WO2016055523A1 - A module for additive manufacturing apparatus - Google Patents

A module for additive manufacturing apparatus Download PDF

Info

Publication number
WO2016055523A1
WO2016055523A1 PCT/EP2015/073159 EP2015073159W WO2016055523A1 WO 2016055523 A1 WO2016055523 A1 WO 2016055523A1 EP 2015073159 W EP2015073159 W EP 2015073159W WO 2016055523 A1 WO2016055523 A1 WO 2016055523A1
Authority
WO
WIPO (PCT)
Prior art keywords
build
chamber
dosing
build platform
module according
Prior art date
Application number
PCT/EP2015/073159
Other languages
French (fr)
Inventor
Jake Samuel UFTON
Original Assignee
Renishaw Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renishaw Plc filed Critical Renishaw Plc
Priority to CN201580067166.8A priority Critical patent/CN107000061B/en
Priority to EP15777688.1A priority patent/EP3204178B1/en
Priority to US15/516,244 priority patent/US11541459B2/en
Priority to JP2017518957A priority patent/JP6707080B2/en
Publication of WO2016055523A1 publication Critical patent/WO2016055523A1/en
Priority to US18/074,663 priority patent/US20230118342A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/222Driving means for motion along a direction orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/232Driving means for motion along the axis orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Dental Prosthetics (AREA)

Abstract

This invention concerns a module for insertion into an additive manufacturing apparatus. The module comprising a frame (201) mountable in a fixed position in the additive manufacturing apparatus, the frame (201) defining a build chamber (205) and a dosing chamber (206). A build platform (207) is movable in the build chamber (205) for supporting a powder bed during additive manufacturing of a part. A dosing piston (210) is movable in the dosing chamber (206) to push powder from the dosing chamber (206). A mechanism (219a, 219b, 220) mechanically links the build platform (205) to the dosing piston (210) such that downward movement of the build platform (207) in the build chamber (205) results in upward movement of the dosing piston (210) in the dosing chamber (206).

