WO2016053031A1 - Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same - Google Patents

Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2016053031A1
WO2016053031A1 PCT/KR2015/010400 KR2015010400W WO2016053031A1 WO 2016053031 A1 WO2016053031 A1 WO 2016053031A1 KR 2015010400 W KR2015010400 W KR 2015010400W WO 2016053031 A1 WO2016053031 A1 WO 2016053031A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
silicon nanoparticles
lithium secondary
Prior art date
Application number
PCT/KR2015/010400
Other languages
French (fr)
Korean (ko)
Inventor
이용주
최승연
조래환
김은경
김현철
최정현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150137455A external-priority patent/KR101763478B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/515,398 priority Critical patent/US20170222222A1/en
Publication of WO2016053031A1 publication Critical patent/WO2016053031A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium secondary battery, a method for preparing the same, and a lithium secondary battery including the same, which can exhibit a markedly improved initial efficiency characteristic with excellent life and capacity characteristics when applied to a battery.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
  • high capacity and high output technology of negative electrode active materials is required. Therefore, the development of non-carbon negative electrode active materials, such as silicon, tin, germanium, zinc, and lead, which has a higher theoretical capacity than the carbon-based negative electrode active materials, is being developed.
  • the silicon-based negative electrode active material has a capacity (4190 mAh / g) more than 11 times higher than the theoretical capacity (372 mAh / g) of the carbon-based negative electrode active material, has been spotlighted as a material for replacing the carbon-based negative electrode active material.
  • the battery capacity tends to decrease as charging and discharging proceeds, and safety problems also occur, requiring much technical development to commercialize. do.
  • the silicon-based active material has a problem of high initial efficiency but low lifespan characteristics as compared to silicon oxide (SiO) -based active material.
  • SiO silicon oxide
  • a method of using nano-sized silicon has been studied.
  • One of the most common methods for preparing nano-sized silicon is a method of crushing large silicon particles to produce nano-sized, specifically, tens of to 100 nm silicon particles.
  • the method is susceptible to surface oxidation on the silicon surface during the grinding process, the initial efficiency is reduced by the amorphous SiO 2 generated on the surface as a result of the oxidation.
  • the first technical problem to be solved by the present invention is to provide a negative electrode active material for a lithium secondary battery and a method of manufacturing the same, which can exhibit a significantly improved initial efficiency characteristics with excellent life and capacity characteristics when applied to a battery.
  • the second technical problem to be solved by the present invention is to provide a negative electrode, a lithium secondary battery, a battery module and a battery pack including the negative electrode active material.
  • the present invention comprises a surface-treated silicon nanoparticles, the surface-treated silicon nanoparticles are located on the surface of the silicon nanoparticles, and the silicon nanoparticles, comprising crystalline SiO 2 It provides a negative electrode active material for a lithium secondary battery comprising a surface treatment layer.
  • the surface of the invention comprises heat-treating the silicon nano-particles including the amorphous SiO 2 on the surface after mixing and alkali metal compounds by converting the amorphous SiO 2 to a crystalline SiO 2, a crystalline SiO 2 in the surface of the silicon nano-particles It provides a method for producing a negative electrode active material for a lithium secondary battery comprising the step of producing a surface-treated silicon nanoparticles formed with a treatment layer.
  • the present invention also provides a negative electrode for a lithium secondary battery including the negative electrode active material and a lithium secondary battery including the same.
  • the present invention provides a battery module including the lithium secondary battery as a unit cell.
  • the present invention provides a battery pack including the battery module.
  • the negative electrode active material for a lithium secondary battery according to the present invention may exhibit a markedly improved initial efficiency characteristic with excellent life and capacity characteristics when applied to a battery.
  • Example 1 is a graph showing the results of X-ray diffraction (X-ray diffraction spectroscopy (XRD)) for the negative electrode active material prepared in Example 1.
  • XRD X-ray diffraction spectroscopy
  • 'nanoparticles means particles having an average particle diameter of several nanometers to hundreds of nanometers having an average particle diameter of less than 1 ⁇ m.
  • the average particle diameter (D 50 ) may be defined as the particle size at 50% of the particle size distribution.
  • the average particle diameter (D 50 ) of the particles according to an embodiment of the present invention can be measured using, for example, a laser diffraction method.
  • the method for measuring the average particle diameter (D 50 ) of the silicon nanoparticles is, after dispersing the silicon nanoparticles in a solution, it is introduced into a commercially available laser diffraction particle size measuring device (for example, Microtrac MT 3000) to about 28 after examining the kHz ultrasound of 60 W in output, it can be used to calculate the average particle diameter (D 50) of from 50% based on the particle size distribution of the measuring device.
  • a commercially available laser diffraction particle size measuring device for example, Microtrac MT 3000
  • the oxygen content in the active material is located on the surface of the silicon nanoparticles during the preparation of the silicon-based negative electrode active material, and by changing the amorphous SiO 2 to the electrochemically inert crystalline SiO 2 which decreases the initial efficiency by irreversible reaction during the initial charge Even without the change of the present invention can exhibit a markedly improved initial efficiency characteristics with excellent life and capacity characteristics in the battery application.
  • the negative electrode active material for a lithium secondary battery according to an embodiment of the present invention includes surface treated silicon nanoparticles, and the surface treated silicon nanoparticles are silicon (Si) nanoparticles and the surface of the silicon nanoparticles. And a surface treatment layer comprising crystalline SiO 2 .
  • the silicon nanoparticles are nanoparticles containing silicon single particles, specifically, may have an average particle diameter (D 50 ) of 150 nm or less. In this way, by including the nano-level silicon particles can exhibit a high initial efficiency and excellent life characteristics. In addition, in consideration of the remarkable improvement effect, the silicon nanoparticles may have an average particle diameter of 10nm to 100nm.
  • the silicon nanoparticles include a surface treatment layer containing crystalline SiO 2 on the particle surface.
  • the surface treatment layer may be formed an amorphous SiO 2 existing on the surface of the surface of the silicon oxide nano particles by pulverization is converted to SiO 2 of a crystalline in the process of the basic substance, and formed to a uniform thickness on the surface of the silicon nano-particles Can be. Accordingly, the surface treatment layer may act as a buffering layer to control the volume expansion of the silicon nanoparticles, and as a result, to prevent the detachment of the active material from the electrode due to the volume expansion of silicon to improve the life characteristics of the battery Can be.
  • the surface treatment layer may be formed on the surface of the silicon nanoparticles with a thickness of 1 nm to 20 nm, thereby exhibiting excellent high rate charge and discharge efficiency as an effective control of the volume expansion of the silicon nanoparticles. have.
  • the thickness of the surface treatment layer is less than 1 nm, it is difficult to exhibit a sufficient buffering effect on the volume expansion of silicon, and when it exceeds 20 nm, there is a fear that battery characteristics are rather deteriorated.
  • the surface treatment layer may be formed in a thickness of 2nm to 10nm more specifically.
  • the crystalline SiO 2 included in the surface treatment layer provides a channel of lithium ions during charge and discharge of the battery and is electrically inactive, it is possible to prevent a decrease in initial efficiency during initial charge and discharge.
  • the crystalline SiO 2 is preferably included in 2 to 15% by weight based on the total weight of the surface-treated silicon nanoparticles.
  • the conversion rate of amorphous SiO 2 present on the surface of the silicon nanoparticles to crystalline SiO 2 is low, so that the decrease in initial efficiency is insignificant, and when the content exceeds 15% by weight.
  • the initial efficiency is greatly increased, but there is a fear that the discharge capacity is reduced.
  • the crystalline SiO 2 is preferably included in 5 to 10% by weight relative to the total weight of the surface-treated silicon nanoparticles.
  • the surface treatment layer is obtained by converting amorphous SiO 2 present on the surface of the silicon nanoparticles into crystalline SiO 2 , there is no change in oxygen content with the silicon nanoparticles containing amorphous SiO 2 .
  • Oxygen content contained in the surface-treated silicon nanoparticles may affect battery characteristics such as initial efficiency of the battery
  • the surface-treated silicon nanoparticles in the negative electrode active material according to the present invention is specifically 10 to 20% by weight It may have an oxygen content of%, even if it has an oxygen content in the range derived from the content of the crystalline SiO 2 may exhibit an improved effect in terms of improving the initial efficiency of the battery.
  • the surface treatment layer may further include an alkali metal, in particular an alkali metal or an alkaline earth metal, which is unavoidably remaining due to the use of an alkali metal compound in the manufacturing process as an impurity content.
  • an alkali metal such as sodium (Na) or potassium (K) may be further included in an amount of 10 ppm or less based on the total weight of the silicon nanoparticles surface-treated.
  • the surface-treated silicon nanoparticles may be used alone, but may be used in combination with a conventional negative electrode active material.
  • the negative electrode active material include carbon-based materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon;
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
  • Metal oxides capable of doping and undoping lithium such as SiO x (0 ⁇ x ⁇ 2), SnO 2 , vanadium oxide, lithium vanadium oxide;
  • a composite including the metallic compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • both amorphous carbon, low crystalline carbon, high crystalline carbon, and the like may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon
  • high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, mesocarbon microbeads. (mesocarbon microbeads), Kish graphite, graphitized mesoface spheres (MCMB), graphitized carbon fibers, liquid crystal pitch based carbon fibers, coke, pyrolytic carbon , High temperature calcined carbon such as meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the negative electrode active material is capable of reversible intercalation and deintercalation of lithium ions and at the same time conductive carbon-based It may be a negative electrode active material.
  • the carbon-based negative electrode active material it is possible to improve the cycle characteristics by increasing the conductivity, in particular, when the carbon-based negative electrode active material is compounded, the electrical conductivity between the active material particles and the electrochemical properties of the electrolyte and silicon-based Reducing the volume expansion of the particles can increase cell life.
  • the carbon-based negative electrode active material may be preferably included in an amount of 10 to 90% by weight based on the total weight of the negative electrode active material, in consideration of the improvement in battery capacity characteristics and the control of volume expansion of the silicon-based negative electrode active material. If the content of the carbon-based negative electrode active material is less than 10% by weight, there is a fear that the electrical short circuit and volume expansion occurring during charging and discharging may not be effectively suppressed, and if it exceeds 90% by weight, the effect of improving the capacity increase due to the application of Si It can be insignificant.
  • the surface treatment is performed by a method such as surface coating by vapor deposition, coating or pressing, mechanical alloying, carbonization by firing organic materials, etc., in addition to simple mixing. It can be used in combination with silicon nanoparticles.
  • the negative electrode active material when complexed with the surface-treated silicon nanoparticles, is the carbon-based negative electrode active material on the surface treatment layer containing crystalline SiO 2 in the surface-treated silicon nanoparticles It may further include a coating layer comprising a.
  • the carbon-based negative electrode active material may be located over the entire surface of the silicon nanoparticles surface-treated within the above content range, or may be partially located.
  • the thickness of the coating layer is 1nm to 20nm Can be. If the thickness of the coating layer is less than 1nm, the effect of improving the conductivity due to the coating layer is insignificant, and if it exceeds 20nm, there is a fear of deterioration of battery characteristics due to the formation of an excessively thick coating layer. In addition, in consideration of the remarkable improvement effect, the coating layer may be formed in a thickness of 2nm to 10nm more specifically.
  • the carbon-based negative electrode active material forms a coating layer as described above
  • the carbon-based negative electrode active material is pyrolytic carbon formed by pyrolysis of a carbon raw material such as acetylene gas more specifically among the above-described materials. Can be.
  • the coating layer comprising the surface-treated silicon nanoparticles on the surface of the carbon-based negative electrode active material may also be included in the form of.
  • the surface-treated silicon nanoparticles may be located over the entire surface of the carbon-based negative electrode active material, or may be partially located, the composite layer with the carbon-based negative electrode active material and forming a coating layer including the surface-treated silicon nanoparticles
  • the coating layer including the surface-treated silicon nanoparticles can be formed in a uniform thickness over the entire surface of the carbon-based negative electrode active material.
  • the thickness may be 1 nm to 20 nm. If the thickness of the coating layer is less than 1nm, the effect of improving the conductivity due to the coating layer is insignificant, and if it exceeds 20nm, there is a fear of deterioration of battery characteristics due to the formation of an excessively thick coating layer. In addition, in consideration of the remarkable improvement effect, the coating layer may be formed in a thickness of 2nm to 10nm more specifically.
  • the carbon-based negative electrode active material is coated with the surface-treated silicon nanoparticles as described above, the carbon-based negative electrode active material is more specifically natural graphite, artificial graphite, mesocarbon microbeads (mesocarbon microbeads) Crystalline carbon, such as
  • the silicon nanoparticles containing amorphous SiO 2 on the surface of the silicon nanoparticles are mixed with an alkali metal compound and then heat treated to convert the amorphous SiO 2 into crystalline SiO 2 , It can be prepared by a manufacturing method comprising the step of forming a surface treatment layer comprising crystalline SiO 2 on the surface of the particles. Accordingly, according to another embodiment of the present invention is provided a method for producing the negative electrode active material.
  • silicon nanoparticles containing amorphous SiO 2 on the surface it can be prepared by the surface oxidation on the silicon nanoparticles.
  • the surface oxidation may be performed by dispersing the silicon nanoparticles in an alcohol solvent such as ethanol, and then grinding until the average particle diameter (D 50 ) becomes 100 nm or less.
  • the surface-oxidized silicon nanoparticles prepared as a result of the crushing process may have an oxygen content of 10 to 20% by weight in the silicon nanoparticles, and may exhibit an initial efficiency of 82% or more during an initial charge / discharge test.
  • the alkaline metal compound may be an alkali metal hydroxide such as LiOH, NaOH, KOH, Be (OH) 2 , Mg (OH) or Ca (OH) 2 , or a hydrate thereof.
  • the alkaline metal compound may be NaOH.
  • the alkaline metal compound may be used in a solution phase.
  • the solvent may be dissolved in the alkaline metal compound, and the solvent is not particularly limited as long as it is easy to remove.
  • a polar solvent such as water or an alcohol solvent (ethanol or methanol) can be used.
  • the mixing process of the surface oxidized silicon nanoparticles and the basic material may be carried out according to a conventional method.
  • the alkaline metal compound may be preferably used in an amount of 1 to 10 parts by weight based on 100 parts by weight of the silicon nanoparticles including amorphous SiO 2 on the surface. If the content of the alkali metal compound is less than 1 part by weight, the content of crystalline SiO 2 generated after the subsequent heat treatment step is small, and as a result, the initial efficiency may be lowered, while the content of the alkali metal compound exceeds 10 parts by weight. In this case, the content of crystalline SiO 2 formed after the heat treatment is too high, which may lower the capacity characteristics.
  • the heat treatment step may be carried out by heat treatment at 500 °C to 1000 °C in an inert atmosphere. If the temperature is less than 500 °C during heat treatment, the conversion efficiency of amorphous SiO 2 to crystalline SiO 2 is low, there is a risk that the initial efficiency and life characteristics may be lowered. When the temperature exceeds 1000 °C during heat treatment, a large amount of crystalline SiO 2 is generated, And deterioration of the service life characteristics.
  • the heat treatment process may be preferably performed for 5 to 120 minutes under the above conditions. If the reaction time is less than 5 minutes, the conversion efficiency to crystalline SiO 2 is low, there is a fear that the initial efficiency and life characteristics are lowered. If the reaction time is more than 120 minutes, enough time after the crystalline silicon dioxide is formed, energy efficiency It is not preferable in terms of.
  • the formation of crystalline SiO 2 may be promoted by heat treatment in the state where the alkaline metal compound is present on the surface of the silicon oxide nanoparticles surface-oxidized. Even if the heat treatment is performed at the same temperature, crystalline SiO 2 is not produced when the alkali metal compound is not used.
  • amorphous SiO 2 grows into crystalline electrochemically inactive (inactive, no reaction with lithium), the initial coulombic efficiency (discharge capacity / charge capacity ⁇ 100, silicon-based compound for the first time The ratio of the amount of lithium first released to the amount of lithium) increases.
