WO2016052440A1 - Dust removal structure, dust removal filter, and dust removal method - Google Patents

Dust removal structure, dust removal filter, and dust removal method Download PDF

Info

Publication number
WO2016052440A1
WO2016052440A1 PCT/JP2015/077391 JP2015077391W WO2016052440A1 WO 2016052440 A1 WO2016052440 A1 WO 2016052440A1 JP 2015077391 W JP2015077391 W JP 2015077391W WO 2016052440 A1 WO2016052440 A1 WO 2016052440A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
dust
fiber layer
fluid
dust removal
Prior art date
Application number
PCT/JP2015/077391
Other languages
French (fr)
Japanese (ja)
Inventor
滋樹 高木
尚士 高橋
美穂 厳原
安田 正俊
Original Assignee
株式会社ビオスタ
有限会社Imp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ビオスタ, 有限会社Imp filed Critical 株式会社ビオスタ
Priority to JP2016552025A priority Critical patent/JPWO2016052440A1/en
Publication of WO2016052440A1 publication Critical patent/WO2016052440A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/28Plant or installations without electricity supply, e.g. using electrets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings

Definitions

  • This disclosure relates to a dust removal structure, a dust removal filter, and a dust removal method, and more particularly, to a dust removal structure, a dust removal filter, and a dust removal method using static electricity.
  • Patent Document 1 JP 2002-126574
  • Patent Document 2 JP 2011-235219
  • Patent Document 3 JP 2011-5398
  • the above method is based on the premise that the dust to be adsorbed and removed is charged.
  • the actual air dust may not be charged.
  • dust that is not negatively charged is not in principle adsorbed to the material.
  • the removal efficiency for the actual dust in the air may not always be high.
  • the present disclosure has been made in view of such problems, and an object thereof is to provide a dust removal structure, a dust removal filter, and a dust removal method capable of efficiently removing dust using static electricity. One of them.
  • the dust removal structure is a structure for removing dust in a fluid, and has a fluid-permeable, positively charged first surface-shaped member, and fluid permeation. And a negatively charged surface-shaped second member, wherein the first member and the second member are stacked with their surfaces facing each other, and at least of the surfaces of each other It is arranged so as to be relatively displaceable while maintaining some contact state.
  • each of the first member and the second member has one or more fluid-permeable portions, and the first member and the second member are stacked with their surfaces facing each other.
  • at least one transmission part of the one or more transmission parts of the first member is overlapped with a surface that is not the transmission part of the second member.
  • the material of the first member and the material of the second member are different materials.
  • the first member includes any one of nylon, acrylic, polypropylene, and wool
  • the second member includes any one of polypropylene, polystyrene, polyvinyl chloride, polyethylene, urethane, polyethylene terephthalate, and modified polyethylene terephthalate. Including.
  • the dust removal filter is a filter for removing dust in a fluid, and includes a first fiber layer having fluid permeability and fibers forming the first fiber layer.
  • the second fiber layer is formed of different fibers and laminated on the first fiber layer, and the first fiber layer and the second fiber layer can be relatively displaced while maintaining contact with each other. Is arranged.
  • the dust removal filter has an adhesive structure for fixing the second fiber layer to the first fiber layer, and the adhesive structure is between the first fiber layer and the second fiber layer.
  • the second fiber layer is fixed to the first fiber layer while leaving at least a partial region of the first fiber layer, so that the first fiber layer and the second fiber layer are kept in contact with the other fiber layer. And relatively displaceable.
  • the dust removal filter further includes a spacer that is disposed between the first fiber layer and the second fiber layer and that maintains a space between the first fiber layer and the second fiber layer. .
  • the first fiber layer includes any of nylon, acrylic, polypropylene, and wool
  • the second fiber layer is any of polypropylene, polystyrene, polyvinyl chloride, polyethylene, urethane, polyethylene terephthalate, and modified polyethylene terephthalate.
  • the dust removing method is a method for removing dust in a fluid, and has a structure in which a first member and a second member having a fluid-permeable surface shape are stacked.
  • the dust removing filter has an adhesive structure for fixing the first member and the second member leaving at least a part of the region, and the step of negatively charging the dust removing filter in the fluid flow path,
  • the adhesive structure By installing the adhesive structure as an upstream side and forming an angle with the flow path direction, the first member and the second member are maintained in contact with each other and relatively displaced by the fluid. Including charging to positive and negative.
  • dust can be efficiently removed using static electricity.
  • FIG. 1 is a diagram for illustrating an outline of a dust removing structure 100 according to the present embodiment.
  • the dust removing structure 100 is formed of a plurality of positively-charged members 110, 111, and 112, which are formed of a positively charged material, and a negatively charged material.
  • negative charging members 130, 131, 132 which are a plurality of surface-shaped members. Each positive charging member and each negative charging member are arranged (stacked) alternately facing each other with their surfaces facing each other.
  • the positive charging members 110, 111, and 112 and the negative charging members 130, 131, and 132 are formed of a material having permeability of fluid, for example, air.
  • a cloth-like member nonwoven fabric
  • the positive charging members 110, 111, and 112 and the negative charging members 130, 131, and 132 may be plate-like members provided with air holes.
  • the positive charging members 110, 111, and 112 include members made of nylon, acrylic, polypropylene, or wool.
  • the negative charging members 130, 131, and 132 include members made of any of polypropylene, polystyrene, polyvinyl chloride, polyethylene, urethane, polyethylene terephthalate, and modified polyethylene terephthalate. More preferably, the positive charging members 110, 111, and 112 are made of an acrylic material, for example.
  • the negative charging members 130, 131, and 132 are made of styrene, for example.
  • the plus charging members 110, 111, and 112 and the minus charging members 130, 131, and 132 are stacked with their surfaces facing each other. Further, the positive charging members 110, 111, and 112 and the negative charging members 130, 131, and 132 are disposed so as to be relatively displaceable while maintaining contact with the other members. That is, the positive charging members 110, 111, 112 and the negative charging members 130, 131, 132 are fixed so as to be relatively displaceable, leaving at least a partial region between the overlapping members. As an example, as shown in FIG. 1, one side of the positive charging members 110, 111, 112 and the negative charging members 130, 131, 132 is fixed by the frame 101. This fixing may be heat-bonding or adhesive bonding.
  • the bonding is not limited to one side and may be a single point.
  • each member is arranged so as to be relatively displaceable while maintaining contact with the overlapping members. Thereby, friction arises between the overlapping members.
  • the positive charging members 110, 111, and 112 are positively charged, and the negative charging members 130, 131, and 132 are negatively charged.
  • FIG. 2 is a view for explaining the principle of dust removal in the dust removal structure 100.
  • FIG. 2 is an enlarged view of the positive charge member 110 and the negative charge member 130 in the dust removal structure 100 in order to explain the dust removal principle.
  • the positive charging member 110 and the negative charging member 130 each have a plurality of vent holes.
  • these members are nonwoven fabrics, the pores formed in the nonwoven fabric correspond to vent holes.
  • vent holes are provided in the plates.
  • the positive charging member 110 and the negative charging member 130 are laminated so that the air holes do not overlap. That is, at least one of the vent holes provided in the positive charging member 110 is laminated so as to face the surface of the negative charging member 130 that is not the vent hole.
  • the dust removing structure 100 is installed such that the surface of each planar member forms an angle with respect to the flow path.
  • the positive charging member 110 is disposed on the upstream side
  • the negative charging member 130 is disposed on the downstream side.
  • the dotted arrow represents the airflow.
  • Dust that is airborne particles is a mixed particle of negatively charged particles 601 that are negatively charged particles, positively charged particles 602 that are positively charged particles, and uncharged particles 603.
  • the negative charging particles 601 are adsorbed on the positive charging member 110 and trapped on the surface thereof.
  • the positively charged particles 602 are adsorbed on the negatively charged member 130 and captured on the surface thereof.
  • the particles 603 are not adsorbed to either the positive charging member 110 or the negative charging member 130.
  • the vent hole provided in the positive charging member 110 faces the surface of the negative charging member 130 where the vent hole is not formed, and the vent hole provided in the negative charging member 130 is It faces the surface of the positive charging member 110 where no vent hole is formed.
  • the particles 603 that move in the airflow collide with a surface on which no vent hole is formed after passing through the vent hole due to inertial force due to movement.
  • the particles 603 collide with the surface of the negative charging member 130 after passing through the vent hole of the positive charging member 110.
  • the particles 603 are negatively charged.
  • the negatively charged particles 603 are adsorbed on the positive charging member 110 adjacent to the negative charging member 130 and captured on the surface thereof.
  • the dust removing structure 100 not only adsorbs and captures the negatively charged particles 601 and the positively charged particles 602 by the positively charged member 110 and the negatively charged member 130, but also charges the uncharged particles 603 to positively. Captured by the charging member 110 and the negative charging member 130.
  • FIG. 3 is a diagram illustrating an example of installation of a filter having the dust removing structure 100. Specifically, referring to FIG. 3, each member of the filter having the dust removing structure 100 is disposed so as to form an angle with respect to the fluid flow path, with the frame 101 as an upstream side, for example. In FIG. 3, white arrows represent the strength and direction of the airflow.
  • FIG. 4 is a diagram for explaining the deformation of the filter installed in the airflow.
  • white arrows represent the strength and direction of the airflow.
  • the positive charging members 110, 111, and 112 are charged positively due to friction between the adjacent negative charging members 130, 131, and 132. Further, the negative charging members 130, 131, 132 are charged negatively due to friction between the adjacent positive charging members 110, 111, 112. That is, as shown in FIG. 3, by arranging the filter with respect to the airflow, each member is positively and negatively charged by the influence of the airflow.
  • FIG. 5 is a schematic diagram for explaining the configuration of the experimental apparatus.
  • the inventors arrange a container that stores powder in case 200, and vibrate the entire container using vibration device 201, thereby allowing a space environment in which dust floats in case 200.
  • air in the case 200 is discharged from the opening of the case 200 through the filter 100 ′ having the dust removing structure 100 using the air pump 400, and the dust meter 300 is used for a predetermined time.
  • the amount of dust in the air after passing through the filter 100 ′ was measured.
  • the member constituting the filter 100 ′ is in a negatively charged state because the surface is rubbed before the experiment.
  • the exhaust speed of the air pump 400 was fixed at 19 liters per minute (19 L / min).
  • a digital dust meter LD-1 manufactured by Shibata Science Co., Ltd. was used.
  • the inventors exhausted the air in the case 200 with the air pump 400 for 300 seconds, and recorded the measurement result of the dust with the dust meter 300 during that time with a data logger.
  • Alnabeads (registered trademark) CB (particle size: 20 ⁇ m) manufactured by Showa Denko KK was generally used as the powder.
  • the inventors used, as the filter 100 ′, two plate-like members each provided with a plurality of air holes, as shown in FIG. Each air hole has a diameter of 6 mm, and 108 air holes are formed in each member.
  • a filter in which two plate-like members are laminated by the former method is a “filter laminated by a cloth”, and a filter in which two plate-like members are laminated by the latter method is “stored straight. Also referred to as “filter”.
  • a filter in which two plate-like members are accumulated as a cloth is more likely to collide particles passing through the filter with the filter than a filter in which two plate-like members are accumulated in a straight line.
  • the filter combining the acrylic plate and the vinyl chloride plate is a filter in which the acrylic plate is positively charged and the polyvinyl chloride plate is negatively charged, and the filter only of the aluminum plate is an uncharged filter.
  • FIGS. 8 to 17 are diagrams showing the measurement results in the first experiment.
  • the horizontal axis represents time (seconds) and the vertical axis represents the amount of dust (mV / s) measured by the dust meter 300 per second.
  • the inventors measured the exhaust gas from the case 200 with the dust meter 300 without putting the powder in the case 200, and the measurement in FIG. The result was obtained. From the result of FIG. 8, it can be said that the measured value of the dust meter 300 in the state without dust is 50 mV, and this value is the initial value. That is, it can be said that the measured value of the dust meter 300 larger than 50 mV is the amount of dust in the exhaust. Therefore, a straight line representing the initial value (50 mV) is added to the graph of the measurement result indicating the result of the first experiment.
  • FIG. 9 and 10 as a condition of the filter 100 ′, a filter 100 ′ in which an acrylic plate and a vinyl chloride plate are laminated with a cloth is used with the upstream side being an acrylic plate and the downstream side being a vinyl chloride plate.
  • the measurement result is shown.
  • 9A shows the first measurement results
  • FIG. 9B shows the second measurement results
  • FIG. 10A shows the third measurement results
  • FIG. 10B shows the fourth measurement results.
  • FIG. 11 shows the measurement when the filter 100 ′ is a filter 100 ′ in which an acrylic plate and a vinyl chloride plate are laminated in a straight line, with the upstream side being an acrylic plate and the downstream side being a PVC plate. The result is shown.
  • FIG. 11A shows the first measurement result and
  • FIG. 11B shows the second measurement result.
  • the measured value of the dust in the exhaust gas is slightly above the straight line representing 50 mV. In other words, it is shown that very little dust is discharged in the exhaust under this condition.
  • FIG. 12 shows the measurement results when using a filter 100 ′ in which two aluminum plates are laminated with cloth as a condition of the filter 100 ′.
  • FIG. 12A shows the first measurement results
  • FIG. 12B shows the second measurement results
  • FIG. 12C shows the third measurement results.
  • the measured value of the dust in the exhaust gas is significantly higher than the straight line representing 50 mV. That is, it is shown that a lot of dust is discharged in the exhaust under this condition.
  • FIG. 13 shows the measurement when the filter 100 ′ is a filter 100 ′ in which an acrylic plate and a vinyl chloride plate are laminated with a cloth arranged so that the upstream side is a vinyl chloride plate and the downstream side is an acrylic plate. The result is shown. That is, FIG. 13 shows the measurement results when the filter 100 ′ in which the experiment of FIGS. 9 and 10 and the arrangement of the acrylic plate and the vinyl chloride plate are reversed is used.
  • FIG. 14 shows a measurement result when the filter 100 ′ using only one acrylic plate is used as the condition of the filter 100 ′.
  • FIG. 14A shows the first measurement result and
  • FIG. 14B shows the second measurement result.
  • FIG. 15 shows the measurement results when using only one PVC plate filter 100 ′ as a condition for the filter 100 ′.
  • FIG. 15A shows the first measurement result
  • FIG. 15B shows the second measurement result.
  • the measured value of the dust in the exhaust exceeds the straight line representing 50 mV in all the measurement results. That is, under these conditions, it is shown that when only one of the positive charging member and the negative charging member is used as the filter 100 ′, dust is discharged into the exhaust.
  • JIS Z 8901 heavy calcium carbonate satisfying Japanese Industrial Standards (JIS: Japanese Industrial Standards) test powder (16-16). Measurements using a main particle size of 2 ⁇ m were also performed. The measurement conditions using heavy calcium carbonate are also expressed as “JIS16” in the figures representing the following experimental results.
  • FIG. 16 shows the filter 100 ′ as a condition in which a filter 100 ′ in which an acrylic plate and a vinyl chloride plate are laminated with a cloth is arranged so that an upstream side is an acrylic plate and a downstream side is a vinyl chloride plate, and is heavy as a powder. It is a measurement result at the time of using calcium carbonate. That is, FIG. 16 shows the measurement results when the particle size of the powder is made smaller than in the experiments of FIGS. FIG. 16A shows the first measurement result, and FIG. 16B shows the second measurement result.
  • FIG. 17 shows the measurement results when using a filter 100 ′ in which two aluminum plates are laminated with cloth and using heavy calcium carbonate as the powder. That is, FIG. 17 represents a measurement result when the particle diameter of the powder is made smaller than that in the experiment of FIG.
  • FIG. 18 summarizes the integrated value of the dust amount in each measurement result obtained in the first experiment in one graph. Furthermore, FIG. 20 extracts the integrated value of the dust amount in each measurement result for 100 seconds from the measurement start from the graph of FIG. From these results, in the experimental conditions using two aluminum plates as the filter 100 ′ and the experimental conditions using one acrylic plate or one PVC plate, the integrated value of the dust amount is large in that order. . Therefore, it can be seen that the dust collecting effect of the dust collecting filter in which the acrylic plate and the vinyl chloride plate are combined is large.
  • FIG. 19 shows the measurement results obtained when the filter 100 ′ in which two aluminum plates are laminated with a cloth is used from the graph of FIG. 18. From the comparison between FIG. 18 and FIG. 19, the measured values in the four types of experiments using the filter 100 ′ in which two aluminum plates are laminated with a cloth are the largest in the first experiment. They are lined up in order. That is, it can be seen that the dust collecting effect of a filter in which a single aluminum plate is laminated with a cloth as the filter 100 'is small. This is because a conductive material such as an aluminum plate has a much lower charge rate than an acrylic plate or a vinyl chloride plate, which is an insulator, even if the surface is rubbed before the experiment. Therefore, it has been verified that the dust collecting effect is higher when the chargeability of the constituent members is larger as the dust collecting filter.
  • FIG. 21 shows the measurement results obtained under experimental conditions other than the experimental conditions using the filter 100 ′ in which two aluminum plates are laminated with a cloth, from the graph of FIG. 18. From the measurement results shown in the graph of FIG. 21, in an experimental condition using a combination of an acrylic plate and a vinyl chloride plate as the filter 100 ′, an experiment using one acrylic plate or one vinyl chloride plate as the filter 100 ′. The integrated amount of dust is smaller than the conditions. That is, it can be seen that the dust collection effect of the dust collection filter is greater when the acrylic plate and the vinyl chloride plate are combined than when only the acrylic plate or the vinyl chloride plate is used. This is presumably because dust that is positively or negatively charged is adsorbed to the filter by using a positive or negative charging member. Therefore, it has been verified that a positively or negatively charged member is more effective as a dust collection filter using static electricity than a member charged only on one side.
  • FIG. 22 shows the measurement results under the experimental conditions using the filter 100 ′ in which the acrylic plate and the vinyl chloride plate are combined from the graph of FIG. 18.
  • FIG. 23 is an enlarged view of a partial region represented by the rectangle of FIG. From the measurement results shown in the graph of FIG. 23, it was found from the experimental conditions using the filter 100 ′ having a straight laminated structure in which the vent hole of the acrylic plate and the vent hole of the vinyl chloride plate coincided with each other.
  • the experimental conditions using the cross-layered filter 100 ′ that does not coincide with the air vents of the case are closer to the measurement result in a state where there is no dust in the case 200, that is, no dust is discharged.
  • the cloth laminated structure is more easily charged when the uncharged powder in the case 200 collides with the charging member constituting the filter, and is charged positively or negatively. This is considered to be easily adsorbed by the member. Therefore, as a dust collection filter using static electricity, the members are laminated so that the ventilation holes are all aligned so that at least one ventilation hole which is a transmission part of an adjacent member does not match. It was verified that the dust collection effect is higher than that of layered.
  • the measurement results using heavy calcium carbonate having a particle size of 2 ⁇ m as the powder are measured using Aruna beads (registered trademark) CB having a particle size of 20 ⁇ m, compared to the measurement results shown in the graphs of FIGS. 18 and 20.
  • the integrated value of the dust amount is larger than the result even under the same experimental conditions. That is, it can be seen that the dust collection effect is larger when the dust size is larger even if the dust collection filter has the same conditions. This is because the larger the size of the dust, the greater the inertial force acting on the dust, so it becomes easier to be charged by colliding with the charging member that constitutes the filter, and it becomes easier to be adsorbed by the positively and negatively charged members. Conceivable. Therefore, it is considered that a dust collection filter using electricity may be effective depending on the size of dust to be statically removed.
  • FIG. 25 is a schematic view of the spacer 150 used in the second experiment.
  • a mesh having a thickness of 0.5 mm having a vent hole with a diameter of about 5 mm was used.
  • Aruna beads (registered trademark) CB (particle size: 10 ⁇ m) manufactured by Showa Denko KK was used as the powder.
  • a 0.15 mm thick nylon screen as a positive charging member
  • a 0.1 mm thick KP (PP) as a negative charging member.
  • Various combinations of polypropylene screens called and normal nonwovens were used.
  • a normal nonwoven fabric a flame retardant nonwoven fabric of PET (polyethylene terephthalate) having a thickness of 0.2 mm was used.
  • the charge rate of a normal nonwoven fabric is much smaller than the charge rate of nylon or KP (PP), and it can be said that it is a non-charged member in comparison with nylon or KP (PP). Therefore, a filter combining a nylon screen and a KP (PP) screen is a filter in which each screen is positively or negatively charged, and a filter having only a non-woven screen is an uncharged filter.
  • FIG. 26 to FIG. 35 are diagrams showing measurement results in the second experiment.
  • the horizontal axis represents time (seconds)
  • the vertical axis represents the amount of dust (mV / s) per second measured by the dust meter 300.
  • FIG. 26 shows the measurement results when the filter 100 ′ is not arranged.
  • FIG. 26A shows the first measurement result
  • FIG. 26B shows the second measurement result.
  • FIG. 27 shows the measurement results when using the filter 100 ′ in which four KP (PP) screens are sandwiched by spacers 150 one by one as a condition for the filter 100 ′ (FIG. 27A), Measurement results when using a filter 100 ′ in which nylon screens are sandwiched by spacers 150 one by one (FIG. 27B)), and filter 100 in which four ordinary nonwoven fabrics are sandwiched by spacers 150 one by one.
  • the measurement results when 'is used (FIG. 27C) are respectively shown.
  • FIG. 28 shows the measurement results when using a filter 100 ′ in which a total of four KP (PP) screens and nylon screens are alternately sandwiched by spacers 150 as the conditions of the filter 100 ′.
  • FIG. 28A shows the first measurement result
  • FIG. 28B shows the second measurement result.
  • FIG. 29 shows the measurement results when the filter 100 ′ is not arranged.
  • FIG. 29A shows the first measurement result
  • FIG. 29B shows the second measurement result.
  • FIG. 30 shows the measurement results (FIG. 30A) when a filter 100 ′ in which four screens of KP (PP) are sandwiched one by one by spacers 150 as a condition of the filter 100 ′ (FIG. 30A), and a nylon system.
  • FIG. 30B shows the measurement results when using the filter 100 ′ in which the four screens are sandwiched between the spacers 150 one by one.
  • FIG. 31 shows a measurement result in the case of using a filter 100 ′ in which four ordinary nonwoven fabrics are sandwiched by spacers 150 one by one.
  • FIG. 31 (A) shows the first time, and FIG. Each of the second measurement results is shown.
  • FIG. 32 shows the measurement results when using a filter 100 ′ in which a total of four KP (PP) screens and nylon screens are alternately sandwiched by spacers 150 as the conditions of the filter 100 ′.
  • FIG. 32A shows the first measurement result
  • FIG. 32B shows the second measurement result.
  • FIG. 33A shows a measurement result in the case of using a filter 100 ′ in which four ordinary nonwoven fabrics are sandwiched by spacers 150 one by one.
  • 33 (B) and 33 (C) show that the filter 100 ′ includes a filter 100 ′ in which a total of four KP (PP) screens and nylon screens are alternately sandwiched by spacers 150 one by one.
  • FIG. 33B shows the first measurement result
  • FIG. 33C shows the second measurement result when used.
  • FIG. 34A shows a measurement result in the case of using a filter 100 ′ in which four ordinary nonwoven fabrics are sandwiched by spacers 150 one by one.
  • FIGS. 34B and 34C show a case where a filter 100 ′ in which a total of four KP (PP) screens and nylon screens are alternately stacked without spacers 150 is used as a condition of the filter 100 ′.
  • FIG. 34B shows the first measurement result
  • FIG. 34C shows the second measurement result.
  • FIG. 35 shows measurement results when using a filter 100 ′ in which a total of four KP (PP) screens and nylon screens are alternately sandwiched by spacers 150 as the conditions of the filter 100 ′.
  • 35A shows the first measurement result
  • FIG. 35B shows the second measurement result.
  • FIGS. 28A, 28B, and 28C are measurement results when using a filter 100 ′ in which a KP (PP) screen and a nylon screen are alternately sandwiched by spacers 150 one by one.
  • 32 (A), (B), FIGS. 33 (B), (C), and FIGS. 35 (A), (B), and a KP (PP) screen and a nylon-based screen are used alternately.
  • 34 (B) and FIG. 34 (C) which are measurement results when using the filter 100 'without overlapping, the dust collection effect of the dust collection filter is that the screen is sandwiched between the spacers 150. It can be seen that is larger than when the spacers 150 are stacked without using the spacer 150.
  • the positive charging member and the negative charging member exist in a narrow space. Thereby, a strong electric field is generated in the space, and the electric field is confined. Since the particles pass through a strong electric field, the negatively charged particles or the particles charged by contact with the charged cloth adhere to the screen by electrostatic force (Coulomb force) due to the electric field.
  • FIG. 27A shows a measurement result when using a filter 100 ′ having only a KP (PP) screen
  • FIG. 27 shows a measurement result when using a filter 100 ′ having only a nylon screen
  • FIG. 27C which is a measurement result when using a filter 100 ′ made of only ordinary non-woven fabric
  • a total of four KP (PP) screens and nylon screens are alternately 1
  • FIG. 32A and FIG. 32B which are measurement results when using the filter 100 ′ sandwiched by the spacers 150 one by one, are compared.
  • 27 (A) and FIG. 27 (B) and FIG. 27 (C) both using only KP (PP) screen and using nylon-based screen, both using only ordinary nonwoven fabric.
  • the dust collecting effect is high, but it is understood that the dust collecting effect is much higher when the KP (PP) screen and the nylon screen are alternately used. Therefore, in the second experiment, it was verified that the dust collection effect using the positively and negatively charged members was higher than that using only one charged member as the dust collection filter using static electricity. It was done.
  • FIG. 28 shows a measurement result under experimental conditions with different humidity in the case where a filter 100 ′ in which a KP (PP) screen and a nylon screen are alternately sandwiched between spacers 150 is used.
  • A), (B) (humidity 47%), FIG. 32 (A), (B) (humidity 55.5%), FIG. 33 (B), (C) (humidity 60.7%), FIG. 35 (A) and (B) (humidity 60.7%) are compared. From these comparisons, it can be seen that the amount of dust detected increases as the humidity increases.
  • the dust removal structure 100 may be implemented as a mask, fold, shade (roll-up curtain), part of clothing, or other filter.
  • a plurality of cloth-like members made of a material that is positively and negatively charged are used as the filter 100 ′ having the dust removing structure 100.
  • a spacer 150 is provided between the screens to maintain a gap between adjacent screens.
  • the spacer 150 may be a planar member having air permeability as used in the second experiment.
  • embossing convex processing
  • embossing as a spacer 150 is performed on both surfaces of each screen.
  • the filter 100 ′ formed of a cloth-like member (screen) can be used as a filter of an air conditioner (air conditioner) or an air purifier.
  • the filter 100 ′ is fixed so that each screen has at least a partial region with respect to the adjacent screen, and the air flow direction by the apparatus is set upstream to the fixed portion with respect to the air flow direction.
  • the air flow direction by the apparatus is set upstream to the fixed portion with respect to the air flow direction.
  • the filter 100 ′ can be used in a mode that can be attached to a moving body (human body) in a fluid (air) such as a mask, or the moving body such as clothes.
  • a moving body human body
  • a fluid air
  • the moving body such as clothes.
  • An example of using it as a part of an object that can be attached to the device is given.
  • FIG. 37 is a diagram for explaining an example in which the filter 100 ′ composed of the screen is used as a mask.
  • each screen constituting the mask is a cloth-like member (for example, non-woven fabric) that can be positively or negatively charged, and the surface thereof is embossed. Rubbing the entire mask lightly by hand before wearing the mask, or moving the whole mask by speaking with the mask attached, etc., by friction between each screen with the adjacent screen Charges positively or negatively.
  • By wearing the mask air permeability is secured and the burden on the user is suppressed, and dust in the air to be sucked is adsorbed to the mask using static electricity and removed from the air sucked by the user.
  • each member (screen) is charged positively and negatively, respectively.
  • the fluid (air) is transmitted through the filter 100 ′ (Step S2).
  • adjacent members (screens) are arranged so as to be relatively displaceable while maintaining a contact state. Therefore, in step S1, the respective members (screens) are maintained in contact with each other and relatively displaced, that is, they are rubbed to charge each of them positively and negatively.
  • the charging in step S1 means that the filter 100 ′ is installed in the fluid (air) flow path, with the fixed portion as the upstream side, and at an angle with the air flow direction. Including.
  • each member (screen) maintains a contact state and is displaced relatively by stress due to fluid (air), that is, friction occurs. Therefore, each member is charged positively and negatively. Therefore, when the filter 100 ′ is used in a device that collects dust in a fluid such as an air cleaner, for example, even if the user does not perform an operation such as rubbing each screen constituting the filter 100 ′. The charged state of each screen is maintained. Therefore, the dust collection effect in the dust collecting device is maintained even if there is no user operation.
  • 100 dust removal structure 100 'filter, 101 frame, 110, 111, 112, 130, 131, 132 negative charging member, 150 spacer, 200 case, 201 vibration device, 300 dust meter, 400 air pump, 601, 602 negative charged particle 603 particles.

Abstract

[Problem] To provide a dust removal structure capable of efficiently removing dust using static electricity. [Solution] A dust removal structure (100) for removing dust in a fluid is equipped with planar first members (110, 111, 112) that are permeable to the fluid and take a positive charge and planar second members (130, 131, 132) that are permeable to the fluid and take a negative charge. The first members and the second members are stacked with their surfaces facing each other and are disposed so that relative displacement while maintaining at least partial contact between the mutual surfaces is possible.