Description

A MODULE FOR ADDITIVE MANUFACTURING APPARATUS Field of Invention This invention concerns a module for an additive manufacturing apparatus and a methods of using the module. The invention has particular, but not exclusive, application to a module for reducing a build volume of a selective laser melting (SLM) or selective laser sintering (SLS) apparatus. Background
Selective laser melting (SLM) and selective laser sintering (SLS) apparatus produce objects through layer-by- layer solidification of a material, such as a metal powder material, using a high energy beam, such as a laser beam. A powder layer is formed across a powder bed in a build chamber by depositing a heap of powder adjacent to the powder bed and spreading the heap of powder with a wiper across the powder bed. A laser beam is then scanned across areas of the powder layer that correspond to a cross-section of the object being constructed. The laser beam melts or sinters the powder to form a solidified layer. After selective solidification of a layer, the powder bed is lowered by a thickness of the newly solidified layer and a further layer of powder is spread over the surface and solidified, as required. An example of such a device is disclosed in US6042774.
A build volume is defined by the walls of the build chamber and the extent to which a build platform, supporting the powder bed, can be lowered into the build chamber. In certain circumstances, it may be desirable to change the size of the build volume. For example, when manufacturing small parts and/or manufacturing parts from expensive materials, such as gold, it may be desirable to reduce the build volume to reduce the time for the build and/or the amount of powder material that is required.
US2011/0278773 discloses a method of reducing the build volume comprising building walls for confining the powder to a smaller volume at the same time as building the part. An application device for applying powder layers is provided with an insert to reduce the working filed across which powder is applied. DE102009020987 discloses a volume reducing element that can be inserted into the build chamber to reduce the volume available for the build. A subcarrier is also provided for supporting the powder bed, the subcarrier including a connector plate for connecting the subcarrier to the main support piston movable in the build chamber. A cover may be provided in a piston operated doser to reduce the volume of powder required to fill a supply chamber.
US2011/0252618, WO2013/189617 and EP2732890 also disclose arrangements in which elements are inserted in to a build chamber to reduce the available build volume.
Summary of Invention
According to a first aspect of the invention there is provided a module for insertion into an additive manufacturing apparatus, the module comprising a frame mountable in a fixed position in the additive manufacturing apparatus, the frame defining a build chamber and a dosing chamber; a build platform movable in the build chamber for supporting a powder bed during additive manufacturing of a part; a dosing piston movable in the dosing chamber to push powder from the dosing chamber; and a mechanism mechanically linking the build platform to the dosing piston such that downward movement of the build platform in the build chamber results in upward movement of the dosing piston in the dosing chamber.
In this way, both the build platform and the dosing piston may be moved by a common drive mechanism. For example, the module may be mountable in a larger, master build chamber of the additive manufacturing apparatus, the build platform of the module connectable to a drive mechanism for driving a master build platform of the master build chamber. The build platform may be connectable to the drive mechanism via the master build platform. Alternatively, movement of the build platform may be driven by a drive mechanism separate from the drive mechanism for driving the master build platform.
The mechanism mechanically linking the build platform to the dosing piston may be a gear mechanism. The gear mechanism may comprise one or more pinions arranged to engage two racks, one connected to the build platform and the other connected to the dosing piston such that movement of the build platform downwards drives rotation of the one or more pinions, which in turn drives upwards movement of the dosing piston. In one embodiment, the gear mechanism comprises a single pinion. In such an embodiment, the gear mechanism may move the dosing piston upwards by an amount equal to the movement of the build platform downwards.
In an alternative embodiment, the gear mechanism comprises two pinions mounted about a common axis, one of the pinions engaged with the rack connected with the build platform and the other pinion engaged with the rack connected to the dosing piston so as to form a pair of rack and pinion mechanisms. A gearing of the pair of rack and pinions may be arranged such that the distance moved by the dosing piston is not equal to the distance moved by the build platform. Such an arrangement may allow the dosing chamber to dose sufficient powder for a layer, even of the dosing chamber has the same or a smaller cross-sectional area to the build chamber. A start positon of a dosing head of the dosing piston in the dosing chamber may be adjustable. This may allow the user to adjust the volume of powder to be dosed by the dosing mechanism.
A cross-sectional area of the dosing chamber may be greater than a cross-sectional area of the build chamber. Spreading of the powder from the dosing mechanism across the powder bed in the build chamber is typically not 100% efficient. Furthermore, solidification of the powder may result in the solidified areas occupying a smaller volume than the powder from which the solidified area is formed. By providing a dosing chamber with a larger cross-sectional area, the powder supplied for a layer by the dosing mechanism will be slightly greater than that required to form a layer across the powder bed to take into account loss of powder as the powder is spread and shrinkage of solidified areas of the previous layer.
Alternatively or additionally, the mechanism mechanically linking movement of the build chamber to movement of the dosing piston may be arranged such that, for a movement of the build platform downwards, the dosing piston is moved upwards by a greater distance.
The frame may further define a hopper for capturing excess powder that is spread beyond the build chamber.
According to a second aspect of the invention there is provided a module for insertion into a master build chamber of an additive manufacturing apparatus, the module comprising a frame mountable in a fixed position in the master build chamber, the frame defining a secondary build chamber and a dosing chamber; a secondary build platform movable in the secondary build chamber for supporting a powder bed during additive manufacturing of a part; and a dosing piston movable in the dosing chamber to push powder from the dosing chamber. The secondary build platform and dosing piston may be arranged to be mechanically linked to a drive mechanism for driving movement of a master build platform in the master build chamber. The secondary build platform and dosing piston may be arranged to be mechanically linked to the master build platform such that downward movement of the master build platform results in downward movement of the secondary build platform in the secondary build chamber and upward movement of the dosing piston in the dosing chamber. According to a third aspect of the invention there is provided a method of building a part using additive manufacturing comprising inserting a module according to the first or second aspect of the invention in an additive manufacturing apparatus and building the part in the build chamber of the module.
