WO2016052807A1 - Method and device for manufacturing nanodiamonds - Google Patents

Method and device for manufacturing nanodiamonds Download PDF

Info

Publication number
WO2016052807A1
WO2016052807A1 PCT/KR2014/011521 KR2014011521W WO2016052807A1 WO 2016052807 A1 WO2016052807 A1 WO 2016052807A1 KR 2014011521 W KR2014011521 W KR 2014011521W WO 2016052807 A1 WO2016052807 A1 WO 2016052807A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
electrode
nano
nanodiamonds
nanodiamond
Prior art date
Application number
PCT/KR2014/011521
Other languages
French (fr)
Korean (ko)
Inventor
조주현
진윤식
김영배
임근희
하윤철
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2016052807A1 publication Critical patent/WO2016052807A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation

Definitions

  • the present invention relates to a method and apparatus for manufacturing nanodiamonds, and more particularly, to nanoparticles by colliding an impact wave caused by an electrical explosion with an acceleration force caused by electromagnetic force between a plurality of carbon materials or between a carbon material and a conductive material. It is possible to produce, and the resulting nanodiamonds relates to a nanodiamond manufacturing method and apparatus characterized in that the purification and dispersion is easy.
  • Diamond has the highest hardness among the existing materials, so it is excellent in abrasion resistance, and is an optimal material for machining high-hard surfaces.
  • natural diamond or nano diamond which is artificially synthesized under high temperature and high pressure is used.
  • Nano diamond is theoretically colorless and transparent, so that even if it is used as a coating agent or dispersed in a polymer or the like, its appearance cannot be detected.
  • the diamond has a high hardness, electrical insulation, excellent heat transfer properties and excellent chemical stability, so that various industrial applications, such as abrasives, heat-dissipating materials and drug-transfer materials are possible, and the research of these nanodiamonds is increasing.
  • the nanodiamond has a crystal structure in which the center is composed of sp 3 hybrid orbitals, and the surface has an sp 2 orbital structure. Therefore, the core retains the properties of the diamond, but the surface is highly reactive, allowing many atoms or molecules to bond to dangling bonds by chemical reactions. Their composition depends on how the nanodiamond is synthesized. . Chemical bonds present on the surface of the particles contribute to stabilizing the surface of the nanodiamond particles and may also attach various functional groups to the surface of the nanodiamonds through new chemical reactions.
  • Representative techniques for producing such a nanodiamond include high temperature and high pressure method, synthetic method using shock wave, chemical vapor deposition method, chemical explosion method, ultrasonic method, laser method and the like.
  • the chemical vapor deposition method uses a gas such as methane or hydrogen as a raw material, as in the prior art, 'Method for preparing nano-mechanical synthetic diamond material for manufacturing diamond tools for mirror processing', Korean Patent Laid-Open Publication No. 10-2006-0134515. And energy input for decomposition and synthesis under a high temperature and low pressure atmosphere.
  • the chemical explosion method detonates and purifies a carbon-containing explosive mixture having a negative oxygen balance in a gas medium inert to condensed carbon, such as 'Korean Patent Registration No. 10-1203835 Nano Diamond and a manufacturing method thereof'. To produce nanodiamonds.
  • the most commonly used method for producing nanodiamonds is a chemical explosion method using high temperature and high pressure.
  • a high temperature atmosphere can be easily formed, but there are many difficulties in forming a high pressure atmosphere.
  • the chamber is sealed for a high pressure atmosphere there is a problem that the chamber is broken by the pressure.
  • nanodiamonds since carbon materials other than nanodiamonds are tightly bonded to each other, purification through heat treatment and acid treatment is essential, and nanodiamond particles are solidly aggregated to prevent dispersion. It is very difficult and is an obstacle to industrial applications.
  • an object of the present invention is to generate nanodiamonds by colliding a shock wave due to an electrical explosion and an acceleration force caused by electromagnetic force between a plurality of carbon materials or between carbon materials and a conductive material, and the resulting nanodiamonds are purified and dispersed. It is to provide a method and apparatus for producing a nanodiamond, characterized in that easy.
  • Another object of the present invention is to provide a method and apparatus for producing nanodiamonds which are easy to separate pure nanodiamonds from carbonaceous residues and are dispersed without agglomeration.
  • the first member of the carbon material (Carbon material) is electrically connected between the electrode portion (Electrodes) in the chamber containing the liquid, and the electrical connection between the electrode portion (Electrodes) spaced apart from the first member Providing a second member of a carbon material or conductive material; And applying nano energy to the electrode unit to generate nanodiamonds through collision between the first member and the second member by an attractive force due to shock waves and electromagnetic forces caused by submerged electric explosion. It is achieved by a diamond manufacturing method.
  • the first member and the second member is preferably installed parallel to each other along the length.
  • the liquid is water (H 2 O) such that the graphite layer present on the surface of the nanodiamonds is converted into carbon dioxide (CO 2 ) in combination with oxygen in the plasma generated during the electrical explosion.
  • the carbon material may be graphite, graphene, activated carbon, soft carbon, hard carbon, carbon black, carbon nanotube, CNT), carbon nano fiber (CNF), modified carbon (Modified carbon), carbon composite material (Carbon composite) and a mixture thereof is preferably selected from the group consisting of, after the step of producing the nanodiamond,
  • the nanodiamond is preferably obtained through any one of classification, washing, filtration and precipitation using a magnet.
  • the electrode portion to which the first member is electrically connected, the electrode portion to which the second member is electrically connected is the same electrode portion, or the electrode portion to which the first member is electrically connected, and the second member is electrically connected.
  • the electrode parts connected to each other are preferably different electrode parts.
  • a plurality of second members may be installed on the first member, and the first member may be installed between the second members.
  • the object is to provide a first member of carbon material electrically connected between electrode parts in a chamber containing liquid, and a third member of carbon material spaced apart from the first member. Steps; Shock wave due to the submerged electric explosion generated by applying electricity to the first member is also achieved by the method of producing nanodiamonds comprising the step of generating nanodiamonds by colliding with the third carbon material.
  • the third member is preferably bulk graphite.
  • the above object also includes a chamber for storing a solvent; An electrode part disposed in the chamber and having a first connection part for electrically connecting the first member of the carbon material, and a second connection part spaced apart from the first connection part to electrically connect the second member of the carbon material or the conductive material Wow; A power supply unit applying electricity to the electrode unit; It is also achieved by the nano-diamond manufacturing apparatus comprising a control unit for controlling the power applied from the power supply unit to the electrode unit.
  • the control unit changes a current direction of the power applied from the power supply unit to the electrode unit
  • the electrode unit includes a first electrode unit to which the first member is electrically connected, and a second unit to which the second member is electrically connected.
  • the electrode unit is the same one electrode unit, or the electrode unit is separated from each other by a first electrode unit to which the first member is electrically connected, and a second electrode unit to which the second member is electrically connected.
  • a plurality of second connection parts to which the second member is connected may be installed to be spaced apart from a plurality of first connection parts to which the first member is connected, and a first connection part to which the first member is connected may be connected to the second member. It is preferable to be installed between the two connecting portions.
  • the configuration of the present invention described above it is possible to generate nanodiamonds by colliding the impact wave due to the electrical explosion and the acceleration collision caused by the electromagnetic force between the plurality of carbon materials or between the carbon material and the conductive material, the nanodiamonds produced
  • the effect of easy purification and dispersion can be obtained.
  • FIG 1 and 2 are views of the nanodiamond manufacturing apparatus according to the first embodiment
  • FIG. 3 is a view of the nano-diamond manufacturing apparatus according to the second embodiment
  • FIG. 5 is a flowchart of a nanodiamond manufacturing method according to an embodiment
  • FIG. 6 is a view showing a plasma state of the graphite rod
  • FIG. 7 is a view showing a state in which nanodiamonds are dispersed
  • 8a to 8e is a flow chart showing a collision process of the graphite rod
  • FIG. 8F is a graph showing a process of producing nanodiamonds according to a time variation of FIGS. 8A to 8E.
  • Figure 10a is a photograph showing the dispersion state of the nano diamond and graphite residues
  • Figure 10b is a photograph showing a nano diamond colloid after filtering on the filter paper
  • 10c is a photograph showing nanodiamonds filtered on filter paper
  • 11 and 12 are graphs showing Raman analysis of graphite and nanodiamonds
  • 13A and 13B are electron microscope (TEM) images of nanodiamonds.
  • the nanodiamond manufacturing apparatus 100 includes a chamber 110, an electrode unit 130 positioned in the chamber 110, and a power supply unit 150 for applying electricity to the electrode unit 130. And a control unit 170 for controlling the power applied from the power supply unit 150 to the electrode unit 130.
  • the chamber 110 is a liquid for collision of the first member 10 made of a carbon material, the second member 20 made of a carbon material or a conductive material which is installed to face the first member. (Liquid, 30) to store, the nano-diamond manufacturing is made in the chamber (110).
  • the electrode unit 130 includes a pair of electrodes 131 and is immersed in the liquid 30 stored in the chamber 110.
  • Each electrode 131 has a first connector 133 for electrically connecting the first member 10 and a second connector for electrically connecting the second member 20 spaced apart from the first connector 133. (135).
  • the first connection portion 133 and the second connection portion 135 may be any structure that can connect the electrode 131 and the first member 10 and the second member 20, the preferred structure is the insertion hole in the first And the second member (10, 20) may be inserted or made in various forms such as bolt-nut, thread, pin. Among them, the most preferred method is in the form of an insertion hole, as shown in FIG.
  • the electrode material of the electrode unit 130 is tungsten, stainless steel, titanium, copper, aluminum, iron, nickel, chromium, and chromium. Molybdenum (Molybdenum), Silver (Silver), Gold (Pold) It is preferably selected from the group consisting of platinum (Platinum) and mixtures thereof.
  • the electrode member 130 of the nanodiamond manufacturing apparatus 100 is inserted into each electrode 131 such that the first member 10 and the second member 20 are inserted.
  • Ball-shaped first and second connectors 133 and 135 are formed.
  • the first and second connectors 133 and 135 are formed at positions spaced apart from each other so that the attraction force by the electromagnetic force can be applied between the first member 10 and the second member 20.
  • the second member 20 has a plurality of second connectors 135 spaced apart from the first connector 133, and the plurality of second members 20 are spaced apart from the first member 10.
  • the first connector 133 may be formed between the second connector 135 so that the first member 10 may be installed between the plurality of second members 20.
  • power may be applied through contact between the electrode unit 130, the first member 10, and the second member 20 without separately providing the first and second connectors 133 and 135.
  • the power supply unit 150 for applying electricity to the electrode unit 130 is connected to the end of the electrode unit 130.
  • the control unit 170 is connected to the power supply unit 150, and the control unit 170 controls the capacity of electricity emitted from the power supply unit 150 and the switch 190 for performing and blocking the transfer of electricity. In addition, it is possible to adjust the direction in which electricity is supplied through the control unit 170.
  • the first member 10 and the second member 20 supported by one electrode unit 130 receive current in the same direction by the power supply unit 150.
  • the shock wave due to the electrical explosion in the liquid between the first member 10 and the second member 20 and the attraction force due to electromagnetic force This will cause a crash.
  • the electrode unit 230 according to the second embodiment of the present invention is provided with a first electrode unit 231 including a pair of electrodes to which the first member 10 is electrically connected, and a second member 20 electrically connected thereto.
  • the second electrode part 232 is formed of a pair of electrodes, and the first electrode part 231 and the second electrode part 232 are separated from each other and disposed in the chamber 210.
  • the power supply unit 250 is connected to the electrode unit 230 such that current flows in the same direction to the first electrode unit 231 and the second electrode unit 232.
  • FIG. 4 is a nanodiamond manufacturing apparatus 300 according to a third embodiment, in which a third member 40 made of a bulk carbon material is disposed below the chamber 310, and an electrode is formed on the third member 40.
