WO2016052534A1 - 片保護偏光フィルム、粘着剤層付偏光フィルム、画像表示装置およびその連続製造方法 - Google Patents

片保護偏光フィルム、粘着剤層付偏光フィルム、画像表示装置およびその連続製造方法 Download PDF

Info

Publication number
WO2016052534A1
WO2016052534A1 PCT/JP2015/077574 JP2015077574W WO2016052534A1 WO 2016052534 A1 WO2016052534 A1 WO 2016052534A1 JP 2015077574 W JP2015077574 W JP 2015077574W WO 2016052534 A1 WO2016052534 A1 WO 2016052534A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing film
adhesive layer
meth
polarizer
film
Prior art date
Application number
PCT/JP2015/077574
Other languages
English (en)
French (fr)
Inventor
菁▲王番▼ 徐
友徳 上野
聡司 三田
佑輔 茂手木
岸 敦史
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015189276A external-priority patent/JP6077619B2/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US15/515,385 priority Critical patent/US10094954B2/en
Priority to SG11201706402YA priority patent/SG11201706402YA/en
Priority to CN201580053094.1A priority patent/CN107076910B/zh
Priority to KR1020177009090A priority patent/KR101844934B1/ko
Publication of WO2016052534A1 publication Critical patent/WO2016052534A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a piece protective polarizing film in which a transparent protective film is provided only on one side of a polarizer and a polarizing film with a pressure sensitive adhesive layer having the piece protective polarizing film and a pressure sensitive adhesive layer.
  • the single-protective polarizing film and the polarizing film with the pressure-sensitive adhesive layer can form an image display device such as a liquid crystal display device (LCD) or an organic EL display device as a single or a laminated optical film.
  • LCD liquid crystal display device
  • organic EL display device as a single or a laminated optical film.
  • a polarizing film is used in which a transparent protective film is bonded to one or both sides of a polarizer made of a dichroic material such as a polyvinyl alcohol film and iodine with a polyvinyl alcohol adhesive or the like.
  • an adhesive is usually used.
  • the polarizing film can be fixed instantaneously and has a merit such that a drying step is not required to fix the polarizing film
  • the adhesive is provided in advance as an adhesive layer on one side of the polarizing film. . That is, a polarizing film with an adhesive layer is generally used for attaching the polarizing film.
  • a polarizing film or a polarizing film with a pressure-sensitive adhesive layer can cause the polarizer to contract in a severe environment of thermal shock (for example, a heat shock test in which temperature conditions of ⁇ 30 ° C. and 80 ° C. are repeated or a test at a high temperature of 100 ° C.)
  • thermal shock for example, a heat shock test in which temperature conditions of ⁇ 30 ° C. and 80 ° C. are repeated or a test at a high temperature of 100 ° C.
  • cracks through cracks
  • the polarizing film with an adhesive layer was not sufficiently durable due to thermal shock in the harsh environment.
  • a polarizing film with a pressure-sensitive adhesive layer using a single protective polarizing film provided with a transparent protective film only on one surface of a polarizer has insufficient durability due to the thermal shock.
  • the penetration crack produced by the said thermal shock was easy to generate
  • a polarizing film with an adhesive layer in which a protective layer having a tensile modulus of 100 MPa or more is provided on a single protective polarizing film and an adhesive layer is further provided on the protective layer has been proposed.
  • Patent Document 1 Moreover, it has a protective layer made of a cured product of the curable resin composition on one side of a polarizer having a thickness of 25 ⁇ m or less, has a transparent protective film on the other side of the polarizer, and adheres to the outside of the protective layer.
  • a polarizing film with an adhesive layer having an adhesive layer has been proposed (Patent Document 2).
  • Patent Document 3 The polarizing film with the pressure-sensitive adhesive layer described in Patent Documents 1 and 2 is effective in terms of suppressing the occurrence of through cracks. Thinning is also performed for polarizers, and for example, a thin polarizer exhibiting high orientation in which optical characteristics of single transmittance and polarization degree are controlled has been proposed (Patent Document 3).
  • the thickness is reduced by using a piece protective polarizing film having a transparent protective film only on one side of the polarizer, and on the other hand, by using a piece protective polarizing film by providing a protective layer.
  • the occurrence of through cracks in the absorption axis direction of the generated polarizer is suppressed.
  • thinning is also done for polarizers.
  • the polarizer used for the polarizing film or the polarizing film with the pressure-sensitive adhesive layer is thinned (for example, when the thickness is 10 ⁇ m or less), the change in the contraction stress of the polarizer is small. Therefore, it has been found that the thinned polarizer can suppress the occurrence of the through cracks.
  • the optical characteristics are controlled as in Patent Document 3 and the polarizer is thinned (for example, When the thickness is 10 ⁇ m or less), when a mechanical shock is applied to the one-side protective polarizing film or the polarizing film with an adhesive layer using the same (including the case where a load due to convex folding is applied to the polarizer side), It was found that a very fine slit (hereinafter also referred to as nano slit) is generated in the absorption axis direction of the polarizer.
  • nano slit very fine slit
  • the nano slits occur regardless of the size of the polarizing film. Furthermore, it has also been found that the nano slit does not occur when both protective polarizing films having transparent protective films on both sides of the polarizer are used. In addition, when a through crack occurs in the polarizer, the stress around the through crack is released, so the through crack does not occur adjacently. I found it to happen. Moreover, although the penetration crack has the progressive property extended in the absorption-axis direction of the polarizer in which the crack generate
  • the nano slit is a new problem that occurs when the polarizer is thin and the optical characteristics are controlled within a predetermined range in the single-protective polarizing film in which the generation of through cracks is suppressed. It has been found that this is a problem caused by a phenomenon different from the above-described through crack.
  • the nano slit is extremely thin, it cannot be detected under a normal environment. Therefore, even if nanoslits are generated in the polarizer, it is difficult to confirm the defects due to light leakage of the one-side protective polarizing film and the polarizing film with the pressure-sensitive adhesive layer using it. That is, usually, the piece-protecting polarizing film is produced in the form of a long film and automatically inspected for defects by optical inspection, but it is difficult to detect nanoslits as defects by this defect inspection.
  • the defect caused by the nano slit is that the nano slit spreads in the width direction when the single protective polarizing film or the polarizing film with the adhesive layer is bonded to the glass substrate of the image display panel and placed in a heating environment. It was also found that detection is possible (for example, the presence or absence of light leakage).
  • the present invention is a piece protective polarizing film having a transparent protective film only on one side of a polarizer, wherein the polarizer has predetermined optical properties and has a thickness of 10 ⁇ m or less, and through cracks and nano slits. It aims at providing the piece protection polarizing film which can suppress the defect by this. Moreover, this invention aims at providing the polarizing film with an adhesive layer which has the said piece protection polarizing film and an adhesive layer.
  • Another object of the present invention is to provide an image display device having the piece protective polarizing film or the pressure-sensitive adhesive layer-attached polarizing film, and a continuous production method thereof. About.
  • the present invention is a piece protective polarizing film having a transparent protective film only on one side of the polarizer
  • the polarizer contains a polyvinyl alcohol-based resin, has a thickness of 10 ⁇ m or less, and has an optical characteristic expressed by a single transmittance T and a polarization degree P of the following formula: P> ⁇ (10 0.929T-42 .4 ⁇ 1) ⁇ 100 (where T ⁇ 42.3), or P ⁇ 99.9 (provided that T ⁇ 42.3) is satisfied, And it is related with the piece protective polarizing film characterized by having the transparent layer whose compression elastic modulus in 80 degreeC is 0.1 GPa or more on the other one surface of the said polarizer.
  • the transparent layer is preferably a resin material formed product.
  • the transparent layer having a thickness of less than 3 ⁇ m can be used.
  • the polarizer preferably contains boric acid in an amount of 25% by weight or less based on the total amount of the polarizer.
  • the present invention also relates to the above-mentioned piece protective polarizing film and a polarizing film with an adhesive layer, characterized by having an adhesive layer.
  • the polarizing film with the pressure-sensitive adhesive layer can be used in a mode in which the pressure-sensitive adhesive layer is provided on the transparent layer of the piece protective polarizing film.
  • the said polarizing film with an adhesive layer can be used in the aspect by which the said adhesive layer is provided in the transparent protective film of the said piece protection polarizing film.
  • a separator can be provided in the adhesive layer of the polarizing film with an adhesive layer.
  • the polarizing film with an adhesive layer provided with a separator can be used as a wound body.
  • the present invention also relates to an image display device having the piece protective polarizing film or the polarizing film with an adhesive layer.
  • the polarizing film with the pressure-sensitive adhesive layer fed out from the wound body of the polarizing film with the pressure-sensitive adhesive layer and conveyed by the separator is continuously applied to the surface of the image display panel via the pressure-sensitive adhesive layer.
  • the present invention relates to a continuous manufacturing method of an image display device including a step of bonding to a substrate.
  • the polarizing film with the pressure-sensitive adhesive layer fed out from the wound body of the polarizing film with the pressure-sensitive adhesive layer and conveyed by the separator is continuously applied to the surface of the image display panel via the pressure-sensitive adhesive layer.
  • the present invention relates to a continuous manufacturing method of an image display device including a step of bonding to a substrate.
  • the piece-protecting polarizing film and the polarizing film with a pressure-sensitive adhesive layer of the present invention use a polarizer having a thickness of 10 ⁇ m or less, and are thinned.
  • the thin polarizer having a thickness of 10 ⁇ m or less has a smaller change in shrinkage stress applied to the polarizer due to thermal shock than in the case where the thickness of the polarizer is large, generation of a through crack can be suppressed.
  • the nano-slit is a process for producing a piece-protecting polarizing film, a step for producing a polarizing film with a pressure-sensitive adhesive layer in which a pressure-sensitive adhesive layer is provided on the piece-protecting polarizing film, and various steps after producing a polarizing film with a pressure-sensitive adhesive layer. It is considered to occur when a mechanical shock is applied to the polarizing film or the polarizing film with the pressure-sensitive adhesive layer using the polarizing film, and is assumed to be generated by a mechanism different from the through crack generated by the thermal shock.
  • the defect due to the nano slit is that when the single protective polarizing film or the polarizing film with the pressure-sensitive adhesive layer is bonded to the glass substrate of the image display panel and placed in a heating environment, the nano slit is in the width direction. Detection is possible by spreading (for example, the presence or absence of light leakage).
  • a transparent layer having a compression elastic modulus at 80 ° C. of 0.1 GPa or more is provided on the other side of the polarizer (the side having no transparent protective film).
  • the piece-protective polarizing film of the present invention and the polarizing film with an adhesive layer using the same satisfy the reduction in thickness by having a transparent layer (compression elastic modulus at 80 ° C. is 0.1 GPa or more).
  • compression elastic modulus at 80 ° C. is 0.1 GPa or more.
  • the single protective polarizing film 10 (in the case where there is no transparent layer 3) has the transparent protective film 2 only on one surface of the polarizer 1.
  • the polarizer 1 and the transparent protective film 2 are laminated via intervening layers such as an adhesive layer, a pressure-sensitive adhesive layer, and an undercoat layer (primer layer).
  • the piece protection polarizing film 10 can laminate
  • the single protective polarizing film 11 (with the transparent layer 3) of the present invention has, on the single protective polarizing film 10, the other side of the polarizer 1 (the surface without the transparent protective film 2).
  • a transparent layer 3 is (directly) provided.
  • the polarizing film 12 with an adhesive layer of this invention has the piece protection polarizing film (with transparent layer) 11 and the adhesive layer 4, as shown in FIG.
  • the pressure-sensitive adhesive layer 4 is provided on the transparent layer 3 side in FIG. 2A and on the transparent protective film 2 side in FIG.
  • the separator 5 can be provided in the adhesive layer 4 of the polarizing film 12 with an adhesive layer of this invention, and the surface protection film 6 can be provided in the other side.
  • the polarizing film 12 with an adhesive layer of FIG. 2 the case where both the separator 5 and the surface protection film 6 are provided is shown.
  • the pressure-sensitive adhesive layer-attached polarizing film 12 having at least the separator 5 (and further having the surface protective film 6) can be used as a wound body, and as described later, for example, the separator 5 is fed out from the wound body.
  • the polarizing film 12 with the pressure-sensitive adhesive layer conveyed by the above is also referred to as a “roll-to-panel method” (hereinafter referred to as “roll-to-panel method”). This is advantageous for application to the specification No. 4406043.
  • As a polarizing film with an adhesive layer the aspect shown to FIG. 2 (A) is preferable from viewpoints, such as suppression of the curvature of the display panel after bonding, generation
  • the surface protective film 6 can be provided on the piece protective polarizing film 10 and the piece protective polarizing film 11 (with a transparent layer).
  • FIG. 3 is a conceptual diagram comparing the nano slit a and the through crack b generated in the polarizer.
  • 3A shows a nano slit a generated in the polarizer 1
  • FIG. 3B shows a through crack b generated in the polarizer 1.
  • the nano slit a is generated by mechanical impact and is partially generated in the absorption axis direction of the polarizer 1.
  • the nano slit a cannot be confirmed at the beginning, but is in a thermal environment (for example, 80 ° C. or 60 ° C., 90% RH), it can be confirmed by the spread in the width direction.
  • it is considered that the nano slit a does not have a progressive property extending in the absorption axis direction of the polarizer.
  • the said nano slit a arises irrespective of the size of a polarizing film.
  • the nano slits a may occur not only independently but also adjacent to each other.
  • the through crack b is generated by a thermal shock (for example, a heat shock test).
  • the through crack has a process of extending in the absorption axis direction of the polarizer where the crack has occurred.
  • the peripheral stress is released, so that the through crack does not occur adjacently.
  • FIG. 4 is an example of a photograph of a cross-sectional view of the piece protective polarizing film 10 or the piece protective polarizing film 11 with a transparent layer related to generation, expansion, and repair of the nano slit a generated in the polarizer.
  • FIG. 4 (A) is an example of a case in which a single protective polarizing film 10 having a transparent protective film 2 via an adhesive layer 2a only on one side of the polarizer 1 and no nanoslit is generated.
  • FIG. 4B is an example when nano slits a are generated in the piece protective polarizing film 10. 4A and 4B are both before heating.
  • FIG.4 (C) is an example of the photograph of sectional drawing after heating the piece protection polarizing film 10 in which the nano slit a has generate
  • FIG.4 (C) it turns out that the nano slit a of the polarizer 1 is expanded by heating.
  • FIG. 4D shows a transparent layered piece in which a transparent layer 3 (thickness 1 ⁇ m, compression elastic modulus at 80 ° C. is 0.1 GPa or more) is formed on the piece protective polarizing film 10 in which the nano slits a are generated. It is an example of the photograph of sectional drawing of the protective polarizing film.
  • a transparent layer 3 thickness 1 ⁇ m, compression elastic modulus at 80 ° C. is 0.1 GPa or more
  • FIG. 4 (E) is a photograph of a cross-sectional view after heating the single-sided protective polarizing film 11 with a transparent layer on which the transparent layer 3 (thickness 1 ⁇ m, compression elastic modulus at 80 ° C. is 0.1 GPa or more) is formed. It is an example.
  • FIG. 4E it can be seen that there is no expansion of the repaired (a ′) nanoslit after heating.
  • FIG. 4 (F) shows a transparent layer 3 ′ (thickness 0.1 ⁇ m, compression elastic modulus at 80 ° C.
  • a polarizer having a thickness of 10 ⁇ m or less is used.
  • the thickness of the polarizer is preferably 8 ⁇ m or less, more preferably 7 ⁇ m or less, and further preferably 6 ⁇ m or less from the viewpoint of reducing the thickness and preventing the occurrence of through cracks.
  • the thickness of the polarizer is preferably 2 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • Such a thin polarizer has less thickness unevenness, excellent visibility, and less dimensional change, and therefore excellent durability against thermal shock.
  • a polarizer using a polyvinyl alcohol resin is used.
  • polarizers include dichroic iodine and dichroic dyes on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films.
  • hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films.
  • examples thereof include polyene-based oriented films such as those obtained by adsorbing substances and uniaxially stretched, polyvinyl alcohol dehydrated products and polyvinyl chloride dehydrochlorinated products.
  • a polarizer composed of a polyvinyl alcohol film and a dichroic material such as iodine is preferable.
  • a polarizer obtained by dyeing a polyvinyl alcohol film with iodine and uniaxially stretching it can be produced, for example, by dyeing polyvinyl alcohol in an aqueous iodine solution and stretching it 3 to 7 times the original length. If necessary, it may contain boric acid, zinc sulfate, zinc chloride, or the like, or may be immersed in an aqueous solution such as potassium iodide. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing.
  • Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching.
  • the film can be stretched even in an aqueous solution such as boric acid or potassium iodide or in a water bath.
  • the polarizer preferably contains boric acid from the viewpoint of stretching stability and optical durability.
  • the content of boric acid contained in the polarizer is preferably 25% by weight or less, more preferably 20% by weight or less, based on the total amount of the polarizer, from the viewpoint of suppressing the generation of through cracks and nano slits and suppressing expansion. Preferably, it is 18% by weight or less, and more preferably 16% by weight or less.
  • the boric acid content with respect to the total amount of the polarizer is preferably 10% by weight or more, and more preferably 12% by weight or more.
  • Patent No. 4751486 Japanese Patent No. 4751481, Patent No. 4815544, Patent No. 5048120, International Publication No. 2014/077599 pamphlet, International Publication No. 2014/077636 Pamphlet, And the thin polarizers obtained from the production methods described therein.
  • the polarizer has an optical characteristic expressed by a single transmittance T and a polarization degree P of the following formula P> ⁇ (10 0.929T-42.4 ⁇ 1) ⁇ 100 (where T ⁇ 42.3), Or It is configured to satisfy the condition of P ⁇ 99.9 (however, T ⁇ 42.3).
  • a polarizer configured so as to satisfy the above-described conditions uniquely has performance required as a display for a liquid crystal television using a large display element. Specifically, the contrast ratio is 1000: 1 or more and the maximum luminance is 500 cd / m 2 or more. As other uses, for example, it is bonded to the viewing side of the organic EL display device.
  • a polarizer configured to satisfy the above conditions has a high orientation of a polymer (for example, a polyvinyl alcohol-based molecule), so that the thickness of the polarizer is 10 ⁇ m or less.
  • the tensile breaking stress in the direction orthogonal to the absorption axis direction is significantly reduced.
  • this invention is especially suitable for the piece protection polarizing film (or polarizing film with an adhesive layer using the same) which employ
  • Patent No. 4751486, Patent in that it can be stretched at a high magnification and the polarization performance can be improved.
  • stretching in a boric-acid aqueous solution as described in the 4751481 specification and the patent 4815544 specification is preferable, and it describes especially in the patent 4751481 specification and the patent 4815544 specification.
  • stretching in the boric-acid aqueous solution which has this is preferable.
  • These thin polarizers can be obtained by a production method including a step of stretching a polyvinyl alcohol-based resin (hereinafter also referred to as PVA-based resin) layer and a stretching resin base material in a laminated state and a step of dyeing.
  • PVA-based resin polyvinyl alcohol-based resin
  • a stretching resin base material in a laminated state
  • dyeing a step of dyeing
  • Transparent protective film As the material constituting the transparent protective film, a material excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like is preferable.
  • polyester polymers such as polyethylene terephthalate and polyethylene naphthalate
  • cellulose polymers such as diacetyl cellulose and triacetyl cellulose
  • acrylic polymers such as polymethyl methacrylate
  • styrene such as polystyrene and acrylonitrile / styrene copolymer (AS resin)
  • AS resin acrylonitrile / styrene copolymer
  • polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers , Polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the above
  • polymer that forms the transparent protective film include polymer blends.
  • the transparent protective film may contain one or more arbitrary appropriate additives.
  • the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a release agent, a coloring inhibitor, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a coloring agent.
  • the content of the thermoplastic resin in the transparent protective film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, still more preferably 60 to 98% by weight, and particularly preferably 70 to 97% by weight. .
  • content of the said thermoplastic resin in a transparent protective film is 50 weight% or less, there exists a possibility that the high transparency etc. which a thermoplastic resin originally has cannot fully be expressed.
  • a retardation film As the transparent protective film, a retardation film, a brightness enhancement film, a diffusion film, and the like can also be used.
  • the retardation film include those having a front retardation of 40 nm or more and / or a retardation having a thickness direction retardation of 80 nm or more.
  • the front phase difference is usually controlled in the range of 40 to 200 nm
  • the thickness direction phase difference is usually controlled in the range of 80 to 300 nm.
  • the retardation film functions also as a polarizer protective film, so that the thickness can be reduced.
  • the retardation film examples include a birefringent film obtained by uniaxially or biaxially stretching a thermoplastic resin film.
  • the stretching temperature, stretching ratio, and the like are appropriately set depending on the retardation value, film material, and thickness.
  • the thickness of the transparent protective film can be appropriately determined, but is generally about 1 to 500 ⁇ m from the viewpoints of workability such as strength and handleability, and thin layer properties. In particular, it is preferably 1 to 300 ⁇ m, more preferably 5 to 200 ⁇ m, and further preferably 5 to 150 ⁇ m, particularly 20 to 100 ⁇ m.
  • Functional surfaces such as a hard coat layer, an antireflection layer, an anti-sticking layer, a diffusion layer or an antiglare layer can be provided on the surface of the transparent protective film to which the polarizer is not adhered (particularly the embodiment shown in FIG. 1).
  • the functional layers such as the hard coat layer, antireflection layer, antisticking layer, diffusion layer and antiglare layer can be provided on the transparent protective film itself, and separately provided separately from the transparent protective film. You can also
  • the transparent protective film and the polarizer are laminated via an intervening layer such as an adhesive layer, an adhesive layer, and an undercoat layer (primer layer). At this time, it is desirable that the both are laminated without an air gap by an intervening layer.
  • an intervening layer such as an adhesive layer, an adhesive layer, and an undercoat layer (primer layer).
  • the adhesive layer is formed with an adhesive.
  • the type of the adhesive is not particularly limited, and various types can be used.
  • the adhesive layer is not particularly limited as long as it is optically transparent. Examples of the adhesive include water-based, solvent-based, hot-melt-based, active energy ray-curable types, and the like. Or an active energy ray hardening-type adhesive agent is suitable.
  • water-based adhesives examples include isocyanate-based adhesives, polyvinyl alcohol-based adhesives, gelatin-based adhesives, vinyl-based latex systems, and water-based polyesters.
  • the water-based adhesive is usually used as an adhesive composed of an aqueous solution, and usually contains 0.5 to 60% by weight of solid content.
  • the active energy ray curable adhesive is an adhesive that cures by an active energy ray such as an electron beam or ultraviolet rays (radical curable type, cationic curable type), for example, in an electron beam curable type or an ultraviolet curable type. Can be used.
  • an active energy ray such as an electron beam or ultraviolet rays (radical curable type, cationic curable type), for example, in an electron beam curable type or an ultraviolet curable type.
  • an active energy ray curable adhesive for example, a photo radical curable adhesive can be used.
  • the photo radical curable active energy ray curable adhesive is used as an ultraviolet curable adhesive, the adhesive contains a radical polymerizable compound and a photo polymerization initiator.
  • the adhesive coating method is appropriately selected depending on the viscosity of the adhesive and the target thickness.
  • coating methods include reverse coaters, gravure coaters (direct, reverse and offset), bar reverse coaters, roll coaters, die coaters, bar coaters, rod coaters and the like.
  • a method such as a dapping method can be appropriately used.
  • the adhesive is preferably applied so that the finally formed adhesive layer has a thickness of 30 to 300 nm.
  • the thickness of the adhesive layer is more preferably 60 to 250 nm.
  • the thickness of the adhesive layer is preferably 0.1 to 200 ⁇ m. More preferably, it is 0.5 to 50 ⁇ m, and still more preferably 0.5 to 10 ⁇ m.
  • an easily bonding layer can be provided between a transparent protective film and an adhesive bond layer.
  • the easy adhesion layer can be formed of, for example, various resins having a polyester skeleton, a polyether skeleton, a polycarbonate skeleton, a polyurethane skeleton, a silicone-based, a polyamide skeleton, a polyimide skeleton, a polyvinyl alcohol skeleton, and the like. These polymer resins can be used alone or in combination of two or more. Moreover, you may add another additive for formation of an easily bonding layer. Specifically, a stabilizer such as a tackifier, an ultraviolet absorber, an antioxidant, and a heat resistance stabilizer may be used.
  • the easy-adhesion layer is usually provided in advance on a transparent protective film, and the easy-adhesion layer side of the transparent protective film and the polarizer are laminated with an adhesive layer.
  • the easy-adhesion layer is formed by coating and drying the material for forming the easy-adhesion layer on the transparent protective film by a known technique.
  • the material for forming the easy-adhesion layer is usually adjusted as a solution diluted to an appropriate concentration in consideration of the thickness after drying and the smoothness of coating.
  • the thickness of the easy-adhesion layer after drying is preferably 0.01 to 5 ⁇ m, more preferably 0.02 to 2 ⁇ m, and still more preferably 0.05 to 1 ⁇ m. Note that a plurality of easy-adhesion layers can be provided, but also in this case, the total thickness of the easy-adhesion layers is preferably in the above range.
  • the pressure-sensitive adhesive layer is formed from a pressure-sensitive adhesive.
  • Various pressure-sensitive adhesives can be used as the pressure-sensitive adhesive, such as rubber-based pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, polyvinylpyrrolidone-based pressure-sensitive adhesives, Examples include acrylamide-based adhesives and cellulose-based adhesives.
  • An adhesive base polymer is selected according to the type of the adhesive.
  • acrylic pressure-sensitive adhesives are preferably used because they are excellent in optical transparency, exhibit appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and are excellent in weather resistance and heat resistance.
  • the undercoat layer (primer layer) is formed to improve the adhesion between the polarizer and the protective film.
  • the material constituting the primer layer is not particularly limited as long as the material exhibits a certain degree of strong adhesion to both the base film and the polyvinyl alcohol-based resin layer.
  • a thermoplastic resin excellent in transparency, thermal stability, stretchability, etc. is used.
  • the thermoplastic resin include an acrylic resin, a polyolefin resin, a polyester resin, a polyvinyl alcohol resin, or a mixture thereof.
  • the transparent layer is provided on the other surface of the polarizer (the surface on which the transparent protective film is not laminated) in the single protective polarizing film in which the transparent protective film is provided only on one surface of the polarizer.
  • the transparent layer has a compression elastic modulus at 80 ° C. of 0.1 GPa or more. Even if nano slits are generated in the polarizer due to mechanical impact and the nano slits are about to expand in the width direction in a thermal environment, the compression elastic modulus at 80 ° C. of the transparent layer is controlled to 0.1 GPa or more by controlling Even under the environment, the mechanical holding ability of the transparent layer can be maintained and the nano slit can be prevented from spreading in the width direction.
  • the compressive elastic modulus of the transparent layer is preferably 0.5 GPa or more, more preferably 2 GPa or more, further 5 GPa or more, and further preferably 10 GPa or more.
  • the compression elastic modulus of the transparent layer can be adjusted by material selection.
  • the compression elastic modulus C in 80 degreeC of a transparent layer is a value measured based on description of an Example.
  • the thickness of the transparent layer is preferably less than 3 ⁇ m, more preferably 2 ⁇ m or less, and further 1.5 ⁇ m or less. It is preferable that the thickness is 1 ⁇ m or less.
  • the thickness of the transparent layer is preferably 0.2 ⁇ m or more, more preferably 0.6 ⁇ m or more, and further preferably 0.8 ⁇ m or more from the viewpoint of the effect of suppressing the expansion of the nanoslit.
  • the transparent layer can be formed from various forming materials.
  • the transparent layer can be formed, for example, by applying a resin material to the polarizer, or can be formed by depositing an inorganic oxide such as SiO 2 on the polarizer by a sputtering method or the like.
  • the transparent layer is preferably formed from a resin material from the viewpoint of simple formation.
  • the transparent layer may be formed of a curable forming material containing a curable component (a cured product of the curable forming material may be used).
  • the curable component can be roughly classified into an active energy ray curable type such as an electron beam curable type, an ultraviolet ray curable type, and a visible light curable type, and a thermosetting type.
  • the ultraviolet curable type and the visible light curable type can be classified into a radical polymerization curable type and a cationic polymerization curable type.
  • an active energy ray having a wavelength range of 10 nm to less than 380 nm is expressed as ultraviolet light
  • an active energy ray having a wavelength range of 380 nm to 800 nm is expressed as visible light.
  • the radical polymerization curable component can be used as a thermosetting curable component.
  • the curable component examples include a radical polymerizable compound.
  • the radical polymerizable compound examples include compounds having a radical polymerizable functional group of a carbon-carbon double bond such as a (meth) acryloyl group and a vinyl group.
  • these curable components either a monofunctional radical polymerizable compound or a bifunctional or higher polyfunctional radical polymerizable compound can be used.
  • these radically polymerizable compounds can be used individually by 1 type or in combination of 2 or more types.
  • compounds having a (meth) acryloyl group are suitable.
  • (meth) acryloyl means an acryloyl group and / or methacryloyl group, and “(meth)” has the same meaning hereinafter.
  • Examples of the monofunctional radical polymerizable compound include (meth) acrylamide derivatives having a (meth) acrylamide group.
  • the (meth) acrylamide derivative is preferable in terms of ensuring adhesion with the polarizer and having a high polymerization rate and excellent productivity.
  • (meth) acrylamide derivatives include, for example, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N N-alkyl group-containing (meth) acrylamide derivatives such as butyl (meth) acrylamide and N-hexyl (meth) acrylamide; N-methylol (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-methylol-N— N-hydroxyalkyl group-containing (meth) acrylamide derivatives such as propane (meth) acrylamide; N-aminoalkyl group-containing (meth) acrylamide derivatives such as aminomethyl (meth) acrylamide and aminoethyl (meth) acrylamide; N-methoxymethyl N-alkoxy group-containing (meth) acrylamide derivatives such as
  • heterocyclic-containing (meth) acrylamide derivative in which the nitrogen atom of the (meth) acrylamide group forms a heterocyclic ring examples include, for example, N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine. Etc.
  • an N-hydroxyalkyl group-containing (meth) acrylamide derivative is preferable from the viewpoint of adhesion to a polarizer, and N-hydroxyethyl (meth) acrylamide is particularly preferable.