Description

粉塵除去構造、粉塵除去フィルター、および粉塵除去方法Dust removal structure, dust removal filter, and dust removal method
 この開示は粉塵除去構造、粉塵除去フィルター、および粉塵除去方法に関し、特に、静電気を利用した粉塵除去構造、粉塵除去フィルター、および粉塵除去方法に関する。 This disclosure relates to a dust removal structure, a dust removal filter, and a dust removal method, and more particularly, to a dust removal structure, a dust removal filter, and a dust removal method using static electricity.
 流体中に帯電した粉塵が浮遊していると、粉塵は、逆の電荷に帯電している素材との間のクーロン力によって該素材に吸着される。たとえば、特開2002-126574号公報(以下、特許文献1)、特開2011-235219号公報(以下、特許文献2)、および特開2011-5398号公報(以下、特許文献3)などの文献では、この現象を利用して、布素材などを帯電させて粉塵を吸着させ、除去する方法が提案されている。 When charged dust is floating in the fluid, the dust is adsorbed to the material by the Coulomb force between the material charged to the opposite charge. For example, documents such as JP 2002-126574 (hereinafter referred to as Patent Document 1), JP 2011-235219 (hereinafter referred to as Patent Document 2), and JP 2011-5398 (hereinafter referred to as Patent Document 3). Then, using this phenomenon, a method of charging and removing dust by charging a cloth material or the like has been proposed.
特開2002-126574号公報JP 2002-126574 A 特開2011-235219号公報JP 2011-235219 A 特開2011-5398号公報JP 2011-5398 A
 上記の方法は吸着して除去する対象の粉塵が帯電していることが前提である。しかしながら、実際の空気中の粉塵は帯電していない場合もある。その場合マイナス帯電していない粉塵は原理的には上記素材に吸着されないことになる。つまり、粉塵の帯電を前提とした除去では、実際の空気中の粉塵に対する除去効率が必ずしも高くない場合がある。 The above method is based on the premise that the dust to be adsorbed and removed is charged. However, the actual air dust may not be charged. In this case, dust that is not negatively charged is not in principle adsorbed to the material. In other words, in the removal based on the premise of dust charging, the removal efficiency for the actual dust in the air may not always be high.
 本開示はこのような問題に鑑みてなされたものであって、静電気を利用して、効率よく粉塵を除去することができる粉塵除去構造、粉塵除去フィルター、および粉塵除去方法を提供することを目的の一つとしている。 The present disclosure has been made in view of such problems, and an object thereof is to provide a dust removal structure, a dust removal filter, and a dust removal method capable of efficiently removing dust using static electricity. One of them.
 一実施の形態に従うと、粉塵除去構造は流体中の粉塵を除去するための構造であって、流体の透過性を有し、プラスに帯電する、面形状の第1の部材と、流体の透過性を有し、マイナスに帯電する、面形状の第2の部材とを備え、第1の部材と第2の部材とは、互いの面を向き合わせて重ねられ、かつ、互いの面の少なくとも一部の接触状態を維持して相対的に変位可能に配置されている。 According to one embodiment, the dust removal structure is a structure for removing dust in a fluid, and has a fluid-permeable, positively charged first surface-shaped member, and fluid permeation. And a negatively charged surface-shaped second member, wherein the first member and the second member are stacked with their surfaces facing each other, and at least of the surfaces of each other It is arranged so as to be relatively displaceable while maintaining some contact state.
 好ましくは、第1の部材と第2の部材とは、各々、1か所以上の流体の透過部を有し、第1の部材と第2の部材とが互いの面を向き合わせて重ねられたときに、第1の部材の1か所以上の透過部のうちの少なくとも1か所の透過部は、第2の部材の透過部ではない面に重ね合わされる。 Preferably, each of the first member and the second member has one or more fluid-permeable portions, and the first member and the second member are stacked with their surfaces facing each other. In this case, at least one transmission part of the one or more transmission parts of the first member is overlapped with a surface that is not the transmission part of the second member.
 好ましくは、第1の部材の素材と前記第2の部材の素材とは、異なる素材である。
 好ましくは、第1の部材はナイロン、アクリル、ポリプロピレン、ウールのいずれかを含み、第2の部材はポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエチレン、ウレタン、ポリエチレンテレフタラート、変性ポリエチレンテレフタラートのいずれかを含む。
Preferably, the material of the first member and the material of the second member are different materials.
Preferably, the first member includes any one of nylon, acrylic, polypropylene, and wool, and the second member includes any one of polypropylene, polystyrene, polyvinyl chloride, polyethylene, urethane, polyethylene terephthalate, and modified polyethylene terephthalate. Including.
 他の実施の形態に従うと、粉塵除去フィルターは流体中の粉塵を除去するためのフィルターであって、流体の透過性を有した第1の繊維層と、第1の繊維層を形成する繊維と異なる繊維で形成され、第1の繊維層に積層された第2の繊維層とを備え、第1の繊維層と第2の繊維層とは、互いに接触状態を維持して相対的に変位可能に配置されている。 According to another embodiment, the dust removal filter is a filter for removing dust in a fluid, and includes a first fiber layer having fluid permeability and fibers forming the first fiber layer. The second fiber layer is formed of different fibers and laminated on the first fiber layer, and the first fiber layer and the second fiber layer can be relatively displaced while maintaining contact with each other. Is arranged.
 好ましくは、粉塵除去フィルターは、第1の繊維層に対して第2の繊維層を固定するための接着構造を有し、接着構造は、第1の繊維層と第2の繊維層との間の少なくとも一部領域を残して第1の繊維層に対して第2の繊維層を固定することで、第1の繊維層と第2の繊維層とを他方繊維層に対して接触状態を維持して相対的に変位可能とする。 Preferably, the dust removal filter has an adhesive structure for fixing the second fiber layer to the first fiber layer, and the adhesive structure is between the first fiber layer and the second fiber layer. The second fiber layer is fixed to the first fiber layer while leaving at least a partial region of the first fiber layer, so that the first fiber layer and the second fiber layer are kept in contact with the other fiber layer. And relatively displaceable.
 好ましくは、粉塵除去フィルターは、第1の繊維層および第2の繊維層の間に配置され、第1の繊維層と第2の繊維層との間の空間を保持するためのスペーサをさらに備える。 Preferably, the dust removal filter further includes a spacer that is disposed between the first fiber layer and the second fiber layer and that maintains a space between the first fiber layer and the second fiber layer. .
 好ましくは、第1の繊維層はナイロン、アクリル、ポリプロピレン、ウールのいずれかを含み、第2の繊維層はポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエチレン、ウレタン、ポリエチレンテレフタラート、変性ポリエチレンテレフタラートのいずれかを含む。 Preferably, the first fiber layer includes any of nylon, acrylic, polypropylene, and wool, and the second fiber layer is any of polypropylene, polystyrene, polyvinyl chloride, polyethylene, urethane, polyethylene terephthalate, and modified polyethylene terephthalate. Including
 他の実施の形態に従うと、粉塵除去方法は流体中の粉塵を除去する方法であって、流体の透過性を有した面形状の第1の部材および第2の部材が積層された構造を有する粉塵除去フィルターの、第1の部材をプラスに帯電させ、第2の部材をマイナスに帯電させるステップと、粉塵除去フィルターに流体を透過させるステップとを備え、第1の部材と第2の部材とは、他方部材に対して接触状態を維持して相対的に変位可能に配置されておりマイナス帯電させるステップは、第1の部材と第2の部材とを接触状態を維持して相対的に変位させることで、それぞれをプラス、マイナスに帯電させることを含む。 According to another embodiment, the dust removing method is a method for removing dust in a fluid, and has a structure in which a first member and a second member having a fluid-permeable surface shape are stacked. A step of charging the first member positively and charging the second member negatively and passing the fluid through the dust removal filter of the dust removal filter; Is arranged so as to be relatively displaceable while maintaining a contact state with respect to the other member, and the step of negatively charging is relatively displaced while maintaining the contact state between the first member and the second member. To charge each of them positively and negatively.
 好ましくは、粉塵除去フィルターは第1の部材と第2の部材とを少なくとも一部領域を残して固定するための接着構造を有しマイナス帯電させるステップは、粉塵除去フィルターを流体の流路に、接着構造を上流側として、流路方向との間に角度を成すように設置し、流体によって第1の部材と第2の部材とを接触状態を維持して相対的に変位させることで、それぞれをプラス、マイナスに帯電させることを含む。 Preferably, the dust removing filter has an adhesive structure for fixing the first member and the second member leaving at least a part of the region, and the step of negatively charging the dust removing filter in the fluid flow path, By installing the adhesive structure as an upstream side and forming an angle with the flow path direction, the first member and the second member are maintained in contact with each other and relatively displaced by the fluid. Including charging to positive and negative.
 この開示によると、静電気を利用して、効率よく粉塵を除去することができる。 According to this disclosure, dust can be efficiently removed using static electricity.
実施の形態にかかる粉塵除去構造の概略を表わすための図である。It is a figure for expressing the outline of the dust removal structure concerning an embodiment. 粉塵除去構造での粉塵の除去原理を説明するための図である。It is a figure for demonstrating the dust removal principle in a dust removal structure. 粉塵除去構造を有するフィルターの設置の一例を表わした図である。It is a figure showing an example of installation of the filter which has a dust removal structure. 気流内に設置されたフィルターの変形を説明するための図である。It is a figure for demonstrating the deformation | transformation of the filter installed in the airflow. 実験装置の構成を説明するための概略図である。It is the schematic for demonstrating the structure of an experimental apparatus. 第1の実験で用いたフィルターを説明するための図である。It is a figure for demonstrating the filter used in 1st experiment. 第1の実験で用いたフィルターを説明するための図である。It is a figure for demonstrating the filter used in 1st experiment. 第1の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 1st experiment. 第1の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 1st experiment. 第1の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 1st experiment. 第1の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 1st experiment. 第1の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 1st experiment. 第1の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 1st experiment. 第1の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 1st experiment. 第1の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 1st experiment. 第1の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 1st experiment. 第1の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 1st experiment. 第1の実験での測定結果からの考察を説明するための図である。It is a figure for demonstrating the consideration from the measurement result in a 1st experiment. 第1の実験での測定結果からの考察を説明するための図である。It is a figure for demonstrating the consideration from the measurement result in a 1st experiment. 第1の実験での測定結果からの考察を説明するための図である。It is a figure for demonstrating the consideration from the measurement result in a 1st experiment. 第1の実験での測定結果からの考察を説明するための図である。It is a figure for demonstrating the consideration from the measurement result in a 1st experiment. 第1の実験での測定結果からの考察を説明するための図である。It is a figure for demonstrating the consideration from the measurement result in a 1st experiment. 第1の実験での測定結果からの考察を説明するための図である。It is a figure for demonstrating the consideration from the measurement result in a 1st experiment. 第2の実験で用いたフィルターを説明するための図である。It is a figure for demonstrating the filter used in 2nd experiment. 第2の実験に用いられたスペーサの概略図である。It is the schematic of the spacer used for the 2nd experiment. 第2の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 2nd experiment. 第2の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 2nd experiment. 第2の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 2nd experiment. 第2の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 2nd experiment. 第2の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 2nd experiment. 第2の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 2nd experiment. 第2の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 2nd experiment. 第2の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 2nd experiment. 第2の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 2nd experiment. 第2の実験での測定結果を表わした図である。It is a figure showing the measurement result in the 2nd experiment. スペーサの他の例を説明するための図である。It is a figure for demonstrating the other example of a spacer. フィルターをマスクとして用いた例を説明する図である。It is a figure explaining the example which used the filter as a mask. フィルターを用いて流体中の粉塵を除去する方法の流れを表わした図である。It is a figure showing the flow of the method of removing the dust in the fluid using a filter.
 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらの説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are also the same. Therefore, these descriptions will not be repeated.
 <概要>
 図1は、本実施の形態にかかる粉塵除去構造100の概略を表わすための図である。図1を参照して、粉塵除去構造100は、プラスに帯電する素材で形成された、複数の面形状の部材であるプラス帯電部材110,111,112と、マイナスに帯電する素材で形成された、複数の面形状の部材であるマイナス帯電部材130,131,132とを含む。各プラス帯電部材と各マイナス帯電部材とは、互いの面を向き合わせて交互に重ねて配置(積層)されている。
<Overview>
FIG. 1 is a diagram for illustrating an outline of a dust removing structure 100 according to the present embodiment. Referring to FIG. 1, the dust removing structure 100 is formed of a plurality of positively-charged members 110, 111, and 112, which are formed of a positively charged material, and a negatively charged material. And negative charging members 130, 131, 132 which are a plurality of surface-shaped members. Each positive charging member and each negative charging member are arranged (stacked) alternately facing each other with their surfaces facing each other.
 プラス帯電部材110,111,112およびマイナス帯電部材130,131,132は、流体、たとえば空気の透過性を有する素材で形成されている。一例として、これら部材の素材として布状部材(不織布)が挙げられる。また、他の例として、プラス帯電部材110,111,112およびマイナス帯電部材130,131,132は、通気孔の設けられた板状部材であってもよい。これら部材が重ねて配置されることで、各部材に存在する流体が透過する部分は、重なり合う部材の間で少なくとも1か所は一致しない。 The positive charging members 110, 111, and 112 and the negative charging members 130, 131, and 132 are formed of a material having permeability of fluid, for example, air. As an example, a cloth-like member (nonwoven fabric) can be cited as a material for these members. As another example, the positive charging members 110, 111, and 112 and the negative charging members 130, 131, and 132 may be plate-like members provided with air holes. By arranging these members so as to overlap each other, at least one portion where the fluid existing in each member permeates does not match between the overlapping members.
