WO2016052312A1 - Substrate for organic electroluminescence, and organic electroluminescent display using same - Google Patents

Substrate for organic electroluminescence, and organic electroluminescent display using same Download PDF

Info

Publication number
WO2016052312A1
WO2016052312A1 PCT/JP2015/077021 JP2015077021W WO2016052312A1 WO 2016052312 A1 WO2016052312 A1 WO 2016052312A1 JP 2015077021 W JP2015077021 W JP 2015077021W WO 2016052312 A1 WO2016052312 A1 WO 2016052312A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
substrate
group
organic
solvent
Prior art date
Application number
PCT/JP2015/077021
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 魚山
真 情野
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015180594A external-priority patent/JP2016076480A/en
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to KR1020177011959A priority Critical patent/KR20170062528A/en
Priority to CN201580053679.3A priority patent/CN106797683B/en
Publication of WO2016052312A1 publication Critical patent/WO2016052312A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a substrate for organic electroluminescence (hereinafter sometimes referred to as EL) and an organic EL display using the same.
  • EL organic electroluminescence
  • Organic EL displays have been put into practical use as next-generation displays having features such as high contrast ratio, high response speed, wide viewing angle, and low power consumption.
  • efforts are being made to replace organic EL display substrates with conventional plastics that can be made thinner, lighter, and flexible.
  • the performance required for an organic EL substrate includes device surface leakage, surface flatness closely related to short circuit, and heat resistance and solvent resistance to such an extent that they are not damaged in the device fabrication process.
  • dimensional stability against temperature changes is also required to prevent defects in the organic layer and electrodes due to the expansion and contraction of the substrate.
  • transparency in the visible light region for extracting light from the substrate side is essential.
  • the substrate material having excellent transparency examples include polymethyl methacrylate, polycarbonate, and polyethersulfone.
  • the above materials have a low glass transition temperature and do not have sufficient heat resistance with respect to the process temperature for producing an organic EL element of about 250 ° C.
  • Polyimide is mentioned for organic EL excellent in heat resistance.
  • Polyimide is a fully aromatic polyimide using aromatic diamine and aromatic tetracarboxylic dianhydride as raw material, aliphatic polyimide using aliphatic diamine and aliphatic tetracarboxylic dianhydride or both as raw material Are distinguished.
  • the wholly aromatic polyimide a charge transfer interaction occurs between a portion derived from the raw material aromatic diamine and a portion derived from the aromatic tetracarboxylic dianhydride. As a result, it is excellent in heat resistance, solvent resistance, and mechanical strength. However, since it is generally colored in the visible light region, it is not used as a material for a transparent substrate.
  • Patent Document 1 and Patent Document 2 describe a transparent substrate using an aliphatic polyimide using an aliphatic tetracarboxylic dianhydride as a raw material.
  • polyimides with an aliphatic skeleton can achieve transparency in the visible light region, the glass transition temperature is lowered due to the flexible aliphatic skeleton, and the dimensional stability is lowered due to the increased thermal expansion coefficient. Occur. Therefore, in order to put it into practical use as a transparent substrate, further improvement in heat resistance is necessary.
  • Patent Documents 3 to 9 disclose polyimides having a hexafluoroisopropanol group (—C (CF 3 ) 2 OH, hereinafter sometimes referred to as HFIP group).
  • the present invention has excellent transparency in the visible light region after forming the substrate, organic solvent resistance, heat resistance, dimensional stability and mechanical strength.
  • An object of the present invention is to provide an organic EL substrate having both of the above in a balanced manner.
  • Patent Document 3 is excellent in solubility and moldability, there is no description regarding organic solvent resistance, heat resistance, thermal expansion coefficient, and mechanical properties in the polyimide molded body.
  • the polyimides described in Patent Documents 4 to 6 are excellent in solubility and heat resistance in the polyimide molded body, but there is no description regarding organic solvent resistance, heat resistance, thermal expansion coefficient, and mechanical properties.
  • the polyimide described in Patent Document 7 has no description regarding moldability, organic solvent resistance, heat resistance, thermal expansion coefficient, and mechanical properties in the polyimide molded body.
  • Patent Document 8 is excellent in solubility, transparency in a polyimide molded body, and heat resistance, there is no description regarding a thermal expansion coefficient and mechanical properties, and details regarding transparency are not described.
  • the polyimide described in Patent Document 9 is excellent in solubility and transparency in a polyimide molded body and exhibits a low thermal expansion coefficient. However, there is no description regarding mechanical properties and heat resistance, and details regarding transparency are not described. Further, there is no specific description regarding the use of the organic EL substrate for the polyimides described in Patent Documents 3 to 9.
  • the present inventors have intensively studied to solve the above problems. As a result, the inventors have found that the above problems can be solved by using a polyimide resin composition containing at least a polyimide containing 50 mol% or more of a repeating unit represented by the following general formula (1), and completed the present invention.
  • R 1 is an ether bond, sulfide bond, sulfoxy bond, methylene group or ethylene group
  • R 2 and R 3 are each independently a hydrogen atom, methyl group or trifluoromethyl group
  • R 4 is (A tetravalent organic group containing an aromatic ring, which is represented by any of the following structures)
  • the present invention includes the following inventions.
  • substrate which consists of a molded object of the polyimide resin composition containing at least the polyimide which contains 50 mol% or more of repeating units represented by General formula (1).
  • R 1 is an ether bond, sulfide bond, sulfoxy bond, methylene group or ethylene group
  • R 2 and R 3 are each independently a hydrogen atom, methyl group or trifluoromethyl group
  • R 4 is (A tetravalent organic group containing an aromatic ring, which is represented by any of the following structures)
  • invention 2 The substrate for organic electroluminescence according to invention 1, comprising a molded body of a polyimide resin composition comprising only a polyimide having a repeating unit represented by the general formula (1).
  • invention 3 The substrate for organic electroluminescence according to invention 1 or 2, wherein the coefficient of thermal expansion at 30 to 250 ° C is 50 ppm / ° C or less.
  • invention 4 The substrate for organic electroluminescence according to any one of inventions 1 to 3, wherein the transmittance in a wavelength region of 420 to 780 nm is 60% or more.
  • invention 5 The substrate for organic electroluminescence according to any one of inventions 1 to 4, wherein R 1 is a methylene group, and R 2 and R 3 are each a hydrogen atom.
  • invention 7 An organic electroluminescence device comprising at least the organic electroluminescence substrate according to any one of inventions 1 to 6.
  • invention 8 An organic electroluminescence display comprising at least the organic electroluminescence substrate according to any one of inventions 1 to 6.
  • a bottom emission type organic electroluminescence display comprising at least the organic electroluminescence substrate according to any one of inventions 1 to 6.
  • a polyimide solution comprising a polyimide resin composition containing at least a polyimide containing 50 mol% or more of the repeating unit represented by the general formula (1), and an organic solvent.
  • R 1 is an ether bond, sulfide bond, sulfoxy bond, methylene group or ethylene group
  • R 2 and R 3 are each independently a hydrogen atom, methyl group or trifluoromethyl group
  • R 4 is (A tetravalent organic group containing an aromatic ring, which is represented by any of the following structures)
  • invention 13 The polyimide solution according to any one of inventions 10 to 12, wherein the organic solvent is at least one selected from the group consisting of an amide solvent, an ether solvent, an aromatic solvent, a halogen solvent, and a lactone solvent.
  • the organic solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, hexamethylphosphoric triamide, N-methyl-2-pyrrolidone, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, Cyclopentyl methyl ether, diphenyl ether, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxane, trioxane, benzene, anisole, nitrobenzene, benzonitrile, chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, ⁇ -Butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone and ⁇ -methyl- ⁇ -but
  • invention 16 Applying the polyimide solution according to any one of Inventions 10 to 15 to a supporting substrate; Drying the applied polyimide solution to obtain a resin film; And a step of obtaining a polyimide molded body by subjecting the obtained resin film to a heat treatment.
  • invention 20 The method according to any one of inventions 17 to 19, wherein the molded body has a transmittance of 60% or more in a wavelength region of 420 to 780 nm.
  • the molded body is A polyimide solution containing a polyimide resin composition and an organic solvent is applied to a support substrate, The method according to any one of inventions 17 to 22, which is a polyimide molded body obtained by heat-treating a resin film obtained by drying the applied polyimide solution.
  • invention 24 24.
  • the organic solvent is at least one selected from the group consisting of an amide solvent, an ether solvent, an aromatic solvent, a halogen solvent and a lactone solvent.
  • the organic solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, hexamethylphosphoric triamide, N-methyl-2-pyrrolidone, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, Cyclopentyl methyl ether, diphenyl ether, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxane, trioxane, benzene, anisole, nitrobenzene, benzonitrile, chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, ⁇ -Butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone and ⁇ -methyl- ⁇ -but
  • the organic EL refers to a phenomenon in which light is emitted by applying a voltage to an organic substance
  • the organic EL element includes white by combining organic materials that emit light in colors such as red, green, and blue.
  • the organic EL display refers to a display screen device using an organic EL element.
  • the polyimide resin composition according to the present invention has high solubility in a polar organic solvent, and can be applied to a supporting substrate in a polyimide solution state and molded on the supporting substrate.
  • the molded polyimide is excellent in transparency in the visible light region, has a good balance of organic solvent resistance, heat resistance, dimensional stability and mechanical strength, and is useful as a substrate for organic EL.
  • the polyimide resin composition according to the present invention includes at least a polyimide having a repeating unit represented by the following general formula (1), , Having a repeating unit represented by the following general formula (1) of 50 mol% or more, preferably 75 mol% or more, more preferably comprising only a repeating unit represented by the following general formula (1).
  • R 1 is an ether bond, a sulfide bond, a sulfoxy bond, a methylene group or an ethylene group
  • R 2 and R 3 are each independently a hydrogen atom, a methyl group or a trifluoromethyl group
  • R 4 is a tetravalent organic group containing an aromatic ring, and is represented by, for example, any one of the following structures. Among these, the following tetravalent organic groups are preferable. Among these, the following tetravalent organic groups are more preferable.
  • R 1 , R 2 and R 3 are derived from R 1 , R 2 and R 3 in the diamine compound represented by the general formula (8), respectively.
  • R 4 is derived from R 4 in the aromatic tetracarboxylic dianhydride represented by the general formula (10).
  • R 1 is preferably a methylene group, and R 2 and R 3 are each preferably a hydrogen atom. That is, the repeating unit represented by the general formula (1) is preferably a repeating unit represented by the following general formula (2).
  • R 4 has the same meaning as R 4 in the general formula (1).
  • the polyimide according to the present invention may have a repeating unit other than the repeating unit represented by the general formula (1), and may have the repeating unit of 50 mol% or less, or 25 mol% or less. Is preferred. Moreover, the repeating unit of the said General formula (1) may be regularly arranged in the polyimide, and may exist at random. Examples of the repeating unit other than the repeating unit represented by the general formula (1) include, but are not limited to, repeating units represented by any of the following.
  • the weight average molecular weight of the polyimide according to the present invention is not particularly limited, but the lower limit may be 30,000, preferably 40,000, particularly preferably 50,000.
  • the upper limit may be 1,000,000, preferably 500,000, particularly preferably 200,000.
  • the polyimide according to the present invention may have a weight average molecular weight of 30,000 to 1,000,000, preferably 40,000 to 500,000, particularly preferably 50,000 to 200,000. If the weight average molecular weight is less than 30,000, the stability of the substrate after molding is poor and problems such as substrate cracking are likely to occur, and if it exceeds 1,000,000, the viscosity of the solution is high and difficult to mold. May be.
  • the said weight average molecular weight says the value of standard polystyrene conversion by a gel permeation chromatography (henceforth GPC).
  • the composition according to the present invention preferably contains at least a polyimide having 50% by mole or more of the repeating unit represented by the general formula (1), and is composed only of the polyimide.
  • the composition according to the present invention may contain other components in addition to the polyimide. When other components are included, the content may be 50 mol% or less, preferably 25 mol% or less, and more preferably 10 mol% or less.
  • Polyimide other than the polyimide which has a repeating unit represented by General formula (1) may be sufficient.
  • This polyimide is not particularly limited, and one or more known polyimides can be appropriately selected and used.
  • This polyimide may be a polyimide synthesized using “other diamine compound” described later or a tetracarboxylic dianhydride described later as a raw material.
  • the substrate for organic EL of the present invention (hereinafter sometimes simply referred to as “substrate of the present invention”) is a molded article of the polyimide resin composition according to the present invention. Since this polyimide molded body has a good balance of transparency, organic solvent resistance, heat resistance, dimensional stability and mechanical strength, it can be suitably used as an organic EL substrate.
  • a polyamic acid that is a polyimide precursor is coated on a support substrate, and then dehydrated by heating on the support substrate.
  • a polyimide molded body is obtained by polyimidation by a chemical reaction. Therefore, the change in the molecular structure due to the heat treatment on the supporting base material is large, cracks and repellency are likely to occur, and it is not easy to produce a uniform substrate with high flatness.
  • the substrate of the present invention since it can be formed on the support base material in the state of polyimide, the change in the molecular structure by heat treatment on the support base material is small, cracks and repellency hardly occur, It is easy to obtain a polyimide molded body (substrate) having a desired flatness and a uniform state. After molding, it is excellent in transparency, has both organic solvent resistance and heat resistance, and does not easily cause substrate defects in the device manufacturing process.
  • the substrate of the present invention can be suitably used for an organic EL display.
  • the organic EL substrate of the present invention can be preferably used, and a material having high light transmittance in the visible light region can be particularly preferably used.
  • the substrate of the present invention that is, the polyimide molded body according to the present invention will be described.
  • the polyimide molded body according to the present invention preferably has a transmittance (hereinafter sometimes referred to as T%) of 60% or more in a high visible wavelength region of 420 nm or more, that is, in a wavelength region of 420 to 780 nm.
  • T% transmittance
  • the transmittance is 60% or more in a full visible light region having a high wavelength of 400 nm or more, that is, a wavelength region of 400 to 780 nm.
  • Particularly preferred is 70% or more.
  • the cut-off frequency is preferably a short wavelength of 380 nm or less.
  • the upper limit of the thermal expansion coefficient (hereinafter sometimes referred to as CTE) of the polyimide molded body according to the present invention is preferably 30 ppm / ° C., more preferably 30 ppm / ° C. in the range of 30 to 250 ° C.
  • a lower limit is not specifically limited, 0.5 ppm / degreeC is preferable and 1 ppm / degreeC is more preferable.
  • 1 ppm / ° C. or higher and 50 ppm / ° C. or lower is preferable, and 5 ppm / ° C. or higher and 30 ppm / ° C. or lower is more preferable.
  • the dimensional stability is inferior, which may cause problems such as generation of cracks or unintended substrate peeling.
  • the glass transition temperature of the polyimide molded body according to the present invention (hereinafter sometimes referred to as Tg) is preferably 250 ° C. or higher from the viewpoint of heat resistance, and more preferably 300 ° C. or higher from the viewpoint of being able to cope with a high process temperature. preferable.
  • the glass transition temperature (Tg) refers to a value when measured under conditions of a heating rate of 10 ° C./min.
  • the thermal expansion coefficient (CTE) and glass transition temperature (Tg) can be measured by thermomechanical analysis (TMA) or the like.
  • the decomposition temperature of the polyimide molded body according to the present invention is 5% weight reduction temperature (hereinafter sometimes referred to as Td 5 ) as an index, and the 5% weight reduction temperature is preferably 300 ° C. or more, more preferably 350 ° C. or more.
  • Td 5 5% weight reduction temperature
  • the 5% weight loss temperature refers to a temperature at which a weight loss of 5% with respect to the initial weight was measured by thermogravimetry using a thermogravimetric analyzer.
  • the elastic modulus (tensile elastic modulus) of the polyimide molded body according to the present invention is preferably 1.0 GPa or more and 6.0 GPa or less, and more preferably 1.5 GPa or more and 5.0 GPa or less. If the elastic modulus is greater than 6.0 GPa, the substrate tends to warp after curing.
  • the maximum stress is preferably 70 MPa or more, and more preferably 100 MPa or more. If the tensile strength is less than 70 MPa, it is fragile and difficult to handle when used as an organic EL substrate.
  • the breaking elongation is preferably 5% or more, and more preferably 10% or more.
  • the elongation at break is less than 5%, the bending stress when the polyimide molded body is used as the substrate is weak, and the reliability of the substrate is lowered.
  • an organic EL substrate is an organic solvent used in an organic EL display manufacturing process, such as dimethylacetamide (DMAc), tetrahydrofuran (THF), acetone (acetone), ethyl acetate (EtOAc), isopropanol (IPA), It is preferable that the film is difficult to be immersed in a solvent such as toluene and hexane.
  • the polyimide according to the present invention is excellent in solubility in these organic solvents in the state before molding, but in the state after molding, that is, in the substrate of the present invention, the organic solvent resistance. Excellent in resistance to these organic solvents. Therefore, the polyimide according to the present invention can be easily molded by application with a solution, and the molded substrate, that is, the substrate of the present invention has resistance to organic solvents.
  • the thickness of the polyimide molded body according to the present invention is not particularly limited, but the lower limit may be 0.5 ⁇ m, preferably 1 ⁇ m, particularly preferably 10 ⁇ m.
  • the upper limit may be 500 ⁇ m, preferably 100 ⁇ m, particularly preferably 80 ⁇ m. It may be 0.5 to 500 ⁇ m, preferably 1 to 100 ⁇ m, particularly preferably 10 to 80 ⁇ m.
  • the manufacturing method of the polyimide which concerns on this invention is not specifically limited.
  • the polyimide according to the present invention can be produced according to the method for synthesizing a polyimide having an HFIP group described in Patent Document 6.
  • a diamine having an HFIP group represented by the following general formula (8) and a tetracarboxylic dianhydride represented by the following general formula (10) are essential raw materials and melted at 150 ° C. or higher. The method of letting it be mentioned.
  • This polycondensation reaction is preferably carried out at ⁇ 20 to 80 ° C., and the diamine and the tetracarboxylic dianhydride are preferably reacted in a one-to-one manner in a molar ratio.
  • R 1 and R 2 each have the same meanings as R 1 and R 2 in the general formula (1).
  • R 4 have the same meanings as in formula (1) R 4 in.
  • the organic solvent that can be used in the polycondensation reaction is not particularly limited as long as the raw material compound is dissolved.
  • the polyimide according to the present invention can be obtained by further dehydrating and ring-closing the polyamic acid obtained by the condensation polymerization reaction.
  • This dehydration cyclization reaction is performed under conditions such as a heating method and a chemical method that promote cyclization.
  • the heating method the polyamic acid immediately after polymerization is imidized by heating at a high temperature of 150 to 250 ° C., and in the chemical method, a base such as pyridine or triethylamine and acetic anhydride are respectively added to the starting diamine at room temperature (0 to 50 ° C.).
  • the polyimide solution according to the present invention can be obtained by imidization by adding 2 molar equivalents or more and less than 10 equivalents.
  • the concentration of polyimide in this solution is preferably 5% by mass or more and 50% by mass or less. If it is less than 5% by mass, it is not industrially practical. If it exceeds 50% by mass, it is difficult to dissolve. Furthermore, it is preferably 10% by mass or more and 40% by mass or less.
  • the thus obtained polyimide solution according to the present invention can be used as it is for the production of the substrate of the present invention, that is, for the production of the polyimide molded body according to the present invention.
  • the polyimide solution according to the present invention is added to a poor solvent such as water or alcohol, and the polyimide is precipitated.
  • a polyimide solution may be prepared again by dissolving in an organic solvent so as to have the above concentration, and the prepared solution may be used for production of the polyimide molded body according to the present invention.
  • the organic solvent is not particularly limited as long as the polyimide according to the present invention is dissolved, and examples thereof include the same types of organic solvents as mentioned in the organic solvent that can be used for the condensation polymerization reaction. Alternatively, two or more kinds of mixed solvents may be used.
  • a diamine having an HFIP group represented by the general formula (8) is used as one of the raw material compounds.
  • HFIP-MDA diamine represented by the formula (9)
  • the diamine having the HFIP group represented by the general formula (8) and other diamine compounds (hereinafter, other (Sometimes called a diamine compound).
  • the amount of the other diamine compound used is 5% or more and 50% or less, preferably 10% or more and 30% or less, expressed as mass% with respect to the weight of the entire diamine.
  • a part of hydrogen atoms of the aromatic ring of the diamine may be substituted with a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group, a fluoroalkyl group, a carboxyl group, an HFIP group, a hydroxy group, or a cyano group. . Moreover, these may be used independently and can also be used together 2 or more types.
  • a tetracarboxylic dianhydride represented by the general formula (10) is used as one of the raw material compounds.
  • benzene-1,2,4,5-tetracarboxylic dianhydride (hereinafter sometimes referred to as PMDA), 3,6-bis (trifluoromethyl) benzene-1,2,4, 5-tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter sometimes referred to as BPDA), 4,4 ′-(hexafluoroisopropylidene) diphthalic acid Anhydride (hereinafter sometimes referred to as 6FDA), 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (hereinafter sometimes referred to as BTDA), 4,4′-oxydiphthalic dianhydride Product (hereinafter sometimes referred to as ODPA), thiophene-2,3,4,5-tetracarboxylic dianhydride, and the like. These may be used alone or in combination of two or more.
  • PMDA benzene-1,
  • PMDA, BPDA, BTDA, 6FDA or ODPA is preferable from the viewpoint of availability, and 6FDA or ODPA is particularly preferable because of transparency of the obtained polyimide in the visible light region.
  • the polyimide molded body according to the present invention can be obtained by heat-treating the composition according to the present invention. Specifically, a step of applying a solution containing the composition according to the present invention (a solution in which the composition according to the present invention is dissolved in the organic solvent) to a supporting substrate (coating step), removing and drying the solvent. It can be obtained through a step (solvent removal step) and a step of further heat-treating the obtained resin film (heating step).
  • the coating method used in the coating step is not particularly limited, and a known method can be adopted. Depending on the desired coating thickness, resin viscosity, etc., known coating devices such as a spin coater, bar coater, doctor blade coater, air knife coater, roll coater, rotary coater, flow coater, die coater, lip coater and the like can be used as appropriate.
  • the support substrate is not particularly limited.
  • glass, silicon wafer, stainless steel, alumina, copper, nickel and other inorganic base materials polyethylene terephthalate, polyethylene glycol terephthalate, polyethylene glycol naphthalate, polycarbonate, polyimide, polyamideimide, polyetherimide, polyetheretherketone, polypropylene
  • the organic base material include polyether sulfone, polyethylene terephthalate, polyphenylene sulfone, and polyphenylene sulfide. From the viewpoint of heat resistance, it is preferable to use an inorganic base material such as glass, a silicon wafer, and stainless steel.
  • the thickness of the coating film containing the composition according to the present invention can be appropriately adjusted depending on the concentration of the resin polyimide component in the solution containing the composition according to the present invention, and usually 1 ⁇ m or more, 1000 ⁇ m or less, preferably 5 ⁇ m or more and 500 ⁇ m or less. If the coating film is thinner than 1 ⁇ m, sufficient strength cannot be obtained for the substrate after molding, and if it is thicker than 1000 ⁇ m, defects such as repellency, dents, cracks and the like of the substrate occur, and a uniform substrate cannot be obtained.
  • the coating film by the coating process After obtaining the coating film by the coating process, it further undergoes a solvent removal process for removing and drying the solvent from the coating film, and a heating process for obtaining a polyimide molded body by heat-treating and curing the dried coating film (resin film).
  • a solvent removal process for removing and drying the solvent from the coating film
  • a heating process for obtaining a polyimide molded body by heat-treating and curing the dried coating film (resin film).
  • the temperature at which the solvent is removed and dried in the solvent removal step depends on the type of the organic solvent in which the composition according to the present invention is dissolved, but is preferably 50 ° C or higher and 220 ° C or lower, preferably 80 ° C or higher, 200 ° C. More preferably, it is not higher than ° C. If it is lower than 50 ° C., drying is insufficient, and if it is higher than 220 ° C., rapid solvent evaporation occurs, causing defects such as repellency, dents, cracks, etc., and a uniform film cannot be obtained.
  • the resin film can be cured by heat treatment at a high temperature to obtain the polyimide molded body according to the present invention.
  • this step removal of the residual solvent that could not be removed in the solvent removal step, improvement in the imidization rate, and improvement in physical properties are also expected.
  • the temperature at which the resin film is heated and cured is preferably 150 ° C. or higher and 400 ° C. or lower, more preferably 200 ° C. or higher and 300 ° C. or lower. If the temperature is lower than 150 ° C., the solvent may remain. If the temperature is higher than 400 ° C., defects such as cracks occur in the obtained organic EL substrate.
  • the heating step is preferably performed using an inert gas oven, a hot plate, a box dryer, or a conveyor dryer, but is not limited to the use of these devices.
  • the heating step is preferably performed under an inert gas stream from the viewpoint of preventing oxidation of the resin film and removing the solvent.
  • the inert gas include nitrogen and argon.
  • the flow rate of the inert gas is preferably 1 L / min or more and 5 L / min or less. If the flow rate of the inert gas is slower than 1 L / min, solvent removal and resin film curing may be insufficient. If it is faster than 5 L / min, only the resin film surface is dried, causing cracks and the like. Sometimes.
  • the heating time in the solvent removal step and the heating step is usually 0.5 hours or more and 3 hours or less, and each step can be performed continuously or separately.
  • the substrate of the present invention can be peeled off from the support substrate to produce a device, but advanced technology is required to fix it to a new support substrate, and the number of steps increases. It is desirable to produce a device for an organic EL substrate in a state of a molded body that is fixed to a supporting base without being peeled, and then manufacture a device.
  • the organic EL element of the present invention includes at least the substrate of the present invention, and other configurations are not particularly limited.
  • the organic EL element of the present invention may be an organic EL element using the substrate of the present invention as the substrate in an organic EL element comprising at least an organic light emitting layer, an electrode layer, and a substrate.
  • the organic EL device of the present invention includes a hole injection layer, a hole transport layer, a hole block layer, an electron transport layer, an electron injection layer, a desiccant, a sealing material, a metal plate, a filter layer, and a color.
  • a conversion phosphor layer (CCM layer), a passivation layer, a planarization layer, and the like may be provided.
  • Organic EL display of the present invention is provided with at least the substrate of the present invention, and other configurations are not particularly limited.
  • the organic EL display of the present invention may include the organic EL element of the present invention.
  • Thermal expansion coefficient and the glass transition temperature (hereinafter sometimes referred to as Tg) were obtained by conducting a tensile test using a model name “Thermo Plus EvoII TMA8310” manufactured by Rigaku Corporation.
  • Thermal decomposition temperature was measured by Rigaku Corporation, model name “RIGAKU Thermo Plus TG8310”.
  • Mechanical properties such as elastic modulus, stress, and elongation at break were determined by conducting a tensile test with an autograph 'Autograph AG-IS', a precision universal testing machine manufactured by Shimadzu Corporation.
  • Solvent solubility was determined by visual agitation using the model name 'UNI THERMO SHAKER NTS-1300', a constant temperature shaking water tank manufactured by Tokyo Rika Kikai Co., Ltd., with constant shaking in a water bath at a shaking speed of 100 rpm for the following time. It confirmed with and without the solid substance. Those that dissolve within 1 hour at 30 ° C. are good, those that dissolve within 1 hour at 70 ° C. are soluble, and those that do not dissolve within 1 hour at 70 ° C. are insoluble.
  • Example 1 In a 500 mL three-necked flask equipped with a nitrogen inlet tube and a stirring blade, HFIP-MDA, 58.3 g (110 mmol), 6FDA, 48.9 g (110 mmol), dimethylacetamide (hereinafter referred to as the chemical structure) shown in the following reaction formula, are shown. 220g), and the mixture was stirred at 20 ° C. under a nitrogen atmosphere to carry out the following reaction. To the obtained reaction solution, pyridine, 34.8 g (440 mmol), acetic anhydride, 44.9 g (440 mmol) were added in this order, and the mixture was further stirred for 24 hours. A solution was made.
  • a polyimide (A) substrate (polyimide (A) molded body) was prepared by applying a DMAc solution of polyimide (A) to a glass substrate, followed by drying and heat treatment. First, a DMAc solution of polyimide (A) is dropped on a glass substrate, and the spin coater is used to raise the rotation speed to 600 rpm over 10 seconds, and then held at the rotation speed of 600 rpm for 10 seconds. The DMAc solution was applied uniformly. After drying at 180 ° C. for 30 minutes in a nitrogen atmosphere to remove the solvent, and further heat-treating at 250 ° C.
  • a polyimide (A) substrate (polyimide ( A shaped product A) was obtained.
  • the thickness was measured with a film thickness meter (manufactured by Nikon Corporation, model name “DIGIMICRO MH-15”), it was 50 ⁇ m.
  • the solvent solubility test sample (precipitate in Example 1) was prepared by slowly pouring the polyimide (A) DMAc solution, 30 g, into a mixed solution of water, 90 g, methanol, 30 g to precipitate the polyimide (A).
  • the solvent solubility test sample was prepared by slowly pouring the polyimide (A) DMAc solution, 30 g, into a mixed solution of water, 90 g, methanol, 30 g to precipitate the polyimide (A).
  • each chemical structure is represented by the following reaction formula: HFIP-MDA, 58.3 g (110 mmol), BPDA, 32.4 g (110 mmol), DMAc as a solvent, 220 g And stirred at 20 ° C. in a nitrogen atmosphere to carry out the reaction shown below.
  • reaction solution 34.8 g (440 mmol) of pyridine and 44.9 g (440 mmol) of acetic anhydride were added in this order, and the mixture was further stirred for 24 hours, imidized, and then filtered under pressure.
  • a DMAc solution of polyimide (B) was prepared.
  • a part of the DMAc solution of polyimide (B) was used for the preparation of a solvent solubility test sample, and the rest was used for preparation of a polyimide (B) substrate (molded body of polyimide (B)).
  • the polyimide (B) substrate (molded body of polyimide (B)) was prepared by applying a DMAc solution of polyimide (B) to a glass substrate, followed by drying and heat treatment. First, a DMAc solution of polyimide (B) was dropped on a glass substrate, and the rotation speed was increased to 800 rpm over 10 seconds using a spin coater, and then held at a rotation speed of 800 rpm for 10 seconds. The solution was applied uniformly. In a nitrogen atmosphere, the solvent is removed by drying at 180 ° C. for 30 minutes, and after further heat treatment at 200 ° C.
  • the solvent solubility test sample (precipitate in Example 2) was prepared by slowly pouring the above-mentioned polyimide (B) in DMAc solution, 30 g into a mixed solution of water, 90 g, methanol and 30 g to precipitate polyimide (B). was dried at 100 ° C. for 8 hours in a nitrogen atmosphere.
  • Example 3 In a three-necked flask with a capacity of 500 mL equipped with a nitrogen introduction tube and a stirring blade, HFIP-MDA, 58.3 g (110 mmol), ODPA, 34.1 g (110 mmol), DMAc, 160 g, whose chemical structures are shown in the following reaction formula, were added. In addition, the mixture was stirred at 20 ° C. in a nitrogen atmosphere to carry out the following reaction. Pyridine, 34.8 g (440 mmol), acetic anhydride, 44.9 g (440 mmol) were sequentially added to the resulting reaction solution, and the mixture was further stirred for 24 hours to perform imidization.
  • the DMAc solution of polyimide (C) was produced by carrying out pressure filtration.
  • Part of the DMAc solution of polyimide (C) was used for the preparation of a solvent solubility test sample, and the rest was used for the preparation of a polyimide (C) substrate (polyimide (C) molded body).
  • the polyimide (C) substrate (molded body of polyimide (C)) was prepared by applying a DMAc solution of polyimide (C) to a glass substrate, followed by drying and heat treatment. First, a DMAc solution of polyimide (C) is hung on a glass substrate, and the spin coater is used to increase the rotation speed to 700 rpm over 10 seconds, and then the rotation speed is maintained at 700 rpm for 10 seconds. The DMAc solution was applied uniformly. After drying at 180 ° C. for 30 minutes in a nitrogen atmosphere, removing the solvent, and further heat-treating at 200 ° C. for 2 hours, cooling, and removing the polyimide film from the glass substrate, a polyimide (C) substrate (polyimide ( C) was obtained. It was 49 micrometers when thickness was measured with the said film thickness meter.
  • the solvent solubility test sample (precipitate in Example 3) was prepared by slowly pouring the polyimide (C) DMAc solution, 30 g, into a mixed solution of water, 90 g, methanol, and 30 g to precipitate the polyimide (C).
  • the solvent solubility test sample was prepared by slowly pouring the polyimide (C) DMAc solution, 30 g, into a mixed solution of water, 90 g, methanol, and 30 g to precipitate the polyimide (C).
  • the DMAc solution of polyimide (D) was produced by carrying out pressure filtration.
  • a part of the DMAc solution of polyimide (D) was used for the preparation of a solvent solubility test sample, and the rest was used for preparation of a polyimide (D) substrate (molded body of polyimide (D)).
  • a polyimide (D) substrate (polyimide (D) molded body) was prepared by applying a DMAc solution of polyimide (D) to a glass substrate, followed by drying and heat treatment.
  • a DMAc solution of polyimide (D) is hung on a glass substrate, and the spin coater is used to increase the rotation speed to 400 rpm over 10 seconds, and then held at a rotation speed of 300 rpm for 40 seconds.
  • the DMAc solution was applied uniformly.
  • the solvent is removed by drying at 180 ° C. for 30 minutes, and after further heat treatment at 200 ° C. for 2 hours, the polyimide film is removed from the glass substrate by cooling and removing the polyimide film from the glass substrate (polyimide (D ) Was obtained. It was 51 micrometers when thickness was measured with the said film thickness meter.
  • the solvent solubility test sample (precipitate in Example 4) was prepared by gradually pouring the above-mentioned polyimide (D) DMAc solution, 30 g, into a mixed solution of water, 90 g, methanol and 30 g to precipitate the polyimide (D). This was prepared by drying at 100 ° C. for 8 hours in a nitrogen atmosphere.
  • a polyimide (E) substrate (polyimide (E) molded body) was prepared by applying a DMAc solution of polyimide (E) to a glass substrate, followed by drying and heat treatment.
  • a DMAc solution of polyimide (E) is hung on a glass substrate, and the spin coater is used to raise the rotation speed to 550 rpm over 10 seconds, and then held at the rotation speed of 550 rpm for 10 seconds.
  • the DMAc solution was applied uniformly.
  • the solvent is removed by drying at 180 ° C. for 30 minutes, and after further heat treatment at 250 ° C. for 2 hours, the polyimide film is removed from the glass substrate by cooling and removing the polyimide film from the glass substrate (polyimide (E ) Was obtained. It was 49 micrometers when thickness was measured with the said film thickness meter.
  • a polyimide (F) substrate (polyimide (F) molded body) was prepared by applying a DMAc solution of polyimide (F) to a glass substrate, followed by drying and heat treatment.
  • a DMAc solution of polyimide (F) was dropped on a glass substrate, and the spin coater was used to raise the rotation speed to 650 rpm over 10 seconds, and then held at the rotation speed of 650 rpm for 10 seconds.
  • the DMAc solution was applied uniformly.
  • the solvent was removed by drying at 180 ° C. for 30 minutes, and after further heat treatment at 250 ° C. for 2 hours, the polyimide film was removed from the glass substrate by cooling and removing the polyimide film from the glass substrate (polyimide (F ) Was obtained.
  • the film thickness was measured with the film thickness meter, it was 38 ⁇ m.
  • a polyimide (G) substrate (polyimide (G) molded body) was prepared by applying a DMAc solution of polyimide (G) to a glass substrate, followed by drying and heat treatment. First, a DMAc solution of polyimide (G) was dropped on a glass substrate, and the spin coater was used to raise the rotation speed to 400 rpm over 10 seconds, and then held at the rotation speed of 400 rpm for 10 seconds. The DMAc solution was applied uniformly. In a nitrogen atmosphere, the solvent was removed by drying at 180 ° C. for 30 minutes, followed by heat treatment at 250 ° C. for 2 hours, followed by cooling and peeling off the polyimide film from the glass substrate to obtain a polyimide (G) substrate (polyimide (G ) Was obtained. It was 52 micrometers when thickness was measured with the said film thickness meter.
  • a polyimide (H) substrate (polyimide (H) molded body) was prepared by applying a DMAc solution of polyimide (H) to a glass substrate, followed by drying and heat treatment.
  • a DMAc solution of polyimide (H) was dropped on a glass substrate, and the spin coater was used to raise the rotation speed to 700 rpm over 10 seconds, and then held at the rotation speed of 700 rpm for 10 seconds.
  • the DMAc solution was applied uniformly.
  • the solvent was removed by drying at 180 ° C. for 30 minutes, and after further heat treatment at 250 ° C. for 2 hours, the polyimide film was removed from the glass substrate by cooling and removing the polyimide film from the glass substrate (polyimide (H ) Was obtained. It was 51 micrometers when thickness was measured with the said film thickness meter.
  • Table 1 shows the physical property evaluation results of the substrates of Examples 1 to 5, Comparative Examples 1 to 3, and Reference Example 1.
  • the main chain skeleton of the polyimide is the same, but the diamine used as a raw material is different. That is, as shown below, only diamine having HFIP groups (HFIP-MDA) is used in Example 1, and diamines having HFIP groups (HFIP-MDA) and HFIP groups are used in Examples 4 to 5 and Comparative Example 2.
  • HFIP-MDA diamine having HFIP groups
  • HFIP-MDA diamines having HFIP groups
  • a diamine (MDA) having no HFIP group was used in Comparative Example 3 in combination with a diamine (MDA) having no HFIP group:
  • the light transmittances at 400 nm and 420 nm of Examples 1, 4 to 5 and Comparative Examples 2 to 3 are higher as the content of HFIP groups is higher, and Examples using only HFIP-MDA having HFIP groups as a raw material diamine 1 was the highest.
  • the substrates of Examples 1 and 2 had a light transmittance at 400 nm, which was comparable to the substrate of Reference Example 1.
  • the substrate of Example 3 was superior to the substrate of Reference Example 1 in light transmittance at 400 nm.
  • the substrates of Examples 4 to 5 had a light transmittance at 400 nm lower than that of the substrate of Reference Example 1, but had sufficient transparency to be used as an organic EL substrate.
  • the cut-off wavelength of the substrates of Examples 1 to 5 is higher than that of Reference Example 1, but is sufficiently transparent to be used as a substrate for an organic EL display because it has high transparency in the visible light region of 400 nm or more. Transparency.
  • the substrates of Examples 1 to 3 exhibited higher Tg than the substrate of Reference Example 1, and among them, the substrates of Examples 1 to 2 exhibited particularly high Tg.
  • the substrates of Examples 4 to 5 exhibited a lower Tg than the substrate of Reference Example 1, but had sufficient heat resistance for use as an organic EL substrate. Although Td 5 of the substrates of Examples 1 to 5 was lower than Td 5 of the substrate of Reference Example 1, it had sufficient heat resistance for use as an organic EL substrate.
  • the substrates of Examples 1 to 5 had a lower CTE than the substrate of Reference Example 1, and were excellent in dimensional stability against temperature changes.
  • the substrate of Comparative Example 1 exhibited a CTE as high as the substrate of Reference Example 1.
  • the substrate of Example 1 had higher tensile stress than the substrate of Reference Example 1.
  • the substrates of Examples 2 to 5 had lower mechanical stress than the substrate of Reference Example 1, but had sufficient mechanical strength to be used as an organic EL substrate.
  • the elastic modulus of the substrates of Examples 1 to 2 and 4 showed the same value as the elastic modulus of the substrate of Reference Example 1, but the elastic modulus of the substrate of Example 3 was higher than the elastic modulus of the substrate of Reference Example 1. It was excellent.
  • the breaking elongation of the substrates of Examples 1 to 5 was lower than that of the substrate of Reference Example 1, but had sufficient tensile strength for use as an organic EL substrate.
  • FIG. 1 shows the measurement results of the light transmission spectra of the substrates produced in Examples 1, 4 to 5 and Comparative Examples 2 to 3.
  • solvent solubility test The solvent solubility test was conducted using the samples for the solvent solubility test of polyimides (A) to (D) prepared in Examples 1 to 3 and Comparative Example 1 (polyimides (A) to (D) before molding) and the substrate. Eight types of (polyimides (A) to (D) after molding) were performed.
  • test specimen Put the test specimen and the solvent shown in Table 2 (DMAc, THF, acetone, ethyl acetate, isopropyl alcohol, toluene or hexane) into a bottle that can be capped with a screw type, and adjust the concentration to 10% by mass after dissolution.
  • the solution was sealed and stirred using a vibration stirrer to evaluate the solubility.
  • polyimides (A) to (D) before molding showed good solubility in aprotic polar solvents such as DMAc, THF, acetone, and ethyl acetate.
  • the polyimides (A) to (D) were insoluble.
  • polyimides (B) to (D) before molding and polyimides (A) to (D) after molding were insoluble, whereas before molding, The polyimide (A) showed solubility. None of the polyimides (A) to (D) was insoluble in nonpolar solvents such as toluene and hexane.
  • the polyimides (A) to (D) are dissolved in the aprotic polar solvent before molding, but are insoluble after molding, and thus have excellent moldability before molding. It was shown to have resistance to organic solvents after molding. Since the polyimide (A) is also dissolved in the protic polar solvent, it was shown that the polyimide (A) has more excellent moldability.
  • the molded polyimides (A) to (D) were insoluble in all the solvents tested, they have a solvent resistance that does not damage the organic EL device manufacturing process.