  • examples of the monofunctional radical polymerizable compound include various (meth) acrylic acid derivatives having a (meth) acryloyloxy group. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-methyl-2-nitropropyl (meth) acrylate, n-butyl ( (Meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-
  • Examples of the (meth) acrylic acid derivative include cycloalkyl (meth) acrylates such as cyclohexyl (meth) acrylate and cyclopentyl (meth) acrylate; Aralkyl (meth) acrylates such as benzyl (meth) acrylate; 2-isobornyl (meth) acrylate, 2-norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl-2-norbornylmethyl (meth) acrylate, dicyclo Polycyclic (meth) acrylates such as pentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and the like; 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-methoxymethoxyethyl (
  • Examples of the (meth) acrylic acid derivative include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4- Hydroxyalkyl (meth) acrylates such as hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, etc.
  • hydroxyl groups such as [4- (hydroxymethyl) cyclohexyl] methyl acrylate, cyclohexanedimethanol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, etc.
  • Meth) acrylate Epoxy group-containing (meth) acrylates such as glycidyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate glycidyl ether; 2,2,2-trifluoroethyl (meth) acrylate, 2,2,2-trifluoroethylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoropropyl (meth) acrylate, octafluoropentyl (meth) ) Halogen-containing (meth) acrylates such as acrylate, heptadecafluorodecyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate; Alkylaminoalkyl (meth) acrylates such as dimethylaminoethyl (meth) acrylate; 3-Oxetanylmethyl (meth) acrylate
  • examples of the monofunctional radically polymerizable compound include carboxyl group-containing monomers such as (meth) acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
  • carboxyl group-containing monomers such as (meth) acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
  • Examples of the monofunctional radical polymerizable compound include lactam vinyl monomers such as N-vinyl pyrrolidone, N-vinyl- ⁇ -caprolactam, and methyl vinyl pyrrolidone; vinyl pyridine, vinyl piperidone, vinyl pyrimidine, vinyl piperazine, vinyl pyrazine, Examples thereof include vinyl monomers having a nitrogen-containing heterocyclic ring such as vinyl pyrrole, vinyl imidazole, vinyl oxazole and vinyl morpholine.
  • lactam vinyl monomers such as N-vinyl pyrrolidone, N-vinyl- ⁇ -caprolactam, and methyl vinyl pyrrolidone
  • vinyl pyridine vinyl piperidone
  • vinyl pyrimidine vinyl piperazine
  • vinyl pyrazine examples thereof include vinyl monomers having a nitrogen-containing heterocyclic ring such as vinyl pyrrole, vinyl imidazole, vinyl oxazole and vinyl morpholine.
  • a radically polymerizable compound having an active methylene group can be used as the monofunctional radically polymerizable compound.
  • the radical polymerizable compound having an active methylene group is a compound having an active methylene group having an active double bond group such as a (meth) acryl group at the terminal or in the molecule.
  • the active methylene group include an acetoacetyl group, an alkoxymalonyl group, and a cyanoacetyl group.
  • the active methylene group is preferably an acetoacetyl group.
  • radical polymerizable compound having an active methylene group examples include 2-acetoacetoxyethyl (meth) acrylate, 2-acetoacetoxypropyl (meth) acrylate, 2-acetoacetoxy-1-methylethyl (meth) acrylate, and the like.
  • Examples include acrylamide, N- (4-acetoacetoxymethylbenzyl) acrylamide, and N- (2-acetoacetylaminoethyl) acrylamide.
  • the radical polymerizable compound having an active methylene group is preferably acetoacetoxyalkyl (meth) acrylate.
  • Examples of the bifunctional or higher polyfunctional radical polymerizable compound include tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 -Nonanediol di (meth) acrylate, 1,10-decanediol diacrylate, 2-ethyl-2-butylpropanediol di (meth) acrylate, bisphenol A di (meth) acrylate, bisphenol A ethylene oxide adduct di (meth) ) Acrylate, bisphenol A propylene oxide adduct di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, neopentyl glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) Acryte, cyclic trimethylol
  • Aronix M-220, M-306 manufactured by Toagosei Co., Ltd.
  • light acrylate 1,9ND-A manufactured by Kyoeisha Chemical Co., Ltd.
  • light acrylate DGE-4A manufactured by Kyoeisha Chemical Co., Ltd.
  • light acrylate DCP- A manufactured by Kyoeisha Chemical Co., Ltd.
  • SR-531 manufactured by Sartomer
  • CD-536 manufactured by Sartomer
  • various epoxy (meth) acrylates, urethane (meth) acrylates, polyester (meth) acrylates, various (meth) acrylate monomers, and the like are included as necessary.
  • the radical polymerizable compound is preferably used in combination with a monofunctional radical polymerizable compound and a polyfunctional radical polymerizable compound from the viewpoint of achieving both adhesion to the polarizer and optical durability.
  • the radical polymerization curable forming material can be used as an active energy ray curable forming material or a thermosetting forming material.
  • the active energy ray curable forming material does not need to contain a photopolymerization initiator, but when using ultraviolet rays or visible light for the active energy ray, It preferably contains a photopolymerization initiator.
  • the curable component when used as a thermosetting component, the forming material preferably contains a thermal polymerization initiator.
  • the photopolymerization initiator in the case of using the radical polymerizable compound is appropriately selected depending on the active energy ray.
  • a photopolymerization initiator for ultraviolet light or visible light cleavage is used.
  • photopolymerization initiator examples include benzophenone compounds such as benzyl, benzophenone, benzoylbenzoic acid, 3,3′-dimethyl-4-methoxybenzophenone; 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2 -Propyl) ketone, aromatic ketone compounds such as ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropiophenone, ⁇ -hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy- Acetophenone compounds such as 2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- (methylthio) -phenyl] -2-morpholinopropane-1; benzoin methyl ether; Benzoin ethyl ether, benzoin Benzoin ether compounds such as isopropyl ether, benzoin butyl ether and ani
  • the blending amount of the photopolymerization initiator is 20 parts by weight or less with respect to 100 parts by weight of the total amount of the curable component (radical polymerizable compound).
  • the blending amount of the photopolymerization initiator is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, and further preferably 0.1 to 5 parts by weight.
  • a photopolymerization initiator that is particularly sensitive to light of 380 nm or more is used. It is preferable to use it.
  • a photopolymerization initiator that is highly sensitive to light of 380 nm or more will be described later.
  • the compound represented by following General formula (1) (Wherein R 1 and R 2 represent —H, —CH 2 CH 3 , —iPr or Cl, and R 1 and R 2 may be the same or different), respectively, or a general formula ( It is preferable to use together the compound represented by 1) and a photopolymerization initiator that is highly sensitive to light of 380 nm or more, which will be described later.
  • the adhesion is excellent as compared with the case where a photopolymerization initiator having high sensitivity to light of 380 nm or more is used alone.
  • diethylthioxanthone in which R 1 and R 2 are —CH 2 CH 3 is particularly preferable.
  • the composition ratio of the compound represented by the general formula (1) in the forming material is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total amount of the curable component, and preferably 0.5 to 4 parts. More preferred are parts by weight, and even more preferred is 0.9 to 3 parts by weight.
  • polymerization initiators include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, etc. Among them, ethyl 4-dimethylaminobenzoate is particularly preferable.
  • a polymerization initiation assistant When a polymerization initiation assistant is used, its addition amount is usually 0 to 5 parts by weight, preferably 0 to 4 parts by weight, most preferably 0 to 3 parts by weight, based on 100 parts by weight of the total amount of the curable component. is there.
  • a known photopolymerization initiator can be used in combination as necessary. Since the transparent protective film having UV absorbing ability does not transmit light of 380 nm or less, it is preferable to use a photopolymerization initiator that is highly sensitive to light of 380 nm or more as the photopolymerization initiator.
  • 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine Oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole) 1-yl) -phenyl) titanium and the like.
  • a photopolymerization initiator in addition to the photopolymerization initiator of the general formula (1), a compound represented by the following general formula (2); Wherein R 3 , R 4 and R 5 represent —H, —CH 3 , —CH 2 CH 3 , —iPr or Cl, and R 3 , R 4 and R 5 may be the same or different. It is preferable to use it.
  • the compound represented by the general formula (2) 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (trade name: IRGACURE907 manufacturer: BASF) which is also a commercial product is suitable. Can be used.
  • 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (trade name: IRGACURE369 manufacturer: BASF)
  • 2- (dimethylamino) -2-[(4-methylphenyl) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (trade name: IRGACURE379 manufacturer: BASF) is preferred because of its high sensitivity.
  • a radical polymerizable compound having an active methylene group when used as the radical polymerizable compound, it is preferably used in combination with a radical polymerization initiator having a hydrogen abstraction function.
  • radical polymerization initiator having a hydrogen abstracting action examples include thioxanthone radical polymerization initiators and benzophenone radical polymerization initiators.
  • the radical polymerization initiator is preferably a thioxanthone radical polymerization initiator.
  • examples of the thioxanthone radical polymerization initiator include compounds represented by the above general formula (1).
  • Specific examples of the compound represented by the general formula (1) include thioxanthone, dimethylthioxanthone, diethylthioxanthone, isopropylthioxanthone, and chlorothioxanthone.
  • diethylthioxanthone in which R 1 and R 2 are —CH 2 CH 3 is particularly preferable.
  • the radical polymerizable compound having an active methylene group and a radical polymerization initiator having a hydrogen abstraction function when the total amount of the curable component is 100% by weight, It is preferable to contain 1 to 50% by weight of the radical polymerizable compound having an active methylene group and 0.1 to 10 parts by weight of the radical polymerization initiator with respect to 100 parts by weight of the total amount of the curable component.
  • thermal polymerization initiator those in which polymerization does not start by thermal cleavage when the adhesive layer is formed are preferable.
  • thermal polymerization initiator those having a 10-hour half-life temperature of 65 ° C. or higher, more preferably 75 to 90 ° C. are preferable.
  • the half-life is an index representing the decomposition rate of the polymerization initiator and refers to the time until the remaining amount of the polymerization initiator is halved.
  • the decomposition temperature for obtaining a half-life at an arbitrary time and the half-life time at an arbitrary temperature are described in the manufacturer catalog, for example, “Organic peroxide catalog 9th edition by Nippon Oil & Fats Co., Ltd.” (May 2003) ".
  • thermal polymerization initiator examples include lauroyl peroxide (10 hour half-life temperature: 64 ° C.), benzoyl peroxide (10 hour half-life temperature: 73 ° C.), 1,1-bis (t-butylperoxy) -3.
  • thermal polymerization initiator examples include 2,2′-azobisisobutyronitrile (10 hour half-life temperature: 67 ° C.), 2,2′-azobis (2-methylbutyronitrile) (10 hours). And azo compounds such as 1,1-azobis-cyclohexane-1-carbonitrile (10 hour half-life temperature: 87 ° C.).
  • the blending amount of the thermal polymerization initiator is 0.01 to 20 parts by weight with respect to 100 parts by weight of the total amount of the curable component (radical polymerizable compound).
  • the blending amount of the thermal polymerization initiator is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 3 parts by weight.
  • Examples of the curable component of the cationic polymerization curable forming material include compounds having an epoxy group or an oxetanyl group.
  • the compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various generally known curable epoxy compounds can be used.
  • a preferable epoxy compound a compound having at least two epoxy groups and at least one aromatic ring in the molecule (aromatic epoxy compound), or at least two epoxy groups in the molecule, at least one of them. Examples thereof include a compound (alicyclic epoxy compound) formed between two adjacent carbon atoms constituting an alicyclic ring.
  • the cationic polymerization curable forming material contains the epoxy compound and the oxetane compound described above as the curable component, and both of these are cured by cationic polymerization, and therefore, a photocationic polymerization initiator is blended therein.
  • This cationic photopolymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and starts a polymerization reaction of an epoxy group or an oxetanyl group.
  • the curable forming material according to the present invention preferably contains the following components.
  • the active energy ray-curable forming material according to the present invention can contain an acrylic oligomer obtained by polymerizing a (meth) acrylic monomer, in addition to the curable component related to the radical polymerizable compound.
  • an acrylic oligomer in the active energy ray-curable forming material curing shrinkage when irradiating and curing the active energy ray to the transparent layer is reduced, and the transparent layer, an adherend such as a polarizer, and the like The interfacial stress can be reduced. As a result, it is possible to suppress a decrease in adhesiveness between the adhesive layer and the adherend.
  • the content of the acrylic oligomer is preferably 20 parts by weight or less and more preferably 15 parts by weight or less with respect to 100 parts by weight of the total amount of the curable component.
  • the acrylic oligomer is preferably contained in an amount of 3 parts by weight or more, more preferably 5 parts by weight or more, based on 100 parts by weight of the total amount of the curable component.
  • the active energy ray-curable forming material preferably has a low viscosity in consideration of workability and uniformity during coating, and thus an acrylic oligomer obtained by polymerizing a (meth) acrylic monomer also has a low viscosity. It is preferable.
  • the acrylic oligomer having a low viscosity and capable of preventing curing shrinkage of the transparent layer preferably has a weight average molecular weight (Mw) of 15000 or less, more preferably 10,000 or less, and particularly preferably 5000 or less. .
  • the weight average molecular weight (Mw) of the acrylic oligomer is preferably 500 or more, more preferably 1000 or more, and preferably 1500 or more. Particularly preferred.
  • Specific examples of the (meth) acrylic monomer constituting the acrylic oligomer include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-methyl- 2-nitropropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, S-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (Meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutanethacrylate, methyl (meth) acrylate,
  • acrylic oligomer examples include “ARUFON” manufactured by Toagosei Co., Ltd., “Act Flow” manufactured by Soken Chemical Co., Ltd., “JONCRYL” manufactured by BASF Japan.
  • the active energy ray-curable forming material may contain a photoacid generator.
  • the active energy ray-curable forming material contains a photoacid generator, the water resistance and durability of the transparent layer can be dramatically improved as compared to the case where no photoacid generator is contained.
  • the photoacid generator can be represented by the following general formula (3).
  • onium salts constituting the photoacid generator include PF 6 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SbCl 6 ⁇ , BiCl 5 ⁇ , SnCl 6 ⁇ , ClO 4 ⁇ , dithiocarbamate anion, SCN ⁇ . It is an onium salt comprising an anion selected from more.
  • the content of the photoacid generator is 10 parts by weight or less, preferably 0.01 to 10 parts by weight, and preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the total amount of the curable component. More preferred is 0.1 to 3 parts by weight.
  • the formation of the transparent layer by the curable forming material is performed by coating the curable forming material on the surface of the polarizer and then curing.
  • the polarizer may be subjected to a surface modification treatment before coating the curable forming material.
  • Specific examples of the treatment include corona treatment, plasma treatment, and saponification treatment.
  • the coating method of the curable forming material is appropriately selected depending on the viscosity of the curable forming material and the target thickness.
  • coating methods include reverse coaters, gravure coaters (direct, reverse and offset), bar reverse coaters, roll coaters, die coaters, bar coaters, rod coaters and the like.
  • a method such as a dapping method can be appropriately used.
  • the curable forming material is used as an active energy ray curable forming material or a thermosetting forming material.
  • the active energy ray curable forming material can be used in an electron beam curable type, an ultraviolet curable type, or a visible light curable type.
  • the aspect of the curable forming material is preferably an active energy ray curable forming material rather than a thermosetting forming material from the viewpoint of productivity, and moreover, the active energy ray curable forming material is a visible light curable forming material. It is preferable from the viewpoint of productivity.
  • active energy ray curing type In the active energy ray curable forming material, after applying the active energy ray curable forming material to the polarizer, the active energy ray (electron beam, ultraviolet ray, visible light, etc.) is irradiated, and the active energy ray curable forming material is applied. Curing to form a transparent layer.
  • the irradiation direction of active energy rays can be irradiated from any appropriate direction. Preferably, it irradiates from the transparent layer side.
  • the acceleration voltage is preferably 5 kV to 300 kV, and more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the deepest part of the transparent layer and may be insufficiently cured. If the acceleration voltage exceeds 300 kV, the penetration force through the sample is too strong, and a transparent protective film or polarizer May cause damage.
  • the irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy.
  • the adhesive becomes insufficiently cured, and when it exceeds 100 kGy, the transparent protective film and the polarizer are damaged, resulting in a decrease in mechanical strength and yellowing, thereby obtaining predetermined optical characteristics. I can't.
  • the electron beam irradiation is usually performed in an inert gas, but if necessary, it may be performed in the atmosphere or under a condition where a little oxygen is introduced.
  • active energy rays containing visible light having a wavelength range of 380 nm to 450 nm, particularly active energy rays having the largest irradiation amount of visible light having a wavelength range of 380 nm to 450 nm are used as active energy rays. It is preferable.
  • active energy ray according to the present invention a gallium-encapsulated metal halide lamp and an LED light source that emits light in the wavelength range of 380 to 440 nm are preferable.
  • low pressure mercury lamp medium pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, incandescent lamp, xenon lamp, halogen lamp, carbon arc lamp, metal halide lamp, fluorescent lamp, tungsten lamp, gallium lamp, excimer laser or sunlight
  • a light source including visible light can be used, and ultraviolet light having a wavelength shorter than 380 nm can be blocked using a band pass filter.
  • thermosetting type forming material after bonding a polarizer and a transparent protective film, by heating, polymerization is started by a thermal polymerization initiator to form a cured product layer.
  • the heating temperature is set according to the thermal polymerization initiator, but is about 60 to 200 ° C., preferably 80 to 150 ° C.
  • a cyanoacrylate-based forming material for example, an epoxy-based forming material, or an isocyanate-based forming material can be used.
  • Examples of the cyanoacrylate-based forming material include alkyl- ⁇ -cyanoacrylates such as methyl- ⁇ -cyanoacrylate, ethyl- ⁇ -cyanoacrylate, butyl- ⁇ -cyanoacrylate, octyl- ⁇ -cyanoacrylate, and cyclohexyl- ⁇ -. And cyanoacrylate and methoxy- ⁇ -cyanoacrylate.
  • alkyl- ⁇ -cyanoacrylates such as methyl- ⁇ -cyanoacrylate, ethyl- ⁇ -cyanoacrylate, butyl- ⁇ -cyanoacrylate, octyl- ⁇ -cyanoacrylate, and cyclohexyl- ⁇ -.
  • cyanoacrylate and methoxy- ⁇ -cyanoacrylate methoxy- ⁇ -cyanoacrylate.
  • those used as a cyanoacrylate-based adhesive can be used as the cyanoacrylate-based adhesive can be used.
  • the epoxy-based forming material may be used alone as an epoxy resin or may contain an epoxy curing agent. When the epoxy resin is used alone, it is cured by adding a photopolymerization initiator and irradiating active energy rays. When an epoxy curing agent is added as an epoxy-based forming material, for example, those used as an epoxy-based adhesive can be used.
  • the usage form of the epoxy-based forming material can be used as a one-component type containing an epoxy resin and its curing agent, but it is used as a two-component type in which a curing agent is blended with the epoxy resin.
  • Epoxy-based forming materials are usually used as solutions.
  • the solution may be a solvent system or an aqueous system such as an emulsion, a colloidal dispersion, or an aqueous solution.
  • the epoxy resin examples include various compounds containing two or more epoxy groups in the molecule.
  • the epoxy resin examples include various compounds containing two or more epoxy groups in the molecule.
  • bisphenol type epoxy resin aliphatic type epoxy resin, aromatic type epoxy resin, halogenated bisphenol type epoxy resin, biphenyl And epoxy resin.
  • an epoxy resin can be suitably determined according to an epoxy equivalent and the number of functional groups, the epoxy equivalent of 500 or less is used suitably from a durable viewpoint.
  • the curing agent for the epoxy resin is not particularly limited, and various types such as phenol resin type, acid anhydride type, carboxylic acid type, and polyamine type can be used.
  • phenol resin-based curing agent for example, phenol novolak resin, bisphenol novolak resin, xylylene phenol resin, cresol novolak resin, or the like is used.
  • acid anhydride-based curing agents include: maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, succinic anhydride, and the like.
  • carboxylic acid-based curing agents include carboxylic acids such as pyromellitic acid and trimellitic acid.
  • Examples thereof include block carboxylic acids added with acids and vinyl ether.
  • an epoxy-type two-component formation material what consists of two liquids of an epoxy resin and a polythiol, what consists of two liquids of an epoxy resin and polyamide, etc. can be used, for example.
  • the blending amount of the curing agent varies depending on the equivalent to the epoxy resin, but is preferably 30 to 70 parts by weight, more preferably 40 to 60 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • curing accelerators can be used for the epoxy-based forming material.
  • the curing accelerator include various imidazole compounds and derivatives thereof, dicyandiamide, and the like.
  • Examples of the isocyanate-based forming material include those used as a crosslinking agent in the formation of the pressure-sensitive adhesive layer.
  • As the isocyanate-based crosslinking agent a compound having at least two isocyanate groups can be used.
  • the polyisocyanate compound can be used as an isocyanate-based forming material.
  • Examples include those reacted with polyhydric alcohols and polyhydric amines.
  • isocyanate-based crosslinking agent those having three or more isocyanate groups such as isocyanuric acid tris (6-inocyanate hexyl) are preferable.
  • isocyanate type formation material what is used as an isocyanate type adhesive agent is mention
  • the isocyanate-based forming materials in the present invention, it is preferable to use those having a rigid structure in which a cyclic structure (benzene ring, cyanurate ring, isocyanurate ring, etc.) accounts for a large proportion in the structure.
  • a cyclic structure benzene ring, cyanurate ring, isocyanurate ring, etc.
  • the isocyanate-based forming material for example, trimethylolpropane-tri-tolylene isocyanate, tris (hexamethylene isocyanate) isocyanurate and the like are preferably used.
  • the said isocyanate type crosslinking agent can also use what provided the protective group to the terminal isocyanate group.
  • Protecting groups include oximes and lactams. In the case where the isocyanate group is protected, the protecting group is dissociated from the isocyanate group by heating, and the isocyanate group reacts.
  • a reaction catalyst can be used to increase the reactivity of the isocyanate group.
  • the reaction catalyst is not particularly limited, but a tin-based catalyst or an amine-based catalyst is suitable.
  • the reaction catalyst can use 1 type (s) or 2 or more types.
  • the amount of the reaction catalyst used is usually 5 parts by weight or less with respect to 100 parts by weight of the isocyanate-based crosslinking agent. When the amount of the reaction catalyst is large, the crosslinking reaction rate increases and foaming of the forming material occurs. Even if the forming material after foaming is used, sufficient adhesion cannot be obtained.
  • a reaction catalyst it is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 4 parts by weight.
  • the tin-based catalyst both inorganic and organic catalysts can be used, but an organic catalyst is preferred.
  • the inorganic tin-based catalyst include stannous chloride and stannic chloride.
  • the organic tin-based catalyst is preferably one having at least one organic group such as an aliphatic group or alicyclic group having a skeleton such as a methyl group, an ethyl group, an ether group or an ester group. Examples include tetra-n-butyltin, tri-n-butyltin acetate, n-butyltin trichloride, trimethyltin hydroxide, dimethyltin dichloride, dibutyltin dilaurate and the like.
  • the amine catalyst is not particularly limited. For example, those having at least one organic group such as an alicyclic group such as quinoclidine, amidine, and diazabicycloundecene are preferable.
  • examples of the amine catalyst include triethylamine.
  • reaction catalysts other than the above include cobalt naphthenate and benzyltrimethylammonium hydroxide.
  • the isocyanate-based forming material is usually used as a solution.
  • the solution may be a solvent system or an aqueous system such as an emulsion, a colloidal dispersion, or an aqueous solution.
  • the organic solvent is not particularly limited as long as the components constituting the forming material are uniformly dissolved. Examples of the organic solvent include toluene, methyl ethyl ketone, ethyl acetate and the like.
  • alcohols such as n-butyl alcohol and isopropyl alcohol and ketones such as acetone can be blended.
  • a dispersant is used, or an isocyanate-based crosslinking agent, a functional group having low reactivity with an isocyanate group such as a carboxylate, a sulfonate, or a quaternary ammonium salt, or an aqueous dispersion such as polyethylene glycol. It can carry out by introduce
  • the formation of the transparent layer by the cyanoacrylate-based forming material, the epoxy-based forming material, or the isocyanate-based forming material can be appropriately selected according to the type of the forming material, but is usually about 30 to 100 ° C., preferably Is carried out by drying at 50 to 80 ° C. for about 0.5 to 15 minutes.
  • the transparent layer can be formed in a time shorter than the above time.
  • the transparent layer may be formed from a forming material that does not contain a curable component.
  • the transparent layer may be formed from a forming material that contains the polyvinyl alcohol-based resin as a main component.
  • the polyvinyl alcohol resin forming the transparent layer may be the same as or different from the polyvinyl alcohol resin contained in the polarizer as long as it is a “polyvinyl alcohol resin”.
  • polyvinyl alcohol resin examples include polyvinyl alcohol.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • polyvinyl alcohol-based resin examples include a saponified product of a copolymer of vinyl acetate and a monomer having copolymerizability.
  • the copolymerizable monomer is ethylene
  • an ethylene-vinyl alcohol copolymer is obtained.
  • the copolymerizable monomer include unsaturated carboxylic acids such as (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, (meth) acrylic acid, and esters thereof; ethylene, propylene, and the like.
  • ⁇ -olefin (meth) allylsulfonic acid (soda), sulfonic acid soda (monoalkylmalate), disulfonic acid soda alkylmalate, N-methylolacrylamide, acrylamide alkylsulfonic acid alkali salt, N-vinylpyrrolidone, N- Examples include vinyl pyrrolidone derivatives.
  • These polyvinyl alcohol resins can be used alone or in combination of two or more.
  • Polyvinyl alcohol obtained by saponifying polyvinyl acetate is preferred from the viewpoint of controlling the heat of crystal fusion of the transparent layer to 30 mj / mg or more and satisfying heat and moisture resistance and water resistance.
  • the saponification degree of the polyvinyl alcohol-based resin can be, for example, 95% or more, but the heat of crystal melting of the transparent layer is controlled to 30 mj / mg or more to satisfy the heat and moisture resistance and water resistance. From the viewpoint, the degree of saponification is preferably 99.0% or more, and more preferably 99.7% or more.
  • the degree of saponification represents the proportion of units that are actually saponified to vinyl alcohol units among the units that can be converted to vinyl alcohol units by saponification, and the residue is a vinyl ester unit.
  • the degree of saponification can be determined according to JIS K 6726-1994.
  • the average degree of polymerization of the polyvinyl alcohol-based resin can be, for example, 500 or more, but the viewpoint of satisfying moisture heat resistance and water resistance by controlling the heat of crystal fusion of the transparent layer to 30 mj / mg or more. Therefore, the average degree of polymerization is preferably 1000 or more, more preferably 1500 or more, and further preferably 2000 or more.
  • the average degree of polymerization of the polyvinyl alcohol resin is measured according to JIS-K6726.
  • a modified polyvinyl alcohol resin having a hydrophilic functional group in the side chain of the polyvinyl alcohol or a copolymer thereof can be used.
  • the hydrophilic functional group include an acetoacetyl group and a carbonyl group.
  • modified polyvinyl alcohol obtained by acetalization, urethanization, etherification, grafting, phosphoric esterification or the like of a polyvinyl alcohol resin can be used.
  • the forming material containing the polyvinyl alcohol-based resin as a main component can contain a curable component (crosslinking agent) and the like.
  • the ratio of the polyvinyl alcohol resin in the transparent layer or the forming material (solid content) is preferably 80% by weight or more, more preferably 90% by weight or more, and further preferably 95% by weight or more.
  • the forming material does not contain a curable component (crosslinking agent) from the viewpoint of easily controlling the heat of crystal fusion of the transparent layer to 30 mj / mg or more.
  • a compound having at least two functional groups having reactivity with the polyvinyl alcohol resin can be used.
  • alkylenediamine having two alkylene groups and two amino groups such as ethylenediamine, triethylenediamine, hexamethylenediamine; tolylene diisocyanate, hydrogenated tolylene diisocyanate, trimethylolpropane tolylene diisocyanate adduct, triphenylmethane triisocyanate, methylene bis (4-Phenylmethane triisocyanate, isophorone diisocyanate and isocyanates such as ketoxime block product or phenol block product thereof; ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin di or triglycidyl ether, 1,6-hexane Diol diglycidyl ether, trimethylolpropane triglycidyl ether, di Epoxies
  • amino-formaldehyde resins and water-soluble dihydrazine are preferred, and the amino-formaldehyde resin is preferably a compound having a methylol group, particularly methylol melamine, which is a compound having a methylol group.
  • hardenable component crosslinking agent
  • the ratio is 20 weight part or less, 10 weight part or less, 5 weight part with respect to 100 weight part of polyvinyl alcohol-type resin. It is preferable that:
  • the forming material is prepared as a solution in which the polyvinyl alcohol resin is dissolved in a solvent.
  • the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide N-methylpyrrolidone, various glycols, polyhydric alcohols such as alcohols, and amines such as ethylenediamine and diethylenetriamine. These may be used alone or in combination of two or more. Among these, it is preferable to use it as an aqueous solution using water as a solvent.
  • the concentration of the polyvinyl alcohol-based resin in the forming material is not particularly limited, but is 0.1 to 15% by weight, preferably 0.5%, in consideration of coating properties and storage stability. ⁇ 10% by weight.
  • a plasticizer for example, polyhydric alcohols such as ethylene glycol and glycerin.
  • the surfactant include nonionic surfactants.
  • coupling agents such as silane coupling agents and titanium coupling agents, various tackifiers, ultraviolet absorbers, antioxidants, heat stabilizers, hydrolysis stabilizers, and other stabilizers can be added.
  • the transparent layer can be formed by applying and drying the forming material on the other surface of the polarizer (the surface on which the transparent protective film is not laminated).
  • the application operation is not particularly limited, and any appropriate method can be adopted.
  • various means such as a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method, etc.) can be employed.
  • Adhesive layer An appropriate pressure-sensitive adhesive can be used for forming the pressure-sensitive adhesive layer, and the type thereof is not particularly limited.
  • Adhesives include rubber adhesives, acrylic adhesives, silicone adhesives, urethane adhesives, vinyl alkyl ether adhesives, polyvinyl alcohol adhesives, polyvinyl pyrrolidone adhesives, polyacrylamide adhesives, Examples thereof include cellulose-based pressure-sensitive adhesives.
  • pressure-sensitive adhesives those having excellent optical transparency, suitable wettability, cohesiveness, and adhesive pressure characteristics, and excellent weather resistance and heat resistance are preferably used.
  • An acrylic pressure-sensitive adhesive is preferably used as one exhibiting such characteristics.
  • the polymerization solvent is dried and removed to form the pressure-sensitive adhesive layer, and then in the embodiment of FIG.