  • the unit 330 is disposed.
  • the second member 20 When electricity is applied to the electrode unit 330 through the power supply unit 350, the second member 20 generates an electric explosion, and a shock wave is generated to generate nanodiamonds through collision with the lower third member 40.
  • the nanodiamond manufactured through the nanodiamond manufacturing apparatus 100 is made of the following steps. Nanodiamond manufacturing step will be described using the nanodiamond manufacturing apparatus 100 according to the first embodiment.
  • the first member 10 is graphite, graphene, activated carbon, soft carbon, hard carbon, carbon black, carbon nanotubes. Nano tube, CNT), carbon nano fibers (CNF), modified carbon (Modified carbon) and carbon composite material (Carbon composite) and is preferably selected from the group consisting of. In an embodiment of the manufacturing method, the first member is described as a graphite rod.
  • the second member is a carbon material or a conductive material.
  • the carbon material is a graphite rod
  • the conductive material is a metal rod made of a conductive metal such as copper (Cu), aluminum (Al), nickel (Ni), or the like.
  • the second member is also a graphite rod. That is, in the embodiment of the manufacturing method will be described a step of producing nanodiamond through a pair of graphite rods.
  • the pair of graphite rods are supported by the electrode unit 130 and immersed to be completely submerged into the liquid 30 present in the chamber 110.
  • the chamber 110 fills the liquid leaving a sufficient space to absorb the volume expansion therein.
  • 10L of the lower part is filled with a liquid
  • 10L of the upper part is left in an empty space so that the chamber 110 is not damaged by the expansion of the liquid 30 by the explosion.
  • the pair of graphite rods are installed in parallel to the same electrode unit 130 so as to receive current in the same direction, or are disposed to face different electrode units 230.
  • Graphite rods have a diameter and a length in a wire shape, and can be variously applied according to a scale for producing nanodiamonds.
  • the liquid 30 is composed of water (H 2 , H 2 O), distilled water (Distilled water), methanol (Methanol), ethanol (Ethanol), propanol (Propanol), isopropanol (Isopropanol), butanol (Butanol) and its It is preferable that it is 1 type selected from the mixture group, In addition, various organic solvents can be used. In addition, an acidic liquid for promoting the oxidation reaction may be further added. Among them, water (H 2 O) that is easily supplied with plasma oxygen is most preferable when the graphite layer is combined with oxygen in the plasma to be changed into carbon dioxide.
  • the power supply unit 150 Before applying electricity to the electrode unit 130, the power supply unit 150 is charged with a voltage of 20 kV while the high voltage high current switch is opened.
  • the nano-diamond is generated by applying electricity to the graphite rod supported by the electrode unit 130 (S2).
  • a high voltage of 1 to 100 kV is applied to the electrode unit 130 by using a high voltage high current switch connected to the power supply unit 150 in a state where charging is completed.
  • the switch When the switch is closed, current begins to flow through the electrode portion and the graphite rod.
  • the power supply unit 150 is a pulsed power (Pulsed power) technology by applying a high voltage instantaneously to flow a large current, and preferably has a capacity of 10 to 1000 kW. This current flows into the pair of graphite rods in half, and the attraction force by the currents in the same direction acts.
  • a plurality of graphite rods are attracted to each other by the attraction force by the electromagnetic force in addition to the generation of shock waves in the liquid (30).
  • the plurality of graphite rods, which are heated in the liquid 30, are accelerated and collided in the pulling direction by the Lorentz's force, and then the particle surface oxidation reaction by plasma occurs.
  • the graphite rod is generated with a pressure of 100,000 atmospheres or more, which allows phase change to nanodiamonds.
  • the force exerted by each graphite rod by the pulse current can be calculated by the following equation.
  • Equation 1 F 1 represents the force of the upper graphite rod, F 2 represents the force of the lower graphite rod.
  • the Lorentz force due to the rail-type structure mainly acts on the graphite rod at the top, and the graphite rod at the top is accelerated to the bottom by the attraction of the current and Lorentz's force, and the graphite rod at the bottom is attracted to the graphite rod on the top. Is accelerated upwards.
  • ⁇ 0 is the vacuum permeability
  • l is the length of the graphite rod between the electrodes 131
  • i is the current flowing through the graphite rod
  • d is the distance between the centers of the first member 10 and the second member 20
  • L ' Inductance per unit length of the electrode 131 is shown.
  • L ' is expressed as Equation 2 below.
  • Equation 2 L represents the inductance of the electrode 131.
  • Equations 1 and 2 as described above can maximize the yield of the nano-diamond by adjusting the capacity of the pulse power, the diameter of the graphite rod, the length of the graphite rod and the shape of the electrode 131 to the optimum conditions.
  • the graphite rod heated to a high temperature generates an explosion in which atoms change into a plasma state, and the shock wave caused by the explosion collides with the other graphite rod to form nanodiamonds 50.
  • two plasma columns collide with each other by the electromagnetic attraction between the two graphite rods, thereby creating a higher temperature and pressure, thereby promoting the production of the nanodiamond 50.
  • the effect of the collision makes the material present in the molten state at high temperature, high pressure to nanosize.
  • the attraction force disappears, but the Lorentz force becomes larger, and as shown in FIG. 7, the material is strongly dispersed in the liquid.
  • nanodiamond 50 particles When the nanodiamond 50 particles are generated, a graphite layer which is not reacted is surrounded on the surface of the nanodiamond, and the graphite layer on the surface of the particle is combined with oxygen in the plasma to change into carbon dioxide gas by the plasma state. Through this process, pure nanodiamonds 50 having no graphite layer on the surface are produced.
  • Nano diamond is obtained from the graphite residue (S3).
  • the nanodiamond 50 particles produced in an extreme ultra high pressure state of instantaneously 100,000 or more pressures are rapidly cooled by the liquid 30 and do not return to the graphite state, but are dispersed with the graphite residue in the liquid in the nanodiamond shape.
  • nanodiamond 50 When the nanodiamond 50 is produced in the liquid 30, not only the nanodiamond 50 but also graphite residues are present in the liquid 30. Thus, pure nanodiamonds 50 are obtained from the graphite residues in the liquid 30 using any one of Classification, Wash, Filtration and Precipitation or by any method.
  • the pure nanodiamond 50 may be obtained from the liquid and the graphite residue through a classification method using a permanent magnet or an electromagnet.
  • the produced pure nanodiamond 50 particles are in a highly dispersed state in which the individual particles are independently present, so that the dispersed or precipitated nanodiamond 50 can be purely separated from the graphite residue by simple filtration. Can be.
  • the manufacturing of the nanodiamond 50 may be represented by a graph over time as shown in FIG. 8.
  • 8A shows that the graphite rod is heated to a high temperature by a current, and the temperature of the graphite is considered to be heated to a temperature of 4000K or more.
  • the electromagnetic attraction due to the electric current in the same direction acts to accelerate the graphite rods closer to each other.
  • FIG. 8B shows a plasma generated by expansion of a graphite rod heated to a high temperature and a gas generated by a chemical reaction (C + 2O ⁇ CO 2 ) on the surface of the graphite rod and insulation breakdown generated through the gas layer. Sudden volume expansion occurs in the generated plasma, creating a strong shock wave of 100,000 atmospheres or more. The generated shock wave propagates to the surroundings and collides with the facing high temperature graphite bars, thereby converting the high temperature graphite to diamond.
  • C + 2O ⁇ CO 2 a chemical reaction
  • FIG. 8D shows that the acceleration force is maintained by the current flowing continuously even after the explosion collision, and the plasma state is also maintained to maintain dispersion and surface oxidation reaction of the generated nanoparticles.
  • This oxidation reaction serves to remove the graphite layer on the particle surface reduced from diamond to graphite due to the pressure drop. This process produces a highly dispersed nano diamond 50 that does not require heat treatment.
  • Such a nano diamond 50 manufacturing method is manufactured through the following embodiments.
  • the electrode part which is made of stainless steel (SUS) and has a pair of electrodes, is immersed.
  • a pair of graphite rods having a diameter of 2 mm and a length of 50 mm is disposed in the electrode portion.
  • the pair of graphite rods are spaced at intervals of 7 mm.
  • FIG. 8F shows a graph with time intervals and currents during the reaction of FIGS. 8A-8E.
  • a current of 100 kA is instantaneously flowing as shown in FIG. 8F, thereby heating the graphite rod above the melting point.
  • the heated graphite rods decrease in distance between the rods at a distance of 7 mm and finally collide by the attraction force due to electromagnetic force to generate nanodiamonds.
  • the time taken for the graphite rods to collide is 30 ms with a 0 mm spacing.
  • the speed of each graphite rod can be confirmed through FIG.
  • v1 represents the speed at which the upper graphite rod moves in the lower graphite rod direction
  • v2 represents the speed at which the lower graphite rod moves in the upper graphite rod direction.
  • FIG. 10A is a liquid containing nanodiamond and graphite residues
  • FIG. 10B is a nanodiamond colloid after filtering with a 1.0 ⁇ m filter paper
  • FIG. 10C is again collecting a liquid passing through the 1.0 ⁇ m filter paper into a 0.2 ⁇ m filter paper.
  • One nano diamond particle. The nanodiamond is thus filtered and dried to obtain pure nanodiamonds from which graphite residues are finally removed.
  • the nanodiamonds manufactured through the above example are Raman analysis data of FIG. 11, and are filtered using a raw material graphite rod (L1), particles precipitated in a liquid after the reaction (L2), and a filter paper having a thickness of 1.0 ⁇ m. (L3) and particle
  • the peak appearing around 1330 cm ⁇ 1 here is due to sp 3
  • graphite has a structure of sp 2 bonding in a two-dimensional shape
  • diamond has a structure of sp 3 bonding in a three-dimensional shape. Since the precipitated particles also show the same peak as the raw graphite rod, it can be confirmed that the precipitate is a graphite residue. In the case of particles collected on a 1.0 ⁇ m filter paper, a peak similar to that of precipitated particles was confirmed, indicating that most of graphite was present. On the other hand, the particles collected on the 0.2 ⁇ m filter paper can hardly see the peak in the 2700cm -1 region, it can be seen that only pure nanodiamonds were obtained.
  • the peak of the raw material graphite rod (L1) confirmed in Figure 11 and the prepared sample (L4) filtered on 0.2 ⁇ m filter paper can be confirmed more accurately through FIG.
  • the prepared sample was confirmed that the 2700cm -1 peak due to the graphite structure is almost disappeared, and also the ratio of sp 3 (D-band) / sp 2 (G-band) is about 1/4 of the raw graphite rod.
  • the sample filtered on the 0.2 ⁇ m filter paper increased the ratio to 1/1.
  • the graphite is collided by the attraction force of the electromagnetic force between the plurality of graphite, and the scanning electron microscope picture of FIG. 13A, the transmission electron microscope picture of FIG. 13B, Likewise, it is possible to produce nanodiamonds, and it is possible to simply manufacture nanodiamonds in a laboratory without using a conventional chemical explosion method.
  • the produced nanodiamonds are produced in a dispersed state without agglomeration, pure nanodiamonds can be obtained through purification by a simple method.
  • the post-treatment process is not complicated, and nanodiamonds can be pasted immediately, which greatly shortens and accelerates industrial applications.
  • the present invention can be applied not only to the production of nanodiamonds, but also to the fields of conventional nanopowder production and synthesis, and the like, and can be utilized to develop nanodiamond production methods using similar pulse power technology.
  • the present invention relates to a method and apparatus for manufacturing nanodiamonds, and more particularly, to nanoparticles by colliding an impact wave caused by an electrical explosion with an acceleration force caused by electromagnetic force between a plurality of carbon materials or between a carbon material and a conductive material. It is possible to produce, and the resulting nanodiamonds can be used in the field of nanodiamond manufacturing method and apparatus characterized in that the purification and dispersion is easy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method and device for manufacturing nanodiamonds, the method comprising the steps of: providing a first member, which is made of a carbon material, electrically connected between electrodes within a chamber having a liquid contained therein, and a second member, which is made of a carbon material or a conductive material, spaced apart from the first member and electrically connected between the electrodes; and applying electrical energy to the electrodes so as to produce nanodiamonds through a collision between the first and second members, which is caused by a shock wave due to electrical explosion in the liquid and attraction due to electromagnetic force. Therefore, the present invention can produce nanodiamonds by causing a plurality of carbon materials or a carbon material and a conductive material to collide with each other by an accelerated collision due to electromagnetic force therebetween and by a shock wave due to electrical explosion, and the so-produced nanodiamonds can be easily purified and dispersed. Further, the present invention can easily separate pure nanodiamonds from carbon residues and obtain nanodiamonds which are dispersed without agglomeration.

