonic acid (for example, manufactured by Wako Pure Chemical) 2 A saccharic acid-based adhesive mixed with parts by mass and further dissolved in water was used.
  • the pulverized pine needle stem core used in this example had an average length of 8 mm, an average width of 2 mm, and an average thickness of 1 mm.
  • a sugar-based adhesive was spray-applied to and adhered to a ground pine stalk core using a drum blender.
  • the weight of the saccharide-based adhesive was 15 wt% with respect to the weight of the ground stalks of Shimashimaso stem.
  • the pulverized Shimano stalk core coated with a saccharide adhesive was randomly arranged in a single-layer plate shape. Then, using a hot press molding machine, the plant board was molded by hot pressing at a press temperature of 200 ° C., a press pressure of 25 ⁇ 10 5 Pa, and a press time of 10 minutes.
  • Example 3 a kenaf stalk core strand obtained by pulverizing a kenaf stalk core with a flaker was used as the plant piece 1.
  • the lignin content of the kefna stalk core was 19 wt%, and the density of the kefna stalk core was 0.15 g / cm 3 .
  • As the adhesive 2 a phenol resin adhesive (for example, B1360 manufactured by Oshika) was used.
  • the kenaf stalk core strand used in this example had an average length of 55 mm, an average width of 12 mm, and an average thickness of 0.6 mm.
  • a phenol resin adhesive was spray-coated on the kenaf stalk core strand by a drum blender and attached.
  • the weight of the phenol resin adhesive was 15 wt% with respect to the weight of the kenaf stalk core strand.
  • the first surface layer, the core layer, and the second surface layer were laminated in the following order.
  • a first surface layer a kenaf stalk core strand coated with a phenol resin adhesive was oriented in one direction.
  • the core layer was arranged on the first surface layer so as to be oriented in a direction orthogonal to the orientation of the first surface layer.
  • the second surface layer was arranged on the core layer so as to be oriented in a direction orthogonal to the orientation of the core layer.
  • the plant board was molded by hot pressing at a press temperature of 200 ° C., a press pressure of 25 ⁇ 10 5 Pa, and a press time of 10 minutes.
  • Example 4 In the present Example, as the plant piece 1, a jum stalk core strand obtained by cutting a jum stalk core in the length direction was used. The lignin content of the june stalk core was 15 wt%, and the density of the june stalk core was 0.17 g / cm 3 .
  • As the adhesive 2 an isocyanate resin adhesive (for example, a wood cure manufactured by Nippon Polyurethane Industry) was used.
  • the juvenile stem core strand used in this example had an average length of 200 mm, an average width of 12 mm, and an average thickness of 12 mm.
  • an isocyanate resin-based adhesive was spray-coated on the stalk core strand, and was attached.
  • the weight of the isocyanate resin-based adhesive was 10 wt% with respect to the weight of the stalk core strand.
  • the first surface layer, the core layer, and the second surface layer were laminated in the following order.
  • a juvenile stem core strand coated with an isocyanate resin adhesive was oriented in one direction.
  • the core layer was arranged on the first surface layer so as to be oriented in a direction orthogonal to the orientation of the first surface layer.
  • the second surface layer was arranged on the core layer so as to be oriented in a direction orthogonal to the orientation of the core layer.
  • the plant board was molded by hot pressing at a press temperature of 200 ° C., a press pressure of 25 ⁇ 10 5 Pa, and a press time of 10 minutes.
  • Comparative Example 1 a crushed softwood material obtained by pulverizing with a hammer mill was used as the plant piece 1.
  • the lignin content in the crushed softwood material was 28 wt%, and the density of the crushed softwood material was 0.46 g / cm 3 .
  • the average particle diameter of the crushed softwood material used in this comparative example was 2.2 mm.
  • Example 2 Other conditions were the same as in Example 1, and a plant-based board was molded.
  • Comparative Example 2 a pulverized balsa material obtained by pulverization with a ring flaker was used.
  • the content of lignin in the balsa material was 24 wt%, and the density of the balsa material was 0.19 g / cm 3 .
  • the pulverized balsa material had an average length of 8 mm, an average width of 2 mm, and an average thickness of 1 mm.
  • Example 2 Other conditions were the same as in Example 2, and a plant-based board was molded.
  • pulverizing a balsa material with a flaker as the plant piece 1 was used.
  • the content of lignin in the balsa material was 24 wt%, and the density of the balsa material was 0.19 g / cm 3 .
  • the balsa material strands had an average length of 8 mm, an average width of 2 mm, and an average thickness of 1 mm.
  • Example 3 Other conditions were the same as in Example 3, and a plant board was molded.
  • Comparative Example 4 a crushed stalk core obtained by pulverizing a stalk core with a hammer mill was used as the plant piece 1.
  • the lignin content of the june stalk core was 25 wt%, and the density of the june stalk core was 0.19 g / cm 3 .
  • the average particle size of the crushed stalk core used in this comparative example was 2.2 mm.
  • Example 2 Other conditions were the same as in Example 1, and a plant-based board was molded.
  • Comparative Example 5 In this comparative example, as a plant piece 1, a pulverized pine shoot stem core obtained by pulverizing a pine shoot stem core with a ring flaker was used. The content of lignin in the stem core of the Japanese pine was 22 wt%, and the density was 0.18 g / cm 3 .
  • the ground pine stalk core used in this comparative example had an average length of 8 mm, an average width of 2 mm, and an average thickness of 1 mm.
  • Example 2 Other conditions were the same as in Example 2, and a plant-based board was molded.
  • a kenaf stalk core strand obtained by cutting a kenaf stalk core in the length direction was used as the plant piece 1.
  • the lignin content of the kefna stalk core was 23 wt%, and the density of the kefna stalk core was 0.15 g / cm 3 .
  • an isocyanate resin adhesive for example, a wood cure manufactured by Nippon Polyurethane Industry
  • the kenaf stalk core strand used in this example had an average length of 200 mm, an average width of 12 mm, and an average thickness of 12 mm.
  • Example 4 Other conditions were the same as in Example 4, and a plant-based board was molded.
  • a jute bast fiber strand obtained by cutting jute bast fibers in the length direction was used as the plant piece 1.
  • the content of lignin in the jute bast fiber was 11 wt%, and the density of the jute bast fiber was 0.49 g / cm 3 .
  • As the adhesive 2 a phenol resin adhesive (for example, B1360 manufactured by Oshika) was used.
  • the jute bast fiber strand used in this example had an average length of 200 mm, an average width of 0.1 mm, and an average thickness of 0.1 mm.
  • the press temperature during hot pressing was 150 ° C.
  • Example 4 Other conditions were the same as in Example 4, and a plant-based board was molded.
  • the results of bending strength test and water absorption thickness expansion test according to JIS A5908 are shown below for each of the plant-based boards of Examples 1 to 4 and Comparative Examples 1 to 7.
  • the bending strength test preferably has a high strength
  • the water absorption thickness expansion coefficient test preferably has a low expansion coefficient.
  • the plant board of Example 1 has higher bending strength and lower water absorption thickness expansion rate than the plant boards of Comparative Examples 1 and 4.
  • Table 2 shows the evaluation results for the plant boards of Example 2, Comparative Example 2 and Comparative Example 5 in which the length of the plant piece 1 is 8 mm, the orientation of the plant piece 1 is random, and the layer structure is a single layer.
  • the plant-based board of Example 2 has higher bending strength and lower water absorption thickness expansion rate than Comparative Examples 2 and 5.
  • Table 3 shows the evaluation results for Example 3 and Comparative Example 3 of the plant board in which the length of the plant piece 1 is 55 mm, the orientation of the plant piece 1 is orthogonal, and the layer structure is three layers.
  • the plant board of Example 3 has higher bending strength and lower water absorption thickness expansion rate than the plant board of Comparative Example 3.
  • Table 4 shows the evaluation results for Example 4, Comparative Example 6 and Comparative Example 7 of the plant board in which the length of the plant piece 1 is 200 mm, the orientation of the plant piece 1 is orthogonal, and the layer structure is three layers.
  • the plant board of Example 4 has higher bending strength and lower water absorption thickness expansion rate than the plant boards of Comparative Examples 6 and 7.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Forests & Forestry (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