Abstract

This substrate for organic electroluminescence is characterized by comprising a moulded article of a polyimide resin composition including at least a polyimide which includes at least 50 mol% of repeating units represented by general formula (1) (in general formula (1): R1 represents an ether bond, a sulfide bond, a sulfoxy bond, a methylene group, or an ethylene group; R2 and R3 each independently represent hydrogen, a methyl group, or a trifluoromethyl group; and R4 is a tetravalent organic group including an aromatic ring, and is represented by any of the following structures). In addition to being capable of being easily moulded by being applied as coating of a solution, the substrate, after having been moulded, achieves excellent transparency with few surface defects, and an excellent balance between organic solvent resistance, heat resistance, dimensional stability, and mechanical strength.

Description

有機エレクトロルミネッセンス用基板およびそれを用いた有機エレクトロルミネッセンスディスプレイOrganic electroluminescence substrate and organic electroluminescence display using the same
 本発明は、有機エレクトロルミネッセンス(以下、ELと呼ぶことがある)用基板およびそれを用いた有機ELディスプレイに関する。 The present invention relates to a substrate for organic electroluminescence (hereinafter sometimes referred to as EL) and an organic EL display using the same.
 有機ELディスプレイは、高コントラスト比、高応答速度、広い視野角、低消費電力等の特徴を有する次世代ディスプレイとして実用化が始まっている。有機ELディスプレイの用途をさらに広げるために、有機ELディスプレイの基板を従来のガラスから薄型化、軽量化、フレキシブル化可能なプラスチックへと置き換える取り組みが行われている。 Organic EL displays have been put into practical use as next-generation displays having features such as high contrast ratio, high response speed, wide viewing angle, and low power consumption. In order to further expand the applications of organic EL displays, efforts are being made to replace organic EL display substrates with conventional plastics that can be made thinner, lighter, and flexible.
 有機EL用基板に求められる性能としては、素子のリーク、ショートと密接に関係する表面の平坦性、素子作成プロセスで損傷しない程度の耐熱性や耐溶剤性が挙げられる。また、素子作成は、昇温・冷却を繰り返すため、基板の伸縮による有機層や電極等の欠陥を防ぐための温度変化に対する寸法安定性も必要となる。さらに、ボトムエミッション構造の場合は、基板側から光を取り出すための可視光領域の透明性が必須となる。 The performance required for an organic EL substrate includes device surface leakage, surface flatness closely related to short circuit, and heat resistance and solvent resistance to such an extent that they are not damaged in the device fabrication process. In addition, since the temperature of the device is repeatedly raised and cooled, dimensional stability against temperature changes is also required to prevent defects in the organic layer and electrodes due to the expansion and contraction of the substrate. Furthermore, in the case of a bottom emission structure, transparency in the visible light region for extracting light from the substrate side is essential.
 透明性に優れる基板材料には、ポリメタクリル酸メチル、ポリカーボネート、ポリエーテルスルホンが挙げられる。しかし、上記材料は、ガラス転移温度が低く、250℃程度の有機EL素子作製のプロセス温度に対して十分な耐熱性は有していない。 Examples of the substrate material having excellent transparency include polymethyl methacrylate, polycarbonate, and polyethersulfone. However, the above materials have a low glass transition temperature and do not have sufficient heat resistance with respect to the process temperature for producing an organic EL element of about 250 ° C.
 耐熱性に優れた有機EL用としては、ポリイミドが挙げられる。ポリイミドは、原料に芳香族ジアミンと芳香族テトラカルボン酸二無水物を用いた全芳香族ポリイミド、原料に脂肪族ジアミンと脂肪族テトラカルボン酸二無水物のいずれか若しくは両方を用いた脂肪族ポリイミドに区別される。 Polyimide is mentioned for organic EL excellent in heat resistance. Polyimide is a fully aromatic polyimide using aromatic diamine and aromatic tetracarboxylic dianhydride as raw material, aliphatic polyimide using aliphatic diamine and aliphatic tetracarboxylic dianhydride or both as raw material Are distinguished.
 全芳香族ポリイミドは、原料の芳香族ジアミンに由来する部分と芳香族テトラカルボン酸二無水物に由来する部分の間に電荷移動相互作用が生じる。その結果、耐熱性、耐溶剤性、機械的強度に優れているが、一般的に可視光領域に着色が生じるため、透明基板の材料として用いられない。 In the wholly aromatic polyimide, a charge transfer interaction occurs between a portion derived from the raw material aromatic diamine and a portion derived from the aromatic tetracarboxylic dianhydride. As a result, it is excellent in heat resistance, solvent resistance, and mechanical strength. However, since it is generally colored in the visible light region, it is not used as a material for a transparent substrate.
 一方、脂肪族ポリイミドは、全芳香族ポリイミドと異なり、電荷移動相互作用を起こさないため、着色がなく、透明基板として応用が検討されている。例えば、特許文献1、特許文献2には、原料に脂肪族テトラカルボン酸二無水物を用いた脂肪族ポリイミドを用いた透明基板が記載されている。しかし、脂肪族骨格を導入したポリイミドは、可視光領域における透明性は実現されるものの、柔軟な脂肪族骨格に起因するガラス転移温度低下、熱膨張係数の上昇のための寸法安定性の低下が起こる。そのため、透明基板として実用化するためには、さらなる耐熱性の改善が必要である。 On the other hand, aliphatic polyimides, unlike fully aromatic polyimides, do not cause charge transfer interaction, and thus are not colored and are being studied for application as transparent substrates. For example, Patent Document 1 and Patent Document 2 describe a transparent substrate using an aliphatic polyimide using an aliphatic tetracarboxylic dianhydride as a raw material. However, although polyimides with an aliphatic skeleton can achieve transparency in the visible light region, the glass transition temperature is lowered due to the flexible aliphatic skeleton, and the dimensional stability is lowered due to the increased thermal expansion coefficient. Occur. Therefore, in order to put it into practical use as a transparent substrate, further improvement in heat resistance is necessary.
 全芳香族ポリイミドの一例として、特許文献3~9には、ヘキサフルオロイソプロパノール基(-C(CF32OH、以下、HFIP基と呼ぶことがある)を有するポリイミドが開示されている。 As an example of a wholly aromatic polyimide, Patent Documents 3 to 9 disclose polyimides having a hexafluoroisopropanol group (—C (CF 3 ) 2 OH, hereinafter sometimes referred to as HFIP group).
特開2008-297360号公報JP 2008-297360 A 特開2008-231327号公報JP 2008-231327 A WO2012-165455A1の国際公開のパンフレットInternational publication pamphlet of WO2012-165455A1 WO2014-084185A1の国際公開のパンフレットInternational publication pamphlet of WO2014-084185A1 WO2014-084186A1の国際公開のパンフレットInternational publication pamphlet of WO2014-084186A1 WO2014-084187A1の国際公開のパンフレットInternational publication pamphlet of WO2014-084187A1 WO2014-084188A1の国際公開のパンフレットInternational publication pamphlet of WO2014-084188A1 WO2006/043501A1の国際公開のパンフレットInternational publication pamphlet of WO2006 / 043501A1 特開2006-206879号公報JP 2006-206879 A
 本発明は、溶液での塗布によって容易に基板成形が可能であることに加え、基板成形後は、可視光領域における透明性に優れ、耐有機溶剤性、耐熱性、寸法安定性および機械的強度をバランスよく併せ持つ有機EL用基板を提供することを目的とする。 In addition to being easy to form a substrate by coating with a solution, the present invention has excellent transparency in the visible light region after forming the substrate, organic solvent resistance, heat resistance, dimensional stability and mechanical strength. An object of the present invention is to provide an organic EL substrate having both of the above in a balanced manner.
 有機EL用基板に必要な成形加工性、透明性、耐有機溶剤性、耐熱性、寸法安定性および機械的強度をバランスよく有するポリイミドは知られていないのが現状である。 <Currently, no polyimide has been known that has a well-balanced moldability, transparency, organic solvent resistance, heat resistance, dimensional stability and mechanical strength necessary for an organic EL substrate.
 特許文献3に記載のポリイミドは、溶解性、成形加工性に優れるが、ポリイミド成形体における耐有機溶剤性、耐熱性、熱膨張係数、機械物性に関する記載はない。また、特許文献4~6に記載のポリイミドは、溶解性、ポリイミド成形体における耐熱性に優れるが、耐有機溶剤性、耐熱性、熱膨張係数、機械物性に関する記載はない。特許文献7に記載のポリイミドは、成形加工性、ポリイミド成形体における耐有機溶剤性、耐熱性、熱膨張係数、機械物性に関する記載はない。特許文献8に記載のポリイミドは、溶解性、ポリイミド成形体における透明性、耐熱性に優れるが、熱膨張係数、機械物性に関する記載はなく、透明性に関する詳細は記載されていない。特許文献9に記載のポリイミドは、溶解性、ポリイミド成形体における透明性に優れ、低熱膨張係数を示すが、機械物性、耐熱性に関する記載はなく、透明性に関する詳細は記載されていない。また、これらの特許文献3~9に記載のポリイミドについて、有機EL基板用途に関する具体的な記載はない。 Although the polyimide described in Patent Document 3 is excellent in solubility and moldability, there is no description regarding organic solvent resistance, heat resistance, thermal expansion coefficient, and mechanical properties in the polyimide molded body. Further, the polyimides described in Patent Documents 4 to 6 are excellent in solubility and heat resistance in the polyimide molded body, but there is no description regarding organic solvent resistance, heat resistance, thermal expansion coefficient, and mechanical properties. The polyimide described in Patent Document 7 has no description regarding moldability, organic solvent resistance, heat resistance, thermal expansion coefficient, and mechanical properties in the polyimide molded body. Although the polyimide described in Patent Document 8 is excellent in solubility, transparency in a polyimide molded body, and heat resistance, there is no description regarding a thermal expansion coefficient and mechanical properties, and details regarding transparency are not described. The polyimide described in Patent Document 9 is excellent in solubility and transparency in a polyimide molded body and exhibits a low thermal expansion coefficient. However, there is no description regarding mechanical properties and heat resistance, and details regarding transparency are not described. Further, there is no specific description regarding the use of the organic EL substrate for the polyimides described in Patent Documents 3 to 9.
 上述のように、HFIP基を有するポリイミドは知られているが、有機EL基板への応用についての検討はなされておらず、有機EL基板に要求される種々の物性をバランスよく有するかどうかは不明であった。 As described above, polyimide having an HFIP group is known, but application to an organic EL substrate has not been studied, and it is unknown whether various physical properties required for an organic EL substrate are balanced. Met.
 本発明者らは、上記課題を解決するために鋭意検討を行った。その結果、下記一般式(1)で表される繰り返し単位を50モル%以上含むポリイミドを少なくとも含むポリイミド樹脂組成物を用いることで、上記課題を解決できることを見出し、本発明を完成させた。
Figure JPOXMLDOC01-appb-C000010
(式中、R1は、エーテル結合、スルフィド結合、スルホキシ結合、メチレン基又はエチレン基であり、R2およびR3はそれぞれ独立に水素原子、メチル基又はトリフルオロメチル基であり、R4は芳香環を含む4価の有機基であって、以下の何れかの構造で表される。)
Figure JPOXMLDOC01-appb-C000011
The present inventors have intensively studied to solve the above problems. As a result, the inventors have found that the above problems can be solved by using a polyimide resin composition containing at least a polyimide containing 50 mol% or more of a repeating unit represented by the following general formula (1), and completed the present invention.
Figure JPOXMLDOC01-appb-C000010
(Wherein R 1 is an ether bond, sulfide bond, sulfoxy bond, methylene group or ethylene group, R 2 and R 3 are each independently a hydrogen atom, methyl group or trifluoromethyl group, and R 4 is (A tetravalent organic group containing an aromatic ring, which is represented by any of the following structures)
Figure JPOXMLDOC01-appb-C000011
 即ち、本発明は以下の各発明を含む。 That is, the present invention includes the following inventions.
 [発明1]
 一般式(1)で表される繰り返し単位を50モル%以上含むポリイミドを少なくとも含むポリイミド樹脂組成物、の成形体からなる、有機エレクトロルミネッセンス用基板。
Figure JPOXMLDOC01-appb-C000012
(式中、R1は、エーテル結合、スルフィド結合、スルホキシ結合、メチレン基又はエチレン基であり、R2およびR3はそれぞれ独立に水素原子、メチル基又はトリフルオロメチル基であり、R4は芳香環を含む4価の有機基であって、以下の何れかの構造で表される。)
Figure JPOXMLDOC01-appb-C000013
[Invention 1]
The organic electroluminescent board | substrate which consists of a molded object of the polyimide resin composition containing at least the polyimide which contains 50 mol% or more of repeating units represented by General formula (1).
Figure JPOXMLDOC01-appb-C000012
(Wherein R 1 is an ether bond, sulfide bond, sulfoxy bond, methylene group or ethylene group, R 2 and R 3 are each independently a hydrogen atom, methyl group or trifluoromethyl group, and R 4 is (A tetravalent organic group containing an aromatic ring, which is represented by any of the following structures)
Figure JPOXMLDOC01-appb-C000013
 [発明2]
 一般式(1)で表される繰り返し単位を有するポリイミドのみからなるポリイミド樹脂組成物、の成形体からなる、発明1に記載の有機エレクトロルミネッセンス用基板。
[Invention 2]
The substrate for organic electroluminescence according to invention 1, comprising a molded body of a polyimide resin composition comprising only a polyimide having a repeating unit represented by the general formula (1).
 [発明3]
 30~250℃における熱膨張係数が50ppm/℃以下である、発明1または2に記載の有機エレクトロルミネッセンス用基板。
[Invention 3]
The substrate for organic electroluminescence according to invention 1 or 2, wherein the coefficient of thermal expansion at 30 to 250 ° C is 50 ppm / ° C or less.
 [発明4]
 420~780nmの波長領域での透過率が60%以上である、発明1~3のいずれかに記載の有機エレクトロルミネッセンス用基板。
[Invention 4]
The substrate for organic electroluminescence according to any one of inventions 1 to 3, wherein the transmittance in a wavelength region of 420 to 780 nm is 60% or more.
 [発明5]
 R1がメチレン基であり、R2およびR3がそれぞれ水素原子である、発明1~4のいずれかに記載の有機エレクトロルミネッセンス用基板。
[Invention 5]
The substrate for organic electroluminescence according to any one of inventions 1 to 4, wherein R 1 is a methylene group, and R 2 and R 3 are each a hydrogen atom.
 [発明6]
 R4が式(3)~式(7)の何れかで表される基である、発明5に記載の有機エレクトロルミネッセンス用基板。
Figure JPOXMLDOC01-appb-C000014
[Invention 6]
The organic electroluminescence substrate according to invention 5, wherein R 4 is a group represented by any one of formulas (3) to (7).
Figure JPOXMLDOC01-appb-C000014
 [発明7]
 発明1~6のいずれかに記載の有機エレクトロルミネッセンス用基板を少なくとも備える、有機エレクトロルミネッセンス素子。
[Invention 7]
An organic electroluminescence device comprising at least the organic electroluminescence substrate according to any one of inventions 1 to 6.
 [発明8]
 発明1~6のいずれかに記載の有機エレクトロルミネッセンス用基板を少なくとも備える、有機エレクトロルミネッセンスディスプレイ。
[Invention 8]
An organic electroluminescence display comprising at least the organic electroluminescence substrate according to any one of inventions 1 to 6.
 [発明9]
 発明1~6のいずれかに記載の有機エレクトロルミネッセンス用基板を少なくとも備える、ボトムエミッション型有機エレクトロルミネッセンスディスプレイ。
[Invention 9]
A bottom emission type organic electroluminescence display comprising at least the organic electroluminescence substrate according to any one of inventions 1 to 6.
 [発明10]
 一般式(1)で表される繰り返し単位を50モル%以上含むポリイミドを少なくとも含むポリイミド樹脂組成物と、有機溶媒とを含む、ポリイミド溶液。
Figure JPOXMLDOC01-appb-C000015
(式中、R1は、エーテル結合、スルフィド結合、スルホキシ結合、メチレン基又はエチレン基であり、R2およびR3はそれぞれ独立に水素原子、メチル基又はトリフルオロメチル基であり、R4は芳香環を含む4価の有機基であって、以下の何れかの構造で表される。)
Figure JPOXMLDOC01-appb-C000016
[Invention 10]
A polyimide solution comprising a polyimide resin composition containing at least a polyimide containing 50 mol% or more of the repeating unit represented by the general formula (1), and an organic solvent.
Figure JPOXMLDOC01-appb-C000015
(Wherein R 1 is an ether bond, sulfide bond, sulfoxy bond, methylene group or ethylene group, R 2 and R 3 are each independently a hydrogen atom, methyl group or trifluoromethyl group, and R 4 is (A tetravalent organic group containing an aromatic ring, which is represented by any of the following structures)
Figure JPOXMLDOC01-appb-C000016
 [発明11]
 R1がメチレン基であり、R2およびR3がそれぞれ水素原子である、発明10に記載のポリイミド溶液。
[Invention 11]
The polyimide solution according to invention 10, wherein R 1 is a methylene group, and R 2 and R 3 are each a hydrogen atom.
 [発明12]
 R4が式(3)~式(7)の何れかで表される基である、発明11に記載のポリイミド溶液。
Figure JPOXMLDOC01-appb-C000017
[Invention 12]
The polyimide solution according to invention 11, wherein R 4 is a group represented by any one of formulas (3) to (7).
Figure JPOXMLDOC01-appb-C000017
 [発明13]
 有機溶媒が、アミド系溶媒、エーテル系溶媒、芳香族性溶媒、ハロゲン系溶媒およびラクトン系溶媒からなる群から選ばれる少なくとも一種である、発明10~12の何れかに記載のポリイミド溶液。
[Invention 13]
The polyimide solution according to any one of inventions 10 to 12, wherein the organic solvent is at least one selected from the group consisting of an amide solvent, an ether solvent, an aromatic solvent, a halogen solvent, and a lactone solvent.
 [発明14]
 有機溶媒が、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、ヘキサメチルリン酸トリアミド、N-メチル-2-ピロリドン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、ジフェニルエーテル、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキサン、トリオキサン、ベンゼン、アニソール、ニトロベンゼン、ベンゾニトリル、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、γ-ブチロラクトン、γ-バレロラクトン、ε-バレロラクトン、ε-バレロラクトン、γ-カプロラクトン、ε-カプロラクトンおよびα-メチル-γ-ブチロラクトンからなる群から選ばれる少なくとも一種である、発明10~13の何れかに記載のポリイミド溶液。
[Invention 14]
The organic solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, hexamethylphosphoric triamide, N-methyl-2-pyrrolidone, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, Cyclopentyl methyl ether, diphenyl ether, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxane, trioxane, benzene, anisole, nitrobenzene, benzonitrile, chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, γ -Butyrolactone, γ-valerolactone, ε-valerolactone, ε-valerolactone, γ-caprolactone, ε-caprolactone and α-methyl-γ-butyrolactone The polyimide solution according to any one of Inventions 10 to 13, which is at least one selected from the group.
 [発明15]
 溶液中、ポリイミド樹脂組成物の濃度が5~50質量%である、発明10~14の何れかに記載のポリイミド溶液。
[Invention 15]
The polyimide solution according to any one of Inventions 10 to 14, wherein the concentration of the polyimide resin composition in the solution is 5 to 50% by mass.
 [発明16]
 発明10~15の何れかに記載のポリイミド溶液を支持基材に塗布する工程と、
 塗布したポリイミド溶液を乾燥させて、樹脂膜を得る工程と、
 得られた樹脂膜を加熱処理してポリイミド成形体を得る工程と、を少なくとも含む、ポリイミド成形体の製造方法。
[Invention 16]
Applying the polyimide solution according to any one of Inventions 10 to 15 to a supporting substrate;
Drying the applied polyimide solution to obtain a resin film;
And a step of obtaining a polyimide molded body by subjecting the obtained resin film to a heat treatment.
 [発明17]
 一般式(1)で表される繰り返し単位を50モル%以上含むポリイミドを少なくとも含むポリイミド樹脂組成物、の成形体を、有機エレクトロルミネッセンス用基板として使用する方法。
Figure JPOXMLDOC01-appb-C000018
(式中、R1は、エーテル結合、スルフィド結合、スルホキシ結合、メチレン基又はエチレン基であり、R2およびR3はそれぞれ独立に水素原子、メチル基又はトリフルオロメチル基であり、R4は芳香環を含む4価の有機基であって、以下の何れかの構造で表される。)
Figure JPOXMLDOC01-appb-C000019
[Invention 17]
The method to use the molded object of the polyimide resin composition containing the polyimide which contains 50 mol% or more of repeating units represented by General formula (1) at least as a board | substrate for organic electroluminescence.
Figure JPOXMLDOC01-appb-C000018
(Wherein R 1 is an ether bond, sulfide bond, sulfoxy bond, methylene group or ethylene group, R 2 and R 3 are each independently a hydrogen atom, methyl group or trifluoromethyl group, and R 4 is (A tetravalent organic group containing an aromatic ring, which is represented by any of the following structures)
Figure JPOXMLDOC01-appb-C000019
 [発明18]
 ポリイミド樹脂組成物が、一般式(1)で表される繰り返し単位を有するポリイミドのみからなる、発明17に記載の方法。
[Invention 18]
The method of the invention 17 that a polyimide resin composition consists only of a polyimide which has a repeating unit represented by General formula (1).
 [発明19]
 成形体の、30~250℃における熱膨張係数が50ppm/℃以下である、発明17または18に記載の方法。
[Invention 19]
The method according to invention 17 or 18, wherein the molded body has a thermal expansion coefficient at 30 to 250 ° C. of 50 ppm / ° C. or less.
 [発明20]
 成形体の、420~780nmの波長領域での透過率が60%以上である、発明17~19に記載の方法。
[Invention 20]
The method according to any one of inventions 17 to 19, wherein the molded body has a transmittance of 60% or more in a wavelength region of 420 to 780 nm.
 [発明21]
 R1がメチレン基であり、R2およびR3がそれぞれ水素原子である、発明17~20の何れかに記載の方法。
[Invention 21]
The method according to any one of Inventions 17 to 20, wherein R 1 is a methylene group, and R 2 and R 3 are each a hydrogen atom.
 [発明22]
 R4が式(3)~式(7)の何れかで表される基である、発明21に記載の方法。
Figure JPOXMLDOC01-appb-C000020
[Invention 22]