Description

나노 다이아몬드 제조방법 및 제조장치Nano diamond manufacturing method and apparatus
본 발명은 나노 다이아몬드 제조방법 및 제조장치에 관한 것으로, 더욱 상세하게는, 복수의 탄소재 간 또는 탄소재와 도전재 간의 전자기적인 힘에 의한 가속 충돌과 전기 폭발에 의한 충격파를 서로 충돌시켜 나노 다이아몬드를 생성가능하며, 생성된 나노 다이아몬드는 정제 및 분산이 용이한 것을 특징으로 하는 나노 다이아몬드 제조방법 및 제조장치에 관한 것이다.The present invention relates to a method and apparatus for manufacturing nanodiamonds, and more particularly, to nanoparticles by colliding an impact wave caused by an electrical explosion with an acceleration force caused by electromagnetic force between a plurality of carbon materials or between a carbon material and a conductive material. It is possible to produce, and the resulting nanodiamonds relates to a nanodiamond manufacturing method and apparatus characterized in that the purification and dispersion is easy.
다이아몬드(Diamond)는 현존하는 재료들 중에 가장 경도가 높아 내마모 특성이 우수하며, 고경면을 가공을 위해 적용되는 최적의 재료이다. 현재 천연 다이아몬드나 고온 고압 하에서 인공적으로 합성되는 나노 다이아몬드가 사용되고 있다. Diamond has the highest hardness among the existing materials, so it is excellent in abrasion resistance, and is an optimal material for machining high-hard surfaces. At present, natural diamond or nano diamond which is artificially synthesized under high temperature and high pressure is used.
나노 다이아몬드(Nano diamond)는 이론적으로는 무색 투명하여 코팅제로 사용하거나 폴리머 등에 분산되어도 외관상 그의 존재를 감지할 수 없다는 장점이 있다. 이뿐만 아니라 다이아몬드가 갖는 높은 경도, 전기절연성, 뛰어난 열전달 특성 및 뛰어난 화학적 안정성을 가지고 있어 연마제, 방열재료 및 약물전달물질 등에 다양한 산업적 응용이 가능하고 최근 이러한 나노 다이아몬드의 연구가 증가하고 있는 추세이다.Nano diamond is theoretically colorless and transparent, so that even if it is used as a coating agent or dispersed in a polymer or the like, its appearance cannot be detected. In addition, the diamond has a high hardness, electrical insulation, excellent heat transfer properties and excellent chemical stability, so that various industrial applications, such as abrasives, heat-dissipating materials and drug-transfer materials are possible, and the research of these nanodiamonds is increasing.
나노 다이아몬드는 중심부가 sp3 혼성괘도함수로 구성되는 결정 구조로, 표면은 sp2 오비탈 구조로 되어있다. 따라서 중심부는 다이아몬드의 특성을 그대로 유지하지만 표면은 반응성이 강하여 단글링 본드(Dangling bond)에 여러 원자나 분자가 화학 반응에 의하여 결합될 수 있는데 이들의 조성은 나노 다이아몬드를 어떤 방법으로 합성하느냐에 따라 달라진다. 입자의 표면에 존재하는 화학 결합들이 나노 다이아몬드 입자의 표면을 안정화시키는데 기여하고 또한 새로운 화학 반응을 통하여 다양한 관능기(Functional group)를 나노 다이아몬드의 표면에 부착시킬 수도 있다.The nanodiamond has a crystal structure in which the center is composed of sp 3 hybrid orbitals, and the surface has an sp 2 orbital structure. Therefore, the core retains the properties of the diamond, but the surface is highly reactive, allowing many atoms or molecules to bond to dangling bonds by chemical reactions. Their composition depends on how the nanodiamond is synthesized. . Chemical bonds present on the surface of the particles contribute to stabilizing the surface of the nanodiamond particles and may also attach various functional groups to the surface of the nanodiamonds through new chemical reactions.
이러한 나노 다이아몬드를 제조하는 대표적인 기술로는 고온고압법, 충격파를 이용한 합성법, 화학증착법, 화학폭발법, 초음파법, 레이저법 등이 있다. 그 중 화학증착법은 종래기술 '대한민국특허청 공개특허공보 공개번호 제10-2006-0134515호 경면 가공용 다이아몬드 공구제조를 위한 나노기상화학합성 다이아몬드 소재의 제조방법'과 같이 메탄 또는 수소와 같은 기체를 원료로 하고, 고온 및 저압 분위기 하에서 분해 및 합성에 필요한 에너지를 투입하는 기술이다. 또한 화학폭발법은 '대한민국특허청 등록특허공보 등록번호 제10-1203835호 나노 다이아몬드 및 그 제조방법'와 같이 응축상 탄소에 비활성인 기체 매질에서 음의 산소 밸런스의 탄소포함 폭약 혼합물을 폭연하고 이를 정제하여 나노 다이아몬드를 제조한다.Representative techniques for producing such a nanodiamond include high temperature and high pressure method, synthetic method using shock wave, chemical vapor deposition method, chemical explosion method, ultrasonic method, laser method and the like. Among them, the chemical vapor deposition method uses a gas such as methane or hydrogen as a raw material, as in the prior art, 'Method for preparing nano-mechanical synthetic diamond material for manufacturing diamond tools for mirror processing', Korean Patent Laid-Open Publication No. 10-2006-0134515. And energy input for decomposition and synthesis under a high temperature and low pressure atmosphere. In addition, the chemical explosion method detonates and purifies a carbon-containing explosive mixture having a negative oxygen balance in a gas medium inert to condensed carbon, such as 'Korean Patent Registration No. 10-1203835 Nano Diamond and a manufacturing method thereof'. To produce nanodiamonds.
이와 같이 일반적으로 가장 많이 사용되는 나노 다이아몬드 제조 방법은 고온 및 고압을 이용한 화학폭발법(Detonation)으로, 일반 실험실에서는 고온 분위기는 용이하게 형성이 가능하나 고압 분위기를 형성하는 데는 많은 어려움이 있었다. 특히, 고압 분위기를 위해 챔버를 밀폐시킬 경우 압력에 의해 챔버가 깨져버리는 문제점이 있었다. 또한 이와 같은 화학폭발법을 이용하여 나노 다이아몬드를 제조할 경우 나노 다이아몬드 이외의 카본 물질이 서로 단단하게 결합되어 있어 열처리와 산처리를 통한 정제가 필수적이고, 나노 다이아몬드 입자들이 단단하게 응집되어 있어 분산이 매우 어려워 산업 응용에 걸림돌이 되고 있다.As such, the most commonly used method for producing nanodiamonds is a chemical explosion method using high temperature and high pressure. In a general laboratory, a high temperature atmosphere can be easily formed, but there are many difficulties in forming a high pressure atmosphere. In particular, when the chamber is sealed for a high pressure atmosphere there is a problem that the chamber is broken by the pressure. In addition, when manufacturing nanodiamonds using such chemical explosion method, since carbon materials other than nanodiamonds are tightly bonded to each other, purification through heat treatment and acid treatment is essential, and nanodiamond particles are solidly aggregated to prevent dispersion. It is very difficult and is an obstacle to industrial applications.
따라서 본 발명의 목적은 복수의 탄소재 간 또는 탄소재와 도전재 간의 전자기적인 힘에 의한 가속 충돌과 전기폭발에 의한 충격파를 서로 충돌시켜 나노 다이아몬드를 생성가능하며, 생성된 나노 다이아몬드는 정제 및 분산이 용이한 것을 특징으로 하는 나노 다이아몬드 제조방법 및 제조장치를 제공하는 것이다.Accordingly, an object of the present invention is to generate nanodiamonds by colliding a shock wave due to an electrical explosion and an acceleration force caused by electromagnetic force between a plurality of carbon materials or between carbon materials and a conductive material, and the resulting nanodiamonds are purified and dispersed. It is to provide a method and apparatus for producing a nanodiamond, characterized in that easy.
본 발명의 다른 목적은 탄소재 잔여물로부터 순수한 나노 다이아몬드를 분리하기 용이하며, 서로 뭉치지 않고 분산된 나노 다이아몬드 제조방법 및 제조장치를 제공하는 것이다.Another object of the present invention is to provide a method and apparatus for producing nanodiamonds which are easy to separate pure nanodiamonds from carbonaceous residues and are dispersed without agglomeration.
상기한 목적은, 액체가 담긴 챔버 내의 전극부(Electrodes) 사이에 전기적으로 연결되는 탄소재(Carbon material)의 제1부재와, 상기 제1부재에 이격되어 전극부(Electrodes) 사이에 전기적으로 연결되는 탄소재 또는 도전재(Conductive material)의 제2부재를 제공하는 단계와; 상기 전극부에 전기 에너지를 인가하여 액중 전기폭발에 의한 충격파 및 전자기적 힘에 의한 인력으로 상기 제1부재와 상기 제2부재 간의 충돌을 통해 나노 다이아몬드를 생성하는 단계를 포함하는 것을 특징으로 하는 나노 다이아몬드 제조방법에 의해 달성된다.The above object is, the first member of the carbon material (Carbon material) is electrically connected between the electrode portion (Electrodes) in the chamber containing the liquid, and the electrical connection between the electrode portion (Electrodes) spaced apart from the first member Providing a second member of a carbon material or conductive material; And applying nano energy to the electrode unit to generate nanodiamonds through collision between the first member and the second member by an attractive force due to shock waves and electromagnetic forces caused by submerged electric explosion. It is achieved by a diamond manufacturing method.
상기 제1부재 및 상기 제2부재는 길이를 따라 서로 평행하게 설치되는 것이 바람직하다.The first member and the second member is preferably installed parallel to each other along the length.
여기서, 상기 나노 다이아몬드 표면에 존재하는 흑연층은 전기 폭발시 발생된 플라즈마 중의 산소와 결합하여 이산화탄소(CO2)로 변화되도록 상기 액체는 물(H2O)인 것이 바람직하다.Here, it is preferable that the liquid is water (H 2 O) such that the graphite layer present on the surface of the nanodiamonds is converted into carbon dioxide (CO 2 ) in combination with oxygen in the plasma generated during the electrical explosion.
상기 탄소재는, 흑연(Graphite), 그래핀(Graphene), 활성탄(Activated carbon), 소프트카본(Soft carbon), 하드카본(Hard carbon), 카본블랙(Carbon black), 탄소나노튜브(Carbon nano tube, CNT), 탄소나노섬유(Carbon nano fiber, CNF), 변형탄소(Modified carbon), 탄소복합소재(Carbon composite) 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하며, 상기 나노 다이아몬드를 생성하는 단계 이후에, 상기 나노 다이아몬드는 자석을 이용한 분급(Classification), 세척(Wash), 여과(Fiteration) 및 침전(Precipitation) 중 어느 하나를 통해 획득하는 것이 바람직하다.The carbon material may be graphite, graphene, activated carbon, soft carbon, hard carbon, carbon black, carbon nanotube, CNT), carbon nano fiber (CNF), modified carbon (Modified carbon), carbon composite material (Carbon composite) and a mixture thereof is preferably selected from the group consisting of, after the step of producing the nanodiamond, The nanodiamond is preferably obtained through any one of classification, washing, filtration and precipitation using a magnet.
여기서, 상기 제1부재가 전기적으로 연결되는 전극부와, 상기 제2부재가 전기적으로 연결되는 전극부는 동일한 전극부이거나, 상기 제1부재가 전기적으로 연결되는 전극부와, 상기 제2부재가 전기적으로 연결되는 전극부는 서로 다른 전극부인 것이 바람직하다.Here, the electrode portion to which the first member is electrically connected, the electrode portion to which the second member is electrically connected is the same electrode portion, or the electrode portion to which the first member is electrically connected, and the second member is electrically connected. The electrode parts connected to each other are preferably different electrode parts.
상기 제2부재는 상기 제1부재에 복수 개가 이격되게 설치될 수 있으며, 상기 제1부재는 상기 제2부재의 사이에 설치되는 것이 바람직하다.A plurality of second members may be installed on the first member, and the first member may be installed between the second members.
상기 목적은, 액체가 담긴 챔버 내의 전극부(Electrodes) 사이에 전기적으로 연결되는 탄소재(Carbon material)의 제1부재와, 상기 제1부재로부터 이격되게 설치되는 탄소재의 제3부재를 제공하는 단계와; 상기 제1부재에 전기를 인가하여 발생하는 액중 전기폭발에 의한 충격파가 제3탄소재와 충돌하여 나노 다이아몬드를 생성하는 단계를 포함하는 것을 특징으로 하는 나노 다이아몬드 제조방법에 의해서도 달성된다.The object is to provide a first member of carbon material electrically connected between electrode parts in a chamber containing liquid, and a third member of carbon material spaced apart from the first member. Steps; Shock wave due to the submerged electric explosion generated by applying electricity to the first member is also achieved by the method of producing nanodiamonds comprising the step of generating nanodiamonds by colliding with the third carbon material.
여기서, 상기 제3부재는 벌크 흑연(Bulk graphite)인 것이 바람직하다.Here, the third member is preferably bulk graphite.
상기한 목적은 또한, 용매를 저장하는 챔버와; 상기 챔버 내에 위치하며 탄소재의 제1부재를 전기적으로 연결하기 위한 제1연결부와, 상기 제1연결부와 이격되어 탄소재 또는 도전재의 제2부재를 전기적으로 연결하기 위한 제2연결부를 갖는 전극부와; 상기 전극부에 전기를 인가하는 전원부와; 상기 전원부에서 상기 전극부로 인가되는 전원을 제어하는 제어부를 포함하는 것을 특징으로 하는 나노 다이아몬드 제조장치에 의해서도 달성된다.The above object also includes a chamber for storing a solvent; An electrode part disposed in the chamber and having a first connection part for electrically connecting the first member of the carbon material, and a second connection part spaced apart from the first connection part to electrically connect the second member of the carbon material or the conductive material Wow; A power supply unit applying electricity to the electrode unit; It is also achieved by the nano-diamond manufacturing apparatus comprising a control unit for controlling the power applied from the power supply unit to the electrode unit.
여기서, 상기 제어부는 상기 전원부에서 상기 전극부로 인가되는 전원의 전류 방향을 변경하며, 상기 전극부는 상기 제1부재가 전기적으로 연결되는 제1전극부와, 상기 제2부재가 전기적으로 연결되는 제2전극부로 동일한 하나의 전극부이거나, 상기 전극부는 상기 제1부재가 전기적으로 연결되는 제1전극부와, 상기 제2부재가 전기적으로 연결되는 제2전극부로 서로 분리되어 있는 것이 바람직하다.Herein, the control unit changes a current direction of the power applied from the power supply unit to the electrode unit, and the electrode unit includes a first electrode unit to which the first member is electrically connected, and a second unit to which the second member is electrically connected. Preferably, the electrode unit is the same one electrode unit, or the electrode unit is separated from each other by a first electrode unit to which the first member is electrically connected, and a second electrode unit to which the second member is electrically connected.