Provided is a plant-based board production method in which an adhesive and a plurality of plant pieces having a lignin content of 15-20 wt% and a density of 0.15-0.20 g/cm3 are subjected to hot press molding and the curing of the adhesive causes the plurality of plant pieces to adhere to one another.

Description

植物系ボードの製造方法、及び植物系ボードMethod for producing plant-based board and plant-based board
 本開示は、植物系ボードの製造方法、及び植物系ボードに関する。 The present disclosure relates to a method for producing a plant board and a plant board.
 接着剤に分散させたケナフの長繊維を熱圧成形することにより、繊維板を製造する方法が知られている(特許文献1)。 A method of manufacturing a fiberboard by hot-pressing long kenaf fibers dispersed in an adhesive is known (Patent Document 1).
特開2000-263519号公報JP 2000-263519 A
 本開示の植物系ボードの製造方法は、リグニンの含有量が15wt%以上、20wt%以下、かつ密度が0.15g/cm以上、0.20g/cm以下である複数の植物片と、複数の植物片の各々に被着させた接着剤とを熱圧成形し、複数の植物片の各々同士を接着剤の硬化によって接着する。 Method for producing a plant board of the present disclosure, the content of lignin is 15 wt% or more, 20 wt% or less, and density of 0.15 g / cm 3 or more, a plurality of plant pieces is 0.20 g / cm 3 or less, The adhesive applied to each of the plurality of plant pieces is hot-press molded, and each of the plurality of plant pieces is bonded to each other by curing of the adhesive.
 以上の構成により、従来に比べて、曲げ強さ及び吸水厚さ膨張率において優れた植物系ボードを製造することができる。 With the above configuration, it is possible to manufacture a plant-based board that is superior in bending strength and water absorption thickness expansion rate compared to the conventional one.
図1は、実施形態に係る熱圧成形前の植物系ボードにおける部分断面図である。FIG. 1 is a partial cross-sectional view of a plant board before hot pressing according to an embodiment. 図2は、実施形態に係る熱圧成形後の植物系ボードにおける部分断面図である。FIG. 2 is a partial cross-sectional view of the plant board after hot pressing according to the embodiment. 図3は、実施形態に係る複数層の植物系ボードの各層における複数の植物片の配向を説明する図である。Drawing 3 is a figure explaining orientation of a plurality of plant pieces in each layer of a plurality of layers of plant boards concerning an embodiment.
 本開示の実施形態の説明に先立ち、関連技術の植物系ボードの製造方法について説明する。 Prior to the description of the embodiment of the present disclosure, a related art plant board manufacturing method will be described.
 例えば、特開2000-263519号公報に開示される植物系ボードの製造方法では、接着剤に分散させたケナフの長繊維を熱圧成形することにより、植物系ボードを形成する。そのため、長繊維のケナフを均一に分散させて接着剤を硬化させることが困難であった。植物系ボード内におけるケナフの分布が不均一になると、曲げ強さの低下の原因となる。また、長繊維のケナフを含む植物系ボードの吸収厚さ膨張率を下げることが困難であった。 For example, in the method for producing a plant-based board disclosed in Japanese Patent Application Laid-Open No. 2000-263519, a plant-based board is formed by hot-pressing long kenaf fibers dispersed in an adhesive. Therefore, it has been difficult to uniformly disperse the long fiber kenaf and cure the adhesive. If the distribution of kenaf in the plant board becomes non-uniform, it will cause a decrease in bending strength. In addition, it has been difficult to lower the rate of expansion of the absorption thickness of plant-based boards containing long fiber kenaf.
 実施形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。したがって、以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程、工程の順などは、一例であって本開示を限定するものではない。 Among the constituent elements in the embodiment, constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are described as arbitrary constituent elements. Accordingly, numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and do not limit the present disclosure.
 また、各図は模式図であり、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構造については同一の符号を付しており、重複する説明は省略または簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. In each figure, substantially the same structure is denoted by the same reference numeral, and redundant description is omitted or simplified.
 (実施形態)
 以下、本開示の実施形態に係る植物系ボードの製造方法について図1から図3を参照して説明する。図1は、本実施形態に係る熱圧成形前の植物系ボードにおける断面図である。図2は、本実施形態に係る熱圧成形後の植物系ボードにおける断面図である。図3は、本実施形態に係る複数層の植物系ボードの各層における複数の植物片の配向を説明する図である。
(Embodiment)
Hereinafter, a method for manufacturing a plant board according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 3. FIG. 1 is a cross-sectional view of a plant board before hot pressing according to this embodiment. FIG. 2 is a cross-sectional view of the plant board after hot pressing according to the present embodiment. FIG. 3 is a diagram for explaining the orientation of a plurality of plant pieces in each layer of a plurality of plant-based boards according to this embodiment.
 本実施形態に係る植物系ボード10は、リグニンの含有量が15wt%以上、20wt%以下、かつ密度が0.15g/cm以上、0.20g/cm以下である複数の植物片1と、複数の植物片1の各々に被着させた接着剤2とを熱圧成形することにより、形成される。複数の植物片1の各々同士は、接着剤2を硬化することにより、接着される。植物片1は、細長いフレーク状であって、植物をフレーカー、ハンマーミル、リングブレーカーなどによって切削、粉砕することで得られる。植物としては、草本植物や木本植物の茎部、樹皮、種子、葉など、あらゆる部位を用いることができ、一種のものを用いてもよいし、二種以上のものを同時に用いてもよい。 The plant-based board 10 according to this embodiment includes a plurality of plant pieces 1 having a lignin content of 15 wt% or more and 20 wt% or less and a density of 0.15 g / cm 3 or more and 0.20 g / cm 3 or less. It is formed by hot-pressing the adhesive 2 attached to each of the plurality of plant pieces 1. Each of the plurality of plant pieces 1 is bonded by curing the adhesive 2. The plant piece 1 has an elongated flake shape, and is obtained by cutting and pulverizing a plant with a flaker, a hammer mill, a ring breaker, or the like. As the plant, any part such as a stem, a bark, a seed, or a leaf of a herbaceous plant or a woody plant can be used, and one kind may be used, or two or more kinds may be used at the same time. .
 また、植物片1に用いられる植物は未使用のものや、廃棄物や、リサイクル材など、種々の状態のものを用いることができる。 Moreover, the plant used for the plant piece 1 can be used in various states such as unused ones, wastes, and recycled materials.
 本実施形態においては、草本植物の茎芯部を粉砕、切削することによって得られた、リグニンの含有量が20wt%以下かつ密度が0.20g/cm以下である植物片1を用いる。好ましいリグニンの含有量の下限は、15wt%である。好ましい密度の下限は0.15g/cmである。草本植物としては、ケナフや、コウマやシマツナソなどのジュートが挙げられる。草本植物の茎芯部とは、前述のケナフやジュートなどの外周部に存在する靭皮繊維を除くことで得られる。 In this embodiment, the plant piece 1 having a lignin content of 20 wt% or less and a density of 0.20 g / cm 3 or less obtained by pulverizing and cutting the stem core of a herbaceous plant is used. The lower limit of the preferred lignin content is 15 wt%. The lower limit of the preferred density is 0.15 g / cm 3 . Herbaceous plants include kenaf, jute such as Kuma and Shimatsunaso. The stem core part of the herbaceous plant can be obtained by removing the bast fibers existing in the outer peripheral part such as kenaf and jute.