  • the adhesive or the transparent protective film in the embodiment of FIG. 2B or the polarizer (or the transparent protective film in the embodiment of FIG. 2B) in the embodiment of FIG. It is produced by, for example, a method of forming a pressure-sensitive adhesive layer on a polarizer by applying and removing a polymerization solvent by drying.
  • one or more solvents other than the polymerization solvent may be added as appropriate.
  • a silicone release liner is preferably used as the release-treated separator.
  • an appropriate method may be adopted as appropriate according to the purpose.
  • a method of heating and drying the coating film is used.
  • the heating and drying temperature is preferably 40 ° C to 200 ° C, more preferably 50 ° C to 180 ° C, and particularly preferably 70 ° C to 170 ° C.
  • the drying time is preferably 5 seconds to 20 minutes, more preferably 5 seconds to 10 minutes, and particularly preferably 10 seconds to 5 minutes.
  • Various methods are used as a method for forming the pressure-sensitive adhesive layer. Specifically, for example, roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples thereof include an extrusion coating method.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, and is, for example, about 1 to 100 ⁇ m.
  • the thickness is preferably 2 to 50 ⁇ m, more preferably 2 to 40 ⁇ m, and still more preferably 5 to 35 ⁇ m.
  • the pressure-sensitive adhesive layer When the pressure-sensitive adhesive layer is exposed, the pressure-sensitive adhesive layer may be protected with a peeled sheet (separator) until practical use.
  • constituent material of the separator examples include, for example, plastic films such as polyethylene, polypropylene, polyethylene terephthalate, and polyester films, porous materials such as paper, cloth, and nonwoven fabric, nets, foam sheets, metal foils, and laminates thereof.
  • plastic films such as polyethylene, polypropylene, polyethylene terephthalate, and polyester films
  • porous materials such as paper, cloth, and nonwoven fabric, nets, foam sheets, metal foils, and laminates thereof.
  • a thin film can be used, but a plastic film is preferably used because of its excellent surface smoothness.
  • the plastic film is not particularly limited as long as it can protect the pressure-sensitive adhesive layer.
  • a polyethylene film, a polypropylene film, a polybutene film, a polybutadiene film, a polymethylpentene film, a polyvinyl chloride film, and a vinyl chloride co-polymer are used.
  • examples thereof include a polymer film, a polyethylene terephthalate film, a polybutylene terephthalate film, a polyurethane film, and an ethylene-vinyl acetate copolymer film.
  • the thickness of the separator is usually about 5 to 200 ⁇ m, preferably about 5 to 100 ⁇ m.
  • mold release and antifouling treatment with a silicone type, fluorine type, long chain alkyl type or fatty acid amide type release agent, silica powder, etc., coating type, kneading type, vapor deposition type It is also possible to carry out antistatic treatment such as.
  • the release property from the pressure-sensitive adhesive layer can be further improved by appropriately performing a release treatment such as silicone treatment, long-chain alkyl treatment, or fluorine treatment on the surface of the separator.
  • a surface protective film can be provided on the single protective polarizing film and the polarizing film with the pressure-sensitive adhesive layer.
  • the surface protective film usually has a base film and an adhesive layer, and protects the polarizer via the adhesive layer.
  • a film material having isotropic property or close to isotropic property is selected from the viewpoints of inspection property and manageability.
  • film materials include polyester resins such as polyethylene terephthalate film, cellulose resins, acetate resins, polyether sulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, acrylic resins, and the like. Examples thereof include transparent polymers such as resins. Of these, polyester resins are preferred.
  • the base film can be used as a laminate of one kind or two or more kinds of film materials, and a stretched product of the film can also be used.
  • the thickness of the base film is generally 500 ⁇ m or less, preferably 10 to 200 ⁇ m.
  • the pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer of the surface protective film includes a (meth) acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or a rubber-based pressure-sensitive adhesive. Can be appropriately selected and used. From the viewpoints of transparency, weather resistance, heat resistance and the like, an acrylic pressure-sensitive adhesive having an acrylic polymer as a base polymer is preferable.
  • the thickness (dry film thickness) of the pressure-sensitive adhesive layer is determined according to the required adhesive force. Usually, it is about 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the surface protective film can be provided with a release treatment layer on the surface opposite to the surface on which the pressure-sensitive adhesive layer is provided on the base film, using a low adhesion material such as silicone treatment, long-chain alkyl treatment, or fluorine treatment. .
  • the piece-protecting polarizing film and the polarizing film with a pressure-sensitive adhesive layer of the present invention can be used as an optical film laminated with another optical layer in practical use.
  • the optical layer is not particularly limited.
  • a liquid crystal display device such as a reflection plate, a semi-transmission plate, a retardation plate (including wavelength plates such as 1/2 and 1/4), and a viewing angle compensation film.
  • One or more optical layers that may be used can be used.
  • a reflective polarizing film or a semi-transmissive polarizing film in which a reflective plate or a semi-transmissive reflective plate is further laminated on the piece protective polarizing film of the present invention an elliptical polarizing film in which a retardation plate is further laminated on the polarizing film, or A circular viewing film, a wide viewing angle polarizing film in which a viewing angle compensation film is further laminated on the polarizing film, or a polarizing film in which a brightness enhancement film is further laminated on the polarizing film are preferable.
  • An optical film obtained by laminating the above optical layer on a single protective polarizing film or a polarizing film with a pressure-sensitive adhesive layer can be formed by a method of sequentially laminating separately in the manufacturing process of a liquid crystal display device, etc.
  • the optical film is excellent in quality stability and assembly work, and has the advantage of improving the manufacturing process of liquid crystal display devices and the like.
  • an appropriate adhesive means such as a pressure-sensitive adhesive layer can be used.
  • their optical axes can be arranged at an appropriate angle depending on the intended retardation characteristics and the like.
  • the piece protective polarizing film, the polarizing film with an adhesive layer or the optical film of the present invention can be preferably used for forming various image display devices such as a liquid crystal display device and an organic EL display device.
  • the liquid crystal display device can be formed according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing film with an adhesive layer or an optical film, and an illumination system as necessary, and incorporating a drive circuit.
  • a piece-protecting polarizing film, a polarizing film with a pressure-sensitive adhesive layer or an optical film according to the present invention is used.
  • As the liquid crystal cell an arbitrary type such as an IPS type or a VA type can be used, but is particularly suitable for the IPS type.
  • liquid crystal display devices such as a liquid crystal display device in which a single protective polarizing film, a polarizing film with an adhesive layer or an optical film are arranged on one or both sides of a liquid crystal cell, or a backlight or reflector used in an illumination system are formed.
  • the polarizing film with a pressure-sensitive adhesive layer or the optical film according to the present invention can be installed on one side or both sides of the liquid crystal cell.
  • a single protective polarizing film, a polarizing film with an adhesive layer, or an optical film on both sides they may be the same or different.
  • a single layer or a suitable part such as a diffusing plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusing plate, a backlight, etc.
  • a diffusing plate for example, a diffusing plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusing plate, a backlight, etc.
  • a protective plate such as a prism array, a lens array sheet, a light diffusing plate, a backlight, etc.
  • a prism array such as a prism array, a lens array sheet, a light diffusing plate, a backlight, etc.
  • the above image display device is an image of the polarizing film with the pressure-sensitive adhesive layer fed out from the wound body (roll) of the polarizing film with the pressure-sensitive adhesive layer of the present invention and conveyed by the separator through the pressure-sensitive adhesive layer. It is preferably manufactured by a continuous manufacturing method (roll-to-panel method) including a step of continuously bonding to the surface of the display panel.
  • the polarizing film with a pressure-sensitive adhesive layer of the present invention is a very thin film, it is cut into a sheet (sheet-fed) and then bonded to the image display panel one by one (“sheet-to-panel method”) According to the above), it is difficult to handle the sheet when it is transported or bonded to the display panel, and the polarizing film (sheet) with the adhesive layer is subjected to a large mechanical impact (for example, bending due to adsorption) in these processes. Risk increases. In order to reduce such a risk, it is necessary to take another measure such as using a thick surface protective film having a thickness of 50 ⁇ m or more.
  • the polarizing film with the pressure-sensitive adhesive layer is stably conveyed from the roll to the image display panel by the continuous separator without being cut into a sheet (sheet cutting), Since it is directly bonded to the image display panel, the risk can be greatly reduced without using a thick surface protective film. As a result, it is possible to continuously produce an image display device in which not only defects due to the generation of nanoslits before the formation of the transparent layer but also defects due to the generation of nanoslits after the formation of the transparent layer are effectively suppressed.
  • FIG. 8 is a schematic diagram showing an example of a continuous manufacturing system of a liquid crystal display device adopting a roll-to-panel method.
  • the continuous manufacturing system 100 of the liquid crystal display device includes a series of transport units X that transport the liquid crystal display panel P, a first polarizing film supply unit 101a, a first bonding unit 201a, and a second polarizing film supply. Part 101b and 2nd pasting part 201b are included.
  • the wound body (first roll) 20a of the polarizing film with the first pressure-sensitive adhesive layer and the wound body (second roll) 20b of the polarizing film with the second pressure-sensitive adhesive layer have an absorption axis in the longitudinal direction. And the thing of the aspect as described in FIG. 2 (A) is used.
  • the transport unit X transports the liquid crystal display panel P.
  • the conveyance unit X is configured to include a plurality of conveyance rollers, a suction plate, and the like.
  • the transport unit X is an arrangement in which the placement relationship between the long side and the short side of the liquid crystal display panel P is switched between the first bonding unit 201a and the second bonding unit 201b with respect to the transport direction of the liquid crystal display panel P.
  • a replacement unit for example, the liquid crystal display panel P is rotated 90 ° horizontally 300 is included. Thereby, with respect to the liquid crystal display panel P, the polarizing film 21a with the 1st adhesive layer and the polarizing film 21b with the 2nd adhesive layer can be bonded together in the crossed Nicols relationship.
  • the first polarizing film supply unit 101a continuously feeds the first adhesive layer-attached polarizing film (with a surface protective film) 21a fed from the first roll 20a and conveyed by the separator 5a to the first bonding unit 201a. To do.
  • the first polarizing film supply unit 101a includes a first feeding unit 151a, a first cutting unit 152a, a first peeling unit 153a, a first winding unit 154a, and a plurality of conveying roller units, an accumulating unit such as a dancer roll, and the like. Have.
  • the first feeding portion 151a has a feeding shaft on which the first roll 20a is installed, and feeds the strip-shaped pressure-sensitive adhesive layer-attached polarizing film 21a provided with the separator 5a from the first roll 20a.
  • the first cutting unit 152a has cutting means and suction means such as a cutter and a laser device.
  • a strip-like pressure-sensitive adhesive layer-attached polarizing film 21a in which a plurality of score lines are formed in the width direction with a predetermined length is laminated on the separator 5a (an optical film roll with a notch). ) Is not required (the same applies to the second cutting portion 152b described later).
  • the 1st peeling part 153a peels the polarizing film 21a with a 1st adhesive layer from the separator 5a by folding up with the separator 5a inside.
  • Examples of the first peeling portion 153a include a wedge-shaped member and a roller.
  • the first winding unit 154a winds up the separator 5a from which the first pressure-sensitive adhesive layer-attached polarizing film 21a has been peeled off.
  • the first winding unit 154a has a winding shaft on which a roll for winding the separator 5a is installed.
  • the 1st bonding part 201a is the liquid crystal display panel P conveyed by the conveyance part X, the polarizing film 21a with the 1st adhesive layer which peeled the polarizing film 21a with the 1st adhesive layer peeled by the 1st peeling part 153a. Are continuously bonded through the pressure-sensitive adhesive layer (first bonding step).
  • the 1st bonding part 81 has a pair of bonding rollers, and at least one of the bonding rollers is configured by a drive roller.
  • the 2nd polarizing film supply part 101b is continuously supplied to the 2nd bonding part 201b by the 2nd bonding part 201b with the 2nd adhesive film layered polarizing film (with surface protection film) 21b which was drawn
  • the second polarizing film supply unit 101b includes a second feeding unit 151b, a second cutting unit 152b, a second peeling unit 153b, a second winding unit 154b, and a plurality of conveying roller units, an accumulating unit such as a dancer roll, and the like. Have.
  • the second feeding portion 151b, the second cutting portion 152b, the second peeling portion 153b, and the second winding portion 154b are respectively the first feeding portion 151a, the first cutting portion 152a, the first peeling portion 153a, and the first winding. It has the same configuration and function as the taking part 154a.
  • the 2nd bonding part 201b is the liquid crystal display panel P conveyed by the conveyance part X.
  • the 2nd adhesive layer-attached polarizing film 21b peeled off by the 2nd peeling part 153b, the 2nd adhesive layer-attached polarizing film 21b Are continuously bonded through the pressure-sensitive adhesive layer (second bonding step).
  • the 2nd bonding part 201b has a pair of bonding rollers, and at least one of the bonding rollers is comprised with a drive roller.
  • ⁇ Strip protection polarizing film A> (Preparation of polarizer A0)
  • IPA copolymerized PET amorphous isophthalic acid copolymerized polyethylene terephthalate (IPA copolymerized PET) film (thickness: 100 ⁇ m) having a water absorption of 0.75% and Tg of 75 ° C. is subjected to corona treatment.
  • Alcohol polymerization degree 4200, saponification degree 99.2 mol
  • acetoacetyl-modified PVA polymerization degree 1200, acetoacetyl modification degree 4.6%, saponification degree 99.0 mol% or more, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • aqueous solution containing 9: 1 ratio of the trade name “Gosefimer Z200”) was applied and dried at 25 ° C. to form a PVA-based resin layer having a thickness of 11 ⁇ m, thereby preparing a laminate.
  • the obtained laminate was uniaxially stretched in the longitudinal direction (longitudinal direction) 2.0 times between rolls having different peripheral speeds in an oven at 120 ° C. (air-assisted stretching process).
  • the laminate was immersed in an insolubilization bath (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds (insolubilization treatment).
  • boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water.
  • Crosslinking treatment Thereafter, the laminate was immersed in a boric acid aqueous solution (an aqueous solution obtained by blending 4 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 70 ° C.
  • uniaxial stretching was performed between rolls having different peripheral speeds in the longitudinal direction (longitudinal direction) so that the total stretching ratio was 5.5 times (in-water stretching treatment).
  • the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 30 ° C. (cleaning treatment).
  • a cleaning bath an aqueous solution obtained by blending 4 parts by weight of potassium iodide with respect to 100 parts by weight of water
  • cleaning treatment a liquid temperature of 30 ° C.
  • Polarizers A1 to A8 were produced in the same manner as the production of the polarizer A0 except that the production conditions for the polarizer A0 were changed as shown in Table 1.
  • Table 1 shows the thickness, optical characteristics (single transmittance, polarization degree), and boric acid concentration of the polarizers A1 to A8.
  • Transparent protective film A (meth) acrylic resin film having a lactone ring structure having a thickness of 40 ⁇ m was subjected to corona treatment on the easy adhesion treated surface.
  • An ultraviolet curable adhesive was prepared by mixing 40 parts by weight of N-hydroxyethylacrylamide (HEAA), 60 parts by weight of acryloylmorpholine (ACMO), and 3 parts by weight of a photoinitiator “IRGACURE 819” (manufactured by BASF).
  • HEAA N-hydroxyethylacrylamide
  • ACMO acryloylmorpholine
  • UVGACURE 819 a photoinitiator
  • ⁇ Single protective polarizing film C> Preparation of polarizer C
  • IPA copolymerized PET film amorphous isophthalic acid copolymerized polyethylene terephthalate (IPA copolymerized PET) film (thickness: 130 ⁇ m) having a water absorption of 0.75% and Tg of 75 ° C. is subjected to corona treatment.
  • Alcohol polymerization degree 4200, saponification degree 99.2 mol
  • acetoacetyl-modified PVA polymerization degree 1200, acetoacetyl modification degree 4.6%, saponification degree 99.0 mol% or more, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • aqueous solution containing 9: 1 ratio of the trade name “Gosefimer Z200”) was applied and dried at 25 ° C. to form a PVA-based resin layer having a thickness of 11 ⁇ m, thereby preparing a laminate.
  • the obtained laminate was contracted 30% in the first direction (MD) at 110 ° C. using a simultaneous biaxial stretching machine, and at the same time, it was stretched in the air in the second direction (TD) by a factor of 5.0. (Stretching treatment).
  • the laminate was immersed for 40 seconds in an iodine aqueous solution (iodine concentration: 0.2 wt%, potassium iodide concentration: 1.4 wt%) at 25 ° C. (dyeing treatment).
  • the layered product after dyeing was immersed in a 60 ° C. boric acid aqueous solution (boric acid concentration: 5% by weight, potassium iodide concentration: 5% by weight) for 80 seconds (crosslinking treatment).
  • the laminate was immersed in a 25 ° C. aqueous potassium iodide solution (potassium iodide concentration: 5% by weight) for 20 seconds (cleaning treatment).
  • cleaning treatment As a result, an optical film laminate including a polarizer having a thickness of 3 ⁇ m was obtained.
  • a protective film (thickness: 40 ⁇ m, manufactured by Fuji Film, trade name “Z-TAC ZRD40SL”) was bonded to the polarizer side of the laminate through a vinyl alcohol adhesive. Subsequently, the amorphous PET base material was peeled off to produce a piece protective polarizing film C using a thin polarizer.
  • the optical properties of the obtained piece-protecting polarizing film C were a transmittance of 38.4% and a degree of polarization of 99.99%.
  • composition of acrylic forming material B N-hydroxyethylacrylamide (trade name “HEAA” manufactured by Kojin Co., Ltd.) 20 parts Urethane acrylate (trade name “UV-1700B” manufactured by Nippon Synthetic Chemical Co., Ltd.) 80 parts Photoradical polymerization initiator (2-methyl-1- (4-Methylthiophenyl) -2-morpholinopropan-1-one, manufactured by BASF, trade name “IRGACURE907”) 3 parts Photosensitizer (diethylthioxanthone, manufactured by Nippon Kayaku Co., Ltd., trade name “KAYACURE DETX-S” ]) 2 parts
  • composition of acrylic forming material C N-hydroxyethylacrylamide (trade name “HEAA” manufactured by Kojin Co., Ltd.) 12.5 parts 2-hydroxy-3-phenoxypropyl acrylate (trade name “Aronix® M-5700” manufactured by Toagosei Co., Ltd.) 25 parts 1,9-nonanediol diacrylate (Kyoeisha Chemical Co., Ltd., trade name “Light Acrylate 1.9ND-A”) 40 parts dimethylol-tricyclodecane diacrylate (Kyoeisha Chemical Co., Ltd., trade name “Light Acrylate DCP-A”) 22.5 parts Photoradical polymerization initiator (2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, manufactured by BASF, trade name “IRGACURE907”) 3 parts Photosensitizer (Diethylthioxanthone, manufactured by Nippon Kayaku Co., Ltd., trade name “KAYAC
  • composition of acrylic forming material D N-hydroxyethylacrylamide (trade name “HEAA” manufactured by Kojin Co., Ltd.) 20 parts Urethane acrylate (trade name “UV-3500BA” manufactured by Nippon Synthetic Chemical Co., Ltd.) 80 parts Photoradical polymerization initiator (2-methyl-1- (4-Methylthiophenyl) -2-morpholinopropan-1-one, manufactured by BASF, trade name “IRGACURE907”) 3 parts Photosensitizer (diethylthioxanthone, manufactured by Nippon Kayaku Co., Ltd., trade name “KAYACURE DETX-S” ]) 2 parts
  • composition of acrylic forming material E N-hydroxyethylacrylamide (trade name “HEAA” manufactured by Kojin Co., Ltd.) 12.5 parts 2-hydroxy-3-phenoxypropyl acrylate (trade name “Aronix® M-5700” manufactured by Toagosei Co., Ltd.) 30 parts 1.9-nonanediol diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name “light acrylate 1.9ND-A”) 40 parts dimethylol-tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name “light acrylate DCP-A”) 17.5 parts Photoradical polymerization initiator (2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, manufactured by BASF, trade name “IRGACURE907”) 3 parts Photosensitizer (Diethylthioxanthone, manufactured by Nippon Kayaku Co., Ltd.)
  • composition of epoxy-based forming material A 3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Daicel Chemical Industries, trade name “Celoxide 2021P”) 100 parts Photocationic polymerization initiator (4- (phenylthio) phenyldiphenylsulfonium hexafluorophosphate , Made by Sun Apro, trade name "CPI-100P”)
  • composition of isocyanate forming material A Urethane prepolymer composed of xylylene diisocyanate and trimethylolpropane 75% ethyl acetate in 50 parts of 75% ethyl acetate solution of urethane prepolymer composed of tolylene diisocyanate and trimethylolpropane (trade name “Coronate L” manufactured by Tosoh Corporation) 50 parts of a solution (trade name “Takenate D110N” manufactured by Mitsui Takeda Chemical Co., Ltd.) and 0.1 part of a dioctyltin dilaurate catalyst (trade name “Environizer OL-1” manufactured by Tokyo Fine Chemical Co., Ltd.) are added, and methyl isobutyl is used as a solvent.
  • a urethane prepolymer coating solution was prepared with a solid concentration of 35% with ketone.
  • Polyvinyl alcohol-based forming material A Polyvinyl alcohol resin (polymerization degree 2500, saponification degree 99.0 mol%) (trade name “JC-25”, manufactured by Nippon Vinegar Poval Co., Ltd.) is dissolved in pure water to prepare an aqueous solution with a solid content concentration of 4% by weight. did.
  • Polyvinyl alcohol-based forming material B A polyvinyl alcohol resin having a polymerization degree of 2000 and a saponification degree of 99.4 mol% (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “NH-20”) was dissolved in pure water to prepare an aqueous solution having a solid content concentration of 4% by weight. .
  • Polyvinyl alcohol-based forming material C A polyvinyl alcohol resin having a polymerization degree of 1700 and a saponification degree of 97.0 mol% (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “AH-17”) was dissolved in pure water to prepare an aqueous solution having a solid content concentration of 4% by weight. .
  • Polyvinyl alcohol-based forming material D A polyvinyl alcohol resin having a polymerization degree of 1700 and a saponification degree of 99.0 mol% (trade name “PVA117” manufactured by Kuraray Co., Ltd.) was dissolved in pure water to prepare an aqueous solution having a solid content concentration of 4% by weight.
  • Polyvinyl alcohol-based forming material E A polyvinyl alcohol resin having a degree of polymerization of 4000 and a degree of saponification of 99.0 mol% (trade name: JC-40, manufactured by Nippon Acetate / Poval) was dissolved in pure water to prepare an aqueous solution having a solid content concentration of 4% by weight. .
  • cross-linking agent 100 parts by weight of the solid content of the acrylic polymer solution is a cross-linking agent mainly composed of a compound having an isocyanate group of 0.5 part (trade name “Coronate L” manufactured by Nippon Polyurethane Co., Ltd.). And 0.075 parts of ⁇ -glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KMB-403”) as a silane coupling agent in this order, was prepared.
  • the pressure-sensitive adhesive solution was applied to the surface of a release sheet (separator) made of a polyethylene terephthalate film (thickness 38 ⁇ m) subjected to a release treatment so that the thickness after drying was 25 ⁇ m and dried to form a pressure-sensitive adhesive layer. Formed.
  • Example 1 Manufacturing a single protective polarizing film with a transparent layer> Using the wire bar coater, the thickness of the active energy ray-curable forming material (acrylic forming material A) is applied to the surface of the polarizer of the piece protective polarizing film A (the polarizer surface on which the transparent protective film is not provided). After coating so that it might become 1 micrometer, the piece protection polarizing film with a transparent layer was produced by irradiating an active energy ray in nitrogen atmosphere. In addition, irradiation of the active energy ray was performed in the same manner as that used in the production of the piece protective polarizing film A.
  • the active energy ray-curable forming material (acrylic forming material A)
  • Example 2 Comparative Examples 1 to 13
  • the piece-protecting polarizing film and the piece with the transparent layer were the same as in Example 1.
  • a protective polarizing film and a polarizing film with an adhesive layer were prepared.
  • the transparent layer was formed by applying isocyanate A (urethane prepolymer coating liquid) to the surface of the polarizer of the piece protective polarizing film A with a bar coater, and then performing heat treatment at 60 ° C. for 12 hours.
  • a urethane resin layer having a thickness of 1 ⁇ m was formed.
  • the single transmittance T and polarization degree P of the obtained piece-protecting polarizing film were measured using a spectral transmittance measuring device with an integrating sphere (Dot-3c, Murakami Color Research Laboratory).
  • the degree of polarization P is the transmittance when two identical polarizing films are overlapped so that their transmission axes are parallel (parallel transmittance: Tp), and overlapped so that their transmission axes are orthogonal to each other. It is calculated
  • Polarization degree P (%) ⁇ (Tp ⁇ Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
  • Each transmittance is represented by a Y value obtained by correcting visibility with a two-degree field of view (C light source) of JIS Z8701, with 100% of the completely polarized light obtained through the Granteller prism polarizer.
  • FTIR Fourier transform infrared spectrophotometer
  • SPECTRUM2000 the total reflection attenuation spectroscopy using the polarized light as the measurement light for the polarizers obtained in the examples and comparative examples
  • the intensity of the boric acid peak (665 cm ⁇ 1 ) and the intensity of the reference peak (2941 cm ⁇ 1 ) were measured by ATR) measurement.
  • the boric acid content index was calculated from the obtained boric acid peak intensity and the reference peak intensity by the following formula, and the boric acid content (% by weight) was determined from the calculated boric acid index by the following formula.
  • the obtained piece protective polarizing film 10 was cut into a size of 50 mm ⁇ 150 mm (absorption axis direction was 50 mm).
  • the test surface protective film 6 produced by the following method was bonded to the transparent protective film 2 side.
  • a base molding material made of low density polyethylene having a density of 0.924 g / cm 3 and a melt flow rate at 190 ° C. of 2.0 g / 10 min was supplied to a coextrusion inflation molding machine.
  • a surface protective film consisting of a 33 ⁇ m thick base material layer and a 5 ⁇ m thick adhesive layer was produced.
  • the substrate 20 As shown in the conceptual diagram of FIG. 5A and the cross-sectional view of FIG. 5B, on the substrate 20 (length 65 mm ⁇ width 165 mm ⁇ height 2 mm), two pieces of length 25 mm ⁇ width 150 mm ⁇ height 5 mm
  • the glass support bases 21 were installed in parallel so that the distance between them was 115 mm.
  • the longitudinal direction of the two glass supports and the direction perpendicular to the absorption axis of the polarizer 1 in the cut sample 11 are parallel to each other, and both sides of the sample 11 are evenly placed on the two glass supports.
  • Sample 11 was placed so as to hang. In the sample 11, the surface protective film 6 was disposed on the upper side.
  • a load of 100 g is applied to the central portion of the sample 10 (surface protective film 6 side) by a guitar pick (manufactured by HISTROY, model number “HP2H (HARD)”), and the absorption axis of the polarizer 1 in the sample 11 is applied.
  • the surface of the polarizer 1 was scratched by repeating a load load of 10 reciprocations at a distance of 100 mm in the orthogonal direction. The load was applied at one place. It was visually confirmed whether or not nano slits were generated.
  • the thickness of the polarizer of Comparative Examples 3 to 6 exceeded 10 ⁇ m, the shrinkage stress inside the polarizer was large, so the film was broken when nano slits were generated in the rock and roll test. Therefore, it could not be evaluated.
  • FIG. 6 shows the following index for confirming the crack of light leakage (nano slit a) in the rock-and-roll test of the piece protective polarizing film 10 or the piece protective polarizing film 11 with a transparent layer. It is an example of a photograph.
  • FIG. 6A no light leakage crack due to the nano slit a is confirmed.
  • the state as shown in FIG. 6A corresponds to before the heating of the rock and roll test of the example and after the heating of the rock and roll test of the example (because there is an expansion suppressing effect, the nano slit does not leak light).
  • FIG. 6 shows the following index for confirming the crack of light leakage (nano slit a) in the rock-and-roll test of the piece protective polarizing film 10 or the piece protective polarizing film 11 with a transparent layer. It is an example of a photograph.
  • FIG. 6A no light leakage crack due to the nano slit a is confirmed.
  • the state as shown in FIG. 6A corresponds
  • FIG. 6B shows a case where three cracks of light leakage due to the nano slits a are generated in the absorption axis direction of the polarizer by heating.
  • the state as shown in FIG. 6B corresponds to after the heating in the rock and roll test of the comparative example.
  • the sample in which the nano slits are generated was observed with a differential interference microscope. When the sample was photographed, the sample without nano slits was set to cross Nicole on the lower side (transmission light source side) of the sample where nano slits were generated and observed with transmitted light. .
  • ⁇ Confirmation of penetration crack heat shock test> The obtained polarizing film with a pressure-sensitive adhesive layer was cut into 50 mm ⁇ 150 mm (absorption axis direction is 50 mm) and 150 mm ⁇ 50 mm (absorption axis direction is 150 mm), and crossed Nicols on both sides of 0.5 mm-thick alkali-free glass. A sample was made by laminating in the direction. The sample was subjected to a heat shock of ⁇ 40 to 85 ° C. for 30 minutes ⁇ 100 times in each environment, and then taken out to visually check whether a through-crack (number) was generated in the polarizing film with the adhesive layer. Confirmed. This test was performed five times. Evaluation was performed according to the following. ⁇ : No through crack. X: There is a through crack.
  • FIG. 7 is an example of a microscope photograph of the surface of the polarizing film, which serves as an index for confirming the through crack b of the piece protective polarizing film 10 or the piece protective polarizing film 11 with a transparent layer.
  • the sample in which the through crack was generated was observed with a differential interference microscope.
  • the degree of polarization P is the transmittance when two identical polarizing films are overlapped so that their transmission axes are parallel (parallel transmittance: Tp), and overlapped so that their transmission axes are orthogonal to each other. It is calculated
  • Polarization degree P (%) ⁇ (Tp ⁇ Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
  • Each transmittance is represented by a Y value obtained by correcting visibility with a two-degree field of view (C light source) of JIS Z8701, with 100% of the completely polarized light obtained through the Granteller prism polarizer.
  • the optical characteristics represented by the single transmittance T and the degree of polarization P are expressed by the following formula: P> ⁇ (10 0.929T-42.4 ⁇ 1) ⁇ 100 (however, If the condition of T ⁇ 42.3) or P ⁇ 99.9 (however, T ⁇ 42.3) is not satisfied, the problem of the present application (occurrence of through cracks and nano slits) did not occur. .
  • Example 25 Using a long film as a single protective polarizing film, coating a forming material using a micro gravure coater, a long film as the release sheet (separator) and the following surface protective film It is the same as that of Example 1 except having used. Thereby, the winding body of the piece protection polarizing film with a transparent layer (the aspect described in FIG. 2 (A)) in which the separator and the surface protective film were laminated on the transparent protective layer side was produced.
  • the wound body of the piece protective polarizing film with a transparent layer has a width corresponding to each of the short side and the long side of the 32-inch non-alkali glass by slit processing that advances cutting by continuous conveyance of the piece protective polarizing film with a transparent layer. Prepared as a set.
  • the transparent protective layer-attached piece-protecting polarizing film continuously supplied from the set of wound pieces of the transparent protective member-attached polarizing film was continuously bonded to both sides of 100 sheets of 0.5 mm thick 32 inch non-alkali glass so as to have a crossed Nicols relationship.
  • Example 26-28 Each is the same as Example 25 except that a transparent protective layer-attached piece-protecting polarizing film was prepared in the same manner as in Examples 2, 4, and 8, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