또한, 상기 제2부재가 연결되는 제2연결부는 상기 제1부재가 연결되는 제1연결부에 복수 개가 이격되게 설치되며, 상기 제1부재가 연결되는 제1연결부는 상기 제2부재가 연결되는 제2연결부 사이에 설치되는 것이 바람직하다.In addition, a plurality of second connection parts to which the second member is connected may be installed to be spaced apart from a plurality of first connection parts to which the first member is connected, and a first connection part to which the first member is connected may be connected to the second member. It is preferable to be installed between the two connecting portions.
상술한 본 발명의 구성에 따르면, 복수의 탄소재 간 또는 탄소재와 도전재 간의 전자기적인 힘에 의한 가속 충돌과 전기폭발에 의한 충격파를 서로 충돌시켜 나노 다이아몬드를 생성가능하며, 생성된 나노 다이아몬드는 정제 및 분산이 용이한 효과를 얻을 수 있다.According to the configuration of the present invention described above, it is possible to generate nanodiamonds by colliding the impact wave due to the electrical explosion and the acceleration collision caused by the electromagnetic force between the plurality of carbon materials or between the carbon material and the conductive material, the nanodiamonds produced The effect of easy purification and dispersion can be obtained.
또한, 탄소재 잔여물로부터 순수한 나노 다이아몬드를 분리하기 용이하며, 서로 뭉치지 않고 분산된 나노 다이아몬드를 얻을 수 있다.In addition, it is easy to separate the pure nanodiamond from the carbonaceous residue, it is possible to obtain a nanodiamond dispersed without agglomeration with each other.
도 1 및 2는 제1실시예에 따른 나노 다이아몬드 제조장치의 도면이고,1 and 2 are views of the nanodiamond manufacturing apparatus according to the first embodiment,
도 3은 제2실시예에 따른 나노 다이아몬드 제조장치의 도면이고,3 is a view of the nano-diamond manufacturing apparatus according to the second embodiment,
도 4는 제3실시예에 따른 나노 다이아몬드 제조장치의 도면이고,4 is a view of the nano-diamond manufacturing apparatus according to the third embodiment,
도 5는 실시예에 따른 나노 다이아몬드 제조방법의 순서도이고,5 is a flowchart of a nanodiamond manufacturing method according to an embodiment,
도 6은 흑연봉의 플라즈마 상태를 나타낸 도면이고,6 is a view showing a plasma state of the graphite rod,
도 7은 나노 다이아몬드가 분산되는 상태를 나타낸 도면이고,7 is a view showing a state in which nanodiamonds are dispersed,
도 8a 내지 8e는 흑연봉의 충돌 과정을 나타낸 순서도이고,8a to 8e is a flow chart showing a collision process of the graphite rod,
도 8f는 도 8a 내지 8e의 시간적 변화에 따른 나노 다이아몬드 생성 과정의 그래프이고,FIG. 8F is a graph showing a process of producing nanodiamonds according to a time variation of FIGS. 8A to 8E.
도 9는 전류의 시간적 변화에 따른 각각 흑연봉의 속도를 나타낸 그래프이고,9 is a graph showing the speed of each graphite rod according to the time change of the current,
도 10a는 나노 다이아몬드 및 흑연 잔여물의 분산상태를 나타낸 사진이고,Figure 10a is a photograph showing the dispersion state of the nano diamond and graphite residues,
도 10b는 여과지에 거른 후 나노 다이아몬드 콜로이드를 나타낸 사진이고,Figure 10b is a photograph showing a nano diamond colloid after filtering on the filter paper,
도 10c는 여과지 위에 걸러진 나노다이아몬드를 나타낸 사진이고,10c is a photograph showing nanodiamonds filtered on filter paper;
도 11 및 도 12는 흑연 및 나노 다이아몬드의 라만 분석을 나타낸 그래프이고,11 and 12 are graphs showing Raman analysis of graphite and nanodiamonds,
도 13a 및 도 13b는 나노 다이아몬드의 전자현미경(TEM) 사진이다.13A and 13B are electron microscope (TEM) images of nanodiamonds.
이하 도면을 참조하여 본 발명의 실시예에 따른 나노 다이아몬드 제조방법 및 제조장치를 상세히 설명한다.Hereinafter, a method and apparatus for manufacturing nanodiamonds according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
먼저, 도 1에 도시된 바와 같이 나노 다이아몬드 제조장치(100)는 챔버(110)와, 챔버(110)에 위치하는 전극부(130)와, 전극부(130)에 전기를 인가하는 전원부(150)와, 전원부(150)에서 전극부(130)로 인가되는 전원을 제어하는 제어부(170)로 이루어진다.First, as shown in FIG. 1, the nanodiamond manufacturing apparatus 100 includes a chamber 110, an electrode unit 130 positioned in the chamber 110, and a power supply unit 150 for applying electricity to the electrode unit 130. And a control unit 170 for controlling the power applied from the power supply unit 150 to the electrode unit 130.
챔버(110)는 탄소재(Carbon material)로 이루어진 제1부재(10), 제1부재에 대향되게 설치되는 탄소재 또는 도전재(conductive material)로 이루어진 제2부재(20)의 충돌을 위한 액체(Liquid, 30)를 저장하는 역할을 하며, 나노 다이아몬드제조는 챔버(110) 내에서 이루어진다.The chamber 110 is a liquid for collision of the first member 10 made of a carbon material, the second member 20 made of a carbon material or a conductive material which is installed to face the first member. (Liquid, 30) to store, the nano-diamond manufacturing is made in the chamber (110).
전극부(130)는 한 쌍의 전극(131)으로 이루어지며 챔버(110)에 저장된 액체(30)에 침지된다. 각 전극(131)은 제1부재(10)를 전기적으로 연결하기 위한 제1연결부(133)와, 제1연결부(133)와 이격되어 제2부재(20)를 전기적으로 연결하기 위한 제2연결부(135)를 포함한다. 제1연결부(133) 및 제2연결부(135)는 전극(131)과 제1부재(10) 및 제2부재(20)를 연결가능한 구조면 어느 것이든 가능한데, 바람직한 구조는 삽입공에 제1 및 제2부재(10, 20)를 삽입하거나 볼트-너트, 나사산, 핀 등 다양한 형태로 이루어질 수 있다. 이 중 가장 바람직한 방식은 도 1에 도시된 바와 같이 삽입공 형태로, 본 발명에서 제1 및 제2연결부(133, 135)는 삽입공 형태로 설명한다. The electrode unit 130 includes a pair of electrodes 131 and is immersed in the liquid 30 stored in the chamber 110. Each electrode 131 has a first connector 133 for electrically connecting the first member 10 and a second connector for electrically connecting the second member 20 spaced apart from the first connector 133. (135). The first connection portion 133 and the second connection portion 135 may be any structure that can connect the electrode 131 and the first member 10 and the second member 20, the preferred structure is the insertion hole in the first And the second member (10, 20) may be inserted or made in various forms such as bolt-nut, thread, pin. Among them, the most preferred method is in the form of an insertion hole, as shown in FIG.
전극부(130)의 전극 소재는 텅스텐(Tungsten), 스테인레스스틸(Stainless steel), 티타늄(Titanum), 구리(Copper), 알루미늄(Aluminum), 철(Iron), 니켈(Nickel), 크로뮴(Chromium), 몰리브덴(Molybdenum), 은(Silver), 금(Gold), 백금(Platinum) 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다.The electrode material of the electrode unit 130 is tungsten, stainless steel, titanium, copper, aluminum, iron, nickel, chromium, and chromium. Molybdenum (Molybdenum), Silver (Silver), Gold (Pold) It is preferably selected from the group consisting of platinum (Platinum) and mixtures thereof.
도 1에 도시된 바와 같이 제 1실시예에 따른 나노 다이아몬드 제조장치(100)의 전극부(130)에는 제1부재(10) 및 제2부재(20)가 삽입되도록 각 전극(131)에 삽입공 형태의 제1 및 제2연결부(133, 135)가 형성된다. 제1 및 제2연결부(133, 135)는 제1부재(10) 및 제2부재(20) 간에 전자기적 힘에 의한 인력이 작용가능하도록 이격된 위치에 형성된다. 경우에 따라서 제2부재(20)는 도 2에 도시된 바와 같이 제2연결부(135)가 제1연결부(133)에 복수 개가 이격되어 제2부재는 제1부재(10)에 복수 개가 이격되게 설치될 수도 있으며, 상세하게는 제1연결부(133)는 제2연결부(135) 사이에 형성되어 제1부재(10)가 복수의 제2부재(20) 사이에 설치될 수 있다. 또한 전극부에 제1 및 제2연결부(133, 135)를 따로 마련하지 않고 전극부(130)와 제1부재(10) 및 제2부재(20)의 접촉을 통해 전원을 인가할 수도 있다.As shown in FIG. 1, the electrode member 130 of the nanodiamond manufacturing apparatus 100 according to the first embodiment is inserted into each electrode 131 such that the first member 10 and the second member 20 are inserted. Ball-shaped first and second connectors 133 and 135 are formed. The first and second connectors 133 and 135 are formed at positions spaced apart from each other so that the attraction force by the electromagnetic force can be applied between the first member 10 and the second member 20. In some cases, as shown in FIG. 2, the second member 20 has a plurality of second connectors 135 spaced apart from the first connector 133, and the plurality of second members 20 are spaced apart from the first member 10. In detail, the first connector 133 may be formed between the second connector 135 so that the first member 10 may be installed between the plurality of second members 20. In addition, power may be applied through contact between the electrode unit 130, the first member 10, and the second member 20 without separately providing the first and second connectors 133 and 135.
전극부(130)의 말단에는 전극부(130)에 전기를 인가하는 전원부(150)가 연결된다. 또한 전원부(150)에는 제어부(170)가 연결되어 있으며, 제어부(170)에 의해 전원부(150)에서 방출되는 전기의 용량과 전기의 전달을 수행 및 차단하는 스위치(190)가 조절된다. 뿐만 아니라 제어부(170)를 통해 전기가 공급되는 방향을 조절 가능하다.The power supply unit 150 for applying electricity to the electrode unit 130 is connected to the end of the electrode unit 130. In addition, the control unit 170 is connected to the power supply unit 150, and the control unit 170 controls the capacity of electricity emitted from the power supply unit 150 and the switch 190 for performing and blocking the transfer of electricity. In addition, it is possible to adjust the direction in which electricity is supplied through the control unit 170.
하나의 전극부(130)에 지지된 제1부재(10) 및 제2부재(20)는 전원부(150)에 의해 동일한 방향의 전류를 인가받는다. 제1부재(10) 및 제2부재(20)에 동일한 방향의 전류가 인가되면 제1부재(10) 및 제2부재(20) 간 액 중 전기폭발에 의한 충격파와, 전자기적 힘에 의한 인력이 발생하여 충돌이 일어나게 된다.The first member 10 and the second member 20 supported by one electrode unit 130 receive current in the same direction by the power supply unit 150. When the current in the same direction is applied to the first member 10 and the second member 20, the shock wave due to the electrical explosion in the liquid between the first member 10 and the second member 20, and the attraction force due to electromagnetic force This will cause a crash.
도 3은 제 2실시예에 따른 나노 다이아몬드 제조장치(200)로 챔버(210) 및 전원부(250)는 제 1실시예와 동일하나 전극부(230)에 있어서는 차이가 있다. 제 2실시예에 따른 전극부(230)는 제1부재(10)가 전기적으로 연결되는 한 쌍의 전극으로 이루어진 제1전극부(231)와, 제2부재(20)가 전기적으로 연결되는 한 쌍의 전극으로 이루어진 제2전극부(232)를 포함하며, 제1전극부(231)와 제2전극부(232)는 서로 분리되어 챔버(210) 내에 배치된다. 서로 이격된 제1전극부(231) 및 제2전극부(232)는 제1부재(10) 및 제2부재(20)가 각각 따로 배치되며, 전자기적 인력이 발생할 수 있을 정도로 제1부재(10) 및 제2부재(20)가 서로 평행하게 이격 배치된다. 이때 전원부(250)는 제1전극부(231) 및 제2전극부(232)에 동일한 방향으로 전류가 흐르도록 전극부(230)에 연결된다.3 is a nanodiamond manufacturing apparatus 200 according to the second embodiment, the chamber 210 and the power supply unit 250 are the same as the first embodiment, but there is a difference in the electrode unit 230. The electrode unit 230 according to the second embodiment of the present invention is provided with a first electrode unit 231 including a pair of electrodes to which the first member 10 is electrically connected, and a second member 20 electrically connected thereto. The second electrode part 232 is formed of a pair of electrodes, and the first electrode part 231 and the second electrode part 232 are separated from each other and disposed in the chamber 210. The first electrode part 231 and the second electrode part 232 spaced apart from each other, the first member 10 and the second member 20 are disposed separately, and the first member ( 10) and the second member 20 are spaced apart in parallel to each other. In this case, the power supply unit 250 is connected to the electrode unit 230 such that current flows in the same direction to the first electrode unit 231 and the second electrode unit 232.
도 4는 제 3실시예에 따른 나노 다이아몬드 제조장치(300)로, 챔버(310)의 하부에 벌크 탄소재로 이루어진 제3부재(40)를 배치하고, 제3부재(40)의 상부에 전극부(330)를 배치한다. 전원부(350)를 통해 전극부(330)에 전기를 인가하게 되면 제2부재(20)가 전기 폭발을 일으켜 충격파가 발생하여 하부의 제3부재(40)와 충돌을 통해 나노 다이아몬드가 생성된다.FIG. 4 is a nanodiamond manufacturing apparatus 300 according to a third embodiment, in which a third member 40 made of a bulk carbon material is disposed below the chamber 310, and an electrode is formed on the third member 40. The unit 330 is disposed. When electricity is applied to the electrode unit 330 through the power supply unit 350, the second member 20 generates an electric explosion, and a shock wave is generated to generate nanodiamonds through collision with the lower third member 40.
이와 같은 나노 다이아몬드 제조장치(100)를 통해 제조되는 나노 다이아몬드는 다음과 같은 단계로 이루어진다. 나노 다이아몬드 제조단계는 제1실시예에 따른 나노 다이아몬드 제조장치(100)를 이용하여 설명한다. The nanodiamond manufactured through the nanodiamond manufacturing apparatus 100 is made of the following steps. Nanodiamond manufacturing step will be described using the nanodiamond manufacturing apparatus 100 according to the first embodiment.