 接着剤2としては、ユリア系樹脂、メラミン系樹脂、フェノール系樹脂、レゾルシノール系樹脂、エポキシ系樹脂、ウレタン系樹脂、フルフラール系樹脂、イソシアネート系樹脂などの熱硬化性樹脂や、ショ糖などの糖と、クエン酸などの多価カルボン酸と、p-トルエンスルホン酸などの酸とを反応させて得られる、加熱硬化するバインダなどが挙げられる。 Adhesives 2 include thermosetting resins such as urea resins, melamine resins, phenol resins, resorcinol resins, epoxy resins, urethane resins, furfural resins, isocyanate resins, and sugars such as sucrose. And a heat-curing binder obtained by reacting a polyvalent carboxylic acid such as citric acid with an acid such as p-toluenesulfonic acid.
 以下に、本実施形態に係る植物系ボードの成形方法を示す。 Hereinafter, a method for forming a plant board according to this embodiment will be described.
 まず、植物片1に接着剤2を被着させる。被着方法として、例えば、以下の方法がある。ドラムブレンダー等の装置を用いて、植物片1をドラム内で回転させながら液体状の接着剤2をスプレー塗布する方法。液体状の接着剤2を満たした槽の中に植物片1を浸漬する方法。ミキサー等の装置を用いて植物片1と粉末状の接着剤2とを混合する方法。接着剤2の量は複数の植物片1同士が十分な強度で接着される程度であれば特に限定されない。本実施形態では植物片1の総重量に対して10~15wt%の接着剤を用いる。 First, the adhesive 2 is attached to the plant piece 1. Examples of the deposition method include the following methods. A method of spraying the liquid adhesive 2 while rotating the plant piece 1 in the drum using an apparatus such as a drum blender. A method of immersing the plant piece 1 in a tank filled with the liquid adhesive 2. The method of mixing the plant piece 1 and the powdery adhesive 2 using apparatuses, such as a mixer. The amount of the adhesive 2 is not particularly limited as long as the plurality of plant pieces 1 are bonded to each other with sufficient strength. In this embodiment, 10 to 15 wt% of the adhesive is used with respect to the total weight of the plant piece 1.
 接着剤2が被着された植物片1は、図1のように板状に配置された後に、熱圧成形され、植物片1同士が接着されることで図2のように植物系ボードが得られる。 The plant piece 1 to which the adhesive 2 is applied is placed in a plate shape as shown in FIG. 1 and then hot-press molded, and the plant pieces 1 are bonded to each other so that the plant-based board is formed as shown in FIG. can get.
 植物片1は、長さ50mm以上の細長い形状であることが好ましい。これにより、長さ50mm未満の植物片1を用いる場合と比べて、高い曲げ強さの植物系ボード10が得られる。植物片1の長さの上限は特にないが、生産性を考慮すると、植物片1の長さは、200mm以下であることが好ましい。製造工程において植物片1の一部が砕かれることを考慮すると、植物系ボード10に含まれる植物片1の過半数は、長さ50mm、200mm以下であることが好ましい。 The plant piece 1 preferably has an elongated shape with a length of 50 mm or more. Thereby, compared with the case where the plant piece 1 less than 50 mm in length is used, the plant-type board 10 of high bending strength is obtained. There is no particular upper limit on the length of the plant piece 1, but considering the productivity, the length of the plant piece 1 is preferably 200 mm or less. Considering that part of the plant piece 1 is crushed in the production process, the majority of the plant pieces 1 included in the plant board 10 are preferably 50 mm in length and 200 mm or less in length.
 接着剤2が被着された植物片1は、ランダムに配置してもよいし、植物片1を任意の方向に配向させて配置してもよい。また、接着剤2が被着された植物片1は、一層の板状に配置してもよいし、複数の層を積層するように配置してもよい。複数の層を積層する場合は、各層が同一又は異なる植物片1によって構成されてもよい。また、複数の層を積層する場合は、各層が同一又は異なる植物片1の配向によって構成されてもよい。 The plant pieces 1 to which the adhesive 2 is applied may be arranged randomly or may be arranged with the plant pieces 1 oriented in an arbitrary direction. Moreover, the plant piece 1 to which the adhesive 2 is adhered may be arranged in a single plate shape, or may be arranged so as to laminate a plurality of layers. When laminating a plurality of layers, each layer may be composed of the same or different plant pieces 1. Moreover, when laminating | stacking a some layer, each layer may be comprised by the orientation of the plant piece 1 which is the same or different.
 複数の層を有する植物系ボード20の製造方法について、図3を参照して説明する。植物系ボード20は、第一の表層20A1と、芯層20Bと、第二の表層20A2と、これらを固着する接着剤(図示せず)を有している。図3は、植物系ボード20の構成を説明するために、各層を面方向(XY面)に対して垂直方向(Z軸)に展開した状態を示す斜視図である。 A method for producing the plant board 20 having a plurality of layers will be described with reference to FIG. The plant-based board 20 has a first surface layer 20A1, a core layer 20B, a second surface layer 20A2, and an adhesive (not shown) for fixing them. FIG. 3 is a perspective view showing a state in which each layer is developed in a direction perpendicular to the plane direction (XY plane) (Z axis) in order to explain the configuration of the plant-based board 20.
 複数の層を有する植物系ボード20は、第一の表層20A1を構成する第一の複数の植物片11、第二の表層20A2を構成する第二の複数の植物片12及び、第一の表層20A1と第二の表層20A2との間に設けられ、芯層20Bを構成する第三の複数の植物片13からなる複数の植物片と、接着剤(図示せず)とを、熱圧成形することにより、形成される。第一の複数の植物片11、第三の複数の植物片13及び第二の複数の植物片12は、この順に重なり、接着剤を硬化することにより、接着される。 The plant-based board 20 having a plurality of layers includes a first plurality of plant pieces 11 constituting the first surface layer 20A1, a second plurality of plant pieces 12 constituting the second surface layer 20A2, and a first surface layer. A plurality of plant pieces that are provided between 20A1 and the second surface layer 20A2 and are composed of a plurality of third plant pieces 13 constituting the core layer 20B, and an adhesive (not shown) are hot-press molded. Is formed. The first plurality of plant pieces 11, the third plurality of plant pieces 13, and the second plurality of plant pieces 12 overlap in this order, and are bonded by curing the adhesive.
 各層を構成する植物片の配向は揃っていることが好ましい。配向とは、細長い形状の植物片の最長の長さ方向を示す。第一の複数の植物片11は、第一の配向D1に揃っており、第二の複数の植物片12は、第二の配向D2に揃っており、第三の複数の植物片13は、第三の配向D3に揃っている。 It is preferable that the plant pieces constituting each layer have the same orientation. The orientation indicates the longest length direction of the elongated plant piece. The first plurality of plant pieces 11 are aligned in the first orientation D1, the second plurality of plant pieces 12 are aligned in the second orientation D2, and the third plurality of plant pieces 13 are It is aligned with the third orientation D3.