 本発明は、偏光子の片面にのみ透明保護フィルムを有する片保護偏光フィルムであって、前記偏光子は、ポリビニルアルコール系樹脂を含有し、厚みが10μm以下であり、かつ、単体透過率T及び偏光度Pによって表される光学特性が、下記式 P>-(100.929T-42.4-1)×100(ただし、T<42.3)、又は、 P≧99.9(ただし、T≧42.3)の条件を満足するように構成されたものであり、 かつ、前記偏光子の他の片面に、80℃における圧縮弾性率が0.1GPa以上の透明層を有する。前記片保護偏光フィルムは、偏光子が所定の光学特性を有し、かつ厚みが10μm以下であっても、貫通クラックおよびナノスリットの発生を抑制することができる。

Description

片保護偏光フィルム、粘着剤層付偏光フィルム、画像表示装置およびその連続製造方法
 本発明は、偏光子の片面にのみ透明保護フィルムが設けられた片保護偏光フィルムおよび当該片保護偏光フィルムと粘着剤層を有する粘着剤層付偏光フィルムに関する。前記片保護偏光フィルムおよび粘着剤層付偏光フィルムはこれ単独で、またはこれを積層した光学フィルムとして液晶表示装置(LCD)、有機EL表示装置などの画像表示装置を形成しうる。
 液晶表示装置には、その画像形成方式から液晶パネル表面を形成するガラス基板の両側に偏光フィルムを配置することが必要不可欠である。偏光フィルムは、一般的には、ポリビニルアルコール系フィルムとヨウ素等の二色性材料からなる偏光子の片面または両面に、透明保護フィルムをポリビニルアルコール系接着剤等により貼り合わせたものが用いられている。
 前記偏光フィルムを液晶セル等に貼着する際には、通常、粘着剤が使用される。また、偏光フィルムを瞬時に固定できること、偏光フィルムを固着させるのに乾燥工程を必要としないこと等のメリットを有することから、粘着剤は、偏光フィルムの片面に予め粘着剤層として設けられている。即ち、偏光フィルムの貼着には粘着剤層付偏光フィルムが一般的に用いられる。
 また、偏光フィルムや粘着剤層付偏光フィルムは、熱衝撃(例えば、-30℃と80℃の温度条件を繰り返すヒートショック試験や100℃の高温下試験)の過酷な環境下では偏光子の収縮応力の変化によって、偏光子の吸収軸方向の全体にクラック(貫通クラック)が生じやすい問題がある。即ち、粘着剤層付偏光フィルムは、前記過酷な環境下における熱衝撃による耐久性が十分ではなかった。特に、薄型化の観点から、偏光子の片面にのみ透明保護フィルムを設けた片保護偏光フィルムを用いた粘着剤層付偏光フィルムでは、前記熱衝撃による耐久性が不十分であった。また、前記熱衝撃により生じる貫通クラックは、偏光フィルムのサイズが大きくなった場合に発生しやすいものであった。
 前記貫通クラックの発生の抑制のために、例えば、片保護偏光フィルムに引張弾性率100MPa以上の保護層を設け、さらに当該保護層に粘着剤層を設けた粘着剤層付偏光フィルムが提案されている(特許文献1)。また、厚さ25μm以下の偏光子の片面に硬化型樹脂組成物の硬化物からなる保護層を有し、偏光子のもう一方の片面に透明保護フィルムを有し、前記保護層の外側に粘着剤層を有する粘着剤層付偏光フィルムが提案されている(特許文献2)。前記特許文献1、2に記載の粘着剤層付偏光フィルムは、貫通クラックの発生の抑制の点からは有効である。また、薄型化は偏光子についても行われており、例えば、単体透過率、偏光度の光学特性を制御した、高い配向性を示す薄型偏光子が提案されている(特許文献3)。
特開2010-009027号公報 特開2013-160775号公報 特許第4751481号明細書
 特許文献1、2では、偏光子の片面にのみ透明保護フィルムを有する片保護偏光フィルムを用いることで薄型化を図るとともに、他方では、保護層を設けることにより、片保護偏光フィルムを用いることにより生じる偏光子の吸収軸方向への貫通クラックの発生を抑えている。
 一方、薄型化は偏光子についても行われている。偏光フィルムまたは粘着剤層付偏光フィルムに用いる偏光子を薄くした場合(例えば、厚み10μm以下にした場合)には、偏光子の収縮応力の変化が小さくなる。そのため、薄型化した偏光子によれば、前記貫通クラックの発生を抑制することができることが分かった。
 しかし、前記貫通クラックの発生が抑制された片保護偏光フィルムまたはそれを用いた粘着剤層付偏光フィルムにおいて、特許文献3のように光学特性を制御し、かつ偏光子を薄くした場合(例えば、厚み10μm以下にした場合)には、片保護偏光フィルムまたはそれを用いた粘着剤層付偏光フィルムに機械衝撃が負荷されたとき(偏光子側に凸折れによる負荷がかかる場合を含む)に、偏光子の吸収軸方向に部分的に極細のスリット(以下、ナノスリットともいう)が発生することが分かった。前記ナノスリットは、偏光フィルムのサイズに無関係に生じることも分かった。さらには、前記ナノスリットは、偏光子の両面に透明保護フィルムを有する両保護偏光フィルムを用いた場合には生じないことも分かった。また、偏光子に貫通クラックが生じた場合には、貫通クラックの周辺の応力が解放されるため、貫通クラックは隣接して生じることはないが、ナノスリットは単独で生じる他に、隣接して生じることが分かった。また、貫通クラックは、クラックが生じた偏光子の吸収軸方向に伸びる進行性を有しているが、ナノスリットは前記進行性のないことも分かった。このように、前記ナノスリットは、貫通クラックの発生が抑制された片保護偏光フィルムにおいて、偏光子を薄く、かつ、光学特性を所定の範囲に制御した場合に生じる新たな課題であり、従来知られていた前記貫通クラックとは異なる現象により生じる課題であることが分かった。
 また、前記ナノスリットは極細であるため、通常の環境下では検出できない。従って、仮に、偏光子にナノスリットが発生していたとしても、片保護偏光フィルムおよびそれを用いた粘着剤層付偏光フィルムの光抜けによる欠陥を確認することは一見したのみでは困難である。すなわち、通常、片保護偏光フィルムは長尺フィルム状に作製され、自動的光学検査にて欠陥検査されるが、この欠陥検査でナノスリットを欠陥として検出することが困難である。前記ナノスリットによる欠陥は、片保護偏光フィルムまたは粘着剤層付偏光フィルムが画像表示パネルのガラス基板等に貼り合わされたうえで加熱環境下におかれた場合に、ナノスリットが幅方向に広がることで検出可能(例えば、前記光抜けの有無)になることも分かった。
 よって、偏光子の厚みが10μm以下の片保護偏光フィルムまたはそれを用いた粘着剤層付偏光フィルムにおいては、貫通クラックだけでなく、ナノスリットによる欠陥も抑制しておくことが望まれる。
 本発明は、偏光子の片面にのみ透明保護フィルムを有する片保護偏光フィルムであって、前記偏光子が所定の光学特性を有し、かつ厚みが10μm以下であっても、貫通クラックおよびナノスリットによる欠陥を抑制することができる片保護偏光フィルムを提供することを目的とする。また、本発明は、前記片保護偏光フィルムと粘着剤層を有する粘着剤層付偏光フィルムを提供することを目的とする。
 また本発明は、前記片保護偏光フィルムまたは前記粘着剤層付偏光フィルムを有する画像表示装置、さらにはその連続製造方法を提供することを目的とする。に関する。
 本願発明者らは、鋭意検討の結果、下記の片保護偏光フィルム、粘着剤層付偏光フィルム等により上記課題を解決し得ることを見出し、本発明に至った。
 即ち本発明は、偏光子の片面にのみ透明保護フィルムを有する片保護偏光フィルムであって、
 前記偏光子は、ポリビニルアルコール系樹脂を含有し、厚みが10μm以下であり、かつ、単体透過率T及び偏光度Pによって表される光学特性が、下記式
 P>-(100.929T-42.4-1)×100(ただし、T<42.3)、又は、
 P≧99.9(ただし、T≧42.3)の条件を満足するように構成されたものであり、
 かつ、前記偏光子の他の片面に、80℃における圧縮弾性率が0.1GPa以上の透明層を有することを特徴とする片保護偏光フィルム、に関する。
 前記片保護偏光フィルムにおいて、前記透明層が、樹脂材料の形成物であることが好ましい。
 前記片保護偏光フィルムにおいて、前記透明層は、厚みが3μm未満のものを用いることができる。
 前記片保護偏光フィルムにおいて、前記偏光子は、偏光子全量に対してホウ酸を25重量%以下で含有することが好ましい。
 また本発明は、前記片保護偏光フィルム、および粘着剤層を有することを特徴とする粘着剤層付偏光フィルム、に関する。
 前記粘着剤層付偏光フィルムは、前記片保護偏光フィルムの透明層に、前記粘着剤層が設けられている態様で用いることできる。また、前記粘着剤層付偏光フィルムは、前記片保護偏光フィルムの透明保護フィルムに、前記粘着剤層が設けられている態様で用いることができる。また、前記粘着剤層付偏光フィルムの粘着剤層にはセパレータを設けることができる。セパレータが設けられた粘着剤層付偏光フィルムは巻回体として用いることができる。
 また本発明は、前記片保護偏光フィルム、または前記粘着剤層付偏光フィルムを有する画像表示装置、に関する。
 また本発明は、前記粘着剤層付偏光フィルムの巻回体から繰り出され、前記セパレータにより搬送された前記粘着剤層付偏光フィルムを、前記粘着剤層を介して画像表示パネルの表面に連続的に貼り合せる工程を含む画像表示装置の連続製造方法、に関する。
 また本発明は、前記粘着剤層付偏光フィルムの巻回体から繰り出され、前記セパレータにより搬送された前記粘着剤層付偏光フィルムを、前記粘着剤層を介して画像表示パネルの表面に連続的に貼り合せる工程を含む画像表示装置の連続製造方法、に関する。
 本発明の片保護偏光フィルムおよび粘着剤層付偏光フィルムは、厚み10μm以下の偏光子を用いており、薄型化されている。また、前記厚み10μm以下の薄型の偏光子は、偏光子の厚みが大きい場合に比べて、熱衝撃により偏光子に加わる収縮応力の変化が小さいため、貫通クラックの発生を抑制することができる。
 一方、所定の光学特性を有する薄型の偏光子は、偏光子にナノスリットが発生しやすくなる。ナノスリットは、片保護偏光フィルムの製造工程、片保護偏光フィルムに粘着剤層を設ける粘着剤層付偏光フィルムの製造工程、粘着剤層付偏光フィルムを製造した後の各種工程において、前記片保護偏光フィルムまたはそれを用いた粘着剤層付偏光フィルムに対して機械衝撃が負荷されたときに生じると考えられ、熱衝撃により生じる貫通クラックとは異なるメカニズムにより生じると想定される。また、前記ナノスリットによる欠陥は、片保護偏光フィルムまたは粘着剤層付偏光フィルムが画像表示パネルのガラス基板等に貼り合わされたうえで加熱環境下におかれた場合に、ナノスリットが幅方向に広がることで検出可能(例えば、前記光抜けの有無)になる。
 本発明の片保護偏光フィルムおよび粘着剤層付偏光フィルムでは、偏光子の他の片面(透明保護フィルムを有しない面)に、80℃における圧縮弾性率が0.1GPa以上の透明層を設けることで、仮に、透明層を設ける前の片保護偏光フィルムの状態の偏光子に前記ナノスリットが発生した場合にも、ナノスリットの幅方向への広がりによる欠陥の発生を抑えることができる。
 以上のように、本発明の片保護偏光フィルムおよびそれを用いた粘着剤層付偏光フィルムは、透明層(80℃における圧縮弾性率が0.1GPa以上)を有することで、薄型化を満足しながら、かつ、偏光子に生じる貫通クラックおよびナノスリットによる欠陥を抑制することができる。
本発明の片保護偏光フィルムの概略断面図の一例である。 本発明の粘着剤層付偏光フィルムの概略断面図の一例である。 偏光子に生じるナノスリットと貫通クラックを対比する概念図の一例である。 ナノスリットの発生の有無と、ナノスリットが発生した場合に、透明層の有無によって加熱によるナノスリットの拡張が相違することを示す片保護偏光フィルムの断面図の写真の一例である。 実施例および比較例のナノスリットに係る評価項目を説明する概略図である。 実施例および比較例の評価に係るナノスリットにより生じるクラックを示す写真の一例である。 実施例および比較例の評価に係る貫通クラックの進行を示す写真の一例である。 画像表示装置の連続製造システムの概略断面図の一例である。
 以下に本発明の片保護偏光フィルム11および粘着剤層付偏光フィルム12を、図1、2を参照しながら説明する。片保護偏光フィルム10(透明層3のない場合)は、例えば、図1に示すように、偏光子1の片面にのみ透明保護フィルム2を有する。図示していないが、偏光子1と透明保護フィルム2とは接着剤層、粘着剤層、下塗り層(プライマー層)などの介在層を介して積層されている。また図示していないが、片保護偏光フィルム10は、透明保護フィルム2に易接着層を設けたり活性化処理を施したりして、当該易接着層と接着剤層を積層することができる。本発明の片保護偏光フィルム11(透明層3付)は、図1に示すように、片保護偏光フィルム10において、前記偏光子1の他の片面(透明保護フィルム2を有しない面)に、透明層3が(直接)設けられている。
 また、本発明の粘着剤層付偏光フィルム12は、図2に示すように、片保護偏光フィルム(透明層付)11と、粘着剤層4を有する。粘着剤層4は、図2(A)では透明層3の側に、図2(B)では透明保護フィルム2の側に設けられている。なお、本発明の粘着剤層付偏光フィルム12の粘着剤層4にはセパレータ5を設けることができ、その反対側には、表面保護フィルム6を設けることができる。図2の粘着剤層付偏光フィルム12では、セパレータ5および表面保護フィルム6がいずれも設けられている場合が示されている。少なくともセパレータ5を有する粘着剤層付偏光フィルム12(さらには、表面保護フィルム6を有するもの)は巻回体として用いることができ、後述するように、例えば、巻回体から繰り出され、セパレータ5により搬送された粘着剤層付偏光フィルム12を、粘着剤層4を介して画像表示パネルの表面に貼り合せる方式(以下、「ロール・トゥ・パネル方式」ともいう。代表的には、特許第4406043号明細書)への適用に有利である。粘着剤層付偏光フィルムとしては、貼り合せ後の表示パネルの反り抑制、ナノスリットの発生抑制等の観点から、図2(A)に記載の態様が好ましい。表面保護フィルム6は、片保護偏光フィルム10、片保護偏光フィルム(透明層付)11に設けることができる。
 図3は、偏光子に生じるナノスリットaと貫通クラックbを対比する概念図である。図3(A)には、偏光子1に生じるナノスリットaが、図3(B)には、偏光子1に生じる貫通クラックbが示されている。ナノスリットaは、機械衝撃により発生し、偏光子1の吸収軸方向に部分的に発生する、ナノスリットaは、発生した当初は確認できないが、熱環境下(例えば、80℃や60℃,90%RH)において、幅方向への広がりによって確認することができる。一方、ナノスリットaは偏光子の吸収軸方向に伸びる進行性は有しないと考えられる。また、前記ナノスリットaは、偏光フィルムのサイズに無関係に生じると考えられる。ナノスリットaは単独で生じる他に、隣接して生じることもある。一方、貫通クラックbは、熱衝撃(例えば、ヒートショック試験)により生じる。貫通クラックは、クラックが生じた偏光子の吸収軸方向に伸びる進行性を有している。貫通クラックbが発生した場合には周辺の応力が解放されるため、貫通クラックは隣接して生じることはない。
 図4は、偏光子に生じるナノスリットaの発生と拡張、修復に係る片保護偏光フィルム10または透明層付の片保護偏光フィルム11の断面図の写真の一例である。図4(A)は、偏光子1の片面にのみ接着剤層2aを介して透明保護フィルム2を有する片保護偏光フィルム10であり、ナノスリットは発生していない場合の一例である。図4(B)は、片保護偏光フィルム10にナノスリットaが発生している場合の一例である。図4(A)、(B)はいずれも、加熱前である。また、図4(C)は、ナノスリットaが発生している片保護偏光フィルム10を加熱した後の断面図の写真の一例である。図4(C)では、加熱により偏光子1のナノスリットaが拡張していることが分かる。一方、図4(D)は、ナノスリットaが発生した片保護偏光フィルム10に、透明層3(厚さ1μm,80℃における圧縮弾性率が0.1GPa以上)を形成した透明層付の片保護偏光フィルム11の断面図の写真の一例である。図4(D)では、偏光子1に生じたナノスリットaは透明層3により修復(a´)されていることが分かる。また、図4(E)は、透明層3(厚さ1μm,80℃における圧縮弾性率が0.1GPa以上)を形成した透明層付の片保護偏光フィルム11を加熱した後の断面図の写真の一例である。図4(E)では、加熱後に、修復(a´)されたナノスリットの拡張のないことが分かる。図4(F)は、ナノスリットaが発生した片保護偏光フィルム10に、透明層3´(厚さ0.1μm,80℃における圧縮弾性率が0.1GPa未満)を形成した透明層付の片保護偏光フィルム11´の断面図の写真の一例である。図4(F)では、透明層3´を設けているが圧縮弾性率が低いため、加熱により偏光子1のナノスリットaが拡張していることが分かる。図4は、サンプルの吸収軸方向に対して垂直にクロスセッションポリッシャーやミクロトームにて断面切削し、走査型電子顕微鏡にて観察を行った。
 <偏光子>
 本発明では、厚み10μm以下の偏光子を用いる。偏光子の厚みは薄型化および貫通クラックの発生を抑える観点から8μm以下であるのが好ましく、さらには7μm以下、さらには6μm以下であるのが好ましい。一方、偏光子の厚みは2μm以上、さらには3μm以上であるのが好ましい。このような薄型の偏光子は、厚みムラが少なく、視認性が優れており、また寸法変化が少ないため熱衝撃に対する耐久性に優れる。
 偏光子は、ポリビニルアルコール系樹脂を用いたものが使用される。偏光子としては、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムとヨウ素などの二色性物質からなる偏光子が好適である。
 ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛等を含んでいても良いし、ヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸しても良いし、また延伸してからヨウ素で染色しても良い。ホウ酸やヨウ化カリウムなどの水溶液や水浴中でも延伸することができる。
 偏光子はホウ酸を含有していることが延伸安定性や光学耐久性の点から好ましい。また、偏光子に含まれるホウ酸含有量は、貫通クラックおよびナノスリットの発生抑制、拡張抑制の観点から、偏光子全量に対して25重量%以下であるのが好ましく、さらには20重量%以下であるのが好ましく、さらには18重量%以下、さらには16重量%以下であることが好ましい。偏光子に含まれるホウ酸含有量が20重量%を超える場合には、偏光子の厚みを10μm以下に制御した場合であっても偏光子の収縮応力が高まり貫通クラックが発生しやすくなるため好ましくない。一方、偏光子の延伸安定性や光学耐久性の観点から、偏光子全量に対するホウ酸含有量は10重量%以上であることが好ましく、さらには12重量%以上であることが好ましい。
 薄型の偏光子としては、代表的には、
特許第4751486号明細書、
特許第4751481号明細書、
特許第4815544号明細書、
特許第5048120号明細書、
国際公開第2014/077599号パンフレット、
国際公開第2014/077636号パンフレット、
等に記載されている薄型偏光子またはこれらに記載の製造方法から得られる薄型偏光子を挙げることができる。
 前記偏光子は、単体透過率T及び偏光度Pによって表される光学特性が、次式
P>-(100.929T-42.4-1)×100(ただし、T<42.3)、又は、
P≧99.9(ただし、T≧42.3)の条件を満足するように構成されている。前記条件を満足するように構成された偏光子は、一義的には、大型表示素子を用いた液晶テレビ用のディスプレイとして求められる性能を有する。具体的にはコントラスト比1000:1以上かつ最大輝度500cd/m以上である。他の用途としては、例えば有機EL表示装置の視認側に貼り合される。
 一方、前記条件を満足するように構成された偏光子は、構成する高分子(例えばポリビニルアルコール系分子)が高い配向性を示すため、厚み10μm以下であることと相俟って、偏光子の吸収軸方向に直交する方向の引張破断応力が顕著に小さくなる。その結果、例えば、偏光フィルムの製造過程において当該引張破断応力を超える機械的衝撃に晒された際に、ナノスリットが偏光子の吸収軸方向に生じる可能性が極めて高い。よって、本発明は、当該偏光子を採用した片保護偏光フィルム(またはそれを用いた粘着剤層付偏光フィルム)に特に好適である。
 前記薄型偏光子としては、積層体の状態で延伸する工程と染色する工程を含む製法の中でも、高倍率に延伸できて偏光性能を向上させることのできる点で、特許第4751486号明細書、特許第4751481号明細書、特許4815544号明細書に記載のあるようなホウ酸水溶液中で延伸する工程を含む製法で得られるものが好ましく、特に特許第4751481号明細書、特許4815544号明細書に記載のあるホウ酸水溶液中で延伸する前に補助的に空中延伸する工程を含む製法により得られるものが好ましい。これら薄型偏光子は、ポリビニルアルコール系樹脂(以下、PVA系樹脂ともいう)層と延伸用樹脂基材を積層体の状態で延伸する工程と染色する工程を含む製法によって得ることができる。この製法であれば、PVA系樹脂層が薄くても、延伸用樹脂基材に支持されていることにより延伸による破断などの不具合なく延伸することが可能となる。
 <透明保護フィルム>
 前記透明保護フィルムを構成する材料としては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロースなどのセルロース系ポリマー、ポリメチルメタクリレートなどのアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)などのスチレン系ポリマー、ポリカーボネート系ポリマー等が挙げられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミドなどのアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または上記ポリマーのブレンド物なども上記透明保護フィルムを形成するポリマーの例として挙げられる。
 なお、透明保護フィルム中には任意の適切な添加剤が1種類以上含まれていてもよい。添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、着色剤などがあげられる。透明保護フィルム中の上記熱可塑性樹脂の含有量は、好ましくは50~100重量%、より好ましくは50~99重量%、さらに好ましくは60~98重量%、特に好ましくは70~97重量%である。透明保護フィルム中の上記熱可塑性樹脂の含有量が50重量%以下の場合、熱可塑性樹脂が本来有する高透明性等が十分に発現できないおそれがある。
 前記透明保護フィルムとしては、位相差フィルム、輝度向上フィルム、拡散フィルム等も用いることができる。位相差フィルムとしては、正面位相差が40nm以上および/または、厚み方向位相差が80nm以上の位相差を有するものが挙げられる。正面位相差は、通常、40~200nmの範囲に、厚み方向位相差は、通常、80~300nmの範囲に制御される。透明保護フィルムとして位相差フィルムを用いる場合には、当該位相差フィルムが偏光子保護フィルムとしても機能するため、薄型化を図ることができる。
 位相差フィルムとしては、熱可塑性樹脂フィルムを一軸または二軸延伸処理してなる複屈折性フィルムが挙げられる。上記延伸の温度、延伸倍率等は、位相差値、フィルムの材料、厚みにより適宜に設定される。
 透明保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、薄層性などの点より1~500μm程度である。特に1~300μmが好ましく、5~200μmがより好ましく、さらには、5~150μm、特に、20~100μmの薄型の場合に特に好適である。
 前記透明保護フィルムの偏光子を接着させない面(特に、図1の態様)には、ハードコート層、反射防止層、スティッキング防止層、拡散層ないしアンチグレア層などの機能層を設けることができる。なお、上記ハードコート層、反射防止層、スティッキング防止層、拡散層やアンチグレア層などの機能層は、透明保護フィルムそのものに設けることができるほか、別途、透明保護フィルムとは別体のものとして設けることもできる。
 <介在層>
 前記透明保護フィルムと偏光子は接着剤層、粘着剤層、下塗り層(プライマー層)などの介在層を介して積層される。この際、介在層により両者を空気間隙なく積層することが望ましい。
 接着剤層は接着剤により形成される。接着剤の種類は特に制限されず、種々のものを用いることができる。前記接着剤層は光学的に透明であれば特に制限されず、接着剤としては、水系、溶剤系、ホットメルト系、活性エネルギー線硬化型等の各種形態のものが用いられるが、水系接着剤または活性エネルギー線硬化型接着剤が好適である。
 水系接着剤としては、イソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリエステル等を例示できる。水系接着剤は、通常、水溶液からなる接着剤として用いられ、通常、0.5~60重量%の固形分を含有してなる。
 活性エネルギー線硬化型接着剤は、電子線、紫外線(ラジカル硬化型、カチオン硬化型)等の活性エネルギー線により硬化が進行する接着剤であり、例えば、電子線硬化型、紫外線硬化型の態様で用いることができる。活性エネルギー線硬化型接着剤は、例えば、光ラジカル硬化型接着剤を用いることができる。光ラジカル硬化型の活性エネルギー線硬化型接着剤を、紫外線硬化型として用いる場合には、当該接着剤は、ラジカル重合性化合物および光重合開始剤を含有する。
 接着剤の塗工方式は、接着剤の粘度や目的とする厚みによって適宜に選択される。塗工方式の例として、例えば、リバースコーター、グラビアコーター(ダイレクト,リバースやオフセット)、バーリバースコーター、ロールコーター、ダイコーター、バーコーター、ロッドコーター等が挙げられる。その他、塗工には、デイッピング方式などの方式を適宜に使用することができる。
 また、前記接着剤の塗工は、水系接着剤等を用いる場合には、最終的に形成される接着剤層の厚みが30~300nmになるように行うのが好ましい。前記接着剤層の厚さは、さらに好ましくは60~250nmである。一方、活性エネルギー線硬化型接着剤を用いる場合には、前記接着剤層の厚みは、0.1~200μmになるよう行うのが好ましい。より好ましくは、0.5~50μm、さらに好ましくは0.5~10μmである。
 なお、偏光子と透明保護フィルムの積層にあたって、透明保護フィルムと接着剤層の間には、易接着層を設けることができる。易接着層は、例えば、ポリエステル骨格、ポリエーテル骨格、ポリカーボネート骨格、ポリウレタン骨格、シリコーン系、ポリアミド骨格、ポリイミド骨格、ポリビニルアルコール骨格などを有する各種樹脂により形成することができる。これらポリマー樹脂は1種を単独で、または2種以上を組み合わせて用いることができる。また易接着層の形成には他の添加剤を加えてもよい。具体的にはさらには粘着付与剤、紫外線吸収剤、酸化防止剤、耐熱安定剤などの安定剤などを用いてもよい。
 易接着層は、通常、透明保護フィルムに予め設けておき、当該透明保護フィルムの易接着層側と偏光子とを接着剤層により積層する。易接着層の形成は、易接着層の形成材を透明保護フィルム上に、公知の技術により塗工、乾燥することにより行われる。易接着層の形成材は、乾燥後の厚み、塗工の円滑性などを考慮して適当な濃度に希釈した溶液として、通常調整される。易接着層は乾燥後の厚みは、好ましくは0.01~5μm、さらに好ましくは0.02~2μm、さらに好ましくは0.05~1μmである。なお、易接着層は複数層設けることができるが、この場合にも、易接着層の総厚みは上記範囲になるようにするのが好ましい。
 粘着剤層は、粘着剤から形成される。粘着剤としては各種の粘着剤を用いることができ、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤などが挙げられる。前記粘着剤の種類に応じて粘着性のベースポリマーが選択される。前記粘着剤のなかでも、光学的透明性に優れ、適宜な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れる点から、アクリル系粘着剤が好ましく使用される。
 下塗り層(プライマー層)は、偏光子と保護フィルムとの密着性を向上させるために形成される。プライマー層を構成する材料としては、基材フィルムとポリビニルアルコール系樹脂層との両方にある程度強い密着力を発揮する材料であれば特に限定されない。たとえば、透明性、熱安定性、延伸性などに優れる熱可塑性樹脂などが用いられる。熱可塑性樹脂としては、例えば、アクリル系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、又はそれらの混合物が挙げられる。
 <透明層>
 透明層は、偏光子の片面にのみ透明保護フィルムが設けられた片保護偏光フィルムにおいて、偏光子の他の片面(透明保護フィルムを積層していない面)に設けられる。本発明において、透明層は、80℃における圧縮弾性率0.1GPa以上である。仮に、機械衝撃により偏光子にナノスリットが生じ、熱環境下においてナノスリットが幅方向へ広がろうとしても、透明層の80℃における圧縮弾性率を0.1GPa以上に制御することで、熱環境下においても透明層の機械的保持能力を維持して、ナノスリットが幅方向へ広がるのを抑えることができる。透明層の圧縮弾性率は0.5GPa以上、さらには2GPa以上、さらには5GPa以上、さらには10GPa以上であるのが好ましい。透明層の圧縮弾性率は、材料選定により調整することができる。なお、透明層の80℃における圧縮弾性率Cは実施例の記載に基づいて測定される値である。