제1부재(10)는 흑연(Graphite), 그래핀(Graphene), 활성탄(Activated carbon), 소프트카본(Soft carbon), 하드카본(Hard carbon), 카본블랙(Carbon black), 탄소나노튜브(Carbon nano tube, CNT), 탄소나노섬유(Carbon nano fiber, CNF), 변형탄소(Modified carbon) 및 탄소복합소재(Carbon composite) 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하다. 제조방법의 실시예에서는 제1부재는 흑연봉으로 설명한다.The first member 10 is graphite, graphene, activated carbon, soft carbon, hard carbon, carbon black, carbon nanotubes. Nano tube, CNT), carbon nano fibers (CNF), modified carbon (Modified carbon) and carbon composite material (Carbon composite) and is preferably selected from the group consisting of. In an embodiment of the manufacturing method, the first member is described as a graphite rod.
제2부재는 탄소재 또는 도전재이며, 바람직하게는 탄소재는 흑연봉, 도전재는 구리(Cu), 알루미늄(Al), 니켈(Ni) 등과 같은 도전금속으로 이루어진 금속봉이다. 하기의 실시예에서는 제2부재 또한 흑연봉인 것을 설명한다. 즉, 제조방법의 실시예에서는 한 쌍의 흑연봉을 통해 나노 다이아몬드를 제조하는 단계를 설명한다.The second member is a carbon material or a conductive material. Preferably, the carbon material is a graphite rod, and the conductive material is a metal rod made of a conductive metal such as copper (Cu), aluminum (Al), nickel (Ni), or the like. In the following examples it will be described that the second member is also a graphite rod. That is, in the embodiment of the manufacturing method will be described a step of producing nanodiamond through a pair of graphite rods.
도 5에 도시된 바와 같이 먼저, 한 쌍의 흑연봉을 액체(30)에 침지한다(S1).First, as shown in FIG. 5, a pair of graphite rods are immersed in the liquid 30 (S1).
한 쌍의 흑연봉은 전극부(130)에 지지되어 챔버(110)에 존재하는 액체(30) 내로 완전히 잠기도록 침지된다. 챔버(110)는 내부에 부피팽창을 흡수할 수 있는 충분한 공간을 남기고 액체를 채운다. 예를 들어 20L 챔버(110)의 경우 하부의 10L를 액체로 채우고, 상부의 10L는 빈 공간으로 두어 폭발에 의한 액체(30)의 팽창에 의해서 챔버(110)가 파손되지 않도록 한다.The pair of graphite rods are supported by the electrode unit 130 and immersed to be completely submerged into the liquid 30 present in the chamber 110. The chamber 110 fills the liquid leaving a sufficient space to absorb the volume expansion therein. For example, in the case of the 20L chamber 110, 10L of the lower part is filled with a liquid, and 10L of the upper part is left in an empty space so that the chamber 110 is not damaged by the expansion of the liquid 30 by the explosion.
한 쌍의 흑연봉은 동일한 방향의 전류를 받을 수 있도록 동일한 전극부(130)에 병렬로 설치되거나, 상이한 전극부(230)에 대향되도록 배치된다. 흑연봉은 와이어(Wire) 형상으로 직경 및 길이를 가지며, 나노 다이아몬드를 제조하는 스케일에 따라 다양하게 적용 가능하다.The pair of graphite rods are installed in parallel to the same electrode unit 130 so as to receive current in the same direction, or are disposed to face different electrode units 230. Graphite rods have a diameter and a length in a wire shape, and can be variously applied according to a scale for producing nanodiamonds.
여기서 액체(30)은 물(Water, H2O), 증류수(Distilled water), 메탄올(Methanol), 에탄올(Ethanol), 프로판올(Propanol), 이소프로판올(Isopropanol), 부탄올(Butanol)로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하며, 이 이외에도 다양한 유기용매를 사용 가능하다. 뿐만 아니라 산화반응을 촉진시키기 위한 산성액을 추가로 첨가시킬 수도 있다. 이 중 추후에 흑연층이 플라즈마 중의 산소와 결합하여 이산화탄소로 변화될 때 플라즈마 산소의 공급이 용이한 물(H2O)이 가장 바람직하다.The liquid 30 is composed of water (H 2 , H 2 O), distilled water (Distilled water), methanol (Methanol), ethanol (Ethanol), propanol (Propanol), isopropanol (Isopropanol), butanol (Butanol) and its It is preferable that it is 1 type selected from the mixture group, In addition, various organic solvents can be used. In addition, an acidic liquid for promoting the oxidation reaction may be further added. Among them, water (H 2 O) that is easily supplied with plasma oxygen is most preferable when the graphite layer is combined with oxygen in the plasma to be changed into carbon dioxide.
전극부(130)에 전기를 인가하기 전에는 고전압 대전류 스위치를 오픈한 상태에서 전원부(150)에 20kV의 전압으로 충전한다.Before applying electricity to the electrode unit 130, the power supply unit 150 is charged with a voltage of 20 kV while the high voltage high current switch is opened.
전극부(130)에 지지된 흑연봉에 전기를 인가하여 나노 다이아몬드를 생성한다(S2).The nano-diamond is generated by applying electricity to the graphite rod supported by the electrode unit 130 (S2).
충전이 완료된 상태의 전원부(150)와 연결된 고전압 대전류 스위치를 이용하여 전극부(130)에 1 내지 100kV의 고전압을 인가한다. 스위치를 닫으면 전극부와 흑연봉을 통하여 전류가 흐르기 시작한다. 이때 전원부(150)는 펄스파워(Pulsed power) 기술을 이용하여 순간적으로 고전압을 인가하여 대전류가 흐르도록 하고 10 내지 1000㎌의 용량을 갖는 것이 바람직하다. 이 전류는 한 쌍의 흑연봉에 각각 1/2씩 나뉘어 흐르게 되고 서로 같은 방향의 전류에 의한 인력이 작용하게 된다. A high voltage of 1 to 100 kV is applied to the electrode unit 130 by using a high voltage high current switch connected to the power supply unit 150 in a state where charging is completed. When the switch is closed, current begins to flow through the electrode portion and the graphite rod. At this time, the power supply unit 150 is a pulsed power (Pulsed power) technology by applying a high voltage instantaneously to flow a large current, and preferably has a capacity of 10 to 1000 kW. This current flows into the pair of graphite rods in half, and the attraction force by the currents in the same direction acts.
전극부(130)에 고전압을 순간적으로 인가하게 되면 펄스 대전류(Pulsed large current)가 전극(131)에 흐르게 되며, 전극(131)에 배치된 흑연봉은 순간적으로 끓는점 이상의 온도로 가열된다. 이로 인해 복수의 흑연봉은 액체(30)중에서 급속한 부피팽창이 발생하고 충격파를 발생시킨다.When a high voltage is momentarily applied to the electrode unit 130, a pulsed large current flows through the electrode 131, and the graphite rod disposed on the electrode 131 is heated to a temperature at or above the boiling point. As a result, the plurality of graphite rods generate rapid volume expansion in the liquid 30 and generate shock waves.
복수의 흑연봉은 액체(30) 중에서 충격파 발생과 더불어 전자기적 힘에 의해 인력이 작용하여 서로를 끌어당기게 된다. 액체(30)에 내에서 가열된 상태인 복수의 흑연봉은 로렌츠의 힘(Lorentz's force)에 의해서 서로 당기는 방향으로 가속되어 충돌하며, 그 후에 플라즈마에 의한 입자표면 산화반응이 일어나게 된다. 발생된 충격파와 흑연봉이 서로 충돌하는 시점에서 흑연봉은 나노 다이아몬드로 상변이 가능할 정도의 10만 기압 이상의 압력이 발생된다.A plurality of graphite rods are attracted to each other by the attraction force by the electromagnetic force in addition to the generation of shock waves in the liquid (30). The plurality of graphite rods, which are heated in the liquid 30, are accelerated and collided in the pulling direction by the Lorentz's force, and then the particle surface oxidation reaction by plasma occurs. At the time when the generated shock wave and the graphite rod collide with each other, the graphite rod is generated with a pressure of 100,000 atmospheres or more, which allows phase change to nanodiamonds.
펄스 전류에 의해 각 흑연봉이 받는 힘은 다음과 같은 식 1로 계산할 수 있다.The force exerted by each graphite rod by the pulse current can be calculated by the following equation.
<식 1><Equation 1>
Figure PCTKR2014011521-appb-I000001
Figure PCTKR2014011521-appb-I000002
Figure PCTKR2014011521-appb-I000001
Figure PCTKR2014011521-appb-I000002
식 1에서 F1은 상부의 흑연봉이 받는 힘을 나타내고, F2는 하부의 흑연봉이 받는 힘을 나타낸 것이다. 레일형 구조에 기인하는 로렌츠 힘은 주로 상부의 흑연봉에 작용하며, 상부의 흑연봉은 전류에 의한 인력과 로렌츠의 힘이 더해져 하부로 가속되고, 하부의 흑연봉은 상부의 흑연봉과의 인력에 의해 상부로 가속된다.In Equation 1, F 1 represents the force of the upper graphite rod, F 2 represents the force of the lower graphite rod. The Lorentz force due to the rail-type structure mainly acts on the graphite rod at the top, and the graphite rod at the top is accelerated to the bottom by the attraction of the current and Lorentz's force, and the graphite rod at the bottom is attracted to the graphite rod on the top. Is accelerated upwards.
여기서 μ0는 진공 투자율, l은 전극(131) 사이 흑연봉의 길이, i는 흑연봉에 흐르는 전류, d는 제1부재(10)와 제2부재(20)의 중심간 거리, L'는 전극(131)의 단위 길이당 인덕턴스(Inductance)를 나타낸 것이다. 여기서 L'는 다음과 같은 식 2와 같이 표현된다.Where μ 0 is the vacuum permeability, l is the length of the graphite rod between the electrodes 131, i is the current flowing through the graphite rod, d is the distance between the centers of the first member 10 and the second member 20, L ' Inductance per unit length of the electrode 131 is shown. Where L 'is expressed as Equation 2 below.
<식 2><Equation 2>
Figure PCTKR2014011521-appb-I000003
Figure PCTKR2014011521-appb-I000003
식 2에서 L은 전극(131)의 인덕턴스를 나타낸다.In Equation 2, L represents the inductance of the electrode 131.
상기와 같은 식 1 및 식 2를 통해 펄스 전원의 용량, 흑연봉의 직경, 흑연봉의 길이 및 전극(131)의 형상 등을 최적의 조건으로 맞춰 나노 다이아몬드의 수율을 극대화할 수 있다. Equations 1 and 2 as described above can maximize the yield of the nano-diamond by adjusting the capacity of the pulse power, the diameter of the graphite rod, the length of the graphite rod and the shape of the electrode 131 to the optimum conditions.
도 6과 같이 고온으로 가열된 흑연봉은 원자들이 플라즈마(Plazma) 상태로 변하는 폭발을 발생시키고, 이 폭발에 의한 충격파가 상대 흑연봉과 충돌하여 나노 다이아몬드(50)를 형성한다. 동시에 두 흑연봉 간의 전자기적 인력으로 두 플라즈마 칼럼이 충돌하여 더욱 고온, 고압 상태를 만들어 나노 다이아몬드(50)의 생성을 촉진시킨다. 또한 충돌의 효과는 고온, 고압 하에서 용융된 상태로 존재하는 물질을 나노사이즈로 만든다. 충돌에 의해 두 갈래의 전류 흐름이 합쳐지면 인력은 사라지나, 로렌츠의 힘은 더욱 커지게 되어 도 7에 도시된 바와 같이 생성된 물질을 액중에 강하게 분산시키는 역할을 한다.As shown in FIG. 6, the graphite rod heated to a high temperature generates an explosion in which atoms change into a plasma state, and the shock wave caused by the explosion collides with the other graphite rod to form nanodiamonds 50. At the same time, two plasma columns collide with each other by the electromagnetic attraction between the two graphite rods, thereby creating a higher temperature and pressure, thereby promoting the production of the nanodiamond 50. In addition, the effect of the collision makes the material present in the molten state at high temperature, high pressure to nanosize. When the two current flows are combined by the collision, the attraction force disappears, but the Lorentz force becomes larger, and as shown in FIG. 7, the material is strongly dispersed in the liquid.
나노 다이아몬드(50) 입자가 생성되면 나노 다이아몬드의 표면에 반응하지 않은 흑연층이 둘러쌓여 있는데 플라즈마 상태에 의해 입자 표면의 흑연층이 플라즈마 중의 산소와 결합하여 이산화탄소 가스로 변화하는 반응도 발생한다. 이 과정을 통하여 표면에 흑연층이 없는 순수한 나노 다이아몬드(50)가 생성된다.When the nanodiamond 50 particles are generated, a graphite layer which is not reacted is surrounded on the surface of the nanodiamond, and the graphite layer on the surface of the particle is combined with oxygen in the plasma to change into carbon dioxide gas by the plasma state. Through this process, pure nanodiamonds 50 having no graphite layer on the surface are produced.
흑연 잔여물로부터 나노 다이아몬드를 획득한다(S3).Nano diamond is obtained from the graphite residue (S3).
순간적으로 10만 기압 이상인 극한의 초고압 상태에서 생성된 나노 다이아몬드(50) 입자는 액체(30)에 의해 급속 냉각되어 흑연 상태로 되돌아가지 않고 나노 다이아몬드 형상으로 액체 내에서 흑연 잔여물과 함께 분산된 상태로 존재한다. The nanodiamond 50 particles produced in an extreme ultra high pressure state of instantaneously 100,000 or more pressures are rapidly cooled by the liquid 30 and do not return to the graphite state, but are dispersed with the graphite residue in the liquid in the nanodiamond shape. Exists as.
방전 후 전원부(150) 내에 저장된 에너지가 모두 소비되어 전류가 0이 되는데, 방전이 되더라도 흑연봉에 작용한 전자기력에 의해 분산은 지속된다. 고온의 액적 상태의 물질은 급속하게 냉각되면서 나노 다이아몬드(50)가 흑연으로 다시 변화하는 반응을 최소화할 수 있다. 또한 이 단계에서 액체의 부피팽창이 외부 기구에 영향을 미치게 된다.After discharge, all of the energy stored in the power supply unit 150 is consumed and the current becomes zero. Even when discharged, dispersion is maintained by the electromagnetic force acting on the graphite rod. The material in the hot droplet state may be rapidly cooled to minimize the reaction of the nanodiamond 50 to change back to graphite. Also at this stage the volume expansion of the liquid will affect the external mechanism.
액체(30) 내에서 나노 다이아몬드(50) 생성이 이루어지게 되면, 최종적으로 나노 다이아몬드(50) 뿐만 아니라 흑연 잔여물도 액체(30) 내에 존재하게 된다. 따라서 분급(Classification), 세척(Wash), 여과(Filtration) 및 침전(Precipitation) 중 어느 하나를 이용하거나 모든 방법을 통해 액체(30) 내에서 흑연 잔여물로부터 순수한 나노 다이아몬드(50)를 획득한다.When the nanodiamond 50 is produced in the liquid 30, not only the nanodiamond 50 but also graphite residues are present in the liquid 30. Thus, pure nanodiamonds 50 are obtained from the graphite residues in the liquid 30 using any one of Classification, Wash, Filtration and Precipitation or by any method.