 プラス帯電部材110,111,112は、ナイロン、アクリル、ポリプロピレン、ウールのいずれかから構成される部材を含む。マイナス帯電部材130,131,132は、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエチレン、ウレタン、ポリエチレンテレフタラート、変性ポリエチレンテレフタラートのいずれかから構成される部材を含む。より好ましくは、プラス帯電部材110,111,112は、たとえば、アクリル素材である。マイナス帯電部材130,131,132は、たとえば、スチレン素材である。 The positive charging members 110, 111, and 112 include members made of nylon, acrylic, polypropylene, or wool. The negative charging members 130, 131, and 132 include members made of any of polypropylene, polystyrene, polyvinyl chloride, polyethylene, urethane, polyethylene terephthalate, and modified polyethylene terephthalate. More preferably, the positive charging members 110, 111, and 112 are made of an acrylic material, for example. The negative charging members 130, 131, and 132 are made of styrene, for example.
 プラス帯電部材110,111,112およびマイナス帯電部材130,131,132は、互いの面を向き合わせて重ねられる。さらに、プラス帯電部材110,111,112およびマイナス帯電部材130,131,132は、他方部材に対して接触状態を保って相対的に変位可能に配置されている。すなわち、プラス帯電部材110,111,112およびマイナス帯電部材130,131,132は、重なり合う部材の間で少なくとも一部領域を残して相対的に変位可能に固定されている。一例として、図1に表わされるように、プラス帯電部材110,111,112およびマイナス帯電部材130,131,132は、一辺がフレーム101で固定されている。この固定は、熱による圧着や、接着剤による接着であってもよい。また、重なり合う部材の間で少なくとも一部領域が固定されていなければよいので、接着は一辺に限定されず、一点であってもよい。このように固定されることで、各部材は重なり合う部材に対して接触状態を保って相対的に変位が可能に配置されることになる。これにより、重なり合う部材との間で摩擦が生じる。その結果、プラス帯電部材110,111,112はプラスに帯電し、マイナス帯電部材130,131,132はマイナスに帯電する。 The plus charging members 110, 111, and 112 and the minus charging members 130, 131, and 132 are stacked with their surfaces facing each other. Further, the positive charging members 110, 111, and 112 and the negative charging members 130, 131, and 132 are disposed so as to be relatively displaceable while maintaining contact with the other members. That is, the positive charging members 110, 111, 112 and the negative charging members 130, 131, 132 are fixed so as to be relatively displaceable, leaving at least a partial region between the overlapping members. As an example, as shown in FIG. 1, one side of the positive charging members 110, 111, 112 and the negative charging members 130, 131, 132 is fixed by the frame 101. This fixing may be heat-bonding or adhesive bonding. Further, since at least a part of the region is not fixed between the overlapping members, the bonding is not limited to one side and may be a single point. By being fixed in this way, each member is arranged so as to be relatively displaceable while maintaining contact with the overlapping members. Thereby, friction arises between the overlapping members. As a result, the positive charging members 110, 111, and 112 are positively charged, and the negative charging members 130, 131, and 132 are negatively charged.
 <粉塵の除去原理>
 図2は、粉塵除去構造100での粉塵の除去原理を説明するための図である。図2は、粉塵の除去原理を説明するために、粉塵除去構造100のうちの特にプラス帯電部材110とマイナス帯電部材130とを拡大したものである。
<Dust removal principle>
FIG. 2 is a view for explaining the principle of dust removal in the dust removal structure 100. FIG. 2 is an enlarged view of the positive charge member 110 and the negative charge member 130 in the dust removal structure 100 in order to explain the dust removal principle.
 プラス帯電部材110とマイナス帯電部材130とは、それぞれ、複数の通気孔を有する。これら部材が不織布である場合には、不織布に形成された気孔が通気孔に相当する。これら部材が板である場合には、当該板に通気孔が設けられる。プラス帯電部材110とマイナス帯電部材130とは、図2に表わされるように、通気孔が重ならないように積層される。すなわち、プラス帯電部材110に設けられた通気孔のうちの少なくとも1か所は、マイナス帯電部材130の通気孔でない面に面して積層される。 The positive charging member 110 and the negative charging member 130 each have a plurality of vent holes. When these members are nonwoven fabrics, the pores formed in the nonwoven fabric correspond to vent holes. When these members are plates, vent holes are provided in the plates. As shown in FIG. 2, the positive charging member 110 and the negative charging member 130 are laminated so that the air holes do not overlap. That is, at least one of the vent holes provided in the positive charging member 110 is laminated so as to face the surface of the negative charging member 130 that is not the vent hole.
 粉塵除去構造100は、面形状の各部材の面が流路に対して角度を成すように設置される。図2の例では、プラス帯電部材110が上流側、マイナス帯電部材130が下流側に配されている。図2において点線矢印は気流を表わしている。 The dust removing structure 100 is installed such that the surface of each planar member forms an angle with respect to the flow path. In the example of FIG. 2, the positive charging member 110 is disposed on the upstream side, and the negative charging member 130 is disposed on the downstream side. In FIG. 2, the dotted arrow represents the airflow.
 図2を参照して、面形状のプラス帯電部材110とマイナス帯電部材130とは、それぞれ、プラス、マイナスに帯電している。空気中の浮遊粒子である粉塵は、マイナスに帯電した粒子であるマイナス帯電粒子601、プラスに帯電した粒子であるプラス帯電粒子602、および帯電していない粒子603の混合粒子である。 Referring to FIG. 2, the surface positive charging member 110 and the negative charging member 130 are positively and negatively charged, respectively. Dust that is airborne particles is a mixed particle of negatively charged particles 601 that are negatively charged particles, positively charged particles 602 that are positively charged particles, and uncharged particles 603.
 混合粒子が気流によってプラス帯電部材110とマイナス帯電部材130とに接近し、それぞれの通気孔を通過することで、マイナス帯電粒子601はプラス帯電部材110に吸着し、その表面に捕捉される。プラス帯電粒子602はマイナス帯電部材130に吸着し、その表面に捕捉される。粒子603は、プラス帯電部材110およびマイナス帯電部材130のいずれにも吸着しない。ここで、図2に表わされるように、プラス帯電部材110に設けられた通気孔はマイナス帯電部材130の通気孔が形成されていない面に面し、マイナス帯電部材130に設けられた通気孔はプラス帯電部材110の通気孔が形成されていない面に面している。そのため、気流に乗って移動する粒子603は、移動による慣性力によって通気孔を通過した後に通気孔が形成されていない面と衝突する可能性が高い。図2の例の場合には、粒子603は、プラス帯電部材110の通気孔を通過した後にマイナス帯電部材130の表面に衝突する。マイナス帯電していない粒子603がマイナス帯電部材130と接触することで、粒子603はマイナスに帯電する。マイナスに帯電した粒子603は、マイナス帯電部材130に隣接するプラス帯電部材110に吸着し、その表面に捕捉される。 When the mixed particles approach the positive charging member 110 and the negative charging member 130 by the air flow and pass through the respective air holes, the negative charging particles 601 are adsorbed on the positive charging member 110 and trapped on the surface thereof. The positively charged particles 602 are adsorbed on the negatively charged member 130 and captured on the surface thereof. The particles 603 are not adsorbed to either the positive charging member 110 or the negative charging member 130. Here, as shown in FIG. 2, the vent hole provided in the positive charging member 110 faces the surface of the negative charging member 130 where the vent hole is not formed, and the vent hole provided in the negative charging member 130 is It faces the surface of the positive charging member 110 where no vent hole is formed. Therefore, there is a high possibility that the particles 603 that move in the airflow collide with a surface on which no vent hole is formed after passing through the vent hole due to inertial force due to movement. In the example of FIG. 2, the particles 603 collide with the surface of the negative charging member 130 after passing through the vent hole of the positive charging member 110. When the particles 603 that are not negatively charged come into contact with the negative charging member 130, the particles 603 are negatively charged. The negatively charged particles 603 are adsorbed on the positive charging member 110 adjacent to the negative charging member 130 and captured on the surface thereof.
 つまり、粉塵除去構造100は、プラス帯電部材110およびマイナス帯電部材130によって、マイナス帯電粒子601およびプラス帯電粒子602を吸着して捕捉するのみならず、帯電していない粒子603を帯電させて、プラス帯電部材110およびマイナス帯電部材130によって捕捉する。 That is, the dust removing structure 100 not only adsorbs and captures the negatively charged particles 601 and the positively charged particles 602 by the positively charged member 110 and the negatively charged member 130, but also charges the uncharged particles 603 to positively. Captured by the charging member 110 and the negative charging member 130.
 <フィルターの設置>
 図3は、粉塵除去構造100を有するフィルターの設置の一例を表わした図である。詳しくは、図3を参照して、粉塵除去構造100を有するフィルターの各部材は、一例として、フレーム101を上流側として、流体の流路に対して角度を成すように配置される。図3において、白抜き矢印は、気流の強度や方向を表わしている。
<Installation of filter>
FIG. 3 is a diagram illustrating an example of installation of a filter having the dust removing structure 100. Specifically, referring to FIG. 3, each member of the filter having the dust removing structure 100 is disposed so as to form an angle with respect to the fluid flow path, with the frame 101 as an upstream side, for example. In FIG. 3, white arrows represent the strength and direction of the airflow.
 図4は、気流内に設置されたフィルターの変形を説明するための図である。図4において、白抜き矢印は、気流の強度や方向を表わしている。 FIG. 4 is a diagram for explaining the deformation of the filter installed in the airflow. In FIG. 4, white arrows represent the strength and direction of the airflow.
 粉塵除去構造100の面形状のプラス帯電部材110,111,112とマイナス帯電部材130,131,132とが上記のような布素材である場合、図4に示されるように、各部材は気流の影響によって変形する。そのため、部材の表面側と裏面側とで気流の強度差が生じる。部材の表面側と裏面側との気流の強度差は、隣接する部材間の、図4の点線矢印で表わされるように、強度の小さい方から大きい方へ向かう圧力を引き起こす。面形状のプラス帯電部材110,111,112とマイナス帯電部材130,131,132とは、各々の一辺がフレーム101で固定されて変形する。そのため、各部材は、該圧力によって、隣接する部材間で接触状態を保って相対的に変位する。これにより、プラス帯電部材110,111,112は、隣接するマイナス帯電部材130,131,132との間で摩擦が生じ、プラスに帯電する。また、マイナス帯電部材130,131,132は、隣接するプラス帯電部材110,111,112との間で摩擦が生じ、マイナスに帯電する。つまり、図3に表わされるように気流に対してフィルターが配置されることで、各部材は気流の影響によってプラス、マイナスに帯電する。 When the surface-shaped positive charging members 110, 111, and 112 and the negative charging members 130, 131, and 132 of the dust removing structure 100 are cloth materials as described above, as shown in FIG. Deforms by influence. Therefore, a difference in airflow strength occurs between the front side and the back side of the member. The difference in the strength of the airflow between the front surface side and the back surface side of the member causes a pressure from the smaller strength toward the larger strength, as represented by the dotted arrow in FIG. The surface-shaped positive charging members 110, 111, 112 and the negative charging members 130, 131, 132 are deformed with one side fixed by the frame 101. Therefore, each member is relatively displaced by the pressure while maintaining a contact state between adjacent members. As a result, the positive charging members 110, 111, and 112 are charged positively due to friction between the adjacent negative charging members 130, 131, and 132. Further, the negative charging members 130, 131, 132 are charged negatively due to friction between the adjacent positive charging members 110, 111, 112. That is, as shown in FIG. 3, by arranging the filter with respect to the airflow, each member is positively and negatively charged by the influence of the airflow.
 <効果の検証:実験1>
 (実験条件および実験結果)
 発明者らは、粉塵除去構造100を有するフィルターの粉塵除去性能を検証するため、フィルターとして様々な部材を用いて実験を行なった。
<Verification of effect: Experiment 1>
(Experimental conditions and experimental results)
Inventors performed experiment using various members as a filter in order to verify the dust removal performance of the filter which has the dust removal structure 100. FIG.
 図5は、実験装置の構成を説明するための概略図である。図5を参照して、発明者らは、ケース200内に粉体を収納した容器を配置し、振動装置201を利用して容器ごと振動させることで、ケース200内に粉塵が浮遊する空間環境を作り出した。実験では、ケース200の開口部から、エアポンプ400を用いて、ケース200内の空気を粉塵除去構造100を有するフィルター100’を介して排出し、予め規定された時間、粉塵計300を用いて、フィルター100’通過後の空気中の粉塵量を測定した。フィルター100’を構成する部材は、実験前にその表面が摩擦されマイナス帯電した状態とされている。 FIG. 5 is a schematic diagram for explaining the configuration of the experimental apparatus. Referring to FIG. 5, the inventors arrange a container that stores powder in case 200, and vibrate the entire container using vibration device 201, thereby allowing a space environment in which dust floats in case 200. Produced. In the experiment, air in the case 200 is discharged from the opening of the case 200 through the filter 100 ′ having the dust removing structure 100 using the air pump 400, and the dust meter 300 is used for a predetermined time. The amount of dust in the air after passing through the filter 100 ′ was measured. The member constituting the filter 100 ′ is in a negatively charged state because the surface is rubbed before the experiment.
 エアポンプ400の排気速度は、1分あたり19リットル(19L/min)と一定にした。粉塵計300には、柴田科学株式会社製デジタル粉じん計LD-1型が用いられた。第1の実験で発明者らは、エアポンプ400で300秒、ケース200内の空気を排気し、その間の粉塵計300での粉塵の測定結果をデータロガーで記録した。第1の実験では、概ね、粉体として、昭和電工株式会社製のアルナビーズ(登録商標)CB(粒径20μm)が用いられた。 The exhaust speed of the air pump 400 was fixed at 19 liters per minute (19 L / min). As the dust meter 300, a digital dust meter LD-1 manufactured by Shibata Science Co., Ltd. was used. In the first experiment, the inventors exhausted the air in the case 200 with the air pump 400 for 300 seconds, and recorded the measurement result of the dust with the dust meter 300 during that time with a data logger. In the first experiment, Alnabeads (registered trademark) CB (particle size: 20 μm) manufactured by Showa Denko KK was generally used as the powder.
 発明者らは、第1の実験では、フィルター100’として、図6に表わされるように、各々、複数の通気孔が設けられた、2枚の板状の部材を重ねて用いた。各通気孔の直径は6mmで、108の通気孔が各部材に形成されている。 In the first experiment, the inventors used, as the filter 100 ′, two plate-like members each provided with a plurality of air holes, as shown in FIG. Each air hole has a diameter of 6 mm, and 108 air holes are formed in each member.
 第1の実験では、フィルター100’と粒子との衝突度合の条件として、上記2枚の板状の部材を、図7(A)に表わされるように、各通気孔が重なるように積層する方法(クロス)で積層したものと、図7(B)に表わされるように、各通気孔が重ならないように積層する方法(ストレート)で積層したものとの2つの条件が用いられた。以降の説明では、前者の方法で2枚の板状の部材を積層したフィルターを「クロスで積層したフィルター」、後者の方法で2枚の板状の部材を積層したフィルターを「ストレートで蓄積したフィルター」とも称する。2枚の板状の部材をクロスで蓄積したフィルターの方が、2枚の板状の部材をストレートで蓄積したフィルターよりも、フィルターを通過する粒子が当該フィルターに衝突する度合が高い。 In the first experiment, as a condition of the degree of collision between the filter 100 ′ and the particles, a method of laminating the two plate-like members so that the air holes overlap as shown in FIG. Two conditions were used, one laminated with (cross) and the other laminated with a method (straight) laminated so that the air holes do not overlap as shown in FIG. 7B. In the following description, a filter in which two plate-like members are laminated by the former method is a “filter laminated by a cloth”, and a filter in which two plate-like members are laminated by the latter method is “stored straight. Also referred to as “filter”. A filter in which two plate-like members are accumulated as a cloth is more likely to collide particles passing through the filter with the filter than a filter in which two plate-like members are accumulated in a straight line.