The part may be a dental component, jewellery or other small part that may benefit from being manufactured in a smaller build volume than is conventionally provided in an additive manufacturing apparatus.
According to a fourth aspect of the invention there is provided an additive manufacturing apparatus comprising a module according to the first or second aspect of invention mounted therein. According to a fifth aspect of the invention there is provided an additive manufacturing apparatus comprising a build chamber; an elevator movable in the build chamber, the elevator arranged such that a build substrate can be releasably secured thereto, a powder dispenser for depositing successive layers of powder onto the build substrate as the build substrate is lowered by the elevator, a device for generating a high energy beam, a steering device for steering the high energy beam onto the layers to selectively consolidate areas of each layer to form an object, wherein the build substrate is releasably securable to the elevator via a fastener, the fastener accessible for releasing the substrate from the elevator from a surface other than that/those of the build substrate on which the layers are deposited by the powder dispenser.
In this way, an area of the surface, such as an upper surface, of the build substrate available for a build is not limited by the need to access fasteners, such as bolts, via that surface of the build substrate. This may allow larger parts to be built within the pre-set build volume and obviate the requirement for the user to consider the location of the fasteners when designing the build. At least the surfaces of the build substrate on which layers are deposited may be made of a material to which the powder adheres to when consolidated. For example, the surface of the build substrate may be made of the same material as the powder. The elevator may comprise a build platform to which the build substrate is releasably secured.
The elevator and/or build substrate may comprise at least one projection that is received in a cavity in the other of the elevator or build substrate, wherein the fastener is arranged such that the fastener can enter into the cavity and engage the projection to secure the build substrate to the elevator. The projection may comprise a recess for receiving the fastener. The recess may be suitably shaped, for example comprising an inclined surface, such that engagement of the surface by an end of the fastener draws the build substrate towards the elevator.
According to a sixth aspect of the invention there is provided a build substrate for use in an additive manufacturing apparatus according to the fifth aspect of the invention, the build substrate comprising a fastener for releasably securing the build substrate to the elevator of the additive manufacturing apparatus, the fastener accessible for releasing the substrate from the elevator from a surface other than that/those of the build substrate on which the powder is deposited by the powder dispenser of the additive manufacturing apparatus.
Description of the Drawings Figure 1 is a schematic of an additive manufacturing apparatus;
Figure 2 is a schematic view of the additive manufacturing apparatus shown in Figure 1 from another side; Figure 3 is an elevated view of a module according to an embodiment of the invention; Figure 4 is a cross-sectional view of the module shown in Figure 3 along the line A-A mounted in an additive manufacturing apparatus; Figure 5 is a magnified cross-sectional view along line A-A of the dosing head of a dosing piston of the module;
Figure 6 is a cross-sectional view of the module shown in Figure 3 along the line B-B; and
Figure 7 is a cross-sectional view along the line C-C of the build substrate and build platform.
Description of Embodiments
Referring to Figures 1 and 2, an additive manufacturing apparatus comprises a main chamber 101 having therein partitions 115, 116, which define a master build chamber 117 and a surface 110 onto which powder can be deposited. A master build platform 102 is provided for supporting a powder bed 104 and an object/objects 103 built by selective laser melting powder 104. The master build platform 102 can be lowered within the master build chamber 117 by a drive mechanism, such as a motor 113, as successive layers of the object 103 are formed. A build volume available is defined by the extent to which the master build platform 102 can be lowered into the master build chamber 117.
The build progresses by successively depositing layers of powder across the powder bed 104 using dispensing apparatus 108 for dosing the powder onto surface 110 and an elongate wiper 109 for spreading the powder across the bed 104. For example, the dispensing apparatus 108 may be apparatus as described in WO2010/007396. The wiper 109 moves in a linear direction across the build platform 102. A laser module 105 generates a laser for melting the powder 104, the laser directed as required by optical scanner 106 under the control of a computer 130. The laser beam 118 enters the chamber 101 via a window 107. In this embodiment, the laser module 105 is a fibre laser, such as an nd:YAG fibre laser.
The optical scanner 106 comprises steering optics, in this embodiment, two movable mirrors 106a, 106b for directing the laser beam to the desired location on the powder bed 104 and focussing optics, in this embodiment a pair of movable lenses 106c, 106d, for adjusting a focal length of the laser beam. Motors (not shown) drive movement of the mirrors 106a and lenses 106b, 106c, the motors controlled by computer 130.
Referring to Figures 3 to 7 a module according to an embodiment of the invention comprises a frame 201 capable of being inserted into the master build chamber 117 of the additive manufacturing apparatus. A lip 202 of the frame 201 is arranged to extend beyond an upper opening of the build chamber 117 over surface 110 such that the frame 201 is fixed in position in the additive manufacturing apparatus. The frame 201 comprises downwardly extending walls 203 and 204 defining a build chamber 205 and a dosing chamber 206, respectively, and an overflow hopper 221 for capturing excess powder that is spread beyond the build chamber 205. The frame 201 may be a single unitary piece or formed from a series of separate parts secured together to form a single unit.
As can be seen clearly from Figure 3, a cross-sectional area of the dosing chamber 206 (in a horizontal plane) is greater than a corresponding cross-sectional area of the build chamber 205. In this embodiment, the cross-section of the dosing chamber 206 is the same rectangular shape but larger than the corresponding cross-section of the build chamber 205. However, it will be understood that, in other embodiments, the cross-sectional shape of the dosing chamber 206 and build chamber 205 may differ.
The module comprises a build platform 207 movable in the build chamber 205 supported by legs 208a, 208b, which in turn are mounted on a foot 209. The foot 209 has through holes for receiving bolts to attach the foot 209, and therefore, build platform 207 to master build platform 102 of the additive manufacturing apparatus. The build platform 207 comprises a seal 207a that seals the platform against the walls of the build chamber 117.
As shown in in Figures 4 and 7, the build platform 207 comprises a central, circular pin 230 and projections 231 (only one of which is shown) that extend upwardly from the platform 207. A build substrate 228 to be releasably secured to the build platform 207 comprises a central cavity for receiving pin 230 and cavities 232, offset from the centre of substrate 228, for receiving projections 231. The build substrate 228 comprises a threaded hole 234 for receiving threaded fastener 235. The hole 234 opens out to a side surface, rather than upper surface 329, of the build substrate 228. The fastener 235 has a dome shaped end 236 that can be engaged with an inclined surface of a recess 237 in projection 231 when the projection 231 is received in cavity 232.