 さらに、第一の配向D1及び第二の配向D2は、第三の配向D3と直交していることが好ましい。図3において、第一の配向D1及び第二の配向D2は、Y軸方向に配向している。第三の配向D3は、X軸方向に配向している。この構成により、植物片が同一方向やランダムに配向している場合に比べて、植物系ボード20の曲げ強度が高くなる。 Furthermore, the first orientation D1 and the second orientation D2 are preferably orthogonal to the third orientation D3. In FIG. 3, the first orientation D1 and the second orientation D2 are oriented in the Y-axis direction. The third orientation D3 is oriented in the X-axis direction. With this configuration, the bending strength of the plant board 20 is higher than when the plant pieces are oriented in the same direction or randomly.
 熱圧成形は、バッチ式の平板プレスや連続プレスによって行われる。プレス温度、プレス時間、プレス圧力などは、用いる接着剤2の種類や、成形する植物系ボードの厚さに応じて適宜設定される。 Hot pressing is performed by batch type flat plate press or continuous press. The pressing temperature, pressing time, pressing pressure, and the like are appropriately set according to the type of the adhesive 2 to be used and the thickness of the plant board to be molded.
 第一の表層20A1の芯層20Bと逆の面、及び第二の表層20A2の芯層20Bと逆の面とを平滑化することが好ましい。これにより、表層に凹凸がある場合に比べて、植物系ボードの割れなどが生じ難くなる。 It is preferable to smooth the surface opposite to the core layer 20B of the first surface layer 20A1 and the surface opposite to the core layer 20B of the second surface layer 20A2. Thereby, compared with the case where a surface layer has an unevenness | corrugation, the crack of a plant-type board etc. becomes difficult to produce.
 以下に、本実施形態に係る、実施例及び比較例を示す。 Examples and comparative examples according to the present embodiment are shown below.
 (実施例1)
 本実施例において、植物片1として、コウマ茎芯をハンマーミルにより粉砕して得られる、コウマ茎芯粉砕物を用いた。コウマ茎芯のリグニンの含有率は15wt%、コウマ茎芯の密度は0.17g/cmであった。リグニンの含有率は、例えば、VanSoest法により定量することができる。接着剤2としては、ユリアメラミン樹脂系接着剤(例えば、オーシカ製TB103)を用いた。本実施例で用いたコウマ茎芯粉砕物の平均粒径は、2.2mmであった。例えば、平均粒径は、JISZ8815に基づくふるい分け試験により求めることができる。
(Example 1)
In this example, a crushed stalk core obtained by pulverizing a stalk core with a hammer mill was used as the plant piece 1. The lignin content of the june stalk core was 15 wt%, and the density of the june stalk core was 0.17 g / cm 3 . The content of lignin can be quantified by, for example, the Van Soest method. As the adhesive 2, a urea melamine resin adhesive (for example, TB103 manufactured by Oshika) was used. The average particle size of the ground stalk core used in this example was 2.2 mm. For example, the average particle diameter can be determined by a screening test based on JISZ8815.
 以下で、本実施例における植物系ボードの成形方法を示す。 Hereinafter, a method for forming a plant-based board in this example will be described.
 まず、ドラムブレンダー(例えば、マゼラー製 PT60)により、コウマ茎芯粉砕物にユリアメラミン樹脂系接着剤をスプレー塗布し、被着させた。ユリアメラミン樹脂系接着剤の重量は、コウマ茎芯粉砕物の重量に対して15wt%であった。次に、ユリアメラミン樹脂系接着剤を被着させたコウマ茎芯粉砕物をランダムに単層の板状に配置した。そして熱圧成形機(例えば、神藤金属工業製SF60)を用いて、プレス温度150℃、プレス圧力25×10Pa、プレス時間10分で熱圧し、植物系ボードを成形した。 First, using a drum blender (for example, PT60 manufactured by Magellar), a urea melamine resin-based adhesive was spray-applied to the crushed stalk core and adhered. The weight of the urea melamine resin-based adhesive was 15 wt% with respect to the weight of the crushed stalk core. Next, crushed stalk cores coated with a urea melamine resin adhesive were randomly arranged in a single-layer plate shape. Then, using a hot-pressure molding machine (for example, SF60 manufactured by Shinfuji Metal Industry), the plant board was molded by hot pressing at a press temperature of 150 ° C., a press pressure of 25 × 10 5 Pa, and a press time of 10 minutes.
 (実施例2)
 本実施例において、植物片1として、シマツナソ茎芯をリングフレーカーにより粉砕して得られるシマツナソ茎芯粉砕物を用いた。シマツナソ茎芯のリグニンの含有率は14wt%、シマツナソ茎芯の密度は0.16g/cmであった。接着剤2としては、スクロース(例えば、和光純薬製)10質量部に対して、クエン酸(例えば、和光純薬製)4質量部とp-トルエンスルホン酸(例えば、和光純薬製)2質量部とを混合し、さらに水に溶解した糖酸系接着剤を用いた。本実施例で用いたシマツナソ茎芯粉砕物は、平均長さ8mm、平均幅2mm、平均厚さ1mmであった。
(Example 2)
In the present example, as the plant piece 1, a pulverized pine shoot stem core obtained by pulverizing a pine shoot stem core with a ring flaker was used. The content of lignin in the pine stem stem core was 14 wt%, and the density of the pine stem stem core was 0.16 g / cm 3 . As the adhesive 2, 10 parts by mass of sucrose (for example, manufactured by Wako Pure Chemical), 4 parts by mass of citric acid (for example, manufactured by Wako Pure Chemical) and p-toluenesulfonic acid (for example, manufactured by Wako Pure Chemical) 2 A saccharic acid-based adhesive mixed with parts by mass and further dissolved in water was used. The pulverized pine needle stem core used in this example had an average length of 8 mm, an average width of 2 mm, and an average thickness of 1 mm.
 以下で、本実施例における植物系ボードの成形方法を示す。 Hereinafter, a method for forming a plant-based board in this example will be described.
 まず、ドラムブレンダーにより、シマツナソ茎芯粉砕物に糖類系接着剤をスプレー塗布し、被着させた。糖類系接着剤の重量は、シマツナソ茎芯粉砕物の重量に対して15wt%であった。次に、糖類系接着剤を被着させたシマツナソ茎芯粉砕物をランダムに単層の板状に配置した。そして熱圧成形機を用いて、プレス温度200℃、プレス圧力25×10Pa、プレス時間10分で熱圧し、植物系ボードを成形した。 First, a sugar-based adhesive was spray-applied to and adhered to a ground pine stalk core using a drum blender. The weight of the saccharide-based adhesive was 15 wt% with respect to the weight of the ground stalks of Shimashimaso stem. Next, the pulverized Shimano stalk core coated with a saccharide adhesive was randomly arranged in a single-layer plate shape. Then, using a hot press molding machine, the plant board was molded by hot pressing at a press temperature of 200 ° C., a press pressure of 25 × 10 5 Pa, and a press time of 10 minutes.
 (実施例3)
 本実施例において、植物片1として、ケナフ茎芯をフレーカーにより粉砕して得られるケナフ茎芯ストランドを用いた。ケフナ茎芯のリグニンの含有率は19wt%、ケフナ茎芯の密度は0.15g/cmであった。接着剤2としては、フェノール樹脂系接着剤(例えば、オーシカ製B1360)を用いた。本実施例で用いたケナフ茎芯ストランドは、平均長さ55mm、平均幅12mm、平均厚さ0.6mmであった。
(Example 3)
In this example, a kenaf stalk core strand obtained by pulverizing a kenaf stalk core with a flaker was used as the plant piece 1. The lignin content of the kefna stalk core was 19 wt%, and the density of the kefna stalk core was 0.15 g / cm 3 . As the adhesive 2, a phenol resin adhesive (for example, B1360 manufactured by Oshika) was used. The kenaf stalk core strand used in this example had an average length of 55 mm, an average width of 12 mm, and an average thickness of 0.6 mm.
 以下で、本実施例における植物系ボードの成形方法を示す。 Hereinafter, a method for forming a plant-based board in this example will be described.