 透明層の厚さは、薄層化および光学信頼性の観点から、透明層の厚さは、3μm未満であるのが好ましく、さらには2μm以下であるのが好ましく、さらには1.5μm以下であるのが好ましく、さらには1μm以下であるのが好ましい。一方、透明層の厚さは、ナノスリットの拡張抑制効果の観点から、0.2μm以上であるのが好ましく、さらには0.6μm以上が好ましく、さらには0.8μm以上であるのが好ましい。
 透明層は、各種の形成材から形成することができる。透明層は、例えば、樹脂材料を偏光子に塗布することにより形成することができるし、SiO等の無機酸化物を偏光子にスパッタリング法等により蒸着することで形成することもできる。透明層は、簡便に形成する観点から、樹脂材料から形成されることが好ましい。
 透明層は、硬化性成分を含有する硬化型形成材から形成されていてもよい(硬化型形成材の硬化物であってもよい)。硬化性成分としては、電子線硬化型、紫外線硬化型、可視光線硬化型等の活性エネルギー線硬化型と熱硬化型に大別することができる。さらには、紫外線硬化型、可視光線硬化型は、ラジカル重合硬化型とカチオン重合硬化型に区分出来る。本発明において、波長範囲10nm~380nm未満の活性エネルギー線を紫外線、波長範囲380nm~800nmの活性エネルギー線を可視光線として表記する。前記ラジカル重合硬化型の硬化性成分は、熱硬化型の硬化性成分として用いることができる。
 ≪ラジカル重合硬化型形成材≫
 前記硬化性成分としては、例えば、ラジカル重合性化合物が挙げられる。ラジカル重合性化合物は、(メタ)アクリロイル基、ビニル基等の炭素-炭素二重結合のラジカル重合性の官能基を有する化合物が挙げられる。これら硬化性成分は、単官能ラジカル重合性化合物または二官能以上の多官能ラジカル重合性化合物のいずれも用いることができる。また、これらラジカル重合性化合物は、1種を単独で、または2種以上を組み合わせて用いることができる。これらラジカル重合性化合物としては、例えば、(メタ)アクリロイル基を有する化合物が好適である。なお、本発明において、(メタ)アクリロイルとは、アクリロイル基および/またはメタクリロイル基を意味し、「(メタ)」は以下同様の意味である。
 ≪単官能ラジカル重合性化合物≫
 単官能ラジカル重合性化合物としては、例えば、(メタ)アクリルアミド基を有する(メタ)アクリルアミド誘導体が挙げられる。(メタ)アクリルアミド誘導体は、偏光子との密着性を確保するうえで、また、重合速度が速く生産性に優れる点で好ましい。(メタ)アクリルアミド誘導体の具体例としては、例えば、N-メチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド等のN-アルキル基含有(メタ)アクリルアミド誘導体;N-メチロール(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-メチロール-N-プロパン(メタ)アクリルアミド等のN-ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体;アミノメチル(メタ)アクリルアミド、アミノエチル(メタ)アクリルアミド等のN-アミノアルキル基含有(メタ)アクリルアミド誘導体;N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド等のN-アルコキシ基含有(メタ)アクリルアミド誘導体;メルカプトメチル(メタ)アクリルアミド、メルカプトエチル(メタ)アクリルアミド等のN-メルカプトアルキル基含有(メタ)アクリルアミド誘導体;などが挙げられる。また、(メタ)アクリルアミド基の窒素原子が複素環を形成している複素環含有(メタ)アクリルアミド誘導体としては、例えば、N-アクリロイルモルホリン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルピロリジン等があげられる。
 前記(メタ)アクリルアミド誘導体のなかでも、偏光子との密着性の点から、N-ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体が好ましく、特に、N-ヒドロキシエチル(メタ)アクリルアミドが好ましい。
 また、単官能ラジカル重合性化合物としては、例えば、(メタ)アクリロイルオキシ基を有する各種の(メタ)アクリル酸誘導体が挙げられる。具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、n-オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1-20)アルキルエステル類が挙げられる。
 また、前記(メタ)アクリル酸誘導体としては、例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート;
 ベンジル(メタ)アクリレート等のアラルキル(メタ)アクリレート;
 2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、ジシクロペンタニル(メタ)アクリレ-ト、等の多環式(メタ)アクリレート;
 2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、アルキルフェノキシポリエチレングリコール(メタ)アクリレート等のアルコキシ基またはフェノキシ基含有(メタ)アクリレート;等が挙げられる。
 また、前記(メタ)アクリル酸誘導体としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートや、[4-(ヒドロキシメチル)シクロヘキシル]メチルアクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等の水酸基含有(メタ)アクリレート;
 グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等のエポキシ基含有(メタ)アクリレート;
 2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート等のハロゲン含有(メタ)アクリレート;
 ジメチルアミノエチル(メタ)アクリレート等のアルキルアミノアルキル(メタ)アクリレート;
 3-オキセタニルメチル(メタ)アクリレート、3-メチルーオキセタニルメチル(メタ)アクリレート、3-エチルーオキセタニルメチル(メタ)アクリレート、3-ブチルーオキセタニルメチル(メタ)アクリレート、3-ヘキシルーオキセタニルメチル(メタ)アクリレート等のオキセタン基含有(メタ)アクリレート;
 テトラヒドロフルフリル(メタ)アクリレート、ブチロラクトン(メタ)アクリレート、などの複素環を有する(メタ)アクリレートや、ヒドロキシピバリン酸ネオペンチルグリコール(メタ)アクリル酸付加物、p-フェニルフェノール(メタ)アクリレート等が挙げられる。
 また、単官能ラジカル重合性化合物としては、(メタ)アクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸、イソクロトン酸などのカルボキシル基含有モノマーが挙げられる。
 また、単官能ラジカル重合性化合物としては、例えば、N-ビニルピロリドン、N-ビニル-ε-カプロラクタム、メチルビニルピロリドン等のラクタム系ビニルモノマー;ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリン等の窒素含有複素環を有するビニル系モノマー等が挙げられる。
 また、単官能ラジカル重合性化合物としては、活性メチレン基を有するラジカル重合性化合物を用いることができる。活性メチレン基を有するラジカル重合性化合物は、末端または分子中に(メタ)アクリル基などの活性二重結合基を有し、かつ活性メチレン基を有する化合物である。活性メチレン基としては、例えばアセトアセチル基、アルコキシマロニル基、またはシアノアセチル基などが挙げられる。前記活性メチレン基がアセトアセチル基であることが好ましい。活性メチレン基を有するラジカル重合性化合物の具体例としては、例えば2-アセトアセトキシエチル(メタ)アクリレート、2-アセトアセトキシプロピル(メタ)アクリレート、2-アセトアセトキシ-1-メチルエチル(メタ)アクリレートなどのアセトアセトキシアルキル(メタ)アクリレート;2-エトキシマロニルオキシエチル(メタ)アクリレート、2-シアノアセトキシエチル(メタ)アクリレート、N-(2-シアノアセトキシエチル)アクリルアミド、N-(2-プロピオニルアセトキシブチル)アクリルアミド、N-(4-アセトアセトキシメチルベンジル)アクリルアミド、N-(2-アセトアセチルアミノエチル)アクリルアミドなどが挙げられる。活性メチレン基を有するラジカル重合性化合物は、アセトアセトキシアルキル(メタ)アクリレートであることが好ましい。
 ≪多官能ラジカル重合性化合物≫
 また、二官能以上の多官能ラジカル重合性化合物としては、例えば、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジアクリレート、2-エチル-2-ブチルプロパンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオぺンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、EO変性ジグリセリンテトラ(メタ)アクリレート等の(メタ)アクリル酸と多価アルコールとのエステル化物、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレンがあげられる。具体例としては、アロニックスM-220、M-306(東亞合成社製)、ライトアクリレート1,9ND-A(共栄社化学社製)、ライトアクリレートDGE-4A(共栄社化学社製)、ライトアクリレートDCP-A(共栄社化学社製)、SR-531(Sartomer社製)、CD-536(Sartomer社製)等が挙げられる。また必要に応じて、各種のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートや、各種の(メタ)アクリレート系モノマー等が挙げられる。
 ラジカル重合性化合物は、偏光子との密着性と光学耐久性を両立させる観点から、単官能ラジカル重合性化合物と多官能ラジカル重合性化合物を併用することが好ましい。通常は、ラジカル重合性化合物100重量%に対して、単官能ラジカル重合性化合物3~80重量%と多官能ラジカル重合性化合物20~97重量%の割合で併用することが好ましい。
 ≪ラジカル重合硬化型形成材の態様≫
 ラジカル重合硬化型形成材は、活性エネルギー線硬化型または熱硬化型の形成材として用いることができる。活性エネルギー線に電子線等を用いる場合には、当該活性エネルギー線硬化型形成材は光重合開始剤を含有することは必要ではないが、活性エネルギー線に紫外線または可視光線を用いる場合には、光重合開始剤を含有するのが好ましい。一方、前記硬化性成分を熱硬化性成分として用いる場合には、当該形成材は熱重合開始剤を含有するのが好ましい。
 ≪光重合開始剤≫
 ラジカル重合性化合物を用いる場合の光重合開始剤は、活性エネルギー線によって適宜に選択される。紫外線または可視光線により硬化させる場合には紫外線または可視光線開裂の光重合開始剤が用いられる。前記光重合開始剤としては、例えば、ベンジル、ベンゾフェノン、ベンゾイル安息香酸、3,3′-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン系化合物;4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α´-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、α-ヒドロキシシクロヘキシルフェニルケトンなどの芳香族ケトン化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1などのアセトフェノン系化合物;べンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル、べンゾインブチルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどの芳香族ケタール系化合物;2-ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1-フェノン-1,1―プロパンジオン-2-(o-エトキシカルボニル)オキシムなどの光活性オキシム系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン、ドデシルチオキサントンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどがあげられる。
 前記光重合開始剤の配合量は、硬化性成分(ラジカル重合性化合物)の全量100重量部に対して、20重量部以下である。光重合開始剤の配合量は、0.01~20重量部であるのが好ましく、さらには、0.05~10重量部、さらには0.1~5重量部であるのが好ましい。
 また本発明の偏光フィルム用硬化型形成材を、硬化性成分としてラジカル重合性化合物を含有する可視光線硬化型で用いる場合には、特に380nm以上の光に対して高感度な光重合開始剤を用いることが好ましい。380nm以上の光に対して高感度な光重合開始剤については後述する。
 前記光重合開始剤としては、下記一般式(1)で表される化合物;
Figure JPOXMLDOC01-appb-C000001
(式中、RおよびRは-H、-CHCH、-iPrまたはClを示し、RおよびRは同一または異なっても良い)を単独で使用するか、あるいは一般式(1)で表される化合物と後述する380nm以上の光に対して高感度な光重合開始剤とを併用することが好ましい。一般式(1)で表される化合物を使用した場合、380nm以上の光に対して高感度な光重合開始剤を単独で使用した場合に比べて密着性に優れる。一般式(1)で表される化合物の中でも、RおよびRが-CHCHであるジエチルチオキサントンが特に好ましい。当該形成材中の一般式(1)で表される化合物の組成比率は、硬化性成分の全量100重量部に対して、0.1~5重量部であることが好ましく、0.5~4重量部であることがより好ましく、0.9~3重量部であることがさらに好ましい。
 また、必要に応じて重合開始助剤を添加することが好ましい。重合開始助剤としては、トリエチルアミン、ジエチルアミン、N-メチルジエタノールアミン、エタノールアミン、4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミルなどが挙げられ、4-ジメチルアミノ安息香酸エチルが特に好ましい。重合開始助剤を使用する場合、その添加量は、硬化性成分の全量100重量部に対して、通常0~5重量部、好ましくは0~4重量部、最も好ましくは0~3重量部である。
 また、必要に応じて公知の光重合開始剤を併用することができる。UV吸収能を有する透明保護フィルムは、380nm以下の光を透過しないため、光重合開始剤としては、380nm以上の光に対して高感度な光重合開始剤を使用することが好ましい。具体的には、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウムなどが挙げられる。
 特に、光重合開始剤として、一般式(1)の光重合開始剤に加えて、さらに下記一般式(2)で表される化合物;
Figure JPOXMLDOC01-appb-C000002
(式中、R、RおよびRは-H、-CH、-CHCH、-iPrまたはClを示し、R、RおよびRは同一または異なっても良い)を使用することが好ましい。一般式(2)で表される化合物としては、市販品でもある2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(商品名:IRGACURE907 メーカー:BASF)が好適に使用可能である。その他、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(商品名:IRGACURE369 メーカー:BASF)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(商品名:IRGACURE379 メーカー:BASF)が感度が高いため好ましい。
 <活性メチレン基を有するラジカル重合性化合物と、水素引き抜き作用のあるラジカル重合開始剤>
 上記活性エネルギー線硬化型形成材において、ラジカル重合性化合物として、活性メチレン基を有するラジカル重合性化合物を用いる場合には、水素引き抜き作用のあるラジカル重合開始剤と組み合わせて用いるのが好ましい。
 水素引き抜き作用のあるラジカル重合開始剤として、例えばチオキサントン系ラジカル重合開始剤、ベンゾフェノン系ラジカル重合開始剤などが挙げられる。前記ラジカル重合開始剤は、チオキサントン系ラジカル重合開始剤であることが好ましい。チオキサントン系ラジカル重合開始剤としては、例えば上記一般式(1)で表される化合物が挙げられる。一般式(1)で表される化合物の具体例としては、例えば、チオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、イソプロピルチオキサントン、クロロチオキサントンなどが挙げられる。一般式(1)で表される化合物の中でも、RおよびRが-CHCHであるジエチルチオキサントンが特に好ましい。
 上記活性エネルギー線硬化型形成材において、活性メチレン基を有するラジカル重合性化合物と、水素引き抜き作用のあるラジカル重合開始剤を含有する場合には、硬化性成分の全量を100重量%としたとき、前記活性メチレン基を有するラジカル重合性化合物を1~50重量%、およびラジカル重合開始剤を、硬化性成分の全量100重量部に対して0.1~10重量部含有することが好ましい。
 ≪熱重合開始剤≫
 熱重合開始剤としては、接着剤層の形成の際には熱開裂によって重合が開始しないものが好ましい。例えば、熱重合開始剤としては、10時間半減期温度が65℃以上、さらには75~90℃であるものが好ましい。なお、この半減期とは、重合開始剤の分解速度を表す指標であり、重合開始剤の残存量が半分になるまでの時間をいう。任意の時間で半減期を得るための分解温度や、任意の温度での半減期時間に関しては、メーカーカタログなどに記載されており、たとえば、日本油脂株式会社の「有機過酸化物カタログ第9版(2003年5月)」などに記載されている。
 熱重合開始剤としては、例えば、過酸化ラウロイル(10時間半減期温度:64℃)、過酸化ベンゾイル(10時間半減期温度:73℃)、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロへキサン(10時間半減期温度:90℃)、ジ(2-エチルヘキシル)パーオキシジカーボネート(10時間半減期温度:49℃)、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート(10時間半減期温度:51℃)、t-ブチルパーオキシネオデカノエート(10時間半減期温度:48℃)、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、ジラウロイルパーオキシド(10時間半減期温度:64℃)、ジ-n-オクタノイルパーオキシド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(10時間半減期温度:66℃)、ジ(4-メチルベンゾイル)パーオキシド、ジベンゾイルパーオキシド(10時間半減期温度:73℃)、t-ブチルパーオキシイソブチレート(10時間半減期温度:81℃)、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン等の有機系過酸化物があげられる。
 また、熱重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル(10時間半減期温度:67℃)、2,2’-アゾビス(2-メチルブチロニトリル)(10時間半減期温度:67℃)、1,1-アゾビス-シクロへキサン-1-カルボニトリル(10時間半減期温度:87℃)などのアゾ系化合物があげられる。
 熱重合開始剤の配合量は、硬化性成分(ラジカル重合性化合物)の全量100重量部に対して、0.01~20重量部である。熱重合開始剤の配合量は、さらには0.05~10重量部、さらには0.1~3重量部であるのが好ましい。
 ≪カチオン重合硬化型形成材≫
 カチオン重合硬化型形成材の硬化性成分としては、エポキシ基やオキセタニル基を有する化合物が挙げられる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有するものであれば特に限定されず、一般に知られている各種の硬化性エポキシ化合物を用いることができる。好ましいエポキシ化合物として、分子内に少なくとも2個のエポキシ基と少なくとも1個の芳香環を有する化合物(芳香族系エポキシ化合物)や、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個は脂環式環を構成する隣り合う2個の炭素原子との間で形成されている化合物(脂環式エポキシ化合物)等が例として挙げられる。
 ≪光カチオン重合開始剤≫
 カチオン重合硬化型形成材は、硬化性成分として以上説明したエポキシ化合物及びオキセタン化合物を含有し、これらはいずれもカチオン重合により硬化するものであることから、光カチオン重合開始剤が配合される。この光カチオン重合開始剤は、可視光線、紫外線、X線、電子線等の活性エネルギー線の照射によって、カチオン種又はルイス酸を発生し、エポキシ基やオキセタニル基の重合反応を開始する。
 <その他の成分>
 本発明に係る硬化型形成材は、下記成分を含有することが好ましい。
 <アクリル系オリゴマー>
 本発明に係る活性エネルギー線硬化型形成材は、前記ラジカル重合性化合物に係る硬化性成分に加えて、(メタ)アクリルモノマーを重合してなるアクリル系オリゴマーを含有することができる。活性エネルギー線硬化型形成材中にアクリル系オリゴマーを含有することで、該透明層に活性エネルギー線を照射・硬化させる際の硬化収縮を低減し、透明層と、偏光子などの被着体との界面応力を低減することができる。その結果、接着剤層と被着体との接着性の低下を抑制することができる。硬化収縮を十分に抑制するためには、硬化性成分の全量100重量部に対して、アクリル系オリゴマーの含有量は、20重量部以下であることが好ましく、15重量部以下であることがより好ましい。形成材中のアクリル系オリゴマーの含有量が多すぎると、該形成材に活性エネルギー線を照射した際の反応速度の低下が激しく、硬化不良となる場合がある。一方、硬化性成分の全量100重量部に対して、アクリル系オリゴマーを3重量部以上含有することが好ましく、5重量部以上含有することがより好ましい。
 活性エネルギー線硬化型形成材は、塗工時の作業性や均一性を考慮した場合、低粘度であることが好ましいため、(メタ)アクリルモノマーを重合してなるアクリル系オリゴマーも低粘度であることが好ましい。低粘度であって、かつ透明層の硬化収縮を防止できるアクリル系オリゴマーとしては、重量平均分子量(Mw)が15000以下のものが好ましく、10000以下のものがより好ましく、5000以下のものが特に好ましい。一方、透明層の硬化収縮を十分に抑制するためには、アクリル系オリゴマーの重量平均分子量(Mw)が500以上であることが好ましく、1000以上であることがより好ましく、1500以上であることが特に好ましい。アクリル系オリゴマーを構成する(メタ)アクリルモノマーとしては、具体的には例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、S-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、N-オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1-20)アルキルエステル類、さらに、例えば、シクロアルキル(メタ)アクリレート(例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレートなど)、アラルキル(メタ)アクリレート(例えば、ベンジル(メタ)アクリレートなど)、多環式(メタ)アクリレート(例えば、2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレートなど)、ヒドロキシル基含有(メタ)アクリル酸エステル類(例えば、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシプロピルメチル-ブチル(メタ)メタクリレートなど)、アルコキシ基またはフェノキシ基含有(メタ)アクリル酸エステル類(2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなど)、エポキシ基含有(メタ)アクリル酸エステル類(例えば、グリシジル(メタ)アクリレートなど)、ハロゲン含有(メタ)アクリル酸エステル類(例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレートなど)、アルキルアミノアルキル(メタ)アクリレート(例えば、ジメチルアミノエチル(メタ)アクリレートなど)などが挙げられる。これら(メタ)アクリレートは、単独使用または2種類以上併用することができる。アクリル系オリゴマーの具体例としては、東亞合成社製「ARUFON」、綜研化学社製「アクトフロー」、BASFジャパン社製「JONCRYL」などが挙げられる。
 <光酸発生剤>
 上記活性エネルギー線硬化型形成材において、光酸発生剤を含有することができる。上記活性エネルギー線硬化型形成材に、光酸発生剤を含有する場合、光酸発生剤を含有しない場合に比べて、透明層の耐水性および耐久性を飛躍的に向上することができる。光酸発生剤は、下記一般式(3)で表すことができる。
 一般式(3)
Figure JPOXMLDOC01-appb-C000003
 (ただし、Lは、任意のオニウムカチオンを表す。また、Xは、PF6 、SbF 、AsF 、SbCl 、BiCl 、SnCl 、ClO 、ジチオカルバメートアニオン、SCN-よりからなる群より選択されるカウンターアニオンを表す。)
 光酸発生剤を構成する好ましいオニウム塩の具体例としては、PF 、SbF 、AsF 、SbCl 、BiCl 、SnCl 、ClO 、ジチオカルバメートアニオン、SCNより選ばれるアニオンとからなるオニウム塩である。
 具体的には、「サイラキュアーUVI-6992」、「サイラキュアーUVI-6974」(以上、ダウ・ケミカル日本株式会社製)、「アデカオプトマーSP150」、「アデカオプトマーSP152」、「アデカオプトマーSP170」、「アデカオプトマーSP172」(以上、株式会社ADEKA製)、「IRGACURE250」(チバスペシャルティーケミカルズ社製)、「CI-5102」、「CI-2855」(以上、日本曹達社製)、「サンエイドSI-60L」、「サンエイドSI-80L」、「サンエイドSI-100L」、「サンエイドSI-110L」、「サンエイドSI-180L」(以上、三新化学社製)、「CPI-100P」、「CPI-100A」(以上、サンアプロ株式会社製)、「WPI-069」、「WPI-113」、「WPI-116」、「WPI-041」、「WPI-044」、「WPI-054」、「WPI-055」、「WPAG-281」、「WPAG-567」、「WPAG-596」(以上、和光純薬社製)が光酸発生剤の好ましい具体例として挙げられる。
 光酸発生剤の含有量は、硬化性成分の全量100重量部に対して、10重量部以下であり、0.01~10重量部であることが好ましく、0.05~5重量部であることがより好ましく、0.1~3重量部であることが特に好ましい。
 前記硬化型の形成材による透明層の形成は、偏光子の面に、硬化型形成材を塗工し、その後、硬化することにより行う。
 偏光子は、上記硬化型形成材を塗工する前に、表面改質処理を行ってもよい。具体的な処理としては、コロナ処理、プラズマ処理、ケン化処理による処理などが挙げられる。
 硬化型形成材の塗工方式は、当該硬化型形成材の粘度や目的とする厚みによって適宜に選択される。塗工方式の例として、例えば、リバースコーター、グラビアコーター(ダイレクト,リバースやオフセット)、バーリバースコーター、ロールコーター、ダイコーター、バーコーター、ロッドコーターなどが挙げられる。その他、塗工には、デイッピング方式などの方式を適宜に使用することができる。
 <形成材の硬化>
 前記硬化型形成材は、活性エネルギー線硬化型形成材または熱硬化型形成材として用いられる。活性エネルギー線硬化型形成材では、電子線硬化型、紫外線硬化型、可視光線硬化型の態様で用いることができる。前記硬化型形成材の態様は生産性の観点から熱硬化型形成材よりも、活性エネルギー線硬化型形成材が好ましく、さらには活性エネルギー線硬化型形成材としては、可視光線硬化型形成材が生産性の観点から好ましい。
