WO2016056106A1 - Heat dissipation sheet and thermoelectric device - Google Patents

Heat dissipation sheet and thermoelectric device Download PDF

Info

Publication number
WO2016056106A1
WO2016056106A1 PCT/JP2014/077078 JP2014077078W WO2016056106A1 WO 2016056106 A1 WO2016056106 A1 WO 2016056106A1 JP 2014077078 W JP2014077078 W JP 2014077078W WO 2016056106 A1 WO2016056106 A1 WO 2016056106A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
heat
heat dissipation
region
thermoelectric device
Prior art date
Application number
PCT/JP2014/077078
Other languages
French (fr)
Japanese (ja)
Inventor
中川 香苗
鈴木 貴志
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2014/077078 priority Critical patent/WO2016056106A1/en
Publication of WO2016056106A1 publication Critical patent/WO2016056106A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat dissipation sheet and a thermoelectric device.
  • thermoelectric element is formed of, for example, a plurality of p-type thermoelectric semiconductors and n-type thermoelectric semiconductors, and has a function of directly converting thermal energy into electrical energy and electrical energy into thermal energy.
  • a temperature difference occurs between both ends of the thermoelectric element, a voltage is generated due to the Seebeck effect.
  • the thermoelectric device (or thermoelectric power generation device) takes out the voltage generated by the thermoelectric element as electric energy. According to the thermoelectric device, heat energy can be directly converted into electric energy, and is attracting attention as an effective method of using heat energy as typified by waste heat utilization.
  • thermoelectric element has, for example, a plurality of two-dimensional thermocouples in which both ends of a columnar p-type thermoelectric semiconductor and an n-type thermoelectric semiconductor are paired substantially in the same length, and the p-type thermoelectric semiconductor and the n-type thermoelectric Semiconductors are alternately and regularly arranged, and thermocouples are electrically connected in series.
  • the wiring for electrically connecting the thermocouple is formed on two substrates formed of, for example, silicon (Si), a ceramic material, or the like.
  • the two substrates have a structure facing each other with an interval corresponding to the thickness of the p-type thermoelectric semiconductor or the n-type thermoelectric semiconductor and the electrodes connecting these thermoelectric semiconductors.
  • thermoelectric semiconductor pair ⁇ One substrate is placed in contact with the heat source, and heat is radiated from the other substrate, thereby generating a temperature difference in the thermoelectric semiconductor pair.
  • heat dissipation component on the heat dissipation side substrate.
  • a heat sink that is generally used as a heat dissipation component is a heat sink in which aluminum (Al) is anodized (anodized) and an aluminum oxide film is formed on the surface.
  • Al aluminum
  • the thermal emissivity of Al is, for example, about 0.03 to 0.1, but the thermal emissivity of aluminum oxide is, for example, about 0.4 to 0.6. Therefore, a heat sink whose surface is anodized is It is often used because of its excellent heat dissipation.
  • the heat sink made of Al is not flexible and difficult to deform according to the shape of the part, when using it as a heat dissipation part for parts with complicated shapes such as large unevenness, install it properly on the part Is difficult.
  • a metal film such as aluminum foil can be deformed according to the shape of the part, but because the film is thin, even if the surface is subjected to anodizing to improve heat dissipation, it is inferior in heat transfer, As a heat sink, sufficient heat dissipation cannot be demonstrated.
  • Carbonaceous materials are used in various structural materials as lightweight heat-resistant materials or high-strength materials.
  • graphite in which carbon atoms are bonded in the form of a hexagonal network has been increasingly used as a heat dissipation material and / or an electrothermal material utilizing high thermal conductivity.
  • sheet-like graphite can easily produce a graphite sheet having a large area, has a high thermal conductivity higher than that of copper (Cu), which has a high thermal conductivity among metals, and is also flexible. Yes.
  • the graphite sheet is used for, for example, a heat conductor, a heat spreader or the like formed of a material for heat transfer.
  • thermoelectric element is possible if there is a temperature difference, but depends on a naturally occurring temperature difference. For example, when the heat source is concrete, metal, or the like that is heated by solar heat, when a thermoelectric element is attached to the heat source, the heat from the heat source can be radiated to the atmosphere to generate power.
  • JP 2011-4500 A Japanese Patent Laid-Open No. 11-209618 JP 2013-190169 A
  • thermoelectric devices it is difficult to ensure a sufficient amount of power generation in an environment where a large temperature difference is unlikely to occur in the heat source according to the weather, time, and the like.
  • an object is to provide a heat dissipation sheet and a thermoelectric device that can secure a sufficient power generation amount even in an environment in which a large temperature difference is unlikely to occur in a heat source according to weather, time, and the like. To do.
  • a heat dissipation sheet having a pattern in which hydrophilic regions and hydrophobic regions are alternately arranged on the surface is provided.
  • thermoelectric element having a heat source side and a heat dissipation side, a heat sink provided on the heat dissipation side of the thermoelectric element, and a heat dissipation sheet in contact with the heat sink, the surface of the heat dissipation sheet is hydrophilic
  • thermoelectric device having a pattern in which conductive regions and hydrophobic regions are alternately arranged.
  • thermoelectric apparatus shows typically an example of a structure of the thermoelectric apparatus in one Example. It is a top view which shows an example of a thermal radiation sheet. It is a top view which shows the other example of a thermal radiation sheet. It is a figure which shows an example of the daily change of the temperature and humidity in a certain city. It is a figure explaining the state which a water
  • thermoelectric apparatus It is sectional drawing explaining the 2nd example of the manufacturing method of the thermal radiation sheet in one Example. It is a figure explaining a silane coupling agent. It is a figure explaining an example of the reaction mechanism of a silane coupling agent. It is a figure explaining an example of the reaction mechanism of a silane coupling agent. It is a figure which shows an example of the electric power generation voltage of a thermoelectric apparatus. It is a figure which shows an example of the electric power generation voltage of a different thermoelectric apparatus about the state without humidification, and the state with humidification. It is a figure which shows an example of the power generation voltage of the thermoelectric apparatus which has a thermal radiation sheet
  • thermoelectric apparatus which has a thermal radiation sheet
  • hydrophilic regions and hydrophobic regions are alternately arranged on the surface of the heat dissipation sheet.
  • FIG. 1 is a cross-sectional view schematically showing an example of the configuration of a thermoelectric device in one embodiment.
  • the thermoelectric device 1 includes a thermoelectric element 11, heat sinks 12-1 and 12-2 provided above and below the thermoelectric element 11, and circuit boards 13-1 and 13 provided on the left and right sides of the thermoelectric element 11. -2, sealing resin 14 for sealing the connection between the thermoelectric element 11 and the circuit boards 13-1, 13-2, resin 15 for sealing the thermoelectric element 11, and heat dissipation provided on the heat source side of the resin 15
  • a sheet 16 is provided.
  • thermoelectric element 11 includes, for example, a plurality of thermocouples having a pair of both ends of a columnar p-type thermoelectric semiconductor 111 and an n-type thermoelectric semiconductor 112 that are substantially the same length, and the p-type thermoelectric semiconductor 111 and n-type.
  • the thermoelectric semiconductors 112 may be arranged alternately and regularly, and may have a known structure in which thermocouples are electrically connected in series. Wirings for electrically connecting the thermocouples are formed on two substrates 113-1, 113-2 made of, for example, silicon (Si), a ceramic material, or the like.
  • the two substrates 113-1 and 113-2 are spaced apart by a thickness corresponding to the thickness of the p-type thermoelectric semiconductor 111 or the n-type thermoelectric semiconductor 111 and electrodes (not shown) connecting these thermoelectric semiconductors 111 and 112. It has a structure that faces each other.
  • the heat sink 12-1 is provided on the heat dissipation side (upper side in FIG. 1) of the thermoelectric element 11.
  • the heat sink 12-2 is provided on the heat source side (lower side in FIG. 1) of the thermoelectric element 11.
  • the heat sinks 12-1 and 12-2 are made of a heat radiating material, and the material is not particularly limited.
  • the heat sinks 12-1 and 12-2 have a structure in which, for example, aluminum (Al) is anodized (anodized) and an aluminum oxide film is formed on the surface.
  • the heat-dissipating material may be, for example, a carbonaceous material in addition to a metal such as Al and Cu.
  • the surface is formed of a material having a heat-dissipating property equivalent to, for example, alumina. An additional film may be provided.
  • the shape of the heat sinks 12-1 and 12-2 is as long as they are arranged on the heat source side (upper side in FIG. 1) of the thermoelectric element 11 and on the heat dissipation side (lower side in FIG. 1) of the thermoelectric element 11.
  • the heat sink 12-1 is a plate-like rectangular member having a step and having an outer peripheral portion partially overlapping with the inner portions of the circuit boards 13-1 and 13-2.
  • the heat sink 12-2 is a plate-like rectangular member whose outer peripheral portion does not overlap with the inner portions of the circuit boards 13-1 and 13-2.
  • the heat sink 12-2 is preferably in contact with a heat source when the thermoelectric device 1 is mounted on a mounting surface described later.
  • the area where the heat sink 12-2 is in contact with the heat source is preferably large.
  • the heat source may be, for example, a metal housing that houses the thermoelectric device 1.
  • the circuit boards 13-1 and 13-2 have circuit components having functions according to the use of the thermoelectric device 1.
  • a semiconductor chip 131 including a sensor such as a temperature sensor, a circuit that processes the output of the sensor, a memory that stores the output of the temperature sensor, and the like is provided on the circuit board 13-2.
  • a secondary battery 133 is provided in addition to a semiconductor chip 132 including a controller, a communication circuit, and the like.
  • the number of circuit boards provided in the thermoelectric device 1 is not limited to two, and may be one or three or more.
  • the sealing resin 14 seals an electrical connection portion between the thermoelectric element 11 and the circuit boards 13-1 and 13-2. As a result, the thermoelectric element 11 is sealed in a space formed by the heat sinks 12-1 and 12-2, the circuit boards 13-1 and 13-2, the sealing resin 14, and the resin 15.
  • the type of resin 15 is not particularly limited.
  • the resin 15 is molded so that the upper cross-sectional shape has a plurality of triangular peaks.
  • the surface area of the upper part (heat source side) of the resin 15 is larger than the surface area of the lower part (heat radiation side) of the resin 15.
  • the cross-sectional shape of the upper portion of the resin 15 is not limited to a triangular shape as shown in FIG. 1 and is not particularly limited as long as it has a shape having a substantially inclined surface.
  • the inclined surface is inclined with respect to a normal to the substrate surfaces of the circuit boards 13-1 and 13-2 (or the bottom surface of the thermoelectric device 1 that comes into contact with the attachment surface when the thermoelectric device 1 is attached to the attachment surface).
  • thermoelectric device 1 when the thermoelectric device 1 is mounted on a mounting surface perpendicular to the direction of gravity, the water droplets that are adsorbed and grown on the heat radiation sheet 16 formed on the inclined surface of the resin 15 are caused by the weight of the water droplets as will be described later. Roll down the slope.
  • the heat radiation sheet 16 is provided on the upper surface on the heat radiation side of the heat sink 12-1 and the upper surface on the heat radiation side of the resin 15.
  • the heat radiating sheets 16 provided on the upper surfaces of the heat sink 12-1 and the resin 15 are provided along the upper surface shapes of the heat sink 12-1 and the resin 15, respectively.
  • the heat-dissipating sheet 16 has a hydrophilic region and a hydrophobic region alternately arranged on a base sheet having heat dissipation and plasticity, such as a graphite sheet, a metal sheet, and a sheet having a multilayer structure in which a graphite sheet and a metal sheet are laminated. A structure in which a patterned pattern is formed. It is preferable that the heat radiating sheet 16 has an appropriate thickness and an appropriate plasticity in that the heat radiating sheet 16 can be easily provided by bonding the heat radiating sheet 16 along the upper surface shape of the heat sink 12-1 and the resin 15.
  • the upper surface of the heat sink 12-1 is not parallel to the mounting surface perpendicular to the direction of gravity but is inclined with respect to the mounting surface, as described later. It is preferable from the viewpoint of making it easy for the water droplet on the sheet 16 to roll off due to its own weight.
  • the upper surface of the heat sink 12-1 may have a shape having a plurality of triangular peaks, for example, like the upper surface of the resin 15.
  • the heat radiation sheet 16 has a surface other than the surface perpendicular to the direction of gravity in a state where the thermoelectric device 1 is attached to the attachment surface from the viewpoint of facilitating the falling of water droplets by its own weight.
  • FIG. 2 is a plan view showing an example of the heat dissipation sheet 16.
  • the heat dissipation sheet 16 has a pattern in which hydrophilic regions 162 and hydrophobic regions 163 are alternately arranged in a striped pattern on the base sheet 161.
  • the hydrophobic region 163 is shown with a satin finish.
  • the direction in which the hydrophilic region 162 and the hydrophobic region 163 extend is preferably, for example, a direction perpendicular to the direction in which the water droplets grown on the heat radiation sheet 16 roll, but the water droplets grown on the heat radiation sheet 16 There is no particular limitation as long as the direction is other than the direction parallel to the rolling direction.
  • FIG. 3 is a plan view showing another example of the heat dissipation sheet 16.
  • the heat dissipation sheet 16 has a pattern in which hydrophilic regions 162 and hydrophobic regions 163 are alternately arranged in a checkered pattern on the base sheet 161.
  • the direction in which the hydrophilic region 162 and the hydrophobic region 163 extend intermittently does not need to have a specific relationship with the direction in which the water droplets grown on the heat dissipation sheet 16 roll, for example.
  • the area occupied by all the hydrophilic regions 162 on the base sheet 161 and the area occupied by all the hydrophobic regions 163 on the base sheet 161 may be the same or different.
  • the pattern in which the hydrophilic regions 162 and the hydrophobic regions 163 are alternately arranged is not limited to a striped pattern and a checkered pattern. As described later, moisture in the air is efficiently removed from the surface of the heat radiation sheet 16. Any pattern may be used as long as it is easy to grow water droplets by condensing in (hydrophilic region 162), and the grown water droplets easily roll off the surface (hydrophobic region 163) of the heat dissipation sheet 16.
  • FIG. 4 is a diagram illustrating an example of a daily change in temperature and humidity in a certain city.
  • the left vertical axis represents temperature (° C.)
  • the right vertical axis represents humidity (%)
  • the horizontal axis represents time (from 1 o'clock to 24 o'clock).
  • the temperature sample is marked with ⁇ and the humidity sample is marked with ⁇ .
  • the temperature is low at night and reaches a minimum temperature around 5 o'clock before dawn, and is high in the daytime and reaches a maximum temperature around 14:00.
  • the humidity is high at night and reaches a maximum humidity around 5 o'clock before dawn, and is low at noon and around 14:00 at noon. Under such environmental conditions where a large temperature difference cannot be expected, it is difficult to secure a sufficient power generation amount even if a heat sink or a material that improves heat dissipation is provided.
  • the moisture 500 in the air easily collects on the hydrophilic region 162 of the heat dissipation sheet 16 in a high humidity environment such as cloudy weather, rainy weather, or nighttime. As shown in FIG. 5, it is condensed and adsorbed onto the hydrophilic region 162.
  • the water droplet 501 that has grown by adsorbing on the hydrophilic region 162 rolls down on the hydrophobic region 163 in the direction of the arrow as shown in FIG. Needless to say, when one water drop 501 rolls in the direction of the arrow in FIG. 6, it contacts with another water drop 501 and grows into a larger water drop 501.
  • FIG. 5 is a diagram illustrating a state in which moisture 500 is adsorbed on the hydrophilic region 162
  • FIG. 6 illustrates a state in which the water droplet 501 grown on the hydrophilic region 162 rolls down on the hydrophobic region 163 with its own weight. It is a figure explaining. 5 and 6, the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • the heat source of concrete or metal is often lower than the ambient temperature, but the surface of the heat dissipation sheet 16 of the thermoelectric device 1 that is in contact with the heat source of concrete or metal, etc.
  • Water vapor condenses and condenses (especially on the hydrophilic region 162). Thereby, the condensation energy of water vapor is released from the surface of the heat dissipation sheet 16, the surface temperature of the heat dissipation sheet 16 rises, and the temperature difference in the thermoelectric element 11 increases, so the power generation amount of the thermoelectric device 1 increases.
  • thermoelectric device 1 Eventually, the water 500 grows and the water droplets 501 roll on the hydrophobic region 163 of the heat dissipation sheet 16, but dew condensation occurs again on the hydrophilic region 162 of the heat dissipation sheet 16, increasing the power generation amount of the thermoelectric device 1. .
  • thermoelectric device 1 By repeating such a cycle of condensation and adsorption (or condensation) of moisture on the surface of the heat radiation sheet 16 and growth of water into water droplets, a hydrophilic region 162 and a hydrophobic region are formed on the surface of the heat radiation sheet 16. Compared with the case where 163 is not alternately arranged, the power generation amount of the thermoelectric device 1 can be increased.
  • a method for manufacturing a heat dissipation sheet in one embodiment will be described.
  • a base sheet 161 of the heat dissipation sheet 16 is formed, for example, as in a first method described below with reference to FIG.
  • aluminum oxide may be used as the heat dissipating material
  • heat dissipating paint may be used as the heat dissipating material of the base sheet 161 of the heat dissipating sheet 16 as in the second method described later with reference to FIG.
  • a mask 601 masks a portion where the surface is formed of, for example, aluminum oxide and becomes a hydrophilic region 162 on the hydrophilic base sheet 161. Then, the hydrophobic material 602 is applied to the portion to become the hydrophobic region 163 and cured.
  • the hydrophobic material 602 is, for example, polytetrafluoroethylene (PTFE: PolyTetraFluoroEthylene), polyvinylidene fluoride (PVDF), polypropylene (PP: PolyPropylene), polyethylene (PE: PolyEthylene), polysulfone (PSF: PolySulFone), and the like.
  • step S12 as shown in FIG. 7B, a portion that becomes the hydrophilic region 162 on the base sheet 161 is masked with, for example, a resist film 603, and an aqueous solution 604 of the coupling agent hydrolyzed is used. It applies to the location of the hydrophobic material 602 used as the hydrophobic area
  • step S13 as shown in FIG. 7C, the resist film 603 is removed.
  • a silane coupling agent having a hydrophobic organic functional group may be used in the aqueous solution of the coupling agent.
  • the hydrophobic organic functional group may be, for example, a coupling agent having a vinyl group or a phenyl group, a coupling agent having a large number of carbon atoms, or the like.
  • the mask 601 used for masking in step S11 and the resist film 603 used for masking in step S12 may be the same mask or resist film.
  • a heat radiation sheet 16 in which a heat radiation paint 700 is applied to the surface of the base sheet 161 is used.
  • the heat radiation paint 700 includes a binder 701 and ceramic particles 702.
  • the resin used for the binder 701 is a hydrophobic resin such as polyester or acrylic.
  • the ceramic particle 702 has a hydrophilic surface because OH groups are generated on the exposed surface.
  • O 2 plasma etching, laser etching (or laser ablation), UV, or the like is formed on the portion that becomes the hydrophilic region 162 on the heat radiation paint 700 through the mask 607.
  • Reactive etching such as exposure to ozone is performed, and a functional group such as a hydrophilic hydroxyl group or a carboxyl group is imparted to the surface of the binder 701 subjected to the reactive etching.
  • step S22 the portion that becomes the hydrophilic region 162 on the heat radiation coating 700 is etched to expose the ceramic particles 702 in the region 703 etched into a concave shape as shown in FIG. 8B. Let Thereby, the region 703 where the ceramic particles 702 are exposed becomes hydrophilic.
  • the etching in step S22 may be, for example, polishing with polishing paper or the like, physical etching using sandblasting, water, laser, or the like.
  • step S22 may be omitted by continuing the reactive etching in step S21 for a longer time, and the ceramic particles 702 in the region 703 may be exposed.
  • the surface of the ceramic particle 702 exposed in the region 703 is hydrophilic, and a hydrophilic functional group is imparted to the surface of the binder 701 in the region 703 as in the case of step S21 described above. Is done.
  • step S23 as shown in a partially enlarged view in FIG. 8C, the binder 701 and the exposed ceramic particles 702 in the region 703 subjected to the processing in step S21 or steps S21 and S22 are removed.
  • the containing surface is modified with a silane coupling agent having a hydrophilic organic functional group.
  • the hydrophilic organic functional group may be a functional group having, for example, an amino group, a mercapto group, a carboxyl group, or the like.
  • FIG. 9 is a diagram illustrating a silane coupling agent, where Y represents a reactive functional group containing a hydrophilic functional group such as NH or SH, and OR represents a hydrolyzable group.
  • 10 and 11 are diagrams for explaining an example of the reaction mechanism of the silane coupling agent.
  • FIG. 11 shows a reaction mechanism in which a covalent bond is generated by dehydration from an orientation state due to a hydrogen bond.
  • step S24 contrary to the case of FIG. 7B, the portion (that is, the region 703) that becomes the hydrophobic region 163 on the heat radiation paint 700 is masked by, for example, a resist film (not shown), and then hydrolyzed.
  • the aqueous solution of the coupling agent thus applied is applied to the portion that becomes the hydrophilic region 162 and dried.
  • step S25 the resist film is removed as in the case of FIG.
  • the region 703 on the heat dissipating paint 700 becomes a hydrophilic region 162, and the region other than the region 703 on the heat dissipating paint 700 becomes a hydrophobic region 163.
  • the hydrophilic region 162 of the heat dissipation sheet 16 has a concave shape that is recessed from the hydrophobic region 163. For this reason, it becomes easier to store more water in the hydrophilic region 162 by the depth of the concave shape.
  • the film thickness of the heat radiation paint 700 is, for example, several tens of ⁇ m or less
  • the etching depth of the region 703 is preferably in the range of several ⁇ m to several tens of ⁇ m, for example.
  • the surface of the heat-dissipating paint 700 in the region 703 is uneven by etching, so that the wettability is improved by the surface shape in the region 703. .
  • thermoelectric device 1 As shown in FIG. 1 having the heat radiation sheet 16 in which the hydrophilic region 162 and the hydrophobic region 163 are formed in stripes as shown in FIG. 2 by the second method will be described. .
  • the power generation performance was evaluated by attaching the thermoelectric device 1 on a heater in a case with good airtightness and changing the humidity with a humidifier provided in the case.
  • FIG. 12 is a diagram illustrating an example of the generated voltage of the thermoelectric device 1.
  • the vertical axis indicates the generated voltage Vot (V) of the thermoelectric device 1
  • the horizontal axis indicates time (minutes).
  • the generated voltage Vot was measured for 25 minutes from the start of measurement while the humidifier in the casing was off.
  • the power generation voltage Vot was measured with the humidifier in the housing turned on.
  • the generation voltage Vot increases by repeating the cycle of condensation and adsorption (or condensation) of moisture on the surface of the heat radiation sheet 16 and growth of moisture into water droplets. I was able to confirm.