The module further comprises a dosing piston 210 movable in the dosing chamber 206. The dosing piston 210 comprises an upper piston head 211 supported by a threaded connecting rod 212. Connecting rod 212 passes through a threaded aperture 213 in an annular setting head 214. The relative position of the upper piston head 211 to the setting head 214 can be adjusted by rotation of the connecting rod 212. Movement of the upper piston head 211 relative to the setting head 214 is guided by two guide shafts 215a, 215b either side of the connecting rod 212. The head of the connecting rod 212 comprises a chamfered recess 223 therein and the upper piston head 211 comprises four threaded holes. To prevent rotation of the connecting rod 212 during a build, a clamping plate 224 is secured to the upper piston head 211 using bolts 225 that engage the threaded holes. The clamping plate 224 comprises a protrusion 226 that engages the chamfered recess 223 such that, when the clamping plate 224 is secured in place, friction between the protrusion 226 and the recess 223 acts to prevent rotation of the connecting rod 212. Both the upper piston head 211 and setting head 214 comprise seals 21 la, 214a to seal the heads 211, 214 against the walls 204 of the dosing chamber 206. The setting head 214 comprises a pair of legs 217a, 217b. A bearing plate 226 connected to the bottom of each of the build chamber 205 and dosing chamber 206 provides bearings for guiding the legs 208a, 208b, 217a, 217b during movement of the build platform 207 and dosing piston 210.
Each one of leg 208b and leg 213a comprises a rack of teeth 219a, 219b that engage teeth 216 on a pinion 220. This gear mechanism mechanically links the build platform 207 to the dosing piston 210 such that downward movement of the build platform 207 in the build chamber 205 results in upward movement of the dosing piston 210 in the dosing chamber 206. In this way, both the build platform 207 and the dosing piston 210 are moved by movement of build platform 102.
The module further comprises four clamps (two 240a, 240b of which are shown) each comprising a movable abutment 242a, 242b for engaging a sidewall of the main build chamber 117. The abutments 242a, 242b are moved into a position engaging the sidewall of chamber 117 by rotation of screws 241a to 24 Id having threads that engage with complementary threads in frame 201. At the end of each screw 241a to 24 Id is a wedge shaped member (not shown) that engages with corresponding inclined surfaces (not shown). One of the inclined surfaces is fixed and the other inclined surfaces is movable with one of the abutments 242a, 242b such that movement of the screw 241a-241d into the frame 201 pushes the wedge shaped member against the inclined surfaces, pushing the inclined surfaces apart and therefore, the abutment 242a, 242b towards the sidewall of the build chamber 117. A biasing member, such as a spring or rubber band, may bias the inclined surfaces towards each other such that the abutment 242a, 242b is moved away from the sidewall under the biasing of the biasing member when the wedge shaped member is moved away from the inclined surfaces. In use, the module is mounted in the master build chamber 117 to provide a reduced volume, secondary or slave build chamber 207 driven by the drive mechanism 113 of the master build platform 102. To mount the module in the additive manufacturing apparatus, the master build platform 102 is raised to the top of the master build chamber 117 and the foot 209 of the module attached to the build platform 102. The build platform 102 is then lowered to lower the module into the master build chamber 117 until lip 202 of frame 201 engages with surface 110. The user forces the abutments 241a, 241b against the side of the walls of build chamber 117 by actuating screws 242a to 242d to clamp the module in place in the build chamber 117.
The build substrate 228 is mounted on the build platform 207 by raising the build platform 228 to the top of the build chamber 205 and locating pin 230 in the central cavity and projections 231 in cavities 232 of the build substrate 228. The user than aligns the fasteners 235 with the recesses 237 in projections 231 such that tightening of the fasteners 235 forces ends 236 into the recesses 237 against the inclined surfaces. This action results in the build substrate 228 being pushed towards platform 207, securing the build substrate 228 thereto. With the build substrate 228 secured, the build platform 102 is lowered to locate an upper surface of the build substrate 226 level with the upper surface of frame 201.
The dosing piston 208 is then adjusted to set a start positon of the upper dosing head
211 in the dosing chamber 206. The start position is set by rotating connecting rod
212 to move the upper dosing head 211 relative to setting head 214. The start position is set based upon the amount of powder required for the build, which in turn is set by a required depth of the powder bed when the build has been completed. The required depth will depend on the size and orientation of the parts being built. Once the upper dosing piston 211 is positioned as desired, the clamping plate 224 is secured to maintain the connecting rod 212 in place. A thin, such as 2mm, covering plate 227 is placed over the dosing head 212 to prevent powder from entering recesses on an upper surface of the head 212. Once the dosing head 211 has been located at the desired start position, powder can be loaded and the build commenced. This is achieved by lowering build platform 102 by the thickness of a layer, which in turn lowers build piston 207 and raises dosing piston 208. Wiper 109 is then actuated to spread the dosed powder, pushed above the upper surface of frame 201, across the build substrate 228 mounted on the build platform 207. Any excess powder is pushed into overflow hopper 221. Selected areas of the powder layer formed across the build substrate are then melted by steering the laser beam, under the control of a computer 130, to the selected areas. This process is then repeated for subsequent layers until the build is complete.
At the end of the build, the master build platform 102 is raised, raising the secondary build platform 207 to the top of secondary build chamber 205 such that the part can be removed and powder recovered. Unsolidified powder is recovered by the user brushing the powder into the hopper 221. A volume of the hopper 221 is equal to a maximum volume of powder that can be loaded into the dosing chamber 206. The hopper 221 can then be detached from the frame 201 for recovery of the powder. For example, a handle 250 can be attached to the hopper 221 for removal of the hopper 221. The handle comprises a hole 251 therein from which the powder can be poured, for example into a sieve, at the end of the build.
It will be understood that alterations and modifications can be made to the above described embodiment without departing from the scope of the invention as described herein. For example, rather than attaching the build platform 207 to the master build platform 102, the module may be provided with its own dedicated drive mechanism. Rather than a single pinion, the module may comprise two pinions connected on a common shaft, the gearing of the pinions arranged such that, for a distance moved downwards by the build platform 207, the dosing piston 206 is moved a greater distance upwards. Such an arrangement may be beneficial in ensuring that sufficient powder is dispensed to form a layer.