 ≪活性エネルギー線硬化型≫
 活性エネルギー線硬化型形成材では、偏光子に活性エネルギー線硬化型形成材を塗工した後、活性エネルギー線(電子線、紫外線、可視光線など)を照射し、活性エネルギー線硬化型形成材を硬化して透明層を形成する。活性エネルギー線(電子線、紫外線、可視光線など)の照射方向は、任意の適切な方向から照射することができる。好ましくは、透明層側から照射する。
 ≪電子線硬化型≫
 電子線硬化型において、電子線の照射条件は、上記活性エネルギー線硬化型形成材を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV~300kVであり、さらに好ましくは10kV~250kVである。加速電圧が5kV未満の場合、電子線が透明層最深部まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて、透明保護フィルムや偏光子にダメージを与えるおそれがある。照射線量としては、5~100kGy、さらに好ましくは10~75kGyである。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、透明保護フィルムや偏光子にダメージを与え、機械的強度の低下や黄変を生じ、所定の光学特性を得ることができない。
 電子線照射は、通常、不活性ガス中で照射を行うが、必要であれば大気中や酸素を少し導入した条件で行ってもよい。
 ≪紫外線硬化型、可視光線硬化型≫
 本発明に係る偏光フィルムの製造方法では、活性エネルギー線として、波長範囲380nm~450nmの可視光線を含むもの、特には波長範囲380nm~450nmの可視光線の照射量が最も多い活性エネルギー線を使用することが好ましい。本発明に係る活性エネルギー線としては、ガリウム封入メタルハライドランプ、波長範囲380~440nmを発光するLED光源が好ましい。あるいは、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、白熱電球、キセノンランプ、ハロゲンランプ、カーボンアーク灯、メタルハライドランプ、蛍光灯、タングステンランプ、ガリウムランプ、エキシマレーザーまたは太陽光などの紫外線と可視光線を含む光源を使用することができ、バンドパスフィルターを用いて380nmより短波長の紫外線を遮断して用いることもできる。
 ≪熱硬化型≫
 一方、熱硬化型形成材では、偏光子と透明保護フィルムを貼り合わせた後に、加熱することにより、熱重合開始剤により重合を開始して、硬化物層を形成する。加熱温度は、熱重合開始剤に応じて設定されるが、60~200℃程度、好ましくは80~150℃である。 
 また、前記透明層を形成する材料として、例えば、シアノアクリレート系形成材、エポキシ系形成材、またはイソシアネート系形成材を用いることができる。
 シアノアクリレート系形成材としては、例えば、メチル-α-シアノアクリレート、エチル-α-シアノアクリレート、ブチル-α-シアノアクリレート、オクチル-α-シアノアクリレート等のアルキル-α-シアノアクリレート、シクロヘキシル-α-シアノアクリレート、メトキシ-α-シアノアクリレート等があげられる。シアノアクリレート系形成材としては、例えば、シアノアクリレート系接着剤として用いられるものを用いることができる。
 エポキシ系形成材は、エポキシ樹脂単体で用いてもよいし、エポキシ硬化剤を含有してもよい。エポキシ樹脂を単体で用いる場合には、光重合開始剤を添加し活性エネルギー線を照射することで硬化させる。エポキシ系形成材としてエポキシ硬化剤を添加する場合には、例えば、エポキシ系接着剤として用いられるものを用いることができる。エポキシ系形成材の使用形態は、エポキシ樹脂とその硬化剤を含有してなる1液型として用いることもできるが、エポキシ樹脂に硬化剤を配合する2液型として用いられる。エポキシ系形成材は、通常、溶液として用いられる。溶液は溶剤系であってもよいし、エマルジョン、コロイド分散液、水溶液等の水系であってもよい。
 エポキシ樹脂としては、分子内に2個以上のエポキシ基を含有する各種化合物を例示でき、例えば、ビスフェノール型エポキシ樹脂、脂肪族系エポキシ樹脂、芳香族系エポキシ樹脂、ハロゲン化ビスフェノール型エポキシ樹脂、ビフェニル系エポキシ樹脂などがあげられる。また、エポキシ樹脂は、エポキシ当量や官能基数に応じて適宜に決定することができるが、耐久性の観点よりエポキシ当量500以下のものが好適に用いられる。
 エポキシ樹脂の硬化剤は特に制限されず、フェノール樹脂系、酸無水物系、カルボン酸系、ポリアミン系等の各種のものを使用できる。フェノール樹脂系の硬化剤としては、例えば、フェノールノボラック樹脂、ビスフェノールノボラック樹脂、キシリレンフェノール樹脂、クレゾールノボラツク樹脂等が用いられる。酸無水物系の硬化剤としては;無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水コハク酸等があげられ、カルボン酸系の硬化剤としてはピロメリット酸、トリメリット酸等のカルボン酸類及びビニルエーテルを付加したブロックカルボン酸類があげられる。また、エポキシ系二液形成材としては、例えば、エポキシ樹脂とポリチオールの二液からなるもの、エポキシ樹脂とポリアミドの二液からなるものなどを用いることができる。
 硬化剤の配合量は、エポキシ樹脂との当量により異なるが、エポキシ樹脂100重量部に対して、30~70重量部、さらには40~60重量部とするのが好ましい。
 さらに、エポキシ系形成材には、エポキシ樹脂およびその硬化剤に加えて、各種の硬化促進剤を用いることができる。硬化促進剤としては、例えば、各種イミダゾール系化合物及びその誘導体、ジシアンジアミド等があげられる。
 イソシアネート系形成材としては、粘着剤層の形成において架橋剤として用いるものがあげられる。イソシアネート系架橋剤としては、少なくとも2つのイソシアネート基を有する化合物を使用できる。例えば、前記ポリイソシアネート化合物をイソシアネート系形成材として使用できる。詳しくは、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシリレンジイソシアネート、1,3-ビスイソシアナトメチルシクロヘキサン、ヘキサメチレンジイソシアネート、テトラメチルキシリレンジイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メチレンビス4-フェニルイソシアネート、p-フェニレンジイソシアネートまたはこれらの2量体やイソシアヌル酸トリス(6-インシアネートヘキシル)などの3量体、さらにはこれらのビウレットやトリメチロールプロパンなどの多価アルコールや多価アミンと反応させたものなどがあげられる。またイソシアネート系架橋剤としては、イソシアヌル酸トリス(6-インシアネートヘキシル)などのイソシアネート基を3個以上有するものが好ましい。イソシアネート系形成材としては、例えば、イソシアネート系接着剤として用いられるものがあげられる。
 イソシアネート系形成材のなかでも、本発明では、分子構造的に環状構造(ベンゼン環、シアヌレート環、イソシアヌレート環等)が構造中で占める割合の大きなリジットな構造のものを使用することが好ましい。イソシアネート系形成材としては、例えば、トリメチロールプロパン-トリ-トリレンイソシアネート、トリス(ヘキサメチレンイソシアネート)イソシアヌレート等が好まし用いられる。
 なお前記イソシアネート系架橋剤は、末端イソシアネート基に保護基を付与したものを用いることもできる。保護基としてはオキシムやラクタムなどがある。イソシアネート基を保護したものは、加熱することによりイソシアネート基から保護基を解離させ、イソシアネート基が反応するようになる。
 さらにイソシアネート基の反応性をあげるために反応触媒を用いることができる。反応触媒は特に制限されないが、スズ系触媒またはアミン系触媒が好適である。反応触媒は1種または2種以上を用いることができる。反応触媒の使用量は、通常、イソシアネート系架橋剤100重量部に対して、5重量部以下で使用される。反応触媒量が多いと、架橋反応速度が速くなり形成材の発泡が起こる。発泡後の形成材を使用しても十分な接着性は得られない。通常、反応触媒を使用する場合には、0.01~5重量部、さらには0.05~4重量部が好ましい。
 スズ系触媒としては、無機系、有機系のいずれも使用できるが有機系が好ましい。無機系スズ系触媒としては、例えば、塩化第一スズ、塩化第二スズ等があげられる。有機系スズ系触媒は、メチル基、エチル基、エーテル基、エステル基などの骨格を有する脂肪族基、脂環族基などの有機基を少なくとも1つ有するものが好ましい。例えば、テトラ-n-ブチルスズ、トリ-n-ブチルスズアセテート、n-ブチルスズトリクロライド、トリメチルスズハイドロオキサイド、ジメチルスズジクロライド、ジブチルスズジラウレート等があげられる。
 またアミン系触媒としては、特に制限されない。例えば、キノクリジン、アミジン、ジアザビシクロウンデセンなどの脂環族基等の有機基を少なくとも1つ有するものが好ましい。その他、アミン系触媒としては、トリエチルアミン等があげられる。また前記以外の反応触媒としては、ナフテン酸コバルト、ベンジルトリメチルアンモニウムハイドロオキサイド等が例示できる。
 イソシアネート系形成材は、通常、溶液として用いられる。溶液は溶剤系であってもよいし、エマルジョン、コロイド分散液、水溶液等の水系であってもよい。有機溶剤としては、形成材を構成する成分を均一に溶解すれば特に制限はない。有機溶剤としては、例えば、トルエン、メチルエチルケトン、酢酸エチル等があげられる。なお、水系にする場合にも、例えば、n-ブチルアルコール、イソプロピルアルコール等のアルコール類、アセトン等のケトン類を配合することもできる。水系にする場合には、分散剤を用いたり、イソシアネート系架橋剤に、カルボン酸塩、スルホン酸塩、4級アンモニウム塩等のイソシアネート基と反応性の低い官能基や、ポリエチレングリコール等の水分散性成分を導入することにより行うことができる。
 シアノアクリレート系形成材、エポキシ系形成材、またはイソシアネート系形成材による透明層の形成は、前記形成材の種類に応じて適宜に選択することができるが、通常は、30~100℃程度、好ましくは50~80℃で、0.5~15分間程度乾燥することにより行う。なお、シアノアクリレート系形成材の場合には、硬化が早いため、前記時間より短い時間により、透明層を形成することができる。
 透明層は、硬化性成分を含有しない形成材から形成されていてもよく、例えば前記ポリビニルアルコール系樹脂を主成分として含有する形成材から形成されてもよい。透明層を形成するポリビニルアルコール系樹脂は、「ポリビニルアルコール系樹脂」である限り、偏光子が含有するポリビニルアルコール系樹脂と同一でも異なってもいてもよい。
 前記ポリビニルアルコール系樹脂としては、例えば、ポリビニルアルコールが挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。また、ポリビニルアルコール系樹脂としては、酢酸ビニルと共重合性を有する単量体との共重合体のケン化物が挙げられる。前記共重合性を有する単量体がエチレンの場合には、エチレン-ビニルアルコール共重合体が得られる。また、前記共重合性を有する単量体としては、(無水)マレイン酸、フマール酸、クロトン酸、イタコン酸、(メタ)アクリル酸等の不飽和カルボン酸およびそのエステル類;エチレン、プロピレン等のα-オレフィン、(メタ)アリルスルホン酸(ソーダ)、スルホン酸ソーダ(モノアルキルマレート)、ジスルホン酸ソーダアルキルマレート、N-メチロールアクリルアミド、アクリルアミドアルキルスルホン酸アルカリ塩、N-ビニルピロリドン、N-ビニルピロリドン誘導体等が挙げられる。これらポリビニルアルコール系樹脂は一種を単独で又は二種以上を併用することができる。前記透明層の結晶融解熱量を30mj/mg以上に制御して、耐湿熱性や耐水性を満足させる観点から、ポリ酢酸ビニルをケン化して得られたポリビニルアルコールが好ましい。
 前記ポリビニルアルコール系樹脂のケン化度は、例えば、95%以上のものを用いることができるが、前記透明層の結晶融解熱量を30mj/mg以上に制御して、耐湿熱性や耐水性を満足させる観点からは、ケン化度は99.0%以上が好ましく、さらには99.7%以上が好ましい。ケン化度は、ケン化によりビニルアルコール単位に変換され得る単位の中で、実際にビニルアルコール単位にケン化されている単位の割合を表したものであり、残基はビニルエステル単位である。ケン化度は、JIS K 6726-1994に準じて求めることができる。
 前記ポリビニルアルコール系樹脂の平均重合度は、例えば、500以上のものを用いることができるが、前記透明層の結晶融解熱量を30mj/mg以上に制御して、耐湿熱性や耐水性を満足させる観点からは、平均重合度は、1000以上が好ましく、さらには1500以上が好ましく、さらには2000以上が好ましい。ポリビニルアルコール系樹脂の平均重合度はJIS-K6726に準じて測定される。
 また前記ポリビニルアルコール系樹脂としては、前記ポリビニルアルコールまたはその共重合体の側鎖に親水性の官能基を有する変性ポリビニルアルコール系樹脂を用いることができる。前記親水性の官能基としては、例えば、アセトアセチル基、カルボニル基等が挙げられる。その他、ポリビニルアルコール系樹脂をアセタール化、ウレタン化、エーテル化、グラフト化、リン酸エステル化等した変性ポリビニルアルコールを用いることができる。
 前記ポリビニルアルコール系樹脂を主成分として含有する形成材には、硬化性成分(架橋剤)等を含有することができる。透明層または形成材(固形分)中のポリビニルアルコール系樹脂の割合は、80重量%以上であるのが好ましく、さらには90重量%以上、さらには95重量%以上であるのが好ましい。但し、前記形成材には、透明層の結晶融解熱量を30mj/mg以上に制御しやすい観点から、硬化性成分(架橋剤)を含有しないことが好ましい。
 架橋剤としては、ポリビニルアルコール系樹脂と反応性を有する官能基を少なくとも2つ有する化合物を使用できる。たとえば、エチレンジアミン、トリエチレンジアミン、ヘキサメチレンジアミン等のアルキレン基とアミノ基を2個有するアルキレンジアミン類;トリレンジイソシアネート、水素化トリレンジイソシアネート、トリメチロールプロパントリレンジイソシアネートアダクト、トリフェニルメタントリイソシアネート、メチレンビス(4-フェニルメタントリイソシアネート、イソホロンジイソシアネートおよびこれらのケトオキシムブロック物またはフェノールブロック物等のイソシアネート類;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジまたはトリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジグリシジルアミン等のエポキシ類;ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド等のモノアルデヒド類;グリオキザール、マロンジアルデヒド、スクシンジアルデヒド、グルタルジアルデヒド、マレインジアルデヒド、フタルジアルデヒド等のジアルデヒド類;メチロール尿素、メチロールメラミン、アルキル化メチロール尿素、アルキル化メチロール化メラミン、アセトグアナミン、ベンゾグアナミンとホルムアルデヒドとの縮合物等のアミノ-ホルムアルデヒド樹脂;アジピン酸ジヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、イソフタル酸ジヒドラジド、セバシン酸ジヒドラジド、マレイン酸ジヒドラジド、フマル酸ジヒドラジド、イタコン酸ジヒドラジドなどのジカルボン酸ジヒドラジド;エチレン-1,2-ジヒドラジン、プロピレン-1,3-ジヒドラジン、ブチレン-1,4-ジヒドラジンなどの水溶性ジヒドラジンがあげられる。これらのなかでもアミノ-ホルムアルデヒド樹脂や水溶性ジヒドラジンが好ましい。アミノ-ホルムアルデヒド樹脂としてはメチロール基を有する化合物が好ましい。なかでもメチロール基を有する化合物である、メチロールメラミンが特に好適である。
 前記硬化性成分(架橋剤)は、耐水性向上の観点から用いることができるが、その割合は、ポリビニルアルコール系樹脂100重量部に対して、20重量部以下、10重量部以下、5重量部以下であるのが好ましい。
 前記形成材は、前記ポリビニルアルコール系樹脂を溶媒に溶解させた溶液として調整される。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドN-メチルピロリドン、各種グリコール類、アルコール類等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、溶剤として水を用いた水溶液として用いるのが好ましい。前記形成材(例えば水溶液)における、前記ポリビニルアルコール系樹脂の濃度は、特に制限はないが、塗工性や放置安定性等を考慮すれば、0.1~15重量%、好ましくは0.5~10重量%である。
 なお、前記形成材(例えば水溶液)には、添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。さらにシランカップリング剤、チタンカップリング剤などのカップリング剤、各種粘着付与剤、紫外線吸収剤、酸化防止剤、耐熱安定剤、耐加水分解安定剤などの安定剤等を配合することもできる。
 前記透明層は、前記形成材を、偏光子の他の片面(透明保護フィルムを積層していない面)に、塗布して乾燥することにより形成することができる。塗布操作は特に制限されず、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等各種手段を採用できる。
 <粘着剤層>
 粘着剤層の形成には、適宜な粘着剤を用いることができ、その種類について特に制限はない。粘着剤としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤などがあげられる。
 これら粘着剤のなかでも、光学的透明性に優れ、適宜な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく使用される。このような特徴を示すものとしてアクリル系粘着剤が好ましく使用される。
 粘着剤層を形成する方法としては、例えば、前記粘着剤を剥離処理したセパレータなどに塗布し、重合溶剤などを乾燥除去して粘着剤層を形成した後に、図2(A)の態様では偏光子(または図2(B)の態様では透明保護フィルム)に転写する方法、または図2(A)の態様では偏光子(または図2(B)の態様では透明保護フィルム)に前記粘着剤を塗布し、重合溶剤などを乾燥除去して粘着剤層を偏光子に形成する方法などにより作製される。なお、粘着剤の塗布にあたっては、適宜に、重合溶剤以外の一種以上の溶剤を新たに加えてもよい。
 剥離処理したセパレータとしては、シリコーン剥離ライナーが好ましく用いられる。このようなライナー上に本発明の粘着剤を塗布、乾燥させて粘着剤層を形成する工程において、粘着剤を乾燥させる方法としては、目的に応じて、適宜、適切な方法が採用され得る。好ましくは、上記塗布膜を過熱乾燥する方法が用いられる。加熱乾燥温度は、好ましくは40℃~200℃であり、さらに好ましくは、50℃~180℃であり、特に好ましくは70℃~170℃である。加熱温度を上記の範囲とすることによって、優れた粘着特性を有する粘着剤を得ることができる。
 乾燥時間は、適宜、適切な時間が採用され得る。上記乾燥時間は、好ましくは5秒~20分、さらに好ましくは5秒~10分、特に好ましくは、10秒~5分である。
 粘着剤層の形成方法としては、各種方法が用いられる。具体的には、例えば、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、ダイコーターなどによる押出しコート法などの方法があげられる。
 粘着剤層の厚さは、特に制限されず、例えば、1~100μm程度である。好ましくは、2~50μm、より好ましくは2~40μmであり、さらに好ましくは、5~35μmである。
 前記粘着剤層が露出する場合には、実用に供されるまで剥離処理したシート(セパレータ)で粘着剤層を保護してもよい。
 セパレータの構成材料としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエステルフィルムなどのプラスチックフィルム、紙、布、不織布などの多孔質材料、ネット、発泡シート、金属箔、およびこれらのラミネート体などの適宜な薄葉体などをあげることができるが、表面平滑性に優れる点からプラスチックフィルムが好適に用いられる。
 そのプラスチックフィルムとしては、前記粘着剤層を保護し得るフィルムであれば特に限定されず、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフイルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン-酢酸ビニル共重合体フィルムなどがあげられる。
 前記セパレータの厚みは、通常5~200μm、好ましくは5~100μm程度である。前記セパレータには、必要に応じて、シリコーン系、フッ素系、長鎖アルキル系もしくは脂肪酸アミド系の離型剤、シリカ粉などによる離型および防汚処理や、塗布型、練り込み型、蒸着型などの帯電防止処理もすることもできる。特に、前記セパレータの表面にシリコーン処理、長鎖アルキル処理、フッ素処理などの剥離処理を適宜おこなうことにより、前記粘着剤層からの剥離性をより高めることができる。
 <表面保護フィルム>
 片保護偏光フィルム、粘着剤層付偏光フィルムには、表面保護フィルムを設けることができる。表面保護フィルムは、通常、基材フィルムおよび粘着剤層を有し、当該粘着剤層を介して偏光子を保護する。
 表面保護フィルムの基材フィルムとしては、検査性や管理性などの観点から、等方性を有する又は等方性に近いフィルム材料が選択される。そのフィルム材料としては、例えば、ポリエチレンテレフタレートフィルム等のポリエステル系樹脂、セルロース系樹脂、アセテート系樹脂、ポリエーテルサルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、アクリル系樹脂のような透明なポリマーがあげられる。これらのなかでもポリエステル系樹脂が好ましい。基材フィルムは、1種または2種以上のフィルム材料のラミネート体として用いることもでき、また前記フィルムの延伸物を用いることもできる。基材フィルムの厚さは、一般的には、500μm以下、好ましくは10~200μmである。
 表面保護フィルムの粘着剤層を形成する粘着剤としては、(メタ)アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとする粘着剤を適宜に選択して用いることができる。透明性、耐候性、耐熱性などの観点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。粘着剤層の厚さ(乾燥膜厚)は、必要とされる粘着力に応じて決定される。通常1~100μm程度、好ましくは5~50μmである。
 なお、表面保護フィルムには、基材フィルムにおける粘着剤層を設けた面の反対面に、シリコーン処理、長鎖アルキル処理、フッ素処理などの低接着性材料により、剥離処理層を設けることができる。
 <他の光学層>
 本発明の片保護偏光フィルム、粘着剤層付偏光フィルムは、実用に際して他の光学層と積層した光学フィルムとして用いることができる。その光学層については特に限定はないが、例えば反射板や半透過板、位相差板(1/2や1/4などの波長板を含む)、視角補償フィルムなどの液晶表示装置などの形成に用いられることのある光学層を1層または2層以上用いることができる。特に、本発明の片保護偏光フィルムに更に反射板または半透過反射板が積層されてなる反射型偏光フィルムまたは半透過型偏光フィルム、偏光フィルムに更に位相差板が積層されてなる楕円偏光フィルムまたは円偏光フィルム、偏光フィルムに更に視角補償フィルムが積層されてなる広視野角偏光フィルム、あるいは偏光フィルムに更に輝度向上フィルムが積層されてなる偏光フィルムが好ましい。
 片保護偏光フィルム、粘着剤層付偏光フィルムに上記光学層を積層した光学フィルムは、液晶表示装置などの製造過程で順次別個に積層する方式にても形成することができるが、予め積層して光学フィルムとしたものは、品質の安定性や組立作業などに優れていて液晶表示装置などの製造工程を向上させうる利点がある。積層には粘着剤層などの適宜な接着手段を用いうる。上記の粘着剤層付偏光フィルムやその他の光学フィルムの接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。
 本発明の片保護偏光フィルム、粘着剤層付偏光フィルムまたは光学フィルムは液晶表示装置、有機EL表示装置などの各種画像表示装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと粘着剤層付偏光フィルムまたは光学フィルム、及び必要に応じての照明システムなどの構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明においては本発明による、片保護偏光フィルム、粘着剤層付偏光フィルムまたは光学フィルムを用いる点を除いて特に限定はなく、従来に準じうる。液晶セルについても、例えばIPS型、VA型などの任意なタイプのものを用いうるが、特にIPS型に好適である。
 液晶セルの片側又は両側に片保護偏光フィルム、粘着剤層付偏光フィルムまたは光学フィルムを配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。その場合、本発明による粘着剤層付偏光フィルムまたは光学フィルムは液晶セルの片側又は両側に設置することができる。両側に片保護偏光フィルム、粘着剤層付偏光フィルムまたは光学フィルムを設ける場合、それらは同じものであってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に1層又は2層以上配置することができる。
<画像表示装置の連続製造方法>
 上記の画像表示装置は、本発明の粘着剤層付偏光フィルムの巻回体(ロール)から繰り出され、前記セパレータにより搬送された前記粘着剤層付偏光フィルムを、前記粘着剤層を介して画像表示パネルの表面に連続的に貼り合せる工程を含む連続製造方法(ロール・トゥ・パネル方式)にて製造されることが好ましい。本発明の粘着剤層付偏光フィルムは非常に薄いフィルムであるため、シート状に切断(枚葉切断)したうえで画像表示パネルに1枚ずつ貼り合せる方式(「シート・トゥ・パネル方式」ともいう。)によると、シートの搬送や表示パネルへの貼合せ時のハンドリングが難しく、それらの過程で粘着剤層付偏光フィルム(シート)が大きな機械的衝撃(例えば、吸着による撓み等)を受けるリスクが高くなる。このようなリスクを低減するには、例えば基材フィルムの厚みが50μm以上の厚めの表面保護フィルムを用いる等の対策が別途必要となる。一方、ロール・トゥ・パネル方式によれば、粘着剤層付偏光フィルムがシート状に切断(枚葉切断)されることなく、連続状のセパレータによりロールから画像表示パネルまで安定的に搬送され、そのまま画像表示パネルに貼り合わされるため、厚めの表面保護フィルムを用いることなく、上記リスクを大幅に低減することができる。その結果、透明層形成前のナノスリットの発生による欠陥だけでなく、透明層形成後におけるナノスリットの発生による欠陥も効果的に抑制された画像表示装置を高速連続生産することができる。
 図8は、ロール・トゥ・パネル方式を採用した液晶表示装置の連続製造システムの一例を示す概略図である。
 液晶表示装置の連続製造システム100は、図8に示すように、液晶表示パネルPを搬送する一連の搬送部X、第1偏光フィルム供給部101a、第1貼合部201a、第2偏光フィルム供給部101b、及び第2貼合部201bを含む。
 なお、第1粘着剤層付偏光フィルムの巻回体(第1ロール)20a及び第2粘着剤層付偏光フィルムの巻回体(第2ロール)20bとしては、長手方向に吸収軸を有し、かつ図2(A)に記載の態様のものを用いる。
(搬送部)
 搬送部Xは、液晶表示パネルPを搬送する。搬送部Xは、複数の搬送ローラおよび吸着プレート等を有して構成される。搬送部Xは、第1貼合部201aと第2貼合部201bとの間に、液晶表示パネルPの搬送方向に対して液晶表示パネルPの長辺と短辺との配置関係を入れ替える配置入替部(例えば、液晶表示パネルPを90°水平回転させる)300を含む。これにより、液晶表示パネルPに対して第1粘着剤層付偏光フィルム21a及び第2粘着剤層付偏光フィルム21bをクロスニコルの関係で貼り合せることができる。
(第1偏光フィルム供給部)
 第1偏光フィルム供給部101aは、第1ロール20aから繰り出され、セパレータ5aにより搬送された第1粘着剤層付偏光フィルム(表面保護フィルム付)21aを第1貼合部201aに連続的に供給する。第1偏光フィルム供給部101aは、第1繰出部151a、第1切断部152a、第1剥離部153a、第1巻取部154a、および複数の搬送ローラ部、ダンサーロール等のアキュムレート部等を有する。
 第1繰出部151aは、第1ロール20aが設置される繰出軸を有し、第1ロール20aからセパレータ5aが設けられた帯状の粘着剤層付偏光フィルム21aを繰り出す。