The method according to invention 21, wherein R 4 is a group represented by any one of formulas (3) to (7).
Figure JPOXMLDOC01-appb-C000020
 [発明23]
 成形体が、
ポリイミド樹脂組成物と、有機溶媒とを含むポリイミド溶液を支持基材に塗布し、
塗布したポリイミド溶液を乾燥させて得られた樹脂膜を加熱処理して得られるポリイミド成形体である、発明17~22に記載の方法。
[Invention 23]
The molded body is
A polyimide solution containing a polyimide resin composition and an organic solvent is applied to a support substrate,
The method according to any one of inventions 17 to 22, which is a polyimide molded body obtained by heat-treating a resin film obtained by drying the applied polyimide solution.
 [発明24]
 有機溶媒が、アミド系溶媒、エーテル系溶媒、芳香族性溶媒、ハロゲン系溶媒およびラクトン系溶媒からなる群から選ばれる少なくとも一種である、発明23に記載の方法。
[Invention 24]
24. The method according to invention 23, wherein the organic solvent is at least one selected from the group consisting of an amide solvent, an ether solvent, an aromatic solvent, a halogen solvent and a lactone solvent.
 [発明25]
 有機溶媒が、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、ヘキサメチルリン酸トリアミド、N-メチル-2-ピロリドン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、ジフェニルエーテル、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキサン、トリオキサン、ベンゼン、アニソール、ニトロベンゼン、ベンゾニトリル、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、γ-ブチロラクトン、γ-バレロラクトン、ε-バレロラクトン、ε-バレロラクトン、γ-カプロラクトン、ε-カプロラクトンおよびα-メチル-γ-ブチロラクトンからなる群から選ばれる少なくとも一種である、発明23または24に記載の方法。
[Invention 25]
The organic solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, hexamethylphosphoric triamide, N-methyl-2-pyrrolidone, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, Cyclopentyl methyl ether, diphenyl ether, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxane, trioxane, benzene, anisole, nitrobenzene, benzonitrile, chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, γ -Butyrolactone, γ-valerolactone, ε-valerolactone, ε-valerolactone, γ-caprolactone, ε-caprolactone and α-methyl-γ-butyrolactone The method according to invention 23 or 24, which is at least one member selected from the group.
 [発明26]
 溶液中、ポリイミド樹脂組成物の濃度が5~50質量%である、発明23~25の何れかに記載の方法。
[Invention 26]
The method according to any one of Inventions 23 to 25, wherein the concentration of the polyimide resin composition in the solution is 5 to 50% by mass.
 本明細書において、有機ELとは、有機物に電圧をかけることで発光する現象を指し、有機EL素子は、赤、緑、青などの色に発光する有機材料を組み合わせることで、白色を含めたあらゆる色の光を発することが可能な発光素子を指す。また、有機ELディスプレイとは、有機EL素子を用いた表示画面装置を指す。 In this specification, the organic EL refers to a phenomenon in which light is emitted by applying a voltage to an organic substance, and the organic EL element includes white by combining organic materials that emit light in colors such as red, green, and blue. A light-emitting element that can emit light of any color. The organic EL display refers to a display screen device using an organic EL element.
 本発明に係るポリイミド樹脂組成物は、極性有機溶剤に対する溶解性が高く、ポリイミド溶液の状態で支持基材に塗布し、支持基材上に成形することができる。成形後のポリイミドは可視光領域における透明性に優れ、耐有機溶剤性、耐熱性、寸法安定性および機械的強度をバランスよく併せ持ち、有機EL用基板として有用である。 The polyimide resin composition according to the present invention has high solubility in a polar organic solvent, and can be applied to a supporting substrate in a polyimide solution state and molded on the supporting substrate. The molded polyimide is excellent in transparency in the visible light region, has a good balance of organic solvent resistance, heat resistance, dimensional stability and mechanical strength, and is useful as a substrate for organic EL.
実施例1、4~5および比較例2~3で作製した基板の光透過スペクトルを示すグラフである。3 is a graph showing light transmission spectra of substrates manufactured in Examples 1, 4 to 5 and Comparative Examples 2 to 3.
 以下、本発明についてさらに詳しく説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail, but the present invention is not limited to this.
 [ポリイミド樹脂組成物]
 本発明に係るポリイミド樹脂組成物(以下、単に「本発明に係る組成物」と呼ぶことがある)は、下記一般式(1)で表される繰り返し単位を有するポリイミドを少なくとも含み、該ポリイミド中、下記一般式(1)で表される繰り返し単位を50モル%以上、好ましくは75モル%以上有し、より好ましくは、下記一般式(1)で表される繰り返し単位のみからなる。
Figure JPOXMLDOC01-appb-C000021
 一般式(1)中、R1は、エーテル結合、スルフィド結合、スルホキシ結合、メチレン基又はエチレン基であり、R2およびR3はそれぞれ独立に水素原子、メチル基又はトリフルオロメチル基であり、R4は芳香環を含む4価の有機基であって、例えば、以下の何れかの構造で表される。
Figure JPOXMLDOC01-appb-C000022
 これらの中でも、以下の4価の有機基が好ましい。
Figure JPOXMLDOC01-appb-C000023
 これらの中でも、以下の4価の有機基がさらに好ましい。
Figure JPOXMLDOC01-appb-C000024
[Polyimide resin composition]
The polyimide resin composition according to the present invention (hereinafter sometimes simply referred to as “the composition according to the present invention”) includes at least a polyimide having a repeating unit represented by the following general formula (1), , Having a repeating unit represented by the following general formula (1) of 50 mol% or more, preferably 75 mol% or more, more preferably comprising only a repeating unit represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000021
In the general formula (1), R 1 is an ether bond, a sulfide bond, a sulfoxy bond, a methylene group or an ethylene group, R 2 and R 3 are each independently a hydrogen atom, a methyl group or a trifluoromethyl group, R 4 is a tetravalent organic group containing an aromatic ring, and is represented by, for example, any one of the following structures.
Figure JPOXMLDOC01-appb-C000022
Among these, the following tetravalent organic groups are preferable.
Figure JPOXMLDOC01-appb-C000023
Among these, the following tetravalent organic groups are more preferable.
Figure JPOXMLDOC01-appb-C000024
 後述するように、一般式(1)中、R1、R2およびR3は、一般式(8)で表されるジアミン化合物中のR1、R2およびR3にそれぞれ由来し、一般式(1)中、R4は、一般式(10)で表される芳香族テトラカルボン酸二無水物中のR4に由来する。 As will be described later, in the general formula (1), R 1 , R 2 and R 3 are derived from R 1 , R 2 and R 3 in the diamine compound represented by the general formula (8), respectively. In (1), R 4 is derived from R 4 in the aromatic tetracarboxylic dianhydride represented by the general formula (10).
 一般式(1)中、R1はメチレン基であることが好ましく、R2およびR3はそれぞれ水素原子であることが好ましい。すなわち、上記一般式(1)で表される繰り返し単位は、下記一般式(2)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 一般式(2)中、R4は一般式(1)中のR4と同義である。
In general formula (1), R 1 is preferably a methylene group, and R 2 and R 3 are each preferably a hydrogen atom. That is, the repeating unit represented by the general formula (1) is preferably a repeating unit represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000025
In the general formula (2), R 4 has the same meaning as R 4 in the general formula (1).
 本発明に係るポリイミドは、上記一般式(1)で表される繰り返し単位以外の繰り返し単位を有していてもよく、該繰り返し単位を50モル%以下有していてもよく、25モル%以下が好ましい。また、上記一般式(1)の繰り返し単位は、ポリイミド中に規則的に配列されていてもよいし、ランダムに存在していてもよい。上記一般式(1)で表される繰り返し単位以外の繰り返し単位としては、以下の何れかで表される繰り返し単位が好ましい例として挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000026
The polyimide according to the present invention may have a repeating unit other than the repeating unit represented by the general formula (1), and may have the repeating unit of 50 mol% or less, or 25 mol% or less. Is preferred. Moreover, the repeating unit of the said General formula (1) may be regularly arranged in the polyimide, and may exist at random. Examples of the repeating unit other than the repeating unit represented by the general formula (1) include, but are not limited to, repeating units represented by any of the following.
Figure JPOXMLDOC01-appb-C000026
 本発明に係るポリイミドの重量平均分子量は、特に制限されるものではないが、下限値は30,000であってもよく、40,000が好ましく、50,000が特に好ましい。上限値は1,000,000であってもよく、500,000が好ましく、200,000が特に好ましい。本発明に係るポリイミドの重量平均分子量は、30,000~1,000,000であってもよく、40,000~500,000が好ましく、50,000~200,000が特に好ましい。重量平均分子量が30,000未満だと、成形後の基板の安定性が悪く、基板割れ等の問題を生じやすく、1,000,000超だと、溶液の粘度が高く、成形するのが困難になることがある。なお、上記重量平均分子量は、ゲル・パーミエーション・クロマトグラフィ(以下、GPCと呼ぶことがある)による標準ポリスチレン換算の値をいう。 The weight average molecular weight of the polyimide according to the present invention is not particularly limited, but the lower limit may be 30,000, preferably 40,000, particularly preferably 50,000. The upper limit may be 1,000,000, preferably 500,000, particularly preferably 200,000. The polyimide according to the present invention may have a weight average molecular weight of 30,000 to 1,000,000, preferably 40,000 to 500,000, particularly preferably 50,000 to 200,000. If the weight average molecular weight is less than 30,000, the stability of the substrate after molding is poor and problems such as substrate cracking are likely to occur, and if it exceeds 1,000,000, the viscosity of the solution is high and difficult to mold. May be. In addition, the said weight average molecular weight says the value of standard polystyrene conversion by a gel permeation chromatography (henceforth GPC).
 本発明に係る組成物は、一般式(1)で表される繰り返し単位を50モル%以上有するポリイミドを少なくとも含み、該ポリイミドのみからなることが好ましい。本発明に係る組成物はこのポリイミド以外にその他の成分を含んでいてもよい。その他の成分を含む場合の含有割合は、組成物中50モル%以下であってもよく、25モル%以下であることが好ましく、10モル%以下であることがさらに好ましい。その他の成分の種類は、特に限定されないが、一般式(1)で表される繰り返し単位を有するポリイミド以外のポリイミドであってもよい。このポリイミドは、特に限定されるものではなく、公知のポリイミドを一種若しくは二種以上適宜選択して使用することができる。このポリイミドは、後述の「他のジアミン化合物」や後述のテトラカルボン酸二無水物を原料として合成されるポリイミドであってもよい。 The composition according to the present invention preferably contains at least a polyimide having 50% by mole or more of the repeating unit represented by the general formula (1), and is composed only of the polyimide. The composition according to the present invention may contain other components in addition to the polyimide. When other components are included, the content may be 50 mol% or less, preferably 25 mol% or less, and more preferably 10 mol% or less. Although the kind of other component is not specifically limited, Polyimide other than the polyimide which has a repeating unit represented by General formula (1) may be sufficient. This polyimide is not particularly limited, and one or more known polyimides can be appropriately selected and used. This polyimide may be a polyimide synthesized using “other diamine compound” described later or a tetracarboxylic dianhydride described later as a raw material.
 [有機EL用基板]
 本発明の有機EL用基板(以下、単に「本発明の基板」と呼ぶことがある)は、本発明に係るポリイミド樹脂組成物の成形体である。このポリイミド成形体は、透明性、耐有機溶剤性、耐熱性、寸法安定性および機械的強度をバランスよく併せ持つため、有機EL用基板として好適に用いることができる。
[Organic EL substrate]
The substrate for organic EL of the present invention (hereinafter sometimes simply referred to as “substrate of the present invention”) is a molded article of the polyimide resin composition according to the present invention. Since this polyimide molded body has a good balance of transparency, organic solvent resistance, heat resistance, dimensional stability and mechanical strength, it can be suitably used as an organic EL substrate.
 従来のポリイミドは、一般的に溶解性が低いため、ポリイミド成形体の作成においては、ポリイミド前駆体であるポリアミック酸の状態で支持基板上に塗布した後、該支持基材上で加熱による脱水環化反応でポリイミド化して、ポリイミド成形体とする。そのため、支持基材上での加熱処理による分子構造の変化が大きく、クラックやハジキが起こり易く、平坦性の高い均一な基板を作製することは容易ではない。一方、本発明の基板の作成においては、ポリイミドの状態で支持基材上に形成することができるので、支持基材上での加熱処理による分子構造の変化が小さく、クラックやハジキが起こり難く、所望の平坦性の高く均一な状態のポリイミド成形体(基板)を得ることが容易である。成形後は透明性に優れ、耐有機溶剤性、耐熱性を併せ持ち、デバイス作製プロセスにおける基板の欠陥も生じ難い。 Since conventional polyimides generally have low solubility, in the preparation of a polyimide molded body, a polyamic acid that is a polyimide precursor is coated on a support substrate, and then dehydrated by heating on the support substrate. A polyimide molded body is obtained by polyimidation by a chemical reaction. Therefore, the change in the molecular structure due to the heat treatment on the supporting base material is large, cracks and repellency are likely to occur, and it is not easy to produce a uniform substrate with high flatness. On the other hand, in the production of the substrate of the present invention, since it can be formed on the support base material in the state of polyimide, the change in the molecular structure by heat treatment on the support base material is small, cracks and repellency hardly occur, It is easy to obtain a polyimide molded body (substrate) having a desired flatness and a uniform state. After molding, it is excellent in transparency, has both organic solvent resistance and heat resistance, and does not easily cause substrate defects in the device manufacturing process.
 本発明の基板は有機ELディスプレイ用に好適に使用できる。中でも、有機ELディスプレイがボトムエミッション構造の場合、本発明の有機EL用基板が好適に使用でき可視光領域の光透過性の高いものが特に好適に使用できる。 The substrate of the present invention can be suitably used for an organic EL display. Among these, when the organic EL display has a bottom emission structure, the organic EL substrate of the present invention can be preferably used, and a material having high light transmittance in the visible light region can be particularly preferably used.
 以下、本発明の基板、すなわち、本発明に係るポリイミド成形体の好ましい物性および特性について説明する。 Hereinafter, preferred physical properties and characteristics of the substrate of the present invention, that is, the polyimide molded body according to the present invention will be described.
 <透明性>
 本発明に係るポリイミド成形体は420nm以上の高波長の全可視光領域、すなわち420~780nmの波長領域で透過率(以下、T%と表記することがある)が60%以上であることが好ましく、本発明に係るポリイミド成形体を有機ELディスプレイ用のボトムエミッション方式の基板に用いる場合は、400nm以上の高波長の全可視光領域、すなわち400~780nmの波長領域で透過率は60%以上であることが特に好ましく、70%以上であることがさらに好ましい。また、カットオフ周波数は380nm以下の短波長であることが好ましい。
<Transparency>
The polyimide molded body according to the present invention preferably has a transmittance (hereinafter sometimes referred to as T%) of 60% or more in a high visible wavelength region of 420 nm or more, that is, in a wavelength region of 420 to 780 nm. When the polyimide molded body according to the present invention is used for a bottom emission type substrate for an organic EL display, the transmittance is 60% or more in a full visible light region having a high wavelength of 400 nm or more, that is, a wavelength region of 400 to 780 nm. Particularly preferred is 70% or more. The cut-off frequency is preferably a short wavelength of 380 nm or less.
 <熱膨張係数(CTE)およびガラス転移温度(Tg)>
 本発明に係るポリイミド成形体の熱膨張係数(以下、CTEと呼ぶことがある)は、30~250℃の範囲において、上限値は50ppm/℃が好ましく、30ppm/℃がより好ましい。下限値は特に限定されないが、0.5ppm/℃が好ましく、1ppm/℃がより好ましい。1ppm/℃以上、50ppm/℃以下が好ましく、5ppm/℃以上、30ppm/℃以下がより好ましい。50ppm/℃より大きいと寸法安定性に劣り、クラック発生または意図せぬ基板の剥離等の問題の原因となることがある。
<Coefficient of thermal expansion (CTE) and glass transition temperature (Tg)>
The upper limit of the thermal expansion coefficient (hereinafter sometimes referred to as CTE) of the polyimide molded body according to the present invention is preferably 30 ppm / ° C., more preferably 30 ppm / ° C. in the range of 30 to 250 ° C. Although a lower limit is not specifically limited, 0.5 ppm / degreeC is preferable and 1 ppm / degreeC is more preferable. 1 ppm / ° C. or higher and 50 ppm / ° C. or lower is preferable, and 5 ppm / ° C. or higher and 30 ppm / ° C. or lower is more preferable. When it is higher than 50 ppm / ° C., the dimensional stability is inferior, which may cause problems such as generation of cracks or unintended substrate peeling.
 本発明に係るポリイミド成形体のガラス転移温度(以下、Tgと呼ぶことがある)は、耐熱性の観点から250℃以上が好ましく、プロセス温度が高くても対応できるという観点から300℃以上がより好ましい。ここで、ガラス転移温度(Tg)は、昇温速度10℃/分の条件で測定したときの値を指す。なお、熱膨張係数(CTE)およびガラス転移温度(Tg)は、熱機械分析(TMA)などで測定することができる。 The glass transition temperature of the polyimide molded body according to the present invention (hereinafter sometimes referred to as Tg) is preferably 250 ° C. or higher from the viewpoint of heat resistance, and more preferably 300 ° C. or higher from the viewpoint of being able to cope with a high process temperature. preferable. Here, the glass transition temperature (Tg) refers to a value when measured under conditions of a heating rate of 10 ° C./min. The thermal expansion coefficient (CTE) and glass transition temperature (Tg) can be measured by thermomechanical analysis (TMA) or the like.
 <熱分解温度(Td5)>
 本発明に係るポリイミド成形体の分解温度は5%重量減少温度(以下、Td5と呼ぶことがある)を指標とし、5%重量減少温度は300℃以上が好ましく、350℃以上がより好ましい。5%重量減少温度が300℃より低いと、デバイス作製プロセスで基板の劣化の原因となる。なお、5%重量減少温度は、熱重量分析装置を用いて熱重量測定を行い、初期の重量に対して5%の重量損失があった温度のことをいう。
<Thermal decomposition temperature (Td 5 )>
The decomposition temperature of the polyimide molded body according to the present invention is 5% weight reduction temperature (hereinafter sometimes referred to as Td 5 ) as an index, and the 5% weight reduction temperature is preferably 300 ° C. or more, more preferably 350 ° C. or more. When the 5% weight loss temperature is lower than 300 ° C., it causes deterioration of the substrate in the device fabrication process. The 5% weight loss temperature refers to a temperature at which a weight loss of 5% with respect to the initial weight was measured by thermogravimetry using a thermogravimetric analyzer.
 <機械物性>
 本発明に係るポリイミド成形体の弾性率(引張弾性率)は、1.0GPa以上、6.0GPa以下が好ましく、1.5GPa以上、5.0GPa以下がより好ましい。弾性率が6.0GPaより大きいと、硬化後に基板が反る傾向にある。
<Mechanical properties>
The elastic modulus (tensile elastic modulus) of the polyimide molded body according to the present invention is preferably 1.0 GPa or more and 6.0 GPa or less, and more preferably 1.5 GPa or more and 5.0 GPa or less. If the elastic modulus is greater than 6.0 GPa, the substrate tends to warp after curing.
 最大応力(引張応力)は、70MPa以上が好ましく、100MPa以上がより好ましい。引張強度が70MPaより小さいと脆く、有機EL用基板として用いた場合に取扱いが難しくなる。 The maximum stress (tensile stress) is preferably 70 MPa or more, and more preferably 100 MPa or more. If the tensile strength is less than 70 MPa, it is fragile and difficult to handle when used as an organic EL substrate.
 破断伸度は、5%以上が好ましく、10%以上がより好ましい。破断伸度が5%より小さいと、ポリイミド成形体を基板として用いた場合の曲げ応力が弱く、基板の信頼性が低下する。 The breaking elongation is preferably 5% or more, and more preferably 10% or more. When the elongation at break is less than 5%, the bending stress when the polyimide molded body is used as the substrate is weak, and the reliability of the substrate is lowered.
 なお、引張弾性率、引張応力、破断伸度等の機械物性は、JIS K 7161(プラスチック-引張特性の求め方-)に準じて、引っ張り試験を行うことで求めることができる。 Note that mechanical properties such as tensile modulus, tensile stress, and elongation at break can be obtained by conducting a tensile test according to JIS K-7161 (Plastics-Determination of tensile properties-).
 <耐有機溶剤性>
 一般的に、有機EL用基板は有機ELディスプレイの製造工程で使用される有機溶剤であるジメチルアセトアミド(DMAc)、テトラヒドロフラン(THF)、アセトン(Acetone)、酢酸エチル(EtOAc)、イソプロパノール(IPA)、トルエン(Toluene)およびヘキサン(Hexane)等の溶剤に浸され難いことが好ましい。後述の実施例からも明らかなように、本発明に係るポリイミドは成形前の状態ではこれらの有機溶剤に対する溶解性に優れるが、成形後の状態、すなわち、本発明の基板においては耐有機溶剤性に優れ、これらの有機溶剤に侵され難い。このことから、本発明に係るポリイミドは、溶液での塗布によって容易に基板成形が可能であり、成形後の基板、すなわち、本発明の基板は、耐有機溶剤性を有する。
<Organic solvent resistance>
Generally, an organic EL substrate is an organic solvent used in an organic EL display manufacturing process, such as dimethylacetamide (DMAc), tetrahydrofuran (THF), acetone (acetone), ethyl acetate (EtOAc), isopropanol (IPA), It is preferable that the film is difficult to be immersed in a solvent such as toluene and hexane. As is clear from the examples described later, the polyimide according to the present invention is excellent in solubility in these organic solvents in the state before molding, but in the state after molding, that is, in the substrate of the present invention, the organic solvent resistance. Excellent in resistance to these organic solvents. Therefore, the polyimide according to the present invention can be easily molded by application with a solution, and the molded substrate, that is, the substrate of the present invention has resistance to organic solvents.