 まず、ドラムブレンダーにより、ケナフ茎芯ストランドにフェノール樹脂系接着剤をスプレー塗布し、被着させた。フェノール樹脂系接着剤の重量は、ケナフ茎芯ストランドの重量に対して15wt%であった。次に、第一の表層、芯層、第二の表層を以下の順に積層した。第一の表層として、フェノール樹脂系接着剤を被着させたケナフ茎芯ストランドを一方向に配向させて配置した。芯層として、第一表層の上に、第一の表層の配向に対して直交方向に配向させて配置した。さらに第二表層として、芯層の上に、芯層の配向に対して直交方向に配向させて配置した。そして熱圧成形機(神藤金属工業製SF60)を用いて、プレス温度200℃、プレス圧力25×10Pa、プレス時間10分で熱圧し、植物系ボードを成形した。 First, a phenol resin adhesive was spray-coated on the kenaf stalk core strand by a drum blender and attached. The weight of the phenol resin adhesive was 15 wt% with respect to the weight of the kenaf stalk core strand. Next, the first surface layer, the core layer, and the second surface layer were laminated in the following order. As a first surface layer, a kenaf stalk core strand coated with a phenol resin adhesive was oriented in one direction. The core layer was arranged on the first surface layer so as to be oriented in a direction orthogonal to the orientation of the first surface layer. Further, the second surface layer was arranged on the core layer so as to be oriented in a direction orthogonal to the orientation of the core layer. Then, using a hot pressure molding machine (SF60 manufactured by Shindo Metal Industry), the plant board was molded by hot pressing at a press temperature of 200 ° C., a press pressure of 25 × 10 5 Pa, and a press time of 10 minutes.
 (実施例4)
 本実施例において、植物片1として、コウマ茎芯を長さ方向に切削して得られるコウマ茎芯ストランドを用いた。コウマ茎芯のリグニンの含有率は15wt%、コウマ茎芯の密度は0.17g/cmであった。接着剤2としては、イソシアネート樹脂系接着剤(例えば、日本ポリウレタン工業製ウッドキュア)を用いた。本実施例で用いたコウマ茎芯ストランドは、平均長さ200mm、平均幅12mm、平均厚さ12mmであった。
Example 4
In the present Example, as the plant piece 1, a jum stalk core strand obtained by cutting a jum stalk core in the length direction was used. The lignin content of the june stalk core was 15 wt%, and the density of the june stalk core was 0.17 g / cm 3 . As the adhesive 2, an isocyanate resin adhesive (for example, a wood cure manufactured by Nippon Polyurethane Industry) was used. The juvenile stem core strand used in this example had an average length of 200 mm, an average width of 12 mm, and an average thickness of 12 mm.
 以下で、本実施例における植物系ボードの成形方法を示す。 Hereinafter, a method for forming a plant-based board in this example will be described.
 まず、ドラムブレンダーにより、コウマ茎芯ストランドにイソシアネート樹脂系接着剤をスプレー塗布し、被着させた。イソシアネート樹脂系接着剤の重量は、コウマ茎芯ストランドの重量に対して10wt%であった。次に、第一の表層、芯層、第二の表層を以下の順に積層した。第一の表層として、イソシアネート樹脂系接着剤を被着させたコウマ茎芯ストランドを一方向に配向させて配置した。芯層として、第一表層の上に、第一の表層の配向に対して直交方向に配向させて配置した。さらに第二表層として、芯層の上に、芯層の配向に対して直交方向に配向させて配置した。そして熱圧成形機(神藤金属工業製SF60)を用いて、プレス温度200℃、プレス圧力25×10Pa、プレス時間10分で熱圧し、植物系ボードを成形した。 First, with a drum blender, an isocyanate resin-based adhesive was spray-coated on the stalk core strand, and was attached. The weight of the isocyanate resin-based adhesive was 10 wt% with respect to the weight of the stalk core strand. Next, the first surface layer, the core layer, and the second surface layer were laminated in the following order. As the first surface layer, a juvenile stem core strand coated with an isocyanate resin adhesive was oriented in one direction. The core layer was arranged on the first surface layer so as to be oriented in a direction orthogonal to the orientation of the first surface layer. Further, the second surface layer was arranged on the core layer so as to be oriented in a direction orthogonal to the orientation of the core layer. Then, using a hot pressure molding machine (SF60 manufactured by Shindo Metal Industry), the plant board was molded by hot pressing at a press temperature of 200 ° C., a press pressure of 25 × 10 5 Pa, and a press time of 10 minutes.
 (比較例1)
 本比較例において、植物片1として、ハンマーミルにより粉砕して得られる針葉樹材粉砕物を用いた。針葉樹材粉砕物のリグニンの含有率は28wt%、針葉樹材粉砕物の密度は0.46g/cmであった。本比較例で用いた針葉樹材粉砕物の平均粒径は、2.2mmであった。
(Comparative Example 1)
In this comparative example, a crushed softwood material obtained by pulverizing with a hammer mill was used as the plant piece 1. The lignin content in the crushed softwood material was 28 wt%, and the density of the crushed softwood material was 0.46 g / cm 3 . The average particle diameter of the crushed softwood material used in this comparative example was 2.2 mm.
 その他の条件は実施例1と同様の条件で、植物系ボードを成形した。 Other conditions were the same as in Example 1, and a plant-based board was molded.
 (比較例2)
 本比較例において、リングフレーカーにより粉砕して得られるバルサ材粉砕物を用いた。バルサ材のリグニンの含有率は24wt%、バルサ材の密度は0.19g/cmであった。バルサ材粉砕物は、平均長さ8mm、平均幅2mm、平均厚さ1mmであった。
(Comparative Example 2)
In this comparative example, a pulverized balsa material obtained by pulverization with a ring flaker was used. The content of lignin in the balsa material was 24 wt%, and the density of the balsa material was 0.19 g / cm 3 . The pulverized balsa material had an average length of 8 mm, an average width of 2 mm, and an average thickness of 1 mm.
 その他の条件は実施例2と同様の条件で、植物系ボードを成形した。 Other conditions were the same as in Example 2, and a plant-based board was molded.
 (比較例3)
 本比較例において、植物片1として、バルサ材をフレーカーにより粉砕して得られるバルサ材ストランドを用いた。バルサ材のリグニンの含有率は24wt%、バルサ材の密度は0.19g/cmであった。バルサ材ストランドは、平均長さ8mm、平均幅2mm、平均厚さ1mmであった。
(Comparative Example 3)
In this comparative example, the balsa material strand obtained by grind | pulverizing a balsa material with a flaker as the plant piece 1 was used. The content of lignin in the balsa material was 24 wt%, and the density of the balsa material was 0.19 g / cm 3 . The balsa material strands had an average length of 8 mm, an average width of 2 mm, and an average thickness of 1 mm.
 その他の条件は実施例3と同様の条件で、植物系ボードを成形した。 Other conditions were the same as in Example 3, and a plant board was molded.
 (比較例4)
 本比較例において、植物片1として、コウマ茎芯をハンマーミルにより粉砕して得られるコウマ茎芯粉砕物を用いた。コウマ茎芯のリグニンの含有率は25wt%、コウマ茎芯の密度は0.19g/cmであった。本比較例で用いたコウマ茎芯粉砕物の平均粒径は、2.2mmであった。
(Comparative Example 4)
In this comparative example, a crushed stalk core obtained by pulverizing a stalk core with a hammer mill was used as the plant piece 1. The lignin content of the june stalk core was 25 wt%, and the density of the june stalk core was 0.19 g / cm 3 . The average particle size of the crushed stalk core used in this comparative example was 2.2 mm.
 その他の条件は実施例1と同様の条件で、植物系ボードを成形した。 Other conditions were the same as in Example 1, and a plant-based board was molded.