 また、第1の実験では、フィルター100’の帯電性の条件として、プラス帯電部材としてのアクリル板、マイナス帯電部材としての塩化ビニル板(塩ビ板)、およびアルミ板の様々な組み合わせが用いられた。通気孔が形成されたアクリル板および塩ビ板を組み合わせ、かつ、上流側(ケース200に近い側)をアクリル板、下流側(ケース200から遠い側)を塩ビ板となるように配置した測定条件は、以降の実験結果を表わす図中では「樹脂穴」とも表わされている。アルミ板の導電性がアクリル板や塩ビ板よりも高いため、アルミ板は、絶縁体であるアクリル板や塩ビ板と比較して格段に帯電率が小さい。そのため、アルミ板は、アクリル板や塩ビ板との比較では無帯電部材と言える。従って、アクリル板と塩ビ板とを組み合わせたフィルターは、アクリル板がプラスに、塩ビ板がマイナスに帯電したフィルターであり、アルミ板のみのフィルターは帯電していないフィルターと言える。 Further, in the first experiment, various combinations of an acrylic plate as a positive charging member, a vinyl chloride plate (vinyl chloride plate) as a negative charging member, and an aluminum plate were used as charging conditions for the filter 100 ′. . The measurement conditions in which an acrylic plate and a vinyl chloride plate in which air holes are formed are combined, and the upstream side (side closer to the case 200) is an acrylic plate and the downstream side (side far from the case 200) is a vinyl chloride plate are In the figures showing the results of the subsequent experiments, they are also represented as “resin holes”. Since the electrical conductivity of the aluminum plate is higher than that of the acrylic plate or the vinyl chloride plate, the aluminum plate has a remarkably smaller charge rate than the acrylic plate or the vinyl chloride plate which is an insulator. Therefore, the aluminum plate can be said to be an uncharged member in comparison with an acrylic plate or a vinyl chloride plate. Therefore, the filter combining the acrylic plate and the vinyl chloride plate is a filter in which the acrylic plate is positively charged and the polyvinyl chloride plate is negatively charged, and the filter only of the aluminum plate is an uncharged filter.
 図8~図17は、第1の実験での測定結果を表わした図である。これらの図において、横軸は時間(秒)を表わし、縦軸は粉塵計300で測定された一秒当たりの塵量(mV/s)を表わしている。 8 to 17 are diagrams showing the measurement results in the first experiment. In these figures, the horizontal axis represents time (seconds) and the vertical axis represents the amount of dust (mV / s) measured by the dust meter 300 per second.
 第1の実験の始めに、発明者らは、ケース200内に粉体を入れずにケース200内を粉塵のない状態としてケース200内からの排気を粉塵計300で測定し、図8の測定結果を得た。図8の結果より、粉塵のない状態での粉塵計300の測定値は50mVであり、この値が初期値であると言える。すなわち、50mVよりも大なる粉塵計300の測定値が排気中の粉塵量と言える。そこで、以降の、第1の実験の結果を示す測定結果のグラフには、初期値(50mV)を表わす直線が付加されている。 At the beginning of the first experiment, the inventors measured the exhaust gas from the case 200 with the dust meter 300 without putting the powder in the case 200, and the measurement in FIG. The result was obtained. From the result of FIG. 8, it can be said that the measured value of the dust meter 300 in the state without dust is 50 mV, and this value is the initial value. That is, it can be said that the measured value of the dust meter 300 larger than 50 mV is the amount of dust in the exhaust. Therefore, a straight line representing the initial value (50 mV) is added to the graph of the measurement result indicating the result of the first experiment.
 図9および図10は、フィルター100’の条件として、アクリル板と塩ビ板とをクロスで積層したフィルター100’を、上流側をアクリル板、下流側を塩ビ板となるように配置して用いた場合の測定結果を表わしている。図9(A)が1回目の、図9(B)が2回目の、図10(A)が3回目の、および図10(B)が4回目の測定結果をそれぞれ表わしている。 9 and 10, as a condition of the filter 100 ′, a filter 100 ′ in which an acrylic plate and a vinyl chloride plate are laminated with a cloth is used with the upstream side being an acrylic plate and the downstream side being a vinyl chloride plate. The measurement result is shown. 9A shows the first measurement results, FIG. 9B shows the second measurement results, FIG. 10A shows the third measurement results, and FIG. 10B shows the fourth measurement results.
 図9および図10を参照して、この条件での実験では、排気中の粉塵の測定値が概ね50mVを表わす直線と重なっている。つまり、この条件では、排気中にほとんど粉塵が排出されないことが示されている。 Referring to FIG. 9 and FIG. 10, in the experiment under this condition, the measured value of dust in the exhaust gas overlaps with a straight line representing approximately 50 mV. In other words, it is indicated that almost no dust is discharged during the exhaust under this condition.
 図11は、フィルター100’の条件として、アクリル板と塩ビ板とをストレートで積層したフィルター100’を、上流側をアクリル板、下流側を塩ビ板となるように配置して用いた場合の測定結果を表わしている。図11(A)が1回目の、および図11(B)が2回目の測定結果をそれぞれ表わしている。 FIG. 11 shows the measurement when the filter 100 ′ is a filter 100 ′ in which an acrylic plate and a vinyl chloride plate are laminated in a straight line, with the upstream side being an acrylic plate and the downstream side being a PVC plate. The result is shown. FIG. 11A shows the first measurement result and FIG. 11B shows the second measurement result.
 図11を参照して、この条件での実験では、排気中の粉塵の測定値は50mVを表わす直線をわずかに上回っている。つまり、この条件では、排気中にごくわずかに粉塵が排出されることが示されている。 Referring to FIG. 11, in the experiment under this condition, the measured value of the dust in the exhaust gas is slightly above the straight line representing 50 mV. In other words, it is shown that very little dust is discharged in the exhaust under this condition.
 図12は、フィルター100’の条件として、2枚のアルミ板をクロスで積層したフィルター100’を用いた場合の測定結果を表わしている。図12(A)が1回目の、図12(B)が2回目の、および図12(C)が3回目の測定結果をそれぞれ表わしている。 FIG. 12 shows the measurement results when using a filter 100 ′ in which two aluminum plates are laminated with cloth as a condition of the filter 100 ′. FIG. 12A shows the first measurement results, FIG. 12B shows the second measurement results, and FIG. 12C shows the third measurement results.
 図12を参照して、この条件での実験では、排気中の粉塵の測定値は50mVを表わす直線から大幅に上回っている。つまり、この条件では、排気中に多くの粉塵が排出されることが示されている。 Referring to FIG. 12, in the experiment under this condition, the measured value of the dust in the exhaust gas is significantly higher than the straight line representing 50 mV. That is, it is shown that a lot of dust is discharged in the exhaust under this condition.
 図13は、フィルター100’の条件として、アクリル板と塩ビ板とをクロスで積層したフィルター100’を、上流側を塩ビ板、下流側をアクリル板となるように配置して用いた場合の測定結果を表わしている。つまり、図13は、図9および図10の実験とアクリル板および塩ビ板の配置を逆にしたフィルター100’を用いた場合の測定結果を表わしている。 FIG. 13 shows the measurement when the filter 100 ′ is a filter 100 ′ in which an acrylic plate and a vinyl chloride plate are laminated with a cloth arranged so that the upstream side is a vinyl chloride plate and the downstream side is an acrylic plate. The result is shown. That is, FIG. 13 shows the measurement results when the filter 100 ′ in which the experiment of FIGS. 9 and 10 and the arrangement of the acrylic plate and the vinyl chloride plate are reversed is used.
 図13を参照して、この条件での実験でも、図9および図10の実験結果と同様に、排気中の粉塵の測定値が概ね50mVを表わす直線と重なっている。つまり、この条件では、排気中にほぼ粉塵が排出されないことが示されている。 Referring to FIG. 13, even in the experiment under this condition, the measured value of the dust in the exhaust gas overlaps with a straight line representing approximately 50 mV, as in the experimental results of FIGS. In other words, it is indicated that almost no dust is discharged during the exhaust under this condition.
 図14は、フィルター100’の条件として、1枚のアクリル板のみのフィルター100’を用いた場合の測定結果を表わしている。図14(A)が1回目の、および図14(B)が2回目の測定結果をそれぞれ表わしている。また、図15は、フィルター100’の条件として、1枚の塩ビ板のみのフィルター100’を用いた場合の測定結果を表わしている。図15(A)が1回目の、および図15(B)が2回目の測定結果をそれぞれ表わしている。 FIG. 14 shows a measurement result when the filter 100 ′ using only one acrylic plate is used as the condition of the filter 100 ′. FIG. 14A shows the first measurement result and FIG. 14B shows the second measurement result. FIG. 15 shows the measurement results when using only one PVC plate filter 100 ′ as a condition for the filter 100 ′. FIG. 15A shows the first measurement result, and FIG. 15B shows the second measurement result.
 図14および図15を参照して、これら条件での実験では、いずれの測定結果も、排気中の粉塵の測定値は50mVを表わす直線を上回っている。つまり、この条件では、プラス帯電部材およびマイナス帯電部材のいずれか一方のみをフィルター100’として用いた場合には、排気中に粉塵が排出されることが示されている。 Referring to FIG. 14 and FIG. 15, in the experiment under these conditions, the measured value of the dust in the exhaust exceeds the straight line representing 50 mV in all the measurement results. That is, under these conditions, it is shown that when only one of the positive charging member and the negative charging member is used as the filter 100 ′, dust is discharged into the exhaust.
 なお、第1の実験において、発明者らは、比較用の実験として、日本工業規格(JIS:Japanese Industrial Standards)の試験用粉体1-16種(JIS Z 8901)を満たす重質炭酸カルシウム(主な粒径2μm)を用いた測定も行なった。重質炭酸カルシウムを用いた測定条件は、以降の実験結果を表わす図中では「JIS16」とも表わされている。 In the first experiment, the inventors used, as a comparative experiment, heavy calcium carbonate (JIS Z 8901) satisfying Japanese Industrial Standards (JIS: Japanese Industrial Standards) test powder (16-16). Measurements using a main particle size of 2 μm were also performed. The measurement conditions using heavy calcium carbonate are also expressed as “JIS16” in the figures representing the following experimental results.
 図16は、フィルター100’の条件として、アクリル板と塩ビ板とをクロスで積層したフィルター100’を、上流側をアクリル板、下流側を塩ビ板となるように配置し、粉体として重質炭酸カルシウムを用いた場合の測定結果である。つまり、図16は、図9および図10の実験よりも粉体の粒径を小さくした場合の測定結果を表わしている。図16(A)が1回目の、および図16(B)が2回目の測定結果をそれぞれ表わしている。また、図17は、2枚のアルミ板をクロスで積層したフィルター100’を用い、粉体として重質炭酸カルシウムを用いた場合の測定結果を表わしている。つまり、図17は、図12の実験よりも粉体の粒径を小さくした場合の測定結果を表わしている。 FIG. 16 shows the filter 100 ′ as a condition in which a filter 100 ′ in which an acrylic plate and a vinyl chloride plate are laminated with a cloth is arranged so that an upstream side is an acrylic plate and a downstream side is a vinyl chloride plate, and is heavy as a powder. It is a measurement result at the time of using calcium carbonate. That is, FIG. 16 shows the measurement results when the particle size of the powder is made smaller than in the experiments of FIGS. FIG. 16A shows the first measurement result, and FIG. 16B shows the second measurement result. FIG. 17 shows the measurement results when using a filter 100 ′ in which two aluminum plates are laminated with cloth and using heavy calcium carbonate as the powder. That is, FIG. 17 represents a measurement result when the particle diameter of the powder is made smaller than that in the experiment of FIG.
 図16を参照して、この条件での実験では、図9および図10の実験結果よりも排気中の粉塵の測定値が大きい。つまり、この条件では、排気中に排出される粉塵が図9および図10の条件よりも多いことが示されている。 Referring to FIG. 16, in the experiment under this condition, the measured value of the dust in the exhaust gas is larger than the experimental results of FIG. 9 and FIG. That is, it is shown that the dust discharged into the exhaust gas is larger than that in FIGS. 9 and 10 under this condition.
 図17を参照して、この条件での実験では、測定値に多少ばらつきがあるものの、図12の実験結果と概ね同様の粉塵の測定値が得られている。つまり、この条件では、排気中に排出される粉塵が、図12の実験と同程度に多いことが示されている。 Referring to FIG. 17, in the experiment under this condition, the measured value of dust is almost the same as the experimental result of FIG. That is, under this condition, it is shown that the amount of dust discharged into the exhaust is as much as in the experiment of FIG.
 (考察)
 図18は、上記の第1の実験で得られた各測定結果における粉塵量の積分値を1つのグラフにまとめたものである。さらに、図20は、図18のグラフのうちから、測定開始から100秒間の各測定結果における粉塵量の積分値を抜き出したものである。これらの結果より、フィルター100’として、2枚のアルミ板を用いた実験条件、および1枚のアクリル板または1枚の塩ビ板を用いた実験条件では、その順で粉塵量の積分値が大きい。従って、アクリル板と塩ビ板とを組み合わせた集塵用フィルターの集塵効果が大きいことがわかる。
(Discussion)
FIG. 18 summarizes the integrated value of the dust amount in each measurement result obtained in the first experiment in one graph. Furthermore, FIG. 20 extracts the integrated value of the dust amount in each measurement result for 100 seconds from the measurement start from the graph of FIG. From these results, in the experimental conditions using two aluminum plates as the filter 100 ′ and the experimental conditions using one acrylic plate or one PVC plate, the integrated value of the dust amount is large in that order. . Therefore, it can be seen that the dust collecting effect of the dust collecting filter in which the acrylic plate and the vinyl chloride plate are combined is large.
 詳しくは、図19は、図18のグラフのうちから、2枚のアルミ板をクロスで積層したフィルター100’を用いた場合の測定結果を抜き出したものである。図18と図19との比較より、フィルター100’として2枚のアルミ板をクロスで積層したものを用いた4種類の実験での測定値は、上記第1の実験中、最も粉塵量の大きいものから順に並んでいる。つまり、フィルター100’として枚のアルミ板をクロスで積層したフィルターの集塵効果は小さいことがわかる。これは、アルミ板のような伝導性素材は、実験前にその表面を摩擦しても絶縁体であるアクリル板や塩ビ板と比較して格段に帯電率が小さいためである。従って、集塵用フィルターとして、構成する部材の帯電性が大きい方が集塵効果が高いことが検証された。 Specifically, FIG. 19 shows the measurement results obtained when the filter 100 ′ in which two aluminum plates are laminated with a cloth is used from the graph of FIG. 18. From the comparison between FIG. 18 and FIG. 19, the measured values in the four types of experiments using the filter 100 ′ in which two aluminum plates are laminated with a cloth are the largest in the first experiment. They are lined up in order. That is, it can be seen that the dust collecting effect of a filter in which a single aluminum plate is laminated with a cloth as the filter 100 'is small. This is because a conductive material such as an aluminum plate has a much lower charge rate than an acrylic plate or a vinyl chloride plate, which is an insulator, even if the surface is rubbed before the experiment. Therefore, it has been verified that the dust collecting effect is higher when the chargeability of the constituent members is larger as the dust collecting filter.