 <膜厚>
 本発明に係るポリイミド成形体の厚さは、特に限定されないが、下限は0.5μmであってもよく、1μmが好ましく、10μmが特に好ましい。上限は500μmであってもよく、100μmが好ましく、80μmが特に好ましい。0.5~500μmであってもよく、1~100μmが好ましく、10~80μmが特に好ましい。
<Film thickness>
The thickness of the polyimide molded body according to the present invention is not particularly limited, but the lower limit may be 0.5 μm, preferably 1 μm, particularly preferably 10 μm. The upper limit may be 500 μm, preferably 100 μm, particularly preferably 80 μm. It may be 0.5 to 500 μm, preferably 1 to 100 μm, particularly preferably 10 to 80 μm.
 [ポリイミドの製造方法]
 本発明に係るポリイミドの製造方法は特に限定されない。例えば、特許文献6に記載のHFIP基を有するポリイミドの合成方法に準じて、本発明に係るポリイミドを製造することができる。具体例として、下記一般式(8)で表されるHFIP基を有するジアミンと、下記一般式(10)で表されるテトラカルボン酸二無水物とを必須原料とし、150℃以上で相互に溶融させる方法が挙げられる。その他の例として、これらの原料化合物を有機溶媒中で縮重合して得られるポリアミック酸を脱水閉環することで本発明に係るポリイミドを製造する方法が挙げられる。この縮重合反応は-20~80℃で行い、前記ジアミンと前記テトラカルボン酸二無水物とをモル比で表して1対1で反応させることが好ましい。
Figure JPOXMLDOC01-appb-C000027
 一般式(8)中、R1およびR2はそれぞれ、一般式(1)中のR1およびR2と同義である。
Figure JPOXMLDOC01-appb-C000028
 一般式(10)中、R4は、一般式(1)中のR4と同義である。
[Production method of polyimide]
The manufacturing method of the polyimide which concerns on this invention is not specifically limited. For example, the polyimide according to the present invention can be produced according to the method for synthesizing a polyimide having an HFIP group described in Patent Document 6. As a specific example, a diamine having an HFIP group represented by the following general formula (8) and a tetracarboxylic dianhydride represented by the following general formula (10) are essential raw materials and melted at 150 ° C. or higher. The method of letting it be mentioned. As another example, there is a method for producing the polyimide according to the present invention by dehydrating and ring-closing polyamic acid obtained by condensation polymerization of these raw material compounds in an organic solvent. This polycondensation reaction is preferably carried out at −20 to 80 ° C., and the diamine and the tetracarboxylic dianhydride are preferably reacted in a one-to-one manner in a molar ratio.
Figure JPOXMLDOC01-appb-C000027
In the general formula (8), R 1 and R 2 each have the same meanings as R 1 and R 2 in the general formula (1).
Figure JPOXMLDOC01-appb-C000028
In the general formula (10), R 4 have the same meanings as in formula (1) R 4 in.
 前記縮重合反応に使用できる有機溶媒は、原料化合物が溶解すれば特に制限されず、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、ヘキサメチルリン酸トリアミド、N-メチル-2-ピロリドン等のアミド系溶媒、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、ジフェニルエーテル、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキサン、トリオキサン等のエーテル系溶媒、ベンゼン、アニソール、ニトロベンゼン、ベンゾニトリル等の芳香族性溶媒、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン等のハロゲン系溶媒、γ-ブチロラクトン、γ-バレロラクトン、ε-バレロラクトン、ε-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトンのラクトン系溶媒を例示することができる。これらの有機溶媒は単独で用いてもよいし、二種以上を併用してもよい。 The organic solvent that can be used in the polycondensation reaction is not particularly limited as long as the raw material compound is dissolved. N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, hexamethylphosphoric triamide, N-methyl Amide solvents such as -2-pyrrolidone, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, diphenyl ether, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxane, trioxane and other ether solvents, benzene, anisole Aromatic solvents such as nitrobenzene and benzonitrile, halogen solvents such as chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, γ-butyrolactone, γ- Examples thereof include lactone solvents such as valerolactone, ε-valerolactone, ε-valerolactone, γ-caprolactone, ε-caprolactone, and α-methyl-γ-butyrolactone. These organic solvents may be used alone or in combination of two or more.
 本発明に係るポリイミドは、縮重合反応で得られたポリアミック酸をさらに脱水閉環させイミド化することで得られる。この脱水閉環反応は、環化を促進する、加熱法、化学法等の条件で行う。加熱法は、重合直後のポリアミック酸を150~250℃の高温加熱でイミド化し、化学法は、室温(0~50℃)でピリジンまたはトリエチルアミン等の塩基と無水酢酸を原料のジアミンに対してそれぞれ2モル当量以上10当量未満を加えることでイミド化し、本発明に係るポリイミドの溶液を得ることができる。この溶液中のポリイミドの濃度は、5質量%以上、50質量%以下が好ましい。5質量%より少ないと工業的に実用的でない。50質量%を超えると溶解し難い。さらに、好ましくは10質量%以上、40質量%以下である。 The polyimide according to the present invention can be obtained by further dehydrating and ring-closing the polyamic acid obtained by the condensation polymerization reaction. This dehydration cyclization reaction is performed under conditions such as a heating method and a chemical method that promote cyclization. In the heating method, the polyamic acid immediately after polymerization is imidized by heating at a high temperature of 150 to 250 ° C., and in the chemical method, a base such as pyridine or triethylamine and acetic anhydride are respectively added to the starting diamine at room temperature (0 to 50 ° C.). The polyimide solution according to the present invention can be obtained by imidization by adding 2 molar equivalents or more and less than 10 equivalents. The concentration of polyimide in this solution is preferably 5% by mass or more and 50% by mass or less. If it is less than 5% by mass, it is not industrially practical. If it exceeds 50% by mass, it is difficult to dissolve. Furthermore, it is preferably 10% by mass or more and 40% by mass or less.
 このようにして得られた本発明に係るポリイミドの溶液は、本発明の基板の製造、すなわち、本発明に係るポリイミド成形体の製造にそのまま用いることができる。また、本発明に係るポリイミドの溶液中に含まれる残存モノマー、低分子量体を除去する目的で、水またはアルコール等の貧溶媒中に、本発明に係るポリイミドの溶液を加え、該ポリイミドを沈殿、単離精製した後、改めて有機溶媒に前記濃度になるように溶解させてポリイミドの溶液を調製し、その調製した溶液を本発明に係るポリイミド成形体の製造に用いてもよい。この有機溶媒としては、本発明に係るポリイミドが溶解すれば特に制限されず、例えば、前記縮重合反応に使用できる有機溶媒で挙げたものと同様の種類の有機溶媒が挙げられ、単独で用いてもよいし、二種以上の混合溶媒を用いてもよい。 The thus obtained polyimide solution according to the present invention can be used as it is for the production of the substrate of the present invention, that is, for the production of the polyimide molded body according to the present invention. In addition, for the purpose of removing residual monomers and low molecular weight substances contained in the polyimide solution according to the present invention, the polyimide solution according to the present invention is added to a poor solvent such as water or alcohol, and the polyimide is precipitated. After isolation and purification, a polyimide solution may be prepared again by dissolving in an organic solvent so as to have the above concentration, and the prepared solution may be used for production of the polyimide molded body according to the present invention. The organic solvent is not particularly limited as long as the polyimide according to the present invention is dissolved, and examples thereof include the same types of organic solvents as mentioned in the organic solvent that can be used for the condensation polymerization reaction. Alternatively, two or more kinds of mixed solvents may be used.
 以下に、本発明に係るポリイミドの製造に用いる原料について詳細に説明する。 Hereinafter, the raw materials used for the production of the polyimide according to the present invention will be described in detail.
 <HFIP基を有するジアミン>
 本発明に係るポリイミドの製造において、原料化合物の一つとして、一般式(8)で表されるHFIP基を有するジアミンを用いる。
<Diamine having HFIP group>
In the production of the polyimide according to the present invention, a diamine having an HFIP group represented by the general formula (8) is used as one of the raw material compounds.
 中でも、原料の入手容易性から、式(9)で表される(以下、HFIP-MDAと呼ぶことがある。)ジアミンが特に好ましい。
Among these, a diamine represented by the formula (9) (hereinafter sometimes referred to as HFIP-MDA) is particularly preferable because of the availability of raw materials.
 有機EL用基板を作製する際に重要となる有機溶剤溶解性、成形性、および、基板とした際の強度、表面特性(撥水性、撥油性)、耐性(耐候性、耐腐食性等)、その他の特性(透明性、低屈折性、低誘電率等)、耐熱性を調整するために、一般式(8)で表されるHFIP基を有するジアミンとそれ以外のジアミン化合物(以下、他のジアミン化合物と呼ぶことがある)を併用してもよい。他のジアミン化合物の使用量としては、全体のジアミンの重量に対して、質量%で表して、5%以上、50%以下であり、好ましくは10%以上、30%以下である。他のジアミン化合物の含有割合が5%未満の場合、機械的強度等の調整の効果が小さくなり、他のジアミン化合物の含有割合が50%より多い場合、耐熱性、寸法安定性、機械的強度、またはフッ素原子由来の物性や耐熱性の低下が生じる恐れがある。 Organic solvent solubility, moldability, strength when used as a substrate, surface characteristics (water repellency, oil repellency), resistance (weather resistance, corrosion resistance, etc.) In order to adjust other properties (transparency, low refractive index, low dielectric constant, etc.) and heat resistance, the diamine having the HFIP group represented by the general formula (8) and other diamine compounds (hereinafter, other (Sometimes called a diamine compound). The amount of the other diamine compound used is 5% or more and 50% or less, preferably 10% or more and 30% or less, expressed as mass% with respect to the weight of the entire diamine. When the content ratio of other diamine compounds is less than 5%, the effect of adjusting the mechanical strength is reduced, and when the content ratio of other diamine compounds is more than 50%, heat resistance, dimensional stability, mechanical strength Or, physical properties derived from fluorine atoms and heat resistance may be deteriorated.
 併用できる他のジアミン化合物を具体的に例示すると、ベンジジン、2,2’-ジメトキシベンジジン、3,3’-ジメトキシベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメチルベンジジン、2,2’- ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,4‐ジアミノ-m-キシレン、2,4-ジアミノ-1,3,5-トリメチルベンゼン、2,3,5,6-テトラメチル-1,4-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(3-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、4,4’-ジアミノベンズアニリド、4,4’-エチレンジアニリン、1,1-ビス(4-アミノフェニル)シクロヘキサン、9,9-ビス(4-アミノフェニル)フルオレン、2,7-ジアミノフルオレン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、または1,3-ビス(1-(4-アミノフェニル)-1-メチルエチル)ベンゼン等を例示することができる。上記ジアミンの芳香環の水素原子の一部がフッ原子、塩素原子、臭素原子、ヨウ素原子、アルキル基、フルオロアルキル基、カルボキシル基、HFIP基、ヒドロキシ基、またはシアノ基で置換されていてもよい。また、これらは、単独で使用してもよく、2種以上併用することもできる。 Specific examples of other diamine compounds that can be used in combination include benzidine, 2,2′-dimethoxybenzidine, 3,3′-dimethoxybenzidine, 2,2′-dimethylbenzidine, 3,3′-dimethylbenzidine, 2,2 '-Bis (trifluoromethyl) benzidine, 3,3'-bis (trifluoromethyl) benzidine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diamino Toluene, 2,4-diamino-m-xylene, 2,4-diamino-1,3,5-trimethylbenzene, 2,3,5,6-tetramethyl-1,4-phenylenediamine, 4,4'- Diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylsulfone, 4, '-Diaminobenzophenone, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 2,2-bis (4- (4-aminophenoxy) Phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4- (3-aminophenoxy) phenyl) propane, 2,2-bis (4- Aminophenyl) hexafluoropropane, 2,2-bis (3-aminophenyl) hexafluoropropane, 2,2-bis (3-amino-) 4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane, 4,4′-diaminobenzanilide, 4,4′-ethylenedianiline, 1,1- Bis (4-aminophenyl) cyclohexane, 9,9-bis (4-aminophenyl) fluorene, 2,7-diaminofluorene, α, α'-bis (4-aminophenyl) -1,4-diisopropylbenzene, or Examples thereof include 1,3-bis (1- (4-aminophenyl) -1-methylethyl) benzene. A part of hydrogen atoms of the aromatic ring of the diamine may be substituted with a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group, a fluoroalkyl group, a carboxyl group, an HFIP group, a hydroxy group, or a cyano group. . Moreover, these may be used independently and can also be used together 2 or more types.
 この中でも、入手の容易性から、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、4‐ジアミノ-m-キシレン、2,4-ジアミノキシレン、2,2-ビス(4-(4-アミノフェニル)ヘキサフルオロプロパン、または2,2’-ビス(トリフルオロメチル)ベンジジンがよく、透明性の低下の少ない2,2-ビス(4-(4-アミノフェニル)ヘキサフルオロプロパンが特に好ましい。 Among these, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 4-diamino-m-xylene, 2,4- Diaminoxylene, 2,2-bis (4- (4-aminophenyl) hexafluoropropane, or 2,2′-bis (trifluoromethyl) benzidine is preferable, and 2,2-bis (4 -(4-Aminophenyl) hexafluoropropane is particularly preferred.
 <テトラカルボン酸二無水物>
 本発明に係るポリイミドの製造において、原料化合物の一つとして、一般式(10)で表されるテトラカルボン酸二無水物を用いる。
<Tetracarboxylic dianhydride>
In the production of the polyimide according to the present invention, a tetracarboxylic dianhydride represented by the general formula (10) is used as one of the raw material compounds.
 具体的には、ベンゼン-1,2,4,5-テトラカルボン酸二無水物(以下、PMDAと呼ぶことがある)、3,6-ビス(トリフルオロメチル)ベンゼン-1,2,4,5-テトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAと呼ぶことがある)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(以下、6FDAと呼ぶことがある)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAと呼ぶことがある)、4,4’-オキシジフタル酸二無水物(以下、ODPAと呼ぶことがある)、チオフェン-2,3,4,5-テトラカルボン酸二無水物等を例示することができる。これらは、単独で使用してもよく、2種以上を併用することもできる。 Specifically, benzene-1,2,4,5-tetracarboxylic dianhydride (hereinafter sometimes referred to as PMDA), 3,6-bis (trifluoromethyl) benzene-1,2,4, 5-tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter sometimes referred to as BPDA), 4,4 ′-(hexafluoroisopropylidene) diphthalic acid Anhydride (hereinafter sometimes referred to as 6FDA), 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (hereinafter sometimes referred to as BTDA), 4,4′-oxydiphthalic dianhydride Product (hereinafter sometimes referred to as ODPA), thiophene-2,3,4,5-tetracarboxylic dianhydride, and the like. These may be used alone or in combination of two or more.
 この中でも、入手の容易性から、PMDA、BPDA、BTDA、6FDAまたはODPAが好ましく、得られるポリイミドの可視光領域の透明性が高いことから、6FDAまたはODPAが特に好ましい。 Among these, PMDA, BPDA, BTDA, 6FDA or ODPA is preferable from the viewpoint of availability, and 6FDA or ODPA is particularly preferable because of transparency of the obtained polyimide in the visible light region.
 <本発明に係るポリイミド成形体の製造方法>
 本発明に係るポリイミド成形体は、本発明に係る組成物を加熱処理することで得られる。具体的には、本発明に係る組成物を含む溶液(本発明に係る組成物を前記有機溶媒に溶解させた溶液)を支持基材に塗布する工程(塗布工程)、溶媒を除去・乾燥する工程(溶媒除去工程)、得られた樹脂膜をさらに加熱処理する工程(加熱工程)を経て得ることができる。
<The manufacturing method of the polyimide molded body which concerns on this invention>
The polyimide molded body according to the present invention can be obtained by heat-treating the composition according to the present invention. Specifically, a step of applying a solution containing the composition according to the present invention (a solution in which the composition according to the present invention is dissolved in the organic solvent) to a supporting substrate (coating step), removing and drying the solvent. It can be obtained through a step (solvent removal step) and a step of further heat-treating the obtained resin film (heating step).
 塗布工程で使用される塗布方法は、特に制限されず、公知の方法を採用することができる。所望の塗布厚や樹脂粘度等に応じて、スピンコーター、バーコーター、ドクターブレードコーター、エアナイフコーター、ロールコーター、ロータリーコーター、フローコーター、ダイコーター、リップコーター等の公知塗布装置を適宜使用できる。 The coating method used in the coating step is not particularly limited, and a known method can be adopted. Depending on the desired coating thickness, resin viscosity, etc., known coating devices such as a spin coater, bar coater, doctor blade coater, air knife coater, roll coater, rotary coater, flow coater, die coater, lip coater and the like can be used as appropriate.
 前記支持基材は、特に限定されない。例えば、ガラス、シリコンウェハ、ステンレス、アルミナ、銅、ニッケル等の無機基材、ポリエチレンテレフタレート、ポリエチレングリコールテレフタレート、ポリエチレングリコールナフタレート、ポリカーボネート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリプロピレン、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリフェニレンスルホン、ポリフェニレンスルフィド等の有機基材を例示することができる。耐熱性の観点から、ガラス、シリコンウェハ、ステンレス等の無機基材を用いることが好ましい。 The support substrate is not particularly limited. For example, glass, silicon wafer, stainless steel, alumina, copper, nickel and other inorganic base materials, polyethylene terephthalate, polyethylene glycol terephthalate, polyethylene glycol naphthalate, polycarbonate, polyimide, polyamideimide, polyetherimide, polyetheretherketone, polypropylene, Examples of the organic base material include polyether sulfone, polyethylene terephthalate, polyphenylene sulfone, and polyphenylene sulfide. From the viewpoint of heat resistance, it is preferable to use an inorganic base material such as glass, a silicon wafer, and stainless steel.
 支持基材に塗布する際、本発明に係る組成物を含む塗膜の厚みは、本発明に係る組成物を含む溶液中の樹脂ポリイミド成分の濃度により適宜調整することができ、通常1μm以上、1000μm以下であり、5μm以上、500μm以下が好ましい。塗膜が1μmより薄いと成形後の基板が十分な強度が得られず、1000μmより厚いと基板のハジキ、ヘコミ、ワレ等の欠陥が発生し、均一な基板が得られない原因となる。 When applied to the support substrate, the thickness of the coating film containing the composition according to the present invention can be appropriately adjusted depending on the concentration of the resin polyimide component in the solution containing the composition according to the present invention, and usually 1 μm or more, 1000 μm or less, preferably 5 μm or more and 500 μm or less. If the coating film is thinner than 1 μm, sufficient strength cannot be obtained for the substrate after molding, and if it is thicker than 1000 μm, defects such as repellency, dents, cracks and the like of the substrate occur, and a uniform substrate cannot be obtained.
 前記塗布工程により塗膜を得た後、さらに塗膜から溶媒を除去・乾燥する溶媒除去工程と、乾燥後の塗膜(樹脂膜)を熱処理し硬化させ、ポリイミド成形体を得る加熱工程を経ることで、本発明に係るポリイミド成形体が得られる。 After obtaining the coating film by the coating process, it further undergoes a solvent removal process for removing and drying the solvent from the coating film, and a heating process for obtaining a polyimide molded body by heat-treating and curing the dried coating film (resin film). Thus, the polyimide molded body according to the present invention is obtained.
 溶媒除去工程で溶媒を除去・乾燥を行う際の温度は、本発明に係る組成物を溶解させた有機溶媒の種類にもよるが、50℃以上、220℃以下が好ましく、80℃以上、200℃以下がより好ましい。50℃より低いと乾燥が不十分となり、220℃より高いと急激な溶媒蒸発が起こりハジキ、ヘコミ、ワレ等の欠陥、均一な膜とならない原因となる。 The temperature at which the solvent is removed and dried in the solvent removal step depends on the type of the organic solvent in which the composition according to the present invention is dissolved, but is preferably 50 ° C or higher and 220 ° C or lower, preferably 80 ° C or higher, 200 ° C. More preferably, it is not higher than ° C. If it is lower than 50 ° C., drying is insufficient, and if it is higher than 220 ° C., rapid solvent evaporation occurs, causing defects such as repellency, dents, cracks, etc., and a uniform film cannot be obtained.
 溶剤除去工程後の加熱工程では、樹脂膜を高温で熱処理することで硬化させて本発明に係るポリイミド成形体を得ることができる。この工程では、溶媒除去工程で取り除くことができなかった残存溶媒の除去、イミド化率の向上、物理特性の改善も期待される。 In the heating step after the solvent removal step, the resin film can be cured by heat treatment at a high temperature to obtain the polyimide molded body according to the present invention. In this step, removal of the residual solvent that could not be removed in the solvent removal step, improvement in the imidization rate, and improvement in physical properties are also expected.
 加熱工程において、樹脂膜を加熱処理し硬化する際の温度は、150℃以上、400℃以下が好ましく、200℃以上、300℃以下がより好ましい。150℃より低いと溶剤が残存する恐れがあり、400℃より高いと、得られた有機EL用基板にひび割れ等の欠陥が発生する原因となる。 In the heating step, the temperature at which the resin film is heated and cured is preferably 150 ° C. or higher and 400 ° C. or lower, more preferably 200 ° C. or higher and 300 ° C. or lower. If the temperature is lower than 150 ° C., the solvent may remain. If the temperature is higher than 400 ° C., defects such as cracks occur in the obtained organic EL substrate.