 (比較例5)
 本比較例において、植物片1として、シマツナソ茎芯をリングフレーカーにより粉砕して得られるシマツナソ茎芯粉砕物を用いた。シマツナソ茎芯のリグニンの含有率は22wt%、密度は0.18g/cmであった。本比較例で用いたシマツナソ茎芯粉砕物は、平均長さ8mm、平均幅2mm、平均厚さ1mmであった。
(Comparative Example 5)
In this comparative example, as a plant piece 1, a pulverized pine shoot stem core obtained by pulverizing a pine shoot stem core with a ring flaker was used. The content of lignin in the stem core of the Japanese pine was 22 wt%, and the density was 0.18 g / cm 3 . The ground pine stalk core used in this comparative example had an average length of 8 mm, an average width of 2 mm, and an average thickness of 1 mm.
 その他の条件は実施例2と同様の条件で、植物系ボードを成形した。 Other conditions were the same as in Example 2, and a plant-based board was molded.
 (比較例6)
 本比較例において、植物片1として、ケナフ茎芯を長さ方向に切削して得られるケナフ茎芯ストランドを用いた。ケフナ茎芯のリグニンの含有率は23wt%、ケフナ茎芯の密度は0.15g/cmであった。接着剤2としては、イソシアネート樹脂系接着剤(例えば、日本ポリウレタン工業製ウッドキュア)を用いた。本実施例で用いたケナフ茎芯ストランドは、平均長さ200mm、平均幅12mm、平均厚さ12mmであった。
(Comparative Example 6)
In this comparative example, a kenaf stalk core strand obtained by cutting a kenaf stalk core in the length direction was used as the plant piece 1. The lignin content of the kefna stalk core was 23 wt%, and the density of the kefna stalk core was 0.15 g / cm 3 . As the adhesive 2, an isocyanate resin adhesive (for example, a wood cure manufactured by Nippon Polyurethane Industry) was used. The kenaf stalk core strand used in this example had an average length of 200 mm, an average width of 12 mm, and an average thickness of 12 mm.
 その他の条件は実施例4と同様の条件で、植物系ボードを成形した。 Other conditions were the same as in Example 4, and a plant-based board was molded.
 (比較例7)
 本比較例において、植物片1として、ジュート靭皮繊維を長さ方向に切削して得られるジュート靭皮繊維ストランドを用いた。ジュート靭皮繊維のリグニンの含有率は11wt%、ジュート靭皮繊維の密度は0.49g/cmであった。接着剤2としては、フェノール樹脂系接着剤(例えば、オーシカ製B1360)を用いた。本実施例で用いたジュート靭皮繊維ストランドは、平均長さ200mm、平均幅0.1mm、平均厚さ0.1mmであった。また、熱圧成形時のプレス温度は150℃であった。
(Comparative Example 7)
In this comparative example, a jute bast fiber strand obtained by cutting jute bast fibers in the length direction was used as the plant piece 1. The content of lignin in the jute bast fiber was 11 wt%, and the density of the jute bast fiber was 0.49 g / cm 3 . As the adhesive 2, a phenol resin adhesive (for example, B1360 manufactured by Oshika) was used. The jute bast fiber strand used in this example had an average length of 200 mm, an average width of 0.1 mm, and an average thickness of 0.1 mm. The press temperature during hot pressing was 150 ° C.
 その他の条件は実施例4と同様の条件で、植物系ボードを成形した。 Other conditions were the same as in Example 4, and a plant-based board was molded.
 (評価)
 実施例1~4、及び比較例1~7の各植物系ボードについて、JISA5908による曲げ強さ試験、及び吸水厚さ膨張率試験の結果を以下に示す。曲げ強さ試験については、高い強度であることが好ましく、吸水厚さ膨張率試験については、低い膨張率であることが好ましい。
(Evaluation)
The results of bending strength test and water absorption thickness expansion test according to JIS A5908 are shown below for each of the plant-based boards of Examples 1 to 4 and Comparative Examples 1 to 7. The bending strength test preferably has a high strength, and the water absorption thickness expansion coefficient test preferably has a low expansion coefficient.
 植物片1において、平均粒径が2.2mm、植物片の配向がランダム、層構造が単層である実施例1、比較例1及び比較例4の植物系ボードについて、表1に評価結果を示す。 In plant piece 1, the evaluation results are shown in Table 1 for the plant boards of Example 1, Comparative Example 1 and Comparative Example 4 in which the average particle size is 2.2 mm, the orientation of the plant pieces is random, and the layer structure is a single layer Show.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1の植物系ボードは、比較例1及び4の植物ボードに比べて、曲げ強さが高く、吸水厚さ膨張率が低い。 The plant board of Example 1 has higher bending strength and lower water absorption thickness expansion rate than the plant boards of Comparative Examples 1 and 4.
 植物片1の長さが8mm、植物片1の配向がランダム、層構造が単層である実施例2、比較例2及び比較例5の植物ボードについて、表2に評価結果を示す。 Table 2 shows the evaluation results for the plant boards of Example 2, Comparative Example 2 and Comparative Example 5 in which the length of the plant piece 1 is 8 mm, the orientation of the plant piece 1 is random, and the layer structure is a single layer.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例2の植物系ボードは、比較例2及び5に比べて、曲げ強さが高く、吸水厚さ膨張率が低い。 The plant-based board of Example 2 has higher bending strength and lower water absorption thickness expansion rate than Comparative Examples 2 and 5.
 植物片1の長さが55mm、植物片1の配向が直交配向、層構造が三層である植物系ボードの実施例3、比較例3についての評価結果を表3に示す。 Table 3 shows the evaluation results for Example 3 and Comparative Example 3 of the plant board in which the length of the plant piece 1 is 55 mm, the orientation of the plant piece 1 is orthogonal, and the layer structure is three layers.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例3の植物系ボードは、比較例3の植物系ボードに比べて曲げ強さが高く、吸水厚さ膨張率が低い。 The plant board of Example 3 has higher bending strength and lower water absorption thickness expansion rate than the plant board of Comparative Example 3.
 植物片1の長さが200mm、植物片1の配向が直交配向、層構造が三層である植物系ボードの実施例4、比較例6及び比較例7についての評価結果を表4に示す。 Table 4 shows the evaluation results for Example 4, Comparative Example 6 and Comparative Example 7 of the plant board in which the length of the plant piece 1 is 200 mm, the orientation of the plant piece 1 is orthogonal, and the layer structure is three layers.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例4の植物系ボードは、比較例6及び7の植物ボードに比べて、曲げ強さが高く、吸水厚さ膨張率が低い。 The plant board of Example 4 has higher bending strength and lower water absorption thickness expansion rate than the plant boards of Comparative Examples 6 and 7.
 表1~4で示すように、植物片1のリグニン含有量が15wt%以上、20wt%以下、かつ密度が0.15以上g/cm、0.20g/cm以下である植物系ボードは、曲げ強さが高く、吸水厚さ膨張率が低い。 As shown in Tables 1 to 4, a plant board in which the lignin content of the plant piece 1 is 15 wt% or more and 20 wt% or less, and the density is 0.15 or more g / cm 3 and 0.20 g / cm 3 or less. Bending strength is high, and the water absorption thickness expansion coefficient is low.
1,11,12,13 植物片
2 接着剤
10,20 植物系ボード
20A1,20A2 表層
20B 芯層
D1,D2,D3 配向
1, 11, 12, 13 Plant piece 2 Adhesive 10, 20 Plant-based board 20A1, 20A2 Surface layer 20B Core layer D1, D2, D3 Orientation

Claims (13)

  1.  リグニンの含有量が15wt%以上、20wt%以下、かつ密度が0.15g/cm以上、0.20g/cm以下である複数の植物片と、
     前記複数の植物片の各々に被着させた接着剤と、を熱圧成形し、
     前記複数の植物片の各々同士を前記接着剤の硬化によって接着する
     植物系ボードの製造方法。
    The content of lignin 15 wt% or more, 20 wt% or less, and density of 0.15 g / cm 3 or more, a plurality of plant pieces is 0.20 g / cm 3 or less,
    Hot pressing with an adhesive applied to each of the plurality of plant pieces,
    A method for producing a plant-based board, wherein each of the plurality of plant pieces is bonded to each other by curing of the adhesive.
  2.  前記複数の植物片の各々は、細長い形状であって、50mm以上、200mm以下の長さである
     請求項1に記載の植物系ボードの製造方法。
    The method for producing a plant-based board according to claim 1, wherein each of the plurality of plant pieces has an elongated shape and has a length of 50 mm or more and 200 mm or less.
  3.  前記複数の植物片は、第一の表層を構成する第一の複数の植物片と、第二の表層を構成する第二の複数の植物片と、芯層を構成する第三の複数の植物片とであって、
     前記第一の複数の植物片、前記第三の複数の植物片及び前記第二の複数の植物片の順に積層する
     請求項1または2に記載の植物系ボードの製造方法。
    The plurality of plant pieces includes a first plurality of plant pieces constituting a first surface layer, a second plurality of plant pieces constituting a second surface layer, and a third plurality of plants constituting a core layer. With a piece,
    The manufacturing method of the plant-type board of Claim 1 or 2 which laminates | stacks in order of said 1st some plant piece, said 3rd some plant piece, and said 2nd some plant piece.
  4.  前記第一の複数の植物片は、第一の配向に揃っており、
     前記第二の複数の植物片は、第二の配向に揃っており、
     前記第三の複数の植物片は、第三の配向に揃っており、
     前記第一の配向及び前記第二の配向は、前記第三の配向と直交する、
     請求項3に記載の植物系ボードの製造方法。
    The first plurality of plant pieces are aligned in a first orientation;
    The second plurality of plant pieces are aligned in a second orientation;
    The third plurality of plant pieces are aligned in a third orientation;
    The first orientation and the second orientation are orthogonal to the third orientation,
    The manufacturing method of the plant-type board of Claim 3.
  5.  前記第一の表層の前記芯層と逆の面、及び前記第二の表層の前記芯層と逆の面を平滑化する、
     請求項3又は4に記載の植物系ボードの製造方法。
    Smoothing the surface of the first surface layer opposite to the core layer and the surface of the second surface layer opposite to the core layer;
    The manufacturing method of the plant-type board of Claim 3 or 4.
  6.  前記接着剤は、前記複数の植物片の総重量に対して、10wt%以上、15wt%以下である
     請求項1~5のいずれか一項に記載の植物系ボードの製造方法。
    The method for producing a plant board according to any one of claims 1 to 5, wherein the adhesive is 10 wt% or more and 15 wt% or less with respect to a total weight of the plurality of plant pieces.
  7.  前記複数の植物片の各々は、草本植物の茎芯部である、
     請求項1~6のいずれか一項に記載の植物系ボードの製造方法。
    Each of the plurality of plant pieces is a stem core of a herbaceous plant.
    The method for producing a plant-based board according to any one of claims 1 to 6.
  8.  リグニンの含有量が15wt%以上、20wt%以下である複数の植物片と硬化した接着剤とを含む
     植物系ボード。
    A plant board comprising a plurality of plant pieces having a lignin content of 15 wt% or more and 20 wt% or less and a hardened adhesive.
  9.  前記複数の植物片の各々は、細長い形状であって、50mm以上、200mm以下の長さである
     請求項8に記載の植物系ボード。
    The plant-based board according to claim 8, wherein each of the plurality of plant pieces has an elongated shape and has a length of 50 mm or more and 200 mm or less.
  10.  前記複数の植物片は、第一の表層を構成する第一の複数の植物片と、第二の表層を構成する第二の複数の植物片と、芯層を構成する第三の複数の植物片と、であって、
     前記第一の複数の植物片、前記第三の複数の植物片及び前記第二の複数の植物片の順に重なる
     請求項8または9に記載の植物系ボード。
    The plurality of plant pieces includes a first plurality of plant pieces constituting a first surface layer, a second plurality of plant pieces constituting a second surface layer, and a third plurality of plants constituting a core layer. With a piece,
    The plant board according to claim 8 or 9, wherein the first plurality of plant pieces, the third plurality of plant pieces, and the second plurality of plant pieces overlap in this order.
  11.  前記第一の複数の植物片は、第一の配向に揃っており、
     前記第二の複数の植物片は、第二の配向に揃っており、
     前記第三の複数の植物片は、第三の配向に揃っており、
     前記第一の配向及び前記第二の配向は、前記第三の配向と直交する
     請求項10に記載の植物系ボード。
    The first plurality of plant pieces are aligned in a first orientation;
    The second plurality of plant pieces are aligned in a second orientation;
    The third plurality of plant pieces are aligned in a third orientation;
    The plant-based board according to claim 10, wherein the first orientation and the second orientation are orthogonal to the third orientation.
  12.  前記第一の表層の前記芯層と逆の面、及び前記第二の表層の前記芯層と逆の面は平滑面である
     請求項10又は11に記載の植物系ボード。
    The plant-based board according to claim 10 or 11, wherein a surface of the first surface layer opposite to the core layer and a surface of the second surface layer opposite to the core layer are smooth surfaces.
  13.  前記複数の植物片の各々は、草本植物の茎芯部である、
     請求項8~12のいずれか一項に記載の植物系ボード。
    Each of the plurality of plant pieces is a stem core of a herbaceous plant.
    The plant board according to any one of claims 8 to 12.
PCT/JP2015/004997 2014-10-08 2015-10-01 Plant-based board production method and plant-based board WO2016056207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-207015 2014-10-08
JP2014207015 2014-10-08