Claims

Claims
1. A module for insertion into an additive manufacturing apparatus, the module comprising a frame mountable in a fixed position in the additive manufacturing apparatus, the frame defining a build chamber and a dosing chamber; a build platform movable in the build chamber for supporting a powder bed during additive manufacturing of a part; a dosing piston movable in the dosing chamber to push powder from the dosing chamber; and a mechanism mechanically linking the build platform to the dosing piston such that downward movement of the build platform in the build chamber results in upward movement of the dosing piston in the dosing chamber.
2. A module according to claim 1 , wherein the module is mountable in a larger, master build chamber of the additive manufacturing apparatus.
3. A module according to claim 2, wherein the build platform of the module is connectable to a drive mechanism for driving a master build platform of the master build chamber.
4. A module according to claim 3, wherein the build platform is connectable to the drive mechanism via the master build platform.
5. A module according to claim 2, wherein the build platform is arranged to be driven by a drive mechanism separate from a drive mechanism for driving a master build platform of the master build chamber.
6. A module according to any one of the preceding claims, wherein the mechanism mechanically linking the build platform to the dosing piston is a gear mechanism.
7. A module according to claim 6, wherein the gear mechanism comprises one or more pinions arranged to engage a rack connected to the build platform and a rack connected to the dosing piston such that movement of the build platform downwards drives rotation of the one or more pinions, which in turn drives upwards movement of the dosing piston.
8. A module according to claim 7, wherein the gear mechanism comprises a single pinion that engages both the rack connected to the build platform and the rack connected to the dosing piston.
9. A module according to claim 7, wherein the gear mechanism comprises two pinions mounted about a common axis, one of the pinions engaged with the rack connected with the build platform and the other pinion engaged with the rack connected to the dosing piston so as to form a pair of rack and pinion mechanisms.
10. A module according to claim 9, wherein a gearing of the pair of rack and pinions is arranged such that the distance moved by the dosing piston is not equal to the distance moved by the build platform.
11. A module according any one of the preceding claims, wherein a start positon of a dosing head of the dosing piston in the dosing chamber is adjustable.
12. A module according to any one of the preceding claims, wherein a cross- sectional area of the dosing chamber is greater than a corresponding cross-sectional area of the build chamber.
13. A module according to any one of the preceding claims, wherein the mechanism mechanically linking movement of the build chamber to movement of the dosing piston is arranged such that, for a movement of the build platform downwards, the dosing piston is moved upwards by a greater distance.
14. A module according to any one of the preceding claims, wherein the frame further defines a hopper for capturing excess powder that is spread beyond the build chamber.
15. A module for insertion into a master build chamber of an additive manufacturing apparatus, the module comprising a frame mountable in a fixed position in the master build chamber, the frame defining a secondary build chamber and a dosing chamber; a secondary build platform movable in the secondary build chamber for supporting a powder bed during additive manufacturing of a part; and a dosing piston movable in the dosing chamber to push powder from the dosing chamber.
16. A module according to claim 15, wherein the secondary build platform and dosing piston are arranged to be mechanically linked to a drive mechanism used for driving movement of a master build platform in the master build chamber.
17. A module according to claim 16, wherein the secondary build platform and dosing piston are arranged to be mechanically linked to the master build platform such that downward movement of the master build platform results in downward movement of the secondary build platform in the secondary build chamber and upward movement of the dosing piston in the dosing chamber.
18. A method of building a part using additive manufacturing comprising inserting a module according to any one of the preceding claims in an additive manufacturing apparatus and building the part in the build chamber of the module.
19. An additive manufacturing apparatus comprising a module according to any one of claims 1 to 17.
PCT/EP2015/073159 2014-10-07 2015-10-07 A module for additive manufacturing apparatus WO2016055523A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580067166.8A CN107000061B (en) 2014-10-07 2015-10-07 Module for an additive manufacturing apparatus
EP15777688.1A EP3204178B1 (en) 2014-10-07 2015-10-07 A module for additive manufacturing apparatus
US15/516,244 US11541459B2 (en) 2014-10-07 2015-10-07 Module for additive manufacturing apparatus
JP2017518957A JP6707080B2 (en) 2014-10-07 2015-10-07 Modules for additive manufacturing equipment
US18/074,663 US20230118342A1 (en) 2014-10-07 2022-12-05 Module for additive manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB1417687.9A GB201417687D0 (en) 2014-10-07 2014-10-07 A module for additive manufacturing apparatus
GB1417687.9 2014-10-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/516,244 A-371-Of-International US11541459B2 (en) 2014-10-07 2015-10-07 Module for additive manufacturing apparatus
US18/074,663 Continuation US20230118342A1 (en) 2014-10-07 2022-12-05 Module for additive manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2016055523A1 true WO2016055523A1 (en) 2016-04-14