 また、図21は、図18のグラフのうちから、2枚のアルミ板をクロスで積層したフィルター100’を用いた実験条件以外の実験条件での測定結果を抜き出したものである。図21のグラフに表わされる測定結果より、アクリル板および塩ビ板を組み合わせたものをフィルター100’として用いた実験条件では、1枚のアクリル板または1枚の塩ビ板をフィルター100’として用いた実験条件よりも粉塵量の積分値が小さい。つまり、集塵用フィルターの集塵効果は、アクリル板と塩ビ板とを組み合わせた方がアクリル板と塩ビ板とのいずれかのみの場合よりも大きいことがわかる。これは、プラスまたはマイナスの帯電部材を用いることで、プラスまたはマイナスに帯電した粉塵のいずれもがフィルターに吸着されるためと考えられる。従って、静電気を利用した集塵用フィルターとして、プラスまたはマイナスに帯電した部材を用いた方が、一方に帯電した部材のみを用いるよりも集塵効果が高いことが検証された。 Further, FIG. 21 shows the measurement results obtained under experimental conditions other than the experimental conditions using the filter 100 ′ in which two aluminum plates are laminated with a cloth, from the graph of FIG. 18. From the measurement results shown in the graph of FIG. 21, in an experimental condition using a combination of an acrylic plate and a vinyl chloride plate as the filter 100 ′, an experiment using one acrylic plate or one vinyl chloride plate as the filter 100 ′. The integrated amount of dust is smaller than the conditions. That is, it can be seen that the dust collection effect of the dust collection filter is greater when the acrylic plate and the vinyl chloride plate are combined than when only the acrylic plate or the vinyl chloride plate is used. This is presumably because dust that is positively or negatively charged is adsorbed to the filter by using a positive or negative charging member. Therefore, it has been verified that a positively or negatively charged member is more effective as a dust collection filter using static electricity than a member charged only on one side.
 図22は、図18のグラフのうちから、アクリル板と塩ビ板とを組み合わせたフィルター100’を用いた実験条件での測定結果を抜き出したものである。図23は、図22の矩形で表わした一部領域を、さらに拡大したものである。図23のグラフに表わされる測定結果より、アクリル板の通気孔と塩ビ板の通気孔とを一致させたストレートの積層構造のフィルター100’を用いた実験条件より、アクリル板の通気孔と塩ビ板の通気孔とを一致させないクロスの積層構造のフィルター100’を用いた実験条件の方が、測定結果が、ケース200内に粉塵のない状態、つまり、粉塵がまったく排出されない測定結果により近くなる。これは、クロスの積層構造の方が、ケース200内の粉体のうちの帯電していない粉体がフィルターを構成する帯電部材に衝突することで帯電しやすくなり、プラス・マイナスそれぞれに帯電した部材に吸着されやすくなるためと考えられる。従って、静電気を利用した集塵用フィルターとしては、隣接する部材の透過部である通気孔が少なくとも1か所は一致しないように部材が積層される方が、通気孔がすべて一致するように部材が積層されるよりも集塵効果が高いことが検証された。 FIG. 22 shows the measurement results under the experimental conditions using the filter 100 ′ in which the acrylic plate and the vinyl chloride plate are combined from the graph of FIG. 18. FIG. 23 is an enlarged view of a partial region represented by the rectangle of FIG. From the measurement results shown in the graph of FIG. 23, it was found from the experimental conditions using the filter 100 ′ having a straight laminated structure in which the vent hole of the acrylic plate and the vent hole of the vinyl chloride plate coincided with each other. The experimental conditions using the cross-layered filter 100 ′ that does not coincide with the air vents of the case are closer to the measurement result in a state where there is no dust in the case 200, that is, no dust is discharged. This is because the cloth laminated structure is more easily charged when the uncharged powder in the case 200 collides with the charging member constituting the filter, and is charged positively or negatively. This is considered to be easily adsorbed by the member. Therefore, as a dust collection filter using static electricity, the members are laminated so that the ventilation holes are all aligned so that at least one ventilation hole which is a transmission part of an adjacent member does not match. It was verified that the dust collection effect is higher than that of layered.
 さらに、図18および図20のグラフに表わされる測定結果より、粉体として粒径2μmの重質炭酸カルシウムを用いた測定結果の方が、粒径20μmのアルナビーズ(登録商標)CBを用いた測定結果よりも、同じ実験条件であっても粉塵量の積分値が大きい。つまり、同じ条件の集塵フィルターであっても、粉塵のサイズが大きい方が、集塵効果が大きいことがわかる。これは、粉塵のサイズが大きい方が粉塵に働く慣性力が大きいためにフィルターを構成する帯電部材に衝突することで帯電しやすくなり、プラス・マイナスそれぞれに帯電した部材に吸着されやすくなるためと考えられる。従って、静除去対象とする粉塵のサイズによって、電気を利用した集塵用フィルターが効果的な場合があると考えられる。 Further, the measurement results using heavy calcium carbonate having a particle size of 2 μm as the powder are measured using Aruna beads (registered trademark) CB having a particle size of 20 μm, compared to the measurement results shown in the graphs of FIGS. 18 and 20. The integrated value of the dust amount is larger than the result even under the same experimental conditions. That is, it can be seen that the dust collection effect is larger when the dust size is larger even if the dust collection filter has the same conditions. This is because the larger the size of the dust, the greater the inertial force acting on the dust, so it becomes easier to be charged by colliding with the charging member that constitutes the filter, and it becomes easier to be adsorbed by the positively and negatively charged members. Conceivable. Therefore, it is considered that a dust collection filter using electricity may be effective depending on the size of dust to be statically removed.
 <効果の検証:実験2>
 (実験条件および実験結果)
 図5に表わされる実験装置と同様の装置を用いた第2の実験において、発明者らは、フィルター100’として、図24に表わされるような、布状の部材(スクリーン)を重ねて用いた。具体的に、発明者らは、4枚のスクリーンを重ね、それぞれの間に、隣接する素材との間の空間を保持するためのスペーサ150を挟んで用いた。図25は、第2の実験に用いられたスペーサ150の概略図である。スペーサ150として、一例として、直径5mm程度の通気孔を有する、厚み0.5mmのメッシュが用いられた。粉体として、昭和電工株式会社製のアルナビーズ(登録商標)CB(粒径10μm)が用いられた。
<Verification of effect: Experiment 2>
(Experimental conditions and experimental results)
In a second experiment using an apparatus similar to the experimental apparatus shown in FIG. 5, the inventors used a cloth-like member (screen) as shown in FIG. . Specifically, the inventors stacked four screens and used a spacer 150 for holding a space between adjacent materials between them. FIG. 25 is a schematic view of the spacer 150 used in the second experiment. As an example of the spacer 150, a mesh having a thickness of 0.5 mm having a vent hole with a diameter of about 5 mm was used. Aruna beads (registered trademark) CB (particle size: 10 μm) manufactured by Showa Denko KK was used as the powder.
 また、第2の実験では、フィルター100’の帯電性の条件として、プラス帯電部材としての、厚み0.15mmのナイロン系のスクリーン、マイナス帯電部材としての、厚み0.1mmの、KP(PP)と呼ばれるポリプロピレンのスクリーン、および通常の不織布の、様々な組み合わせが用いられた。通常の不織布には、厚み0.2mmのPET(ポリエチレンテレフタレート)の難燃性不織布を用いた。通常の不織布の帯電率は、ナイロンやKP(PP)の帯電率よりも格段に小さく、ナイロンやKP(PP)との比較では無帯電部材と言える。従って、ナイロン系のスクリーンとKP(PP)のスクリーンとを組み合わせたフィルターは、各スクリーンがプラス・マイナスに帯電したフィルターであり、不織布のスクリーンのみのフィルターは帯電していないフィルターと言える。 Further, in the second experiment, as a condition for the charging property of the filter 100 ′, a 0.15 mm thick nylon screen as a positive charging member, and a 0.1 mm thick KP (PP) as a negative charging member. Various combinations of polypropylene screens called and normal nonwovens were used. As a normal nonwoven fabric, a flame retardant nonwoven fabric of PET (polyethylene terephthalate) having a thickness of 0.2 mm was used. The charge rate of a normal nonwoven fabric is much smaller than the charge rate of nylon or KP (PP), and it can be said that it is a non-charged member in comparison with nylon or KP (PP). Therefore, a filter combining a nylon screen and a KP (PP) screen is a filter in which each screen is positively or negatively charged, and a filter having only a non-woven screen is an uncharged filter.
 図26~図35は、第2の実験での測定結果を表わした図である。これらの図において、横軸は時間(秒)を表わし、縦軸は粉塵計300で測定された毎秒当たりの粉塵量(mV/s)を表わしている。 FIG. 26 to FIG. 35 are diagrams showing measurement results in the second experiment. In these drawings, the horizontal axis represents time (seconds), and the vertical axis represents the amount of dust (mV / s) per second measured by the dust meter 300.
 発明者らは、実験条件として、温度が20.2℃、湿度が47%において、ケース200内に粉体を1回ごとに2g入れて、100(ミリ秒)ずつ3000回、測定を行なった。図26は、フィルター100’を配置しなかった場合の測定結果を表わしており、図26(A)が1回目の、図26(B)が2回目の測定結果をそれぞれ表わしている。 The inventors measured 2 000 times of 100 (milliseconds) by putting 2 g of powder into the case 200 at a time at a temperature of 20.2 ° C. and a humidity of 47% as experimental conditions. . FIG. 26 shows the measurement results when the filter 100 ′ is not arranged. FIG. 26A shows the first measurement result, and FIG. 26B shows the second measurement result.
 図27は、フィルター100’の条件として、4枚のKP(PP)のスクリーンを1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果(図27(A))、4枚のナイロン系のスクリーンを1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果(図27(B)))、および4枚の普通の不織布を1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果(図27(C))をそれぞれ表わしている。 FIG. 27 shows the measurement results when using the filter 100 ′ in which four KP (PP) screens are sandwiched by spacers 150 one by one as a condition for the filter 100 ′ (FIG. 27A), Measurement results when using a filter 100 ′ in which nylon screens are sandwiched by spacers 150 one by one (FIG. 27B)), and filter 100 in which four ordinary nonwoven fabrics are sandwiched by spacers 150 one by one. The measurement results when 'is used (FIG. 27C) are respectively shown.
 図28は、フィルター100’の条件として、合計4枚のKP(PP)のスクリーンとナイロン系のスクリーンとを交互に、1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果を表わしており、図28(A)が1回目の、図28(B)が2回目の測定結果をそれぞれ表わしている。 FIG. 28 shows the measurement results when using a filter 100 ′ in which a total of four KP (PP) screens and nylon screens are alternately sandwiched by spacers 150 as the conditions of the filter 100 ′. FIG. 28A shows the first measurement result, and FIG. 28B shows the second measurement result.
 次に、発明者らは、実験条件として、温度が21.6℃、湿度が55.5%において、ケース200内に粉体を1回ごとに2g配置して、100(ミリ秒)ずつ6000回、測定を行なった。図29は、フィルター100’を配置しなかった場合の測定結果を表わしており、図29(A)が1回目の、図29(B)が2回目の測定結果をそれぞれ表わしている。 Next, as experimental conditions, the inventors placed 2 g of powder in the case 200 at a time of 21.6 ° C. and a humidity of 55.5%, and 6000 by 100 (milliseconds). The measurement was performed once. FIG. 29 shows the measurement results when the filter 100 ′ is not arranged. FIG. 29A shows the first measurement result, and FIG. 29B shows the second measurement result.
 図30は、フィルター100’の条件として、KP(PP)の4枚のスクリーンを1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果(図30(A))、およびナイロン系の4枚のスクリーンを1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果(図30(B)))をそれぞれ表わしている。 FIG. 30 shows the measurement results (FIG. 30A) when a filter 100 ′ in which four screens of KP (PP) are sandwiched one by one by spacers 150 as a condition of the filter 100 ′ (FIG. 30A), and a nylon system. FIG. 30B shows the measurement results when using the filter 100 ′ in which the four screens are sandwiched between the spacers 150 one by one.
 図31は、4枚の普通の不織布を1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果を表わしており、図31(A)が1回目の、図31(B)が2回目の測定結果をそれぞれ表わしている。 FIG. 31 shows a measurement result in the case of using a filter 100 ′ in which four ordinary nonwoven fabrics are sandwiched by spacers 150 one by one. FIG. 31 (A) shows the first time, and FIG. Each of the second measurement results is shown.
 図32は、フィルター100’の条件として、合計4枚のKP(PP)のスクリーンとナイロン系のスクリーンとを交互に、1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果を表わしており、図32(A)が1回目の、図32(B)が2回目の測定結果をそれぞれ表わしている。 FIG. 32 shows the measurement results when using a filter 100 ′ in which a total of four KP (PP) screens and nylon screens are alternately sandwiched by spacers 150 as the conditions of the filter 100 ′. FIG. 32A shows the first measurement result, and FIG. 32B shows the second measurement result.
 次に、発明者らは、実験条件として、温度が22.3℃、湿度が56.1%において、ケース200内に粉体を1回ごとに3g入れて、1秒間ずつ3600回、測定を行なった。図33(A)は、4枚の普通の不織布を1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果を表わしている。図33(B),(C)は、フィルター100’の条件として、合計4枚のKP(PP)のスクリーンとナイロン系のスクリーンとを交互に、1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果を表わしており、図33(B)が1回目の、図33(C)が2回目の測定結果をそれぞれ表わしている。 Next, as experimental conditions, the inventors put 3 g of powder into the case 200 at a time at a temperature of 22.3 ° C. and a humidity of 56.1%, and measured 3600 times per second. I did it. FIG. 33A shows a measurement result in the case of using a filter 100 ′ in which four ordinary nonwoven fabrics are sandwiched by spacers 150 one by one. 33 (B) and 33 (C) show that the filter 100 ′ includes a filter 100 ′ in which a total of four KP (PP) screens and nylon screens are alternately sandwiched by spacers 150 one by one. FIG. 33B shows the first measurement result, and FIG. 33C shows the second measurement result when used.
 次に、発明者らは、実験条件として、温度が19.4℃、湿度が60.7%において、ケース200内に粉体を1回ごとに3g入れて、1秒間ずつ3600回、測定を行なった。図34(A)は、4枚の普通の不織布を1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果を表わしている。図34(B),(C)は、フィルター100’の条件として、合計4枚のKP(PP)のスクリーンとナイロン系のスクリーンとを交互に、スペーサ150なく重ねたフィルター100’を用いた場合の測定結果を表わしており、図34(B)が1回目の、図34(C)が2回目の測定結果をそれぞれ表わしている。 Next, as experimental conditions, the inventors put 3 g of powder into the case 200 at a time at a temperature of 19.4 ° C. and a humidity of 60.7%, and measured 3600 times per second. I did it. FIG. 34A shows a measurement result in the case of using a filter 100 ′ in which four ordinary nonwoven fabrics are sandwiched by spacers 150 one by one. FIGS. 34B and 34C show a case where a filter 100 ′ in which a total of four KP (PP) screens and nylon screens are alternately stacked without spacers 150 is used as a condition of the filter 100 ′. FIG. 34B shows the first measurement result, and FIG. 34C shows the second measurement result.
 図35は、フィルター100’の条件として、合計4枚のKP(PP)のスクリーンとナイロン系のスクリーンとを交互に、1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果を表わしており、図35(A)が1回目の、図35(B)が2回目の測定結果をそれぞれ表わしている。 FIG. 35 shows measurement results when using a filter 100 ′ in which a total of four KP (PP) screens and nylon screens are alternately sandwiched by spacers 150 as the conditions of the filter 100 ′. 35A shows the first measurement result, and FIG. 35B shows the second measurement result.