 第1切断部152aは、カッター、レーザー装置等の切断手段および吸着手段を有する。第1切断部152aは、セパレータ5aを残しつつ帯状の第1粘着剤層付偏光フィルム21aを所定の長さで幅方向に切断する。ただし、第1ロール20aとして、複数の切込線が所定の長さで幅方向に形成された帯状の粘着剤層付偏光フィルム21aがセパレータ5a上に積層されたもの(切り目入りの光学フィルムロール)を用いた場合、第1切断部152aは不要となる(後述する第2切断部152bについても同様)。
 第1剥離部153aは、セパレータ5aを内側にして折り返すことで、セパレータ5aから第1粘着剤層付偏光フィルム21aを剥離する。第1剥離部153aとしては、楔型部材、ローラなどが挙げられる。
 第1巻取部154aは、第1粘着剤層付偏光フィルム21aが剥離されたセパレータ5aを巻き取る。第1巻取部154aはセパレータ5aを巻き取るためのロールが設置される巻取軸を有する。
(第1貼合部)
 第1貼合部201aは、搬送部Xによって搬送された液晶表示パネルPに、第1剥離部153aによって剥離された第1粘着剤層付偏光フィルム21aを、第1粘着剤層付偏光フィルム21aの粘着剤層を介して連続的に貼り合わせる(第1貼合工程)。第1貼合部81は、一対の貼合ローラを有して構成され、貼合ローラの少なくとも一方が駆動ローラで構成される。
(第2偏光フィルム供給部)
 第2偏光フィルム供給部101bは、第2ロール20bから繰り出され、セパレータ5bにより搬送された第2粘着剤層付偏光フィルム(表面保護フィルム付)21bを第2貼合部201bに連続的に供給する。第2偏光フィルム供給部101bは、第2繰出部151b、第2切断部152b、第2剥離部153b、第2巻取部154b、および複数の搬送ローラ部、ダンサーロール等のアキュムレート部等を有する。なお、第2繰出部151b、第2切断部152b、第2剥離部153b、第2巻取部154bは、それぞれ第1繰出部151a、第1切断部152a、第1剥離部153a、第1巻取部154aと同様の構成および機能を有する。
(第2貼合部)
 第2貼合部201bは、搬送部Xによって搬送された液晶表示パネルPに、第2剥離部153bによって剥離された第2粘着剤層付偏光フィルム21bを、第2粘着剤層付偏光フィルム21bの粘着剤層を介して連続的に貼り合わせる(第2貼合工程)。第2貼合部201bは、一対の貼合ローラを有して構成され、貼合ローラの少なくとも一方が駆動ローラで構成される。
 以下に、本発明を実施例を挙げて説明するが、本発明は以下に示した実施例に制限されるものではない。なお、各例中の部および%はいずれも重量基準である。以下に特に規定のない室温放置条件は全て23℃65%RHである。
<片保護偏光フィルムA>
(偏光子A0の作製)
 吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:100μm)基材の片面に、コロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上、日本合成化学工業社製、商品名「ゴーセファイマーZ200」)を9:1の比で含む水溶液を25℃で塗布および乾燥して、厚み11μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、120℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.0倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温30℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴に、偏光板が所定の透過率となるようにヨウ素濃度、浸漬時間を調整しながら浸漬させた。本実施例では、水100重量部に対して、ヨウ素を0.2重量部配合し、ヨウ化カリウムを1.0重量部配合して得られたヨウ素水溶液に60秒間浸漬させた(染色処理)。
 次いで、液温30℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を3重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(水100重量部に対して、ホウ酸を4重量部配合し、ヨウ化カリウムを5重量部配合して得られた水溶液)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温30℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 以上により、厚み5μmの偏光子を含む光学フィルム積層体を得た。
(偏光子A0~A8の作製)
 上記の偏光子A0の作製において、製造条件を表1に示すように変えたこと以外は偏光子A0の作製と同様にして、偏光子A1~A8を作製した。偏光子A1~A8の厚み、光学特性(単体透過率、偏光度)、ホウ酸濃度を表1に示す。
Figure JPOXMLDOC01-appb-T000004
(透明保護フィルムの作製)
 透明保護フィルム:厚み40μmのラクトン環構造を有する(メタ)アクリル樹脂フィルムの易接着処理面にコロナ処理を施して用いた。
(透明保護フィルムに適用する接着剤の作製)
 N-ヒドロキシエチルアクリルアミド(HEAA)40重量部とアクリロイルモルホリン(ACMO)60重量部と光開始剤「IRGACURE 819」(BASF社製)3重量部を混合し、紫外線硬化型接着剤を調製した。
(片保護偏光フィルムAの作製)
 上記光学フィルム積層体の偏光子A0~A8の表面に、上記紫外線硬化型接着剤を硬化後の接着剤層の厚みが0.5μmとなるように塗布しながら、上記透明保護フィルムを貼合せたのち、活性エネルギー線として、紫外線を照射し、接着剤を硬化させた。紫外線照射は、ガリウム封入メタルハライドランプ、照射装置:Fusion UV Systems,Inc社製のLight HAMMER10、バルブ:Vバルブ、ピーク照度:1600mW/cm、積算照射量1000/mJ/cm(波長380~440nm)を使用し、紫外線の照度は、Solatell社製のSola-Checkシステムを使用して測定した。次いで、非晶性PET基材を剥離し、薄型偏光子を用いた片保護偏光フィルムA0~A8を作製した。得られた片保護偏光フィルムA0~A8の光学特性(単体透過率、偏光度)を表2に示す。
<片保護偏光フィルムB>
(偏光子B(厚さ23μmの偏光子)の作製)
平均重合度2400、ケン化度99.9モル%の厚み75μmのポリビニルアルコールフィルムを、30℃の温水中に60秒間浸漬し膨潤させた。次いで、ヨウ素/ヨウ化カリウム(重量比=0.5/8)の濃度0.3%の水溶液に浸漬し、3.5倍まで延伸させながらフィルムを染色した。その後、65℃のホウ酸エステル水溶液中で、トータルの延伸倍率が6倍となるように延伸を行った。延伸後に、40℃のオーブンにて3分間乾燥を行い、PVA系偏光子(厚み23μm)を得た。
(片保護偏光フィルムBの作製)
 上記PVA系偏光子の片面に、片保護偏光フィルムAと同様にして、上記の紫外線硬化型接着剤を介して、上記透明保護フィルムを貼り合わせた。得られた片保護偏光フィルムBの光学特性は、透過率42.8%、偏光度99.99%であった。
<片保護偏光フィルムC>
(偏光子Cの作製)
 吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:130μm)基材の片面に、コロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上、日本合成化学工業社製、商品名「ゴーセファイマーZ200」)を9:1の比で含む水溶液を25℃で塗布および乾燥して、厚み11μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、同時二軸延伸機を用いて、110℃で、第1の方向(MD)に30%収縮させると同時に、第2の方向(TD)に5.0倍に空中延伸した(延伸処理)。
 次いで、積層体を、25℃のヨウ素水溶液(ヨウ素濃度:0.2重量%、ヨウ化カリウム濃度:1.4重量%)に40秒間浸漬させた(染色処理)。
 染色後の積層体を、60℃のホウ酸水溶液(ホウ酸濃度:5重量%、ヨウ化カリウム濃度:5重量%)に80秒間浸漬させた(架橋処理)。
 架橋処理後、積層体を、25℃のヨウ化カリウム水溶液(ヨウ化カリウム濃度:5重量%)に20秒間浸漬させた(洗浄処理)。
 以上により、厚み3μmの偏光子を含む光学フィルム積層体を得た。
(片保護偏光フィルムCの作製)
 積層体の偏光子側にビニルアルコール系接着剤を介して保護フィルム(厚み:40μm、富士フイルム社製、商品名「Z-TAC ZRD40SL」)を貼り合わせた。次いで、非晶性PET基材を剥離し、薄型偏光子を用いた片保護偏光フィルムCを作製した。得られた片保護偏光フィルムCの光学特性は、透過率38.4%、偏光度99.99%であった。
 <片保護偏光フィルムD>
 (偏光子D(厚さ12μmの偏光子)の作製)
 平均重合度2400、ケン化度99.9モル%の厚み30μmのポリビニルアルコールフィルムを、30℃の温水中に60秒間浸漬し膨潤させた。次いで、ヨウ素/ヨウ化カリウム(重量比=0.5/8)の濃度0.3%の水溶液に浸漬し、3.5倍まで延伸させながらフィルムを染色した。その後、65℃のホウ酸エステル水溶液中で、総延伸倍率が6倍となるように延伸を行った。延伸後に、40℃のオーブンにて3分間乾燥を行い、PVA系偏光子を得た。得られた偏光子の厚みは12μmであった。
(片保護偏光フィルムDの作製)
 上記PVA系偏光子の片面に、片保護偏光フィルムAと同様にして、上記の紫外線硬化型接着剤を介して、上記透明保護フィルムを貼り合わせた。得られた片保護偏光フィルムDの光学特性は、透過率42.8%、偏光度99.99%であった。
 <透明層の形成材>
(アクリル系形成材Aの組成)
 N-ヒドロキシエチルアクリルアミド(興人社製、商品名「HEAA」) 12.5部
 アクリロイルモルホリン(興人社製、商品名「ACMO(登録商標)」) 25部
 ジメチロール-トリシクロデカンジアクリレート(共栄社化学社製、商品名「ライトアクリレートDCP-A」) 62.5部
 光ラジカル重合開始剤(2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、BASF社製、商品名「IRGACURE907」) 2部
 光増感剤(ジエチルチオキサントン、日本化薬社製、商品名「KAYACURE DETX-S」) 2部
(アクリル系形成材Bの組成)
 N-ヒドロキシエチルアクリルアミド(興人社製、商品名「HEAA」) 20部
 ウレタンアクリレート(日本合成化学社製、商品名「UV-1700B」) 80部
 光ラジカル重合開始剤(2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、BASF社製、商品名「IRGACURE907」) 3部
 光増感剤(ジエチルチオキサントン、日本化薬社製、商品名「KAYACURE DETX-S」) 2部
(アクリル系形成材Cの組成)
 N-ヒドロキシエチルアクリルアミド(興人社製、商品名「HEAA」) 12.5部
 2-ヒドロキシ-3-フェノキシプロピルアクリレート(東亜合成社製、商品名「アロニックス(登録商標)M-5700」 25部
 1,9-ノナンジオールジアクリレート(共栄社化学社製、商品名「ライトアクリレート1.9ND-A」) 40部
 ジメチロール-トリシクロデカンジアクリレート(共栄社化学社製、商品名「ライトアクリレートDCP-A」) 22.5部
 光ラジカル重合開始剤(2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、BASF社製、商品名「IRGACURE907」) 3部
 光増感剤(ジエチルチオキサントン、日本化薬社製、商品名「KAYACURE DETX-S」) 2部
(アクリル系形成材Dの組成)
 N-ヒドロキシエチルアクリルアミド(興人社製、商品名「HEAA」) 20部
 ウレタンアクリレート(日本合成化学社製、商品名「UV-3500BA」) 80部
 光ラジカル重合開始剤(2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、BASF社製、商品名「IRGACURE907」) 3部
 光増感剤(ジエチルチオキサントン、日本化薬社製、商品名「KAYACURE DETX-S」) 2部
(アクリル系形成材Eの組成)
 N-ヒドロキシエチルアクリルアミド(興人社製、商品名「HEAA」) 12.5部
 2-ヒドロキシ-3-フェノキシプロピルアクリレート(東亜合成社製、商品名「アロニックス(登録商標)M-5700」 30部
 1.9-ノナンジオールジアクリレート(共栄社化学社製、商品名「ライトアクリレート1.9ND-A」) 40部
 ジメチロール-トリシクロデカンジアクリレート(共栄社化学社製、商品名「ライトアクリレートDCP-A」) 17.5部
 光ラジカル重合開始剤(2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、BASF社製、商品名「IRGACURE907」) 3部
 光増感剤(ジエチルチオキサントン、日本化薬社製、商品名「KAYACURE DETX-S」) 2部
(エポキシ系形成材Aの組成)
 3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(ダイセル化学工業社製、商品名「セロキサイド2021P」) 100部
 光カチオン重合開始剤(4-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロホスフェート、サンアプロ社製、商品名「CPI-100P」) 1部
(活性エネルギー線硬化型形成材の調製)
 上記アクリル系形成材A乃至E、エポキシ系形成材Aをそれぞれ混合して50℃で1時間撹拌して、各種の活性エネルギー線硬化型形成材を調製した。
 (イソシアネート形成材Aの組成)
 トリレンジイソシアネートとトリメチロールプロパンよりなるウレタンプレポリマーの75%酢酸エチル溶液(東ソー社製、商品名「コロネートL」)50部に、キシリレンジイソシアネートとトリメチロールプロパンよりなるウレタンプレポリマー75%酢酸エチル溶液(三井武田ケミカル社製、商品名「タケネートD110N」)50部およびジオクチルスズジラウレート系触媒(東京ファインケミカル社製、商品名「エンビライザーOL-1」)0.1部を加え、溶媒としてメチルイソブチルケトンにより固形分濃度35%としてウレタンプレポリマー塗工液を調製した。
(ポリビニルアルコール系形成材A)
 ポリビニルアルコール樹脂(重合度2500、ケン化度99.0mol%)(日本酢ビ・ポバール社製、商品名「JC-25」)を純水に溶解し、固形分濃度4重量%の水溶液を調製した。
(ポリビニルアルコール系形成材B)
 重合度2000、ケン化度99.4モル%のポリビニルアルコール樹脂(日本合成化学工業社製、商品名「NH-20」)を純水に溶解し、固形分濃度4重量%の水溶液を調製した。
(ポリビニルアルコール系形成材C)
 重合度1700、ケン化度97.0モル%のポリビニルアルコール樹脂(日本合成化学工業社製、商品名「AH-17」)を純水に溶解し、固形分濃度4重量%の水溶液を調製した。
(ポリビニルアルコール系形成材D)
 重合度1700、ケン化度99.0モル%のポリビニルアルコール樹脂(クラレ社製、商品名「PVA117」)を純水に溶解し、固形分濃度4重量%の水溶液を調製した。
(ポリビニルアルコール系形成材E)
 重合度4000、ケン化度99.0モル%のポリビニルアルコール樹脂(日本酢ビ・ポバール社製、商品名:JC-40)を純水に溶解し、固形分濃度4重量%の水溶液を調製した。
<粘着剤層の形成>
 冷却管、窒素導入管、温度計及び撹拌装置を備えた反応容器に、アクリル酸ブチル100部、アクリル酸3部、アクリル酸2-ヒドロキシエチル0.1部および2,2´-アゾビスイソブチロニトリル0.3部を酢酸エチルと共に加えて溶液を調製した。次いで、この溶液に窒素ガスを吹き込みながら撹拌して、55℃で8時間反応させて、重量平均分子量220万のアクリル系ポリマーを含有する溶液を得た。さらに、このアクリル系ポリマーを含有する溶液に、酢酸エチルを加えて固形分濃度を30%に調整したアクリル系ポリマー溶液を得た。
 前記アクリル系ポリマー溶液の固形分100部に対して、架橋剤として、0.5部のイソシアネート基を有する化合物を主成分とする架橋剤(日本ポリウレタン(株)製,商品名「コロネートL」)と、シランカップリング剤として、0.075部のγ-グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製,商品名「KMB-403」)とをこの順に配合して、粘着剤溶液を調製した。上記粘着剤溶液を、剥離処理したポリエチレンテレフタレートフィルム(厚さ38μm)からなる離型シート(セパレータ)の表面に、乾燥後の厚みが25μmになるように塗布し、乾燥して、粘着剤層を形成した。
 実施例1
 <透明層付の片保護偏光フィルムを作製>
 上記片保護偏光フィルムAの偏光子の面(透明保護フィルムが設けられていない偏光子面)に、上記活性エネルギー線硬化型形成材(アクリル系形成材A)をワイヤーバーコーターを用いて、厚み1μmになるように塗工した後、窒素雰囲気下で活性エネルギー線を照射することで、透明層付の片保護偏光フィルムを作製した。なお、活性エネルギー線の照射は、片保護偏光フィルムAの作製で用いたものと同様にして行った。
 <粘着剤層付偏光フィルムの作製>
 次いで、片保護偏光フィルムに形成した透明層に、上記離型シート(セパレータ)の剥離処理面に形成した粘着剤層を貼り合わせて、粘着剤層付偏光フィルムを作製した。
 実施例2~24、比較例1~13
 実施例1において、片保護偏光フィルムの種類、透明層の形成材、厚みを表2に示すように変えたこと以外は、実施例1と同様にして、片保護偏光フィルム、透明層付の片保護偏光フィルムおよび粘着剤層付偏光フィルムを作製した。
 但し、実施例13では、透明層の形成は、片保護偏光フィルムAの偏光子の面に、イソシアネートA(ウレタンプレポリマー塗工液)をバーコーターにより塗布した後、60℃で12時間熱処理を施すことより行って、厚さ1μmのウレタン樹脂層を形成した。
 なお、ポリビニルアルコール系形成材を用いる場合には、25℃に調整した上記形成材をワイヤーバーで乾燥後の厚みが表2の記載になるように塗布した後、60℃で1分間熱風乾燥して、透明層付の片保護偏光フィルムを作製した。
 上記実施例および比較例で得られた粘着剤層付偏光フィルムについて下記評価を行った。結果を表2に示す。
<偏光子の単体透過率Tおよび偏光度P>
 得られた片保護偏光フィルムの単体透過率Tおよび偏光度Pを、積分球付き分光透過率測定器(村上色彩技術研究所のDot-3c)を用いて測定した。
 なお、偏光度Pは、2枚の同じ偏光フィルムを両者の透過軸が平行となるように重ね合わせた場合の透過率(平行透過率:Tp)および、両者の透過軸が直交するように重ね合わせた場合の透過率(直交透過率:Tc)を以下の式に適用することにより求められるものである。偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
 各透過率は、グランテラープリズム偏光子を通して得られた完全偏光を100%として、JIS Z8701の2度視野(C光源)により視感度補整したY値で示したものである。
 <偏光子中のホウ酸含有量の測定>
 実施例および比較例で得られた偏光子について、フーリエ変換赤外分光光度計(FTIR)(Perkin Elmer社製、商品名「SPECTRUM2000」)を用いて、偏光を測定光とする全反射減衰分光(ATR)測定によりホウ酸ピーク(665cm-1)の強度および参照ピーク(2941cm-1)の強度を測定した。得られたホウ酸ピーク強度および参照ピーク強度からホウ酸量指数を下記式により算出し、さらに、算出したホウ酸量指数から下記式によりホウ酸含有量(重量%)を決定した。
 (ホウ酸量指数)=(ホウ酸ピーク665cm-1の強度)/(参照ピーク2941cm-1の強度)
 (ホウ酸含有量(重量%))=(ホウ酸量指数)×5.54+4.1
 <80℃における圧縮弾性率の測定>
 圧縮弾性率の測定にはTI900 TriboIndenter(Hysitron社製)を使用した。得られた透明層付き片保護偏光フィルム11を10mm×10mmのサイズに裁断しTriboIndenter備付の支持体に固定し、ナノインデンテーション法により圧縮弾性率の測定を行った。その際、使用圧子が透明層の中心部付近を押し込むように位置を調整した。測定条件を以下に示す。
 使用圧子:Berkovich(三角錐型)
 測定方法:単一押し込み測定
 測定温度:80℃
 押し込み深さ設定:100nm
 <ナノスリットの拡張抑制:ロックンロール試験>
 この試験に際しては、実施例および比較例において、下記方法により、透明層を形成する前の片保護偏光フィルム10の偏光子1にスクラッチを入れた。その後に、透明層付の片保護偏光フィルム11を作製した。
 そして、当該透明層付の片保護偏光フィルム11を80℃の環境下に1時間放置した後に、下記の基準により、サンプル11の光抜けのクラックの有無を確認した。
 A:発生なし。
 B:1~100個。
 C:101~200個。
 D:201個以上。
 ≪スクラッチの入れ方≫
 得られた片保護偏光フィルム10を、50mm×150mmのサイズ(吸収軸方向が50mm)に裁断した。サンプル10は、透明保護フィルム2の側に、下記方法で作製した試験用の表面保護フィルム6を貼り合わせて用いた。
(試験用の表面保護フィルム)
 190℃におけるメルトフローレートが2.0g/10minである密度0.924g/cmの低密度ポリエチレンから成る基材成形材料を共押出用インフレーション成形機に供給した。
 同時に230℃におけるメルトフローレートが10.0g/10minである密度0.86g/cmのプロピレン-ブテン共重合体(質量比でプロピレン:ブテン=85:15、アタクチック構造)から成る粘着成形材料とをダイス温度が220℃であるインフレーション成形機に供給して共押出成形を行った。
これにより、厚み33μmの基材層と厚み5μmの粘着剤層とから成る表面保護フィルムを製造した。
 図5(A)の概念図、図5(B)の断面図に示すように、基板20(縦65mm×横165mm×高さ2mm)上に、縦25mm×横150mm×高さ5mmの2つのガラス支持台21を、それらの内側の間隔が115mmになるように平行に設置した。当該2つのガラス支持台の長手方向と、前記裁断されたサンプル11における偏光子1の吸収軸に直交する方向が平行になるように、かつ、2つのガラス支持台にサンプル11の両側が均等に架かるようにサンプル11を配置した。サンプル11は、表面保護フィルム6を上側に配置した。
 次いで、サンプル10(表面保護フィルム6側)の中央部に対して、ギターピック(HISTORY社製、型番「HP2H(HARD)」)により荷重100gを掛けて、サンプル11における偏光子1の吸収軸に直交する方向に100mmの距離に10往復の荷重負荷を繰り返して、偏光子1の表面にスクラッチを付けた。前記荷重負荷は、1箇所で行った。ナノスリットが発生しているか否かは目視で確認した。
 比較例3~6の偏光子の厚さが10μmを超えるものは、偏光子内部の収縮応力が大きいため、ロックンロール試験のナノスリット発生時にフィルムが破断した。そのため評価できなかった。
 図6は、片保護偏光フィルム10または透明層付の片保護偏光フィルム11のロックンロール試験における光抜けのクラック(ナノスリットa)の確認の下記指標となるものであり、偏光フィルム表面の顕微鏡の写真の一例である。図6(A)では、ナノスリットaによる光抜けのクラックは確認されていない。図6(A)のような状態は、実施例のロックンロール試験の加熱前、実施例のロックンロール試験の加熱後(拡張抑制効果があるため、ナノスリットが光抜けしない)が該当する。一方、図6(B)は、加熱によってナノスリットaによる光抜けのクラックが偏光子の吸収軸方向に3個発生している場合である。図6(B)のような状態は、比較例のロックンロール試験の加熱後が該当する。図6は、ナノスリットが発生しているサンプルを微分干渉顕微鏡にて観察を行った。サンプルを撮影する際に、ナノスリットが発生しているサンプルの下側(透過光源側)にナノスリットが発生していないサンプルをクロスニコルになるようにセットして透過光にて観察を行った。
 <貫通クラックの確認:ヒートショック試験>
 得られた粘着剤層付偏光フィルムを、50mm×150mm(吸収軸方向が50mm)と150mm×50mm(吸収軸方向が150mm)に裁断し、0.5mm厚の無アルカリガラスの両面にクロスニコルの方向に貼り合せてサンプルを作成した。当該サンプルを、-40~85℃のヒートショックを各30分間×100回の環境下に投入した後に、取り出して粘着剤層付偏光フィルムに貫通クラック(本数)が発生しているか否かを目視にて確認した。この試験を5回行った。評価は下記に従って行った。
 〇:貫通クラックなし。
 ×:貫通クラックあり。
 図7は、片保護偏光フィルム10または透明層付の片保護偏光フィルム11の貫通クラックbの確認の指標となるものであり、偏光フィルム表面の顕微鏡の写真の一例である。図7は、貫通クラックが発生しているサンプルを微分干渉顕微鏡にて観察を行った。
 <耐湿熱性:偏光度の変化率(光学信頼性試験)>
 得られた片保護偏光フィルムを25mm×50mmのサイズ(吸収軸方向が50mm)に裁断した。当該片保護偏光フィルム(サンプル)を、85℃/85%RHの恒温恒湿機に150時間投入した。投入前と投入後の片保護偏光フィルムの偏光度を、積分球付き分光透過率測定器(村上色彩技術研究所のDot-3c)を用いて測定し、
 偏光度の変化率(%)=(1-(投入後偏光度/投入前偏光度))、を求めた。
 なお、偏光度Pは、2枚の同じ偏光フィルムを両者の透過軸が平行となるように重ね合わせた場合の透過率(平行透過率:Tp)および、両者の透過軸が直交するように重ね合わせた場合の透過率(直交透過率:Tc)を以下の式に適用することにより求められるものである。偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
 各透過率は、グランテラープリズム偏光子を通して得られた完全偏光を100%として、JIS Z8701の2度視野(C光源)により視感度補整したY値で示したものである。
Figure JPOXMLDOC01-appb-T000005
 なお、比較例12、13のように、単体透過率T及び偏光度Pによって表される光学特性が、下記式、P>-(100.929T-42.4-1)×100(ただし、T<42.3)、又は、P≧99.9(ただし、T≧42.3)の条件を満足しないような場合には、本願の課題(貫通クラックおよびナノスリットの発生)は生じなかった。
 実施例25
 片保護偏光フィルムとして長尺状のものを用いたこと、形成材をマイクログラビアコーターを用いて塗工したこと、上記の離型シート(セパレータ)及び下記の表面保護フィルムとして長尺状のものを用いたこと以外は、実施例1と同様である。これにより、透明層側にセパレータ及び透明保護フィルム側に表面保護フィルムが積層された透明層付片保護偏光フィルム(図2(A)に記載された態様)の巻回体を作製した。なお、透明層付片保護偏光フィルムの巻回体は、透明層付片保護偏光フィルムの連続搬送により切断を進行させるスリット加工によって、32インチ無アルカリガラスの短辺及び長辺に各々対応する幅のものをセットとして準備した。
(ロール・トゥ・パネル用表面保護フィルム)
 帯電防止処理層付きポリエチレンテレフタレートフィルム(商品名:ダイアホイルT100G38、三菱樹脂社製、厚さ38μm)の帯電防止処理面とは反対の面にアクリル系粘着剤を厚さが15μmとなるように塗布形成し、表面保護フィルムを得た。
 次に、図8に示すようなロール・トゥ・パネル方式の連続製造システムを使用し、透明層付片保護偏光フィルムの巻回体のセットから連続的に供給された透明層付片保護偏光フィルムを0.5mm厚の32インチ無アルカリガラス100枚の両面にクロスニコルの関係になるように連続的に貼り合せた。
 実施例26~28
 各々、実施例2、4、8と同様の製法にて、透明層付片保護偏光フィルムを作製したこと以外は、実施例25と同様である。
<ナノスリットの発生確認:加熱試験>
 透明層付片保護偏光フィルムが両面に貼り合わされた無アルカリガラス100枚を80℃のオーブンに24時間投入し、その後目視にてナノスリットの発生の有無を確認した。実施例25~28のいずれにおいても、ナノスリットによる欠陥(光抜け)の発生は見られなかった。
  1   偏光子
  2   透明保護フィルム
  3   透明層
  4   粘着剤層
  5、5a、5b   セパレータ
  6、6a、6b   表面保護フィルム
  10   片保護偏光フィルム
  11   片保護偏光フィルム(透明層付)
  12   粘着剤層付偏光フィルム
  20a、20b   粘着剤層付偏光フィルムの巻回体(ロール)
  21a、21b   粘着剤層付偏光フィルム(表面保護フィルム付)
  100   画像表示装置の連続製造システム
  101a、101b  偏光フィルム供給部
  151a、151b  繰出部
  152a、152b  切断部
  153a、153b  剥離部
  154a、154b  巻取部
  201a、201b  貼合部
  300   配置入替部
  P   画像表示パネル
  X   画像表示パネルの搬送部
 