Family

ID=51946951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/073159 WO2016055523A1 (en) 2014-10-07 2015-10-07 A module for additive manufacturing apparatus

Country Status (6)

Country Link
US (2) US11541459B2 (en)
EP (1) EP3204178B1 (en)
JP (1) JP6707080B2 (en)
CN (1) CN107000061B (en)
GB (1) GB201417687D0 (en)
WO (1) WO2016055523A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9821411B2 (en) 2014-06-20 2017-11-21 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
WO2018005439A1 (en) * 2016-06-29 2018-01-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US9919360B2 (en) 2016-02-18 2018-03-20 Velo3D, Inc. Accurate three-dimensional printing
US9962767B2 (en) 2015-12-10 2018-05-08 Velo3D, Inc. Apparatuses for three-dimensional printing
US20180126649A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US10065270B2 (en) 2015-11-06 2018-09-04 Velo3D, Inc. Three-dimensional printing in real time
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
EP3446858A1 (en) * 2017-08-25 2019-02-27 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing of three-dimensional objects
CN109641394A (en) * 2016-06-30 2019-04-16 罗伯特·博世有限公司 Automation changing reel machine for 3D printer
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10315252B2 (en) 2017-03-02 2019-06-11 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10449696B2 (en) 2017-03-28 2019-10-22 Velo3D, Inc. Material manipulation in three-dimensional printing
EP3581300A1 (en) * 2018-06-15 2019-12-18 Howmedica Osteonics Corporation Stackable build plates for additive manufacturing powder handling
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
EP3756797A1 (en) * 2019-06-25 2020-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for testing new material compositions for powder bed-based laser melting, and device therefor
WO2022123238A1 (en) 2020-12-09 2022-06-16 Renishaw Plc Manufacturing method
US11565471B2 (en) 2017-07-06 2023-01-31 Hewlett-Packard Development Company, L.P. Three-dimensional printing with diffuser plate
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
DE102022114262A1 (en) 2022-06-07 2023-12-07 One Click Metal GmbH Interchangeable container and device for producing a three-dimensional component

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6600278B2 (en) * 2016-06-07 2019-10-30 三菱重工業株式会社 Selective beam additive manufacturing apparatus and selective beam additive manufacturing method
JP7048741B2 (en) * 2017-11-20 2022-04-05 エスエルエム ソルーションズ グループ アーゲー Instruments and methods for manufacturing 3D processed products
EP3498473A1 (en) * 2017-12-15 2019-06-19 CL Schutzrechtsverwaltungs GmbH Module for an apparatus for additively manufacturing three-dimensional objects
US11072039B2 (en) * 2018-06-13 2021-07-27 General Electric Company Systems and methods for additive manufacturing
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
CN110856979A (en) * 2018-08-23 2020-03-03 东台精机股份有限公司 Lifting device for laminated manufacturing and operation method thereof
WO2020099732A1 (en) * 2018-11-16 2020-05-22 Gmp Ingenierie Removable adaptive additive manufacturing platform for equipment for metal additive manufacture by laser fusion
JP7122233B2 (en) * 2018-11-22 2022-08-19 ローランドディー.ジー.株式会社 3D printer
FR3105038B1 (en) * 2019-12-18 2021-11-26 Addup Removable additive manufacturing module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009020987A1 (en) * 2009-05-12 2010-11-18 Cl Schutzrechtsverwaltungs Gmbh Device for the production of three-dimensional object by successive hardening of layers of powdery build-up materials solidifiable by laser radiation or electron radiation on a position, comprises a supporting device and a coating device
CN203580143U (en) * 2013-12-04 2014-05-07 金华市闪铸科技有限公司 Printing table applied to selected laser sintering three-dimensional (SLS 3D) printer