 (考察)
 上記の実験結果のうち、合計4枚のKP(PP)のスクリーンとナイロン系のスクリーンとを交互に、1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果は、図28(A),(B)、図32(A),(B)、図33(B),(C)、および図35(A),(B)である。これに対して、4枚の普通の不織布を1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果は、図33(A)および図34(A)である。これらの比較より、集塵用フィルターの集塵効果は、KP(PP)のスクリーンとナイロン系のスクリーンとを交互にした方が普通の不織布のみよりも大きいことが検証された。
(Discussion)
Of the above experimental results, the measurement results when using a filter 100 ′ in which a total of four KP (PP) screens and nylon screens are alternately sandwiched by spacers 150 are shown in FIG. They are A), (B), FIGS. 32 (A), (B), FIGS. 33 (B), (C), and FIGS. 35 (A), (B). On the other hand, the measurement results in the case of using the filter 100 ′ in which four ordinary nonwoven fabrics are sandwiched by the spacer 150 one by one are shown in FIGS. 33 (A) and 34 (A). From these comparisons, it was verified that the dust collection effect of the dust collection filter was greater when KP (PP) screens and nylon screens were alternated than with ordinary nonwoven fabrics.
 さらに、KP(PP)のスクリーンとナイロン系のスクリーンとを交互に、1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果である、図28(A),(B)、図32(A),(B)、図33(B),(C)、および図35(A),(B)と、KP(PP)のスクリーンとナイロン系のスクリーンとを交互にスペーサ150を用いることなく重ねたフィルター100’を用いた場合の測定結果である図34(B)および図34(C)との比較より、集塵用フィルターの集塵効果は、スクリーンをスペーサ150で挟み込んだ方がスペーサ150を用いることなく重ねた場合よりも大きいことが分かる。 Further, FIGS. 28A, 28B, and 28C are measurement results when using a filter 100 ′ in which a KP (PP) screen and a nylon screen are alternately sandwiched by spacers 150 one by one. 32 (A), (B), FIGS. 33 (B), (C), and FIGS. 35 (A), (B), and a KP (PP) screen and a nylon-based screen are used alternately. 34 (B) and FIG. 34 (C), which are measurement results when using the filter 100 'without overlapping, the dust collection effect of the dust collection filter is that the screen is sandwiched between the spacers 150. It can be seen that is larger than when the spacers 150 are stacked without using the spacer 150.
 KP(PP)のスクリーンとナイロン系のスクリーンとがスペーサ150で挟まれることで、狭い空間にプラス帯電部材とマイナス帯電部材とが存在することになる。これにより、該空間に強い電界が発生し、その電界は閉じ込められた状態になる。粒子は強い電界内を通過するためマイナス帯電している粒子、もしくは帯電布との接触により帯電した粒子は、電界による静電気力(クーロン力)によってスクリーンに付着する。 When the KP (PP) screen and the nylon screen are sandwiched between the spacers 150, the positive charging member and the negative charging member exist in a narrow space. Thereby, a strong electric field is generated in the space, and the electric field is confined. Since the particles pass through a strong electric field, the negatively charged particles or the particles charged by contact with the charged cloth adhere to the screen by electrostatic force (Coulomb force) due to the electric field.
 しかしながら、スペーサ150で隣り合うスクリーン間に間隙を設けない場合、プラス帯電部材であるスクリーンとマイナス帯電部材であるスクリーンとが互いに引き付けあうことにより接触し、電界量が少なくなる。実験結果より、スペーサ150を挟まずに両スクリーンが接触した状態でも、通常の不織布からなるフィルター100’での測定結果との比較より集塵効果は認められるものの、スペーサ150によってスクリーン間に微小間隙を保持したフィルターの方が大きな集塵効果があることが検証された。 However, when the gap is not provided between the adjacent screens by the spacer 150, the screen as the positive charging member and the screen as the negative charging member are brought into contact with each other and the amount of electric field is reduced. From the experimental results, even when both screens are in contact with each other without the spacer 150 interposed therebetween, a dust collection effect is recognized by comparison with the measurement result using the filter 100 ′ made of a normal nonwoven fabric. It was verified that the filter holding the filter has a larger dust collecting effect.
 次に、KP(PP)のスクリーンのみのフィルター100’を用いた場合の測定結果である図27(A)と、ナイロン系のスクリーンのみのフィルター100’を用いた場合の測定結果である図27(B)と、普通の不織布のみのフィルター100’を用いた場合の測定結果である図27(C)と、合計4枚のKP(PP)のスクリーンとナイロン系のスクリーンとを交互に、1枚ずつスペーサ150で挟んだフィルター100’を用いた場合の測定結果である図32(A)および図32(B)とを比較する。図27(A)および図27(B)と図27(C)との比較より、KP(PP)のスクリーンのみ用いてもナイロン系のスクリーンのみ用いても、いずれも普通の不織布のみの用いるよりも集塵効果が高いと言えるが、KP(PP)のスクリーンとナイロン系のスクリーンとを交互に用いた方が格段に集塵効果が高いが分かる。従って、第2の実験でも、静電気を利用した集塵用フィルターとして、プラス・マイナスそれぞれに帯電した部材を用いた方が、一方に帯電した部材のみを用いるよりも集塵効果が高いことが検証された。 Next, FIG. 27A shows a measurement result when using a filter 100 ′ having only a KP (PP) screen, and FIG. 27 shows a measurement result when using a filter 100 ′ having only a nylon screen. (B), FIG. 27C, which is a measurement result when using a filter 100 ′ made of only ordinary non-woven fabric, and a total of four KP (PP) screens and nylon screens are alternately 1 FIG. 32A and FIG. 32B, which are measurement results when using the filter 100 ′ sandwiched by the spacers 150 one by one, are compared. 27 (A) and FIG. 27 (B) and FIG. 27 (C), both using only KP (PP) screen and using nylon-based screen, both using only ordinary nonwoven fabric. It can be said that the dust collecting effect is high, but it is understood that the dust collecting effect is much higher when the KP (PP) screen and the nylon screen are alternately used. Therefore, in the second experiment, it was verified that the dust collection effect using the positively and negatively charged members was higher than that using only one charged member as the dust collection filter using static electricity. It was done.
 なお、第2の実験では、実験条件として、さらに温度、湿度の条件も考慮している。そこで、KP(PP)のスクリーンとナイロン系のスクリーンとをスペーサ150で挟んで交互にしたフィルター100’を用いた場合であって、湿度の異なる実験条件下での測定結果である、図28(A),(B)(湿度47%)と、図32(A),(B)(湿度55.5%)と、図33(B),(C)(湿度60.7%)と、図35(A),(B)(湿度60.7%)とを比較する。これらの比較より、湿度が高くなるほど検出される粉塵量が増加することが分かる。これは、スクリーンの素材であるKP(PP)やナイロン(特にナイロン)が水滴を吸着しやすい性質を有し、スクリーンに吸着した水滴によって帯電力が低下するためと考えられる。従って、第2の実験によって、静電気を利用した集塵用フィルターを用いる際の環境として、湿度が低い方がより高い集塵効果が期待できることが検証された。 In the second experiment, temperature and humidity conditions are also considered as experimental conditions. Therefore, FIG. 28 (FIG. 28) shows a measurement result under experimental conditions with different humidity in the case where a filter 100 ′ in which a KP (PP) screen and a nylon screen are alternately sandwiched between spacers 150 is used. A), (B) (humidity 47%), FIG. 32 (A), (B) (humidity 55.5%), FIG. 33 (B), (C) (humidity 60.7%), FIG. 35 (A) and (B) (humidity 60.7%) are compared. From these comparisons, it can be seen that the amount of dust detected increases as the humidity increases. This is presumably because KP (PP) or nylon (particularly nylon) which is a material of the screen has a property of easily adsorbing water droplets, and the electric power is reduced by the water droplets adsorbed on the screen. Therefore, it was verified by the second experiment that a higher dust collection effect can be expected when the humidity is lower as an environment when using a dust collection filter using static electricity.
 <フィルターの利用例>
 ある局面において、粉塵除去構造100は、マスク、簾、シェイド(巻き上げ式カーテン)、衣服の一部、その他のフィルターとして実現され得る。
<Example of filter use>
In one aspect, the dust removal structure 100 may be implemented as a mask, fold, shade (roll-up curtain), part of clothing, or other filter.
 好ましくは、粉塵除去構造100を有するフィルター100’として、プラス・マイナスそれぞれに帯電する素材で構成された複数の布状部材(スクリーン)が用いられる。各スクリーンの間には、隣り合うスクリーン間の間隙を保持するためのスペーサ150が設けられる。スペーサ150は、第2の実験で用いられたような、通気性を有する面状の部材であってもよい。また、スペーサ150の他の例として、図36に表わされるように、少なくとも隣接するスクリーンを向く面に施されたエンボス加工(凸加工)であってもよい。好ましくは、各スクリーンの両面にスペーサ150としてのエンボス加工が施される。 Preferably, as the filter 100 ′ having the dust removing structure 100, a plurality of cloth-like members (screens) made of a material that is positively and negatively charged are used. A spacer 150 is provided between the screens to maintain a gap between adjacent screens. The spacer 150 may be a planar member having air permeability as used in the second experiment. As another example of the spacer 150, as shown in FIG. 36, embossing (convex processing) applied to at least a surface facing an adjacent screen may be used. Preferably, embossing as a spacer 150 is performed on both surfaces of each screen.
 エンボス加工によって、スクリーン間の空間が保持されると共に、流体の影響でスクリーンが移動した際に、隣接するスクリーンと少なくともエンボス部分が接触を維持して相対的に変位することで摩擦が生じる。これにより、各スクリーンがそれぞれプラス・マイナスに帯電する。 ¡Embossing maintains the space between the screens, and when the screen moves under the influence of fluid, friction occurs due to the relative displacement of the adjacent screen and at least the embossed part while maintaining contact. As a result, each screen is charged positively or negatively.
 布状部材(スクリーン)で構成されたフィルター100’は、一例として、空気調和機(エアコンディショナ)や空気清浄機のフィルターとして用いることができる。この場合、好ましくは、フィルター100’は、各スクリーンが隣接するスクリーンに対して少なくとも一部領域を残して固定され、当該装置による気流の流路に上記固定個所を上流側として、気流方向に対して角度を成すように設置される。このように設置されることで、図3および図4を用いて説明されたように、各スクリーンが気流の影響によってプラス・マイナスに帯電する。 As an example, the filter 100 ′ formed of a cloth-like member (screen) can be used as a filter of an air conditioner (air conditioner) or an air purifier. In this case, preferably, the filter 100 ′ is fixed so that each screen has at least a partial region with respect to the adjacent screen, and the air flow direction by the apparatus is set upstream to the fixed portion with respect to the air flow direction. Are installed at an angle. By being installed in this way, as described with reference to FIGS. 3 and 4, each screen is positively or negatively charged due to the influence of the airflow.
 布状部材(スクリーン)で構成されたフィルター100’の活用の他の例として、マスクなど、流体(空気)中の移動体(人体)に装着可能な態様で用いたり、衣服などの該移動体に装着可能な物の一部とする態様で用いたりする例が挙げられる。 As another example of the use of the filter 100 ′ composed of the cloth-like member (screen), the filter 100 ′ can be used in a mode that can be attached to a moving body (human body) in a fluid (air) such as a mask, or the moving body such as clothes. An example of using it as a part of an object that can be attached to the device is given.
 図37は、上記スクリーンからなるフィルター100’をマスクとして用いた例を説明する図である。図37に表わされるように、マスクを構成する各スクリーンは、それぞれプラス・マイナスに帯電可能な布状部材(たとえば不織布)であって、その表面にエンボス加工が施されている。該マスクの装着前にマスク全体を手で軽く揉むように擦る、あるいは、該マスクを装着した状態でしゃべるなどしてマスク全体を動かすことで、各スクリーンが隣接するスクリーンとの間での摩擦によってそれぞれプラス・マイナスに帯電する。該マスクを装着することで、通気性が確保されてユーザの負担を抑えつつ、吸い込む空気中の粉塵が静電気を利用してマスクに吸着され、ユーザの吸い込む空気から除去される。 FIG. 37 is a diagram for explaining an example in which the filter 100 ′ composed of the screen is used as a mask. As shown in FIG. 37, each screen constituting the mask is a cloth-like member (for example, non-woven fabric) that can be positively or negatively charged, and the surface thereof is embossed. Rubbing the entire mask lightly by hand before wearing the mask, or moving the whole mask by speaking with the mask attached, etc., by friction between each screen with the adjacent screen Charges positively or negatively. By wearing the mask, air permeability is secured and the burden on the user is suppressed, and dust in the air to be sucked is adsorbed to the mask using static electricity and removed from the air sucked by the user.
 マスクなどとして活用されるフィルター100’を利用して流体(空気)中の粉塵を除去するためには、図38に表わされるように、各部材(スクリーン)をそれぞれプラス、マイナスに帯電させた上で(ステップS1)、当該フィルター100’に流体(空気)を透過させる(ステップS2)。上記のように、隣接する部材(スクリーン)は、接触状態を維持して相対的に変位可能に配置されている。そこで、上記ステップS1では、各部材(スクリーン)の接触状態を維持して相対的に変位させる、つまり、擦り合わせることでそれぞれをプラス、マイナスに帯電させる。 In order to remove the dust in the fluid (air) using the filter 100 ′ used as a mask or the like, as shown in FIG. 38, each member (screen) is charged positively and negatively, respectively. (Step S1), the fluid (air) is transmitted through the filter 100 ′ (Step S2). As described above, adjacent members (screens) are arranged so as to be relatively displaceable while maintaining a contact state. Therefore, in step S1, the respective members (screens) are maintained in contact with each other and relatively displaced, that is, they are rubbed to charge each of them positively and negatively.
 好ましくは、当該フィルター100’は、隣接する部材(スクリーン)どうしが、少なくとも一部領域を残して固定されている。この場合、上記ステップS1の帯電させることは、当該フィルター100’を流体(空気)の流路に、上記固定の個所を上流側として、気流方向との間に角度を成すように設置することを含む。このように設置することで、流体(空気)による応力によって各部材(スクリーン)が接触状態を維持して相対的に変位する、つまり、摩擦が生じる。そのために、各部材がプラス、マイナスに帯電する。したがって、当該フィルター100’をたとえば空気清浄機のような流体中の粉塵を集塵する装置に用いる場合に、ユーザが当該フィルター100’を構成する各スクリーンを擦るなどの操作を行なわなくても、各スクリーンの帯電状態が維持される。そのため、当該集塵する装置での集塵効果は、ユーザの操作がなくても持続される。 Preferably, in the filter 100 ′, adjacent members (screens) are fixed so as to leave at least a partial area. In this case, the charging in step S1 means that the filter 100 ′ is installed in the fluid (air) flow path, with the fixed portion as the upstream side, and at an angle with the air flow direction. Including. By installing in this way, each member (screen) maintains a contact state and is displaced relatively by stress due to fluid (air), that is, friction occurs. Therefore, each member is charged positively and negatively. Therefore, when the filter 100 ′ is used in a device that collects dust in a fluid such as an air cleaner, for example, even if the user does not perform an operation such as rubbing each screen constituting the filter 100 ′. The charged state of each screen is maintained. Therefore, the dust collection effect in the dust collecting device is maintained even if there is no user operation.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 100 粉塵除去構造、100’ フィルター、101 フレーム、110,111,112,130,131,132マイナス帯電部材、150 スペーサ、200 ケース、201 振動装置、300 粉塵計、400 エアポンプ、601,602マイナス帯電粒子、603 粒子。 100 dust removal structure, 100 'filter, 101 frame, 110, 111, 112, 130, 131, 132 negative charging member, 150 spacer, 200 case, 201 vibration device, 300 dust meter, 400 air pump, 601, 602 negative charged particle 603 particles.