  • FIG. 13 shows a thermoelectric device 1A having a heat dissipation sheet 16 that does not include a hydrophilic region 162 and a hydrophobic region 163, and the hydrophilic region 162 manufactured without performing the coupling process of steps S23 to S25 in the second method.
  • thermoelectric device 1B having the heat dissipation sheet 16 including the hydrophobic region 163, and the heat dissipation sheet 16 including the hydrophilic region 162 and the hydrophobic region 163 manufactured by the second method including the coupling process of steps S23 to S25.
  • FIG. 13 shows a thermoelectric device 1A having a heat dissipation sheet 16 that does not include a hydrophilic region 162 and a hydrophobic region 163, and the hydrophilic region 162 manufactured without performing the coupling process of steps S23 to S25
  • the vertical axis indicates the generated voltage Vot (V) of the thermoelectric devices 1A to 1C, and the horizontal axis indicates time (minutes).
  • indicates the thermoelectric device 1A
  • indicates the thermoelectric device 1B
  • indicates the generated voltage Vot of the thermoelectric device 1C.
  • FIG. 14 is a diagram illustrating an example of the power generation voltage of the thermoelectric device 1A having the heat dissipation sheet 16 that does not include the hydrophilic region 162 and the hydrophobic region 163.
  • FIG. 15 is a diagram illustrating an example of the power generation voltage of the thermoelectric device 1 ⁇ / b> C having the heat radiation sheet 16 including the hydrophilic region 162 and the hydrophobic region 163.
  • the vertical axis indicates the generated voltage Vot (V) of the thermoelectric devices 1A and 1C
  • the horizontal axis indicates time (minutes).
  • the thermoelectric device 1A as can be seen from, for example, the changing portion X1 in FIG.
  • thermoelectric device 1C As can be seen from the change portion X2 in FIG. 16, for example, the time change of the generated voltage Vot is not greatly affected by the temperature fluctuation of the heater in the housing, and the moisture on the surface of the heat radiation sheet 16 It was confirmed that the temperature difference in the thermoelectric element 11 was increased and the power generation voltage Vot was increased by repeating the cycle of condensation and adsorption (or dew condensation) and growth of water into water droplets.
  • Example 1 PELCOOL H-7020 made by Pelcourt Co., Ltd., in which highly heat-dissipating ceramic particles were mixed in acrylic resin, was used as the heat dissipating paint.
  • the heat-dissipating paint was applied to one surface of an aluminum sheet having a thickness of 0.1 mm by spray coating, and dried in an oven at 120 ° C. for 20 minutes.
  • the film thickness of the heat-dissipating paint after drying was 20 ⁇ m.
  • a metal mask having 0.5 mm slits formed at a pitch of 2 mm was brought into close contact with the surface of the heat dissipating paint, and the resin surface was etched by reactive ion etching using O 2 plasma.
  • the etching depth averaged 0.1 ⁇ m.
  • thermoelectric device as shown in FIG. 1 in which a thermoelectric element, a circuit board and the like were molded with resin.
  • the heat radiating sheet was bonded to the surface of the molded resin so that the heat radiating paint side of the heat radiating sheet was exposed.
  • the thermoelectric device has a structure in which the heat dissipation sheet is thermally connected to the thermoelectric element.
  • thermoelectric device formed as described above was installed in an outdoor installation type device having a metal casing, and power was generated using the casing as a heat source.
  • the thermoelectric device In the daytime, the thermoelectric device generates electricity due to the temperature difference between the casing temperature and the ambient air temperature due to the temperature rise of the casing due to sunlight.
  • the casing temperature At night, the casing temperature is lower than the ambient temperature, and power is generated due to the temperature difference between the casing temperature and the ambient ambient temperature.
  • the difference is smaller than the daytime temperature difference, and the amount of power generation is also small.
  • the humidity is higher than in the daytime, and depending on the season and weather, there are many days when the humidity is 80% or more.
  • thermoelectric device If the surface of the thermoelectric device becomes lower than the atmospheric temperature and there is a certain amount of humidity, condensation starts in the hydrophilic region of the heat dissipation sheet. At the time of dew condensation, the heat of condensation is radiated to the surface of the heat transfer device, and this heat dissipation increases the temperature difference in the thermoelectric element, thereby increasing the amount of power generated by the thermoelectric device.
  • the water droplets become large and come into contact with the hydrophobic region of the heat radiating sheet, the water droplets roll down from the hydrophobic region and new condensation starts on the surface of the heat radiating sheet, so that the increased power generation amount is maintained.
  • a metal mask with 0.5 mm slits formed at a pitch of 2 mm is brought into close contact with the surface of the heat dissipating paint, and the resin portion is etched by reactive ion etching using CF 4 and H 2 as etching gases. Ceramic particles were exposed. The etching depth was 3 ⁇ m on average.
  • thermoelectric device as shown in FIG. 1 in which a thermoelectric element, a circuit board and the like were molded with resin.
  • the heat radiating sheet was bonded to the surface of the molded resin so that the heat radiating paint side of the heat radiating sheet was exposed.
  • the thermoelectric device has a structure in which the heat dissipation sheet is thermally connected to the thermoelectric element.
  • thermoelectric device formed as described above was installed in an outdoor installation type device having a metal casing, and power was generated using the casing as a heat source.
  • the thermoelectric device In the daytime, the thermoelectric device generates electricity due to the temperature difference between the casing temperature and the ambient air temperature due to the temperature rise of the casing due to sunlight.
  • the casing temperature At night, the casing temperature is lower than the ambient temperature, and power is generated due to the temperature difference between the casing temperature and the ambient ambient temperature.
  • the difference is smaller than the daytime temperature difference, and the amount of power generation is also small.
  • the humidity is higher than in the daytime, and depending on the season and weather, there are many days when the humidity is 80% or more.
  • thermoelectric device If the surface of the thermoelectric device becomes lower than the atmospheric temperature and there is a certain amount of humidity, condensation starts in the hydrophilic region of the heat dissipation sheet. At the time of dew condensation, the heat of condensation is radiated to the surface of the heat transfer device, and this heat dissipation increases the temperature difference in the thermoelectric element, thereby increasing the amount of power generated by the thermoelectric device.
  • the water droplets become large and come into contact with the hydrophobic region of the heat radiating sheet, the water droplets roll down from the hydrophobic region and new condensation starts on the surface of the heat radiating sheet, so that the increased power generation amount is maintained.
  • thermoelectric device increased by about 5% to about 10% when the humidity was 80% compared to the amount of electricity generated when no hydrophilic area was formed on the heat-dissipating sheet.
  • This heat radiating paint was applied to one surface of a graphite sheet having a thickness of 0.1 mm by spray coating, and was naturally dried at 25 ° C. for 8 hours.
  • the film thickness of the heat-dissipating paint after drying was 20 ⁇ m.
  • a metal mask having 0.5 mm slits formed at a pitch of 2 mm was brought into close contact with the heat radiation paint surface, and the resin portion was etched by reactive ion etching using CF 4 and H 2 as etching gases. Ceramic particles were exposed. Etching conditions were the same as those in Example 1 above.
  • thermoelectric device as shown in FIG. 1 in which a thermoelectric element, a circuit board and the like were molded with resin.
  • thermoelectric device After the thermoelectric device was formed, it was immersed in a 1% aqueous solution of a silane coupling agent having an amino group as a reactive group, for example, KBE-903 or KBM-603 manufactured by Shin-Etsu Silicone, and dried in an oven at 100 ° C. for 30 minutes. Thereby, the hydrophilic amino group was formed on the exposed filler surface, and the etched surface became a more hydrophilic surface. Even if the silane coupling agent has a mercapto group, a carboxy group or the like as a reactive group, the same effect was obtained.
  • a silane coupling agent having an amino group as a reactive group for example, KBE-903 or KBM-603 manufactured by Shin-Etsu Silicone
  • Example 4 As a heat dissipating paint, UNIQOOL manufactured by Godo Ink Co., Ltd. mixed with epoxy resin high heat dissipating ceramic particles was used. This heat-dissipating paint was coated on one surface of a 0.1 mm thick copper sheet by spray coating and dried in an oven at 100 ° C. for 10 minutes. The film thickness of the heat-dissipating paint after drying was 20 ⁇ m. An etching pattern of 0.5 mm ⁇ 0.5 mm was formed on the surface of the heat radiation paint with a 2 mm pitch by a CO 2 laser. The etching depth was 3 ⁇ m to 5 ⁇ m.
  • thermoelectric device as shown in FIG. 1 in which a thermoelectric element, a circuit board and the like were molded with resin.
  • thermoelectric device After the thermoelectric device was formed, it was immersed in a 1% aqueous solution of a silane coupling agent having an amino group as a reactive group, for example, KBE-903 or KBM-603 manufactured by Shin-Etsu Silicone, and dried in an oven at 100 ° C. for 30 minutes. Thereby, the hydrophilic amino group was formed on the exposed filler surface, and the etched surface became a more hydrophilic surface. Even if the silane coupling agent has a mercapto group or a carboxyl group as a reactive group, the same effect was obtained.
  • a silane coupling agent having an amino group as a reactive group for example, KBE-903 or KBM-603 manufactured by Shin-Etsu Silicone
  • a silane coupling agent having an amino group as a reactive group which is made of aluminum having an aluminum oxide film on its surface, a film mask having 0.5 mm slits formed at a pitch of 2 mm on the fin surface of a heat sink having fins,
  • a 1% aqueous solution of KBE-903 or KBM-603 manufactured by Shin-Etsu Silicone was sprayed or immersed in the aqueous solution, and dried in an oven at 100 ° C. for 30 minutes.
  • the hydrophilic amino group was formed on the exposed filler surface, and the etched surface became a more hydrophilic surface. Even if the silane coupling agent has a mercapto group or a carboxyl group as a reactive group, the same effect was obtained.
  • the amount of power generation at night obtained was increased by about 5% when the humidity was 80% compared to the amount of power generated when no hydrophilic region was formed on the heat dissipation sheet.
  • thermoelectric device using a heat-dissipating sheet having a pattern in which hydrophilic regions and hydrophobic regions are alternately arranged on the surface should be used in places where the humidity is high, for example, 80% or more, such as in a sewer pipe.
  • the humidity is high, for example, 80% or more, such as in a sewer pipe.
  • a thermoelectric device that uses a heat-dissipating sheet having a pattern in which hydrophilic and hydrophobic regions are alternately arranged on the surface is sufficient even in an environment where a large temperature difference is unlikely to occur in the heat source depending on the weather, time, etc. Therefore, it is not necessary that the humidity be 80% or higher. For example, in an environment having a certain level of humidity of 20% or higher, an effect of improving the power generation can be obtained.
  • FIG. 16 is a block diagram schematically illustrating an example of the configuration of an integrated module.
  • the integrated module 60 includes a power generation module 61, a power storage module 62, a sensor 63, a controller 64, a memory 65, a communication circuit 66, and an antenna 67.
  • the power generation module 61 is formed by, for example, the thermoelectric device 1 shown in FIG.
  • the power storage module 62 is connected to the power generation module 61 and stores power generated by the power generation module 61.
  • the power storage module 62 is not particularly limited as long as it has a function of storing electric power, and is formed of, for example, the secondary battery 133 shown in FIG.
  • the power generation module 61 and the power storage module 62 form a power supply unit 68. Power is supplied to the sensor 63, the controller 64, and the communication circuit 66 from at least one of the power generation module 61 and the power storage module 62 that form the power supply unit 68. If stable power can be supplied by the power generation module 61, the power storage module 62 can be omitted.
  • the sensor 63 can be formed by, for example, a sensor that detects temperature, humidity, pressure, light, sound, electromagnetic waves, acceleration, vibration, gas, fine particles, and the like, and may be included in the semiconductor chip 131 shown in FIG. 1, for example. . Furthermore, the sensor 63 includes, for example, a distance measuring sensor that measures the distance to the object by emitting infrared rays to the object and receives light reflected from the object, a weight sensor that measures the weight of the object, and You may form with the water level sensor which detects data, such as a water level.
  • the controller 64 transmits various data detected by the sensor 63 to the server 75 shown in FIG. 17 via the communication circuit 66 and the antenna 67, for example.
  • the controller 64 may transmit secondary data based on various data detected by the sensor 63 and other data to the server 75.
  • the controller 64 may calculate secondary data by performing predetermined calculations using various data detected by the sensor 63, for example, and may transmit the secondary data to the server 75.
  • the controller 64 and the communication circuit 66 may be included in the semiconductor chip 132 shown in FIG.
  • the memory 65 stores various data detected by the sensor 63 and the calculated secondary data according to a command from the controller 64.
  • the stored information is read by an instruction from the controller 64.
  • the memory 65 may be included in the semiconductor chip 131 shown in FIG.
  • the communication circuit 66 and the antenna 67 form a communication unit 69.
  • the communication unit 69 transmits and receives data between the controller 64 and the server 75.
  • the communication unit 69 employs wireless communication, but wired communication may be employed instead of wireless communication.
  • the antenna 67 can be omitted.
  • a signal line is connected to the communication circuit 66.
  • the communication unit 69 may be included in, for example, the semiconductor chip 132 illustrated in FIG. In this case, the antenna 67 may be externally connected to the semiconductor chip 132.
  • the integrated module 60 may be applied to, for example, the processing system 70 shown in FIG.
  • FIG. 17 is a diagram illustrating an example of a processing system 70 to which the integrated module 60 is applied.
  • the processing system 70 includes a plurality of integrated modules 60 and a server 75.
  • the plurality of integrated modules 60 are installed in the manhole 76, for example.
  • the plurality of integrated modules 60 installed in the plurality of manholes 76 are connected to the server 75 via a network (in this example, a wireless network) 77.
  • the integrated module 60 may be installed anywhere as long as it is a manhole 76 structure.
  • the integrated module 60 is fixed to a lid 78, a concrete pipe 79, or the like, which is a structure of the manhole 76, according to the detection target of the sensor 63 or the type of the sensor 63.
  • the power generation module 61 provided in the integrated module 60 is thermally connected to a structure of a manhole 76 that is an example of an installation target, and is caused by a temperature difference between the structure of the manhole 76 and the outside air or the temperature inside the manhole 76. Generate electricity.
  • FIG. 18 is a diagram illustrating a first application example of the processing system 70.
  • the processing system 70 is used to grasp the deterioration of the structure (the lid 78 and the concrete pipe 79) of the manhole 76.
  • the sensor 63 detects the temperature and humidity in the manhole 76, vibration (or acceleration) acting on the structure of the manhole 76, and the data detected by the sensor 63 is stored in the memory 65.
  • the controller 64 transmits the data stored in the memory 65 via the communication circuit 66 and the antenna 67.
  • the server 75 provided in the measurement vehicle 80 collects data.
  • the server 75 combines the positional information of the vehicle 80 by GPS (Global Positioning System) and the collected data, and displays the collected data on a map displayed on, for example, an in-vehicle monitor (not shown). Thereby, the degree of deterioration of the concrete pipe 79 of each manhole 76 can be estimated from information displaying temperature, humidity, vibration, and the like.
  • GPS Global Positioning System
  • a camera 82 that acquires an image of the lid 78 of the manhole 76 is attached to the lower part of the measurement vehicle 80, and deterioration of the lid 78 of the manhole 76 is determined by image recognition. Based on this result, the local government may be notified of the replacement time of the lid 78 of the manhole 76.
  • the measurement vehicle 80 may not be a special vehicle, but may be, for example, a garbage truck operated by a local government.
  • the sensor 63 may detect the concentration of the gas generated in the manhole 76.
  • the gas generated in the manhole 76 include hydrogen sulfide gas. It is known that hydrogen sulfide gas generated in the sewer 83 abruptly deteriorates the structure of the manhole 76. The generation of hydrogen sulfide gas is also a cause of complaints for neighboring residents. By using a hydrogen sulfide gas sensor as the sensor 63, the accuracy of deterioration prediction of the structure of the manhole 76 can be improved, and complaints from residents can be quickly handled.
  • the sensor 63 may detect at least one of the temperature, humidity, vibration in the manhole 76, and the concentration of the gas generated in the manhole 76.
  • the humidity in the manhole 76 is always high, and the water in the sewer 83 (or water supply) overflows in the manhole 76.
  • the inside of the manhole 76 has a substantially constant temperature.
  • the lid 78 is hot in summer and low in winter, and hydrogen sulfide gas that dissolves various metals including the metal forming the lid 78 is generated. It has been.
  • the electronic components such as the sensor 63 and the power generation module 61 are sealed with the resin 15 as shown in FIG. 1, for example, so that long-term reliability can be maintained.
  • FIG. 19 is a diagram illustrating a second application example of the processing system 70.
  • the processing system 70 is used to predict the flow rate of the sewer 83 connected to the manhole 76.
  • the sensor 63 for example, a water level meter, a flow meter or the like is used. By installing a sensor 63 such as a water level meter or a flow meter in the manhole 76, the flow rate of the sewer 83 can be grasped in detail.
  • the sensor 63 is incorporated in the integrated module 60, but a sensor control unit (not shown) for controlling the operation of an external sensor may be provided instead of the sensor 63, for example.
  • the sensor control unit may control sensors (not shown) such as a water level meter and a flow meter arranged in the sewer 83 and acquire information detected by these sensors. Information detected by these sensors may be transmitted to the sensor control unit wirelessly.
  • the flow rate of the sewer 83 is detected by the sensor 63 once a day or once an hour and is collected in the server 75 of the data center 84 through a high-speed communication line.
  • the flow rate data of the sewer 83 detected by the sensor 63 may be transmitted simultaneously with the measurement, or may be transmitted after accumulating for one day or one week in order to reduce power consumption.
  • the measurement vehicle may collect the flow rate data.
  • the relationship between the meteorological phenomenon and the flow rate of the sewer 83 can be established from the analysis result of the flow rate data of the sewer 83 and the rainfall data of the Japan Meteorological Agency. Then, prediction data may be provided or distributed by predicting the flow rate of the sewer 83 in each place from the rainfall data of the Japan Meteorological Agency. Since the flow rate of the sewer 83 varies from year to year in accordance with the residential building, living conditions, and land development conditions, the processing system 70 that can continuously update data is useful.
  • the processing system 70 can also be used for measuring the flow rate of the sewer 83 when local heavy rain occurs.
  • a local heavy rain in the city it is necessary to measure the water level of the sewer 83 and transmit information in minutes in order to ensure the safety of workers of the sewer 83 and prevent the sewer 83 from overflowing.
  • data is collected only for the integrated module 60 installed in a small number of manholes 76 having a relatively low altitude.
  • FIG. 20 is a diagram for explaining a third application example of the processing system 70.
  • the processing system 70 is used for manhole 76 security and work history.
  • the sensor 63 detects opening / closing of the lid 78 of the manhole 76.
  • the sensor 63 for example, an acceleration sensor, an open / close switch, or the like is used.
  • the sensor 63 may detect at least one of acceleration generated in the lid 78 of the manhole 76 and an open / closed state of the lid 78 of the manhole 76 in order to detect opening and closing of the lid 78 of the manhole 76.
  • Data output from the sensor 63 in response to opening / closing of the lid 78 of the manhole 76 is received by the server 75.
  • FIG. 21 is a diagram illustrating a fourth application example of the processing system 70.
  • the processing system 70 is used for acquiring road traffic information.
  • the sensor 63 detects the vehicles 85, 86, and 87 that pass on the manhole 76.
  • an acceleration sensor, a magnetic sensor, a microphone, or the like is used for this sensor 63.
  • a signal corresponding to the number of vehicles passing over the manhole 76 is obtained from the sensor 63.
  • Data output from the sensor 63 is received by the server 75.
  • this processing system 70 it is possible to obtain traffic jam information even on narrow roads and alleys that are not measured by the current road traffic information communication system. This makes it possible to provide detailed traffic information.
  • the type of the vehicles 85, 86, 87 passing through the manhole 76 may be detected from the strength of the detection value of the sensor 63.
  • a data set in which the detection value of the sensor 63 is associated with the type of vehicle is stored in the memory 65 in advance. From the controller 64, information on the vehicle type determined from the detection value of the sensor 63 and the data set is transmitted to the server 75. Thereby, the kind of vehicle which passes on the manhole 76 can be grasped
  • the individual identification information of the vehicles 85, 86 and 87 passing over the manhole 76 may be detected by the sensor 63.
  • the characteristics of the vehicle may be obtained by the reaction of the magnetic sensor. That is, for example, each vehicle can be identified by mounting on the vehicle a medium that generates a characteristic magnetism for each vehicle. Analyzing the difference in the flow of cars in the city depending on the type of car leads to urban road control and evaluation, such as planning to guide a specific vehicle to a specific road.
  • FIG. 22 is a diagram for explaining a fifth application example of the processing system 70.
  • the processing system 70 is used for measuring rainfall.
  • an X-band radar for weather prediction is used for the sensor 63.
  • the radio wave of the X-band radar does not reach the tip of the heavy rain area, for example, during heavy rain, and cannot exceed a large object such as a mountain. Also, with current radars, it is often difficult to find and track heavy rain areas that suddenly occur or develop rapidly. High-precision prediction requires high temporal and spatial resolution.
  • the resolution of the X-band radar is, for example, 250 m.
  • the sensor 63 in the manhole 76 with an average interval of about 30 m, finer weather observation is possible, and measurement of local heavy rain and the like It seems to be useful for prediction.
  • Data output from the sensor 63 is received by the server 75.
  • the dedicated server 75 is used.
  • a general-purpose computer may be used as the server 75.
  • a program for executing the operations performed by the controller 64 and the server 75 may be installed and executed in a general-purpose computer that functions as the server 75.
  • the program may be supplied on a recording medium or downloaded from a network.
  • the first to fifth application examples may be appropriately combined and implemented.
  • thermoelectric device of an indication were demonstrated by the Example, this invention is not limited to the said Example, It cannot be overemphasized that various deformation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 In the present invention, a heat dissipation sheet has on the surface thereof a pattern in which hydrophilic regions and hydrophobic regions are disposed in an alternating manner.