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4300478C2 (en) 1993-01-11 1998-05-20 Eos Electro Optical Syst Method and device for producing a three-dimensional object
DE19511772C2 (en) 1995-03-30 1997-09-04 Eos Electro Optical Syst Device and method for producing a three-dimensional object
DE19918613A1 (en) * 1999-04-23 2000-11-30 Eos Electro Optical Syst Method for calibrating a device for producing a three-dimensional object, calibration device and method and device for producing a three-dimensional object
DE10053741C1 (en) 2000-10-30 2002-02-21 Concept Laser Gmbh Machine for sintering, removing material from or marking surface with laser beam uses trolleys which include container for workpieces and have working platform whose height can be adjusted
JP4437743B2 (en) * 2004-12-21 2010-03-24 東京エレクトロン株式会社 Opening / closing mechanism for vacuum processing apparatus and vacuum processing apparatus
JP3980610B2 (en) 2005-07-26 2007-09-26 株式会社アスペクト Powder sintering additive manufacturing equipment
US20070126157A1 (en) * 2005-12-02 2007-06-07 Z Corporation Apparatus and methods for removing printed articles from a 3-D printer
GB0813242D0 (en) 2008-07-18 2008-08-27 Mcp Tooling Technologies Ltd Powder dispensing apparatus and method
DE202010005162U1 (en) 2010-04-17 2010-11-04 Evonik Degussa Gmbh Device for reducing the lower installation space of a laser sintering system
DE102010020418A1 (en) 2010-05-12 2011-11-17 Eos Gmbh Electro Optical Systems Apparatus and method for the generative production of a three-dimensional object with construction panel boundary
DE102010020416A1 (en) * 2010-05-12 2011-11-17 Eos Gmbh Electro Optical Systems Construction space changing device and a device for producing a three-dimensional object with a construction space changing device
ES2934103T3 (en) * 2011-01-31 2023-02-16 Global Filtration Systems Dba Gulf Filtration Systems Inc Apparatus for manufacturing three-dimensional objects from multiple solidifiable materials
GB2503215A (en) 2012-06-18 2013-12-25 Rolls Royce Plc Method of making an object using a deposition control plate
DE102012017692A1 (en) 2012-09-07 2014-03-13 Eos Gmbh Electro Optical Systems Device and method for changing the working plane for the layered structure of a three-dimensional body
US20140077422A1 (en) * 2012-09-19 2014-03-20 Pratt & Whitney Rocketdyne, Inc. Reduced build mass additive manufacturing chamber
ITVR20120231A1 (en) 2012-11-20 2014-05-21 Sisma Spa MACHINE TO PRODUCE THREE-DIMENSIONAL OBJECTS FROM POWDERED MATERIALS
WO2014090510A1 (en) * 2012-12-10 2014-06-19 Arcam Ab Vacuum chamber with inspection device
WO2015109102A1 (en) * 2014-01-20 2015-07-23 United Technologies Corporation An additive manufacturing system utilizing an epitaxy process and method of operation
US9205600B1 (en) * 2014-03-04 2015-12-08 New Matter, Inc. Moveable platform with 2-axis rack and pinion drive
US9925724B2 (en) * 2014-07-03 2018-03-27 United Technologies Corporation Additive manufacturing system and method of additive manufacture utilizing layer-by-layer thermo-mechanical analysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009020987A1 (en) * 2009-05-12 2010-11-18 Cl Schutzrechtsverwaltungs Gmbh Device for the production of three-dimensional object by successive hardening of layers of powdery build-up materials solidifiable by laser radiation or electron radiation on a position, comprises a supporting device and a coating device
CN203580143U (en) * 2013-12-04 2014-05-07 金华市闪铸科技有限公司 Printing table applied to selected laser sintering three-dimensional (SLS 3D) printer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 2014-M47349, XP002751518 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9821411B2 (en) 2014-06-20 2017-11-21 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10507549B2 (en) 2014-06-20 2019-12-17 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10493564B2 (en) 2014-06-20 2019-12-03 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10195693B2 (en) 2014-06-20 2019-02-05 Vel03D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10065270B2 (en) 2015-11-06 2018-09-04 Velo3D, Inc. Three-dimensional printing in real time
US10357957B2 (en) 2015-11-06 2019-07-23 Velo3D, Inc. Adept three-dimensional printing
US10688722B2 (en) 2015-12-10 2020-06-23 Velo3D, Inc. Skillful three-dimensional printing
US10207454B2 (en) 2015-12-10 2019-02-19 Velo3D, Inc. Systems for three-dimensional printing
US10286603B2 (en) 2015-12-10 2019-05-14 Velo3D, Inc. Skillful three-dimensional printing
US10183330B2 (en) 2015-12-10 2019-01-22 Vel03D, Inc. Skillful three-dimensional printing
US10071422B2 (en) 2015-12-10 2018-09-11 Velo3D, Inc. Skillful three-dimensional printing
US9962767B2 (en) 2015-12-10 2018-05-08 Velo3D, Inc. Apparatuses for three-dimensional printing
US9919360B2 (en) 2016-02-18 2018-03-20 Velo3D, Inc. Accurate three-dimensional printing
US10252335B2 (en) 2016-02-18 2019-04-09 Vel03D, Inc. Accurate three-dimensional printing
US9931697B2 (en) 2016-02-18 2018-04-03 Velo3D, Inc. Accurate three-dimensional printing
US10434573B2 (en) 2016-02-18 2019-10-08 Velo3D, Inc. Accurate three-dimensional printing
EP3263316B1 (en) 2016-06-29 2019-02-13 VELO3D, Inc. Three-dimensional printing and three-dimensional printers
US10252336B2 (en) 2016-06-29 2019-04-09 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
WO2018005439A1 (en) * 2016-06-29 2018-01-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10259044B2 (en) 2016-06-29 2019-04-16 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10286452B2 (en) 2016-06-29 2019-05-14 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
CN109641394A (en) * 2016-06-30 2019-04-16 罗伯特·博世有限公司 Automation changing reel machine for 3D printer
US11167951B2 (en) * 2016-06-30 2021-11-09 Robert Bosch Tool Corporation Automatic mechanical spool changer for 3-D printers
US20180126649A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US10661341B2 (en) 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
US10442003B2 (en) 2017-03-02 2019-10-15 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10357829B2 (en) 2017-03-02 2019-07-23 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10315252B2 (en) 2017-03-02 2019-06-11 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10369629B2 (en) 2017-03-02 2019-08-06 Veo3D, Inc. Three-dimensional printing of three-dimensional objects
US10888925B2 (en) 2017-03-02 2021-01-12 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10449696B2 (en) 2017-03-28 2019-10-22 Velo3D, Inc. Material manipulation in three-dimensional printing
US11565471B2 (en) 2017-07-06 2023-01-31 Hewlett-Packard Development Company, L.P. Three-dimensional printing with diffuser plate
EP3446858A1 (en) * 2017-08-25 2019-02-27 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing of three-dimensional objects
US11020902B2 (en) 2017-08-25 2021-06-01 Concept Laser Gmbh Apparatus for additively manufacturing of three-dimensional objects
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US11440256B2 (en) 2018-06-15 2022-09-13 Howmedica Osteonics Corp. Stackable build plates for additive manufacturing powder handling
EP3581300A1 (en) * 2018-06-15 2019-12-18 Howmedica Osteonics Corporation Stackable build plates for additive manufacturing powder handling
EP3756797A1 (en) * 2019-06-25 2020-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for testing new material compositions for powder bed-based laser melting, and device therefor
WO2022123238A1 (en) 2020-12-09 2022-06-16 Renishaw Plc Manufacturing method
DE102022114262A1 (en) 2022-06-07 2023-12-07 One Click Metal GmbH Interchangeable container and device for producing a three-dimensional component
WO2023237334A1 (en) 2022-06-07 2023-12-14 One Click Metal GmbH Interchangeable container and device for producing a three-dimensional component