Claims (10)

  1.  流体中の粉塵を除去するための粉塵除去構造であって、
     前記流体の透過性を有し、プラスに帯電する、面形状の第1の部材と、
     前記流体の透過性を有し、マイナスに帯電する、面形状の第2の部材とを備え、
     前記第1の部材と前記第2の部材とは、互いの面を向き合わせて重ねられ、かつ、前記互いの面の少なくとも一部の接触状態を維持して相対的に変位可能に配置されている、粉塵除去構造。
    A dust removal structure for removing dust in a fluid,
    A surface-shaped first member that is permeable to the fluid and positively charged;
    A surface-shaped second member that has a fluid permeability and is negatively charged;
    The first member and the second member are stacked with their surfaces facing each other, and are disposed so as to be relatively displaceable while maintaining a contact state of at least a part of the surfaces. Dust removal structure.
  2.  前記第1の部材と前記第2の部材とは、各々、1か所以上の前記流体の透過部を有し、
     前記第1の部材と前記第2の部材とが互いの面を向き合わせて重ねられたときに、前記第1の部材の前記1か所以上の前記透過部のうちの少なくとも1か所の前記透過部は、前記第2の部材の前記透過部ではない面に重ね合わされる、請求項1に記載の粉塵除去構造。
    Each of the first member and the second member has one or more fluid-permeable portions,
    When the first member and the second member are overlapped with each other facing each other, the at least one of the one or more transmission parts of the first member The dust removal structure according to claim 1, wherein the transmission part is superimposed on a surface of the second member that is not the transmission part.
  3.  前記第1の部材の素材と前記第2の部材の素材とは、異なる素材である、請求項1または2に記載の粉塵除去構造。 The dust removing structure according to claim 1 or 2, wherein the material of the first member and the material of the second member are different materials.
  4.  前記第1の部材はナイロン、アクリル、ポリプロピレン、ウールのいずれかを含み、
     前記第2の部材はポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエチレン、ウレタン、ポリエチレンテレフタラート、変性ポリエチレンテレフタラートのいずれかを含む、請求項1~3のいずれかに記載の粉塵除去構造。
    The first member includes nylon, acrylic, polypropylene, or wool,
    The dust removing structure according to any one of claims 1 to 3, wherein the second member includes any one of polypropylene, polystyrene, polyvinyl chloride, polyethylene, urethane, polyethylene terephthalate, and modified polyethylene terephthalate.
  5.  流体中の粉塵を除去するためのフィルターであって、
     前記流体の透過性を有した第1の繊維層と、
     前記第1の繊維層を形成する繊維と異なる繊維で形成され、前記第1の繊維層に積層された第2の繊維層とを備え、
     前記第1の繊維層と前記第2の繊維層とは、互いに接触状態を維持して相対的に変位可能に配置されている、粉塵除去フィルター。
    A filter for removing dust in a fluid,
    A first fiber layer having fluid permeability;
    A second fiber layer formed of a fiber different from the fibers forming the first fiber layer and laminated on the first fiber layer;
    The dust removing filter, wherein the first fiber layer and the second fiber layer are disposed so as to be relatively displaceable while maintaining a contact state with each other.
  6.  前記第1の繊維層に対して前記第2の繊維層を固定するための接着構造を有し、
     前記接着構造は、前記第1の繊維層と前記第2の繊維層との間の少なくとも一部領域を残して前記第1の繊維層に対して前記第2の繊維層を固定することで、前記第1の繊維層と前記第2の繊維層とを他方繊維層に対して接触状態を維持して相対的に変位可能とする、請求項5に記載の粉塵除去フィルター。
    An adhesive structure for fixing the second fiber layer to the first fiber layer;
    The adhesive structure is formed by fixing the second fiber layer to the first fiber layer leaving at least a partial region between the first fiber layer and the second fiber layer, The dust removal filter according to claim 5, wherein the first fiber layer and the second fiber layer can be relatively displaced while maintaining a contact state with respect to the other fiber layer.
  7.  前記第1の繊維層および前記第2の繊維層の間に配置され、前記第1の繊維層と前記第2の繊維層との間の空間を保持するためのスペーサをさらに備える、請求項5または6に記載の粉塵除去フィルター。 The spacer further includes a spacer that is disposed between the first fiber layer and the second fiber layer and holds a space between the first fiber layer and the second fiber layer. Or the dust removal filter of 6.
  8.  前記第1の繊維層はナイロン、アクリル、ポリプロピレン、ウールのいずれかを含み、
     前記第2の繊維層はポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエチレン、ウレタン、ポリエチレンテレフタラート、変性ポリエチレンテレフタラートのいずれかを含む、請求項5~7のいずれかに記載の粉塵除去フィルター。
    The first fiber layer includes nylon, acrylic, polypropylene, or wool,
    The dust removing filter according to any one of claims 5 to 7, wherein the second fiber layer includes any one of polypropylene, polystyrene, polyvinyl chloride, polyethylene, urethane, polyethylene terephthalate, and modified polyethylene terephthalate.
  9.  流体中の粉塵を除去する方法であって、
     前記流体の透過性を有した面形状の第1の部材および第2の部材が積層された構造を有する粉塵除去フィルターの、前記第1の部材をプラスに帯電させ、前記第2の部材をマイナスに帯電させるステップと、
     前記粉塵除去フィルターに前記流体を透過させるステップとを備え、
     前記第1の部材と前記第2の部材とは、他方部材に対して接触状態を維持して相対的に変位可能に配置されており、前記帯電させるステップは、前記第1の部材と前記第2の部材とを接触状態を維持して相対的に変位させることで、それぞれをプラス、マイナスに帯電させることを含む、粉塵除去方法。
    A method for removing dust in a fluid,
    In the dust removing filter having a structure in which the first member and the second member having a planar shape having fluid permeability are stacked, the first member is charged positively, and the second member is minused. A step of charging to
    Passing the fluid through the dust removal filter,
    The first member and the second member are disposed so as to be relatively displaceable while maintaining a contact state with respect to the other member, and the step of charging includes the first member and the second member. A method for removing dust, comprising charging each member positively and negatively by maintaining relative contact between the two members and maintaining relative displacement.
  10.  前記粉塵除去フィルターは前記第1の部材と前記第2の部材とを少なくとも一部領域を残して固定するための接着構造を有し、
     前記帯電させるステップは、前記粉塵除去フィルターを前記流体の流路に、前記接着構造を上流側として、前記流路方向との間に角度を成すように設置し、前記流体によって前記第1の部材と前記第2の部材とを接触状態を維持して相対的に変位させることで、それぞれをプラス、マイナスに帯電させることを含む、請求項9に記載の粉塵除去方法。
    The dust removal filter has an adhesive structure for fixing the first member and the second member leaving at least a partial region;
    In the charging step, the dust removing filter is installed in the fluid flow path so as to form an angle with the flow path direction with the adhesive structure on the upstream side, and the fluid is used for the first member. The dust removing method according to claim 9, further comprising charging each of the second member and the second member relative to each other while maintaining a contact state to positively and negatively charge.
PCT/JP2015/077391 2014-10-02 2015-09-28 Dust removal structure, dust removal filter, and dust removal method WO2016052440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016552025A JPWO2016052440A1 (en) 2014-10-02 2015-09-28 Dust removal structure, dust removal filter, and dust removal method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014203882 2014-10-02
JP2014-203882 2014-10-02