Description

放熱シート及び熱電装置Heat dissipation sheet and thermoelectric device
 本発明は、放熱シート及び熱電装置に関する。 The present invention relates to a heat dissipation sheet and a thermoelectric device.
 センサネットワークなどを構築する場合、各センサを外部電源と接続する電源線などが不要となる、環境発電の利用が検討されている。環境発電には、例えば太陽光発電の他、温度差を用いて発電する熱電素子などが知られている。 When constructing sensor networks, etc., the use of energy harvesting is being considered, which eliminates the need for power lines to connect each sensor to an external power source. For example, solar power generation and thermoelectric elements that generate power using a temperature difference are known as environmental power generation.
 熱電素子は、例えば複数のp型熱電半導体及びn型熱電半導体で形成されており、熱エネルギを電気エネルギに、また、電気エネルギを熱エネルギに直接変換する機能を有する。熱電素子の両端に温度差が発生すると、ゼーベック(Seebeck)効果により電圧が発生する。熱電装置(または、熱電発電装置)は、このように熱電素子が発生した電圧を電気エネルギとして取り出す。熱電装置によれば、熱エネルギを電気エネルギに直接変換することが可能であり、廃熱利用に代表されるような熱エネルギの有効な利用方法の一つとして注目されている。 The thermoelectric element is formed of, for example, a plurality of p-type thermoelectric semiconductors and n-type thermoelectric semiconductors, and has a function of directly converting thermal energy into electrical energy and electrical energy into thermal energy. When a temperature difference occurs between both ends of the thermoelectric element, a voltage is generated due to the Seebeck effect. The thermoelectric device (or thermoelectric power generation device) takes out the voltage generated by the thermoelectric element as electric energy. According to the thermoelectric device, heat energy can be directly converted into electric energy, and is attracting attention as an effective method of using heat energy as typified by waste heat utilization.
 一般的な熱電素子は、例えば略同じ長さで柱状のp型熱電半導体とn型熱電半導体の両端部を対にした熱電対が複数個平面的に、且つ、p型熱電半導体とn型熱電半導体が交互に規則的に配置され、熱電対が電気的に直列に接続された構造を有する。熱電対を電気的に接続する配線は、例えばシリコン(Si)、セラミック材料などで形成された2枚の基板上に形成される。2枚の基板は、p型熱電半導体またはn型熱電半導体及びこれらの熱電半導体を接続する電極の厚さ分の間隔を隔てて向かい合う構造を有する。 A general thermoelectric element has, for example, a plurality of two-dimensional thermocouples in which both ends of a columnar p-type thermoelectric semiconductor and an n-type thermoelectric semiconductor are paired substantially in the same length, and the p-type thermoelectric semiconductor and the n-type thermoelectric Semiconductors are alternately and regularly arranged, and thermocouples are electrically connected in series. The wiring for electrically connecting the thermocouple is formed on two substrates formed of, for example, silicon (Si), a ceramic material, or the like. The two substrates have a structure facing each other with an interval corresponding to the thickness of the p-type thermoelectric semiconductor or the n-type thermoelectric semiconductor and the electrodes connecting these thermoelectric semiconductors.
 一方の基板を発熱源に接するように配置し、他方の基板から放熱することにより、熱電半導体対に温度差を発生させる。熱電半導体対に持続的に温度差を発生させるためには、放熱側の基板に放熱部品を設けることが望ましい。 ¡One substrate is placed in contact with the heat source, and heat is radiated from the other substrate, thereby generating a temperature difference in the thermoelectric semiconductor pair. In order to continuously generate a temperature difference in the thermoelectric semiconductor pair, it is desirable to provide a heat dissipation component on the heat dissipation side substrate.
 自然空冷の場合、一般的に放熱部品として用いられるのは、アルミニウム(Al)にアルマイト処理(陽極酸化)し、表面に酸化アルミニウムの膜を形成したヒートシンクである。Alの熱放射率は、例えば0.03~0.1程度であるが、酸化アルミニウムの熱放射率は、例えば0.4~0.6程度であるため、表面にアルマイト処理を施したヒートシンクは放熱性に優れているので良く用いられる。しかし、Al製のヒートシンクは柔軟性を有さず、部品の形状に合わせて変形させにくいため、凹凸が大きいなどの複雑な形状の部品の放熱部品として利用する場合、適切に部品に設置することが難しい。一方、アルミニウム箔などの金属フィルムは、部品の形状に合わせて変形させることができるが、フィルムは薄いため、たとえ表面にアルマイト処理などを施して放熱性を改善しても、伝熱性に劣り、ヒートシンクとしては十分な放熱性を発揮できない。 In the case of natural air cooling, a heat sink that is generally used as a heat dissipation component is a heat sink in which aluminum (Al) is anodized (anodized) and an aluminum oxide film is formed on the surface. The thermal emissivity of Al is, for example, about 0.03 to 0.1, but the thermal emissivity of aluminum oxide is, for example, about 0.4 to 0.6. Therefore, a heat sink whose surface is anodized is It is often used because of its excellent heat dissipation. However, since the heat sink made of Al is not flexible and difficult to deform according to the shape of the part, when using it as a heat dissipation part for parts with complicated shapes such as large unevenness, install it properly on the part Is difficult. On the other hand, a metal film such as aluminum foil can be deformed according to the shape of the part, but because the film is thin, even if the surface is subjected to anodizing to improve heat dissipation, it is inferior in heat transfer, As a heat sink, sufficient heat dissipation cannot be demonstrated.
 炭素質材料は、軽量耐熱材料、或いは、高強度材料として、各種構造材料に使用されている。このような炭素質材料のうち、炭素原子が六角形の網の目状に結合したグラファイトは、高い熱伝導性を利用した放熱材料及び/または電熱材料としての用途が拡大している。特にシート状のグラファイトは、大きな面積を有するグラファイトシートを容易に作成できると共に、金属の中でも熱伝導率の高い銅(Cu)以上の高い熱伝導率を有し、さらに、柔軟性にも富んでいる。このため、グラファイトシートは、例えば熱伝達用の材料で形成されたヒートコンダクタ、ヒートスプレッダなどに使用されている。しかし、圧延体の一例であるグラファイトシートは、熱拡散性に優れているものの、熱放射率は例えば0.3~0.5程度であるため、放熱性を向上するには優れた放熱性を有する材料を放熱側に別途設けることが望ましい。
  熱電素子による発電は、温度差があれば可能であるが、自然に発生する温度差に依存する。例えば熱源が太陽熱で温められるコンクリート、金属などの場合、熱源に熱電素子を装着した場合、熱源からの熱を大気に放熱して発電することができる。
Carbonaceous materials are used in various structural materials as lightweight heat-resistant materials or high-strength materials. Among such carbonaceous materials, graphite in which carbon atoms are bonded in the form of a hexagonal network has been increasingly used as a heat dissipation material and / or an electrothermal material utilizing high thermal conductivity. In particular, sheet-like graphite can easily produce a graphite sheet having a large area, has a high thermal conductivity higher than that of copper (Cu), which has a high thermal conductivity among metals, and is also flexible. Yes. For this reason, the graphite sheet is used for, for example, a heat conductor, a heat spreader or the like formed of a material for heat transfer. However, although a graphite sheet as an example of a rolled body is excellent in thermal diffusivity, the thermal emissivity is, for example, about 0.3 to 0.5. It is desirable to separately provide the material having on the heat dissipation side.
Power generation by a thermoelectric element is possible if there is a temperature difference, but depends on a naturally occurring temperature difference. For example, when the heat source is concrete, metal, or the like that is heated by solar heat, when a thermoelectric element is attached to the heat source, the heat from the heat source can be radiated to the atmosphere to generate power.
 晴れた日中に日向にある熱源の場合、コンクリート、金属などの熱源は太陽熱を受けて温度が上昇するため、大気との温度差が大きくなるが、曇天時、雨天時、夜間などの場合の温度差は小さくなる。さらに、本発明者らによる測定結果から、熱源となるコンクリート、金属などの温度は、晴れた日中以外は、特に夜間において周辺の気温よりも低くなる傾向があることが分かった。このように大きな温度差が期待できない環境条件下では、放熱性を向上するヒートシンクまたは材料を設けても、十分な発電量を確保することは難しい。 In the case of a heat source in the sun during a sunny day, the temperature of the heat source such as concrete or metal rises due to solar heat, so the temperature difference from the atmosphere increases, but in the case of cloudy weather, rainy weather, nighttime, etc. The temperature difference becomes smaller. Furthermore, it was found from the measurement results by the present inventors that the temperatures of concrete, metal, and the like serving as heat sources tend to be lower than the ambient temperature, especially at night, except during sunny days. Under such environmental conditions where a large temperature difference cannot be expected, it is difficult to secure a sufficient power generation amount even if a heat sink or a material that improves heat dissipation is provided.
特開2011-4500号公報JP 2011-4500 A 特開平11-209618号公報Japanese Patent Laid-Open No. 11-209618 特開2013-190169号公報JP 2013-190169 A
 従来の熱電装置では、天候、時刻などに応じて熱源に大きな温度差が生じにくい環境下では、十分な発電量を確保することは難しい。 In conventional thermoelectric devices, it is difficult to ensure a sufficient amount of power generation in an environment where a large temperature difference is unlikely to occur in the heat source according to the weather, time, and the like.
 そこで、1つの側面では、天候、時刻などに応じて熱源に大きな温度差が生じにくい環境下においても、十分な発電量を確保することが可能な放熱シート及び熱電装置を提供することを目的とする。 Therefore, in one aspect, an object is to provide a heat dissipation sheet and a thermoelectric device that can secure a sufficient power generation amount even in an environment in which a large temperature difference is unlikely to occur in a heat source according to weather, time, and the like. To do.
 1つの案によれば、表面に、親水性領域と疎水性領域が交互に配置されたパターンを有する放熱シートが提供される。 According to one proposal, a heat dissipation sheet having a pattern in which hydrophilic regions and hydrophobic regions are alternately arranged on the surface is provided.
 他の案によれば、熱源側と放熱側を有する熱電素子と、前記熱電素子の前記放熱側に設けられたヒートシンクと、前記ヒートシンクと接する放熱シートとを備え、前記放熱シートの表面は、親水性領域と疎水性領域が交互に配置されたパターンを有する熱電装置が提供される。 According to another proposal, a thermoelectric element having a heat source side and a heat dissipation side, a heat sink provided on the heat dissipation side of the thermoelectric element, and a heat dissipation sheet in contact with the heat sink, the surface of the heat dissipation sheet is hydrophilic There is provided a thermoelectric device having a pattern in which conductive regions and hydrophobic regions are alternately arranged.
 一態様によれば、天候、時刻などに応じて熱源に大きな温度差が生じにくい環境下においても、十分な発電量を確保することができる。 According to one aspect, it is possible to secure a sufficient amount of power generation even in an environment where a large temperature difference is unlikely to occur in the heat source according to the weather, time, and the like.
一実施例における熱電装置の構成の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of a structure of the thermoelectric apparatus in one Example. 放熱シートの一例を示す平面図である。It is a top view which shows an example of a thermal radiation sheet. 放熱シートの他の例を示す平面図である。It is a top view which shows the other example of a thermal radiation sheet. ある都市における気温と湿度の一日の変化の一例を示す図である。It is a figure which shows an example of the daily change of the temperature and humidity in a certain city. 水分が親水性領域上に吸着する状態を説明する図である。It is a figure explaining the state which a water | moisture content adsorb | sucks on a hydrophilic region. 親水性領域上で成長した水滴が自重で疎水性領域上を転がり落ちる状態を説明する図である。It is a figure explaining the state in which the water droplet grown on the hydrophilic area | region rolls on the hydrophobic area | region with dead weight. 一実施例における放熱シートの製造方法の第1の例を説明する断面図である。It is sectional drawing explaining the 1st example of the manufacturing method of the thermal radiation sheet in one Example. 一実施例における放熱シートの製造方法の第2の例を説明する断面図である。It is sectional drawing explaining the 2nd example of the manufacturing method of the thermal radiation sheet in one Example. シランカップリング剤を説明する図である。It is a figure explaining a silane coupling agent. シランカップリング剤の反応メカニズムの一例を説明する図である。It is a figure explaining an example of the reaction mechanism of a silane coupling agent. シランカップリング剤の反応メカニズムの一例を説明する図である。It is a figure explaining an example of the reaction mechanism of a silane coupling agent. 熱電装置の発電電圧の一例を示す図である。It is a figure which shows an example of the electric power generation voltage of a thermoelectric apparatus. 異なる熱電装置の発電電圧の一例を、加湿が無い状態と、加湿が有る状態について示す図である。It is a figure which shows an example of the electric power generation voltage of a different thermoelectric apparatus about the state without humidification, and the state with humidification. 親水性領域及び疎水性領域を含まない放熱シートを有する熱電装置の発電電圧の一例を示す図である。It is a figure which shows an example of the power generation voltage of the thermoelectric apparatus which has a thermal radiation sheet | seat which does not contain a hydrophilic region and a hydrophobic region. 親水性領域及び疎水性領域を含む放熱シートを有する熱電装置の発電電圧の一例を示す図である。It is a figure which shows an example of the electric power generation voltage of the thermoelectric apparatus which has a thermal radiation sheet | seat containing a hydrophilic region and a hydrophobic region. 一体型モジュールの構成の一例を模式的に示すブロック図である。It is a block diagram which shows typically an example of a structure of an integrated module. 一体型モジュールが適用される処理システムの一例を説明する図である。It is a figure explaining an example of the processing system to which an integrated module is applied. 処理システムの第一適用例を説明する図である。It is a figure explaining the 1st application example of a processing system. 処理システムの第二適用例を説明する図である。It is a figure explaining the 2nd application example of a processing system. 処理システムの第三適用例を説明する図である。It is a figure explaining the 3rd application example of a processing system. 処理システムの第四適用例を説明する図である。It is a figure explaining the 4th example of application of a processing system. 処理システムの第五適用例を説明する図である。It is a figure explaining the 5th application example of a processing system.
 開示の放熱シート及び熱電装置では、放熱シートの表面に、親水性領域と疎水性領域が交互に配置される。 In the disclosed heat dissipation sheet and thermoelectric device, hydrophilic regions and hydrophobic regions are alternately arranged on the surface of the heat dissipation sheet.
 以下に、開示の放熱シート及び熱電装置の各実施例を図面と共に説明する。 Hereinafter, each embodiment of the disclosed heat dissipation sheet and thermoelectric device will be described with reference to the drawings.
 図1は、一実施例における熱電装置の構成の一例を模式的に示す断面図である。図1に示すように、熱電装置1は、熱電素子11、熱電素子11の上下に設けられたヒートシンク12-1,12-2、熱電素子11の左右に設けられた回路基板13-1,13-2、熱電素子11と回路基板13-1,13-2との接続部分を封止する封止樹脂14、熱電素子11を封止する樹脂15、及び樹脂15の熱源側に設けられた放熱シート16を有する。 FIG. 1 is a cross-sectional view schematically showing an example of the configuration of a thermoelectric device in one embodiment. As shown in FIG. 1, the thermoelectric device 1 includes a thermoelectric element 11, heat sinks 12-1 and 12-2 provided above and below the thermoelectric element 11, and circuit boards 13-1 and 13 provided on the left and right sides of the thermoelectric element 11. -2, sealing resin 14 for sealing the connection between the thermoelectric element 11 and the circuit boards 13-1, 13-2, resin 15 for sealing the thermoelectric element 11, and heat dissipation provided on the heat source side of the resin 15 A sheet 16 is provided.
 熱電素子11の構成は特に限定されない。熱電素子11は、例えば略同じ長さで柱状のp型熱電半導体111とn型熱電半導体112の両端部を対にした熱電対が複数個平面的に、且つ、p型熱電半導体111とn型熱電半導体112が交互に規則的に配置され、熱電対が電気的に直列に接続された周知の構造を有しても良い。熱電対を電気的に接続する配線は、例えばシリコン(Si)、セラミック材料などで形成された2枚の基板113-1,113-2上に形成される。2枚の基板113-1,113-2は、p型熱電半導体111またはn型熱電半導体111及びこれらの熱電半導体111,112を接続する電極(図示せず)の厚さ分の間隔を隔てて向かい合う構造を有する。 The configuration of the thermoelectric element 11 is not particularly limited. The thermoelectric element 11 includes, for example, a plurality of thermocouples having a pair of both ends of a columnar p-type thermoelectric semiconductor 111 and an n-type thermoelectric semiconductor 112 that are substantially the same length, and the p-type thermoelectric semiconductor 111 and n-type. The thermoelectric semiconductors 112 may be arranged alternately and regularly, and may have a known structure in which thermocouples are electrically connected in series. Wirings for electrically connecting the thermocouples are formed on two substrates 113-1, 113-2 made of, for example, silicon (Si), a ceramic material, or the like. The two substrates 113-1 and 113-2 are spaced apart by a thickness corresponding to the thickness of the p-type thermoelectric semiconductor 111 or the n-type thermoelectric semiconductor 111 and electrodes (not shown) connecting these thermoelectric semiconductors 111 and 112. It has a structure that faces each other.
 ヒートシンク12-1は、熱電素子11の放熱側(図1中、上側)に設けられている。一方、ヒートシンク12-2は、熱電素子11の熱源側(図1中、下側)に設けられている。 The heat sink 12-1 is provided on the heat dissipation side (upper side in FIG. 1) of the thermoelectric element 11. On the other hand, the heat sink 12-2 is provided on the heat source side (lower side in FIG. 1) of the thermoelectric element 11.
 ヒートシンク12-1,12-2は、放熱性を有する材料で形成されており、材質は特に限定されない。ヒートシンク12-1,12-2は、例えばアルミニウム(Al)にアルマイト処理(陽極酸化)し、表面に酸化アルミニウムの膜を形成された構造を有する。放熱性を有する材料は、例えばAl、Cuなどの金属の他、例えば炭素質材料であっても良く、炭素質材料の場合は、表面に例えばアルミナと同等程度の放熱性を有する材料で形成された膜を設けても良い。 The heat sinks 12-1 and 12-2 are made of a heat radiating material, and the material is not particularly limited. The heat sinks 12-1 and 12-2 have a structure in which, for example, aluminum (Al) is anodized (anodized) and an aluminum oxide film is formed on the surface. The heat-dissipating material may be, for example, a carbonaceous material in addition to a metal such as Al and Cu. In the case of a carbonaceous material, the surface is formed of a material having a heat-dissipating property equivalent to, for example, alumina. An additional film may be provided.
 また、ヒートシンク12-1,12-2の形状は、熱電素子11の熱源側(図1中、上側)と熱電素子11の放熱側(図1中、下側)に配置されるものであれば、特に限定されない。この例では、ヒートシンク12-1は、段差を有し、外周部が回路基板13-1,13-2の内側部分と一部オーバラップする板状の矩形部材である。また、ヒートシンク12-2は、外周部が回路基板13-1,13-2の内側部分とオーバラップしない板状の矩形部材である。ヒートシンク12-2は、熱電装置1が後述する取付面上に取り付けられる際に、好ましくは熱源と接する。ヒートシンク12-2が熱源と接する面積は、大きいことが好ましい。熱源は、例えば熱電装置1を収納する金属製の筐体などであっても良い。 Further, the shape of the heat sinks 12-1 and 12-2 is as long as they are arranged on the heat source side (upper side in FIG. 1) of the thermoelectric element 11 and on the heat dissipation side (lower side in FIG. 1) of the thermoelectric element 11. There is no particular limitation. In this example, the heat sink 12-1 is a plate-like rectangular member having a step and having an outer peripheral portion partially overlapping with the inner portions of the circuit boards 13-1 and 13-2. The heat sink 12-2 is a plate-like rectangular member whose outer peripheral portion does not overlap with the inner portions of the circuit boards 13-1 and 13-2. The heat sink 12-2 is preferably in contact with a heat source when the thermoelectric device 1 is mounted on a mounting surface described later. The area where the heat sink 12-2 is in contact with the heat source is preferably large. The heat source may be, for example, a metal housing that houses the thermoelectric device 1.
 回路基板13-1,13-2は、熱電装置1の用途に応じた機能を備えた回路部品を有する。この例では、回路基板13-2上には温度センサなどのセンサ、センサの出力を処理する回路、温度センサの出力などを記憶するメモリなどを含む半導体チップ131が設けられている。一方、回路基板13-1上には、例えばコントローラ、通信回路などを含む半導体チップ132に加え、二次電池133が設けられている。なお、熱電装置1に設けられる回路基板の数は、2個に限定されず、1個であっても、3個以上であっても良い。 The circuit boards 13-1 and 13-2 have circuit components having functions according to the use of the thermoelectric device 1. In this example, a semiconductor chip 131 including a sensor such as a temperature sensor, a circuit that processes the output of the sensor, a memory that stores the output of the temperature sensor, and the like is provided on the circuit board 13-2. On the other hand, on the circuit board 13-1, for example, a secondary battery 133 is provided in addition to a semiconductor chip 132 including a controller, a communication circuit, and the like. The number of circuit boards provided in the thermoelectric device 1 is not limited to two, and may be one or three or more.
 封止樹脂14は、熱電素子11と回路基板13-1,13-2との電気的接続部分を封止する。これにより、熱電素子11は、ヒートシンク12-1,12-2、回路基板13-1,13-2、封止樹脂14、及び樹脂15により形成された空間内に封止されている。 The sealing resin 14 seals an electrical connection portion between the thermoelectric element 11 and the circuit boards 13-1 and 13-2. As a result, the thermoelectric element 11 is sealed in a space formed by the heat sinks 12-1 and 12-2, the circuit boards 13-1 and 13-2, the sealing resin 14, and the resin 15.
 樹脂15の種類は、特に限定されない。この例では、樹脂15は上部の断面形状が複数の三角形状の山を有するようにモールドされる。これにより、樹脂15の上部(熱源側)の表面積は、樹脂15の下部(放熱側)の表面積と比べて大きい。なお、樹脂15の上部の断面形状は、図1に示す如き三角形状に限定されず、概ね斜面である面を有する形状であれば特に限定されない。この場合の斜面とは、回路基板13-1,13-2の基板面(または、熱電装置1が取付面に取り付けられる際に取付面と接触する熱電装置1の底面)に対する垂線に対して傾斜している面である。従って、熱電装置1が重力方向と垂直な取付面に取り付けられた場合、樹脂15の斜面の部分に形成された放熱シート16上に吸着して成長した水滴は、後述するように水滴の自重で斜面を転がり落ちる。 The type of resin 15 is not particularly limited. In this example, the resin 15 is molded so that the upper cross-sectional shape has a plurality of triangular peaks. Thereby, the surface area of the upper part (heat source side) of the resin 15 is larger than the surface area of the lower part (heat radiation side) of the resin 15. The cross-sectional shape of the upper portion of the resin 15 is not limited to a triangular shape as shown in FIG. 1 and is not particularly limited as long as it has a shape having a substantially inclined surface. In this case, the inclined surface is inclined with respect to a normal to the substrate surfaces of the circuit boards 13-1 and 13-2 (or the bottom surface of the thermoelectric device 1 that comes into contact with the attachment surface when the thermoelectric device 1 is attached to the attachment surface). It is the surface that is doing. Therefore, when the thermoelectric device 1 is mounted on a mounting surface perpendicular to the direction of gravity, the water droplets that are adsorbed and grown on the heat radiation sheet 16 formed on the inclined surface of the resin 15 are caused by the weight of the water droplets as will be described later. Roll down the slope.
 放熱シート16は、ヒートシンク12-1の放熱側である上面及び樹脂15の放熱側である上面に設けられている。ヒートシンク12-1及び樹脂15の夫々上面に設けられた放熱シート16は、ヒートシンク12-1及び樹脂15の夫々の上面形状に沿って設けられている。放熱シート16は、例えばグラファイトシート、金属シート、グラファイトシートと金属シートが積層された多層構造を有するシートなどの放熱性及び可塑性を有するベースシート上に、親水性領域と疎水性領域が交互に配置されたパターンが形成された構造を有する。放熱シート16は、適切な厚さと適切な可塑性を有することが、放熱シート16をヒートシンク12-1及び樹脂15の上面形状に沿って接着するなどして容易に設けることができるという点で好ましい。 The heat radiation sheet 16 is provided on the upper surface on the heat radiation side of the heat sink 12-1 and the upper surface on the heat radiation side of the resin 15. The heat radiating sheets 16 provided on the upper surfaces of the heat sink 12-1 and the resin 15 are provided along the upper surface shapes of the heat sink 12-1 and the resin 15, respectively. The heat-dissipating sheet 16 has a hydrophilic region and a hydrophobic region alternately arranged on a base sheet having heat dissipation and plasticity, such as a graphite sheet, a metal sheet, and a sheet having a multilayer structure in which a graphite sheet and a metal sheet are laminated. A structure in which a patterned pattern is formed. It is preferable that the heat radiating sheet 16 has an appropriate thickness and an appropriate plasticity in that the heat radiating sheet 16 can be easily provided by bonding the heat radiating sheet 16 along the upper surface shape of the heat sink 12-1 and the resin 15.