  • the method for preparing a negative electrode active material according to the present invention evaporates and removes a polar solvent present in a mixture of surface oxidized silicon nanoparticles and an alkali metal compound prepared before the heat treatment step, and as a result, crystalline SiO by subsequent heat treatment. 2 may optionally further include a drying process for increasing the formation efficiency.
  • the drying process may be carried out according to a conventional method, specifically, may be carried out by heat treatment or hot air drying at 80 °C to 120 °C.
  • the method of manufacturing the negative electrode active material may optionally further include a washing process for removing an alkaline metal compound present on the surface of the silicon oxide after the heat treatment process.
  • the washing process may be carried out according to a conventional method, specifically, it may be carried out by a method such as impregnation, rinsing using a washing liquid such as water.
  • the method for manufacturing a negative electrode active material according to an embodiment of the present invention after forming a surface treatment layer on the surface of the silicon nanoparticles, to form a coating layer containing a carbon-based material on the surface treatment layer, or the surface treatment layer is The method may further include coating a surface of the carbonaceous material using the formed silicon nanoparticles.
  • Formation of the coating layer including the carbon-based material may be carried out by a conventional carbon-based coating layer forming method such as surface coating by vapor deposition, coating or pressing of carbon-based material, mechanical alloy, carbonization by firing organic materials, and the like. .
  • a conventional carbon-based coating layer forming method such as surface coating by vapor deposition, coating or pressing of carbon-based material, mechanical alloy, carbonization by firing organic materials, and the like.
  • the type and content of the carbonaceous material are the same as described above.
  • the surface-treated silicon nanoparticles prepared above may be reacted with a carbon raw material under an inert gas atmosphere such as argon to form a coating layer containing a carbon-based material on the surface.
  • a carbonaceous carbon material such as acetylene gas or the like may be used as the carbon raw material.
  • reaction with the carbon raw material may be carried out at a temperature range of 700 °C to 1000 °C.
  • a negative electrode for a lithium secondary battery including the negative electrode active material is provided.
  • the negative electrode is formed on the negative electrode current collector and the negative electrode current collector, and includes a negative electrode active material layer containing the negative electrode active material.
  • the negative electrode having the structure as described above may be prepared according to a conventional negative electrode manufacturing method, specifically, after applying a negative electrode mixture including a binder, and optionally a conductive agent with a negative electrode active material on the negative electrode current collector, It can be prepared by drying.
  • the negative electrode current collector may be used without particular limitation as long as it has high conductivity without causing chemical changes in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, or the like on the surface of the steel, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector as described above may have various forms, and specifically, may be in the form of a film, a sheet, a foil, a net, a porous body, a foam, or a nonwoven fabric.
  • the negative electrode current collector may have a thickness of 3 to 500 ⁇ m, and fine concavities and convexities or patterns may be formed on the surface of the current collector so as to enhance the bonding force of the negative electrode active material.
  • the negative electrode mixture may be prepared by dissolving and dispersing a negative electrode active material, a binder, and optionally a conductive agent in a solvent.
  • the negative electrode active material is the same as described above.
  • the binder serves to improve the binding between the negative electrode active material and the adhesion between the negative electrode active material and the negative electrode current collector.
  • specific examples include polyvinylidene fluoride (PVDF), polyvinyl alcohol, starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene- Diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluorine-based rubber or various copolymers thereof, and the like, and one or a mixture of two or more thereof may be used.
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene- Diene polymer
  • SBR styrene-butadiene rubber
  • fluorine-based rubber or various copolymers thereof, and the like and one or a mixture of two or more thereof may be used
  • the aqueous binder is preferable in view of the remarkable improvement effect, and in particular, the styrene-butadiene rubber is more preferable in view of the remarkable improvement effect, the adhesive ability of the binder itself, and the high temperature drying process in the manufacturing process of the negative electrode. can do.
  • Such a binder may be included in the negative electrode mixture in an amount such that it can be included in 1 to 20% by weight based on the total weight of the negative electrode active material layer.
  • the conductive material is selectively used to impart conductivity to the negative electrode, and in the battery constituted, any conductive material can be used without particular limitation as long as it has electronic conductivity without causing chemical change.
  • any conductive material can be used without particular limitation as long as it has electronic conductivity without causing chemical change.
  • Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Needle or branched conductive whisker such as zinc oxide whisker, calcium carbonate whisker, titanium dioxide whisker, silicon oxide whisker, silicon carbide whisker, aluminum borate whisker, magnesium borate whisker, potassium titanate whisker, silicon nitride whisker, silicon carbide whisker, alumina whisker Whisker; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and
  • a carbon-based material such as carbon black may be more preferable in consideration of the remarkable improvement effect of the use of the conductive agent and the high temperature drying process in the negative electrode manufacturing process.
  • the conductive material may be included in the negative electrode mixture in an amount such that 0.5 to 5% by weight based on the total weight of the negative electrode active material layer.
  • the solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone ) Or water, and one kind alone or a mixture of two or more kinds thereof may be used.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • acetone acetone
  • water water, and one kind alone or a mixture of two or more kinds thereof may be used.
  • the negative electrode mixture may further include a thickener together with the above components.
  • the thickener may be a cellulose compound such as carboxymethyl cellulose (CMC).
  • CMC carboxymethyl cellulose
  • the thickener may be included in the negative electrode mixture in an amount such that the thickener is included in an amount of 1 to 10% by weight based on the total weight of the negative electrode active material layer.
  • the negative electrode mixture having the above configuration can be applied to one surface of the negative electrode current collector using a conventional slurry coating method.
  • Examples of the slurry coating method may include bar coating, spin coating, roll coating, slot die coating, or spray coating, and one or two or more of these methods may be mixed.
  • the negative electrode mixture when the negative electrode mixture is applied, it may be preferable to apply the negative electrode mixture to an appropriate thickness in consideration of the loading amount and thickness of the active material in the final negative electrode active material layer.
  • the drying process may be carried out by a method such as heating treatment, hot air injection, etc. at a temperature capable of removing the moisture contained in the negative electrode with the evaporation of the solvent in the negative electrode mixture as much as possible, and at the same time increasing the binding force of the binder.
  • the drying process may be carried out at a temperature below the boiling point of the solvent or less than the melting point of the binder, more specifically, may be carried out at 100 °C to 150 °C. More preferably, it may be carried out for 1 to 50 hours at a temperature of 100 °C to 120 °C and a pressure of 10torr or less.
  • the rolling step after the drying step may be carried out according to a conventional method, and if necessary, a vacuum drying step may be optionally further performed.
  • the negative electrode active material layer is prepared by applying the negative electrode mixture on a separate support and then drying to prepare a film, and peeling the formed film from the support, then laminating and rolling on the negative electrode current collector. May be
  • the negative electrode mixture, the negative electrode current collector, the coating, drying and rolling processes are the same as described above.
  • the negative electrode manufactured according to the manufacturing method as described above, by including the negative electrode active material or negative electrode material can exhibit excellent life characteristics without fear of lowering the initial efficiency.
  • a lithium secondary battery including the negative electrode manufactured by the above-described manufacturing method is provided.
  • the lithium secondary battery includes a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode manufactured by the manufacturing method described above and a nonaqueous electrolyte.
  • the negative electrode is the same as described above.
  • the positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and includes a positive electrode active material layer containing a positive electrode active material.
  • the positive electrode current collector may be used without particular limitation as long as it has conductivity without causing chemical changes in the battery.
  • stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum may be used on the surface of stainless steel.
  • the surface-treated with carbon, nickel, titanium, silver, etc. can be used.
  • the positive electrode current collector may have a thickness of 3 to 500 ⁇ m, and may form fine irregularities on the surface of the positive electrode current collector to increase the adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used as the cathode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium lithium (lithiated intercalation compound) may be used as the cathode active material.
  • one or more of complex oxides of metal and lithium of cobalt, manganese, nickel or a combination thereof may be used, and as a specific example, a lithium metal compound represented by the following Chemical Formula 1 may be used.
  • M and M ' are each independently Fe, Ni, Co, Mn, Cr, Zr, Nb, Cu, V, Mo, Ti, Zn, Al, Ga, Mg, B and combinations thereof
  • x, y, and z are atomic fractions of independent oxide composition elements, and 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, and 0 ⁇ x + y. + z ⁇ 2.
  • the positive electrode active material is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (eg, Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , LiNi 0 . 5 Mn 0 . 3 Co 0 . 2 O 2 , or LiNi 0 . 8 Mn 0 . 1 Co 0 . 1 O 2), or lithium nickel cobalt aluminum oxide (for example, LiNi 0. 8 Co 0. 15 Al 0. 05 O 2 , etc.), and it may be preferably selected from the group consisting of a mixture thereof.
  • the positive electrode as described above may be manufactured according to a conventional positive electrode manufacturing method. Specifically, the positive electrode mixture prepared by dissolving a conductive agent and a binder in a solvent together with the positive electrode active material may be prepared by applying a positive electrode current collector on a positive electrode current collector, followed by drying and rolling.
  • the binder and the conductive agent included in the active material layer of the positive electrode may be the same as described above in the negative electrode.
  • a solvent generally used in the art may be used, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone ( acetone), water, and the like, and one kind alone or a mixture of two or more kinds thereof may be used.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • acetone acetone
  • water and the like, and one kind alone or a mixture of two or more kinds thereof may be used.
  • drying and rolling process for the positive electrode current collector may be carried out in the same manner as described in the manufacturing method of the negative electrode.
  • the positive electrode may also be prepared by applying the positive electrode mixture on a separate support and then peeling the film for forming the positive electrode active material layer prepared by drying from the support and laminating on the positive electrode current collector.
  • the separator can be used without particular limitation as long as it is usually used as a separator in a lithium secondary battery, it is particularly preferable that the resistance to the ion migration of the electrolyte, while excellent in the electrolyte solution moisture-absorbing ability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • conventional porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • the nonaqueous electrolyte contains an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC) and fluoroethylene carbonate (FEC).
  • DMC dimethylcarbonate
  • DEC diethylcarbonate
  • MEC methylethylcarbonate
  • EMC ethylmethylcarbonate
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the lithium salt is preferably included at a concentration of approximately 0.6 mol% to 2 mol% in the electrolyte.
  • the electrolyte includes, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity.
  • pyridine triethylphosphite
  • triethanolamine triethanolamine
  • cyclic ether ethylene diamine
  • n for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity.
  • -Glyme hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2
  • additives such as -methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in 0.1 to 5% by weight based on the total weight of the
  • the lithium secondary battery having the above configuration may be manufactured by manufacturing an electrode assembly through a separator between a positive electrode and a negative electrode, placing the electrode assembly inside a case, and then injecting an electrolyte solution into the case.
  • the lithium secondary battery including the negative electrode manufactured by the manufacturing method according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, portable devices such as mobile phones, laptop computers, digital cameras, And electric vehicle fields such as hybrid electric vehicles.
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Step 1 Preparation of Silicon Nanoparticles with Amorphous SiO 2 on the Surface
  • Step 2 Preparation of Cathode Active Material of Silicon Nanoparticles with Crystallized SiO 2 Layer
  • the mixed solution containing the silicon nanoparticles was put in an alumina boat heated to 80 ° C to 120 ° C, and ethanol was evaporated.
  • the alumina boat containing the resulting reactant is placed in a quartz tube furnace, heat treated at 800 ° C. for 30 minutes while flowing argon gas, and the quartz tube furnace is cooled to room temperature (20 ⁇ 25 ° C.) to prepare silicon nanoparticles comprising crystallized SiO 2 on the surface.
  • the negative electrode active material was obtained by dipping the silicon nanoparticles containing the prepared crystallized SiO 2 in distilled water for 2 hours and then removing sodium hydroxide adhering to the surface.
  • Example 2 20 g of the negative electrode active material prepared in Example 1 was added to a rotary tubular furnace, argon gas was flowed at 0.3 L / min, and the temperature was raised to 800 ° C. at a rate of 10 ° C./min. While rotating the rotary tubular furnace at a speed of 15 rpm / min, argon gas was flowed at 1.8 L / min and acetylene gas at 0.5 L / min, followed by heat treatment for 5 hours to prepare a negative electrode active material having a conductive carbon coating layer formed on the surface of the particle. At this time, the conductive carbon coating layer was included in 10% by weight relative to the total weight of the negative electrode active material.
  • Example 1 10 g of a powder mixed with 15 wt% of the negative electrode active material prepared in Example 1 and 85 wt% of spherical natural graphite having an average particle diameter of 16 ⁇ m was dispersed in 1000 mL of ethanol, and then spray dried.
  • the negative electrode active material prepared in Example 1 was coated on the natural graphite surface.
  • the resulting composite was carried out in the same manner as in Example 2 to form a conductive carbon coating layer on the surface. At this time, the conductive carbon coating layer was included in 10% by weight relative to the total weight of the negative electrode active material.
  • Silicon nanoparticles having amorphous SiO 2 on the surface prepared in Step 1 of Example 1 were used as a negative electrode active material.
  • X-ray diffraction spectroscopy was performed on the anode active material of silicon nanoparticles containing crystallized SiO 2 on the surface prepared in Example 1. The results are shown in FIG.
  • the content of crystalline SiO 2 contained in the negative electrode active material prepared in Example 1 was 10% by weight.
  • the type and content of the surface treatment layer forming material in the negative electrode active material were mixed with crystalline MgO with each negative electrode active material in the same manner as in Experimental Example 1, XRD analysis was performed, and confirmed from the results.
  • each surface treatment layer was confirmed through the scanning electron microscope observation.
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 core kindss Silicon nanoparticles Silicon nanoparticles Spherical natural graphite with an average particle diameter of 16 ⁇ m Silicon nanoparticles Silicon Nanoparticles + Crystalline SiO 2 Surface treatment layer kindss Crystalline SiO 2 Crystalline SiO 2 Silicon nanoparticles with a surface treatment layer of crystalline SiO 2 Amorphous SiO 2 - Content (% by weight) 10 10 13.5 10 - Average thickness (nm) 5 5 5 5 5 - Coating layerkinds - carbon carbon - - Content (% by weight) - 10 10 - - Average thickness (nm) - 5 5 - - Average particle size of active material (nm) 100 100 16010 100 100/100
  • each of the negative electrode active materials prepared in Examples 1 to 3 and Comparative Examples 1 and 2 5% by weight of carbon black, a binder of styrene butadiene rubber (SBR) and carboxymethyl cellulose were used as the conductive material. After mixing in distilled water at a weight ratio of 5:10 to prepare a composition for forming a negative electrode active material layer, it was applied to a copper current collector and dried to prepare a negative electrode.
  • SBR styrene butadiene rubber
  • LiPF 6 lithium hexafluorophosphate
  • DEC diethyl carbonate
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Discharge Capacity (mAh / g) 2250 2186 630 2268 1952 Initial Efficiency (%) 89.7 90.2 91.6 81.7 84.1 Capacity maintenance rate (%) 83 94 98 81 56
  • the batteries of Examples 1 and 2 including the negative electrode active material according to the present invention showed an equivalent level of discharge capacity compared to Comparative Examples 1 and 2, but significantly improved in terms of initial efficiency and lifetime characteristics. It was.
  • the negative electrode active material of Example 3 which contains 85% by weight of graphite, exhibited significantly lower discharge capacities than those of Examples 1 and 2 and Comparative Examples 1 and 2. Indicated.