Also Published As

Publication number Publication date
CN107000061A (en) 2017-08-01
US11541459B2 (en) 2023-01-03
EP3204178B1 (en) 2023-12-06
JP6707080B2 (en) 2020-06-10
US20230118342A1 (en) 2023-04-20
EP3204178A1 (en) 2017-08-16
US20170239725A1 (en) 2017-08-24
JP2017538030A (en) 2017-12-21
CN107000061B (en) 2020-02-18
GB201417687D0 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
US20230118342A1 (en) Module for additive manufacturing apparatus
WO2008049384A1 (en) Device for producing a three-dimensional object
JP5733541B2 (en) Improved stereolithography machine
EP0734842B1 (en) Apparatus and method for manufacturing three-dimensional objects
DE102011075748B4 (en) Device for the sequential production of molded bodies by layer-by-layer construction from material powder
DE60012667T2 (en) Apparatus for producing a three-dimensional laminated article of a light-curing liquid
EP3705266B1 (en) Method for additive manufacture of a three dimensional product
EP1439050B1 (en) Coating device for an apparatus for producing articles made of pulverulent material
DE102007036370C5 (en) Device for producing three-dimensional objects
EP3600726B1 (en) Apparatus and method for manufacturing three dimensional workpieces
DE19905067A1 (en) Layer-wise molding build-up apparatus, especially for laser prototyping of metallic articles, has a grinding tool for removing irregularities from a previously laser melted and solidified layer region
DE102014004633B4 (en) Device and method for producing three-dimensional objects by successively solidifying layers
DE202011003443U1 (en) Device for the generative production of three-dimensional components
US11787107B2 (en) Lifting system for device and a method for generatively manufacturing a three-dimensional object
US7901200B2 (en) Molding apparatus
WO2017157648A1 (en) Device for the additive production of a three-dimensional object
DE102009006189A1 (en) Apparatus and process for the production and post-processing of a shaped body
WO2015091941A1 (en) Method for the production of a three-dimensional object, including magnetic fastening of the construction platform
EP3715022A1 (en) Process and apparatus for additive manufacturing a component
EP2636498A2 (en) Slurry pressure casting mould, slurry pressure casting facility, and pressure casting method
CN103702810B (en) Block machine and the method for vertical adjustment block machine
DE102011122141A1 (en) Device for producing three-dimensional object e.g. pipe, has handling cradle that is configured such that object is discharged from discharge opening in downward direction
CN115741862A (en) Substrate material overlapping, composing and cutting device
DE19844337A1 (en) Concrete component producing process, involving completely closing aperture in mold cavity after filling
CA2334475A1 (en) Process and apparatus for producing molded articles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777688

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15516244

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017518957

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015777688

Country of ref document: EP