 なお、ヒートシンク12-1の上面は、重力方向と垂直な取付面と平行ではなく、当該取付面に対して傾斜していることが、後述するようにヒートシンク12-1の上面に設けられた放熱シート16上の水滴が自重で転がり落ちやすくする観点から好ましい。ヒートシンク12-1の上面は、例えば樹脂15の上面と同様に、複数の三角形状の山などを有する形状を有しても良い。 Note that the upper surface of the heat sink 12-1 is not parallel to the mounting surface perpendicular to the direction of gravity but is inclined with respect to the mounting surface, as described later. It is preferable from the viewpoint of making it easy for the water droplet on the sheet 16 to roll off due to its own weight. The upper surface of the heat sink 12-1 may have a shape having a plurality of triangular peaks, for example, like the upper surface of the resin 15.
 また、放熱シート16は、熱電装置1が取付面に取り付けられた状態で重力方向と垂直な面以外の面を有することが、水滴が自重で転がり落ちやすくする観点から好ましい。 In addition, it is preferable that the heat radiation sheet 16 has a surface other than the surface perpendicular to the direction of gravity in a state where the thermoelectric device 1 is attached to the attachment surface from the viewpoint of facilitating the falling of water droplets by its own weight.
 図2は、放熱シート16の一例を示す平面図である。図2に示す例では、放熱シート16は、ベースシート161上に親水性領域162と疎水性領域163が交互に縞状に配置されたパターンを有する。説明の便宜上、疎水性領域163を梨地で示す。この場合、親水性領域162と疎水性領域163が延在する方向は、例えば放熱シート16上で成長した水滴が転がる方向と垂直な方向であることが好ましいが、放熱シート16上で成長した水滴が転がる方向と平行な方向以外であれば特に限定されない。 FIG. 2 is a plan view showing an example of the heat dissipation sheet 16. In the example shown in FIG. 2, the heat dissipation sheet 16 has a pattern in which hydrophilic regions 162 and hydrophobic regions 163 are alternately arranged in a striped pattern on the base sheet 161. For convenience of explanation, the hydrophobic region 163 is shown with a satin finish. In this case, the direction in which the hydrophilic region 162 and the hydrophobic region 163 extend is preferably, for example, a direction perpendicular to the direction in which the water droplets grown on the heat radiation sheet 16 roll, but the water droplets grown on the heat radiation sheet 16 There is no particular limitation as long as the direction is other than the direction parallel to the rolling direction.
 図3は、放熱シート16の他の例を示す平面図である。図3に示す例では、放熱シート16は、ベースシート161上に親水性領域162と疎水性領域163が交互に市松状に配置されたパターンを有する。この場合、親水性領域162と疎水性領域163が間欠的に延在する方向は、例えば放熱シート16上で成長した水滴が転がる方向と特定の関係にある必要はない。 FIG. 3 is a plan view showing another example of the heat dissipation sheet 16. In the example shown in FIG. 3, the heat dissipation sheet 16 has a pattern in which hydrophilic regions 162 and hydrophobic regions 163 are alternately arranged in a checkered pattern on the base sheet 161. In this case, the direction in which the hydrophilic region 162 and the hydrophobic region 163 extend intermittently does not need to have a specific relationship with the direction in which the water droplets grown on the heat dissipation sheet 16 roll, for example.
 なお、全ての親水性領域162がベースシート161上で占める面積と、全ての疎水性領域163がベースシート161上で占める面積とは、同じであっても、異なっても良い。また、親水性領域162と疎水性領域163が交互に配置されるパターンは、縞状及び市松状に限定されるものではなく、後述するように、空気中の水分を効率良く放熱シート16の表面(親水性領域162)に凝縮させて水滴を成長しやすくすると共に、成長した水滴が放熱シート16の表面(疎水性領域163)を転がり落ちやすくするパターンであれば良い。 Note that the area occupied by all the hydrophilic regions 162 on the base sheet 161 and the area occupied by all the hydrophobic regions 163 on the base sheet 161 may be the same or different. Further, the pattern in which the hydrophilic regions 162 and the hydrophobic regions 163 are alternately arranged is not limited to a striped pattern and a checkered pattern. As described later, moisture in the air is efficiently removed from the surface of the heat radiation sheet 16. Any pattern may be used as long as it is easy to grow water droplets by condensing in (hydrophilic region 162), and the grown water droplets easily roll off the surface (hydrophobic region 163) of the heat dissipation sheet 16.
 晴れた日中に日向にある熱源の場合、コンクリート、金属などの熱源は太陽熱を受けて温度が上昇するため、大気との温度差が大きくなるが、曇天時、雨天時、夜間などの場合の温度差は小さくなる。本発明者らによる測定結果から、熱源となるコンクリート、金属などの温度は、晴れた日中以外は、特に夜間において周辺の気温よりも低くなる傾向があり、また、晴れた日中と比較して湿度が高いことが多いことが分かった。図4は、ある都市における気温と湿度の一日の変化の一例を示す図である。図4中、左側の縦軸は温度(℃)、右側の縦軸は湿度(%)、横軸は時刻(1時から24時)を示す。また、気温のサンプルは●印、湿度のサンプルは■印で示す。図4に示す例の場合、気温は夜に低く夜明け前の5時頃に最低気温になり、昼には高く14時頃に最高気温になっている。また、湿度は、夜に高く夜明け前の5時頃に最高湿度となり、昼には低く14時頃に最低湿度になっている。このように大きな温度差が期待できない環境条件下では、放熱性を向上するヒートシンクまたは材料を設けても、十分な発電量を確保することは難しい。 In the case of a heat source in the sun during a sunny day, the temperature of the heat source such as concrete or metal rises due to solar heat, so the temperature difference from the atmosphere increases, but in the case of cloudy weather, rainy weather, nighttime, etc. The temperature difference becomes smaller. From the measurement results by the present inventors, the temperature of concrete, metal, etc., which is a heat source, tends to be lower than the ambient temperature, especially at night, except during sunny days, and compared with sunny daytime. It was found that the humidity was often high. FIG. 4 is a diagram illustrating an example of a daily change in temperature and humidity in a certain city. In FIG. 4, the left vertical axis represents temperature (° C.), the right vertical axis represents humidity (%), and the horizontal axis represents time (from 1 o'clock to 24 o'clock). Also, the temperature sample is marked with ● and the humidity sample is marked with ■. In the case of the example shown in FIG. 4, the temperature is low at night and reaches a minimum temperature around 5 o'clock before dawn, and is high in the daytime and reaches a maximum temperature around 14:00. Further, the humidity is high at night and reaches a maximum humidity around 5 o'clock before dawn, and is low at noon and around 14:00 at noon. Under such environmental conditions where a large temperature difference cannot be expected, it is difficult to secure a sufficient power generation amount even if a heat sink or a material that improves heat dissipation is provided.
 しかし、上記の放熱シート16を用いた場合、曇天、雨天時や夜間など、湿度が高い環境においては、空気中の水分500が放熱シート16の親水性領域162上に集まりやすく、やがて水分500は図5に示すように凝縮して親水性領域162上に吸着する。親水性領域162上に吸着して成長した水滴501は、成長と共に水滴501の自重で図6に示すように疎水性領域163上を矢印方向へ転がり落ちる。なお、1つの水滴501は、図6中矢印方向へ転がり落ちる際に、他の水滴501と接触してさらに大きな水滴501に成長するため、より転がり落ちやすくなることは、言うまでもない。図5は、水分500が親水性領域162上に吸着する状態を説明する図であり、図6は、親水性領域162上で成長した水滴501が自重で疎水性領域163上を転がり落ちる状態を説明する図である。図5及び図6中、図1乃至図3と同一部分には同一符号を付し、その説明は省略する。 However, when the heat dissipation sheet 16 is used, the moisture 500 in the air easily collects on the hydrophilic region 162 of the heat dissipation sheet 16 in a high humidity environment such as cloudy weather, rainy weather, or nighttime. As shown in FIG. 5, it is condensed and adsorbed onto the hydrophilic region 162. The water droplet 501 that has grown by adsorbing on the hydrophilic region 162 rolls down on the hydrophobic region 163 in the direction of the arrow as shown in FIG. Needless to say, when one water drop 501 rolls in the direction of the arrow in FIG. 6, it contacts with another water drop 501 and grows into a larger water drop 501. FIG. 5 is a diagram illustrating a state in which moisture 500 is adsorbed on the hydrophilic region 162, and FIG. 6 illustrates a state in which the water droplet 501 grown on the hydrophilic region 162 rolls down on the hydrophobic region 163 with its own weight. It is a figure explaining. 5 and 6, the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof is omitted.
 曇天、雨天時や夜間などは、熱源となるコンクリート、金属などの方が周辺温度より低い条件となることが多いが、コンクリート、金属などの熱源に接している熱電装置1の放熱シート16の表面(特に、親水性領域162上)には水蒸気が凝縮して結露する。これにより、水蒸気の凝縮エネルギが放熱シート16の表面から放出され、放熱シート16の表面温度が上昇して熱電素子11内の温度差が大きくなるので、熱電装置1の発電量が増大する。やがて水分500が成長して水滴501が放熱シート16の疎水性領域163上を転がり落ちるが、放熱シート16の親水性領域162上には再度結露が生じるので、熱電装置1の発電量が増大する。 When it is cloudy, rainy, or at night, the heat source of concrete or metal is often lower than the ambient temperature, but the surface of the heat dissipation sheet 16 of the thermoelectric device 1 that is in contact with the heat source of concrete or metal, etc. Water vapor condenses and condenses (especially on the hydrophilic region 162). Thereby, the condensation energy of water vapor is released from the surface of the heat dissipation sheet 16, the surface temperature of the heat dissipation sheet 16 rises, and the temperature difference in the thermoelectric element 11 increases, so the power generation amount of the thermoelectric device 1 increases. Eventually, the water 500 grows and the water droplets 501 roll on the hydrophobic region 163 of the heat dissipation sheet 16, but dew condensation occurs again on the hydrophilic region 162 of the heat dissipation sheet 16, increasing the power generation amount of the thermoelectric device 1. .
 このような、放熱シート16の表面に対する水分の凝縮及び吸着(または、結露)と、水分の水滴への成長のサイクルが繰り返されることにより、放熱シート16の表面に親水性領域162及び疎水性領域163が交互に配置されていない場合と比較して、熱電装置1の発電量を増大することができる。 By repeating such a cycle of condensation and adsorption (or condensation) of moisture on the surface of the heat radiation sheet 16 and growth of water into water droplets, a hydrophilic region 162 and a hydrophobic region are formed on the surface of the heat radiation sheet 16. Compared with the case where 163 is not alternately arranged, the power generation amount of the thermoelectric device 1 can be increased.
 次に、一実施例における放熱シートの製造方法について説明する。放熱シート16の表面に親水性領域162及び疎水性領域163が交互に配置されたパターンを形成する場合、例えば以下に図7と共に説明する第1の方法のように、放熱シート16のベースシート161の放熱材料に例えば酸化アルミニウムを用いても、図8と共に後述する第2の方法のように、放熱シート16のベースシート161の放熱材料に例えば放熱塗料を用いても良い。 Next, a method for manufacturing a heat dissipation sheet in one embodiment will be described. When forming a pattern in which hydrophilic regions 162 and hydrophobic regions 163 are alternately arranged on the surface of the heat dissipation sheet 16, a base sheet 161 of the heat dissipation sheet 16 is formed, for example, as in a first method described below with reference to FIG. For example, aluminum oxide may be used as the heat dissipating material, or heat dissipating paint may be used as the heat dissipating material of the base sheet 161 of the heat dissipating sheet 16 as in the second method described later with reference to FIG.
 第1の方法では、ステップS11において、図7の(A)に示すように、表面が例えば酸化アルミニウムで形成され親水性であるベースシート161上の親水性領域162となる箇所をマスキングするマスク601を介して、疎水性領域163となる箇所に、疎水性材料602を塗布して硬化させる。疎水性材料602は、例えばポリテトラフルオロエチレン(PTFE:PolyTetraFluoroEthylene)、ポリフッ化ビニリデン(PVDF:PolyVinylidene DiFluoride)、ポリプロピレン(PP:PolyPropylene)、ポリエチレン(PE:PolyEthylene)、ポリスルホン(PSF:PolySulFone)などであっても良く、これらの疎水性材料602は、加熱硬化されても良い。次に、ステップS12において、図7の(B)に示すように、ベースシート161上の親水性領域162となる箇所を例えばレジスト膜603によりマスキングし、加水分解させたカップリング剤の水溶液604を疎水性領域163となる疎水性材料602の箇所に塗布して乾燥させる。その後、ステップS13において、図7の(C)に示すように、レジスト膜603を除去する。酸化アルミニウムで形成されたベースシート161の表面の一部を疎水性領域163とするため、カップリング剤の水溶液に、疎水性の有機官能基を有するシランカップリング剤を用いても良い。また、疎水性の有機官能基は、例えばビニル基やフェニル基を有するカップリング剤、炭素数の多いカップリング剤などであっても良い。ステップS11でマスキングに用いるマスク601と、ステップS12でマスキングに用いるレジスト膜603は、同じマスクまたはレジスト膜であっても良い。 In the first method, in step S11, as shown in FIG. 7A, a mask 601 masks a portion where the surface is formed of, for example, aluminum oxide and becomes a hydrophilic region 162 on the hydrophilic base sheet 161. Then, the hydrophobic material 602 is applied to the portion to become the hydrophobic region 163 and cured. The hydrophobic material 602 is, for example, polytetrafluoroethylene (PTFE: PolyTetraFluoroEthylene), polyvinylidene fluoride (PVDF), polypropylene (PP: PolyPropylene), polyethylene (PE: PolyEthylene), polysulfone (PSF: PolySulFone), and the like. These hydrophobic materials 602 may be heat-cured. Next, in step S12, as shown in FIG. 7B, a portion that becomes the hydrophilic region 162 on the base sheet 161 is masked with, for example, a resist film 603, and an aqueous solution 604 of the coupling agent hydrolyzed is used. It applies to the location of the hydrophobic material 602 used as the hydrophobic area | region 163, It dries. Thereafter, in step S13, as shown in FIG. 7C, the resist film 603 is removed. In order to make a part of the surface of the base sheet 161 formed of aluminum oxide into the hydrophobic region 163, a silane coupling agent having a hydrophobic organic functional group may be used in the aqueous solution of the coupling agent. Further, the hydrophobic organic functional group may be, for example, a coupling agent having a vinyl group or a phenyl group, a coupling agent having a large number of carbon atoms, or the like. The mask 601 used for masking in step S11 and the resist film 603 used for masking in step S12 may be the same mask or resist film.
 第2の方法では、図8の(A)に示すように、ベースシート161の表面に放熱塗料700が塗布された放熱シート16を用いる。放熱塗料700は、バインダ701とセラミック粒子702を含む。バインダ701に用いる樹脂は、例えばポリエステル、アクリルなどの疎水性の樹脂である。一方、セラミック粒子702は、露出された表面にOH基が生成されるので、表面が親水性である。ステップS21において、図8の(A)に矢印で示すように、マスク607を介して放熱塗料700上の親水性領域162となる箇所にOプラズマエッチング、レーザエッチング(または、レーザアブレーション)、UV(Ultra-Violet)オゾンに晒すなどの反応性エッチングを施し、反応性エッチングを施したバインダ701の表面に親水性の水酸基、カルボシキル基などの官能基を付与する。 In the second method, as shown in FIG. 8A, a heat radiation sheet 16 in which a heat radiation paint 700 is applied to the surface of the base sheet 161 is used. The heat radiation paint 700 includes a binder 701 and ceramic particles 702. The resin used for the binder 701 is a hydrophobic resin such as polyester or acrylic. On the other hand, the ceramic particle 702 has a hydrophilic surface because OH groups are generated on the exposed surface. In step S21, as indicated by an arrow in FIG. 8A, O 2 plasma etching, laser etching (or laser ablation), UV, or the like is formed on the portion that becomes the hydrophilic region 162 on the heat radiation paint 700 through the mask 607. (Ultra-Violet) Reactive etching such as exposure to ozone is performed, and a functional group such as a hydrophilic hydroxyl group or a carboxyl group is imparted to the surface of the binder 701 subjected to the reactive etching.
 次に、ステップS22において、放熱塗料700上の親水性領域162となる箇所をエッチングして、図8の(B)に示すように、凹形状にエッチングされた領域703内のセラミック粒子702を露出させる。これにより、セラミック粒子702が露出した領域703は親水性となる。ステップS22におけるエッチングは、例えば研磨紙などによる研磨、サンドブラスト、水、レーザなどを用いた物理的エッチングなどであっても良い。 Next, in step S22, the portion that becomes the hydrophilic region 162 on the heat radiation coating 700 is etched to expose the ceramic particles 702 in the region 703 etched into a concave shape as shown in FIG. 8B. Let Thereby, the region 703 where the ceramic particles 702 are exposed becomes hydrophilic. The etching in step S22 may be, for example, polishing with polishing paper or the like, physical etching using sandblasting, water, laser, or the like.
 なお、ステップS21の反応性エッチングをより長い時間継続することでステップS22を省略し、領域703内のセラミック粒子702を露出させても良い。この場合も、領域703内で露出されたセラミック粒子702の表面は親水性であり、且つ、領域703内のバインダ701の表面には上記のステップS21の場合と同様に親水性の官能基が付与される。 It should be noted that step S22 may be omitted by continuing the reactive etching in step S21 for a longer time, and the ceramic particles 702 in the region 703 may be exposed. Also in this case, the surface of the ceramic particle 702 exposed in the region 703 is hydrophilic, and a hydrophilic functional group is imparted to the surface of the binder 701 in the region 703 as in the case of step S21 described above. Is done.
 次に、ステップS23において、図8の(C)に一部拡大して示すように、ステップS21またはステップS21,S22の処理を施した領域703内の、バインダ701及び露出されたセラミック粒子702を含む表面を、親水性の有機官能基を有するシランカップリング剤で修飾する。親水性の有機官能基は、例えばアミノ基、メルカプト基、カルボキシルキ基などを有する官能基であっても良い。 Next, in step S23, as shown in a partially enlarged view in FIG. 8C, the binder 701 and the exposed ceramic particles 702 in the region 703 subjected to the processing in step S21 or steps S21 and S22 are removed. The containing surface is modified with a silane coupling agent having a hydrophilic organic functional group. The hydrophilic organic functional group may be a functional group having, for example, an amino group, a mercapto group, a carboxyl group, or the like.
 図9は、シランカップリング剤を説明する図であり、YはNH,SHなどの親水性官能基を含む反応性官能基、ORは加水分解性基を表す。また、図10及び図11は、シランカップリング剤の反応メカニズムの一例を説明する図である。図11は、水素結合による配向状態から、脱水により共有結合の生成が起こる反応メカニズムを示す。 FIG. 9 is a diagram illustrating a silane coupling agent, where Y represents a reactive functional group containing a hydrophilic functional group such as NH or SH, and OR represents a hydrolyzable group. 10 and 11 are diagrams for explaining an example of the reaction mechanism of the silane coupling agent. FIG. 11 shows a reaction mechanism in which a covalent bond is generated by dehydration from an orientation state due to a hydrogen bond.
 ステップS24において、図7の(B)の場合とは反対に、放熱塗料700上の疎水性領域163となる箇所(即ち、領域703)を例えばレジスト膜(図示せず)によりマスキングし、加水分解させたカップリング剤の水溶液を親水性領域162となる箇所に塗布して乾燥させる。その後、ステップS25において、図7の(C)の場合と同様に、レジスト膜を除去する。これにより、放熱塗料700上の領域703は親水性領域162となり、放熱塗料700上の領域703以外の領域は疎水性領域163となる。 In step S24, contrary to the case of FIG. 7B, the portion (that is, the region 703) that becomes the hydrophobic region 163 on the heat radiation paint 700 is masked by, for example, a resist film (not shown), and then hydrolyzed. The aqueous solution of the coupling agent thus applied is applied to the portion that becomes the hydrophilic region 162 and dried. Thereafter, in step S25, the resist film is removed as in the case of FIG. As a result, the region 703 on the heat dissipating paint 700 becomes a hydrophilic region 162, and the region other than the region 703 on the heat dissipating paint 700 becomes a hydrophobic region 163.
 第2の方法を採用する場合、領域703がエッチングされるため、放熱シート16の親水性領域162は、疎水性領域163より凹んだ凹形状となる。このため、親水性領域162には凹形状の深さ分、より多くの水分を貯めやすくなる。一方、放熱塗料700の膜厚は例えば数十μm以下であるため、領域703のエッチング深さは例えば数μm~十数μmの範囲とすることが好ましい。また、領域703内のセラミック粒子702が露出するのに加えて、エッチングにより放熱塗料700の領域703内の表面には凹凸が形成されるため、領域703内の表面形状によっても濡れ性が向上する。 When adopting the second method, since the region 703 is etched, the hydrophilic region 162 of the heat dissipation sheet 16 has a concave shape that is recessed from the hydrophobic region 163. For this reason, it becomes easier to store more water in the hydrophilic region 162 by the depth of the concave shape. On the other hand, since the film thickness of the heat radiation paint 700 is, for example, several tens of μm or less, the etching depth of the region 703 is preferably in the range of several μm to several tens of μm, for example. In addition to exposing the ceramic particles 702 in the region 703, the surface of the heat-dissipating paint 700 in the region 703 is uneven by etching, so that the wettability is improved by the surface shape in the region 703. .
 次に、上記第2の方法により親水性領域162及び疎水性領域163が図2に示すように縞状に形成された放熱シート16を有する図1に示す如き熱電装置1の発電性能について説明する。発電性能は、気密性の良い筐体内においてヒータ上に熱電装置1を取り付け、筐体内に設けられた加湿器により湿度を変化させて評価した。 Next, the power generation performance of the thermoelectric device 1 as shown in FIG. 1 having the heat radiation sheet 16 in which the hydrophilic region 162 and the hydrophobic region 163 are formed in stripes as shown in FIG. 2 by the second method will be described. . The power generation performance was evaluated by attaching the thermoelectric device 1 on a heater in a case with good airtightness and changing the humidity with a humidifier provided in the case.
 図12は、熱電装置1の発電電圧の一例を示す図である。図12中、縦軸は熱電装置1の発電電圧Vot(V)を示し、横軸は時間(分)を示す。図12において、測定開始から25分間は、筐体内の加湿器がオフの状態で発電電圧Votを測定した。測定開始から25分が経過した時点で、筐体内の加湿器をオンの状態として発電電圧Votを測定した。測定の結果、筐体内の湿度が上昇するにつれて、放熱シート16の表面に対する水分の凝縮及び吸着(または、結露)と、水分の水滴への成長のサイクルが繰り返されることにより、発電電圧Votが増加することが確認できた。 FIG. 12 is a diagram illustrating an example of the generated voltage of the thermoelectric device 1. In FIG. 12, the vertical axis indicates the generated voltage Vot (V) of the thermoelectric device 1, and the horizontal axis indicates time (minutes). In FIG. 12, the generated voltage Vot was measured for 25 minutes from the start of measurement while the humidifier in the casing was off. When 25 minutes had elapsed from the start of measurement, the power generation voltage Vot was measured with the humidifier in the housing turned on. As a result of the measurement, as the humidity in the housing rises, the generation voltage Vot increases by repeating the cycle of condensation and adsorption (or condensation) of moisture on the surface of the heat radiation sheet 16 and growth of moisture into water droplets. I was able to confirm.
 図13は、親水性領域162及び疎水性領域163を含まない放熱シート16を有する熱電装置1A、上記第2の方法のうちステップS23~S25のカップリング処理を行わずに製造した親水性領域162及び疎水性領域163を含む放熱シート16を有する熱電装置1B、及びステップS23~S25のカップリング処理を含む上記第2の方法で製造した親水性領域162及び疎水性領域163を含む放熱シート16を有する熱電装置1Cの発電電圧の一例を、加湿が無い状態と、加湿が有り湿度が80%~90%の状態について示す図である。図13中、縦軸は熱電装置1A~1Cの発電電圧Vot(V)を示し、横軸は時間(分)を示す。また、◆印は熱電装置1A、▲印は熱電装置1B、●印は熱電装置1Cの発電電圧Votを示す。図13からもわかるように、加湿が有り湿度が80%~90%の状態では、上記カップリング処理を行う第2の方法で製造した放熱シート16を有する熱電装置1Cの発電性能が、熱電装置1A,1Bの発電性能と比べて約20%近く向上することが確認された。 FIG. 13 shows a thermoelectric device 1A having a heat dissipation sheet 16 that does not include a hydrophilic region 162 and a hydrophobic region 163, and the hydrophilic region 162 manufactured without performing the coupling process of steps S23 to S25 in the second method. And the thermoelectric device 1B having the heat dissipation sheet 16 including the hydrophobic region 163, and the heat dissipation sheet 16 including the hydrophilic region 162 and the hydrophobic region 163 manufactured by the second method including the coupling process of steps S23 to S25. It is a figure which shows an example of the power generation voltage of 1 C of thermoelectric devices which have it about a state without humidification, and a state with humidification and humidity of 80%-90%. In FIG. 13, the vertical axis indicates the generated voltage Vot (V) of the thermoelectric devices 1A to 1C, and the horizontal axis indicates time (minutes). Further, ♦ indicates the thermoelectric device 1A, ▲ indicates the thermoelectric device 1B, and ● indicates the generated voltage Vot of the thermoelectric device 1C. As can be seen from FIG. 13, in the state of humidification and humidity of 80% to 90%, the power generation performance of the thermoelectric device 1C having the heat radiation sheet 16 manufactured by the second method for performing the coupling process is It was confirmed that the power generation performance of 1A and 1B was improved by about 20%.