Publications (1)

Publication Number Publication Date
WO2016056207A1 true WO2016056207A1 (en) 2016-04-14

Family

ID=55652844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004997 WO2016056207A1 (en) 2014-10-08 2015-10-01 Plant-based board production method and plant-based board

Country Status (1)

Country Link
WO (1) WO2016056207A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232309A (en) * 1993-12-28 1995-09-05 Yamaha Corp Production of wood-based board
WO1996019328A1 (en) * 1994-12-22 1996-06-27 Tsuyoshi Kono Board produced from malvaceous bast plant and process for producing the same
JP2000246709A (en) * 1999-03-03 2000-09-12 Matsushita Electric Works Ltd Composite filament board and manufacture thereof
JP2005096143A (en) * 2003-09-22 2005-04-14 Araco Corp Woody form and its manufacturing method
JP2007021972A (en) * 2005-07-20 2007-02-01 Matsushita Electric Works Ltd Binderless board
JP2008260238A (en) * 2007-04-13 2008-10-30 Toyota Boshoku Corp Manufacturing method for vegetable fiber molding
JP2011224950A (en) * 2010-04-19 2011-11-10 Kono Shinsozai Kaihatsu Kk Method of manufacturing board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232309A (en) * 1993-12-28 1995-09-05 Yamaha Corp Production of wood-based board
WO1996019328A1 (en) * 1994-12-22 1996-06-27 Tsuyoshi Kono Board produced from malvaceous bast plant and process for producing the same
JP2000246709A (en) * 1999-03-03 2000-09-12 Matsushita Electric Works Ltd Composite filament board and manufacture thereof
JP2005096143A (en) * 2003-09-22 2005-04-14 Araco Corp Woody form and its manufacturing method
JP2007021972A (en) * 2005-07-20 2007-02-01 Matsushita Electric Works Ltd Binderless board
JP2008260238A (en) * 2007-04-13 2008-10-30 Toyota Boshoku Corp Manufacturing method for vegetable fiber molding
JP2011224950A (en) * 2010-04-19 2011-11-10 Kono Shinsozai Kaihatsu Kk Method of manufacturing board

Similar Documents

Publication Publication Date Title
Lee et al. Mechanical and physical properties of agro-based fiberboard
US20080152861A1 (en) Engineered Wood Composites Having Superior Strength and Stiffness
JP6732149B2 (en) Wood laminated wood
CA2621089C (en) Wood panel containing inner culm flakes
CN1329534A (en) Process for production of articles from treated lignocellulosic particles and binder
WO2016056207A1 (en) Plant-based board production method and plant-based board
WO2015118814A1 (en) Method for producing wooden board
WO2013118531A1 (en) Particle board
Widyorini et al. Some of the properties of binderless particleboard manufactured from bamboo
JP2014091278A (en) Production method of fiber board
CN101412232A (en) Container wooden floor and technique for producing the same
JP5855219B2 (en) Manufacturing method of wood fiberboard
JP5816668B2 (en) Wood fiberboard
JP6448738B1 (en) Method for producing high-density wood laminate
WO2011137537A1 (en) Composite veneer strand lumber and methods and systems for making same
JP7332774B1 (en) wooden board
JP2014205268A (en) Manufacturing method of woody board
JP7174186B1 (en) wooden board
JP7064638B1 (en) Wood composites, interior materials, flooring and soundproof flooring
WO2023210486A1 (en) Wooden board
CN108177208B (en) Wooden shaving board and wooden artificial board
WO2013118529A1 (en) Particle board manufacturing method
JP2022118559A (en) Woody board manufacturing method
JP2023039720A (en) Wooden composite member and floor member
JP2022127264A (en) Woody laminated board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15849438

Country of ref document: EP

Kind code of ref document: A1