나노 다이아몬드(50)는 자석에 붙기 때문에 영구자석(Permanent magnet) 또는 전자석(Electromagnet)을 이용한 분급 방법을 통해 액 및 흑연잔여물로부터 순수한 나노 다이아몬드(50)를 획득할 수 있다.Since the nanodiamond 50 is attached to the magnet, the pure nanodiamond 50 may be obtained from the liquid and the graphite residue through a classification method using a permanent magnet or an electromagnet.
또한, 생성된 순수 나노다이아몬드(50) 입자는 개개의 입자들이 독립적으로 존재하는 고도의 분산상태를 이루고 있어서, 분산상태이거나 침전된 나노 다이아몬드(50)를 간단한 여과만으로 흑연 잔여물로부터 순수하게 분리할 수 있다.In addition, the produced pure nanodiamond 50 particles are in a highly dispersed state in which the individual particles are independently present, so that the dispersed or precipitated nanodiamond 50 can be purely separated from the graphite residue by simple filtration. Can be.
상기와 같이 나노 다이아몬드(50)를 제조하는 단계는 도 8과 같이 시간에 따른 그래프로 나타낼 수 있다. 도 8a는 전류에 의해 흑연봉이 고온으로 가열되며, 흑연의 온도는 4000K 이상의 온도로 가열되어 있는 것으로 여겨진다. 이때 동일한 방향의 전류에 의한 전자기적 인력이 작용하여 흑연봉이 서로 가까워지는 방향으로 가속되기 시작한다.As described above, the manufacturing of the nanodiamond 50 may be represented by a graph over time as shown in FIG. 8. 8A shows that the graphite rod is heated to a high temperature by a current, and the temperature of the graphite is considered to be heated to a temperature of 4000K or more. At this time, the electromagnetic attraction due to the electric current in the same direction acts to accelerate the graphite rods closer to each other.
도 8b는 고온으로 가열된 흑연봉의 팽창과 흑연봉 표면에서의 화학반응(C+2O→CO2)에 의해서 발생하는 가스와 그 가스층을 통해서 발생하는 절연파괴에 의해 플라즈마가 생성된다. 생성된 플라즈마에 급격한 부피팽창이 발생하여 10만 기압 이상의 강력한 충격파가 만들어진다. 발생한 충격파는 주위로 전파되어 마주하는 고온 상태의 흑연봉과 충돌하게 되어 고온 상태의 흑연이 다이아몬드로 변환된다.FIG. 8B shows a plasma generated by expansion of a graphite rod heated to a high temperature and a gas generated by a chemical reaction (C + 2O → CO 2 ) on the surface of the graphite rod and insulation breakdown generated through the gas layer. Sudden volume expansion occurs in the generated plasma, creating a strong shock wave of 100,000 atmospheres or more. The generated shock wave propagates to the surroundings and collides with the facing high temperature graphite bars, thereby converting the high temperature graphite to diamond.
도 8c는 동일방향 전류에 의한 인력은 두 흑연봉이 충돌하도록 하며, 계산상으로 약 30㎲ 부근에서 충돌이 발생한다. 이 충돌에 의해서 더욱 강한 압력이 작용하게 되어 다이아몬드 생성 가능성이 크게 증대된다. 또한 충돌에 의해서 다이아몬드 상태가 나노사이즈 입자로 붕괴되어 흩어진다. 이때 전류는 하나로 합쳐져서 흐르므로 인력은 사라지고 아래로 작용하는 가속력은 크게 증가한다.8C shows that the attraction due to the co-directional current causes two graphite rods to collide with each other. This collision causes a stronger pressure to greatly increase the possibility of diamond formation. In addition, due to the collision, the diamond state disintegrates into nano-size particles and scatters. At this time, the current flows into one, so the attraction force disappears and the acceleration force acting downward greatly increases.
도 8d는 폭발 충돌 후에도 지속적으로 흐르는 전류에 의해서 가속력이 유지되고, 또한 플라즈마 상태도 지속되어 생성된 나노입자의 분산과 표면산화 반응이 지속된다. 이 산화반응은 압력저하에 의해서 다이아몬드에서 흑연으로 환원된 입자 표면의 흑연층을 제거하는 역할을 한다. 이 과정을 통해 열처리가 필요하지 않은 고분산 나노 다이아몬드(50)가 생성된다.FIG. 8D shows that the acceleration force is maintained by the current flowing continuously even after the explosion collision, and the plasma state is also maintained to maintain dispersion and surface oxidation reaction of the generated nanoparticles. This oxidation reaction serves to remove the graphite layer on the particle surface reduced from diamond to graphite due to the pressure drop. This process produces a highly dispersed nano diamond 50 that does not require heat treatment.
도 8e는 전자기적 가속력은 강력한 힘으로 액체 중에 생성된 나노 다이아몬드(50)를 분산시키는 역할을 하고 이를 통해서 급속한 냉각이 가능하다. 또한 나노 다이아몬드(50)가 흑연으로 환원되는 것을 최소화하여 나노 다이아몬드(50)의 생성 수율을 증대시킨다. 이 과정에서 챔버 내의 액체 요동이 발생하여 큰 충격음과 진동이 발생한다.8E shows that the electromagnetic acceleration force disperses the nanodiamonds 50 generated in the liquid with a strong force, thereby enabling rapid cooling. In addition, the reduction of the nanodiamond 50 to graphite is minimized to increase the production yield of the nanodiamond 50. In this process, liquid fluctuations in the chamber are generated, resulting in large impact sounds and vibrations.
이와 같은 나노 다이아몬드(50) 제조방법은 다음과 같은 실시예를 통해 제조된다.Such a nano diamond 50 manufacturing method is manufactured through the following embodiments.
<실시예><Example>
챔버에 7L의 증류수를 투입하고, 여기에 스테인레스스틸(SUS)로 제조되며 한 쌍의 전극을 갖는 전극부를 침지한다. 전극부에는 직경 2mm, 길이 50mm의 흑연봉 한 쌍을 배치되어 있다. 한 쌍의 흑연봉은 7mm의 간격으로 이격되어 있다. 전극부를 증류수에 침지한 후, 전극부에 200㎌의 정전용량을 갖는 전원부를 이용하여 20kV의 고전압을 순간적으로 인가한다. 7L of distilled water is added to the chamber, and the electrode part, which is made of stainless steel (SUS) and has a pair of electrodes, is immersed. A pair of graphite rods having a diameter of 2 mm and a length of 50 mm is disposed in the electrode portion. The pair of graphite rods are spaced at intervals of 7 mm. After immersing the electrode portion in distilled water, a high voltage of 20 kV is instantaneously applied using a power supply portion having a capacitance of 200 kV to the electrode portion.
도 8f는 도 8a 내지 도 8e의 반응이 이루어지는 동안 시간에 따른 간격 및 전류에 따른 그래프를 나타낸 것이다. 고전압을 인가하면 도 8f에 도시된 바와 같이 순간적으로 100kA의 전류(Current)가 흐르게 되고, 이로 인해 흑연봉은 녹는점 이상으로 가열된다. 가열된 흑연봉은 7mm의 간격에서 점점 간격(Distance between the rods)이 줄어들고 최종적으로 전자기적 힘에 의한 인력에 의해 충돌하여 나노 다이아몬드를 생성한다. 흑연봉이 충돌하는 데까지 걸린 시간은 간격이 0mm인 30㎲이다. 이때 각각의 흑연봉의 속도는 도 9를 통해 확인할 수 있다. v1은 상부 흑연봉이 하부 흑연봉 방향으로 이동하는 속도를 나타낸 것이고, v2는 하부 흑연 봉이 상부 흑연봉 방향으로 이동하는 속도를 나타낸 것이다.FIG. 8F shows a graph with time intervals and currents during the reaction of FIGS. 8A-8E. When a high voltage is applied, a current of 100 kA is instantaneously flowing as shown in FIG. 8F, thereby heating the graphite rod above the melting point. The heated graphite rods decrease in distance between the rods at a distance of 7 mm and finally collide by the attraction force due to electromagnetic force to generate nanodiamonds. The time taken for the graphite rods to collide is 30 ms with a 0 mm spacing. At this time, the speed of each graphite rod can be confirmed through FIG. v1 represents the speed at which the upper graphite rod moves in the lower graphite rod direction, and v2 represents the speed at which the lower graphite rod moves in the upper graphite rod direction.
생성된 나노 다이아몬드를 순수하게 얻기 위해 이틀 동안 상온에 방치해 침전시킨 다음, 상부액을 1.0㎛의 여과지를 이용하여 여과를 수행한다. 도 10a는 나노 다이아몬드 및 흑연 잔여물이 포함된 액체이며, 도 10b는 1.0㎛의 여과지로 여과한 후 나노 다이아몬드 콜로이드이고, 도 10c는 1.0㎛의 여과지를 통과한 액체를 다시 0.2㎛의 여과지에 포집한 나노 다이아몬드 입자이다. 이와 같이 나노 다이아몬드를 여과한 후 이를 건조시켜 최종적으로 흑연 잔여물이 제거된 순수한 나노 다이아몬드를 얻는다.In order to obtain the resulting nanodiamond purely, it is allowed to stand at room temperature for 2 days to precipitate, and then the supernatant is filtered using 1.0 μm filter paper. FIG. 10A is a liquid containing nanodiamond and graphite residues, FIG. 10B is a nanodiamond colloid after filtering with a 1.0 μm filter paper, and FIG. 10C is again collecting a liquid passing through the 1.0 μm filter paper into a 0.2 μm filter paper. One nano diamond particle. The nanodiamond is thus filtered and dried to obtain pure nanodiamonds from which graphite residues are finally removed.
이와 같은 실시예를 통해 제조된 나노 다이아몬드는 도 11의 라만 분석 데이터로, 원료 흑연봉(L1), 반응 후 액에 침전된 입자(L2), 1.0㎛의 여과지를 이용하여 여과한 후 여과지에 입자(L3), 1.0㎛를 통과한 용액을 다시 0.2㎛의 여과지를 이용하여 여과한 입자(L4)를 나타낸 것이다. 여기서 1330cm-1 부근에 나타나는 피크는 sp3에 기인한 피크이고, 1580 및 2700cm-1 부근에서 나타나는 피크는 sp2에 기인한 피크이다. 알려진 바와 같이 흑연은 2차원 형상으로 sp2 결합을 하는 구조이고, 다이아몬드는 3차원 형상으로 sp3 결합을 하는 구조이다. 침전된 입자 역시 원료 흑연봉과 동일한 피크를 나타내는 것으로 보아 침전물은 흑연 잔여물인 것을 확인할 수 있다. 1.0㎛의 여과지에 모인 입자의 경우에는 침전 입자와 유사한 피크가 확인된 것으로 보아 흑연이 대부분인 것을 알 수 있다. 반면에 0.2㎛ 여과지에 모인 입자는 2700cm-1 영역에서 피크를 거의 확인할 수 없으며, 이로 인해 순수한 나노 다이아몬드만을 획득한 것을 확인할 수 있다.The nanodiamonds manufactured through the above example are Raman analysis data of FIG. 11, and are filtered using a raw material graphite rod (L1), particles precipitated in a liquid after the reaction (L2), and a filter paper having a thickness of 1.0 μm. (L3) and particle | grains (L4) which filtered the solution which passed 1.0 micrometer again using 0.2 micrometer filter paper are shown. The peak appearing around 1330 cm −1 here is due to sp 3 , and the peaks appearing around 1580 and 2700 cm −1 are peaks due to sp 2 . As is known, graphite has a structure of sp 2 bonding in a two-dimensional shape, and diamond has a structure of sp 3 bonding in a three-dimensional shape. Since the precipitated particles also show the same peak as the raw graphite rod, it can be confirmed that the precipitate is a graphite residue. In the case of particles collected on a 1.0 μm filter paper, a peak similar to that of precipitated particles was confirmed, indicating that most of graphite was present. On the other hand, the particles collected on the 0.2 ㎛ filter paper can hardly see the peak in the 2700cm -1 region, it can be seen that only pure nanodiamonds were obtained.
도 11에 확인된 원료 흑연봉(L1)과 0.2㎛ 여과지에 걸러진 제조된 샘플(L4)의 피크를 도 12를 통해 더 정확히 확인할 수 있다. 제조된 샘플은 흑연구조에서 기인하는 2700cm-1 피크가 거의 사라진 것을 확인할 수 있고, 또한 sp3(D-band)/sp2(G-band)의 비율이 원료 흑연봉은 대략 1/4 정도로 확인되지만, 0.2㎛ 여과지에 걸러진 샘플은 1/1로 비율이 증가한 것을 확인할 수 있다.The peak of the raw material graphite rod (L1) confirmed in Figure 11 and the prepared sample (L4) filtered on 0.2 ㎛ filter paper can be confirmed more accurately through FIG. The prepared sample was confirmed that the 2700cm -1 peak due to the graphite structure is almost disappeared, and also the ratio of sp 3 (D-band) / sp 2 (G-band) is about 1/4 of the raw graphite rod. However, it can be seen that the sample filtered on the 0.2 μm filter paper increased the ratio to 1/1.
이와 같은 방법 및 장치를 통해 복수의 흑연 간의 전자기적인 힘에 의한 인력을 통해 흑연을 충돌시켜 도 13a의 주사전자현미경(Scaning electron microscope) 사진과, 도 13b의 투과전자현미경(Transmission electron microscope) 사진과 같이 나노 다이아몬드를 생성 가능하며, 종래의 화학폭발법을 이용하지 않아 실험실에서 간단하게 나노 다이아몬드를 제조 가능하다. 또한 생성된 나노 다이아몬드는 뭉치지 않고 분산된 상태로 생성되기 때문에 간단한 방법으로 정제를 통하여 순수한 나노 다이아몬드를 얻을 수 있다. 따라서 후처리 과정이 복잡하지 않아 즉시 나노 다이아몬드를 페이스트화 가능하여 산업 응용이 획기적으로 단축되고 가속화될 것으로 기대된다. 본 발명은 나노 다이아몬드 제조뿐만 아니라 기존의 전기폭발에 의한 나노 분말 제조 및 합성 등의 분야에도 적용 가능하며, 유사한 펄스파워 기술을 이용한 나노 다이아몬드 제조법의 개발에도 활용될 수 있다.Through such a method and apparatus, the graphite is collided by the attraction force of the electromagnetic force between the plurality of graphite, and the scanning electron microscope picture of FIG. 13A, the transmission electron microscope picture of FIG. 13B, Likewise, it is possible to produce nanodiamonds, and it is possible to simply manufacture nanodiamonds in a laboratory without using a conventional chemical explosion method. In addition, since the produced nanodiamonds are produced in a dispersed state without agglomeration, pure nanodiamonds can be obtained through purification by a simple method. As a result, the post-treatment process is not complicated, and nanodiamonds can be pasted immediately, which greatly shortens and accelerates industrial applications. The present invention can be applied not only to the production of nanodiamonds, but also to the fields of conventional nanopowder production and synthesis, and the like, and can be utilized to develop nanodiamond production methods using similar pulse power technology.
본 발명은 나노 다이아몬드 제조방법 및 제조장치에 관한 것으로, 더욱 상세하게는, 복수의 탄소재 간 또는 탄소재와 도전재 간의 전자기적인 힘에 의한 가속 충돌과 전기 폭발에 의한 충격파를 서로 충돌시켜 나노 다이아몬드를 생성가능하며, 생성된 나노 다이아몬드는 정제 및 분산이 용이한 것을 특징으로 하는 나노 다이아몬드 제조방법 및 제조장치 분야에 이용가능하다.The present invention relates to a method and apparatus for manufacturing nanodiamonds, and more particularly, to nanoparticles by colliding an impact wave caused by an electrical explosion with an acceleration force caused by electromagnetic force between a plurality of carbon materials or between a carbon material and a conductive material. It is possible to produce, and the resulting nanodiamonds can be used in the field of nanodiamond manufacturing method and apparatus characterized in that the purification and dispersion is easy.