 図14は、親水性領域162及び疎水性領域163を含まない放熱シート16を有する熱電装置1Aの発電電圧の一例を示す図である。また、図15は、親水性領域162及び疎水性領域163を含む放熱シート16を有する熱電装置1Cの発電電圧の一例を示す図である。図14及び図15中、縦軸は熱電装置1A,1Cの発電電圧Vot(V)を示し、横軸は時間(分)を示す。熱電装置1Aの場合、図15の例えば変化部分X1からもわかるように、発電電圧Votの時間変化は、主に筐体内のヒータの温度揺らぎに影響されることが確認された。一方、熱電装置1Cの場合、図16の例えば変化部分X2からもわかるように、発電電圧Votの時間変化は、筐体内のヒータの温度揺らぎには大きく影響されず、放熱シート16の表面に対する水分の凝縮及び吸着(または、結露)と、水分の水滴への成長のサイクルが繰り返されることにより、熱電素子11内の温度差が大きくなり、発電電圧Votが増加することが確認できた。 FIG. 14 is a diagram illustrating an example of the power generation voltage of the thermoelectric device 1A having the heat dissipation sheet 16 that does not include the hydrophilic region 162 and the hydrophobic region 163. FIG. 15 is a diagram illustrating an example of the power generation voltage of the thermoelectric device 1 </ b> C having the heat radiation sheet 16 including the hydrophilic region 162 and the hydrophobic region 163. 14 and FIG. 15, the vertical axis indicates the generated voltage Vot (V) of the thermoelectric devices 1A and 1C, and the horizontal axis indicates time (minutes). In the case of the thermoelectric device 1A, as can be seen from, for example, the changing portion X1 in FIG. 15, it was confirmed that the time change of the generated voltage Vot is mainly influenced by the temperature fluctuation of the heater in the housing. On the other hand, in the case of the thermoelectric device 1C, as can be seen from the change portion X2 in FIG. 16, for example, the time change of the generated voltage Vot is not greatly affected by the temperature fluctuation of the heater in the housing, and the moisture on the surface of the heat radiation sheet 16 It was confirmed that the temperature difference in the thermoelectric element 11 was increased and the power generation voltage Vot was increased by repeating the cycle of condensation and adsorption (or dew condensation) and growth of water into water droplets.
 次に、実施例1~5について、製造された放熱シート16とその発電性能について説明する。
[実施例1]
 放熱塗料として、アクリル樹脂に高放熱性のセラミック粒子が混合された、ペルクール社製のPELCOOL H-7020を使用した。この放熱塗料を厚さ0.1mmのアルミニウムシートの片方の表面にスプレー塗装により塗膜し、オーブンにて120℃で20分乾燥させた。乾燥後の放熱塗料の膜厚は、20μmであった。0.5mmのスリットが2mmピッチで形成されたメタルマスクを放熱塗料面に密着させて、Oプラズマ用いた反応性イオンエッチングにより樹脂表面をエッチングした。エッチングの深さは平均0.1μmであった。
Next, with respect to Examples 1 to 5, the manufactured heat radiation sheet 16 and the power generation performance thereof will be described.
[Example 1]
PELCOOL H-7020 made by Pelcourt Co., Ltd., in which highly heat-dissipating ceramic particles were mixed in acrylic resin, was used as the heat dissipating paint. The heat-dissipating paint was applied to one surface of an aluminum sheet having a thickness of 0.1 mm by spray coating, and dried in an oven at 120 ° C. for 20 minutes. The film thickness of the heat-dissipating paint after drying was 20 μm. A metal mask having 0.5 mm slits formed at a pitch of 2 mm was brought into close contact with the surface of the heat dissipating paint, and the resin surface was etched by reactive ion etching using O 2 plasma. The etching depth averaged 0.1 μm.
 以上の処理により得られた放熱シートを、熱電素子、回路基板などを樹脂でモールドした、図1に示す如き熱電装置に設けた。放熱シートは、放熱シートの放熱塗料側が露出するように、モールドされた樹脂の表面に接着された。また、熱電装置は、放熱シートが熱電素子と熱的に接続された構造とした。 The heat dissipation sheet obtained by the above treatment was provided in a thermoelectric device as shown in FIG. 1 in which a thermoelectric element, a circuit board and the like were molded with resin. The heat radiating sheet was bonded to the surface of the molded resin so that the heat radiating paint side of the heat radiating sheet was exposed. Further, the thermoelectric device has a structure in which the heat dissipation sheet is thermally connected to the thermoelectric element.
 上記のように形成された熱電装置を、金属製の筐体を有する屋外設置型装置に設置し、筐体を熱源として発電した。昼間は太陽光による筐体の温度上昇により、筐体温度と周辺の大気温度との温度差により熱電装置が発電する。夜間は筐体の温度が大気温度よりも低下し、筐体温度と周囲の大気温度との温度差により発電するが、昼間の温度差に比べるとその差は小さく、発電量も小さい。しかし、湿度は昼間よりも高く、季節や天気にもよるが、湿度が80%以上となる日も多い。熱電装置の表面は、大気温度よりも低くなり、ある程度の湿度があれば、放熱シートの親水性領域に結露が始まる。結露の際、凝縮熱が伝熱装置の表面に放熱され、この放熱により熱電素子内の温度差が大きくなるため、熱電装置の発電量は増大する。水滴が大きくなり放熱シートの疎水性領域に接触すると、水滴は疎水性領域から転がり落ち、放熱シートの表面ではまた新たな結露が始まるため、増大した発電量は維持される。 The thermoelectric device formed as described above was installed in an outdoor installation type device having a metal casing, and power was generated using the casing as a heat source. In the daytime, the thermoelectric device generates electricity due to the temperature difference between the casing temperature and the ambient air temperature due to the temperature rise of the casing due to sunlight. At night, the casing temperature is lower than the ambient temperature, and power is generated due to the temperature difference between the casing temperature and the ambient ambient temperature. However, the difference is smaller than the daytime temperature difference, and the amount of power generation is also small. However, the humidity is higher than in the daytime, and depending on the season and weather, there are many days when the humidity is 80% or more. If the surface of the thermoelectric device becomes lower than the atmospheric temperature and there is a certain amount of humidity, condensation starts in the hydrophilic region of the heat dissipation sheet. At the time of dew condensation, the heat of condensation is radiated to the surface of the heat transfer device, and this heat dissipation increases the temperature difference in the thermoelectric element, thereby increasing the amount of power generated by the thermoelectric device. When the water droplets become large and come into contact with the hydrophobic region of the heat radiating sheet, the water droplets roll down from the hydrophobic region and new condensation starts on the surface of the heat radiating sheet, so that the increased power generation amount is maintained.
 得られる夜間の発電量としては、湿度が80%の場合、放熱シートに親水性領域を形成しない場合の発電量と比較して、約5%増加することが確認された。
[実施例2]
 放熱塗料として、アクリル樹脂に高放熱性のセラミック粒子が混合された、ペルクール社製のPELCOOL H-7020を使用した。この放熱塗料を厚さ0.1mmのアルミニウムシートの片方の表面にスプレー塗装で塗膜し、オーブンにて120℃で20分乾燥させた。乾燥後の放熱塗料の膜厚は、20μmであった。0.5mmのスリットが2mmピッチで形成されたメタルマスクを放熱塗料面に密着させて、CFとHをエッチングガスに用いた反応性イオンエッチングにより樹脂部分をエッチングし、放熱塗料に含まれるセラミック粒子を露出させた。エッチングの深さは平均3μmであった。
It was confirmed that when the humidity was 80%, the power generation amount obtained at night increased by about 5% compared to the power generation amount when no hydrophilic region was formed on the heat dissipation sheet.
[Example 2]
PELCOOL H-7020 made by Pelcourt Co., Ltd., in which highly heat-dissipating ceramic particles were mixed in acrylic resin, was used as the heat dissipating paint. The heat-dissipating paint was applied to one surface of an aluminum sheet having a thickness of 0.1 mm by spray coating, and dried in an oven at 120 ° C. for 20 minutes. The film thickness of the heat-dissipating paint after drying was 20 μm. A metal mask with 0.5 mm slits formed at a pitch of 2 mm is brought into close contact with the surface of the heat dissipating paint, and the resin portion is etched by reactive ion etching using CF 4 and H 2 as etching gases. Ceramic particles were exposed. The etching depth was 3 μm on average.
 以上の処理により得られた放熱シートを、熱電素子、回路基板などを樹脂でモールドした、図1に示す如き熱電装置に設けた。放熱シートは、放熱シートの放熱塗料側が露出するように、モールドされた樹脂の表面に接着された。また、熱電装置は、放熱シートが熱電素子と熱的に接続された構造とした。 The heat dissipation sheet obtained by the above treatment was provided in a thermoelectric device as shown in FIG. 1 in which a thermoelectric element, a circuit board and the like were molded with resin. The heat radiating sheet was bonded to the surface of the molded resin so that the heat radiating paint side of the heat radiating sheet was exposed. Further, the thermoelectric device has a structure in which the heat dissipation sheet is thermally connected to the thermoelectric element.
 上記のように形成された熱電装置を、金属製の筐体を有する屋外設置型装置に設置し、筐体を熱源として発電した。昼間は太陽光による筐体の温度上昇により、筐体温度と周辺の大気温度との温度差により熱電装置が発電する。夜間は筐体の温度が大気温度よりも低下し、筐体温度と周囲の大気温度との温度差により発電するが、昼間の温度差に比べるとその差は小さく、発電量も小さい。しかし、湿度は昼間よりも高く、季節や天気にもよるが、湿度が80%以上となる日も多い。熱電装置の表面は、大気温度よりも低くなり、ある程度の湿度があれば、放熱シートの親水性領域に結露が始まる。結露の際、凝縮熱が伝熱装置の表面に放熱され、この放熱により熱電素子内の温度差が大きくなるため、熱電装置の発電量は増大する。水滴が大きくなり放熱シートの疎水性領域に接触すると、水滴は疎水性領域から転がり落ち、放熱シートの表面ではまた新たな結露が始まるため、増大した発電量は維持される。 The thermoelectric device formed as described above was installed in an outdoor installation type device having a metal casing, and power was generated using the casing as a heat source. In the daytime, the thermoelectric device generates electricity due to the temperature difference between the casing temperature and the ambient air temperature due to the temperature rise of the casing due to sunlight. At night, the casing temperature is lower than the ambient temperature, and power is generated due to the temperature difference between the casing temperature and the ambient ambient temperature. However, the difference is smaller than the daytime temperature difference, and the amount of power generation is also small. However, the humidity is higher than in the daytime, and depending on the season and weather, there are many days when the humidity is 80% or more. If the surface of the thermoelectric device becomes lower than the atmospheric temperature and there is a certain amount of humidity, condensation starts in the hydrophilic region of the heat dissipation sheet. At the time of dew condensation, the heat of condensation is radiated to the surface of the heat transfer device, and this heat dissipation increases the temperature difference in the thermoelectric element, thereby increasing the amount of power generated by the thermoelectric device. When the water droplets become large and come into contact with the hydrophobic region of the heat radiating sheet, the water droplets roll down from the hydrophobic region and new condensation starts on the surface of the heat radiating sheet, so that the increased power generation amount is maintained.
 熱電装置から得られる夜間の発電量は、湿度が80%の場合、放熱シートに親水性領域を形成しない場合の発電量と比較して、約5%~約10%増加することが確認された。
[実施例3]
 放熱塗料として、ウレタン樹脂の高放熱性のセラミック粒子が混合された、ペルクール社製のPELCOOL XDA-0073を使用した。この放熱塗料を厚さ0.1mmのグラファイトシートの片方の表面にスプレー塗装で塗膜し、25℃で8時間自然乾燥させた。乾燥後の放熱塗料の膜厚は、20μmであった。0.5mmのスリットが2mmピッチで形成されたメタルマスクを放熱塗料面に密着させて、CFとHをエッチングガスとして用いた反応性イオンエッチングにより樹脂部分をエッチングし、塗料に含まれたセラミック粒子を露出させた。エッチングの条件は、上記実施例1の場合と同じであった。
It was confirmed that the amount of electricity generated at night from the thermoelectric device increased by about 5% to about 10% when the humidity was 80% compared to the amount of electricity generated when no hydrophilic area was formed on the heat-dissipating sheet. .
[Example 3]
PELCOOL XDA-0073 manufactured by Pelcourt Co., Ltd. mixed with urethane resin high heat dissipation ceramic particles was used as the heat dissipation paint. This heat radiating paint was applied to one surface of a graphite sheet having a thickness of 0.1 mm by spray coating, and was naturally dried at 25 ° C. for 8 hours. The film thickness of the heat-dissipating paint after drying was 20 μm. A metal mask having 0.5 mm slits formed at a pitch of 2 mm was brought into close contact with the heat radiation paint surface, and the resin portion was etched by reactive ion etching using CF 4 and H 2 as etching gases. Ceramic particles were exposed. Etching conditions were the same as those in Example 1 above.
 以上の処理により得られた放熱シートを、熱電素子、回路基板などを樹脂でモールドした、図1に示す如き熱電装置に設けた。 The heat dissipation sheet obtained by the above treatment was provided in a thermoelectric device as shown in FIG. 1 in which a thermoelectric element, a circuit board and the like were molded with resin.
 熱電装置の形成後、反応基としてアミノ基を有するシランカップリング剤、例えば信越シリコーン社製のKBE-903またはKBM-603の1%水溶液に浸漬し、100℃のオーブンで30分乾燥させた。これにより、親水性のアミノ基が露出したフィラー表面に形成され、エッチング面が、より親水性を有する面となった。シランカップリング剤は、反応基にメルカプト基、カルボシキル基などを有するものであっても同様の効果が得られた。 After the thermoelectric device was formed, it was immersed in a 1% aqueous solution of a silane coupling agent having an amino group as a reactive group, for example, KBE-903 or KBM-603 manufactured by Shin-Etsu Silicone, and dried in an oven at 100 ° C. for 30 minutes. Thereby, the hydrophilic amino group was formed on the exposed filler surface, and the etched surface became a more hydrophilic surface. Even if the silane coupling agent has a mercapto group, a carboxy group or the like as a reactive group, the same effect was obtained.
 得られる夜間の発電量としては、湿度が80%の場合、放熱シートに親水性領域を形成しない場合の発電量と比較して、約10%増加することが確認された。
[実施例4]
 放熱塗料として、エポキシ樹脂の高放熱性のセラミック粒子が混合された、合同インキ社製のユニクールを使用した。この放熱塗料を厚さ0.1mmのグ銅シートの片方の表面にスプレー塗装で塗膜し、オーブンにて100℃で10分乾燥させた。乾燥後の放熱塗料の膜厚は、20μmであった。COレーザにより、0.5mm×0.5mmのエッチングパターンを2mmピッチで放熱塗料の表面に形成した。エッチング深さは、3μm~5μmであった。
As for the power generation amount obtained at night, it was confirmed that when the humidity was 80%, the power generation amount increased by about 10% compared to the power generation amount when the hydrophilic region was not formed on the heat dissipation sheet.
[Example 4]
As a heat dissipating paint, UNIQOOL manufactured by Godo Ink Co., Ltd. mixed with epoxy resin high heat dissipating ceramic particles was used. This heat-dissipating paint was coated on one surface of a 0.1 mm thick copper sheet by spray coating and dried in an oven at 100 ° C. for 10 minutes. The film thickness of the heat-dissipating paint after drying was 20 μm. An etching pattern of 0.5 mm × 0.5 mm was formed on the surface of the heat radiation paint with a 2 mm pitch by a CO 2 laser. The etching depth was 3 μm to 5 μm.
 以上の処理により得られた放熱シートを、熱電素子、回路基板などを樹脂でモールドした、図1に示す如き熱電装置に設けた。 The heat dissipation sheet obtained by the above treatment was provided in a thermoelectric device as shown in FIG. 1 in which a thermoelectric element, a circuit board and the like were molded with resin.
 熱電装置の形成後、反応基としてアミノ基を有するシランカップリング剤、例えば信越シリコーン社製のKBE-903またはKBM-603の1%水溶液に浸漬し、100℃のオーブンで30分乾燥させた。これにより、親水性のアミノ基が露出したフィラー表面に形成され、エッチング面が、より親水性を有する面となった。シランカップリング剤は、反応基にメルカプト基、カルボシキル基を有するものであっても、同様の効果が得られた。 After the thermoelectric device was formed, it was immersed in a 1% aqueous solution of a silane coupling agent having an amino group as a reactive group, for example, KBE-903 or KBM-603 manufactured by Shin-Etsu Silicone, and dried in an oven at 100 ° C. for 30 minutes. Thereby, the hydrophilic amino group was formed on the exposed filler surface, and the etched surface became a more hydrophilic surface. Even if the silane coupling agent has a mercapto group or a carboxyl group as a reactive group, the same effect was obtained.
 得られる夜間の発電量としては、湿度が80%の場合、放熱シートに親水性領域を形成しない場合の発電量と比較して、約10%増加することが確認された。
[実施例5]
 表面に酸化アルミニウム膜を有するアルミニウムから成り、フィンを有するヒートシンクのフィン表面に、0.5mmのスリットが2mmピッチで形成されたフィルムマスクを密着させ、反応基としてアミノ基を有するシランカップリング剤、例えば信越シリコーン社製のKBE-903またはKBM-603の1%水溶液を噴霧するか当該水溶液に浸漬し、100℃のオーブンで30分乾燥させた。これにより、親水性のアミノ基が露出したフィラー表面に形成され、エッチング面が、より親水性を有する面となった。シランカップリング剤は、反応基にメルカプト基、カルボシキル基を有するものであっても、同様の効果が得られた。
As for the power generation amount obtained at night, it was confirmed that when the humidity was 80%, the power generation amount increased by about 10% compared to the power generation amount when the hydrophilic region was not formed on the heat dissipation sheet.
[Example 5]
A silane coupling agent having an amino group as a reactive group, which is made of aluminum having an aluminum oxide film on its surface, a film mask having 0.5 mm slits formed at a pitch of 2 mm on the fin surface of a heat sink having fins, For example, a 1% aqueous solution of KBE-903 or KBM-603 manufactured by Shin-Etsu Silicone was sprayed or immersed in the aqueous solution, and dried in an oven at 100 ° C. for 30 minutes. Thereby, the hydrophilic amino group was formed on the exposed filler surface, and the etched surface became a more hydrophilic surface. Even if the silane coupling agent has a mercapto group or a carboxyl group as a reactive group, the same effect was obtained.
 得られる夜間の発電量としては、湿度が80%の場合、放熱シートに親水性領域を形成しない場合の発電量と比較して、約5%増加することが確認された。 It was confirmed that the amount of power generation at night obtained was increased by about 5% when the humidity was 80% compared to the amount of power generated when no hydrophilic region was formed on the heat dissipation sheet.
 上記の如く、表面に親水性領域と疎水性領域が交互に配置されたパターンを有する放熱シートを使用することで、曇天、雨天時、夜間など、熱源と周辺温度との差が、熱電素子が十分な発電量を得られない程度の小さな温度差であっても、ある程度の湿度があれば、親水性領域を有さない放熱シートを用いた場合と比較して、より多くの発電量が得られることが確認された。 As described above, by using a heat dissipation sheet having a pattern in which hydrophilic regions and hydrophobic regions are alternately arranged on the surface, the difference between the heat source and the ambient temperature during cloudy weather, rainy weather, nighttime, etc. Even if the temperature difference is so small that a sufficient amount of power generation cannot be obtained, if there is a certain amount of humidity, a larger amount of power generation can be obtained compared to the case of using a heat dissipation sheet that does not have a hydrophilic region. It was confirmed that
 このため、表面に親水性領域と疎水性領域が交互に配置されたパターンを有する放熱シートを使用する熱電装置は、例えば下水管内などの、湿度が例えば80%以上で高い場所で使用されることが、熱電素子内の温度差が小さい場合でも発電量を向上できる効果が得られて好ましい。ただし、表面に親水性領域と疎水性領域が交互に配置されたパターンを有する放熱シートを使用する熱電装置は、天候、時刻などに応じて熱源に大きな温度差が生じにくい環境下においても、十分な発電量を確保することができるので、湿度が80%以上である必要はなく、例えば20%以上のある程度の湿度がある環境下であれば、発電量を向上できる効果が得られる。 For this reason, a thermoelectric device using a heat-dissipating sheet having a pattern in which hydrophilic regions and hydrophobic regions are alternately arranged on the surface should be used in places where the humidity is high, for example, 80% or more, such as in a sewer pipe. However, even when the temperature difference in the thermoelectric element is small, the effect of improving the power generation amount is obtained, which is preferable. However, a thermoelectric device that uses a heat-dissipating sheet having a pattern in which hydrophilic and hydrophobic regions are alternately arranged on the surface is sufficient even in an environment where a large temperature difference is unlikely to occur in the heat source depending on the weather, time, etc. Therefore, it is not necessary that the humidity be 80% or higher. For example, in an environment having a certain level of humidity of 20% or higher, an effect of improving the power generation can be obtained.
 次に、上記の如き熱電装置の適用例について、図16以降と共に説明する。図16は、一体型モジュールの構成の一例を模式的に示すブロック図である。 Next, an application example of the thermoelectric device as described above will be described with reference to FIG. FIG. 16 is a block diagram schematically illustrating an example of the configuration of an integrated module.
 図16に示すように、一体型モジュール60は、発電モジュール61、蓄電モジュール62、センサ63、コントローラ64、メモリ65、通信回路66、及びアンテナ67を有する。 As shown in FIG. 16, the integrated module 60 includes a power generation module 61, a power storage module 62, a sensor 63, a controller 64, a memory 65, a communication circuit 66, and an antenna 67.
 発電モジュール61は、例えば図1に示す熱電装置1で形成される。蓄電モジュール62は、発電モジュール61に接続され、発電モジュール61で発生した電力を蓄える。蓄電モジュール62は、電力を蓄える機能を有すれば、特に限定されず、例えば図1に示す二次電池133で形成される。発電モジュール61及び蓄電モジュール62は、電力供給部68を形成する。電力供給部68を形成する発電モジュール61及び蓄電モジュール62の少なくとも一方からは、センサ63、コントローラ64、及び通信回路66に電力が供給される。発電モジュール61によって安定した電力を供給できる場合には、蓄電モジュール62は省略可能である。 The power generation module 61 is formed by, for example, the thermoelectric device 1 shown in FIG. The power storage module 62 is connected to the power generation module 61 and stores power generated by the power generation module 61. The power storage module 62 is not particularly limited as long as it has a function of storing electric power, and is formed of, for example, the secondary battery 133 shown in FIG. The power generation module 61 and the power storage module 62 form a power supply unit 68. Power is supplied to the sensor 63, the controller 64, and the communication circuit 66 from at least one of the power generation module 61 and the power storage module 62 that form the power supply unit 68. If stable power can be supplied by the power generation module 61, the power storage module 62 can be omitted.
 センサ63は、例えば温度、湿度、圧力、光、音、電磁波、加速度、振動、ガス、微粒子などを検出するセンサで形成可能であり、例えば図1に示す半導体チップ131に含まれていても良い。さらに、センサ63には、例えば、赤外線を対象物に出射すると共に対象物から反射した光を受けることで対象物との距離を測定する測距センサ、対象物の重量を測定する重量センサ、及び水位などのデータを検出する水位センサで形成しても良い。 The sensor 63 can be formed by, for example, a sensor that detects temperature, humidity, pressure, light, sound, electromagnetic waves, acceleration, vibration, gas, fine particles, and the like, and may be included in the semiconductor chip 131 shown in FIG. 1, for example. . Furthermore, the sensor 63 includes, for example, a distance measuring sensor that measures the distance to the object by emitting infrared rays to the object and receives light reflected from the object, a weight sensor that measures the weight of the object, and You may form with the water level sensor which detects data, such as a water level.