Abstract

The present invention relates to an anode active material for a lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery comprising the same. The anode active material comprises a surface-treated silicon nanoparticle, wherein the surface-treated silicon nanoparticle comprises a silicon nanoparticle and a surface treatment layer which is positioned on the surface of the silicon nanoparticle and includes crystalline SiO2, so that the anode active material, when being applied to a battery, can exhibit excellent lifespan and capacity characteristics as well as remarkably improved initial efficiency characteristics.

Description

리튬 이차전지용 음극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지Anode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery comprising same
관련출원과의 상호인용Citation with Related Applications
본 출원은 2014년 10월 2일자 한국특허출원 제2014-0133435호 및 2015년 9월 30일자 한국특허출원 제2015-0137455호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 2014-0133435 dated October 2, 2014 and Korean Patent Application No. 2015-0137455 dated September 30, 2015. The contents are included as part of this specification.
기술분야Technical Field
본 발명은 전지에 적용시 우수한 수명 및 용량 특성과 함께 현저히 개선된 초기 효율 특성을 나타낼 수 있는 리튬 이차전지용 음극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지에 관한 것이다. The present invention relates to a negative electrode active material for a lithium secondary battery, a method for preparing the same, and a lithium secondary battery including the same, which can exhibit a markedly improved initial efficiency characteristic with excellent life and capacity characteristics when applied to a battery.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다. 특히 최근 휴대기기에 사용하는 소형 리튬 이차전지부터 자동차에 사용되는 대형 이차전지까지 시장이 확대됨에 따라 음극활물질의 고용량 및 고출력화 기술이 요구되고 있다. 따라서 탄소계 음극 활물질보다 이론 용량이 높은 실리콘(silicon), 주석, 게르마늄, 아연, 납 등을 중심으로 비탄소계 음극 활물질 개발이 진행되고 있다. As technology development and demand for mobile devices increase, the demand for secondary batteries as a source of energy is rapidly increasing. Among such secondary batteries, lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used. In particular, as the market expands from small lithium secondary batteries used in portable devices to large secondary batteries used in automobiles, high capacity and high output technology of negative electrode active materials is required. Therefore, the development of non-carbon negative electrode active materials, such as silicon, tin, germanium, zinc, and lead, which has a higher theoretical capacity than the carbon-based negative electrode active materials, is being developed.
그 중, 실리콘계 음극활물질은 탄소계 음극활물질이 가지는 이론용량(372 mAh/g)보다 11배 이상 높은 용량(4190 mAh/g)을 가지고 있어서 탄소계 음극 활물질을 대체하기 위한 물질로 각광받고 있다. 하지만 실리콘만 사용하였을 때, 리튬 이온 삽입시 물질의 부피 팽창이 3배 이상 되기 때문에, 전지 용량이 충방전이 진행될수록 감소하는 경향을 가지며, 안전성 문제도 발생하여 상업화하기 위해서는 많은 기술 개발을 필요로 한다.Among them, the silicon-based negative electrode active material has a capacity (4190 mAh / g) more than 11 times higher than the theoretical capacity (372 mAh / g) of the carbon-based negative electrode active material, has been spotlighted as a material for replacing the carbon-based negative electrode active material. However, when only silicon is used, since the volume expansion of the material is more than three times when lithium ion is inserted, the battery capacity tends to decrease as charging and discharging proceeds, and safety problems also occur, requiring much technical development to commercialize. do.
또, 실리콘계 활물질은 실리콘 산화물(SiO)계 활물질에 비하여 초기 효율은 높으나 수명특성이 낮은 문제가 있다. 이를 개선하기 위해 나노사이즈의 실리콘을 사용하는 방법이 연구되고 있다. 나노사이즈의 실리콘을 제조할 수 있는 가장 일반적인 방법 중 하나는 큰 실리콘 입자를 분쇄하여 나노사이즈, 구체적으로 수십 내지 100nm 크기의 실리콘 입자로 제조하여 사용하는 방법이다. 그러나 상기 방법은 분쇄과정에서 실리콘 표면에 표면산화가 일어나기 쉽고, 산화의 결과로 표면에 생성된 비정질의 SiO2 에 의하여 초기 효율이 감소되는 문제가 있다. In addition, the silicon-based active material has a problem of high initial efficiency but low lifespan characteristics as compared to silicon oxide (SiO) -based active material. In order to improve this, a method of using nano-sized silicon has been studied. One of the most common methods for preparing nano-sized silicon is a method of crushing large silicon particles to produce nano-sized, specifically, tens of to 100 nm silicon particles. However, the method is susceptible to surface oxidation on the silicon surface during the grinding process, the initial efficiency is reduced by the amorphous SiO 2 generated on the surface as a result of the oxidation.
본 발명이 해결하고자 하는 제1 기술적 과제는, 전지에 적용시 우수한 수명 및 용량 특성과 함께 현저히 개선된 초기 효율 특성을 나타낼 수 있는 리튬 이차전지용 음극활물질 및 그 제조방법을 제공하는 것이다.The first technical problem to be solved by the present invention is to provide a negative electrode active material for a lithium secondary battery and a method of manufacturing the same, which can exhibit a significantly improved initial efficiency characteristics with excellent life and capacity characteristics when applied to a battery.
본 발명이 해결하고자 하는 제2기술적 과제는, 상기 음극활물질을 포함하는 음극, 리튬 이차전지, 전지모듈 및 전지팩을 제공하는 것이다.The second technical problem to be solved by the present invention is to provide a negative electrode, a lithium secondary battery, a battery module and a battery pack including the negative electrode active material.
상기 과제를 해결하기 위하여, 본 발명은 표면처리된 실리콘 나노입자를 포함하며, 상기 표면처리된 실리콘 나노입자는 실리콘 나노입자, 및 상기 실리콘 나노입자의 표면 상에 위치하며, 결정질 SiO2를 포함하는 표면처리층을 포함하는 것인 리튬 이차전지용 음극활물질을 제공한다.In order to solve the above problems, the present invention comprises a surface-treated silicon nanoparticles, the surface-treated silicon nanoparticles are located on the surface of the silicon nanoparticles, and the silicon nanoparticles, comprising crystalline SiO 2 It provides a negative electrode active material for a lithium secondary battery comprising a surface treatment layer.
또, 본 발명은 표면에 비정질 SiO2를 포함하는 실리콘 나노입자를 알칼리성 금속 화합물과 혼합한 후 열처리하여 비정질 SiO2를 결정질 SiO2로 변환시킴으로써, 실리콘 나노입자의 표면에 결정질 SiO2를 포함하는 표면처리층이 형성된 표면처리된 실리콘 나노입자를 제조하는 단계를 포함하는 리튬 이차전지용 음극활물질의 제조방법을 제공한다.The surface of the invention comprises heat-treating the silicon nano-particles including the amorphous SiO 2 on the surface after mixing and alkali metal compounds by converting the amorphous SiO 2 to a crystalline SiO 2, a crystalline SiO 2 in the surface of the silicon nano-particles It provides a method for producing a negative electrode active material for a lithium secondary battery comprising the step of producing a surface-treated silicon nanoparticles formed with a treatment layer.
또, 본 발명은 상기한 음극활물질을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지를 제공한다.The present invention also provides a negative electrode for a lithium secondary battery including the negative electrode active material and a lithium secondary battery including the same.
아울러, 본 발명은 상기한 리튬 이차전지를 단위셀로 포함하는 전지모듈을 제공한다.In addition, the present invention provides a battery module including the lithium secondary battery as a unit cell.
더 나아가, 본 발명은 상기 전지모듈을 포함하는 전지팩을 제공한다.Furthermore, the present invention provides a battery pack including the battery module.
본 발명에 따른 리튬 이차전지용 음극활물질은, 전지에 적용시 우수한 수명 및 용량 특성과 함께 현저히 개선된 초기 효율 특성을 나타낼 수 있다.The negative electrode active material for a lithium secondary battery according to the present invention may exhibit a markedly improved initial efficiency characteristic with excellent life and capacity characteristics when applied to a battery.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the contents of the present invention serve to further understand the technical spirit of the present invention, the present invention is limited to the matters described in such drawings. It should not be construed as limited.
도 1은 실시예 1에서 제조한 음극활물질에 대한 X선 회절 분석(X-ray Diffraction Spectroscopy: XRD) 결과를 나타낸 그래프이다.1 is a graph showing the results of X-ray diffraction (X-ray diffraction spectroscopy (XRD)) for the negative electrode active material prepared in Example 1.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
본 명세서에서 특별히 한정하지 않는 한, '나노입자'는 평균입경이 1㎛ 미만인, 수 nm 에서 수백 nm의 나노 수준의 평균입경을 갖는 입자를 의미한다. 이때, 상기 평균입경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 본 발명의 일 실시예에 따른 상기 입자의 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 예를 들어, 상기 실리콘 나노입자의 평균입경(D50)의 측정방법은, 실리콘 나노입자를 용액에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균입경(D50)을 산출할 수 있다.Unless specifically limited herein, 'nanoparticles' means particles having an average particle diameter of several nanometers to hundreds of nanometers having an average particle diameter of less than 1 μm. In this case, the average particle diameter (D 50 ) may be defined as the particle size at 50% of the particle size distribution. The average particle diameter (D 50 ) of the particles according to an embodiment of the present invention can be measured using, for example, a laser diffraction method. For example, the method for measuring the average particle diameter (D 50 ) of the silicon nanoparticles is, after dispersing the silicon nanoparticles in a solution, it is introduced into a commercially available laser diffraction particle size measuring device (for example, Microtrac MT 3000) to about 28 after examining the kHz ultrasound of 60 W in output, it can be used to calculate the average particle diameter (D 50) of from 50% based on the particle size distribution of the measuring device.
본 발명에서는 실리콘계 음극활물질의 제조시 실리콘 나노입자의 표면에 위치하며, 초기 충전시 비가역 반응을 하여 초기효율을 저하시키는 비정질 SiO2를 전기화학적으로 비활성인 결정질 SiO2로 변화시킴으로써, 활물질내 산소 함량의 변화 없이도 전지 적용시 우수한 수명 및 용량 특성과 함께 현저히 개선된 초기 효율 특성을 나타낼 수 있다. In the present invention, the oxygen content in the active material is located on the surface of the silicon nanoparticles during the preparation of the silicon-based negative electrode active material, and by changing the amorphous SiO 2 to the electrochemically inert crystalline SiO 2 which decreases the initial efficiency by irreversible reaction during the initial charge Even without the change of the present invention can exhibit a markedly improved initial efficiency characteristics with excellent life and capacity characteristics in the battery application.
즉, 본 발명의 일 실시예에 따른 리튬 이차전지용 음극활물질은, 표면처리된 실리콘 나노입자를 포함하며, 상기 표면처리된 실리콘 나노입자는 실리콘(Si) 나노입자, 및 상기 실리콘 나노입자의 표면 상에 위치하며 결정질 SiO2를 포함하는 표면처리층을 포함한다. That is, the negative electrode active material for a lithium secondary battery according to an embodiment of the present invention includes surface treated silicon nanoparticles, and the surface treated silicon nanoparticles are silicon (Si) nanoparticles and the surface of the silicon nanoparticles. And a surface treatment layer comprising crystalline SiO 2 .
상기 표면처리된 실리콘 나노입자에 있어서, 실리콘 나노입자는 실리콘 단체(單體)를 포함하는 나노입자로서, 구체적으로는 150nm 이하의 평균입경(D50)을 갖는 것일 수 있다. 이와 같이 나노 수준의 실리콘 입자를 포함함으로써 높은 초기 효율과 함께 우수한 수명특성을 나타낼 수 있다. 또 개선효과의 현저함을 고려할 때 상기 실리콘 나노입자는 10nm 내지 100nm의 평균입경을 갖는 것일 수 있다.In the surface-treated silicon nanoparticles, the silicon nanoparticles are nanoparticles containing silicon single particles, specifically, may have an average particle diameter (D 50 ) of 150 nm or less. In this way, by including the nano-level silicon particles can exhibit a high initial efficiency and excellent life characteristics. In addition, in consideration of the remarkable improvement effect, the silicon nanoparticles may have an average particle diameter of 10nm to 100nm.
또, 상기 실리콘 나노입자는 입자 표면에 결정질 SiO2를 포함하는 표면처리층을 포함한다. In addition, the silicon nanoparticles include a surface treatment layer containing crystalline SiO 2 on the particle surface.
상기 표면처리층은 분쇄에 의해 표면산화된 실리콘 나노입자의 표면에 존재하는 비정질 SiO2가 염기성 물질의 처리에 의해 결정질의 SiO2로 변환되어 형성된 것으로, 실리콘 나노입자의 표면에 균일한 두께로 형성될 수 있다. 이에 따라 상기 표면처리층은 완충 작용층으로 작용하여 실리콘 나노입자의 부피 팽창을 제어할 수 있으며, 그 결과로 실리콘의 부피 팽창에 기인한 전극으로부터 활물질의 탈리를 방지하여 전지의 수명 특성을 향상시킬 수 있다. 이 같은 완충작용층으로서의 충분한 효과를 고려할 때 상기 표면처리층은 실리콘 나노입자의 표면에 1nm 내지 20nm의 두께로 형성되는 것이 실리콘 나노입자의 부피 팽창에 대한 효과적인 제어로 우수한 고율 충방전 효율을 나타낼 수 있다. 표면처리층의 두께가 1nm 미만일 경우 실리콘의 부피 팽창에 대한 충분한 완충효과를 나타내기 어렵고, 또 20nm를 초과할 경우 오히려 전지 특성이 저하될 우려가 있다. 또, 개선효과의 현저함을 고려할 때 상기 표면처리층은 보다 구체적으로 2nm 내지 10nm의 두께로 형성될 수 있다. The surface treatment layer may be formed an amorphous SiO 2 existing on the surface of the surface of the silicon oxide nano particles by pulverization is converted to SiO 2 of a crystalline in the process of the basic substance, and formed to a uniform thickness on the surface of the silicon nano-particles Can be. Accordingly, the surface treatment layer may act as a buffering layer to control the volume expansion of the silicon nanoparticles, and as a result, to prevent the detachment of the active material from the electrode due to the volume expansion of silicon to improve the life characteristics of the battery Can be. In consideration of such a sufficient effect as the buffer layer, the surface treatment layer may be formed on the surface of the silicon nanoparticles with a thickness of 1 nm to 20 nm, thereby exhibiting excellent high rate charge and discharge efficiency as an effective control of the volume expansion of the silicon nanoparticles. have. When the thickness of the surface treatment layer is less than 1 nm, it is difficult to exhibit a sufficient buffering effect on the volume expansion of silicon, and when it exceeds 20 nm, there is a fear that battery characteristics are rather deteriorated. In addition, in consideration of the remarkable improvement effect, the surface treatment layer may be formed in a thickness of 2nm to 10nm more specifically.
또, 상기 표면처리층내 포함되는 결정질 SiO2는 전지의 충방전시 리튬 이온의 채널을 제공하는 동시에, 전기적으로 비활성이기 때문에 초기 충방전 시 초기 효율의 저하를 방지할 수 있다. 구체적으로, 결정질 SiO2는 표면처리된 실리콘 나노입자 총 중량에 대하여 2 내지 15중량%로 포함되는 것이 바람직하다. 결정질 SiO2의 함량이 2중량% 미만인 경우에는 실리콘 나노입자 표면에 존재하는 비결정질 SiO2의 결정질 SiO2로의 변환율이 낮아, 초기 효율 저하의 감소가 미미하고, 또, 15중량%를 초과하는 경우에는 초기 효율은 크게 증가하나 방전 용량이 감소할 우려가 있다. 또 개선효과의 현저함을 고려할 때 상기 결정질 SiO2는 표면처리된 실리콘 나노입자 총 중량에 대하여 5 내지 10중량%로 포함되는 것이 바람직하다.In addition, since the crystalline SiO 2 included in the surface treatment layer provides a channel of lithium ions during charge and discharge of the battery and is electrically inactive, it is possible to prevent a decrease in initial efficiency during initial charge and discharge. Specifically, the crystalline SiO 2 is preferably included in 2 to 15% by weight based on the total weight of the surface-treated silicon nanoparticles. When the content of crystalline SiO 2 is less than 2% by weight, the conversion rate of amorphous SiO 2 present on the surface of the silicon nanoparticles to crystalline SiO 2 is low, so that the decrease in initial efficiency is insignificant, and when the content exceeds 15% by weight. The initial efficiency is greatly increased, but there is a fear that the discharge capacity is reduced. In addition, in consideration of the remarkable improvement effect, the crystalline SiO 2 is preferably included in 5 to 10% by weight relative to the total weight of the surface-treated silicon nanoparticles.
또, 상기 표면처리층은 실리콘 나노입자의 표면에 존재하는 비결정 SiO2가 결정질 SiO2로 변환된 것이기 때문에, 비결정 SiO2를 포함하는 실리콘 나노입자와의 산소 함량에 변화가 없다. 상기 표면처리된 실리콘 나노입자에 포함된 산소 함량은 전지의 초기 효율 등과 같은 전지 특성에 영향을 미칠 수 있는데, 본 발명에 따른 음극활물질에 있어서의 표면처리된 실리콘 나노입자는 구체적으로 10 내지 20중량%의 산소 함량을 가질 수 있으며, 상기 결정질 SiO2의 함량으로부터 유도되는 범위내의 산소 함량을 갖더라도 전지의 초기효율 개선의 측면에서 보다 향상된 효과를 나타낼 수 있다.In addition, since the surface treatment layer is obtained by converting amorphous SiO 2 present on the surface of the silicon nanoparticles into crystalline SiO 2 , there is no change in oxygen content with the silicon nanoparticles containing amorphous SiO 2 . Oxygen content contained in the surface-treated silicon nanoparticles may affect battery characteristics such as initial efficiency of the battery, the surface-treated silicon nanoparticles in the negative electrode active material according to the present invention is specifically 10 to 20% by weight It may have an oxygen content of%, even if it has an oxygen content in the range derived from the content of the crystalline SiO 2 may exhibit an improved effect in terms of improving the initial efficiency of the battery.
또, 상기 표면처리층은 그 제조과정에서 알칼리성 금속화합물의 사용으로 인해 불가피하게 잔류하는 알칼리성 금속, 구체적으로 알칼리 금속 또는 알칼리 토금속을 불순물의 함량으로 더 포함할 수도 있다. 구체적으로는 나트륨(Na), 칼륨(K) 등의 알칼리계 금속을 표면처리된 실리콘 나노입자 총 중량에 대하여 10ppm 이하로 더 포함할 수 있다. In addition, the surface treatment layer may further include an alkali metal, in particular an alkali metal or an alkaline earth metal, which is unavoidably remaining due to the use of an alkali metal compound in the manufacturing process as an impurity content. Specifically, an alkali metal such as sodium (Na) or potassium (K) may be further included in an amount of 10 ppm or less based on the total weight of the silicon nanoparticles surface-treated.
또, 상기 표면처리된 실리콘 나노입자는 단독으로도 사용될 수 있지만, 통상의 음극활물질과 병용하여 사용될 수 있다.In addition, the surface-treated silicon nanoparticles may be used alone, but may be used in combination with a conventional negative electrode active material.
상기 음극활물질의 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소계 물질; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0 < x < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또, 상기 탄소계 물질로는 비정질 탄소, 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 메조카본 마이크로비즈(mesocarbon microbeads), 키시흑연 (Kish graphite), 흑연화 메조페이스 구체(MCMB), 흑연화 탄소섬유, 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 코크스(coke), 열분해 탄소 (pyrolytic carbon), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.Specific examples of the negative electrode active material include carbon-based materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides capable of doping and undoping lithium such as SiO x (0 <x <2), SnO 2 , vanadium oxide, lithium vanadium oxide; Or a composite including the metallic compound and the carbonaceous material, such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used. In addition, as the carbonaceous material, both amorphous carbon, low crystalline carbon, high crystalline carbon, and the like may be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, mesocarbon microbeads. (mesocarbon microbeads), Kish graphite, graphitized mesoface spheres (MCMB), graphitized carbon fibers, liquid crystal pitch based carbon fibers, coke, pyrolytic carbon , High temperature calcined carbon such as meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes.
보다 구체적으로 상기 표면처리된 실리콘 나노입자와의 병용 사용시 전지 특성 개선 효과의 현저함을 고려할 때, 상기 음극활물질은 리튬 이온의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 동시에 도전성을 갖는 탄소계 음극활물질일 수 있다. 이와 같이 탄소계 음극활물질과 함께 사용하는 경우, 도전성을 높여 사이클 특성을 더욱 개선시킬 수 있고, 특히 상기 탄소계 음극활물질이 복합화된 경우 활물질 입자간의 전기 전도성 및 전해질에 대한 전기화학적 특성 향상과 규소계 입자의 부피 팽창을 감소시켜 전지 수명을 증가시킬 수 있다.More specifically, considering the remarkable effect of improving the battery characteristics when used in combination with the surface-treated silicon nanoparticles, the negative electrode active material is capable of reversible intercalation and deintercalation of lithium ions and at the same time conductive carbon-based It may be a negative electrode active material. When used in conjunction with the carbon-based negative electrode active material, it is possible to improve the cycle characteristics by increasing the conductivity, in particular, when the carbon-based negative electrode active material is compounded, the electrical conductivity between the active material particles and the electrochemical properties of the electrolyte and silicon-based Reducing the volume expansion of the particles can increase cell life.
상기와 같은 탄소계 음극활물질은 상기한 음극활물질 총 중량에 대하여 10 내지 90중량%로 포함되는 것이 전지 용량특성 개선 및 실리콘계 음극활물질의 부피 팽창 제어 효과를 고려할 때 바람직할 수 있다. 상기 탄소계 음극활물질의 함량이 10중량% 미만이면, 충방전 중에 발생하는 전기적 단락 및 부피 팽창을 효과적으로 억제하지 못할 우려가 있고, 또 90중량%를 초과하면 Si 적용으로 인한 용량 증가의 개선 효과가 미미할 수 있다. The carbon-based negative electrode active material may be preferably included in an amount of 10 to 90% by weight based on the total weight of the negative electrode active material, in consideration of the improvement in battery capacity characteristics and the control of volume expansion of the silicon-based negative electrode active material. If the content of the carbon-based negative electrode active material is less than 10% by weight, there is a fear that the electrical short circuit and volume expansion occurring during charging and discharging may not be effectively suppressed, and if it exceeds 90% by weight, the effect of improving the capacity increase due to the application of Si It can be insignificant.
또, 상기 탄소계 음극활물질을 함께 사용하는 경우, 단순 혼합(mixing)의 방법 외에, 증착, 도포 또는 압착 등에 의한 표면 코팅, 기계적 합금, 유기물질의 소성에 의한 탄화 등의 방법으로 상기 표면처리된 실리콘 나노입자와 복합화하여 사용할 수 있다. In addition, when the carbon-based negative electrode active material is used together, the surface treatment is performed by a method such as surface coating by vapor deposition, coating or pressing, mechanical alloying, carbonization by firing organic materials, etc., in addition to simple mixing. It can be used in combination with silicon nanoparticles.
구체적으로 상기 표면처리된 실리콘 나노입자와 복합화되는 경우, 본 발명의 일 실시예에 따른 음극활물질은 상기 표면처리된 실리콘 나노입자에 있어서 결정질 SiO2를 포함하는 표면처리층 상에 상기 탄소계 음극활물질을 포함하는 코팅층을 더 포함할 수 있다. Specifically, when complexed with the surface-treated silicon nanoparticles, the negative electrode active material according to an embodiment of the present invention is the carbon-based negative electrode active material on the surface treatment layer containing crystalline SiO 2 in the surface-treated silicon nanoparticles It may further include a coating layer comprising a.
이때, 상기 탄소계 음극활물질은 상기한 함량 범위 내에서 표면처리된 실리콘 나노입자표면 전체에 걸쳐 위치할 수도 있고, 부분적으로 위치할 수도 있다. 탄소계 음극활물질을 포함하는 코팅층의 형성에 따른 개선효과를 고려할 때, 표면처리된 실리콘 나노입자 표면 전체에 걸쳐 형성되는 것이 바람직하고, 표면 전체에 걸쳐 균일한 두께로 형성되는 것이 보다 바람직할 수 있다.In this case, the carbon-based negative electrode active material may be located over the entire surface of the silicon nanoparticles surface-treated within the above content range, or may be partially located. In consideration of the improvement effect of the formation of the coating layer including the carbon-based negative electrode active material, it is preferable to be formed throughout the surface-treated silicon nanoparticles surface, it may be more preferable to form a uniform thickness over the entire surface. .
또, 상기 탄소계 음극활물질이 표면처리된 실리콘 나노 입자 표면 상에 코팅층의 형태로 포함될 경우, 음극활물질내 탄소계 음극활물질의 상기 함량 범위를 충족하는 조건하에서, 상기 코팅층의 두께는 1nm 내지 20nm일 수 있다. 코팅층의 두께가 1nm 미만이면 코팅층 형성에 따른 도전성 개선 효과가 미미하고, 20nm를 초과할 경우 지나치게 두꺼운 코팅층 형성으로 인해 오히려 전지 특성 저하의 우려가 있다. 또, 개선효과의 현저함을 고려할 때 상기 코팅층은 보다 구체적으로 2nm 내지 10nm의 두께로 형성될 수 있다.In addition, when the carbon-based negative electrode active material is included in the form of a coating layer on the surface-treated silicon nanoparticle surface, under the conditions that satisfy the content range of the carbon-based negative electrode active material in the negative electrode active material, the thickness of the coating layer is 1nm to 20nm Can be. If the thickness of the coating layer is less than 1nm, the effect of improving the conductivity due to the coating layer is insignificant, and if it exceeds 20nm, there is a fear of deterioration of battery characteristics due to the formation of an excessively thick coating layer. In addition, in consideration of the remarkable improvement effect, the coating layer may be formed in a thickness of 2nm to 10nm more specifically.
또, 상기와 같이 탄소계 음극활물질이 코팅층을 형성하는 경우, 상기 탄소계 음극활물질은 상기 예시한 물질들 중에서도 보다 구체적으로 아세틸렌 가스 등의 탄소 원료물질의 열분해에 의해 형성되는 열분해 탄소 (pyrolytic carbon) 일 수 있다. In addition, when the carbon-based negative electrode active material forms a coating layer as described above, the carbon-based negative electrode active material is pyrolytic carbon formed by pyrolysis of a carbon raw material such as acetylene gas more specifically among the above-described materials. Can be.
또 다른 방법으로 상기한 표면처리된 실리콘 나노입자와 복합화되는 경우, 본 발명의 일 실시예에 따른 상기 음극활물질은, 상기 탄소계 음극활물질의 표면 상에 상기 표면처리된 실리콘 나노입자를 포함하는 코팅층의 형태로 포함할 수도 있다. 이 경우 상기한 표면처리된 실리콘 나노입자가 상기 탄소계 음극활물질 표면 전체에 걸쳐 위치할 수도 있고, 또는 부분적으로 위치할 수도 있으며, 탄소계 음극활물질과의 복합화 및 표면처리된 실리콘 나노입자 포함 코팅층 형성에 따른 개선효과의 우수함을 고려할 때, 탄소계 음극활물질 표면 전체에 걸쳐 상기한 표면처리된 실리콘 나노입자를 포함하는 코팅층이 균일한 두께로 형성될 수 있다. In the case of complexing with the surface-treated silicon nanoparticles by another method, the negative electrode active material according to an embodiment of the present invention, the coating layer comprising the surface-treated silicon nanoparticles on the surface of the carbon-based negative electrode active material It may also be included in the form of. In this case, the surface-treated silicon nanoparticles may be located over the entire surface of the carbon-based negative electrode active material, or may be partially located, the composite layer with the carbon-based negative electrode active material and forming a coating layer including the surface-treated silicon nanoparticles In consideration of the excellent improvement effect according to, the coating layer including the surface-treated silicon nanoparticles can be formed in a uniform thickness over the entire surface of the carbon-based negative electrode active material.
또, 상기 탄소계 음극활물질이 표면처리된 실리콘 나노 입자가 탄소계 음극활물질의 표면 상에 코팅층의 형태로 포함될 경우, 음극활물질내 탄소계 음극활물질의 상기 함량 범위를 충족하는 조건하에서, 상기 코팅층의 두께는 1nm 내지 20nm일 수 있다. 코팅층의 두께가 1nm 미만이면 코팅층 형성에 따른 도전성 개선 효과가 미미하고, 20nm를 초과할 경우 지나치게 두꺼운 코팅층 형성으로 인해 오히려 전지 특성 저하의 우려가 있다. 또, 개선효과의 현저함을 고려할 때 상기 코팅층은 보다 구체적으로 2nm 내지 10nm의 두께로 형성될 수 있다.In addition, when the silicon nanoparticles surface-treated with the carbon-based negative electrode active material is included in the form of a coating layer on the surface of the carbon-based negative electrode active material, under the conditions that satisfy the content range of the carbon-based negative electrode active material in the negative electrode active material, The thickness may be 1 nm to 20 nm. If the thickness of the coating layer is less than 1nm, the effect of improving the conductivity due to the coating layer is insignificant, and if it exceeds 20nm, there is a fear of deterioration of battery characteristics due to the formation of an excessively thick coating layer. In addition, in consideration of the remarkable improvement effect, the coating layer may be formed in a thickness of 2nm to 10nm more specifically.
또, 상기와 같이 탄소계 음극활물질이 표면처리된 실리콘 나노입자에 의해 코팅되는 경우, 상기 탄소계 음극활물질은 상기 예시한 물질들 중에서도 보다 구체적으로 천연 흑연, 인조 흑연, 메조카본 마이크로비즈(mesocarbon microbeads) 등의 결정성 탄소일 수 있다.In addition, when the carbon-based negative electrode active material is coated with the surface-treated silicon nanoparticles as described above, the carbon-based negative electrode active material is more specifically natural graphite, artificial graphite, mesocarbon microbeads (mesocarbon microbeads) Crystalline carbon, such as
상기한 바와 같은 본 발명의 일 실시예에 따른 음극활물질은, 표면에 비정질 SiO2를 포함하는 실리콘 나노입자를 알칼리성 금속 화합물과 혼합한 후 열처리하여 비정질 SiO2를 결정질 SiO2로 변환시킴으로써, 실리콘 나노입자의 표면에 결정질 SiO2를 포함하는 표면처리층을 형성하는 단계를 포함하는 제조방법에 의해 제조될 수 있다. 이에 따라 본 발명의 다른 일 실시예에 따르면 상기한 음극활물질의 제조방법이 제공된다.In the negative electrode active material according to the embodiment of the present invention as described above, the silicon nanoparticles containing amorphous SiO 2 on the surface of the silicon nanoparticles are mixed with an alkali metal compound and then heat treated to convert the amorphous SiO 2 into crystalline SiO 2 , It can be prepared by a manufacturing method comprising the step of forming a surface treatment layer comprising crystalline SiO 2 on the surface of the particles. Accordingly, according to another embodiment of the present invention is provided a method for producing the negative electrode active material.
상기 음극활물질의 제조방법에 있어서, 표면에 비정질 SiO2를 포함하는 실리콘 나노입자는, 실리콘 나노입자에 대한 표면산화에 의해 제조될 수 있다. In the manufacturing method of the negative electrode active material, silicon nanoparticles containing amorphous SiO 2 on the surface, it can be prepared by the surface oxidation on the silicon nanoparticles.
구체적으로 상기 표면산화는 실리콘 나노입자를 에탄올 등과 같은 알코올계 용매 중에 분산시킨 후, 평균입경(D50)이 100nm 이하가 될 때까지 분쇄함으로써 실시될 수 있다. 상기 분쇄공정의 결과로 제조한, 표면산화된 실리콘 나노입자는 실리콘 나노입자 중 산소함량이 10 내지 20중량%이며, 초기 충방전 시험시 82% 이상의 초기효율을 나타낼 수 있다.Specifically, the surface oxidation may be performed by dispersing the silicon nanoparticles in an alcohol solvent such as ethanol, and then grinding until the average particle diameter (D 50 ) becomes 100 nm or less. The surface-oxidized silicon nanoparticles prepared as a result of the crushing process may have an oxygen content of 10 to 20% by weight in the silicon nanoparticles, and may exhibit an initial efficiency of 82% or more during an initial charge / discharge test.
상기 음극활물질의 제조방법에 있어서, 상기 알칼리성 금속 화합물은 LiOH, NaOH, KOH, Be(OH)2, Mg(OH) 또는 Ca(OH)2 과 같은 알칼리계 금속 수산화물, 또는 이들의 수화물일 수 있으며, 표면산화된 실리콘 나노입자와의 반응 효율 등을 고려할 때 상기 알칼리성 금속 화합물은 보다 구체적으로 NaOH일 수 있다.In the method of preparing the negative electrode active material, the alkaline metal compound may be an alkali metal hydroxide such as LiOH, NaOH, KOH, Be (OH) 2 , Mg (OH) or Ca (OH) 2 , or a hydrate thereof. In consideration of reaction efficiency with surface-oxidized silicon nanoparticles, the alkaline metal compound may be NaOH.
또, 상기 알칼리성 금속 화합물은 용액상으로 사용될 수 있다. 이때 용매로는 상기 알칼리성 금속 화합물을 용해시킬 수 있고, 이후 제거가 용이한 용매라면 특별히 한정되지 않는다. 구체적으로는 물 또는 알코올 용매(에탄올 또는 메탄올 등) 등의 극성 용매를 사용할 수 있다. In addition, the alkaline metal compound may be used in a solution phase. In this case, the solvent may be dissolved in the alkaline metal compound, and the solvent is not particularly limited as long as it is easy to remove. Specifically, a polar solvent such as water or an alcohol solvent (ethanol or methanol) can be used.
상기한 표면산화된 실리콘 나노입자와 염기성 물질의 혼합 공정은 통상의 방법에 따라 실시될 수 있다.The mixing process of the surface oxidized silicon nanoparticles and the basic material may be carried out according to a conventional method.
또, 상기 혼합시 알칼리성 금속 화합물은 표면에 비정질 SiO2를 포함하는 실리콘 나노입자 100중량부에 대하여 1 내지 10중량부의 함량으로 사용되는 것이 바람직할 수 있다. 알칼리성 금속 화합물의 함량이 1중량부 미만이면 후속의 열처리 단계 후 생성되는 결정질 SiO2의 함량이 적고, 그 결과로 초기효율이 저하될 우려가 있고, 반면, 알칼리성 금속 화합물의 함량이 10중량부를 초과하는 경우에는 열처리후 형성된 결정질 SiO2 함량이 지나치게 많아 용량특성이 저하될 우려가 있다.In addition, the alkaline metal compound may be preferably used in an amount of 1 to 10 parts by weight based on 100 parts by weight of the silicon nanoparticles including amorphous SiO 2 on the surface. If the content of the alkali metal compound is less than 1 part by weight, the content of crystalline SiO 2 generated after the subsequent heat treatment step is small, and as a result, the initial efficiency may be lowered, while the content of the alkali metal compound exceeds 10 parts by weight. In this case, the content of crystalline SiO 2 formed after the heat treatment is too high, which may lower the capacity characteristics.
또, 상기 음극활물질의 제조방법에 있어서, 상기 열처리 공정은 비활성 분위기하에 500℃ 내지 1000℃에서의 열처리에 의해 실시될 수 있다. 열처리시 온도가 500℃ 미만이면 비정질 SiO2의 결정질 SiO2로의 변환 효율이 낮아 초기효율 및 수명특성이 저하될 우려가 있고, 열처리시 온도가 1000℃를 초과하면 결정질 SiO2가 다량 생성되어 용량특성 및 수명특성의 저하의 우려가 있다.In addition, in the manufacturing method of the negative electrode active material, the heat treatment step may be carried out by heat treatment at 500 ℃ to 1000 ℃ in an inert atmosphere. If the temperature is less than 500 ℃ during heat treatment, the conversion efficiency of amorphous SiO 2 to crystalline SiO 2 is low, there is a risk that the initial efficiency and life characteristics may be lowered. When the temperature exceeds 1000 ℃ during heat treatment, a large amount of crystalline SiO 2 is generated, And deterioration of the service life characteristics.
또, 상기 열처리 공정은 상기한 조건에서 5 내지 120분 동안 실시되는 것이 바람직할 수 있다. 반응 시간이 5분 미만인 경우에는 결정질 SiO2로의 변환 효율이 낮아 초기효율 및 수명특성이 저하될 우려가 있고, 120분을 초과하는 경우에는 결정질 이산화규소가 형성되기에 충분한 시간이 지난 후이므로 에너지 효율의 측면에서 바람직하지 않다.In addition, the heat treatment process may be preferably performed for 5 to 120 minutes under the above conditions. If the reaction time is less than 5 minutes, the conversion efficiency to crystalline SiO 2 is low, there is a fear that the initial efficiency and life characteristics are lowered. If the reaction time is more than 120 minutes, enough time after the crystalline silicon dioxide is formed, energy efficiency It is not preferable in terms of.
이와 같이 알칼리성 금속 화합물이 표면산화된 실리콘 나노입자의 표면에 존재하는 상태에서 열처리함으로써 결정질 SiO2의 형성을 촉진할 수 있다. 동일한 온도에서 열처리를 하더라도 알칼리성 금속 화합물을 사용하지 않을 경우 결정질 SiO2가 생성되지 않는다. 또, 상기 알칼리성 금속 화합물의 혼합으로 인해 비정질 SiO2는 전기화학적으로 비활성(inactive, 리튬과 무반응)인 결정질로 성장하게 되고, 초기 쿨롱 효율(방전용량/충전용량×100, 규소계 화합물에 처음 리튬이 들어간 양에 대한 리튬이 처음 방출된 양의 비율)이 증가하게 된다. As such, the formation of crystalline SiO 2 may be promoted by heat treatment in the state where the alkaline metal compound is present on the surface of the silicon oxide nanoparticles surface-oxidized. Even if the heat treatment is performed at the same temperature, crystalline SiO 2 is not produced when the alkali metal compound is not used. In addition, due to the mixing of the alkali metal compound, amorphous SiO 2 grows into crystalline electrochemically inactive (inactive, no reaction with lithium), the initial coulombic efficiency (discharge capacity / charge capacity × 100, silicon-based compound for the first time The ratio of the amount of lithium first released to the amount of lithium) increases.
본 발명에 따른 음극활물질의 제조방법은 상기 열처리 공정에 앞서 제조된 표면산화된 실리콘 나노입자와 알칼리성 금속 화합물의 혼합물에 존재하는 극성 용매를 증발, 제거하고, 그 결과로 후속의 열처리에 의한 결정질 SiO2 형성 효율을 높이기 위한 건조 공정을 선택적으로 더 포함할 수 있다.The method for preparing a negative electrode active material according to the present invention evaporates and removes a polar solvent present in a mixture of surface oxidized silicon nanoparticles and an alkali metal compound prepared before the heat treatment step, and as a result, crystalline SiO by subsequent heat treatment. 2 may optionally further include a drying process for increasing the formation efficiency.
상기 건조 공정은 통상의 방법에 따라 실시될 수 있으며, 구체적으로는 80℃ 내지 120℃에서의 가열처리 또는 열풍 건조에 의해 실시될 수 있다.The drying process may be carried out according to a conventional method, specifically, may be carried out by heat treatment or hot air drying at 80 ℃ to 120 ℃.
또, 상기 음극활물질의 제조방법은, 상기 열처리 공정 후 실리콘 산화물 표면에 존재하는 알칼리성 금속 화합물의 제거를 위한 세척(washing) 공정을 선택적으로 더 포함할 수 있다. In addition, the method of manufacturing the negative electrode active material may optionally further include a washing process for removing an alkaline metal compound present on the surface of the silicon oxide after the heat treatment process.
상기 세척공정은 통상의 방법에 따라 실시될 수 있으며, 구체적으로는 물 등의 세척액을 이용하여 함침, 린스 등의 방법으로 실시될 수 있다.The washing process may be carried out according to a conventional method, specifically, it may be carried out by a method such as impregnation, rinsing using a washing liquid such as water.
또, 본 발명의 일 실시예에 따른 음극활물질의 제조방법은 실리콘 나노입자 표면에 대한 표면처리층 형성 후, 상기 표면처리층 상에 탄소계 물질을 포함하는 코팅층을 형성하거나, 또는 표면처리층이 형성된 실리콘 나노입자를 이용하여 탄소계 물질의 표면을 코팅하는 단계를 더 포함할 수 있다. In addition, the method for manufacturing a negative electrode active material according to an embodiment of the present invention, after forming a surface treatment layer on the surface of the silicon nanoparticles, to form a coating layer containing a carbon-based material on the surface treatment layer, or the surface treatment layer is The method may further include coating a surface of the carbonaceous material using the formed silicon nanoparticles.
상기 탄소계 물질을 포함하는 코팅층의 형성은 탄소계 물질의 증착, 도포 또는 압착 등에 의한 표면 코팅, 기계적 합금, 유기물질의 소성에 의한 탄화 등의 통상의 탄소계 코팅층 형성 방법에 의해 실시될 수 있다. 이때 상기 탄소계 물질의 종류 및 함량은 앞서 설명한 바와 동일하다. Formation of the coating layer including the carbon-based material may be carried out by a conventional carbon-based coating layer forming method such as surface coating by vapor deposition, coating or pressing of carbon-based material, mechanical alloy, carbonization by firing organic materials, and the like. . In this case, the type and content of the carbonaceous material are the same as described above.
구체적으로는, 상기에서 제조한 표면처리된 실리콘 나노입자를 아르곤 등의 비활성 가스 분위기 하에서 탄소 원료물질과 반응시킴으로써 표면에 탄소계 물질을 포함하는 코팅층이 형성될 수 있다. 이때, 탄소 원료물질로는 아세틸렌 가스 등과 같은 가스상의 탄소 물질 등이 사용될 수 있다.Specifically, the surface-treated silicon nanoparticles prepared above may be reacted with a carbon raw material under an inert gas atmosphere such as argon to form a coating layer containing a carbon-based material on the surface. In this case, a carbonaceous carbon material such as acetylene gas or the like may be used as the carbon raw material.
또, 상기 탄소 원료물질과의 반응은 700℃ 내지 1000℃의 온도범위에서 수행될 수 있다. In addition, the reaction with the carbon raw material may be carried out at a temperature range of 700 ℃ to 1000 ℃.
본 발명의 또 다른 일 구현예에 따르면, 상기한 음극활물질을 포함하는 리튬 이차전지용 음극이 제공된다. According to another embodiment of the present invention, a negative electrode for a lithium secondary battery including the negative electrode active material is provided.
구체적으로 상기 음극은 음극집전체 및 상기 음극집전체 상에 형성되며, 상기한 음극활물질을 포함하는 음극활물질층을 포함한다.Specifically, the negative electrode is formed on the negative electrode current collector and the negative electrode current collector, and includes a negative electrode active material layer containing the negative electrode active material.
상기와 같은 구조를 갖는 음극은 통상의 음극 제조방법에 따라 제조될 수 있으며, 구체적으로는, 음극활물질과 함께 바인더, 그리고 선택적으로 도전제를 포함하는 음극합제를 음극집전체 상에 도포한 후, 건조함으로써 제조될 수 있다.The negative electrode having the structure as described above may be prepared according to a conventional negative electrode manufacturing method, specifically, after applying a negative electrode mixture including a binder, and optionally a conductive agent with a negative electrode active material on the negative electrode current collector, It can be prepared by drying.
이때, 상기 음극집전체로는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한없이 사용될 수 있으며, 구체적으로는, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄 또는 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. In this case, the negative electrode current collector may be used without particular limitation as long as it has high conductivity without causing chemical changes in the battery. Specifically, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, or the like on the surface of the steel, aluminum-cadmium alloy and the like can be used.
상기와 같은 음극집전체는 다양한 형태를 가질 수 있으며, 구체적으로는 필름, 시트, 호일, 네트, 다공질체, 발포체 또는 부직포체 등의 형태일 수 있다.The negative electrode current collector as described above may have various forms, and specifically, may be in the form of a film, a sheet, a foil, a net, a porous body, a foam, or a nonwoven fabric.
또, 상기 음극집전체는 3 내지 500㎛의 두께를 갖는 것이 바람직할 수 있으며, 또, 음극활물질의 결합력을 강화시킬 수 있도록, 집전체의 표면에 미세한 요철 또는 패턴이 형성될 수도 있다. In addition, the negative electrode current collector may have a thickness of 3 to 500 μm, and fine concavities and convexities or patterns may be formed on the surface of the current collector so as to enhance the bonding force of the negative electrode active material.
또, 상기 음극합제는 음극활물질과 바인더, 그리고 선택적으로 도전제를 용매 중에 용해 및 분산시켜 제조될 수 있다.In addition, the negative electrode mixture may be prepared by dissolving and dispersing a negative electrode active material, a binder, and optionally a conductive agent in a solvent.
상기 음극활물질은 앞서 설명한 바와 동일하다. The negative electrode active material is the same as described above.
또, 상기 바인더는 음극활물질 간의 결착, 그리고 음극활물질과 음극집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올, 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무(styrene-butadiene rubber, SBR), 불소계 고무 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. In addition, the binder serves to improve the binding between the negative electrode active material and the adhesion between the negative electrode active material and the negative electrode current collector. Specific examples include polyvinylidene fluoride (PVDF), polyvinyl alcohol, starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene- Diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluorine-based rubber or various copolymers thereof, and the like, and one or a mixture of two or more thereof may be used. Can be.
이중에서도 개선효과의 현저함을 고려할 때 수계 바인더인 것이 바람직하고, 또 그 중에서도 개선효과의 현저함, 바인더 자체의 접착능력 및 음극 제조과정에서의 고온 건조 공정을 고려할 때 스티렌-부타디엔 고무가 보다 바람직할 수 있다. Of these, the aqueous binder is preferable in view of the remarkable improvement effect, and in particular, the styrene-butadiene rubber is more preferable in view of the remarkable improvement effect, the adhesive ability of the binder itself, and the high temperature drying process in the manufacturing process of the negative electrode. can do.
상기와 같은 바인더는 음극활물질층 총 중량에 대하여 1 내지 20중량%로 포함될 수 있도록 하는 양으로 음극합제 내에 포함될 수 있다.Such a binder may be included in the negative electrode mixture in an amount such that it can be included in 1 to 20% by weight based on the total weight of the negative electrode active material layer.
또, 상기 도전재는 음극에 도전성을 부여하기 위해 선택적으로 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연 휘스커, 탄산칼슘 휘스커, 이산화티탄 휘스커, 산화규소 휘스커, 탄화규소 휘스커, 붕산 알루미늄 휘스커, 붕산 마그네슘 휘스커, 티탄산 칼륨 휘스커, 질화 규소 휘스커, 실리콘 카바이드 휘스커, 알루미나 휘스커 등의 침상 또는 가지상의 도전성 휘스커(Whisker); 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. In addition, the conductive material is selectively used to impart conductivity to the negative electrode, and in the battery constituted, any conductive material can be used without particular limitation as long as it has electronic conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Needle or branched conductive whisker such as zinc oxide whisker, calcium carbonate whisker, titanium dioxide whisker, silicon oxide whisker, silicon carbide whisker, aluminum borate whisker, magnesium borate whisker, potassium titanate whisker, silicon nitride whisker, silicon carbide whisker, alumina whisker Whisker; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used.
이중에서도 도전제 사용에 따른 개선효과의 현저함 및 음극 제조과정에서의 고온 건조 공정을 고려할 때 카본블랙 등의 탄소계 물질이 보다 바람직할 수 있다.Among these, a carbon-based material such as carbon black may be more preferable in consideration of the remarkable improvement effect of the use of the conductive agent and the high temperature drying process in the negative electrode manufacturing process.
상기 도전재는 음극활물질층 총 중량에 대하여 0.5 내지 5중량%로 포함되도록 하는 양으로 음극합제 내에 포함될 수 있다. The conductive material may be included in the negative electrode mixture in an amount such that 0.5 to 5% by weight based on the total weight of the negative electrode active material layer.
또, 상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.In addition, the solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone ) Or water, and one kind alone or a mixture of two or more kinds thereof may be used.
또, 상기 음극합제는 상기한 성분들과 함께 증점제를 더 포함할 수 있다. 구체적으로 상기 증점제는 카르복시메틸셀룰로우즈(CMC)와 같은 셀룰로오스계 화합물일 수 있다. 상기 증점제는 음극활물질층 총 중량에 대하여 1 내지 10중량%로 포함되도록 하는 양으로 음극합제 내에 포함될 수 있다.In addition, the negative electrode mixture may further include a thickener together with the above components. Specifically, the thickener may be a cellulose compound such as carboxymethyl cellulose (CMC). The thickener may be included in the negative electrode mixture in an amount such that the thickener is included in an amount of 1 to 10% by weight based on the total weight of the negative electrode active material layer.
상기와 같은 구성을 갖는 음극합제는 통상의 슬러리 코팅법을 이용하여 음극집전체의 일면에 도포될 수 있다.The negative electrode mixture having the above configuration can be applied to one surface of the negative electrode current collector using a conventional slurry coating method.
상기 슬러리 코팅법의 예로는 바 코팅, 스핀코팅, 롤 코팅, 슬롯다이 코팅, 또는 스프레이 코팅 등을 들 수 있으며, 이들 중 1종 또는 2종 이상의 방법이 혼합 실시될 수 있다.Examples of the slurry coating method may include bar coating, spin coating, roll coating, slot die coating, or spray coating, and one or two or more of these methods may be mixed.
또, 상기 음극합제의 도포시, 최종 제조되는 음극활물질층에서의 활물질의 로딩량 및 두께를 고려하여 적절한 두께로 음극합제를 도포하는 것이 바람직할 수 있다. In addition, when the negative electrode mixture is applied, it may be preferable to apply the negative electrode mixture to an appropriate thickness in consideration of the loading amount and thickness of the active material in the final negative electrode active material layer.
이후 음극집전체 상에 형성된 음극합제의 도막에 대해 건조 공정이 실시된다. Thereafter, a drying process is performed on the coating film of the negative electrode mixture formed on the negative electrode current collector.
이때 건조공정은 음극합제 중의 용매증발과 함께 음극내 포함된 수분을 최대한 제거하고, 동시에 바인더의 결착력을 높일 수 있는 온도에서의 가열처리, 열풍 주입 등의 방법으로 실시될 수 있다.At this time, the drying process may be carried out by a method such as heating treatment, hot air injection, etc. at a temperature capable of removing the moisture contained in the negative electrode with the evaporation of the solvent in the negative electrode mixture as much as possible, and at the same time increasing the binding force of the binder.
구체적으로 상기 건조공정은 용매의 비점 이상 바인더의 융점 이하의 온도에서 실시될 수 있으며, 보다 구체적으로는 100℃ 내지 150℃에서 실시될 수 있다. 보다 바람직하게는 100℃ 내지 120℃의 온도 및 10torr 이하의 압력 하에서 1 내지 50시간 동안 실시될 수 있다. Specifically, the drying process may be carried out at a temperature below the boiling point of the solvent or less than the melting point of the binder, more specifically, may be carried out at 100 ℃ to 150 ℃. More preferably, it may be carried out for 1 to 50 hours at a temperature of 100 ℃ to 120 ℃ and a pressure of 10torr or less.
또, 상기 건조공정 후 압연공정은 통상의 방법에 따라 실시될 수 있으며, 필요한 경우 진공 건조 공정이 선택적으로 더 실시될 수 있다.In addition, the rolling step after the drying step may be carried out according to a conventional method, and if necessary, a vacuum drying step may be optionally further performed.
또, 다른 방법으로 상기 음극활물질층은 상기한 음극합제를 별도의 지지체 상에 도포한 후 건조하여 필름상으로 제조하고, 형성된 필름을 상기 지지체로부터 박리한 후 음극 집전체 상에 라미네이션하고 압연함으로써 제조될 수도 있다. In another method, the negative electrode active material layer is prepared by applying the negative electrode mixture on a separate support and then drying to prepare a film, and peeling the formed film from the support, then laminating and rolling on the negative electrode current collector. May be
이때 상기 음극합제, 음극집전체, 도포, 건조 및 압연공정은 앞서 설명한 바와 동일하다. At this time, the negative electrode mixture, the negative electrode current collector, the coating, drying and rolling processes are the same as described above.
상기와 같은 제조방법에 따라 제조된 음극은, 상기한 음극활물질 또는 음극재를 포함함으로써 초기효율 저하의 우려없이 우수한 수명특성을 나타낼 수 있다.The negative electrode manufactured according to the manufacturing method as described above, by including the negative electrode active material or negative electrode material can exhibit excellent life characteristics without fear of lowering the initial efficiency.
이에 따라 본 발명의 다른 일 실시예에 따르면 상기한 제조방법에 의해 제조된 음극을 포함하는 리튬 이차전지를 제공한다.Accordingly, according to another embodiment of the present invention, a lithium secondary battery including the negative electrode manufactured by the above-described manufacturing method is provided.
구체적으로, 상기 리튬 이차전지는 상기한 제조방법에 의해 제조된 음극, 양극, 상기 음극과 양극 사이에 개재되어 위치하는 세퍼레이터 및 비수전해질을 포함한다. 상기 리튬 이차전지에 있어서, 음극은 앞서 설명한 바와 동일하다.Specifically, the lithium secondary battery includes a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode manufactured by the manufacturing method described above and a nonaqueous electrolyte. In the lithium secondary battery, the negative electrode is the same as described above.
또, 상기 양극은 양극집전체 및 상기 양극집전체 상에 형성되며, 양극 활물질을 포함하는 양극활물질층을 포함한다. In addition, the positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and includes a positive electrode active material layer containing a positive electrode active material.
이때, 상기 양극집전체로는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별한 제한없이 사용가능하며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나, 스테인레스 스틸 표면에 탄소, 니켈, 티탄 또는 은 등으로 표면 처리한 것 등이 사용될 수 있다. In this case, the positive electrode current collector may be used without particular limitation as long as it has conductivity without causing chemical changes in the battery. For example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum may be used on the surface of stainless steel. The surface-treated with carbon, nickel, titanium, silver, etc. can be used.
또, 상기 양극집전체는 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.In addition, the positive electrode current collector may have a thickness of 3 to 500㎛, and may form fine irregularities on the surface of the positive electrode current collector to increase the adhesion of the positive electrode active material. For example, it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
또, 상기 양극활물질층에 있어서, 상기 양극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)이 사용될 수 있다. 구체적으로는 코발트, 망간, 니켈 또는 이들의 조합의 금속과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있으며, 보다 구체적인 예로는 하기 화학식 1로 표시되는 리튬 금속 화합물이 사용될 수 있다.In the cathode active material layer, a compound capable of reversible intercalation and deintercalation of lithium (lithiated intercalation compound) may be used as the cathode active material. Specifically, one or more of complex oxides of metal and lithium of cobalt, manganese, nickel or a combination thereof may be used, and as a specific example, a lithium metal compound represented by the following Chemical Formula 1 may be used.
[화학식 1][Formula 1]
LixMyM'zO2 Li x M y M ' z O 2
(상기 화학식 1에서, 상기 M 및 M'은 각각 독립적으로 Fe, Ni, Co, Mn, Cr, Zr, Nb, Cu, V, Mo, Ti, Zn, Al, Ga, Mg, B 및 이들의 조합으로 이루어진 군에서 선택되는 원소이고, 상기 x, y, z는 각각 독립적인 산화물 조성 원소들의 원자분율로서, 0<x≤1, 0<y≤1, 0<z≤1, 0<x+y+z≤2이다.)(In Formula 1, M and M 'are each independently Fe, Ni, Co, Mn, Cr, Zr, Nb, Cu, V, Mo, Ti, Zn, Al, Ga, Mg, B and combinations thereof And x, y, and z are atomic fractions of independent oxide composition elements, and 0 <x≤1, 0 <y≤1, 0 <z≤1, and 0 <x + y. + z≤2.)
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 양극활물질은 LiCoO2, LiMnO2, LiNiO2, 리튬니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, LiNi0 . 5Mn0 . 3Co0 . 2O2, 또는 LiNi0 . 8Mn0 . 1Co0 . 1O2 등), 또는 리튬니켈코발트알루미늄 산화물(예를 들면, LiNi0 . 8Co0 . 15Al0 . 05O2 등) 및 이들의 혼합물로 이루어진 군에서 선택되는 것이 바람직할 수 있다.Among these, the positive electrode active material is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (eg, Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , LiNi 0 . 5 Mn 0 . 3 Co 0 . 2 O 2 , or LiNi 0 . 8 Mn 0 . 1 Co 0 . 1 O 2), or lithium nickel cobalt aluminum oxide (for example, LiNi 0. 8 Co 0. 15 Al 0. 05 O 2 , etc.), and it may be preferably selected from the group consisting of a mixture thereof.
상기와 같은 양극은 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극활물질과 함께 도전제 및 바인더를 용매에 용해시켜 제조한 양극합제를 양극집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다.The positive electrode as described above may be manufactured according to a conventional positive electrode manufacturing method. Specifically, the positive electrode mixture prepared by dissolving a conductive agent and a binder in a solvent together with the positive electrode active material may be prepared by applying a positive electrode current collector on a positive electrode current collector, followed by drying and rolling.
또 상기 양극의 활물질층에 포함되는 바인더 및 도전제는 앞서 음극에서 설명한 바와 동일한 것일 수 있다.In addition, the binder and the conductive agent included in the active material layer of the positive electrode may be the same as described above in the negative electrode.
또, 상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매가 사용될 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.In addition, as the solvent, a solvent generally used in the art may be used, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone ( acetone), water, and the like, and one kind alone or a mixture of two or more kinds thereof may be used.
이후 양극집전체에 대한 도포, 건조 및 압연 공정은 앞서 음극의 제조방법에서 설명한 바와 동일한 방법으로 실시될 수 있다.After the coating, drying and rolling process for the positive electrode current collector may be carried out in the same manner as described in the manufacturing method of the negative electrode.
또, 상기 양극 역시 상기 양극합제를 별도의 지지체 상에 도포한 후 건조하여 제조한 양극활물질층 형성용 필름을 지지체로부터 박리하고, 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.In addition, the positive electrode may also be prepared by applying the positive electrode mixture on a separate support and then peeling the film for forming the positive electrode active material layer prepared by drying from the support and laminating on the positive electrode current collector.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다.On the other hand, in the lithium secondary battery, the separator can be used without particular limitation as long as it is usually used as a separator in a lithium secondary battery, it is particularly preferable that the resistance to the ion migration of the electrolyte, while excellent in the electrolyte solution moisture-absorbing ability. Specifically, a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used. In addition, conventional porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
또, 상기 리튬 이차전지에 있어서, 상기 비수전해질은 유기용매 및 리튬염을 포함한다.In the lithium secondary battery, the nonaqueous electrolyte contains an organic solvent and a lithium salt.
상기 유기용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC), 플루오로에틸렌카보네이트(fluoroethylene carbonate, FEC) 등의 카보네이트계 용매 등이 사용될 수 있다. The organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move. Specifically, the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, γ-butyrolactone or ε-caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC) and fluoroethylene carbonate (FEC).
이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. Of these, carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
또, 상기 리튬염은 리튬 이차 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염은 상기 전해질 내에 대략 0.6mol% 내지 2mol%의 농도로 포함되는 것이 바람직하다.In addition, the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 . LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used. The lithium salt is preferably included at a concentration of approximately 0.6 mol% to 2 mol% in the electrolyte.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.In addition to the electrolyte components, the electrolyte includes, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity. -Glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2 One or more additives such as -methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in 0.1 to 5% by weight based on the total weight of the electrolyte.
상기와 같은 구성을 갖는 리튬 이차전지는, 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입함으로써 제조될 수 있다.The lithium secondary battery having the above configuration may be manufactured by manufacturing an electrode assembly through a separator between a positive electrode and a negative electrode, placing the electrode assembly inside a case, and then injecting an electrolyte solution into the case.
상기와 같이 본 발명에 따른 제조방법에 의해 제조된 음극을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차 등의 전기 자동차 분야 등에 유용하다.As described above, since the lithium secondary battery including the negative electrode manufactured by the manufacturing method according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, portable devices such as mobile phones, laptop computers, digital cameras, And electric vehicle fields such as hybrid electric vehicles.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩을 제공한다. Accordingly, according to another embodiment of the present invention, a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다. The battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
[[ 실시예Example 1]  One]
단계 1: 표면에 비정질 SiO2를 갖는 실리콘 나노입자의 제조Step 1: Preparation of Silicon Nanoparticles with Amorphous SiO 2 on the Surface
0.1mm 크기의 볼(ball)형태를 갖는 ZrO2 입자와, 평균 입경 3㎛의 Si 입자를 10:1의 중량비로 에탄올 용매 중에서 혼합 후 2시간동안 밀링(milling)하여, 입자 표면에 비정질 SiO2를 갖는 실리콘 나노입자(평균 입경(D50): 100nm)를 제조하였다. 0.1mm the Si particles of the ZrO 2 particles, an average particle size 3㎛ 10 having a size ball (ball) in the form of: milling (milling) for 2 hours and then mixed in an ethanol solvent in a weight ratio of 1, the amorphous SiO 2 particles on the surface Silicon nanoparticles having an average particle diameter (D 50 ) of 100 nm were prepared.
제조한 실리콘 나노입자에 대해 적외선 흡광분석법을 이용하여 산소 분석한 결과, 산소 함량은 입자 총 중량에 대하여 10 중량%임을 확인하였다. As a result of oxygen analysis of the prepared silicon nanoparticles using infrared absorption spectrometry, it was confirmed that the oxygen content was 10% by weight based on the total weight of the particles.
단계 2: 결정화 SiO2 층을 갖는 실리콘 나노입자의 음극활물질 제조Step 2: Preparation of Cathode Active Material of Silicon Nanoparticles with Crystallized SiO 2 Layer
수산화나트륨 30mg을 에탄올 100ml에 용해시켜 제조한 수산화나트륨 용액에 상기 단계 1에서 제조한, 표면에 비정질 SiO2를 갖는 실리콘 나노입자 1g을 넣고 10분 이상 교반하여 실리콘 나노입자 포함 혼합용액을 제조하였다. Into the sodium hydroxide solution prepared by dissolving 30 mg of sodium hydroxide in 100 ml of ethanol, 1 g of silicon nanoparticles having amorphous SiO 2 was prepared on the surface thereof, and stirred for 10 minutes or more to prepare a mixed solution including silicon nanoparticles.
80℃ 내지 120℃로 가열시킨 알루미나 보트에, 상기 실리콘 나노입자 포함 혼합용액을 넣고 에탄올을 증발시켰다. 용매 증발이 완료되면, 결과의 반응물을 포함하는 알루미나 보트를 쿼츠관 퍼니스(Quartz Tube Furnance)에 넣고, 아르곤 가스를 흘려주면서 800℃의 온도에서 30분 동안 열처리한 후, 쿼츠관 퍼니스를 상온(20~25℃)까지 냉각시켜 표면에 결정화 SiO2를 포함하는 실리콘 나노입자를 제조하였다. The mixed solution containing the silicon nanoparticles was put in an alumina boat heated to 80 ° C to 120 ° C, and ethanol was evaporated. When the solvent evaporation is completed, the alumina boat containing the resulting reactant is placed in a quartz tube furnace, heat treated at 800 ° C. for 30 minutes while flowing argon gas, and the quartz tube furnace is cooled to room temperature (20 ˜25 ° C.) to prepare silicon nanoparticles comprising crystallized SiO 2 on the surface.
제조한 결정화 SiO2를 포함하는 실리콘 나노입자를 증류수에 2시간 동안 담근 후 여과하여 표면에 붙어있는 수산화 나트륨을 제거함으로써 음극활물질을 수득하였다. The negative electrode active material was obtained by dipping the silicon nanoparticles containing the prepared crystallized SiO 2 in distilled water for 2 hours and then removing sodium hydroxide adhering to the surface.
[실시예 2] Example 2
상기 실시예 1에서 제조한 음극활물질 20g을 회전 관상로에 투입하고, 아르곤 가스를 0.3L/분으로 흘려준 후 온도를 10℃/분의 속도로 800℃까지 승온시켰다. 회전 관상로를 15rpm/분의 속도로 회전시키면서 아르곤 가스를 1.8L/분, 그리고 아세틸렌 가스를 0.5L/분으로 흘려주며 5시간 동안 열처리하여 입자 표면에 도전성 탄소 코팅층이 형성된 음극 활물질을 제조하였다. 이때 도전성 탄소 코팅층은 음극 활물질 총 중량에 대해 10중량%로 포함되었다. 20 g of the negative electrode active material prepared in Example 1 was added to a rotary tubular furnace, argon gas was flowed at 0.3 L / min, and the temperature was raised to 800 ° C. at a rate of 10 ° C./min. While rotating the rotary tubular furnace at a speed of 15 rpm / min, argon gas was flowed at 1.8 L / min and acetylene gas at 0.5 L / min, followed by heat treatment for 5 hours to prepare a negative electrode active material having a conductive carbon coating layer formed on the surface of the particle. At this time, the conductive carbon coating layer was included in 10% by weight relative to the total weight of the negative electrode active material.
[실시예 3]Example 3
실시예 1에서 제조된 음극활물질 15중량%와 평균 입경이 16㎛인 구형화 천연흑연 85중량%을 혼합한 분말 10g을 1000mL의 에탄올에 분산한 후, 분무 건조(Spray drying)법을 이용하여, 상기 천연흑연 표면에 상기 실시예 1에서 제조한 음극활물질을 도포하였다. 결과로 수득된 복합체에 대해 상기 실시예 2와 동일한 방법으로 실시하여 표면 상에 도전성 탄소 코팅층을 형성하였다. 이때 도전성 탄소 코팅층은 음극활물질 총 중량에 대해 10중량%로 포함되었다.10 g of a powder mixed with 15 wt% of the negative electrode active material prepared in Example 1 and 85 wt% of spherical natural graphite having an average particle diameter of 16 μm was dispersed in 1000 mL of ethanol, and then spray dried. The negative electrode active material prepared in Example 1 was coated on the natural graphite surface. The resulting composite was carried out in the same manner as in Example 2 to form a conductive carbon coating layer on the surface. At this time, the conductive carbon coating layer was included in 10% by weight relative to the total weight of the negative electrode active material.
[비교예 1] Comparative Example 1
상기 실시예 1의 단계 1에서 제조한, 표면에 비정질 SiO2를 갖는 실리콘 나노입자를 음극활물질로서 사용하였다.Silicon nanoparticles having amorphous SiO 2 on the surface prepared in Step 1 of Example 1 were used as a negative electrode active material.
[비교예 2]Comparative Example 2
표면이 산화되지 않은 평균입경 100nm의 실리콘 나노입자 90중량%와 평균 입경 100nm의 결정질 SiO2 분말 10중량%를 균일하게 혼합하여 음극활물질로 사용하였다.90% by weight of silicon nanoparticles having an average particle diameter of 100 nm and 10% by weight of crystalline SiO 2 powder having an average particle diameter of 100 nm having no surface oxidized were used as a negative electrode active material.
[실험예 1]Experimental Example 1
상기 실시예 1에서 제조한 표면에 결정화 SiO2를 포함하는 실리콘 나노입자의 음극활물질에 대해 X선 회절 분석(X-ray Diffraction Spectroscopy: XRD)을 실시하였다. 그 결과를 도 1에 나타내었다.X-ray diffraction spectroscopy (XRD) was performed on the anode active material of silicon nanoparticles containing crystallized SiO 2 on the surface prepared in Example 1. The results are shown in FIG.
분석 결과, Si(28도 부근) 이외에 결정성 SiO2(22도 부근)가 형성된 것을 확인할 수 있다.As a result of the analysis, it was confirmed that crystalline SiO 2 (near 22 degrees) was formed in addition to Si (near 28 degrees).
추가적으로, 상기 실시예 1에서 제조한 음극활물질 중에 포함된 결정성 SiO2의 함량을 확인하기 위하여, 결정성 MgO를 상기 실시예 1에서 제조한 음극활물질과 혼합한 후, XRD 분석을 수행하였다.In addition, to confirm the content of crystalline SiO 2 contained in the negative electrode active material prepared in Example 1, after mixing the crystalline MgO with the negative electrode active material prepared in Example 1, XRD analysis was performed.
그 결과, 실시예 1에서 제조한 음극활물질 중에 포함된 결정성 SiO2의 함량은 10중량% 이었다.As a result, the content of crystalline SiO 2 contained in the negative electrode active material prepared in Example 1 was 10% by weight.
[실험예 2]Experimental Example 2
상기 실시예 1~3 및 비교예 1, 2에서 제조한 음극활물질의 구조를 분석하였다.The structures of the negative electrode active materials prepared in Examples 1 to 3 and Comparative Examples 1 and 2 were analyzed.
구체적으로, 음극활물질내 표면처리층 형성 물질의 종류 및 함량은 상기 실험예1에서와 동일한 방법으로 결정성 MgO를 각각의 음극활물질과 혼합한 후, XRD 분석을 수행하고, 그 결과로부터 확인하였다.Specifically, the type and content of the surface treatment layer forming material in the negative electrode active material were mixed with crystalline MgO with each negative electrode active material in the same manner as in Experimental Example 1, XRD analysis was performed, and confirmed from the results.
또, 각 표면처리층의 두께는 주사전자 현미경 관찰을 통하여 확인하였다.In addition, the thickness of each surface treatment layer was confirmed through the scanning electron microscope observation.
실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예1Comparative Example 1 비교예2Comparative Example 2
코어core 종류Kinds 실리콘 나노입자Silicon nanoparticles 실리콘 나노입자Silicon nanoparticles 평균입경 16㎛의 구형화 천연흑연Spherical natural graphite with an average particle diameter of 16㎛ 실리콘 나노입자Silicon nanoparticles 실리콘 나노입자+ 결정질 SiO2 Silicon Nanoparticles + Crystalline SiO 2
표면처리층Surface treatment layer 종류Kinds 결정질 SiO2 Crystalline SiO 2 결정질 SiO2 Crystalline SiO 2 결정질 SiO2의 표면처리층을 갖는 실리콘 나노입자Silicon nanoparticles with a surface treatment layer of crystalline SiO 2 비정질 SiO2 Amorphous SiO 2 --
함량(중량%)Content (% by weight) 1010 1010 13.513.5 1010 --
평균 두께(nm)Average thickness (nm) 55 55 55 55 --
코팅층Coating layer 종류Kinds -- 탄소carbon 탄소carbon -- --
함량(중량%)Content (% by weight) -- 1010 1010 -- --
평균 두께(nm)Average thickness (nm) -- 55 55 -- --
활물질 평균 입경(nm)Average particle size of active material (nm) 100100 100100 1601016010 100100 100/100100/100
상기 표 1에서 함량 기재는 음극활물질 총 중량을 기준으로 나타낸 값이다.Content table in Table 1 is a value based on the total weight of the negative electrode active material.
[실험예 3]Experimental Example 3
상기 실시예 1~3 및 비교예 1, 2의 음극활물질을 이용하여 반쪽 전지를 제조한 후, 초기 효율, 용량 및 수명 특성을 각각 평가하였다. 그 결과를 표 2에 나타내었다. After the half battery was manufactured using the negative electrode active materials of Examples 1 to 3 and Comparative Examples 1 and 2, initial efficiency, capacity, and lifespan characteristics were evaluated, respectively. The results are shown in Table 2.
상세하게는, 상기 실시예 1~3 및 비교예 1, 2에서 제조한 각각의 음극활물질, 도전재로서 카본블랙 5중량%, 스티렌부타디엔 고무(SBR)의 바인더 및 카르복시메틸셀룰로오스를 80:5:5:10의 중량비로 증류수 중에서 혼합하여 음극활물질층 형성용 조성물을 제조한 후, 이를 구리 집전체에 도포하고 건조하여 음극을 제조하였다. 또, 전해액으로는 에틸렌카보네이트(EC)/디에틸카보네이트(DEC)(EC/DEC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1M 농도의 리튬 헥사플루오로포스페이트(LiPF6) 그리고 첨가제로서 전해액 총 중량에 대하여 비닐렌 카보네이트 1중량% 및 플루로오에틸렌 카보네이트 5중량%를 용해시켜 제조하였다. 상기에서 제조한 음극 및 전해액을 이용하여 반쪽 전지(대극으로 Li 금속 사용)를 제조하였다.Specifically, each of the negative electrode active materials prepared in Examples 1 to 3 and Comparative Examples 1 and 2, 5% by weight of carbon black, a binder of styrene butadiene rubber (SBR) and carboxymethyl cellulose were used as the conductive material. After mixing in distilled water at a weight ratio of 5:10 to prepare a composition for forming a negative electrode active material layer, it was applied to a copper current collector and dried to prepare a negative electrode. In addition, as an electrolyte, 1M concentration of lithium hexafluorophosphate (LiPF 6 ) and an additive in an organic solvent composed of ethylene carbonate (EC) / diethyl carbonate (DEC) (mixing volume ratio of EC / DEC = 3/4/3) It was prepared by dissolving 1% by weight of vinylene carbonate and 5% by weight of fluoethylene carbonate relative to the total weight of the electrolyte solution. A half cell (using Li metal as a counter electrode) was manufactured using the negative electrode and electrolyte solution prepared above.
제조한 반쪽 전지에 대해 상온(25℃)에서 0.1C/0.1C의 조건으로 충방전을 실시한 후, 방전용량 및 초기 효율을 측정하고, 이로부터 초기 충방전 특성을 평가하였다.After charging and discharging the prepared half-cell at 0.1 C / 0.1 C at room temperature (25 ° C.), the discharge capacity and the initial efficiency were measured, and the initial charge and discharge characteristics were evaluated therefrom.
또, 0.5C/0.5C의 조건으로 충방전을 50회 수행하고, 50사이클까지의 용량유지율로부터 수명특성을 확인하였다.In addition, charging / discharging was performed 50 times under the condition of 0.5C / 0.5C, and the life characteristics were confirmed from the capacity retention rate up to 50 cycles.
실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예1Comparative Example 1 비교예2Comparative Example 2
방전용량(mAh/g)Discharge Capacity (mAh / g) 22502250 21862186 630630 22682268 19521952
초기효율(%)Initial Efficiency (%) 89.789.7 90.290.2 91.691.6 81.781.7 84.184.1
용량유지율(%)Capacity maintenance rate (%) 8383 9494 9898 8181 5656
측정결과, 본 발명에 따른 음극활물질을 포함하는 실시예 1 및 2의 전지는, 비교예 1 및 2와 비교하여 동등 수준의 방전 용량을 나타내면서도 초기 효율 및 수명특성 면에서는 현저히 개선된 효과를 나타내었다. 한편, 흑연의 함량이 85중량%를 차지하는 실시예 3의 음극활물질은 실시예 1, 2 및 비교예 1, 2에 비해 크게 낮은 방전용량을 나타내었으나, 초기 효율 및 용량유지율 면에서는 가장 우수한 효과를 나타내었다. As a result of the measurement, the batteries of Examples 1 and 2 including the negative electrode active material according to the present invention showed an equivalent level of discharge capacity compared to Comparative Examples 1 and 2, but significantly improved in terms of initial efficiency and lifetime characteristics. It was. On the other hand, the negative electrode active material of Example 3, which contains 85% by weight of graphite, exhibited significantly lower discharge capacities than those of Examples 1 and 2 and Comparative Examples 1 and 2. Indicated.

Claims (21)

  1. 표면처리된 실리콘 나노입자를 포함하며,Surface-treated silicon nanoparticles,
    상기 표면처리된 실리콘 나노입자는 실리콘 나노입자, 및 상기 실리콘 나노입자의 표면 상에 위치하며, 결정질 SiO2를 포함하는 표면처리층을 포함하는 것인 리튬 이차전지용 음극활물질.The surface-treated silicon nanoparticles are silicon nanoparticles, and is located on the surface of the silicon nanoparticles, including a surface treatment layer containing crystalline SiO 2 that the lithium active battery negative electrode active material.
  2. 제1항에 있어서,The method of claim 1,
    상기 결정질 SiO2은 표면처리된 실리콘 나노입자 총 중량에 대하여 2 내지 15중량%로 포함되는 것인 리튬 이차전지용 음극활물질.The crystalline SiO 2 is a negative active material for a lithium secondary battery that is contained in 2 to 15% by weight based on the total weight of the surface-treated silicon nanoparticles.
  3. 제1항에 있어서,The method of claim 1,
    상기 실리콘 나노입자는 150nm 이하의 평균입경(D50)을 갖는 것인 리튬 이차전지용 음극활물질.The silicon nanoparticles have an average particle diameter (D 50 ) of less than 150nm lithium secondary battery negative electrode active material.
  4. 제1항에 있어서,The method of claim 1,
    상기 표면처리층은 1nm 내지 20nm의 두께를 갖는 것인 리튬 이차전지용 음극활물질.The surface treatment layer is a negative electrode active material for a lithium secondary battery having a thickness of 1nm to 20nm.
  5. 제1항에 있어서,The method of claim 1,
    탄소계 음극활물질을 더 포함하는 리튬 이차전지용 음극활물질.A negative electrode active material for a lithium secondary battery further comprising a carbon-based negative electrode active material.
  6. 제5항에 있어서,The method of claim 5,
    상기 탄소계 음극활물질은 음극활물질 총 중량에 대하여 10 내지 90중량%로 포함되는 것인 리튬 이차전지용 음극활물질.The carbon-based negative electrode active material is a lithium active battery negative electrode active material that is contained in 10 to 90% by weight based on the total weight of the negative electrode active material.
  7. 제1항에 있어서,The method of claim 1,
    상기 표면처리층 상에 탄소계 음극활물질을 포함하는 코팅층을 더 포함하는 리튬 이차전지용 음극활물질.A negative electrode active material for a lithium secondary battery further comprising a coating layer comprising a carbon-based negative electrode active material on the surface treatment layer.
  8. 제1항에 있어서,The method of claim 1,
    탄소계 음극활물질을 더 포함하며,Further comprising a carbon-based negative electrode active material,
    상기 표면처리된 실리콘 나노입자가 상기 탄소계 음극활물질의 표면 상에 위치하는 것인 리튬 이차전지용 음극활물질.The surface-treated silicon nanoparticles are located on the surface of the carbon-based negative electrode active material negative electrode active material for a lithium secondary battery.
  9. 표면에 비정질 SiO2를 포함하는 실리콘 나노입자를 알칼리성 금속 화합물과 혼합한 후 열처리하여 비정질 SiO2를 결정질 SiO2로 변환시킴으로써, 실리콘 나노입자의 표면에 결정질 SiO2를 포함하는 표면처리층이 형성된 표면처리된 실리콘 나노입자를 제조하는 단계를 포함하는 리튬 이차전지용 음극활물질의 제조방법.Silicon nanoparticles containing amorphous SiO 2 on the surface are mixed with an alkali metal compound and then heat treated to convert amorphous SiO 2 to crystalline SiO 2 , thereby forming a surface treatment layer including crystalline SiO 2 on the surface of the silicon nanoparticles. Method of producing a negative electrode active material for a lithium secondary battery comprising the step of manufacturing the treated silicon nanoparticles.
  10. 제9항에 있어서,The method of claim 9,
    상기 표면에 비정질 SiO2를 포함하는 실리콘 나노입자는, 실리콘 나노입자를 알코올계 용매 중에 분산시킨 후 분쇄하여 제조되는 것인 리튬 이차전지용 음극활물질의 제조방법.Silicon nanoparticles containing amorphous SiO 2 on the surface is prepared by dispersing silicon nanoparticles in an alcohol solvent and then pulverized.
  11. 제9항에 있어서,The method of claim 9,
    상기 표면에 비정질 SiO2를 포함하는 실리콘 나노입자의 평균 입경이 150nm 이하인 것인 리튬 이차전지용 음극활물질의 제조방법.Method for producing a negative active material for a lithium secondary battery that the average particle diameter of the silicon nanoparticles containing amorphous SiO 2 on the surface is 150nm or less.
  12. 제9항에 있어서,The method of claim 9,
    상기 알칼리성 금속 화합물이 LiOH, NaOH, KOH, Be(OH)2, Mg(OH), Ca(OH)2 및 이들의 수화물로 이루어진 군에서 선택되는 1종 이상의 것을 포함하는 것인 리튬 이차전지용 음극활물질의 제조방법.Wherein the alkaline metal compound is LiOH, NaOH, KOH, Be (OH) 2 , Mg (OH), Ca (OH) 2 and one or more selected from the group consisting of hydrates thereof Lithium secondary battery negative electrode active material Manufacturing method.
  13. 제9항에 있어서,The method of claim 9,
    상기 알칼리성 금속 화합물이, 표면에 비정질 SiO2를 포함하는 실리콘 나노입자 100중량부에 대하여 1 내지 10중량부로 사용되는 것인 리튬 이차전지용 음극활물질의 제조방법.The alkaline metal compound is a method for producing a negative electrode active material for a lithium secondary battery that is used in 1 to 10 parts by weight based on 100 parts by weight of silicon nanoparticles containing amorphous SiO 2 on the surface.
  14. 제9항에 있어서,The method of claim 9,
    상기 열처리가 비활성 분위기 하에 500℃ 내지 1000℃에서 실시되는 것인 리튬 이차전지용 음극활물질의 제조방법.The heat treatment is a method for producing a negative electrode active material for a lithium secondary battery that is carried out at 500 ℃ to 1000 ℃ under an inert atmosphere.
  15. 제9항에 있어서,The method of claim 9,
    상기 표면처리된 실리콘 나노입자의 제조 후, 상기 표면처리된 실리콘 나노입자의 표면처리층 상에 탄소계 음극활물질을 포함하는 코팅층을 더 형성하거나; 또는 탄소계 음극활물질과 혼합하여 상기 탄소계 음극활물질의 표면 상에 상기 표면처리된 실리콘 나노입자를 포함하는 코팅층을 형성하는 단계를 더 포함하는 리튬 이차전지용 음극활물질의 제조방법.After the preparation of the surface-treated silicon nanoparticles, further forming a coating layer including a carbon-based negative electrode active material on the surface treatment layer of the surface-treated silicon nanoparticles; Or mixing with a carbon-based negative electrode active material to form a coating layer including the surface-treated silicon nanoparticles on the surface of the carbon-based negative electrode active material.
  16. 제1항 내지 제8항 중 어느 한 항에 따른 음극활물질을 포함하는 리튬 이차전지용 음극. A negative electrode for a lithium secondary battery comprising the negative electrode active material according to any one of claims 1 to 8.
  17. 제16항에 따른 음극을 포함하는 리튬 이차전지.A lithium secondary battery comprising the negative electrode according to claim 16.
  18. 제17항에 따른 리튬 이차전지를 단위셀로 포함하는 전지모듈.A battery module comprising the lithium secondary battery according to claim 17 as a unit cell.
  19. 제18항에 따른 전지모듈을 포함하는 전지팩.A battery pack comprising the battery module according to claim 18.
  20. 제19항에 있어서,The method of claim 19,
    중대형 디바이스의 전원으로 사용되는 것인 전지팩.Battery pack that is used as a power source for medium and large devices.
  21. 제20항에 있어서,The method of claim 20,
    상기 중대형 디바이스가 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 것인 전지팩.The medium-to-large device is a battery pack that is selected from the group consisting of electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles and power storage systems.
PCT/KR2015/010400 2014-10-02 2015-10-01 Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same WO2016053031A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/515,398 US20170222222A1 (en) 2014-10-02 2015-10-01 Negative electrode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0133435 2014-10-02
KR20140133435 2014-10-02
KR10-2015-0137455 2015-09-30
KR1020150137455A KR101763478B1 (en) 2014-10-02 2015-09-30 Negative electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2016053031A1 true WO2016053031A1 (en) 2016-04-07

Family

ID=55630976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010400 WO2016053031A1 (en) 2014-10-02 2015-10-01 Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2016053031A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794331A (en) * 2019-11-13 2021-05-14 光宇材料股份有限公司 Method for manufacturing negative electrode material for secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030075132A (en) * 2002-05-17 2003-09-22 신에쓰 가가꾸 고교 가부시끼가이샤 Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
KR100589309B1 (en) * 2001-03-02 2006-06-14 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, lithium secondary battery comprising the same, and preparing method of negative active material for lithium secondary battery
KR100973633B1 (en) * 2002-11-26 2010-08-02 신에쓰 가가꾸 고교 가부시끼가이샤 Negative Electrode Material for Nonaqueous Electrolytic Secondary Battery and Process for Preparing the Same, and Lithium Ion Secondary Battery
KR20130118191A (en) * 2012-04-19 2013-10-29 주식회사 엘지화학 Silicon based negative active material and secondary battery comprising the same
WO2014095811A1 (en) * 2012-12-20 2014-06-26 Umicore Negative electrode material for a rechargeable battery and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100589309B1 (en) * 2001-03-02 2006-06-14 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, lithium secondary battery comprising the same, and preparing method of negative active material for lithium secondary battery
KR20030075132A (en) * 2002-05-17 2003-09-22 신에쓰 가가꾸 고교 가부시끼가이샤 Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
KR100973633B1 (en) * 2002-11-26 2010-08-02 신에쓰 가가꾸 고교 가부시끼가이샤 Negative Electrode Material for Nonaqueous Electrolytic Secondary Battery and Process for Preparing the Same, and Lithium Ion Secondary Battery
KR20130118191A (en) * 2012-04-19 2013-10-29 주식회사 엘지화학 Silicon based negative active material and secondary battery comprising the same
WO2014095811A1 (en) * 2012-12-20 2014-06-26 Umicore Negative electrode material for a rechargeable battery and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794331A (en) * 2019-11-13 2021-05-14 光宇材料股份有限公司 Method for manufacturing negative electrode material for secondary battery

Similar Documents

Publication Publication Date Title
WO2019151813A1 (en) Anode active material, anode comprising same, and lithium secondary battery
WO2019103460A1 (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
WO2014084679A1 (en) Anode active material, lithium secondary battery including same, and manufacturing method for anode active material
WO2019151834A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019151814A1 (en) Anode active material, anode comprising same, and lithium secondary battery
WO2016175597A1 (en) Cathode active material for secondary battery, preparation method therefor, and secondary battery comprising same
WO2016032240A1 (en) Negative electrode active material having double coating layers, method for preparing same, and lithium secondary battery comprising same
WO2015034229A1 (en) Transition metal-pyrophosphate anode active material, manufacturing method therefor, and lithium secondary battery or hybrid capacitor comprising same
KR101763478B1 (en) Negative electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
WO2016072649A1 (en) Conductive material manufacturing method, conductive material manufactured therefrom, and lithium secondary battery including same
WO2019098541A1 (en) Cathode active material for secondary battery, fabrication method therefor, and lithium secondary battery comprising same
WO2017095081A1 (en) Positive electrode active material for secondary battery, positive electrode, for secondary battery, comprising same, and secondary battery
WO2019017643A9 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019013511A2 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019151778A1 (en) Anode active material for lithium secondary battery, anode comprising same, and lithium ion secondary battery comprising same anode
WO2016053051A1 (en) Positive electrode active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
KR20220000299A (en) Method for preparing lithium oxide and lithium oxide manufactured through the method
WO2021153936A1 (en) Positive electrode active material for secondary battery and lithium secondary battery comprising same
WO2021112607A1 (en) Method for producing positive electrode material for secondary battery
WO2016053054A1 (en) Positive electrode active material for lithium secondary battery, preparation method for same, and lithium secondary battery comprising same
WO2019078626A1 (en) Method for preparing cathode active material for secondary battery and secondary battery using same
WO2019078506A2 (en) Method for preparing cathode active material for lithium secondary battery, cathode active material prepared thereby, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2019093869A2 (en) Method for manufacturing positive electrode active material for secondary battery
WO2019066585A1 (en) Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846878

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15515398

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846878

Country of ref document: EP

Kind code of ref document: A1