Claims (11)

  1.  偏光子の片面にのみ透明保護フィルムを有する片保護偏光フィルムであって、
     前記偏光子は、ポリビニルアルコール系樹脂を含有し、厚みが10μm以下であり、かつ、単体透過率T及び偏光度Pによって表される光学特性が、下記式
     P>-(100.929T-42.4-1)×100(ただし、T<42.3)、又は、
     P≧99.9(ただし、T≧42.3)の条件を満足するように構成されたものであり、
     かつ、前記偏光子の他の片面に、80℃における圧縮弾性率が0.1GPa以上の透明層を有することを特徴とする片保護偏光フィルム。
  2.  前記透明層が、樹脂材料の形成物であることを特徴とする請求項1記載の片保護偏光フィルム。
  3.  前記透明層は、厚みが3μm未満であることを特徴とする請求項1または2記載の片保護偏光フィルム。
  4.  前記偏光子は、偏光子全量に対してホウ酸を25重量%以下で含有することを特徴とする請求項1~3のいずれかに記載の片保護偏光フィルム。
  5.  請求項1~4のいずれかに記載の片保護偏光フィルム、および粘着剤層を有することを特徴とする粘着剤層付偏光フィルム。
  6.  前記片保護偏光フィルムの透明層に、前記粘着剤層が設けられていることを特徴とする請求項5記載の粘着剤層付偏光フィルム。
  7.  前記片保護偏光フィルムの透明保護フィルムに、前記粘着剤層が設けられていることを特徴とする請求項5記載の粘着剤層付偏光フィルム。
  8.  前記粘着剤層にセパレータが設けられていることを特徴とする請求項5~7のいずれかに記載の粘着剤層付偏光フィルム。
  9.  巻回体であることを特徴とする請求項8記載の粘着剤層付偏光フィルム。
  10.  請求項1~4のいずれかに記載の片保護偏光フィルム、または請求項5~7のいずれかに記載の粘着剤層付偏光フィルムを有する画像表示装置。
  11.  請求項9記載の前記粘着剤層付偏光フィルムの巻回体から繰り出され、前記セパレータにより搬送された前記粘着剤層付偏光フィルムを、前記粘着剤層を介して画像表示パネルの表面に連続的に貼り合せる工程を含む画像表示装置の連続製造方法。
PCT/JP2015/077574 2014-09-30 2015-09-29 片保護偏光フィルム、粘着剤層付偏光フィルム、画像表示装置およびその連続製造方法 WO2016052534A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/515,385 US10094954B2 (en) 2014-09-30 2015-09-29 One-side-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
SG11201706402YA SG11201706402YA (en) 2014-09-30 2015-09-29 One-side-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
CN201580053094.1A CN107076910B (zh) 2014-09-30 2015-09-29 单侧保护偏振膜、带粘合剂层的偏振膜、图像显示装置及其连续制造方法
KR1020177009090A KR101844934B1 (ko) 2014-09-30 2015-09-29 편보호 편광 필름, 점착제층 부착 편광 필름, 화상 표시 장치 및 그의 연속 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014202624 2014-09-30
JP2014-202624 2014-09-30
JP2015189276A JP6077619B2 (ja) 2014-09-30 2015-09-28 片保護偏光フィルム、粘着剤層付偏光フィルム、画像表示装置およびその連続製造方法
JP2015-189276 2015-09-28

Publications (1)

Publication Number Publication Date
WO2016052534A1 true WO2016052534A1 (ja) 2016-04-07

Family

ID=55630560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077574 WO2016052534A1 (ja) 2014-09-30 2015-09-29 片保護偏光フィルム、粘着剤層付偏光フィルム、画像表示装置およびその連続製造方法

Country Status (1)

Country Link
WO (1) WO2016052534A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112888994A (zh) * 2018-11-29 2021-06-01 日东电工株式会社 带触摸传感功能的液晶面板、液晶显示装置及带粘合剂层的偏振膜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084113A (ja) * 2003-09-04 2005-03-31 Fuji Photo Film Co Ltd 防眩性フィルム及びその製造方法、偏光板、画像表示装置
WO2011125958A1 (ja) * 2010-03-31 2011-10-13 住友化学株式会社 偏光性積層フィルム、偏光板、およびそれらの製造方法
JP2013254072A (ja) * 2012-06-06 2013-12-19 Nitto Denko Corp 偏光板、光学フィルムおよび画像表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084113A (ja) * 2003-09-04 2005-03-31 Fuji Photo Film Co Ltd 防眩性フィルム及びその製造方法、偏光板、画像表示装置
WO2011125958A1 (ja) * 2010-03-31 2011-10-13 住友化学株式会社 偏光性積層フィルム、偏光板、およびそれらの製造方法
JP2013254072A (ja) * 2012-06-06 2013-12-19 Nitto Denko Corp 偏光板、光学フィルムおよび画像表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112888994A (zh) * 2018-11-29 2021-06-01 日东电工株式会社 带触摸传感功能的液晶面板、液晶显示装置及带粘合剂层的偏振膜

Similar Documents

Publication Publication Date Title
JP6077619B2 (ja) 片保護偏光フィルム、粘着剤層付偏光フィルム、画像表示装置およびその連続製造方法
JP6077618B2 (ja) 片保護偏光フィルム、粘着剤層付偏光フィルム、画像表示装置およびその連続製造方法
US11137522B2 (en) One-side-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
JP2020170174A (ja) フレキシブル偏光膜、その製造方法および画像表示装置
WO2016052549A1 (ja) 片保護偏光フィルム、粘着剤層付偏光フィルム、画像表示装置およびその連続製造方法
CN108780179B (zh) 带透明树脂层的单侧保护偏振膜的制造方法、带粘合剂层的偏振膜的制造方法、光学层叠体的制造方法
JP2020160461A (ja) フレキシブル偏光膜、その製造方法および画像表示装置
JP2020160462A (ja) フレキシブル偏光膜、その製造方法および画像表示装置
WO2016052531A1 (ja) 片保護偏光フィルム、粘着剤層付偏光フィルム、画像表示装置およびその連続製造方法
JP2020160460A (ja) フレキシブル偏光膜、その製造方法および画像表示装置
CN108780181B (zh) 带粘合剂层的单侧保护偏振膜的制造方法
JP6078132B1 (ja) 偏光フィルムの製造方法
JP7178776B2 (ja) 偏光フィルムの製造方法
JP6931518B2 (ja) 片保護偏光フィルム、粘着剤層付偏光フィルム、画像表示装置およびその連続製造方法
TWI683142B (zh) 單面保護偏光薄膜、附黏著劑層之偏光薄膜、影像顯示裝置及其連續製造方法
WO2016052538A1 (ja) 偏光フィルムの製造方法
WO2016052534A1 (ja) 片保護偏光フィルム、粘着剤層付偏光フィルム、画像表示装置およびその連続製造方法
JP2019053210A (ja) 偏光フィルムおよび画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15515385

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177009090

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201706402Y

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 15847659

Country of ref document: EP

Kind code of ref document: A1