 コントローラ64は、例えばセンサ63が検出した各種データを、通信回路66及びアンテナ67を介して図17に示すサーバ75へ送信させる。コントローラ64は、例えばセンサ63が検出した各種データと他のデータとに基づいた二次データをサーバ75へ送信しても良い。また、コントローラ64は、例えばセンサ63が検出した各種データを用いて所定の演算を行って二次データを算出し、この二次データをサーバ75へ送信しても良い。コントローラ64及び通信回路66は、例えば図1に示す半導体チップ132に含まれていても良い。 The controller 64 transmits various data detected by the sensor 63 to the server 75 shown in FIG. 17 via the communication circuit 66 and the antenna 67, for example. For example, the controller 64 may transmit secondary data based on various data detected by the sensor 63 and other data to the server 75. Further, the controller 64 may calculate secondary data by performing predetermined calculations using various data detected by the sensor 63, for example, and may transmit the secondary data to the server 75. For example, the controller 64 and the communication circuit 66 may be included in the semiconductor chip 132 shown in FIG.
 メモリ65は、センサ63が検出した各種データや、算出された二次データをコントローラ64の命令により記憶する。記憶された情報は、コントローラ64の命令により読み出される。メモリ65は、例えば図1に示す半導体チップ131に含まれていても良い。 The memory 65 stores various data detected by the sensor 63 and the calculated secondary data according to a command from the controller 64. The stored information is read by an instruction from the controller 64. For example, the memory 65 may be included in the semiconductor chip 131 shown in FIG.
 通信回路66及びアンテナ67は、通信部69を形成する。通信部69は、コントローラ64とサーバ75との間でデータの送受信を行う。なお、図16に示す例では、通信部69は無線通信を採用するが、無線通信の代わりに有線通信を採用しても良い。有線通信が採用される場合、アンテナ67は省略可能であり、例えば通信回路66に信号線が接続される。通信部69は、例えば図1に示す半導体チップ132に含まれていても良い。この場合、アンテナ67は、半導体チップ132に対して外部接続されていても良い。 The communication circuit 66 and the antenna 67 form a communication unit 69. The communication unit 69 transmits and receives data between the controller 64 and the server 75. In the example illustrated in FIG. 16, the communication unit 69 employs wireless communication, but wired communication may be employed instead of wireless communication. When wired communication is employed, the antenna 67 can be omitted. For example, a signal line is connected to the communication circuit 66. The communication unit 69 may be included in, for example, the semiconductor chip 132 illustrated in FIG. In this case, the antenna 67 may be externally connected to the semiconductor chip 132.
 一体型モジュール60は、例えば図17に示す処理システム70に適用しても良い。図17は、一体型モジュール60が適用される処理システム70の一例を説明する図である。処理システム70は、複数の一体型モジュール60と、サーバ75とを有する。複数の一体型モジュール60は、例えばマンホール76に設置される。複数のマンホール76に設置された複数の一体型モジュール60は、ネットワーク(この例では無線ネットワーク)77を介してサーバ75と接続される。 The integrated module 60 may be applied to, for example, the processing system 70 shown in FIG. FIG. 17 is a diagram illustrating an example of a processing system 70 to which the integrated module 60 is applied. The processing system 70 includes a plurality of integrated modules 60 and a server 75. The plurality of integrated modules 60 are installed in the manhole 76, for example. The plurality of integrated modules 60 installed in the plurality of manholes 76 are connected to the server 75 via a network (in this example, a wireless network) 77.
 なお、例えばサーバ75を備えた車両を走行させ、この車両が各マンホール76に設置された一体型モジュール60に近接する度に一体型モジュール60からサーバ75に近距離無線通信でデータを送信しても良い。また、一体型モジュール60は、マンホール76の構造体であれば、どこに設置されても良い。 For example, when a vehicle including the server 75 is driven and the vehicle approaches the integrated module 60 installed in each manhole 76, data is transmitted from the integrated module 60 to the server 75 by short-range wireless communication. Also good. Further, the integrated module 60 may be installed anywhere as long as it is a manhole 76 structure.
 一体型モジュール60は、センサ63の検出対象またはセンサ63の種類に応じて、マンホール76の構造体である蓋78やコンクリート管79などに固定される。一体型モジュール60に備えられた発電モジュール61は、設置対象物の一例であるマンホール76の構造体と熱的に接続され、マンホール76の構造体と外気またはマンホール76内部の温度との温度差により発電する。 The integrated module 60 is fixed to a lid 78, a concrete pipe 79, or the like, which is a structure of the manhole 76, according to the detection target of the sensor 63 or the type of the sensor 63. The power generation module 61 provided in the integrated module 60 is thermally connected to a structure of a manhole 76 that is an example of an installation target, and is caused by a temperature difference between the structure of the manhole 76 and the outside air or the temperature inside the manhole 76. Generate electricity.
 以下、処理システム70の具体的な適用例について、図18以降と共に説明する。
[第一適用例]
 図18は、処理システム70の第一適用例を説明する図である。図18に示す例では、処理システム70は、マンホール76の構造体(蓋78やコンクリート管79)の劣化を把握するために利用される。センサ63は、マンホール76内の温度、湿度、及びマンホール76の構造体に作用する振動(または、加速度)などを検出し、センサ63で検出されたデータは、メモリ65に蓄積される。
Hereinafter, a specific application example of the processing system 70 will be described with reference to FIG.
[First application example]
FIG. 18 is a diagram illustrating a first application example of the processing system 70. In the example shown in FIG. 18, the processing system 70 is used to grasp the deterioration of the structure (the lid 78 and the concrete pipe 79) of the manhole 76. The sensor 63 detects the temperature and humidity in the manhole 76, vibration (or acceleration) acting on the structure of the manhole 76, and the data detected by the sensor 63 is stored in the memory 65.
 道路上を走る測定用の車両80がマンホール76上を通過する際に、コントローラ64は、通信回路66及びアンテナ67を介してメモリ65に蓄積されたデータを送信する。測定用の車両80に設けられたサーバ75は、データを回収する。 When the measurement vehicle 80 running on the road passes over the manhole 76, the controller 64 transmits the data stored in the memory 65 via the communication circuit 66 and the antenna 67. The server 75 provided in the measurement vehicle 80 collects data.
 サーバ75は、GPS(Global Positioning System)による車両80の位置情報と回収されたデータとを組み合わせて、例えば車内モニタ(図示せず)に表示された地図上に、回収されたデータを表示させる。これにより、温度、湿度、振動などが表示された情報から、各マンホール76のコンクリート管79の劣化の度合いが推定できる。 The server 75 combines the positional information of the vehicle 80 by GPS (Global Positioning System) and the collected data, and displays the collected data on a map displayed on, for example, an in-vehicle monitor (not shown). Thereby, the degree of deterioration of the concrete pipe 79 of each manhole 76 can be estimated from information displaying temperature, humidity, vibration, and the like.
 測定用の車両80の下部には、受信装置81に加え、マンホール76の蓋78の画像を取得するカメラ82が取り付けられ、マンホール76の蓋78の劣化が画像認識で判断される。この結果を元に、マンホール76の蓋78の交換時期を自治体に通知しても良い。測定用の車両80は、特別な車両でなくとも、例えば自治体が運用するごみ収集車であっても良い。ごみ収集車の底部に受信装置81やカメラ82が設置されることにより、回収費用をかけずに定期的にデータを回収できる。 In addition to the receiving device 81, a camera 82 that acquires an image of the lid 78 of the manhole 76 is attached to the lower part of the measurement vehicle 80, and deterioration of the lid 78 of the manhole 76 is determined by image recognition. Based on this result, the local government may be notified of the replacement time of the lid 78 of the manhole 76. The measurement vehicle 80 may not be a special vehicle, but may be, for example, a garbage truck operated by a local government. By installing the receiver 81 and the camera 82 at the bottom of the garbage truck, data can be collected periodically without incurring collection costs.
 また、センサ63は、マンホール76内に発生したガスの濃度を検出しても良い。マンホール76内に発生するガスとしては、例えば硫化水素ガスが含まれる。下水道83で発生する硫化水素ガスは、マンホール76の構造体を急激に劣化させることが知られている。硫化水素ガスの発生は、近隣住民の苦情要因でもある。センサ63として硫化水素ガスセンサを用いることで、マンホール76の構造体の劣化予測精度向上と共に、住民の苦情に迅速に対応できるようになる。 Further, the sensor 63 may detect the concentration of the gas generated in the manhole 76. Examples of the gas generated in the manhole 76 include hydrogen sulfide gas. It is known that hydrogen sulfide gas generated in the sewer 83 abruptly deteriorates the structure of the manhole 76. The generation of hydrogen sulfide gas is also a cause of complaints for neighboring residents. By using a hydrogen sulfide gas sensor as the sensor 63, the accuracy of deterioration prediction of the structure of the manhole 76 can be improved, and complaints from residents can be quickly handled.
 なお、第一適用例において、センサ63は、マンホール76内の温度、湿度、振動、及びマンホール76内に発生したガスの濃度のうち少なくとも一つを検出すれば良い。 In the first application example, the sensor 63 may detect at least one of the temperature, humidity, vibration in the manhole 76, and the concentration of the gas generated in the manhole 76.
 マンホール76内では湿度が常に高く、下水道83(または、上水道)の水がマンホール76内にあふれる可能性もある。また、マンホール76内部は略一定温度だが、例えば蓋78は夏には高温、冬には低温になり、蓋78を形成する金属を含む様々な金属を溶かす硫化水素ガスなどが発生することが知られている。このような過酷な環境にあって、センサ63及び発電モジュール61などの電子部品を保護し、且つ、長期的な信頼性を保つことは重要である。一体型モジュール60によれば、センサ63及び発電モジュール61などの電子部品が例えば図1に示すように樹脂15で封止されるので、長期的な信頼性を保つことができる。
[第二適用例]
 図19は、処理システム70の第二適用例を説明する図である。図19に示す例では、処理システム70は、マンホール76と接続される下水道83の流量を予測するために利用される。センサ63には、例えば水位計、流量計などが用いられる。マンホール76に水位計、流量計などのセンサ63が設置されることで、下水道83の流量をきめ細かく把握できる。なお、図19において、センサ63は一体型モジュール60に組み込まれているが、例えばセンサ63の代わりに、外部のセンサの動作を制御するセンサ制御部(図示せず)を設けても良い。センサ制御部は、下水道の83に配置された水位計、流量計などの図示されないセンサを制御し、これらのセンサが検出した情報を取得しても良い。また、これらのセンサが検出した情報は、無線でセンサ制御部に送信されても良い。
There is a possibility that the humidity in the manhole 76 is always high, and the water in the sewer 83 (or water supply) overflows in the manhole 76. The inside of the manhole 76 has a substantially constant temperature. For example, the lid 78 is hot in summer and low in winter, and hydrogen sulfide gas that dissolves various metals including the metal forming the lid 78 is generated. It has been. In such a harsh environment, it is important to protect electronic components such as the sensor 63 and the power generation module 61 and to maintain long-term reliability. According to the integrated module 60, the electronic components such as the sensor 63 and the power generation module 61 are sealed with the resin 15 as shown in FIG. 1, for example, so that long-term reliability can be maintained.
[Second application example]
FIG. 19 is a diagram illustrating a second application example of the processing system 70. In the example shown in FIG. 19, the processing system 70 is used to predict the flow rate of the sewer 83 connected to the manhole 76. As the sensor 63, for example, a water level meter, a flow meter or the like is used. By installing a sensor 63 such as a water level meter or a flow meter in the manhole 76, the flow rate of the sewer 83 can be grasped in detail. In FIG. 19, the sensor 63 is incorporated in the integrated module 60, but a sensor control unit (not shown) for controlling the operation of an external sensor may be provided instead of the sensor 63, for example. The sensor control unit may control sensors (not shown) such as a water level meter and a flow meter arranged in the sewer 83 and acquire information detected by these sensors. Information detected by these sensors may be transmitted to the sensor control unit wirelessly.
 具体的には、下水道83の流量は、1日に1回、或いは、1時間に1回、センサ63により検出されて高速通信回線を通じてデータセンタ84のサーバ75に集められる。センサ63により検出された下水道83の流量データは、計測と同時に送信されても良く、また、消費電力を低減するために、1日、或いは、1週間分を蓄積してから送信されても良い。さらに、第一適用例と同様に、測定用の車両が流量データを回収しても良い。 Specifically, the flow rate of the sewer 83 is detected by the sensor 63 once a day or once an hour and is collected in the server 75 of the data center 84 through a high-speed communication line. The flow rate data of the sewer 83 detected by the sensor 63 may be transmitted simultaneously with the measurement, or may be transmitted after accumulating for one day or one week in order to reduce power consumption. . Further, as in the first application example, the measurement vehicle may collect the flow rate data.
 通常、雨水は、下水道83に流れ込むため、下水道83の流量の予測は、降雨データと強く連動する。このため、センサ63により集められた下水道83の流量データと、気象庁などの降雨データとを組み合わせて解析することで、例えば下水道83の水が流れ込む河川の氾濫予測、注意報、警報情報などを提供することができる。 Normally, since rainwater flows into the sewer 83, the prediction of the flow rate of the sewer 83 is strongly linked with the rainfall data. For this reason, by combining the flow rate data of the sewer 83 collected by the sensor 63 and the rainfall data of the Japan Meteorological Agency, etc., for example, prediction of flooding of rivers into which the water of the sewer 83 flows, warnings, warning information, etc. are provided. can do.
 下水道83の流量データと、気象庁の降雨データとの解析結果から気象現象と下水道83の流量との関係を確立することもできる。そして、気象庁の降雨データから各地における下水道83の流量を予測して予測データを提供または配信しても良い。住宅建築や居住状況、土地開発状況に応じて下水道83の流量は年々変わるので、継続的なデータの更新が可能な処理システム70は有用である。 The relationship between the meteorological phenomenon and the flow rate of the sewer 83 can be established from the analysis result of the flow rate data of the sewer 83 and the rainfall data of the Japan Meteorological Agency. Then, prediction data may be provided or distributed by predicting the flow rate of the sewer 83 in each place from the rainfall data of the Japan Meteorological Agency. Since the flow rate of the sewer 83 varies from year to year in accordance with the residential building, living conditions, and land development conditions, the processing system 70 that can continuously update data is useful.
 また、第二適用例において、処理システム70は、局所的な集中豪雨などが発生した場合における下水道83の流量計測にも利用可能である。都市の局所的な集中豪雨の際には、下水道83の作業者の安全確保や下水道83の氾濫を防ぐため、分単位で下水道83の水位の測定及び情報発信が必要になる。この場合、相対的に標高の低い少数のマンホール76に設置された一体型モジュール60に限定してデータが収集される。 In the second application example, the processing system 70 can also be used for measuring the flow rate of the sewer 83 when local heavy rain occurs. In the case of a local heavy rain in the city, it is necessary to measure the water level of the sewer 83 and transmit information in minutes in order to ensure the safety of workers of the sewer 83 and prevent the sewer 83 from overflowing. In this case, data is collected only for the integrated module 60 installed in a small number of manholes 76 having a relatively low altitude.
 水位を測定する一体型モジュール60の蓄電モジュール62には、前もって十分な蓄電を行っておくことが好ましい。コントローラ64は、通信回路66及び高速通信回線を通じて逐次データをサーバ75へ送信する。サーバ75は、受信したデータを作業者や氾濫近傍の居住者のスマートフォン、タブレットなどに警報を通知することができる。また、特定のマンホール76上に測定用の車両が駐車して、近距離無線通信によって車両に設けたサーバにデータを回収させても良い。
[第三適用例]
 図20は、処理システム70の第三適用例を説明する図である。図20に示す例では、処理システム70は、マンホール76のセキュリティ及び作業履歴に利用される。センサ63は、マンホール76の蓋78の開閉を検出する。このセンサ63には、例えば加速度センサ、開閉スイッチなどが用いられる。このセンサ63は、マンホール76の蓋78の開閉を検出するために、マンホール76の蓋78に生ずる加速度、及び、マンホール76の蓋78の開閉状態のうち少なくとも一つを検出すれば良い。マンホール76の蓋78の開閉に応じてセンサ63から出力されたデータは、サーバ75にて受信される。
It is preferable that the power storage module 62 of the integrated module 60 for measuring the water level is sufficiently charged in advance. The controller 64 sequentially transmits data to the server 75 through the communication circuit 66 and the high-speed communication line. The server 75 can notify an alarm of the received data to a worker, a smartphone of a resident near the flood, a tablet, or the like. Further, a measurement vehicle may be parked on a specific manhole 76 and data may be collected by a server provided in the vehicle by short-range wireless communication.
[Third application example]
FIG. 20 is a diagram for explaining a third application example of the processing system 70. In the example shown in FIG. 20, the processing system 70 is used for manhole 76 security and work history. The sensor 63 detects opening / closing of the lid 78 of the manhole 76. As the sensor 63, for example, an acceleration sensor, an open / close switch, or the like is used. The sensor 63 may detect at least one of acceleration generated in the lid 78 of the manhole 76 and an open / closed state of the lid 78 of the manhole 76 in order to detect opening and closing of the lid 78 of the manhole 76. Data output from the sensor 63 in response to opening / closing of the lid 78 of the manhole 76 is received by the server 75.
 この処理システム70によれば、下水道83などのセキュリティ対策(例えば、対爆弾テロなど)や、下水道83の清掃作業における作業履歴の確認を行うことができる。
[第四適用例]
 図21は、処理システム70の第四適用例を説明する図である。図21に示す例では、処理システム70は、道路交通情報の取得に利用される。センサ63は、マンホール76上を通過する車両85,86,87を検出する。このセンサ63には、例えば加速度センサ、磁気センサ、マイクロフォンなどが用いられる。センサ63からは、マンホール76上を通過する車両の数に応じた信号が得られる。センサ63から出力されたデータは、サーバ75にて受信される。
According to the processing system 70, it is possible to check the security history of the sewer 83 and the like (for example, anti-bomb terrorism) and the work history of the sewer 83 cleaning work.
[Fourth application example]
FIG. 21 is a diagram illustrating a fourth application example of the processing system 70. In the example shown in FIG. 21, the processing system 70 is used for acquiring road traffic information. The sensor 63 detects the vehicles 85, 86, and 87 that pass on the manhole 76. For this sensor 63, for example, an acceleration sensor, a magnetic sensor, a microphone, or the like is used. A signal corresponding to the number of vehicles passing over the manhole 76 is obtained from the sensor 63. Data output from the sensor 63 is received by the server 75.
 この処理システム70によれば、現在の道路交通情報通信システムでは計測していないような細い道路や路地などでも渋滞情報を得ることができる。これにより、きめ細かい渋滞情報の提供が可能になる。 According to this processing system 70, it is possible to obtain traffic jam information even on narrow roads and alleys that are not measured by the current road traffic information communication system. This makes it possible to provide detailed traffic information.
 また、センサ63の検出値の強弱から、マンホール76上を通過する車両85,86,87の種類(例えば、小型車、普通車、トラックなど)が検出されても良い。この場合、センサ63の検出値と車両の種類とを関連付けたデータセットが予めメモリ65に記憶される。コントローラ64からは、センサ63の検出値と上記データセットとから判定した車の種類の情報がサーバ75に送信される。これにより、マンホール76上を通過する車両の種類を把握できる。 Also, the type of the vehicles 85, 86, 87 passing through the manhole 76 (for example, a small car, a normal car, a truck, etc.) may be detected from the strength of the detection value of the sensor 63. In this case, a data set in which the detection value of the sensor 63 is associated with the type of vehicle is stored in the memory 65 in advance. From the controller 64, information on the vehicle type determined from the detection value of the sensor 63 and the data set is transmitted to the server 75. Thereby, the kind of vehicle which passes on the manhole 76 can be grasped | ascertained.
 さらに、センサ63により、マンホール76上を通過する車両85,86,87の個体識別情報が検出されても良い。例えば、センサ63として磁気センサが用いられた場合には、磁気センサの反応によって、車両の特徴が得られる可能性がある。つまり、例えば車毎に特徴的な磁気を発する媒体を車両に搭載することにより、個々の車両を識別できる。車種による都市の車の流れの違いを解析することで、特定の車両を特定の道路に誘導する計画立案など、都市道路のコントロールや都市評価につながる。 Furthermore, the individual identification information of the vehicles 85, 86 and 87 passing over the manhole 76 may be detected by the sensor 63. For example, when a magnetic sensor is used as the sensor 63, the characteristics of the vehicle may be obtained by the reaction of the magnetic sensor. That is, for example, each vehicle can be identified by mounting on the vehicle a medium that generates a characteristic magnetism for each vehicle. Analyzing the difference in the flow of cars in the city depending on the type of car leads to urban road control and evaluation, such as planning to guide a specific vehicle to a specific road.
 なお、第四適用例において、センサ63は、マンホール76上を通過する車両の数、種類、個体識別情報のうち少なくとも一つを検出すれば良い。
[第五適用例]
 図22は、処理システム70の第五適用例を説明する図である。図22に示す例では、処理システム70は、降雨量の測定に利用される。センサ63には、例えば気象予測用のXバンドレーダが用いられる。Xバンドレーダの電波は、例えば豪雨時に豪雨エリアの先に届かず、また、山など大きな物体を超えられない。また、現状のレーダでは、突然発生したり急発達したりする豪雨エリアの発見及び追跡が困難なことが多い。高精度予測には高時間空間分解能が必要とされる。
In the fourth application example, the sensor 63 may detect at least one of the number, type, and individual identification information of the vehicles passing over the manhole 76.
[Fifth application example]
FIG. 22 is a diagram for explaining a fifth application example of the processing system 70. In the example shown in FIG. 22, the processing system 70 is used for measuring rainfall. For the sensor 63, for example, an X-band radar for weather prediction is used. The radio wave of the X-band radar does not reach the tip of the heavy rain area, for example, during heavy rain, and cannot exceed a large object such as a mountain. Also, with current radars, it is often difficult to find and track heavy rain areas that suddenly occur or develop rapidly. High-precision prediction requires high temporal and spatial resolution.
 通常、Xバンドレーダの分解能は例えば250mであるが、平均間隔が30m程度のマンホール76にセンサ63が設置されることで、よりきめ細かい気象観測が可能になり、局所的な集中豪雨などの計測及び予測に役立つと考えられる。センサ63から出力されたデータは、サーバ75にて受信される。 Normally, the resolution of the X-band radar is, for example, 250 m. However, by installing the sensor 63 in the manhole 76 with an average interval of about 30 m, finer weather observation is possible, and measurement of local heavy rain and the like It seems to be useful for prediction. Data output from the sensor 63 is received by the server 75.
 なお、上述の第一乃至第五適用例においては、専用のサーバ75が用いられていたが、汎用のコンピュータがサーバ75として利用されても良い。また、サーバ75として機能する汎用のコンピュータにコントローラ64やサーバ75が行った動作を実行させるプログラムがインストールされ実行されても良い。また、この場合に、プログラムは、記録媒体で供給されても良いし、ネットワークからダウンロードされても良い。 In the first to fifth application examples described above, the dedicated server 75 is used. However, a general-purpose computer may be used as the server 75. Further, a program for executing the operations performed by the controller 64 and the server 75 may be installed and executed in a general-purpose computer that functions as the server 75. In this case, the program may be supplied on a recording medium or downloaded from a network.
 上記第一乃至第五適用例は、適宜、組み合わされて実施されても良い。 The first to fifth application examples may be appropriately combined and implemented.
 以上、開示の放熱シート及び熱電装置を実施例により説明したが、本発明は上記実施例に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能であることは言うまでもない。 As mentioned above, although the thermal radiation sheet and thermoelectric device of an indication were demonstrated by the Example, this invention is not limited to the said Example, It cannot be overemphasized that various deformation | transformation and improvement are possible within the scope of the present invention. .
1   熱電装置
11   熱電素子
12-1,12-2   ヒートシンク
13-1,13-2   回路基板
14   封止樹脂
15   樹脂
16   放熱シート
60   一体型モジュール
69   通信部
131,132   半導体チップ
133   二次電池
161   ベースシート
162   親水性領域
163   疎水性領域
DESCRIPTION OF SYMBOLS 1 Thermoelectric device 11 Thermoelectric element 12-1, 12-2 Heat sink 13-1, 13-2 Circuit board 14 Sealing resin 15 Resin 16 Heat radiation sheet 60 Integrated module 69 Communication part 131, 132 Semiconductor chip 133 Secondary battery 161 Base Sheet 162 Hydrophilic region 163 Hydrophobic region