 加熱工程は、イナートガスオーブンやホットプレート、箱型乾燥機、コンベヤー型乾燥機の装置を用いて行うことが好ましいが、これらの装置の使用に限定されるものではない。 The heating step is preferably performed using an inert gas oven, a hot plate, a box dryer, or a conveyor dryer, but is not limited to the use of these devices.
 加熱工程は、樹脂膜の酸化の防止、溶媒除去の観点から、不活性ガス気流下で行うことが好ましい。不活性ガスとしては、窒素、アルゴン等が挙げられる。不活性ガスの流速は1L/分以上、5L/分以下が望ましい。不活性ガスの流速が1L/分より遅いと溶媒除去・樹脂膜の硬化が不十分となることがあり、5L/分より速いと樹脂膜表面のみの乾燥が生じ割れ等の発生の原因となることがある。 The heating step is preferably performed under an inert gas stream from the viewpoint of preventing oxidation of the resin film and removing the solvent. Examples of the inert gas include nitrogen and argon. The flow rate of the inert gas is preferably 1 L / min or more and 5 L / min or less. If the flow rate of the inert gas is slower than 1 L / min, solvent removal and resin film curing may be insufficient. If it is faster than 5 L / min, only the resin film surface is dried, causing cracks and the like. Sometimes.
 溶媒除去工程、加熱工程における加熱時間は、通常0.5時間以上、3時間以下であり、それぞれの工程を連続若しくは別個に行うこともできる。 The heating time in the solvent removal step and the heating step is usually 0.5 hours or more and 3 hours or less, and each step can be performed continuously or separately.
 本発明の基板は、支持基材から剥離してデバイスを作製することもできるが、新たな支持基板に固定するためには高度な技術が必要であり、工程数も増えることから支持基材から剥離せずに、支持基材に固定されたままの成形体の状態で有機EL用基板とし、次いでデバイスを作製する方が望ましい。 The substrate of the present invention can be peeled off from the support substrate to produce a device, but advanced technology is required to fix it to a new support substrate, and the number of steps increases. It is desirable to produce a device for an organic EL substrate in a state of a molded body that is fixed to a supporting base without being peeled, and then manufacture a device.
 [有機EL素子]
 本発明の有機EL素子は、本発明の基板を少なくとも備えるものであり、それ以外の構成等は特に限定されない。本発明の有機EL素子は、有機発光層と電極層と基板とを少なくとも備える有機EL素子において、該基板として本発明の基板を用いる、有機EL素子であってもよい。
[Organic EL device]
The organic EL element of the present invention includes at least the substrate of the present invention, and other configurations are not particularly limited. The organic EL element of the present invention may be an organic EL element using the substrate of the present invention as the substrate in an organic EL element comprising at least an organic light emitting layer, an electrode layer, and a substrate.
 その他の構成として、本発明の有機EL素子は、正孔注入層、正孔輸送層、正孔ブロック層、電子輸送層、電子注入層、乾燥剤、封止材、金属板、フィルタ層、色変換蛍光体層(CCM層)、パッシベーション層、平坦化層などを備えていてもよい。 As other configurations, the organic EL device of the present invention includes a hole injection layer, a hole transport layer, a hole block layer, an electron transport layer, an electron injection layer, a desiccant, a sealing material, a metal plate, a filter layer, and a color. A conversion phosphor layer (CCM layer), a passivation layer, a planarization layer, and the like may be provided.
 [有機ELディスプレイ]
 本発明の有機ELディスプレイは、本発明の基板を少なくとも備えるものであり、それ以外の構成等は特に限定されない。本発明の有機ELディスプレイは、本発明の有機EL素子を備えていてもよい。
[Organic EL display]
The organic EL display of the present invention is provided with at least the substrate of the present invention, and other configurations are not particularly limited. The organic EL display of the present invention may include the organic EL element of the present invention.
 以下、実施例により本発明を詳細に説明するが、本発明はかかる実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to such examples.
 初めに、基板の評価のための測定項目およびその測定および評価方法について説明する。 First, measurement items for substrate evaluation, and the measurement and evaluation methods will be described.
 [測定項目]
 <透明性>
 透明性は、株式会社島津製作所製、紫外可視近赤外分光光度計(UV-VIS-NIR SPECTROMETER、機種名‘UV-3150’)で測定した。また、透過率が1%以下となる波長の最大値をカットオフ波長(nm)とした。
[Measurement item]
<Transparency>
The transparency was measured with an ultraviolet-visible near-infrared spectrophotometer (UV-VIS-NIR SPECTROMETER, model name “UV-3150”) manufactured by Shimadzu Corporation. Further, the maximum value of the wavelength at which the transmittance was 1% or less was defined as the cutoff wavelength (nm).
 <熱膨張係数及びガラス転移温度>
 熱膨張係数及びガラス転移温度(以下、Tgと呼ぶことがある)は、株式会社リガク製、機種名‘Thermo Plus EvoII TMA8310’を用いた引張り試験を行い求めた。
<Thermal expansion coefficient and glass transition temperature>
The thermal expansion coefficient and the glass transition temperature (hereinafter sometimes referred to as Tg) were obtained by conducting a tensile test using a model name “Thermo Plus EvoII TMA8310” manufactured by Rigaku Corporation.
 <熱分解温度>
 熱分解温度は株式会社リガク社製、機種名‘RIGAKU Thermo Plus TG8310’で測定を行った。
<Thermal decomposition temperature>
The thermal decomposition temperature was measured by Rigaku Corporation, model name “RIGAKU Thermo Plus TG8310”.
 <機械物性>
 弾性率、応力、破断伸度等の機械物性は、株式会社島津製作所製の精密万能試験機オートグラフ‘Autograph AG-IS’によって引っ張り試験を行い求めた。
<Mechanical properties>
Mechanical properties such as elastic modulus, stress, and elongation at break were determined by conducting a tensile test with an autograph 'Autograph AG-IS', a precision universal testing machine manufactured by Shimadzu Corporation.
 <溶剤溶解性>
 溶剤溶解性は東京理化器械株式会社製の恒温振盪水槽である機種名‘UNI THERMO SHAKER NTS-1300’を用いて、水浴で恒温しながら100rpmの振盪スピードで下記の時間振動撹拌した後、目視による固形物のありなしで確認した。30℃で1時間以内に溶解するものを良好、70℃で1時間以内に溶解するものを可溶、70℃で1時間以内に溶解しないものを不溶とした。
<Solvent solubility>
Solvent solubility was determined by visual agitation using the model name 'UNI THERMO SHAKER NTS-1300', a constant temperature shaking water tank manufactured by Tokyo Rika Kikai Co., Ltd., with constant shaking in a water bath at a shaking speed of 100 rpm for the following time. It confirmed with and without the solid substance. Those that dissolve within 1 hour at 30 ° C. are good, those that dissolve within 1 hour at 70 ° C. are soluble, and those that do not dissolve within 1 hour at 70 ° C. are insoluble.
 [ポリイミド溶液の調製と基板の作製]
 以下の[実施例1~5]および[比較例1~3]により、ポリイミド基板(ポリイミドの成形体)の製法について説明する。なお、本製法においては、機械的強度等の物性を測定するために支持基材からポリイミド基板の剥離を行っているが、剥離を行わずにそのまま基板上に直接デバイスを作製することが可能である。
[Preparation of polyimide solution and preparation of substrate]
The following [Examples 1 to 5] and [Comparative Examples 1 to 3] will be described with respect to a method for producing a polyimide substrate (polyimide molded body). In this manufacturing method, the polyimide substrate is peeled off from the support base material in order to measure physical properties such as mechanical strength. However, it is possible to produce a device directly on the substrate without peeling. is there.
 [実施例1]
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、それぞれの化学構造を下記反応式に示すHFIP-MDA、58.3g(110mmol)、6FDA、48.9g(110mmol)、ジメチルアセトアミド(以下、DMAcと呼ぶことがある)、220gを加え、窒素雰囲気下、20℃で攪拌し、以下に示す反応を行った。得られた反応液にピリジン、34.8g(440mmol)、無水酢酸、44.9g(440mmol)を順に加え、さらに24時間攪拌し、イミド化を行った後、加圧濾過することでポリイミドのDMAc溶液を作製した。反応液中のポリイミド(A)のDMAc溶液のゲル・パーミエーション・クロマトグラフィ(以下GPCと呼ぶことがある。東ソー株式会社製、機種名‘HLC-8320GPC’、カラム:TSKgel SuperHZM-H、溶媒:テトラヒドロフラン(以下、THFと呼ぶことがある)の測定結果は、Mw=96400、Mw/Mn=1.98であった。ポリイミド(A)のDMAc溶液の一部を溶剤溶解性試験用サンプル、残りをポリイミド(A)基板(ポリイミド(A)の成形体)の作製に用いた。
Figure JPOXMLDOC01-appb-C000030
[Example 1]
In a 500 mL three-necked flask equipped with a nitrogen inlet tube and a stirring blade, HFIP-MDA, 58.3 g (110 mmol), 6FDA, 48.9 g (110 mmol), dimethylacetamide (hereinafter referred to as the chemical structure) shown in the following reaction formula, are shown. 220g), and the mixture was stirred at 20 ° C. under a nitrogen atmosphere to carry out the following reaction. To the obtained reaction solution, pyridine, 34.8 g (440 mmol), acetic anhydride, 44.9 g (440 mmol) were added in this order, and the mixture was further stirred for 24 hours. A solution was made. Gel permeation chromatography of DMAc solution of polyimide (A) in the reaction solution (hereinafter sometimes referred to as GPC. Model name “HLC-8320GPC” manufactured by Tosoh Corporation, column: TSKgel SuperHZM-H, solvent: tetrahydrofuran The measurement results (hereinafter sometimes referred to as THF) were Mw = 96400 and Mw / Mn = 1.98 A part of the DMAc solution of polyimide (A) was used as a solvent solubility test sample, and the rest was used as a sample. It was used for production of a polyimide (A) substrate (molded body of polyimide (A)).
Figure JPOXMLDOC01-appb-C000030
 ポリイミド(A)基板(ポリイミド(A)の成形体)は、ポリイミド(A)のDMAc溶液をガラス基材に塗布後、乾燥、加熱処理することで作製した。まず、ポリイミド(A)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用いて、10秒かけて回転速度600rpmに上昇させた後、回転速度600rpmで10秒間保持し、ポリイミド(A)のDMAc溶液を均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して、溶媒を除去し、さらに250℃で2時間熱処理した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、ポリイミド(A)基板(ポリイミド(A)の成形体)を得た。膜厚計(株式会社ニコン製、機種名‘DIGIMICRO MH-15’)で厚みを測定したところ、50μmであった。 A polyimide (A) substrate (polyimide (A) molded body) was prepared by applying a DMAc solution of polyimide (A) to a glass substrate, followed by drying and heat treatment. First, a DMAc solution of polyimide (A) is dropped on a glass substrate, and the spin coater is used to raise the rotation speed to 600 rpm over 10 seconds, and then held at the rotation speed of 600 rpm for 10 seconds. The DMAc solution was applied uniformly. After drying at 180 ° C. for 30 minutes in a nitrogen atmosphere to remove the solvent, and further heat-treating at 250 ° C. for 2 hours, cooling and peeling the polyimide film from the glass substrate, a polyimide (A) substrate (polyimide ( A shaped product A) was obtained. When the thickness was measured with a film thickness meter (manufactured by Nikon Corporation, model name “DIGIMICRO MH-15”), it was 50 μm.
 溶剤溶解性試験用サンプル(実施例1における沈殿物)は、前記のポリイミド(A)のDMAc溶液、30gを水、90g、メタノール、30gの混合溶液に徐々に注ぎ、ポリイミド(A)を沈殿させたものを、窒素雰囲気下100℃で8時間乾燥して作製した。 The solvent solubility test sample (precipitate in Example 1) was prepared by slowly pouring the polyimide (A) DMAc solution, 30 g, into a mixed solution of water, 90 g, methanol, 30 g to precipitate the polyimide (A). Was dried at 100 ° C. for 8 hours in a nitrogen atmosphere.
 [実施例2]
 窒素導入管および攪拌翼を備えた500mL三口フラスコに、それぞれの化学構造を下記反応式に示すHFIP-MDA、58.3g(110mmol)、BPDA、32.4g(110mmol)、溶剤としてのDMAc、220gを加え、窒素雰囲気下、20℃で攪拌し、以下に示す反応を行った。得られた反応液にピリジン34.8g(440mmol)、無水酢酸44.9g(440mmol)を順に加え、さらに24時間攪拌し、イミド化を行った後、加圧濾過することで、反応式中のポリイミド(B)のDMAc溶液を調製した。ポリイミド(B)のDMAc溶液の前記GPCでの分子量の測定結果は、Mw=91600、Mw/Mn=1.84であった。ポリイミド(B)のDMAc溶液の一部を溶剤溶解性試験用サンプル、残りをポリイミド(B)基板(ポリイミド(B)の成形体)の作製に用いた。
Figure JPOXMLDOC01-appb-C000031
[Example 2]
In a 500 mL three-necked flask equipped with a nitrogen introduction tube and a stirring blade, each chemical structure is represented by the following reaction formula: HFIP-MDA, 58.3 g (110 mmol), BPDA, 32.4 g (110 mmol), DMAc as a solvent, 220 g And stirred at 20 ° C. in a nitrogen atmosphere to carry out the reaction shown below. To the obtained reaction solution, 34.8 g (440 mmol) of pyridine and 44.9 g (440 mmol) of acetic anhydride were added in this order, and the mixture was further stirred for 24 hours, imidized, and then filtered under pressure. A DMAc solution of polyimide (B) was prepared. The molecular weight measurement results of the DMAc solution of polyimide (B) by GPC were Mw = 91600 and Mw / Mn = 1.84. A part of the DMAc solution of polyimide (B) was used for the preparation of a solvent solubility test sample, and the rest was used for preparation of a polyimide (B) substrate (molded body of polyimide (B)).
Figure JPOXMLDOC01-appb-C000031
 ポリイミド(B)基板(ポリイミド(B)の成形体)は、ポリイミド(B)のDMAc溶液をガラス基材に塗布後、乾燥、加熱処理することで作製した。まず、ポリイミド(B)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用いて10秒かけて回転速度800rpmに上昇させた後、回転速度800rpmで10秒間保持し、ポリイミド(B)のDMAc溶液を均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、さらに200℃で2時間熱処理した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、ポリイミド(B)基板(ポリイミド(B)の成形体)を得た。前記膜厚計で厚みを測定したところ、50μmであった。 The polyimide (B) substrate (molded body of polyimide (B)) was prepared by applying a DMAc solution of polyimide (B) to a glass substrate, followed by drying and heat treatment. First, a DMAc solution of polyimide (B) was dropped on a glass substrate, and the rotation speed was increased to 800 rpm over 10 seconds using a spin coater, and then held at a rotation speed of 800 rpm for 10 seconds. The solution was applied uniformly. In a nitrogen atmosphere, the solvent is removed by drying at 180 ° C. for 30 minutes, and after further heat treatment at 200 ° C. for 2 hours, the substrate is cooled, and the polyimide film is peeled off from the glass substrate to obtain a polyimide (B) substrate (polyimide (B ) Was obtained. It was 50 micrometers when thickness was measured with the said film thickness meter.
 溶剤溶解性試験用サンプル(実施例2における沈殿物)は、前記のポリイミド(B)のDMAc溶液、30gを水、90g、メタノール、30gの混合溶液に徐々に注ぎ、ポリイミド(B)を沈殿させたものを、窒素雰囲気下100℃で8時間乾燥して作製した。 The solvent solubility test sample (precipitate in Example 2) was prepared by slowly pouring the above-mentioned polyimide (B) in DMAc solution, 30 g into a mixed solution of water, 90 g, methanol and 30 g to precipitate polyimide (B). Was dried at 100 ° C. for 8 hours in a nitrogen atmosphere.
 [実施例3]
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、それぞれの化学構造を下記反応式に示すHFIP-MDA、58.3g(110mmol)、ODPA、34.1g(110mmol)、DMAc、160gを加え、窒素雰囲気下、20℃で攪拌し、以下に示す反応を行った。得られた反応液にピリジン、34.8g(440mmol)、無水酢酸、44.9g(440mmol)を順に加え、さらに24時間攪拌し、イミド化を行った。その後、加圧濾過することでポリイミド(C)のDMAc溶液を作製した。反応液中のポリイミド(C)のDMAc溶液の前記GPCでの分子量の測定結果は、Mw=82300、Mw/Mn=2.08であった。ポリイミド(C)のDMAc溶液の一部を溶剤溶解性試験用サンプル、残りをポリイミド(C)基板(ポリイミド(C)の成形体)の作製に用いた。
Figure JPOXMLDOC01-appb-C000032
[Example 3]
In a three-necked flask with a capacity of 500 mL equipped with a nitrogen introduction tube and a stirring blade, HFIP-MDA, 58.3 g (110 mmol), ODPA, 34.1 g (110 mmol), DMAc, 160 g, whose chemical structures are shown in the following reaction formula, were added. In addition, the mixture was stirred at 20 ° C. in a nitrogen atmosphere to carry out the following reaction. Pyridine, 34.8 g (440 mmol), acetic anhydride, 44.9 g (440 mmol) were sequentially added to the resulting reaction solution, and the mixture was further stirred for 24 hours to perform imidization. Then, the DMAc solution of polyimide (C) was produced by carrying out pressure filtration. The measurement results of the molecular weight by GPC of the DMAc solution of polyimide (C) in the reaction solution were Mw = 82300 and Mw / Mn = 2.08. Part of the DMAc solution of polyimide (C) was used for the preparation of a solvent solubility test sample, and the rest was used for the preparation of a polyimide (C) substrate (polyimide (C) molded body).
Figure JPOXMLDOC01-appb-C000032
 ポリイミド(C)基板(ポリイミド(C)の成形体)は、ポリイミド(C)のDMAc溶液をガラス基材に塗布後、乾燥、加熱処理して作製した。まず、ポリイミド(C)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用いて、10秒かけて回転速度700rpmに上昇させた後、回転速度700rpmで10秒保持し、ポリイミド(C)のDMAc溶液を均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して、溶媒を除去し、さらに200℃で2時間熱処理した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、ポリイミド(C)基板(ポリイミド(C)の成形体)を得た。前記膜厚計で厚さを測定したところ、49μmであった。 The polyimide (C) substrate (molded body of polyimide (C)) was prepared by applying a DMAc solution of polyimide (C) to a glass substrate, followed by drying and heat treatment. First, a DMAc solution of polyimide (C) is hung on a glass substrate, and the spin coater is used to increase the rotation speed to 700 rpm over 10 seconds, and then the rotation speed is maintained at 700 rpm for 10 seconds. The DMAc solution was applied uniformly. After drying at 180 ° C. for 30 minutes in a nitrogen atmosphere, removing the solvent, and further heat-treating at 200 ° C. for 2 hours, cooling, and removing the polyimide film from the glass substrate, a polyimide (C) substrate (polyimide ( C) was obtained. It was 49 micrometers when thickness was measured with the said film thickness meter.
 溶剤溶解性試験用サンプル(実施例3における沈殿物)は、前記のポリイミド(C)のDMAc溶液、30gを水、90g、メタノール、30gの混合溶液に徐々に注ぎ、ポリイミド(C)を沈殿させたものを、窒素雰囲気下100℃で8時間乾燥して作製した。 The solvent solubility test sample (precipitate in Example 3) was prepared by slowly pouring the polyimide (C) DMAc solution, 30 g, into a mixed solution of water, 90 g, methanol, and 30 g to precipitate the polyimide (C). Was dried at 100 ° C. for 8 hours in a nitrogen atmosphere.
 [比較例1]
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、それぞれの化学構造を下記反応式に示すHFIP-MDA、58.3g(110mmol)、DSDA、39.1g(110mmol)、DMAc、220gを加え、窒素雰囲気下、20℃で攪拌し、以下に示す反応を行った。得られた反応液にピリジン、34.8g(440mmol)、無水酢酸、44.9g(440mmol)を順に加え、さらに24時間攪拌し、イミド化を行った。その後、加圧濾過することでポリイミド(D)のDMAc溶液を作製した。反応液中のポリイミド(D)のDMAc溶液の前記GPCでの分子量の測定結果は、Mw=85100、Mw/Mn=1.97であった。ポリイミド(D)のDMAc溶液の一部を溶剤溶解性試験用サンプル、残りをポリイミド(D)基板(ポリイミド(D)の成形体)の作製に用いた。
Figure JPOXMLDOC01-appb-C000033
[Comparative Example 1]
HFIP-MDA, 58.3 g (110 mmol), DSDA, 39.1 g (110 mmol), DMAc, 220 g, whose chemical structures are shown in the following reaction formula, were added to a 500 mL three-necked flask equipped with a nitrogen introduction tube and a stirring blade. In addition, the mixture was stirred at 20 ° C. in a nitrogen atmosphere to carry out the following reaction. Pyridine, 34.8 g (440 mmol), acetic anhydride, 44.9 g (440 mmol) were sequentially added to the resulting reaction solution, and the mixture was further stirred for 24 hours to perform imidization. Then, the DMAc solution of polyimide (D) was produced by carrying out pressure filtration. The measurement results of the molecular weight by GPC of the DMAc solution of polyimide (D) in the reaction solution were Mw = 85100 and Mw / Mn = 1.97. A part of the DMAc solution of polyimide (D) was used for the preparation of a solvent solubility test sample, and the rest was used for preparation of a polyimide (D) substrate (molded body of polyimide (D)).
Figure JPOXMLDOC01-appb-C000033
 ポリイミド(D)基板(ポリイミド(D)の成形体)は、ポリイミド(D)のDMAc溶液をガラス基材に塗布後、乾燥、加熱処理することで作製した。まず、ポリイミド(D)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用いて、10秒かけて回転速度400rpmに上昇させた後、回転速度300rpmで40秒保持し、ポリイミド(D)のDMAc溶液を均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、さらに200℃で2時間熱処理した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、ポリイミド(D)基板(ポリイミド(D)の成形体)を得た。前記膜厚計で厚さを測定したところ、51μmであった。 A polyimide (D) substrate (polyimide (D) molded body) was prepared by applying a DMAc solution of polyimide (D) to a glass substrate, followed by drying and heat treatment. First, a DMAc solution of polyimide (D) is hung on a glass substrate, and the spin coater is used to increase the rotation speed to 400 rpm over 10 seconds, and then held at a rotation speed of 300 rpm for 40 seconds. The DMAc solution was applied uniformly. In a nitrogen atmosphere, the solvent is removed by drying at 180 ° C. for 30 minutes, and after further heat treatment at 200 ° C. for 2 hours, the polyimide film is removed from the glass substrate by cooling and removing the polyimide film from the glass substrate (polyimide (D ) Was obtained. It was 51 micrometers when thickness was measured with the said film thickness meter.
 溶剤溶解性試験用サンプル(実施例4における沈殿物)は、前記のポリイミド(D)のDMAc溶液、30gを水、90g、メタノール、30gの混合溶液に徐々に注ぎ、ポリイミド(D)を沈殿させたものを窒素雰囲気下100℃で8時間乾燥して作製した。 The solvent solubility test sample (precipitate in Example 4) was prepared by gradually pouring the above-mentioned polyimide (D) DMAc solution, 30 g, into a mixed solution of water, 90 g, methanol and 30 g to precipitate the polyimide (D). This was prepared by drying at 100 ° C. for 8 hours in a nitrogen atmosphere.