Publications (1)

Publication Number Publication Date
WO2016052440A1 true WO2016052440A1 (en) 2016-04-07

Family

ID=55630470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077391 WO2016052440A1 (en) 2014-10-02 2015-09-28 Dust removal structure, dust removal filter, and dust removal method

Country Status (2)

Country Link
JP (1) JPWO2016052440A1 (en)
WO (1) WO2016052440A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301033B1 (en) * 2017-06-29 2018-03-28 三菱電機株式会社 Dust collector and air conditioner
CN108616650A (en) * 2018-03-26 2018-10-02 维沃移动通信有限公司 A kind of dust removal method and mobile terminal
KR20190027036A (en) * 2017-09-05 2019-03-14 경기대학교 산학협력단 Apparatus for Collecting Fine Mist
CN110296488A (en) * 2019-07-23 2019-10-01 广东美的制冷设备有限公司 Filter assemblies and air processor
KR102105628B1 (en) * 2019-06-17 2020-04-28 이스트썬텍 주식회사 Capacitive air cleaning filter and capacitive air cleaning apparatus using that
KR20200060121A (en) * 2018-11-22 2020-05-29 이스트썬텍 주식회사 Capacitive air cleaning filter and capacitive air cleaning apparatus using that
KR20210130472A (en) * 2020-04-22 2021-11-01 이스트썬텍 주식회사 Electrostatic air cleaning apparatus for removing dust with oil
JP7394224B2 (en) 2019-12-23 2023-12-07 サイマー リミテッド ライアビリティ カンパニー Filled bed filter for trapping metal fluoride dust in laser discharge chamber
JP7453797B2 (en) 2020-01-24 2024-03-21 キヤノン株式会社 Electrostatic filter unit and electrostatic filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317851A (en) * 1997-05-15 1998-12-02 Akira Nishikage Window screen
JP2002126574A (en) * 2000-10-26 2002-05-08 Matsushita Electric Ind Co Ltd Static electricity generation type dust collector
JP2009527349A (en) * 2006-02-23 2009-07-30 ナムローゼ・フエンノートシャップ・ベカート・ソシエテ・アノニム Filter plate used in filter stack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317851A (en) * 1997-05-15 1998-12-02 Akira Nishikage Window screen
JP2002126574A (en) * 2000-10-26 2002-05-08 Matsushita Electric Ind Co Ltd Static electricity generation type dust collector
JP2009527349A (en) * 2006-02-23 2009-07-30 ナムローゼ・フエンノートシャップ・ベカート・ソシエテ・アノニム Filter plate used in filter stack

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301033B1 (en) * 2017-06-29 2018-03-28 三菱電機株式会社 Dust collector and air conditioner
KR20190027036A (en) * 2017-09-05 2019-03-14 경기대학교 산학협력단 Apparatus for Collecting Fine Mist
KR102060089B1 (en) 2017-09-05 2020-02-12 경기대학교 산학협력단 Apparatus for Collecting Fine Mist
CN108616650A (en) * 2018-03-26 2018-10-02 维沃移动通信有限公司 A kind of dust removal method and mobile terminal
KR20200060121A (en) * 2018-11-22 2020-05-29 이스트썬텍 주식회사 Capacitive air cleaning filter and capacitive air cleaning apparatus using that
KR102133970B1 (en) * 2018-11-22 2020-07-15 이스트썬텍 주식회사 Capacitive air cleaning filter and capacitive air cleaning apparatus using that
KR102105628B1 (en) * 2019-06-17 2020-04-28 이스트썬텍 주식회사 Capacitive air cleaning filter and capacitive air cleaning apparatus using that
CN110296488A (en) * 2019-07-23 2019-10-01 广东美的制冷设备有限公司 Filter assemblies and air processor
JP7394224B2 (en) 2019-12-23 2023-12-07 サイマー リミテッド ライアビリティ カンパニー Filled bed filter for trapping metal fluoride dust in laser discharge chamber
JP7453797B2 (en) 2020-01-24 2024-03-21 キヤノン株式会社 Electrostatic filter unit and electrostatic filter
KR20210130472A (en) * 2020-04-22 2021-11-01 이스트썬텍 주식회사 Electrostatic air cleaning apparatus for removing dust with oil
KR102326412B1 (en) * 2020-04-22 2021-11-15 이스트썬텍 주식회사 Electrostatic air cleaning apparatus for removing dust with oil

Also Published As

Publication number Publication date
JPWO2016052440A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
WO2016052440A1 (en) Dust removal structure, dust removal filter, and dust removal method
JP4944540B2 (en) FILTER ELEMENT, MANUFACTURING METHOD THEREOF, AND USE METHOD
CN110430932B (en) Filter media including a waveform filter layer with gradients
KR101815757B1 (en) Mask using frictional electricity and static electricity
JP2014151299A (en) Filter material for filter and air filter
US20220039489A1 (en) Mask with ePTFE Membrane
JP2013176749A (en) Air filter
CN111712598A (en) Antistatic dust protective cloth and protective clothing using same
JP2011115775A (en) Method for manufacturing electrostatic filter and electrostatic filter applying the same
JP5126557B2 (en) Restorable filter unit
JP6365344B2 (en) Filter element for air cleaner
JP2856486B2 (en) Honeycomb type electret filter
JP6955879B2 (en) Filters and filter structures
JP2015037772A (en) Dust removal structure, dust removal set and dust removal method
JPH11253719A (en) Filter sheet for air filter, manufacture of filter sheet, air-pereable supporting material to be used for same filter sheet, and air filter
JP6143503B2 (en) Filter element and manufacturing method thereof
JP6318716B2 (en) Air filter unit
TW202206170A (en) Filter pack and air filter including the same
JP2012166158A (en) Air filter apparatus
KR102133970B1 (en) Capacitive air cleaning filter and capacitive air cleaning apparatus using that
JP3430612B2 (en) air filter
JP2017077516A (en) Filter medium for gas filter
JP5458733B2 (en) Dust filter
JP2008018350A (en) Waterproof electret sheet and parallel flow type air filter
JP2013111572A (en) Filter medium for gas removal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845815

Country of ref document: EP

Kind code of ref document: A1