Claims (16)

  1.  表面に、親水性領域と疎水性領域が交互に配置されたパターンを有することを特徴とする、放熱シート。 A heat radiating sheet having a pattern in which hydrophilic regions and hydrophobic regions are alternately arranged on the surface.
  2.  前記親水性領域と前記疎水性領域は、交互に縞状または市松状に配置されていることを特徴とする、請求項1記載の放熱シート。 The heat-radiating sheet according to claim 1, wherein the hydrophilic region and the hydrophobic region are alternately arranged in a striped pattern or a checkered pattern.
  3.  グラファイトシート、金属シート、及びグラファイトシートと金属シートが積層された多層構造を有するシートのいずれか1つで形成された、放熱性及び可塑性を有するベースシートを備え、
     前記親水性領域と前記疎水性領域は、前記ベースシート上に交互に形成されていることを特徴とする、請求項1または2記載の放熱シート。
    A base sheet having heat dissipation and plasticity, formed of any one of a graphite sheet, a metal sheet, and a sheet having a multilayer structure in which a graphite sheet and a metal sheet are laminated;
    The heat dissipation sheet according to claim 1, wherein the hydrophilic region and the hydrophobic region are alternately formed on the base sheet.
  4.  前記ベースシートの表面は酸化アルミニウムで形成され、
     前記酸化アルミニウムの表面に形成された疎水性材料と、前記疎水性材料上に形成された加水分解させたカップリング剤の水溶液とにより前記疎水性領域が形成され、
     前記疎水性材料が形成されていない前記酸化アルミニウムの表面が前記親水性領域を形成することを特徴とする、請求項3記載の放熱シート。
    The surface of the base sheet is made of aluminum oxide,
    The hydrophobic region is formed by the hydrophobic material formed on the surface of the aluminum oxide and the aqueous solution of the hydrolyzed coupling agent formed on the hydrophobic material,
    The heat radiating sheet according to claim 3, wherein a surface of the aluminum oxide on which the hydrophobic material is not formed forms the hydrophilic region.
  5.  前記ベースシートの表面に形成された放熱塗料を備え、
     前記放熱塗料は、疎水性のバインダと親水性のセラミック粒子を含み、
     前記親水性領域内では、前記セラミック粒子が前記バインダから露出していることを特徴とする、請求項3記載の放熱シート。
    A heat dissipating paint formed on the surface of the base sheet,
    The heat dissipation paint includes a hydrophobic binder and hydrophilic ceramic particles,
    The heat dissipation sheet according to claim 3, wherein the ceramic particles are exposed from the binder in the hydrophilic region.
  6.  前記親水性領域内では、前記セラミック粒子が露出した表面に親水性の官能基を有するシランカップリング剤が結合していることを特徴とする、請求項5記載の放熱シート。 6. The heat dissipation sheet according to claim 5, wherein a silane coupling agent having a hydrophilic functional group is bonded to the surface of the hydrophilic region where the ceramic particles are exposed.
  7.  前記親水性領域は、前記放熱塗料の表面に形成された凹形状の領域により形成されていることを特徴とする、請求項5または6記載の放熱シート。 The heat-dissipating sheet according to claim 5 or 6, wherein the hydrophilic region is formed by a concave region formed on the surface of the heat-dissipating paint.
  8.  熱源側と放熱側を有する熱電素子と、
     前記熱電素子の前記放熱側に設けられたヒートシンクと、
     前記ヒートシンクと接する放熱シートとを備え、
     前記放熱シートの表面は、親水性領域と疎水性領域が交互に配置されたパターンを有することを特徴とする、熱電装置。
    A thermoelectric element having a heat source side and a heat dissipation side;
    A heat sink provided on the heat dissipation side of the thermoelectric element;
    A heat dissipation sheet in contact with the heat sink,
    The thermoelectric device according to claim 1, wherein the surface of the heat dissipation sheet has a pattern in which hydrophilic regions and hydrophobic regions are alternately arranged.
  9.  前記熱電素子を封止する樹脂を更に備え、
     前記放熱シートは、前記樹脂の放熱側と接することを特徴とする、請求項8記載の熱電装置。
    Further comprising a resin for sealing the thermoelectric element,
    The thermoelectric device according to claim 8, wherein the heat dissipation sheet is in contact with a heat dissipation side of the resin.
  10.  前記熱源素子と電気的に接続された回路基板を更に備え、
     前記樹脂は、前記回路基板も封止することを特徴とする、請求項9記載の熱電装置。
    A circuit board electrically connected to the heat source element;
    The thermoelectric device according to claim 9, wherein the resin also seals the circuit board.
  11.  前記放熱シートの前記親水性領域と前記疎水性領域は、交互に縞状または市松状に配置されていることを特徴とする、請求項8乃至10のいずれか1項記載の熱電装置。 The thermoelectric device according to any one of claims 8 to 10, wherein the hydrophilic region and the hydrophobic region of the heat-dissipating sheet are alternately arranged in a striped pattern or a checkered pattern.
  12.  前記放熱シートは、グラファイトシート、金属シート、及びグラファイトシートと金属シートが積層された多層構造を有するシートのいずれか1つで形成された、放熱性及び可塑性を有するベースシートを有し、
     前記親水性領域と前記疎水性領域は、前記ベースシート上に交互に形成されていることを特徴とする、請求項11記載の熱電装置。
    The heat dissipation sheet includes a base sheet having heat dissipation and plasticity formed of any one of a graphite sheet, a metal sheet, and a sheet having a multilayer structure in which a graphite sheet and a metal sheet are laminated.
    The thermoelectric device according to claim 11, wherein the hydrophilic region and the hydrophobic region are alternately formed on the base sheet.
  13.  前記回路基板上に設けられた半導体チップを更に備えたことを特徴とする、請求項10記載の熱電装置。 The thermoelectric device according to claim 10, further comprising a semiconductor chip provided on the circuit board.
  14.  前記回路基板上に設けられた二次電池を更に備えたことを特徴とする、請求項13記載の熱電装置。 The thermoelectric device according to claim 13, further comprising a secondary battery provided on the circuit board.
  15.  前記半導体チップは、センサ、コントローラ、及びメモリを含むことを特徴とする、請求項12または13記載の熱電装置。 The thermoelectric device according to claim 12 or 13, wherein the semiconductor chip includes a sensor, a controller, and a memory.
  16.  前記半導体チップは、通信部を含むことを特徴とする、請求項13乃至15のいずれか1項記載の熱電装置。 The thermoelectric device according to claim 13, wherein the semiconductor chip includes a communication unit.
PCT/JP2014/077078 2014-10-09 2014-10-09 Heat dissipation sheet and thermoelectric device WO2016056106A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077078 WO2016056106A1 (en) 2014-10-09 2014-10-09 Heat dissipation sheet and thermoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077078 WO2016056106A1 (en) 2014-10-09 2014-10-09 Heat dissipation sheet and thermoelectric device