 [実施例4]
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、それぞれの化学構造を下記反応式に示すHFIP-MDA、43.8g(82.5mmol)、MDA、5.5g(27.5mmol)、6FDA、48.9g(110mmol)、DMAc、220gを加え、窒素雰囲気下、20℃で攪拌し、以下に示す反応を行った。得られた反応液にピリジン、34.8g(440mmol)、無水酢酸、44.9g(440mmol)を順に加え、さらに24時間攪拌し、イミド化を行った後、加圧濾過することでポリイミドのDMAc溶液を作製した。反応液中のポリイミド(E)のDMAc溶液の前記GPCでの分子量の測定結果は、Mw=102800、Mw/Mn=1.83であった。
Figure JPOXMLDOC01-appb-C000034
[Example 4]
In a 500 mL three-necked flask equipped with a nitrogen inlet tube and a stirring blade, HFIP-MDA having the chemical structure shown in the following reaction formula, 43.8 g (82.5 mmol), MDA, 5.5 g (27.5 mmol), 6FDA, 48.9 g (110 mmol), and DMAc, 220 g were added, and the mixture was stirred at 20 ° C. in a nitrogen atmosphere to carry out the following reaction. To the obtained reaction solution, pyridine, 34.8 g (440 mmol), acetic anhydride, 44.9 g (440 mmol) were added in this order, and the mixture was further stirred for 24 hours. A solution was made. The measurement results of the molecular weight by GPC of the DMAc solution of polyimide (E) in the reaction solution were Mw = 102800 and Mw / Mn = 1.83.
Figure JPOXMLDOC01-appb-C000034
 ポリイミド(E)基板(ポリイミド(E)の成形体)は、ポリイミド(E)のDMAc溶液をガラス基材に塗布後、乾燥、加熱処理することで作製した。まず、ポリイミド(E)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用いて、10秒かけて回転速度550rpmに上昇させた後、回転速度550rpmで10秒間保持し、ポリイミド(E)のDMAc溶液を均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、さらに250℃で2時間熱処理した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、ポリイミド(E)基板(ポリイミド(E)の成形体)を得た。前記膜厚計で厚みを測定したところ、49μmであった。 A polyimide (E) substrate (polyimide (E) molded body) was prepared by applying a DMAc solution of polyimide (E) to a glass substrate, followed by drying and heat treatment. First, a DMAc solution of polyimide (E) is hung on a glass substrate, and the spin coater is used to raise the rotation speed to 550 rpm over 10 seconds, and then held at the rotation speed of 550 rpm for 10 seconds. The DMAc solution was applied uniformly. In a nitrogen atmosphere, the solvent is removed by drying at 180 ° C. for 30 minutes, and after further heat treatment at 250 ° C. for 2 hours, the polyimide film is removed from the glass substrate by cooling and removing the polyimide film from the glass substrate (polyimide (E ) Was obtained. It was 49 micrometers when thickness was measured with the said film thickness meter.
 [実施例5]
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、それぞれの化学構造を下記反応式に示すHFIP-MDA、29.2g(55.0mmol)、MDA、10.9g(55.0mmol)、6FDA、48.9g(110mmol)、DMAc,220gを加え、窒素雰囲気下、20℃で攪拌し、以下に示す反応を行った。得られた反応液にピリジン、34.8g(440mmol)、無水酢酸、44.9g(440mmol)を順に加え、さらに24時間攪拌し、イミド化を行った後、加圧濾過することでポリイミドのDMAc溶液を作製した。反応液中のポリイミド(F)のDMAc溶液の前記GPCでの分子量の測定結果は、Mw=77800、Mw/Mn=1.65であった。
Figure JPOXMLDOC01-appb-C000035
[Example 5]
In a 500 mL three-neck flask equipped with a nitrogen introduction tube and a stirring blade, HFIP-MDA, 29.2 g (55.0 mmol), MDA, 10.9 g (55.0 mmol), whose chemical structure is shown in the following reaction formula, 6FDA, 48.9 g (110 mmol) and DMAc, 220 g were added, and the mixture was stirred at 20 ° C. in a nitrogen atmosphere to carry out the following reaction. To the obtained reaction solution, pyridine, 34.8 g (440 mmol), acetic anhydride, 44.9 g (440 mmol) were added in this order, and the mixture was further stirred for 24 hours. A solution was made. The measurement results of the molecular weight of the DMAc solution of polyimide (F) in the reaction solution by GPC were Mw = 77800 and Mw / Mn = 1.65.
Figure JPOXMLDOC01-appb-C000035
 ポリイミド(F)基板(ポリイミド(F)の成形体)は、ポリイミド(F)のDMAc溶液をガラス基材に塗布後、乾燥、加熱処理することで作製した。まず、ポリイミド(F)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用いて、10秒かけて回転速度650rpmに上昇させた後、回転速度650rpmで10秒間保持し、ポリイミド(F)のDMAc溶液を均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、さらに250℃で2時間熱処理した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、ポリイミド(F)基板(ポリイミド(F)の成形体)を得た。前記膜厚計で膜厚を測定したところ、38μmであった。 A polyimide (F) substrate (polyimide (F) molded body) was prepared by applying a DMAc solution of polyimide (F) to a glass substrate, followed by drying and heat treatment. First, a DMAc solution of polyimide (F) was dropped on a glass substrate, and the spin coater was used to raise the rotation speed to 650 rpm over 10 seconds, and then held at the rotation speed of 650 rpm for 10 seconds. The DMAc solution was applied uniformly. In a nitrogen atmosphere, the solvent was removed by drying at 180 ° C. for 30 minutes, and after further heat treatment at 250 ° C. for 2 hours, the polyimide film was removed from the glass substrate by cooling and removing the polyimide film from the glass substrate (polyimide (F ) Was obtained. When the film thickness was measured with the film thickness meter, it was 38 μm.
 [比較例2]
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、それぞれの化学構造を下記反応式に示すHFIP-MDA、14.6g(27.5mmol)、MDA、16.4g(82.5mmol)、6FDA、48.9g(110mmol)、DMAc、220gを加え、窒素雰囲気下、20℃で攪拌し、以下に示す反応を行った。得られた反応液にピリジン、34.8g(440mmol)、無水酢酸、44.9g(440mmol)を順に加え、さらに24時間攪拌し、イミド化を行った後、加圧濾過することでポリイミドのDMAc溶液を作製した。反応液中のポリイミド(G)のDMAc溶液の前記GPCでの分子量の測定結果は、Mw=55800、Mw/Mn=1.74であった。
Figure JPOXMLDOC01-appb-C000036
[Comparative Example 2]
In a 500 mL three-necked flask equipped with a nitrogen introduction tube and a stirring blade, each chemical structure of HFIP-MDA shown in the following reaction formula, 14.6 g (27.5 mmol), MDA, 16.4 g (82.5 mmol), 6FDA, 48.9 g (110 mmol), and DMAc, 220 g were added, and the mixture was stirred at 20 ° C. in a nitrogen atmosphere to carry out the following reaction. To the obtained reaction solution, pyridine, 34.8 g (440 mmol), acetic anhydride, 44.9 g (440 mmol) were added in this order, and the mixture was further stirred for 24 hours. A solution was made. The molecular weight measurement results of the DMAc solution of polyimide (G) in the reaction solution by GPC were Mw = 55800 and Mw / Mn = 1.74.
Figure JPOXMLDOC01-appb-C000036
 ポリイミド(G)基板(ポリイミド(G)の成形体)は、ポリイミド(G)のDMAc溶液をガラス基材に塗布後、乾燥、加熱処理することで作製した。まず、ポリイミド(G)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用いて、10秒かけて回転速度400rpmに上昇させた後、回転速度400rpmで10秒間保持し、ポリイミド(G)のDMAc溶液を均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、さらに250℃で2時間熱処理した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、ポリイミド(G)基板(ポリイミド(G)の成形体)を得た。前記膜厚計で厚みを測定したところ、52μmであった。 A polyimide (G) substrate (polyimide (G) molded body) was prepared by applying a DMAc solution of polyimide (G) to a glass substrate, followed by drying and heat treatment. First, a DMAc solution of polyimide (G) was dropped on a glass substrate, and the spin coater was used to raise the rotation speed to 400 rpm over 10 seconds, and then held at the rotation speed of 400 rpm for 10 seconds. The DMAc solution was applied uniformly. In a nitrogen atmosphere, the solvent was removed by drying at 180 ° C. for 30 minutes, followed by heat treatment at 250 ° C. for 2 hours, followed by cooling and peeling off the polyimide film from the glass substrate to obtain a polyimide (G) substrate (polyimide (G ) Was obtained. It was 52 micrometers when thickness was measured with the said film thickness meter.
 [比較例3]
 窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、それぞれの化学構造を下記反応式に示すMDA、21.8(110mmol)、6FDA、48.9g(110mmol)、DMAc、220gを加え、窒素雰囲気下、20℃で攪拌し、以下に示す反応を行った。得られた反応液にピリジン、34.8g(440mmol)、無水酢酸、44.9g(440mmol)を順に加え、さらに24時間攪拌し、イミド化を行った後、加圧濾過することでポリイミド(H)のDMAc溶液を作製した。反応液中のポリイミド(H)のDMAc溶液の前記GPCでの分子量の測定結果は、Mw=83800、Mw/Mn=1.73であった。
Figure JPOXMLDOC01-appb-C000037
[Comparative Example 3]
MDA, 21.8 (110 mmol), 6FDA, 48.9 g (110 mmol), DMAc, 220 g, whose chemical structures are shown in the following reaction formula, were added to a 500 mL three-necked flask equipped with a nitrogen introduction tube and a stirring blade, The mixture was stirred at 20 ° C. in a nitrogen atmosphere, and the following reaction was performed. To the obtained reaction solution, pyridine, 34.8 g (440 mmol), acetic anhydride, 44.9 g (440 mmol) were sequentially added, and the mixture was further stirred for 24 hours, imidized, and then subjected to pressure filtration to obtain polyimide (H ) DMAc solution. The measurement results of the molecular weight of the DMAc solution of polyimide (H) in the reaction solution by GPC were Mw = 83800 and Mw / Mn = 1.73.
Figure JPOXMLDOC01-appb-C000037
 ポリイミド(H)基板(ポリイミド(H)の成形体)は、ポリイミド(H)のDMAc溶液をガラス基材に塗布後、乾燥、加熱処理することで作製した。まず、ポリイミド(H)のDMAc溶液をガラス基材上に垂らし、スピンコーターを用いて、10秒かけて回転速度700rpmに上昇させた後、回転速度700rpmで10秒間保持し、ポリイミド(H)のDMAc溶液を均一に塗布した。窒素雰囲気下、180℃で30分間乾燥して溶媒を除去し、さらに250℃で2時間熱処理した後、冷却し、ガラス基材からポリイミド膜を剥がすことで、ポリイミド(H)基板(ポリイミド(H)の成形体)を得た。前記膜厚計で厚みを測定したところ、51μmであった。 A polyimide (H) substrate (polyimide (H) molded body) was prepared by applying a DMAc solution of polyimide (H) to a glass substrate, followed by drying and heat treatment. First, a DMAc solution of polyimide (H) was dropped on a glass substrate, and the spin coater was used to raise the rotation speed to 700 rpm over 10 seconds, and then held at the rotation speed of 700 rpm for 10 seconds. The DMAc solution was applied uniformly. In a nitrogen atmosphere, the solvent was removed by drying at 180 ° C. for 30 minutes, and after further heat treatment at 250 ° C. for 2 hours, the polyimide film was removed from the glass substrate by cooling and removing the polyimide film from the glass substrate (polyimide (H ) Was obtained. It was 51 micrometers when thickness was measured with the said film thickness meter.
 [参考例1]
 表1中に参考例として、特許文献1の実施例1に記載のポリイミドの物性測定および評価結果を記載した。
[Reference Example 1]
In Table 1, as a reference example, the physical property measurement and evaluation results of the polyimide described in Example 1 of Patent Document 1 are described.
 以下、参考例1のポリイミド(ポリイミド(I))の構造式を示す。
Figure JPOXMLDOC01-appb-C000038
Hereinafter, the structural formula of the polyimide of Reference Example 1 (polyimide (I)) is shown.
Figure JPOXMLDOC01-appb-C000038
 [基板の物性評価]
 上記実施例1~5、比較例1~3および参考例1の基板の物性評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000039
[Physical property evaluation of substrates]
Table 1 shows the physical property evaluation results of the substrates of Examples 1 to 5, Comparative Examples 1 to 3, and Reference Example 1.
Figure JPOXMLDOC01-appb-T000039
 以下、表1に示された結果について、説明する。 Hereinafter, the results shown in Table 1 will be described.
 本発明の実施例1、4~5および比較例2~3は、ポリイミドの主鎖骨格は同一であるが、原料に使用したジアミンが異なる。すなわち、以下に示すように、実施例1ではHFIP基を有するジアミン(HFIP-MDA)のみを使用し、実施例4~5および比較例2ではHFIP基を有するジアミン(HFIP-MDA)とHFIP基を有さないジアミン(MDA)を所定のモル比で併用し、比較例3ではHFIP基を有さないジアミン(MDA)のみを使用した:
 実施例1(HFIP-MDA:MDA=100:0)、
 実施例4(HFIP-MDA:MDA=75:25)、
 実施例5(HFIP-MDA:MDA=50:50)、
 比較例2(HFIP-MDA:MDA=25:75)、
 比較例3(HFIP-MDA:MDA=0:100)。
In Examples 1, 4 to 5 and Comparative Examples 2 to 3 of the present invention, the main chain skeleton of the polyimide is the same, but the diamine used as a raw material is different. That is, as shown below, only diamine having HFIP groups (HFIP-MDA) is used in Example 1, and diamines having HFIP groups (HFIP-MDA) and HFIP groups are used in Examples 4 to 5 and Comparative Example 2. A diamine (MDA) having no HFIP group was used in Comparative Example 3 in combination with a diamine (MDA) having no HFIP group:
Example 1 (HFIP-MDA: MDA = 100: 0),
Example 4 (HFIP-MDA: MDA = 75: 25),
Example 5 (HFIP-MDA: MDA = 50: 50),
Comparative Example 2 (HFIP-MDA: MDA = 25: 75),
Comparative Example 3 (HFIP-MDA: MDA = 0: 100).
 実施例1、4~5および比較例2~3の400nm及び420nmにおける光透過率は、HFIP基の含有量が多いほど高く、原料のジアミンにHFIP基を有するHFIP-MDAのみを用いた実施例1が最も高かった。 The light transmittances at 400 nm and 420 nm of Examples 1, 4 to 5 and Comparative Examples 2 to 3 are higher as the content of HFIP groups is higher, and Examples using only HFIP-MDA having HFIP groups as a raw material diamine 1 was the highest.
 原料に使用したジアミンにおけるHFIP基を有するジアミン(HFIP-MDA)の割合が大きい実施例1、4~5のカットオフ波長は、HFIP基を有するジアミン(HFIP-MDA)の割合が少ない比較例2~3よりも短波長であった。 The cut-off wavelength of Examples 1 and 4 to 5 in which the proportion of diamine having HFIP groups (HFIP-MDA) in the diamine used as a raw material is large Comparative Example 2 in which the proportion of diamine having HFIP groups (HFIP-MDA) is small The wavelength was shorter than ˜3.
 以上のように、実施例1,4~5および比較例2~3の光透過率の比較からも、HFIP基はポリイミドの可視光領域の光透過性を向上させるのに有効であるとみなせた。 As described above, also from the comparison of the light transmittances of Examples 1, 4 to 5 and Comparative Examples 2 to 3, it was considered that the HFIP group was effective in improving the light transmittance in the visible light region of polyimide. .
 実施例1~2の基板は、参考例1の基板と同等程度の400nmにおける光透過率を有していた。 The substrates of Examples 1 and 2 had a light transmittance at 400 nm, which was comparable to the substrate of Reference Example 1.
 実施例3の基板は、参考例1の基板と比べて、400nmにおける光透過率に優れていた。 The substrate of Example 3 was superior to the substrate of Reference Example 1 in light transmittance at 400 nm.
 実施例4~5の基板は、参考例1の基板と比べて、400nmにおける光透過率は低いが、有機EL用基板として用いるには十分な透明性を有していた。 The substrates of Examples 4 to 5 had a light transmittance at 400 nm lower than that of the substrate of Reference Example 1, but had sufficient transparency to be used as an organic EL substrate.
 実施例1~5の基板のカットオフ波長は、参考例1と比べると高い波長であるが、400nm以上の可視光領域で高い透明性を有するため、有機ELディスプレイ用の基板として用いるには十分な透明性を有していた。 The cut-off wavelength of the substrates of Examples 1 to 5 is higher than that of Reference Example 1, but is sufficiently transparent to be used as a substrate for an organic EL display because it has high transparency in the visible light region of 400 nm or more. Transparency.
 実施例1~3の基板は、参考例1の基板と比べて、高いTgを示し、中でも実施例1~2の基板は特に高いTgを示した。実施例4~5の基板は、参考例1の基板と比べて、低いTgを示したが、有機EL用基板として用いるには十分な耐熱性を有していた。実施例1~5の基板のTd5は、参考例1の基板のTd5よりも低い値であるが、有機EL用基板として用いるには十分な耐熱性を有していた。 The substrates of Examples 1 to 3 exhibited higher Tg than the substrate of Reference Example 1, and among them, the substrates of Examples 1 to 2 exhibited particularly high Tg. The substrates of Examples 4 to 5 exhibited a lower Tg than the substrate of Reference Example 1, but had sufficient heat resistance for use as an organic EL substrate. Although Td 5 of the substrates of Examples 1 to 5 was lower than Td 5 of the substrate of Reference Example 1, it had sufficient heat resistance for use as an organic EL substrate.
 一方で、実施例1~5の基板は、参考例1の基板に比べてCTEが低く、温度変化に対する寸法安定性に優れていた。比較例1の基板は参考例1の基板と同程度に高いCTEを示した。 On the other hand, the substrates of Examples 1 to 5 had a lower CTE than the substrate of Reference Example 1, and were excellent in dimensional stability against temperature changes. The substrate of Comparative Example 1 exhibited a CTE as high as the substrate of Reference Example 1.
 また、実施例1の基板は、参考例1の基板に比べ引張応力が高かった。実施例2~5の基板は、参考例1の基板に比べて引張応力が低かったが、有機EL用基板として用いるには十分な機械強度を有していた。実施例1~2および4の基板の弾性率は、参考例1の基板の弾性率と同等の値を示したが、実施例3の基板の弾性率は、参考例1の基板の弾性率より優れていた。実施例1~5の基板の破断伸度は、参考例1の基板に比べて低いが、有機EL用基板として用いるには十分な引張強度を有していた。 Also, the substrate of Example 1 had higher tensile stress than the substrate of Reference Example 1. The substrates of Examples 2 to 5 had lower mechanical stress than the substrate of Reference Example 1, but had sufficient mechanical strength to be used as an organic EL substrate. The elastic modulus of the substrates of Examples 1 to 2 and 4 showed the same value as the elastic modulus of the substrate of Reference Example 1, but the elastic modulus of the substrate of Example 3 was higher than the elastic modulus of the substrate of Reference Example 1. It was excellent. The breaking elongation of the substrates of Examples 1 to 5 was lower than that of the substrate of Reference Example 1, but had sufficient tensile strength for use as an organic EL substrate.
 また、図1に実施例1、4~5および比較例2~3で作製した基板の光透過スペクトルの測定結果を示す。 FIG. 1 shows the measurement results of the light transmission spectra of the substrates produced in Examples 1, 4 to 5 and Comparative Examples 2 to 3.
 [溶剤溶解性試験]
 溶剤溶解性試験は、上述の実施例1~3および比較例1で調製したポリイミド(A)~(D)の溶剤溶解性試験用サンプル(成形前のポリイミド(A)~(D))および基板(成形後のポリイミド(A)~(D))の8種類について行った。
[Solvent solubility test]
The solvent solubility test was conducted using the samples for the solvent solubility test of polyimides (A) to (D) prepared in Examples 1 to 3 and Comparative Example 1 (polyimides (A) to (D) before molding) and the substrate. Eight types of (polyimides (A) to (D) after molding) were performed.
 スクリュー式で蓋のできるビンに、試験体と表2に示す溶媒(DMAc、THF、アセトン、酢酸エチル、イソプロピルアルコール、トルエンまたはヘキサン)を入れ、溶解後は10質量%の濃度になるように調整し密栓し、振動撹拌機を用いて撹拌し、溶解性を評価した。 Put the test specimen and the solvent shown in Table 2 (DMAc, THF, acetone, ethyl acetate, isopropyl alcohol, toluene or hexane) into a bottle that can be capped with a screw type, and adjust the concentration to 10% by mass after dissolution. The solution was sealed and stirred using a vibration stirrer to evaluate the solubility.
 溶剤溶解試験の結果を表2に示す。水浴温度が30℃で1時間以内に溶解するものを易溶、水浴温度が70℃で1時間以内に溶解するものを可溶、水浴温度が70℃で1時間以内に溶解しないものを不溶とした。
Figure JPOXMLDOC01-appb-T000040
The results of the solvent dissolution test are shown in Table 2. Easily dissolve those that dissolve within 30 hours at 30 ° C, dissolve those that dissolve within 1 hour at 70 ° C, insoluble those that dissolve within 1 hour at 70 ° C. did.
Figure JPOXMLDOC01-appb-T000040
 表2に示すように、DMAc、THF、アセトン、酢酸エチルのような非プロトン性極性溶剤に対して、成形前のポリイミド(A)~(D)は良好な溶解性を示したが、成形後のポリイミド(A)~(D)は不溶であった。また、イソプロピルアルコールのようなプロトン性極性溶剤に対しては、成形前のポリイミド(B)~(D)および成形後のポリイミド(A)~(D)が不溶であったのに対し、成形前のポリイミド(A)は溶解性を示した。トルエン、ヘキサンのような無極性溶媒に対しては、何れのポリイミド(A)~(D)も不溶であった。このように、ポリイミド(A)~(D)は、成形前には非プロトン性極性溶剤に溶解するが、成形後には不溶であることから、成形前には優れた成形加工性を有し、成形後には耐有機溶剤性を有することが示された。ポリイミド(A)はプロトン性極性溶剤に対しても溶解することから、より優れた成形加工性を有することが示された。 As shown in Table 2, polyimides (A) to (D) before molding showed good solubility in aprotic polar solvents such as DMAc, THF, acetone, and ethyl acetate. The polyimides (A) to (D) were insoluble. Also, for protic polar solvents such as isopropyl alcohol, polyimides (B) to (D) before molding and polyimides (A) to (D) after molding were insoluble, whereas before molding, The polyimide (A) showed solubility. None of the polyimides (A) to (D) was insoluble in nonpolar solvents such as toluene and hexane. Thus, the polyimides (A) to (D) are dissolved in the aprotic polar solvent before molding, but are insoluble after molding, and thus have excellent moldability before molding. It was shown to have resistance to organic solvents after molding. Since the polyimide (A) is also dissolved in the protic polar solvent, it was shown that the polyimide (A) has more excellent moldability.
 成形後のポリイミド(A)~(D)は、試験を行ったすべての溶剤に対して不溶であったことから、有機EL素子作製プロセスで損傷しない程度の耐溶剤性を有する。 Since the molded polyimides (A) to (D) were insoluble in all the solvents tested, they have a solvent resistance that does not damage the organic EL device manufacturing process.

Claims (26)

  1.  一般式(1)で表される繰り返し単位を50モル%以上含むポリイミドを少なくとも含むポリイミド樹脂組成物、の成形体からなる、有機エレクトロルミネッセンス用基板。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、エーテル結合、スルフィド結合、スルホキシ結合、メチレン基又はエチレン基であり、R2およびR3はそれぞれ独立に水素原子、メチル基又はトリフルオロメチル基であり、R4は芳香環を含む4価の有機基であって、以下の何れかの構造で表される。)
    Figure JPOXMLDOC01-appb-C000002
    The organic electroluminescent board | substrate which consists of a molded object of the polyimide resin composition containing at least the polyimide which contains 50 mol% or more of repeating units represented by General formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 is an ether bond, sulfide bond, sulfoxy bond, methylene group or ethylene group, R 2 and R 3 are each independently a hydrogen atom, methyl group or trifluoromethyl group, and R 4 is (A tetravalent organic group containing an aromatic ring, which is represented by any of the following structures)
    Figure JPOXMLDOC01-appb-C000002
  2.  一般式(1)で表される繰り返し単位を有するポリイミドのみからなるポリイミド樹脂組成物、の成形体からなる、請求項1に記載の有機エレクトロルミネッセンス用基板。 The substrate for organic electroluminescence according to claim 1, comprising a molded body of a polyimide resin composition comprising only a polyimide having a repeating unit represented by the general formula (1).
  3.  30~250℃における熱膨張係数が50ppm/℃以下である、請求項1または2に記載の有機エレクトロルミネッセンス用基板。 3. The organic electroluminescence substrate according to claim 1, wherein the coefficient of thermal expansion at 30 to 250 ° C. is 50 ppm / ° C. or less.
  4.  420~780nmの波長領域での透過率が60%以上である、請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス用基板。 The substrate for organic electroluminescence according to any one of claims 1 to 3, wherein the transmittance in a wavelength region of 420 to 780 nm is 60% or more.
  5.  R1がメチレン基であり、R2およびR3がそれぞれ水素原子である、請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス用基板。 The substrate for organic electroluminescence according to any one of claims 1 to 4, wherein R 1 is a methylene group, and R 2 and R 3 are each a hydrogen atom.
  6.  R4が式(3)~式(7)の何れかで表される基である、請求項5に記載の有機エレクトロルミネッセンス用基板。
    Figure JPOXMLDOC01-appb-C000003
    The substrate for organic electroluminescence according to claim 5, wherein R 4 is a group represented by any one of formulas (3) to (7).
    Figure JPOXMLDOC01-appb-C000003
  7.  請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス用基板を少なくとも備える、有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising at least the organic electroluminescence substrate according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス用基板を少なくとも備える、有機エレクトロルミネッセンスディスプレイ。 An organic electroluminescence display comprising at least the organic electroluminescence substrate according to any one of claims 1 to 6.
  9.  請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス用基板を少なくとも備える、ボトムエミッション型有機エレクトロルミネッセンスディスプレイ。 A bottom emission type organic electroluminescence display comprising at least the organic electroluminescence substrate according to any one of claims 1 to 6.
  10.  一般式(1)で表される繰り返し単位を50モル%以上含むポリイミドを少なくとも含むポリイミド樹脂組成物と、有機溶媒とを含む、ポリイミド溶液。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1は、エーテル結合、スルフィド結合、スルホキシ結合、メチレン基又はエチレン基であり、R2およびR3はそれぞれ独立に水素原子、メチル基又はトリフルオロメチル基であり、R4は芳香環を含む4価の有機基であって、以下の何れかの構造で表される。)
    Figure JPOXMLDOC01-appb-C000005
    A polyimide solution comprising a polyimide resin composition containing at least a polyimide containing 50 mol% or more of the repeating unit represented by the general formula (1), and an organic solvent.
    Figure JPOXMLDOC01-appb-C000004
    (Wherein R 1 is an ether bond, sulfide bond, sulfoxy bond, methylene group or ethylene group, R 2 and R 3 are each independently a hydrogen atom, methyl group or trifluoromethyl group, and R 4 is (A tetravalent organic group containing an aromatic ring, which is represented by any of the following structures)
    Figure JPOXMLDOC01-appb-C000005
  11.  R1がメチレン基であり、R2およびR3がそれぞれ水素原子である、請求項10に記載のポリイミド溶液。 The polyimide solution according to claim 10, wherein R 1 is a methylene group, and R 2 and R 3 are each a hydrogen atom.
  12.  R4が式(3)~式(7)の何れかで表される基である、請求項11に記載のポリイミド溶液。
    Figure JPOXMLDOC01-appb-C000006
    The polyimide solution according to claim 11, wherein R 4 is a group represented by any one of formulas (3) to (7).
    Figure JPOXMLDOC01-appb-C000006
  13.  有機溶媒が、アミド系溶媒、エーテル系溶媒、芳香族性溶媒、ハロゲン系溶媒およびラクトン系溶媒からなる群から選ばれる少なくとも一種である、請求項10~12の何れか一項に記載のポリイミド溶液。 The polyimide solution according to any one of claims 10 to 12, wherein the organic solvent is at least one selected from the group consisting of an amide solvent, an ether solvent, an aromatic solvent, a halogen solvent, and a lactone solvent. .
  14.  有機溶媒が、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、ヘキサメチルリン酸トリアミド、N-メチル-2-ピロリドン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、ジフェニルエーテル、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキサン、トリオキサン、ベンゼン、アニソール、ニトロベンゼン、ベンゾニトリル、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、γ-ブチロラクトン、γ-バレロラクトン、ε-バレロラクトン、ε-バレロラクトン、γ-カプロラクトン、ε-カプロラクトンおよびα-メチル-γ-ブチロラクトンからなる群から選ばれる少なくとも一種である、請求項10~13の何れか一項に記載のポリイミド溶液。 The organic solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, hexamethylphosphoric triamide, N-methyl-2-pyrrolidone, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, Cyclopentyl methyl ether, diphenyl ether, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxane, trioxane, benzene, anisole, nitrobenzene, benzonitrile, chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, γ -Butyrolactone, γ-valerolactone, ε-valerolactone, ε-valerolactone, γ-caprolactone, ε-caprolactone and α-methyl-γ-butyrolactone The polyimide solution according to any one of claims 10 to 13, which is at least one member selected from the group consisting of:
  15.  溶液中、ポリイミド樹脂組成物の濃度が5~50質量%である、請求項10~14の何れか一項に記載のポリイミド溶液。 The polyimide solution according to any one of claims 10 to 14, wherein the concentration of the polyimide resin composition in the solution is 5 to 50% by mass.
  16.  請求項10~15の何れか一項に記載のポリイミド溶液を支持基材に塗布する工程と、
     塗布したポリイミド溶液を乾燥させて、樹脂膜を得る工程と、
     得られた樹脂膜を加熱処理してポリイミド成形体を得る工程と、を少なくとも含む、ポリイミド成形体の製造方法。
    Applying the polyimide solution according to any one of claims 10 to 15 to a supporting substrate;
    Drying the applied polyimide solution to obtain a resin film;
    And a step of obtaining a polyimide molded body by subjecting the obtained resin film to a heat treatment.
  17.  一般式(1)で表される繰り返し単位を50モル%以上含むポリイミドを少なくとも含むポリイミド樹脂組成物、の成形体を、有機エレクトロルミネッセンス用基板として使用する方法。
    Figure JPOXMLDOC01-appb-C000007
    (式中、R1は、エーテル結合、スルフィド結合、スルホキシ結合、メチレン基又はエチレン基であり、R2およびR3はそれぞれ独立に水素原子、メチル基又はトリフルオロメチル基であり、R4は芳香環を含む4価の有機基であって、以下の何れかの構造で表される。)
    Figure JPOXMLDOC01-appb-C000008
    The method to use the molded object of the polyimide resin composition containing the polyimide which contains 50 mol% or more of repeating units represented by General formula (1) at least as a board | substrate for organic electroluminescence.
    Figure JPOXMLDOC01-appb-C000007
    (Wherein R 1 is an ether bond, sulfide bond, sulfoxy bond, methylene group or ethylene group, R 2 and R 3 are each independently a hydrogen atom, methyl group or trifluoromethyl group, and R 4 is (A tetravalent organic group containing an aromatic ring, which is represented by any of the following structures)
    Figure JPOXMLDOC01-appb-C000008
  18.  ポリイミド樹脂組成物が、一般式(1)で表される繰り返し単位を有するポリイミドのみからなる、請求項17に記載の方法。 The method according to claim 17, wherein the polyimide resin composition comprises only polyimide having a repeating unit represented by the general formula (1).
  19.  成形体の、30~250℃における熱膨張係数が50ppm/℃以下である、請求項17または18に記載の方法。 The method according to claim 17 or 18, wherein the molded body has a thermal expansion coefficient at 30 to 250 ° C of 50 ppm / ° C or less.
  20.  成形体の、420~780nmの波長領域での透過率が60%以上である、請求項17~19に記載の方法。 The method according to any one of claims 17 to 19, wherein the molded product has a transmittance of 60% or more in a wavelength region of 420 to 780 nm.
  21.  R1がメチレン基であり、R2およびR3がそれぞれ水素原子である、請求項17~20の何れかに記載の方法。 The method according to any one of claims 17 to 20, wherein R 1 is a methylene group, and R 2 and R 3 are each a hydrogen atom.
  22.  R4が式(3)~式(7)の何れかで表される基である、請求項21に記載の方法。
    Figure JPOXMLDOC01-appb-C000009
    The method according to claim 21, wherein R 4 is a group represented by any one of formulas (3) to (7).
    Figure JPOXMLDOC01-appb-C000009
  23.  成形体が、ポリイミド樹脂組成物と、有機溶媒とを含むポリイミド溶液を支持基材に塗布し、塗布したポリイミド溶液を乾燥させて得られた樹脂膜を加熱処理して得られるポリイミド成形体である、請求項17に記載の方法。 The molded body is a polyimide molded body obtained by applying a polyimide resin composition containing a polyimide resin composition and an organic solvent to a supporting substrate, and drying the applied polyimide solution to heat-treat the resin film obtained. The method of claim 17.
  24.  有機溶媒が、アミド系溶媒、エーテル系溶媒、芳香族性溶媒、ハロゲン系溶媒およびラクトン系溶媒からなる群から選ばれる少なくとも一種である、請求項23に記載の方法。 The method according to claim 23, wherein the organic solvent is at least one selected from the group consisting of an amide solvent, an ether solvent, an aromatic solvent, a halogen solvent, and a lactone solvent.
  25.  有機溶媒が、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、ヘキサメチルリン酸トリアミド、N-メチル-2-ピロリドン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、ジフェニルエーテル、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキサン、トリオキサン、ベンゼン、アニソール、ニトロベンゼン、ベンゾニトリル、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、γ-ブチロラクトン、γ-バレロラクトン、ε-バレロラクトン、ε-バレロラクトン、γ-カプロラクトン、ε-カプロラクトンおよびα-メチル-γ-ブチロラクトンからなる群から選ばれる少なくとも一種である、請求項23に記載の方法。 The organic solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, hexamethylphosphoric triamide, N-methyl-2-pyrrolidone, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, Cyclopentyl methyl ether, diphenyl ether, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxane, trioxane, benzene, anisole, nitrobenzene, benzonitrile, chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, γ -Butyrolactone, γ-valerolactone, ε-valerolactone, ε-valerolactone, γ-caprolactone, ε-caprolactone and α-methyl-γ-butyrolactone The method according to claim 23, wherein the method is at least one selected from the group consisting of:
  26.  溶液中、ポリイミド樹脂組成物の濃度が5~50質量%である、請求項21~23の何れか一項に記載の方法。 The method according to any one of claims 21 to 23, wherein the concentration of the polyimide resin composition in the solution is 5 to 50% by mass.
PCT/JP2015/077021 2014-10-02 2015-09-25 Substrate for organic electroluminescence, and organic electroluminescent display using same WO2016052312A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177011959A KR20170062528A (en) 2014-10-02 2015-09-25 Substrate for organic electroluminescence, and organic electroluminescent display using same
CN201580053679.3A CN106797683B (en) 2014-10-02 2015-09-25 Organic electroluminescent substrate and use its display of organic electroluminescence

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014203766 2014-10-02
JP2014-203766 2014-10-02
JP2015-180594 2015-09-14
JP2015180594A JP2016076480A (en) 2014-10-02 2015-09-14 Substrate for organic electroluminescence and organic electroluminescence display arranged by use thereof

Publications (1)

Publication Number Publication Date
WO2016052312A1 true WO2016052312A1 (en) 2016-04-07

Family

ID=55630350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077021 WO2016052312A1 (en) 2014-10-02 2015-09-25 Substrate for organic electroluminescence, and organic electroluminescent display using same

Country Status (1)

Country Link
WO (1) WO2016052312A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119503A (en) * 2004-10-13 2007-05-17 Central Glass Co Ltd Fluorine-containing polymerizable monomer and high polymer using the same
WO2010053185A1 (en) * 2008-11-10 2010-05-14 味の素株式会社 Resin composition for printed wiring board
WO2012165455A1 (en) * 2011-05-30 2012-12-06 セントラル硝子株式会社 Gas separation membrane
WO2013191180A1 (en) * 2012-06-19 2013-12-27 新日鉄住金化学株式会社 Display device, method for manufacturing same, polyimide film for display device supporting bases, and method for producing polyimide film for display device supporting bases
WO2014084185A1 (en) * 2012-11-28 2014-06-05 セントラル硝子株式会社 Hexafluoroisopropanol group-containing diamine, polyimide and polyamide using same, cyclized product thereof, and production method thereof
JP2014125455A (en) * 2012-12-27 2014-07-07 Central Glass Co Ltd Polymer compound using fluorine-containing asymmetric diamine compound and its manufacturing method
JP2014127392A (en) * 2012-12-27 2014-07-07 Denki Kagaku Kogyo Kk Resin composition for organic el device, and organic el device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119503A (en) * 2004-10-13 2007-05-17 Central Glass Co Ltd Fluorine-containing polymerizable monomer and high polymer using the same
WO2010053185A1 (en) * 2008-11-10 2010-05-14 味の素株式会社 Resin composition for printed wiring board
WO2012165455A1 (en) * 2011-05-30 2012-12-06 セントラル硝子株式会社 Gas separation membrane
WO2013191180A1 (en) * 2012-06-19 2013-12-27 新日鉄住金化学株式会社 Display device, method for manufacturing same, polyimide film for display device supporting bases, and method for producing polyimide film for display device supporting bases
WO2014084185A1 (en) * 2012-11-28 2014-06-05 セントラル硝子株式会社 Hexafluoroisopropanol group-containing diamine, polyimide and polyamide using same, cyclized product thereof, and production method thereof
JP2014125455A (en) * 2012-12-27 2014-07-07 Central Glass Co Ltd Polymer compound using fluorine-containing asymmetric diamine compound and its manufacturing method
JP2014127392A (en) * 2012-12-27 2014-07-07 Denki Kagaku Kogyo Kk Resin composition for organic el device, and organic el device

Similar Documents

Publication Publication Date Title
TWI695855B (en) Polyimide precursor, resin composition and resin film manufacturing method
TWI740330B (en) Polyimide precursor, resin composition, resin film and manufacturing method thereof
CN111892708B (en) Resin precursor, resin composition containing the same, resin film and method for producing the same, and laminate and method for producing the same
KR101961512B1 (en) Polyimide precursor solution composition and method for producing polyimide precursor solution composition
JP6086118B2 (en) Polyamic acid solution composition and polyimide
JP7343794B2 (en) Polyamic acids and polyimides, optical films and display devices, and methods for producing them
CN107698759B (en) Polyimide, polyamic acid solution, and polyimide film
CN111386299A (en) Low color polymers for use in electronic devices
TW201345952A (en) Polyamic acid solution composition, and polyimide
KR102422752B1 (en) Novel tetracarboxylic dianhydride and polyimide and polyimide copolymer obtained from acid dianhydride
TWI577069B (en) An organic electroluminescent substrate, and an organic electroluminescent display using the same
CN115803364A (en) Polyamide, polyamideimide and derivative thereof, optical film and display device, and method for producing them
WO2016052311A1 (en) Substrate for organic electroluminescence, and organic electroluminescent display using same
JP2016076480A (en) Substrate for organic electroluminescence and organic electroluminescence display arranged by use thereof
JPWO2019131896A1 (en) Polyimide, polyimide solution composition, polyimide film, and substrate
CN113993931B (en) Polymer for use in electronic devices
WO2016052312A1 (en) Substrate for organic electroluminescence, and organic electroluminescent display using same
CN113278002A (en) Polymers for use in electronic devices
JP2018110105A (en) Substrate for organic electroluminescence and organic electroluminescence display using the same
JP6765093B2 (en) Polyimide
JP7265113B2 (en) Polyimide substrate for electronic parts
WO2023048063A1 (en) Polyimide, polyamide, resin composition, polyimide film, display device, substrate for electronic material, method for producing polyamide and method for producing polyimide
JP2020031186A (en) Polyimide substrate for electronic component
JP2022121225A (en) Polyimide and polyamide acid
TW202037587A (en) Novel diamines, novel polyimides derived therefrom and molded body thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177011959

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15845936

Country of ref document: EP

Kind code of ref document: A1