Claims (17)

  1. 나노 다이아몬드 제조방법에 있어서,In the nanodiamond manufacturing method,
    액체가 담긴 챔버 내의 전극부(Electrodes) 사이에 전기적으로 연결되는 탄소재(Carbon material)의 제1부재와, 상기 제1부재에 이격되어 전극부(Electrodes) 사이에 전기적으로 연결되는 탄소재 또는 도전재(Conductive material)의 제2부재를 제공하는 단계와;A first member of carbon material electrically connected between the electrode parts in the chamber containing the liquid and a carbon material or conductive electrically spaced apart from the first member and electrically connected to the electrode parts. Providing a second member of a conductive material;
    상기 전극부에 전기 에너지를 인가하여 액중 전기폭발에 의한 충격파 및 전자기적 힘에 의한 인력으로 상기 제1부재와 상기 제2부재 간의 충돌을 통해 나노 다이아몬드를 생성하는 단계를 포함하는 것을 특징으로 하는 나노 다이아몬드 제조방법.And applying nano energy to the electrode unit to generate nanodiamonds through collision between the first member and the second member by an attractive force due to shock waves and electromagnetic forces caused by submerged electric explosion. Diamond manufacturing method.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제1부재 및 상기 제2부재는 길이를 따라 서로 평행하게 설치되는 것을 특징으로 하는 나노 다이아몬드 제조방법.The first member and the second member is a nanodiamond manufacturing method, characterized in that installed parallel to each other along the length.
  3. 제 1항에 있어서,The method of claim 1,
    상기 나노 다이아몬드 표면에 존재하는 흑연층은 전기 폭발시 발생된 플라즈마 중의 산소와 결합하여 이산화탄소(CO2)로 변화되도록 상기 액체는 물(H2O)인 것을 특징으로 하는 나노 다이아몬드 제조방법.The nano-diamond manufacturing method, characterized in that the liquid is water (H 2 O) so that the graphite layer present on the surface of the nano-diamond is combined with oxygen in the plasma generated during the electrical explosion to change to carbon dioxide (CO 2 ).
  4. 제 1항에 있어서,The method of claim 1,
    상기 탄소재는,The carbon material,
    흑연(Graphite), 그래핀(Graphene), 활성탄(Activated carbon), 소프트카본(Soft carbon), 하드카본(Hard carbon), 카본블랙(Carbon black), 탄소나노튜브(Carbon nano tube, CNT), 탄소나노섬유(Carbon nano fiber, CNF), 변형탄소(Modified carbon), 탄소복합소재(Carbon composite) 및 이의 혼합으로 이루어진 군으로부터 선택된 것을 특징으로 하는 나노 다이아몬드 제조방법.Graphite, Graphene, Activated Carbon, Soft Carbon, Hard Carbon, Carbon Black, Carbon Nanotube (CNT), Carbon Nano-diamond manufacturing method, characterized in that selected from the group consisting of carbon nanofibers (CNF), modified carbon (Modified carbon), carbon composite material (Carbon composite) and mixtures thereof.
  5. 제 1항에 있어서,The method of claim 1,
    상기 나노 다이아몬드를 생성하는 단계 이후에,After the step of producing the nanodiamonds,
    상기 나노 다이아몬드는 자석을 이용한 분급(Classification), 세척(Wash), 여과(Fiteration) 및 침전(Precipitation) 중 어느 하나를 통해 획득하는 것을 특징으로 하는 나노 다이아몬드 제조방법.The nanodiamond is a nanodiamond manufacturing method, characterized in that obtained through any one of the classification (Classification), washing (Wash), filtration (Filter) and precipitation (Precipitation) using a magnet.
  6. 제 1항에 있어서,The method of claim 1,
    상기 제1부재가 전기적으로 연결되는 전극부와, 상기 제2부재가 전기적으로 연결되는 전극부는 동일한 전극부인 것을 특징으로 하는 나노 다이아몬드 제조방법.And an electrode portion electrically connected to the first member and an electrode portion electrically connected to the second member.
  7. 제 1항에 있어서,The method of claim 1,
    상기 제1부재가 전기적으로 연결되는 전극부와, 상기 제2부재가 전기적으로 연결되는 전극부는 서로 다른 전극부인 것을 특징으로 하는 나노 다이아몬드 제조방법.And an electrode portion electrically connected to the first member and an electrode portion electrically connected to the second member are different electrode portions.
  8. 제 1항에 있어서,The method of claim 1,
    상기 제2부재는 상기 제1부재에 복수 개가 이격되게 설치되는 것을 특징으로 하는 나노 다이아몬드 제조방법.The second member is a nanodiamond manufacturing method, characterized in that a plurality of spaced apart is installed on the first member.
  9. 제 8항에 있어서,The method of claim 8,
    상기 제1부재는 상기 제2부재의 사이에 설치되는 것을 특징으로 하는 나노 다이아몬드 제조방법.The first member is a nanodiamond manufacturing method, characterized in that installed between the second member.
  10. 나노 다이아몬드 제조방법에 있어서,In the nanodiamond manufacturing method,
    액체가 담긴 챔버 내의 전극부(Electrodes) 사이에 전기적으로 연결되는 탄소재(Carbon material)의 제1부재와, 상기 제1부재로부터 이격되게 설치되는 탄소재의 제3부재를 제공하는 단계와;Providing a first member of carbon material electrically connected between the electrode portions in the chamber containing the liquid, and a third member of carbon material spaced apart from the first member;
    상기 제1부재에 전기를 인가하여 발생하는 액중 전기폭발에 의한 충격파가 제3탄소재와 충돌하여 나노 다이아몬드를 생성하는 단계를 포함하는 것을 특징으로 하는 나노 다이아몬드 제조방법.And impacting the third carbon material with a shock wave caused by the electric explosion in the liquid generated by applying electricity to the first member, to produce nanodiamonds.
  11. 제 10항에 있어서,The method of claim 10,
    상기 제3부재는 벌크 흑연(Bulk graphite)인 것을 특징으로 하는 나노 다이아몬드 제조방법.The third member is a nano-diamond manufacturing method, characterized in that the bulk graphite (Bulk graphite).
  12. 나노 다이아몬드 제조장치에 있어서,In the nano diamond manufacturing apparatus,
    용매를 저장하는 챔버와;A chamber for storing the solvent;
    상기 챔버 내에 위치하며 탄소재의 제1부재를 전기적으로 연결하기 위한 제1연결부와, 상기 제1연결부와 이격되어 탄소재 또는 도전재의 제2부재를 전기적으로 연결하기 위한 제2연결부를 갖는 전극부와;An electrode part disposed in the chamber and having a first connection part for electrically connecting the first member of the carbon material, and a second connection part spaced apart from the first connection part to electrically connect the second member of the carbon material or the conductive material Wow;
    상기 전극부에 전기를 인가하는 전원부와;A power supply unit applying electricity to the electrode unit;
    상기 전원부에서 상기 전극부로 인가되는 전원을 제어하는 제어부를 포함하는 것을 특징으로 하는 나노 다이아몬드 제조장치.Nano-diamond manufacturing apparatus comprising a control unit for controlling the power applied from the power supply to the electrode.
  13. 제 12항에 있어서,The method of claim 12,
    상기 제어부는 상기 전원부에서 상기 전극부로 인가되는 전원의 전류 방향을 변경하는 것을 특징으로 하는 나노 다이아몬드 제조장치.The control unit is a nanodiamond manufacturing apparatus, characterized in that for changing the current direction of the power applied from the power supply to the electrode.
  14. 제 12항에 있어서,The method of claim 12,
    상기 전극부는 상기 제1부재가 전기적으로 연결되는 제1전극부와, 상기 제2부재가 전기적으로 연결되는 제2전극부로 동일한 하나의 전극부인 것을 특징으로 하는 나노 다이아몬드 제조장치.The electrode unit is a nano-diamond manufacturing apparatus, characterized in that the first electrode portion is electrically connected to the first member and the second electrode portion is the same as the second electrode portion electrically connected to the second member.
  15. 제 12항에 있어서,The method of claim 12,
    상기 전극부는 상기 제1부재가 전기적으로 연결되는 제1전극부와, 상기 제2부재가 전기적으로 연결되는 제2전극부로 서로 분리되어 있는 것을 특징으로 하는 나노 다이아몬드 제조장치.The electrode unit is a nano-diamond manufacturing apparatus, characterized in that separated from each other by a first electrode portion electrically connected to the first member and a second electrode portion electrically connected to the second member.
  16. 제 12항에 있어서,The method of claim 12,
    상기 제2부재가 연결되는 제2연결부는 상기 제1부재가 연결되는 제1연결부에 복수 개가 이격되게 설치되는 것을 특징으로 하는 나노 다이아몬드 제조장치.The second connection portion to which the second member is connected nano-diamond manufacturing apparatus, characterized in that a plurality of spaced apart is installed in the first connection portion to which the first member is connected.
  17. 제 16항에 있어서,The method of claim 16,
    상기 제1부재가 연결되는 제1연결부는 상기 제2부재가 연결되는 제2연결부 사이에 설치되는 것을 특징으로 하는 나노 다이아몬드 제조장치.The first connection portion to which the first member is connected nano diamond manufacturing apparatus, characterized in that installed between the second connection portion is connected to the second member.
PCT/KR2014/011521 2014-10-02 2014-11-28 Method and device for manufacturing nanodiamonds WO2016052807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0133312 2014-10-02
KR1020140133312A KR101574318B1 (en) 2014-10-02 2014-10-02 Manufacturing method and apparatus of nano-diamond

Publications (1)

Publication Number Publication Date
WO2016052807A1 true WO2016052807A1 (en) 2016-04-07

Family

ID=54872128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011521 WO2016052807A1 (en) 2014-10-02 2014-11-28 Method and device for manufacturing nanodiamonds

Country Status (2)

Country Link
KR (1) KR101574318B1 (en)
WO (1) WO2016052807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111468716A (en) * 2020-04-30 2020-07-31 西安交通大学 Method for preparing carbon-coated aluminum nanoparticles by using metal wire electric explosion method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101804656B1 (en) 2016-02-04 2017-12-04 고려대학교 산학협력단 A wear resistance and low friction polymer composite comprising nano diamond powder treated with hydrogen plasma and the manufacturing method of the same
CN112850694B (en) * 2021-02-23 2023-02-03 中国工程物理研究院总体工程研究所 Impact reaction preparation device and preparation method of graphene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254506A (en) * 2009-04-23 2010-11-11 Kumamoto Univ Method for producing nanodiamond
JP2011195411A (en) * 2010-03-23 2011-10-06 Sumitomo Electric Ind Ltd Method and apparatus for peeling diamond
JP2013241658A (en) * 2012-05-22 2013-12-05 Institute Of National Colleges Of Technology Japan Method and device for synthesizing diamond

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254506A (en) * 2009-04-23 2010-11-11 Kumamoto Univ Method for producing nanodiamond
JP2011195411A (en) * 2010-03-23 2011-10-06 Sumitomo Electric Ind Ltd Method and apparatus for peeling diamond
JP2013241658A (en) * 2012-05-22 2013-12-05 Institute Of National Colleges Of Technology Japan Method and device for synthesizing diamond

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALEXANDER ALEKSENSKIY ET AL.: "The fundamental properties and characteristics of nanodiamonds", APPLICATIONS IN BIOLOGY AND NANOSCALE MEDICINE, 2010, pages 55 - 77 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111468716A (en) * 2020-04-30 2020-07-31 西安交通大学 Method for preparing carbon-coated aluminum nanoparticles by using metal wire electric explosion method
CN111468716B (en) * 2020-04-30 2021-08-13 西安交通大学 Method for preparing carbon-coated aluminum nanoparticles by using metal wire electric explosion method

Also Published As

Publication number Publication date
KR101574318B1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
Shoukat et al. Carbon nanotubes: a review on properties, synthesis methods and applications in micro and nanotechnology
JP5247476B2 (en) Deposition method of high aspect ratio structure
WO2016052807A1 (en) Method and device for manufacturing nanodiamonds
Ding et al. An ultrahigh thermal conductive graphene flexible paper
Agboola et al. Conceptual design of carbon nanotube processes
JP5328043B2 (en) Polymer-grafted carbon nanotube and method for producing the same
Golberg et al. Recent advances in boron nitride nanotubes and nanosheets
TW201001443A (en) Conductive film using nano-carbon tube and manufacturing method thereof
JP2006263908A (en) Method for manufacturing carbon nanotube-based nanocircuit
US7414088B1 (en) Polymers grafted to carbon nanotubes
Dimitrov et al. Production, purification, characterization, and application of CNTs
Abdulhameed Carbon Nanotube Alignment Methods
RU2698806C1 (en) Carbon nanotube fibre and method for production thereof
JP3845341B2 (en) Conductive fiber separator
Liu et al. Novel method of ordering silver nanowires for synthesizing flexible films and their conductivity
Gabdullin et al. Synthesis of Carbon Nanostructures Using Arc Discharge in the Liquid Phase
He et al. One step route to ultra-long Ag nanowires for solar cells
Matysina et al. ELECTRIC ARC METHODS TO SYNTHESIZE CARBON NANOSTRUCTURES.
Rana et al. Exfoliation of graphene oxide via chemical reduction method
Bharadwaj et al. Length based Separation of Single Walled Carbon Nanotubes using Liquid-Liquid Extraction
Yang et al. Facile purification of ultrathin Au nanowires: A solvent exclusion method
JP2007063232A (en) Composite material of inorganic nano-particle
Yan Taking graphene materials toward applications–Chemistry at the nano-surface
Kouklin et al. Towards controlled manipulation and assembly of ZnO nanowires for nanoscale imaging applications
Pourjafar Evaluation of Carbon Nanotubes Making Techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903080

Country of ref document: EP

Kind code of ref document: A1