Publications (1)

Publication Number Publication Date
WO2016056106A1 true WO2016056106A1 (en) 2016-04-14

Family

ID=55652762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077078 WO2016056106A1 (en) 2014-10-09 2014-10-09 Heat dissipation sheet and thermoelectric device

Country Status (1)

Country Link
WO (1) WO2016056106A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021093474A (en) * 2019-12-12 2021-06-17 いすゞ自動車株式会社 Power generator
WO2021152848A1 (en) * 2020-01-31 2021-08-05 株式会社Njs Measuring device, measuring system, method, and program
JP2022027685A (en) * 2020-07-29 2022-02-14 株式会社新日本コンサルタント Manhole pump monitoring system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208937A (en) * 2011-06-30 2011-10-20 Mitsubishi Electric Corp Air conditioner and coating composition
JP2013048581A (en) * 2011-08-31 2013-03-14 Fujitsu Ltd Nose ring
JP2013190169A (en) * 2012-03-14 2013-09-26 Sharp Corp Heat exchanger
JP2014180217A (en) * 2013-03-18 2014-09-29 Fujitsu Ltd Electronic device having power generation function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208937A (en) * 2011-06-30 2011-10-20 Mitsubishi Electric Corp Air conditioner and coating composition
JP2013048581A (en) * 2011-08-31 2013-03-14 Fujitsu Ltd Nose ring
JP2013190169A (en) * 2012-03-14 2013-09-26 Sharp Corp Heat exchanger
JP2014180217A (en) * 2013-03-18 2014-09-29 Fujitsu Ltd Electronic device having power generation function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021093474A (en) * 2019-12-12 2021-06-17 いすゞ自動車株式会社 Power generator
WO2021152848A1 (en) * 2020-01-31 2021-08-05 株式会社Njs Measuring device, measuring system, method, and program
JP2022027685A (en) * 2020-07-29 2022-02-14 株式会社新日本コンサルタント Manhole pump monitoring system
JP7344935B2 (en) 2020-07-29 2023-09-14 NiXJAPAN株式会社 Manhole pump monitoring system

Similar Documents

Publication Publication Date Title
US10777726B2 (en) Thermoelectric conversion module, sensor module, and information processing system
JP6358384B2 (en) Thermoelectric conversion module, sensor module, and information processing system
WO2016056106A1 (en) Heat dissipation sheet and thermoelectric device
US20150338175A1 (en) Radiative cooling with solar spectrum reflection
Maddah et al. Performance estimation of a mini-passive solar still via machine learning
JP6361730B2 (en) Electronic device, method for manufacturing electronic device, integrated module, information processing system
JP2010216967A (en) Weather information processing apparatus and computer program
JP6299520B2 (en) Thermoelectric conversion module and manufacturing method thereof, sensor module and information processing system
CN103410196A (en) Radiation cooling water fetching device
JP6398386B2 (en) Supervisory control system and manhole cover
KR20150092563A (en) Apparatus and method for testing weather resistance and arrangement method of the apparatus
Eom et al. Compact weather sensor node for predicting road surface temperature
CN111512187B (en) Direct freezing precipitation detection device and method
WO2017149764A1 (en) Thermoelectric conversion module, sensor module, and information processing system
JP6988264B2 (en) Thermoelectric conversion module, sensor module and information processing system
US20200326456A1 (en) Weather-Detecting Devices and Related Methods
JP2019210394A (en) Heat storage material, heat transfer device and energy harvester
Silion et al. Wet road surfaces detection by measuring the air humidity in two points
Das Mitigating accumulation of aeolian dust particles on solar power generator panels without water
JP2017227453A (en) Environment measuring device and method
Liu et al. Design and experimental study of a compact thermoelectric device driven by solar heating and radiative cooling
Singh et al. Building Integrated Photovoltaics 4.0: Digitization of the Photovoltaic Integration in Buildings for a Resilient Infra at Large Scale. Electronics 2022, 11, 2700
CN108055808A (en) A kind of installs case for outdoor communication device
Murakami et al. Study on the influences of waste heat on the surface temperatures using multi-temporal thermal images
BEÁTA A FELHŐFIZIKA ALAPJAI ÉS GYAKORLATI ALKALMAZÁSAI

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP