WO2016052041A1 - Reverse-surface-electrode solar battery cell with wiring sheet - Google Patents

Reverse-surface-electrode solar battery cell with wiring sheet Download PDF

Info

Publication number
WO2016052041A1
WO2016052041A1 PCT/JP2015/074608 JP2015074608W WO2016052041A1 WO 2016052041 A1 WO2016052041 A1 WO 2016052041A1 JP 2015074608 W JP2015074608 W JP 2015074608W WO 2016052041 A1 WO2016052041 A1 WO 2016052041A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
type
back electrode
solar cell
wiring sheet
Prior art date
Application number
PCT/JP2015/074608
Other languages
French (fr)
Japanese (ja)
Inventor
純也 嶋田
康志 吉川
尉絵 長野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015047831A external-priority patent/JP2016072597A/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201590000973.3U priority Critical patent/CN207353269U/en
Publication of WO2016052041A1 publication Critical patent/WO2016052041A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a back electrode type solar cell with a wiring sheet.
  • solar cell elements such as those using compound semiconductors and those using organic materials, but currently, solar cells using silicon crystals are the mainstream.
  • the most manufactured and sold solar cells have an n-electrode formed on the surface on which sunlight is incident (light-receiving surface), and a p-electrode on the surface opposite to the light-receiving surface (back surface). It is a double-sided electrode type solar cell having the formed structure. Further, development of a back electrode type solar battery cell in which an electrode is not formed on the light receiving surface of the solar battery cell and an n electrode and a p electrode are formed only on the back surface of the solar battery cell is also under development.
  • Patent Document 1 discloses a back electrode type solar cell with a wiring sheet.
  • Patent Document 1 includes a wiring sheet in which a back electrode type solar battery cell and a wiring sheet are bonded using a fixing resin placed between at least one electrode of the back electrode type solar battery cell and between wirings of the wiring sheet.
  • a back electrode type solar cell is disclosed.
  • the step of curing the fixing resin to the first cured state, the step of softening the fixed resin in the first cured state, and the step of curing the softened fixing resin to bring the fixing resin into the second cured state A back electrode type solar cell with a wiring sheet including a process is disclosed. According to the invention disclosed in Patent Document 1, it is possible to improve the stability of the mechanical connection between the solar battery cell and the wiring sheet and improve the stability of the electrical connection.
  • Patent Document 1 does not have a detailed disclosure about improving the conversion efficiency of the back electrode type solar cell with a wiring sheet.
  • the wiring sheet has an insulating substrate and wiring provided on the light receiving surface side of the insulating substrate, and the back electrode type solar cell is made of silicon.
  • the substrate has an electrode provided on the back side of the silicon substrate, and the wiring has a substantially comb shape having a plurality of comb parts, and the width of the root part of the comb part is longer than the width of the tip part of the comb part.
  • the present invention it is possible to provide a structure that improves the conversion efficiency while ensuring a stable connection between the back electrode type solar cell and the wiring sheet.
  • FIG. 1 is an enlarged schematic diagram illustrating a wiring of a wiring sheet, showing a first embodiment of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic diagram which shows the 1st Embodiment of this invention and shows the manufacturing method of a back electrode type photovoltaic cell. BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic diagram which shows the 1st Embodiment of this invention and shows the joining method of a back electrode type photovoltaic cell and a wiring sheet.
  • the 2nd Embodiment of this invention is shown, Comprising: It is a schematic diagram which shows the wiring of a wiring sheet.
  • the 3rd Embodiment of this invention is shown and it is a schematic diagram which shows the wiring of a wiring sheet.
  • the 4th Embodiment of this invention is shown and it is a schematic diagram which shows the wiring of a wiring sheet.
  • the 5th Embodiment of this invention is shown, Comprising: It is a schematic diagram which shows the wiring of a wiring sheet.
  • the 6th Embodiment of this invention is shown and it is a schematic diagram which shows the wiring of a wiring sheet.
  • FIG. 1 is a view of a back electrode type solar cell with a wiring sheet of the present embodiment as viewed from the light receiving surface side.
  • the back electrode type solar cell 100 with the wiring sheet is formed by placing the back electrode type solar cell 2 on the wiring sheet 1.
  • the back electrode type solar cells 2 are placed on the wiring sheet 1 at positions corresponding to the substantially comb-shaped n-type wiring and p-type wiring, respectively, so that the n-type electrode and the p-type electrode correspond to each other.
  • the n-type wiring is electrically connected to the n-type electrode
  • the p-type wiring is electrically connected to the p-type electrode.
  • the wiring and the electrode are connected via a bonding member.
  • FIG. 2 is a diagram schematically showing the back electrode type solar battery cell of the present embodiment.
  • FIG. 2A is a view showing a cross section AA ′ of the back electrode type solar cell in FIG. 1
  • FIG. 2B is a schematic view when the back electrode type solar cell is viewed from the back side. It is.
  • the back surface in this application is a surface opposite to the light receiving surface of the back electrode type solar cell.
  • an antireflection film 22 is formed on the light receiving side of the silicon substrate 21 having the concavo-convex shape of the back electrode type solar cell 2, and a passivation film 25 is formed on the back side of the silicon substrate 21.
  • a passivation film 25 is formed on the back side of the silicon substrate 21.
  • the silicon substrate 21 for example, a substrate made of polycrystalline silicon or single crystal silicon having either n-type or p-type conductivity can be used.
  • the thickness of the silicon substrate 21 is preferably about 50 ⁇ m or more and 400 ⁇ m or less.
  • a film made of silicon nitride was used as the antireflection film 22, and a film made of silicon oxide was used as the passivation film 25. None of these are limited to these.
  • the passivation film 25 for example, a silicon nitride film or a stacked body of a silicon oxide film and a silicon nitride film can be used.
  • an n-type impurity diffusion region 23 in which an n-type impurity such as phosphorus is diffused and a p-type impurity diffusion region 24 in which a p-type impurity such as boron is diffused are formed on the back side inside the silicon substrate 21. ing.
  • the n-type impurity diffusion region 23 is a region containing n-type impurities such as phosphorus.
  • the p-type impurity diffusion region 24 is a region containing a p-type impurity such as boron or aluminum.
  • each of the n-type electrode 26 connected to the n-type impurity diffusion region 23 and the p-type electrode 27 connected to the p-type impurity diffusion region 24 through the contact holes provided in the passivation film 25 is The electrodes respectively correspond to a plurality of pn junctions formed on the back side inside the silicon substrate 21.
  • the n-type electrode 26 and the p-type electrode 27 for example, electrodes made of a metal such as silver can be used.
  • the n-type electrode 26 and the p-type electrode 27 each have a plurality of rectangular portions having a longitudinal direction formed at predetermined intervals.
  • the rectangular portion of the n-type electrode 26 and the rectangular portion of the p-type electrode 27 are alternately arranged one by one at a predetermined interval in a direction orthogonal to the longitudinal direction of the rectangular portion.
  • the width and pitch of the rectangular portion are substantially constant.
  • the width of the rectangular portion indicates a direction orthogonal to the longitudinal direction of the electrode, that is, a length in the short direction.
  • the pitch of the rectangular portion indicates the distance between the midpoint of the electrodes in the short direction and the midpoint of the adjacent electrodes in the short direction.
  • FIG. 3 is a schematic diagram of the wiring sheet of the present embodiment.
  • 3A is a view as seen from the light receiving surface side
  • FIG. 3B is a view showing a BB ′ cross section of FIG. 3A.
  • the wiring sheet 1 is composed of an insulating base material 11 and wirings 16 formed on one surface of the insulating base material 11.
  • PET is used as the insulating substrate 11.
  • a conductive material such as copper is used.
  • a resin sheet mainly composed of PET having a thickness of about 75 ⁇ m is used as the insulating substrate of the wiring sheet, and a copper wiring having a thickness of about 35 ⁇ m is used as the wiring.
  • the main component of the resin sheet is not limited to PET, and PEN or the like may be used.
  • a total of 16 back electrode type solar cells of 4 rows and 4 columns are arranged on the wiring sheet 1 of FIG. 3 to constitute a back electrode type solar cell with a wiring sheet.
  • the 16 back electrode type solar cells are electrically connected in series.
  • the n-type electrode and the p-type electrode of the back electrode type solar cell disposed in the region C on the wiring sheet 1 are electrically connected to the n-type wire 12 and the p-type wire 13 in the region C, respectively. And physically connected.
  • Each of the n-type wiring 12 and the p-type wiring 13 has a substantially comb shape, and the portion corresponding to the comb blade has a plurality of isosceles triangular shapes formed at predetermined intervals. ing.
  • the isosceles triangle portion corresponding to the comb blade of the n-type wiring 12 and the isosceles triangle portion corresponding to the comb blade of the p-type wiring 13 have a predetermined interval in a direction orthogonal to the longitudinal direction of the isosceles triangle. Open and arranged alternately one by one. The direction orthogonal to the longitudinal direction of the isosceles triangle corresponds to the base direction.
  • connection wires 14a and 14b extend in a direction orthogonal to the longitudinal direction of the isosceles triangle of the n-type wire 12 and the p-type wire 13, and the isosceles triangle of the n-type wire 12 and the p-type wire 13 The portion is connected to the connection wiring 14a or 14b.
  • the p-type wiring 13 in the region C of the wiring sheet 1 is connected to the P-type extraction wiring 13a. Further, the n-type wiring 12 in the region C is connected to the p-type wiring in the region D through the connection wiring 14a.
  • the adjacent back electrode type solar cells arranged in the column direction are electrically and physically connected via the connection wiring 14 a on the wiring sheet 1. Further, the back electrode type solar cells arranged in the row direction are electrically connected via the connection wiring 14b.
  • the 16 back electrode type solar cells are electrically connected in series, and the current generated by the photoelectric conversion is taken out from the p-type take-out wiring 13a and the n-type take-out wiring 12a, respectively. .
  • connection wiring 14a or 14b is electrically connected by the connection wiring 14a or 14b.
  • connection wiring 14b is provided outside the portion where the back electrode type solar cells are placed.
  • FIG. 4 is an enlarged view of a portion E in FIG.
  • the substantially comb-like wiring on the wiring sheet 1 has a substantially isosceles triangular shape.
  • the root portion corresponding to the base of the isosceles triangle of each wiring is in physical contact with the connection wiring 14a, and the tip portion corresponding to the apex of the isosceles triangle of the wiring is not in physical contact with the connection wiring 14a. .
  • the width L1 of the root portion larger than the width L2 of the tip portion, it becomes possible to improve the output power of the back electrode type solar cell with a wiring sheet. This is because the electrical resistance in the length direction of the wiring could be lowered.
  • the distance between the wirings be a certain value or more. If the distance between the wires is too small, there is a concern about ion migration. Specifically, about 50 ⁇ m to 300 ⁇ m is desirable. As an example of the case where heat is applied to the back electrode type solar cell with a wiring sheet, a sealing process in which heating at about 160 degrees can be given.
  • the wiring pitch is about 750 ⁇ m.
  • the height of the triangle was about 160 mm, and the width at the substantially central portion in the height direction of the triangle was about 650 ⁇ m.
  • the back electrode type solar cell has a substantially rectangular shape.
  • the width in the short direction of the substantially rectangular shape is almost constant.
  • stable high output power can be obtained. This is because the shape is easy to form an accurate electrode pattern.
  • the shape of the opposing electrode and the shape of the wiring are different, but the output of the back electrode type solar cell with a wiring sheet due to the difference in shape does not occur. The reason will be described below.
  • the wiring on the wiring sheet and the electrode on the back electrode are arranged at opposite positions.
  • the electrode provided in the back electrode type solar cell most of the electrons generated inside the solar cell flow toward the electrode immediately below and further flow toward the wiring immediately below. Therefore, in the back electrode type solar cell, the current density hardly changes depending on the location of the substantially rectangular electrode.
  • the wiring of the wiring sheet the current density gradually increases from the tip portion toward the root portion. Therefore, even if the width of the rectangular portion of the electrode is substantially constant and the width of the rectangular portion of the wiring gradually increases toward the root, there is no problem that the resistance loss increases. Therefore, even if an electrode is a substantially rectangular shape, the output electric power of a back surface electrode type photovoltaic cell will not fall.
  • FIG. 5 is a schematic cross-sectional view showing an example of a method for manufacturing the back electrode type solar battery cell of the present embodiment shown in FIGS. 1 and 2. An example of the manufacturing method of the back surface electrode type photovoltaic cell of this embodiment is demonstrated using FIG.
  • a silicon substrate 21 is first prepared. Since it is sliced from the ingot, slice damage 21 a is formed on the surface of the silicon substrate 21.
  • the slice damage 21a on the surface of the silicon substrate 21 is removed.
  • the removal of the slice damage 21a can be performed, for example, by etching the surface of the silicon substrate 21 after slicing with a mixed acid of hydrogen fluoride aqueous solution and nitric acid or an alkaline aqueous solution such as sodium hydroxide. .
  • an n-type impurity diffusion region 23 and a p-type impurity diffusion region 24 are formed on the back surface of the silicon substrate 21, respectively.
  • the n-type impurity diffusion region 23 can be formed, for example, by vapor phase diffusion using a gas containing phosphorus which is an n-type impurity such as POCl3.
  • the p-type impurity diffusion region 24 can be formed by a method such as vapor phase diffusion using a gas containing boron which is a p-type impurity such as BBr3.
  • a passivation film 25 is formed on the back surface of the silicon substrate 21.
  • the passivation film 25 can be formed by a method such as a thermal oxidation method or a plasma CVD (Chemical Vapor Deposition) method.
  • an uneven structure such as a texture structure is formed on the entire light receiving surface of the silicon substrate 21, and then an antireflection film 22 is formed on the uneven structure.
  • the texture structure is obtained by etching the light receiving surface of the silicon substrate 21 using an etching solution obtained by heating a solution obtained by adding isopropyl alcohol to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide to 70 ° C. or more and 80 ° C. or less, for example. Can be formed.
  • the antireflection film 22 can be formed by, for example, a plasma CVD method.
  • a part of the passivation film 25 on the back surface of the silicon substrate 21 is removed to form a contact hole 25a and a contact hole 25b.
  • the contact hole 25a is formed to expose at least part of the surface of the n-type impurity diffusion region 23, and the contact hole 25b is exposed to at least part of the surface of the p-type impurity diffusion region 24. It is formed.
  • Each of the contact holes 25a and 25b is formed, for example, by forming a resist pattern having an opening on a portion corresponding to the contact hole forming portion on the passivation film 25 using a photolithography technique, and then opening the passivation film from the opening of the resist pattern.
  • 25 can be formed by etching or the like.
  • the n-type electrode 26 and the p-type electrode 27 are formed by screen printing of silver.
  • the n-type electrode 26 is in contact with the n-type impurity diffusion region 23 through the contact hole 25a, and the p-type electrode 27 is in contact with the p-type impurity diffusion region 24 through the contact hole 25b.
  • a back electrode type solar cell 2 including an n type electrode 26 and a p type electrode 27 provided on the back surface of the silicon substrate 21 with a predetermined interval is provided.
  • n type electrode 26 and p type electrode 27 are shown for convenience of explanation, but it goes without saying that there may be a plurality of each.
  • an uncured fixing resin is interposed between the n-type electrode 26 and the p-type electrode 27 on the back surface of the silicon substrate 21 of the back electrode type solar battery cell 2, respectively. 31a is installed.
  • the fixing resin fixes the back electrode type solar cell and the wiring sheet.
  • Examples of the method for installing the fixing resin 31a include screen printing, dispenser coating, and inkjet coating. Among these, it is preferable to use screen printing.
  • the fixing resin 31a can be easily installed at low cost and in a short time.
  • the width of the fixing resin 31a on the silicon substrate 21 side of the back electrode type solar battery cell 2 is preferably a width that does not contact the n-type electrode 26 and the p-type electrode 27. This is because an improvement in the stability of the electrical connection between the electrode of the back electrode type solar cell 2 and the wiring of the wiring sheet 1 can be expected.
  • the fixing resin 31a is installed between the electrodes of the back electrode type solar battery cell 2
  • the fixing resin 31a may be installed between the wirings of the wiring sheet 1, and the back surface.
  • the fixing resin 31 a may be installed between the electrodes of the electrode type solar battery cell 2 and between the wirings of the wiring sheet 1.
  • the shape of the fixing resin 31a is preferably a line shape along each of the n-type electrode 26 and the p-type electrode 27 of the back electrode type solar cell 2, but a sealing step into a sealing material to be described later
  • the gap may be intermittently arranged as long as the gap is provided between the first cured resin and the electrode so as to be sufficiently expanded.
  • the fixing resin 31a it is preferable to use a resin that can be B-staged.
  • the B-stageable resin means that when the liquid uncured fixing resin 31a is heated, the viscosity increases and becomes a cured state (first cured state), and then the viscosity decreases and softens. Thereafter, the viscosity is increased again, and the resin becomes a cured state (second cured state).
  • the uncured fixing resin 31a is cured to form the first cured fixing resin 31b.
  • the uncured fixing resin 31a is cured by, for example, heating and / or irradiation with light such as ultraviolet rays to be in a first cured state.
  • light such as ultraviolet rays
  • the fixed resin 31b in the first cured state has a higher viscosity than the uncured state at room temperature (about 25 ° C.), has shape retainability (a property that does not deform unless an external force is applied), and Low adhesiveness (adhesiveness to the extent that the fixing resin 31b does not adhere to the back electrode solar cell 2 or the wiring sheet even if the back electrode solar cell 2 or the wiring sheet 1 is brought into contact with the surface of the fixing resin 31b. It is preferable that the In this case, it is possible to employ a printing process with high productivity in the process of installing the joining member described later.
  • the back electrode type solar battery cell 2 even after the back electrode type solar battery cell 2 and the wiring sheet 1 are overlapped.
  • the wiring sheet 1 tend to be easily removable. Therefore, it exists in the tendency which can align the electrode of the back surface electrode type photovoltaic cell 2 and the wiring of the wiring sheet 1 easily and with high precision.
  • the temperature that becomes the first fixed resin 31b in the first cured state is the first temperature described later.
  • the temperature is preferably lower than the temperature at which the cured first fixing resin 31b is softened and the temperature at which the softened first fixing resin 31c is in the second cured state.
  • the bonding member 32 is installed on each surface of the n-type electrode 26 and the p-type electrode 27 of the back electrode type solar battery cell 2.
  • a material containing a conductive substance such as solder can be used as the joining member 32.
  • the joining member 32 can be installed by methods, such as screen printing, dispenser application
  • the bonding member 32 is installed on the electrode of the back electrode type solar battery cell 2
  • the bonding member 32 may be installed on the wiring of the wiring sheet.
  • the joining member 32 may be installed on each of the electrodes of the solar cell 2 and the wiring of the wiring sheet.
  • both the fixed resin 31a and the bonding member 32 may not be installed on the back electrode type solar cell 2 or the wiring sheet 1.
  • the fixed resin 31a is interposed between the electrodes of the back electrode type solar cell 2.
  • the joining member 32 may be installed on the wiring of the wiring sheet.
  • the back electrode type solar cells 2 and the wiring sheet 1 are overlapped.
  • the n type electrode 26 and the p type electrode 27 of the back electrode type solar cell 2 are respectively placed on the insulating substrate 11 of the wiring sheet 1.
  • the n-type wiring 12 and the p-type wiring 13 provided are opposed to each other through the bonding member 32.
  • the fixed resin 31b in the first cured state is softened due to a decrease in viscosity due to heating and / or irradiation with light such as ultraviolet rays.
  • Fixing resin 32c is softened due to a decrease in viscosity due to heating and / or irradiation with light such as ultraviolet rays.
  • the softened fixing resin 31 c located between the electrodes of the back electrode solar cell 2 is composed of the back electrode solar cell 2, the wiring sheet 1, and the like. Is deformed by the pressurization between the wires and enters between the wirings of the wiring sheet 1. Further, the conductive material in the bonding member 32 is also melted by being heated, and the electrode of the back electrode solar cell 2 and the wiring sheet 1 are pressed by the pressure between the back electrode solar cell 2 and the wiring sheet 1. Deforms between the wires.
  • the fixed resin 31c in the softened state further increases in viscosity by heating and / or irradiation with light such as ultraviolet rays, and is cured again.
  • the fixing resin 31d Since the second cured state is cured by a crosslinking reaction of the resin, the state of the fixed resin 31d in the second cured state is stabilized without being softened again. That is, the back electrode type solar cell 2 and the wiring sheet 1 can be firmly bonded.
  • the back electrode type solar cell with wiring sheet had p-type extraction wiring and n-type extraction wiring, and each was electrically connected to the terminal box. Furthermore, it was set as the structure which inserts a flame
  • Embodiment 2 The back electrode type solar cell with wiring sheet according to Embodiment 2 will be described below with reference to the drawings.
  • the difference from the first embodiment is that the shape of the n-type electrode and the p-type electrode on the wiring sheet is not a triangle but a trapezoid.
  • FIG. 7 shows a part of the wiring sheet of this embodiment. This corresponds to an enlarged view of a portion E in FIG. 3A used in the description of the first embodiment.
  • the n-type wiring 121 has a shape composed of a plurality of trapezoids.
  • the P-type wiring 131 has a plurality of trapezoidal shapes. If there was an acute angle part in the wiring, there was a possibility that the disconnection would occur at a narrow part of the wiring, but it became possible to suppress the disconnection with high accuracy by eliminating the acute angle part.
  • Embodiment 3 The back electrode type solar cell with wiring sheet according to Embodiment 3 will be described below with reference to the drawings.
  • the difference from the second embodiment is the shape of the connection wiring on the wiring sheet.
  • FIG. 8 shows a part of the wiring sheet of this embodiment. This corresponds to an enlarged view of a portion E in FIG. 3A used in the description of the first embodiment.
  • Each of the n-type wiring 122 and the p-type wiring 132 has a plurality of substantially trapezoidal portions. Further, the root portions of the n-type wiring 122 and the p-type wiring 132 connected to the connection wiring 142a are curved with a curvature. The corner portion of the wiring sometimes becomes a starting point of the crack. When cracks occur in the wiring, the electrical resistance of the wiring increases. By eliminating the corners, cracks are less likely to occur in the wiring, and high conversion efficiency can be secured stably.
  • Embodiment 4 The back electrode type solar cell with wiring sheet according to Embodiment 4 will be described with reference to the drawings. The difference from the third embodiment is that the tip of the wiring is curved.
  • Fig. 9 shows a part of the comb-shaped electrode of the wiring sheet. This corresponds to an enlarged view of a portion E in FIG. 3A used in the description of the first embodiment.
  • Each of the n-type wiring 123 and the p-type wiring 133 has a plurality of substantially trapezoidal portions, and the tip portion is curved. The tip is a portion corresponding to a short side of a pair of parallel sides of a trapezoid facing each other. Further, the n-type wiring 123 and the p-type wiring 133 are connected to the connection wiring 143a at the roots. By eliminating the corners at the tip of the wiring, it is possible to make it harder for the wiring to crack.
  • Embodiment 5 The back electrode type solar cell with wiring sheet according to Embodiment 5 will be described below with reference to the drawings.
  • the difference from the third embodiment is that a radius is provided at the corner of the tip of the wiring.
  • FIG. 10 shows a part of the comb-shaped electrode of the wiring sheet.
  • 10A corresponds to an enlarged view of a portion E in FIG. 3A used in the description of the first embodiment
  • FIG. 10B is an enlarged view of a portion F in FIG. 10A.
  • Each of the n-type wiring 124 and the P-type wiring 134 has a plurality of substantially trapezoidal portions, and the root portion is connected to the connection wiring 144a.
  • the corner portion of the tip has a rounded structure. By providing rounded corners at the tip of the wiring, the wiring is less likely to crack.
  • the fixing resin is arranged so that the inflection points of the straight line portion and the curved portion of the wiring are covered with the fixing resin.
  • Inflection points tend to be the starting point of cracks because stress tends to concentrate, but by covering them with a fixing resin, the generation of cracks can be prevented more reliably. This is presumably because the effect of preventing in-plane deformation is obtained by bonding the wiring to the wiring sheet with a fixing resin.
  • connection wiring on the wiring sheet has an opening. It is a point provided.
  • FIG. 11 shows a part of the comb-shaped electrode of the wiring sheet.
  • FIG. 11 corresponds to an enlarged view of a portion E in FIG. 3A used in the description of the first embodiment.
  • the wiring sheet is provided with an n-type wiring 125, a p-type wiring 135, and a connection wiring 145a.
  • the n-type wiring 125 and the p-type wiring 135 are electrically and physically connected to the n-type electrode and the p-type electrode of the back electrode type solar cell, respectively.
  • the connection wiring 145a is a wiring that connects adjacent back-surface electrode type solar cells arranged in the column direction.
  • the opening 17 is provided in the connection wiring 145a.
  • the opening 17 has a circular shape with a diameter of about 500 ⁇ m, and is arranged at the root of each n-type wiring and p-type wiring. By providing an opening in the connection wiring, it is possible to make it difficult for the wiring to crack.
  • the diameter of the opening 17 is preferably about 100 ⁇ m to 600 ⁇ m. If it is smaller than 100 ⁇ m, it is difficult to form a clear pattern on the wiring, and if it is larger than 600 ⁇ m, the conversion efficiency is lowered due to an increase in resistance of the connecting wiring.
  • the opening may be an ellipse instead of a circle.
  • the connection wiring is arranged so as to open the opening, but may be arranged linearly.
  • Embodiment 1 to Embodiment 6 was specifically described, the present invention is not limited to them. Embodiments obtained by appropriately combining the technical means disclosed in the six embodiments described above are also included in the technical scope of the present invention.

Abstract

 In the present invention, the wiring provided to a wiring sheet in a reverse-surface-electrode solar battery cell provided with the wiring sheet is substantially in the configuration of a comb having a plurality of comb sections, the width of the base parts of the comb sections being greater than the width of the tip parts of the comb sections.

Description

配線シート付き裏面電極型太陽電池セルBack electrode type solar cell with wiring sheet
 本発明は、配線シート付き裏面電極型太陽電池セルに関するものである。 The present invention relates to a back electrode type solar cell with a wiring sheet.
 近年、地球環境問題への関心が高まりつつある中、自然エネルギーを利用した新しいエネルギー技術が大いに注目されている。そのひとつとして、太陽エネルギーを利用したシステムの関心が高く、特に光電変換効果を利用して光エネルギーを電気エネルギーに変換する太陽光発電は、クリーンなエネルギーを得る手段として広く行われている。 In recent years, interest in global environmental issues is increasing, and new energy technologies using natural energy are attracting a great deal of attention. As one of them, a system using solar energy is highly interested. In particular, solar power generation that converts light energy into electric energy using a photoelectric conversion effect is widely performed as a means for obtaining clean energy.
 太陽電池素子には、化合物半導体を用いたものや有機材料を用いたものなど様々なものがあるが、現在、シリコン結晶を用いた太陽電池セルが主流となっている。 There are various types of solar cell elements such as those using compound semiconductors and those using organic materials, but currently, solar cells using silicon crystals are the mainstream.
 現在、最も多く製造および販売されている太陽電池セルは、太陽光が入射する側の面(受光面)にn電極が形成されており、受光面と反対側の面(裏面)にp電極が形成された構成の両面電極型太陽電池セルである。また、太陽電池セルの受光面には電極を形成せず、太陽電池セルの裏面のみにn電極およびp電極を形成した裏面電極型太陽電池セルの開発も進められている。 Currently, the most manufactured and sold solar cells have an n-electrode formed on the surface on which sunlight is incident (light-receiving surface), and a p-electrode on the surface opposite to the light-receiving surface (back surface). It is a double-sided electrode type solar cell having the formed structure. Further, development of a back electrode type solar battery cell in which an electrode is not formed on the light receiving surface of the solar battery cell and an n electrode and a p electrode are formed only on the back surface of the solar battery cell is also under development.
 例えば、特許文献1には配線シート付き裏面電極型太陽電池セルが開示されている。特許文献1には、裏面電極型太陽電池セルの電極間及び配線シートの配線間の少なくとも一方に設置された固定樹脂を用いて、裏面電極型太陽電池セルと配線シートを接着させた配線シート付き裏面電極型太陽電池セルが開示されている。また、固定樹脂を硬化して第1の硬化状態とする工程と、第1の硬化状態の固定樹脂を軟化する工程と、軟化した固定樹脂を硬化して固定樹脂を第2の硬化状態とする工程とを含む配線シート付き裏面電極型太陽電池セルが開示されている。特許文献1に開示の発明により、太陽電池セルと配線シートとの機械的な接続の安定性を向上させることができるとともに、電気的な接続の安定性を向上することが可能となる。 For example, Patent Document 1 discloses a back electrode type solar cell with a wiring sheet. Patent Document 1 includes a wiring sheet in which a back electrode type solar battery cell and a wiring sheet are bonded using a fixing resin placed between at least one electrode of the back electrode type solar battery cell and between wirings of the wiring sheet. A back electrode type solar cell is disclosed. In addition, the step of curing the fixing resin to the first cured state, the step of softening the fixed resin in the first cured state, and the step of curing the softened fixing resin to bring the fixing resin into the second cured state A back electrode type solar cell with a wiring sheet including a process is disclosed. According to the invention disclosed in Patent Document 1, it is possible to improve the stability of the mechanical connection between the solar battery cell and the wiring sheet and improve the stability of the electrical connection.
特開2012-99569号公報JP 2012-99569 A
 しかしながら、特許文献1には配線シート付き裏面電極型太陽電池セルの変換効率の向上についての詳細な開示はない。 However, Patent Document 1 does not have a detailed disclosure about improving the conversion efficiency of the back electrode type solar cell with a wiring sheet.
 裏面電極型太陽電池セルと配線シートとの安定した接続を確保しながら、変換効率を向上させる構造が求められていた。 There has been a demand for a structure that improves the conversion efficiency while ensuring a stable connection between the back electrode type solar cell and the wiring sheet.
 本発明の配線シート付き裏面電極型太陽電池セルは、配線シートは、絶縁性基材と絶縁性基材の受光面側に設けられた配線とを有し、裏面電極型太陽電池セルは、シリコン基板とシリコン基板の裏面側に設けられた電極とを有しており、配線は、複数の櫛部を有する略櫛形であり、櫛部の根元部の幅が櫛部の先端部の幅よりも長いことを特徴とする。 In the back electrode type solar cell with a wiring sheet of the present invention, the wiring sheet has an insulating substrate and wiring provided on the light receiving surface side of the insulating substrate, and the back electrode type solar cell is made of silicon. The substrate has an electrode provided on the back side of the silicon substrate, and the wiring has a substantially comb shape having a plurality of comb parts, and the width of the root part of the comb part is longer than the width of the tip part of the comb part. Features.
 本発明によれば、裏面電極型太陽電池セルと配線シートとの間の安定した接続を確保しながら、変換効率を向上させる構造を提供することができる。 According to the present invention, it is possible to provide a structure that improves the conversion efficiency while ensuring a stable connection between the back electrode type solar cell and the wiring sheet.
本発明の第1の実施形態を示すものであって、配線シート付き裏面電極型太陽電池セルを示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows the 1st Embodiment of this invention and shows a back electrode type photovoltaic cell with a wiring sheet. 本発明の第1の実施形態を示すものであって、裏面電極型太陽電池セルの模式図である。1 shows a first embodiment of the present invention and is a schematic view of a back electrode type solar battery cell. FIG. 本発明の第1の実施形態を示すものであって、配線シートの模式図である。1 shows a first embodiment of the present invention and is a schematic view of a wiring sheet. FIG. 本発明の第1の実施形態を示すものであって、配線シートの配線を示す拡大模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged schematic diagram illustrating a wiring of a wiring sheet, showing a first embodiment of the present invention. 本発明の第1の実施形態を示すものであって、裏面電極型太陽電池セルの製造方法を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic diagram which shows the 1st Embodiment of this invention and shows the manufacturing method of a back electrode type photovoltaic cell. 本発明の第1の実施形態を示すものであって、裏面電極型太陽電池セルと配線シートの接合方法を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic diagram which shows the 1st Embodiment of this invention and shows the joining method of a back electrode type photovoltaic cell and a wiring sheet. 本発明の第2の実施形態を示すものであって、配線シートの配線を示す模式図である。The 2nd Embodiment of this invention is shown, Comprising: It is a schematic diagram which shows the wiring of a wiring sheet. 本発明の第3の実施形態を示すものであって、配線シートの配線を示す模式図である。The 3rd Embodiment of this invention is shown and it is a schematic diagram which shows the wiring of a wiring sheet. 本発明の第4の実施形態を示すものであって、配線シートの配線を示す模式図である。The 4th Embodiment of this invention is shown and it is a schematic diagram which shows the wiring of a wiring sheet. 本発明の第5の実施形態を示すものであって、配線シートの配線を示す模式図である。The 5th Embodiment of this invention is shown, Comprising: It is a schematic diagram which shows the wiring of a wiring sheet. 本発明の第6の実施形態を示すものであって、配線シートの配線を示す模式図である。The 6th Embodiment of this invention is shown and it is a schematic diagram which shows the wiring of a wiring sheet.
 以下、本発明の実施形態について、図面を参照して説明する。
 [実施形態1]
 実施形態1に係る配線シート付き裏面電極型太陽電池セルについて、図面を参照し説明すれば以下のとおりである。図1は、本実施形態の配線シート付き裏面電極型太陽電池セルを受光面側から見た図である。配線シート付き裏面電極型太陽電池セル100は、裏面電極型太陽電池セル2を配線シート1に載置して形成される。裏面電極型太陽電池セル2は、配線シート1上の略櫛形のn型用配線、p型用配線に対応する位置に、それぞれn型用電極、p型用電極が対応するように載置され、n型用配線はn型用電極と、p型用配線はp型用電極と、それぞれ電気的に接続される構造を有している。本実施形態においては、配線と電極とは接合部材を介して接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment 1]
The back electrode type solar cell with wiring sheet according to Embodiment 1 will be described with reference to the drawings. FIG. 1 is a view of a back electrode type solar cell with a wiring sheet of the present embodiment as viewed from the light receiving surface side. The back electrode type solar cell 100 with the wiring sheet is formed by placing the back electrode type solar cell 2 on the wiring sheet 1. The back electrode type solar cells 2 are placed on the wiring sheet 1 at positions corresponding to the substantially comb-shaped n-type wiring and p-type wiring, respectively, so that the n-type electrode and the p-type electrode correspond to each other. The n-type wiring is electrically connected to the n-type electrode, and the p-type wiring is electrically connected to the p-type electrode. In the present embodiment, the wiring and the electrode are connected via a bonding member.
 図2は、本実施形態の裏面電極型太陽電池セルを模式的に示す図である。図2(a)は、図1における裏面電極型太陽電池セルのA-A´断面を示す図であり、図2(b)は裏面電極型太陽電池セルを裏面側から見た場合の模式図である。本願における裏面とは、裏面電極型太陽電池セルの受光面の逆の面である。 FIG. 2 is a diagram schematically showing the back electrode type solar battery cell of the present embodiment. FIG. 2A is a view showing a cross section AA ′ of the back electrode type solar cell in FIG. 1, and FIG. 2B is a schematic view when the back electrode type solar cell is viewed from the back side. It is. The back surface in this application is a surface opposite to the light receiving surface of the back electrode type solar cell.
 図2(a)に示すように、裏面電極型太陽電池セル2の凹凸形状を有するシリコン基板21の受光側に、反射防止膜22が形成され、シリコン基板21の裏面側にパッシベーション膜25が形成されている。シリコン基板21としては、たとえば、n型またはp型のいずれかの導電型を有する多結晶シリコンまたは単結晶シリコンなどからなる基板を用いることができる。シリコン基板21の厚さとしては、50μm以上400μm以下程度が望ましい。反射防止膜22として、窒化シリコンからなる膜を用い、パッシベーション膜25としては、酸化シリコンからなる膜を用いた。いずれもこれらに限定されるものではない。パッシベーション膜25として、例えば、窒化シリコン膜、または酸化シリコン膜と窒化シリコン膜との積層体などを用いることもできる。 As shown in FIG. 2A, an antireflection film 22 is formed on the light receiving side of the silicon substrate 21 having the concavo-convex shape of the back electrode type solar cell 2, and a passivation film 25 is formed on the back side of the silicon substrate 21. Has been. As the silicon substrate 21, for example, a substrate made of polycrystalline silicon or single crystal silicon having either n-type or p-type conductivity can be used. The thickness of the silicon substrate 21 is preferably about 50 μm or more and 400 μm or less. A film made of silicon nitride was used as the antireflection film 22, and a film made of silicon oxide was used as the passivation film 25. None of these are limited to these. As the passivation film 25, for example, a silicon nitride film or a stacked body of a silicon oxide film and a silicon nitride film can be used.
 また、シリコン基板21の内部の裏面側に、リンなどのn型不純物が拡散されたn型不純物拡散領域23と、ボロンなどのp型不純物が拡散されたp型不純物拡散領域24とが形成されている。n型不純物拡散領域23はリンなどのn型不純物を含む領域である。p型不純物拡散領域24はボロンあるいはアルミニウムなどのp型不純物を含む領域である。 Further, an n-type impurity diffusion region 23 in which an n-type impurity such as phosphorus is diffused and a p-type impurity diffusion region 24 in which a p-type impurity such as boron is diffused are formed on the back side inside the silicon substrate 21. ing. The n-type impurity diffusion region 23 is a region containing n-type impurities such as phosphorus. The p-type impurity diffusion region 24 is a region containing a p-type impurity such as boron or aluminum.
 n型またはp型の導電型を有するシリコン基板21の内部では、n型不純物拡散領域23またはp型不純物拡散領域24とシリコン基板21との界面において、複数のpn接合が形成されている。よって、パッシベーション膜25に設けられたコンタクトホールを介してn型不純物拡散領域23に接続されたn型用電極26、およびp型不純物拡散領域24に接続されたp型用電極27の各々は、シリコン基板21の内部の裏面側に形成された複数のpn接合にそれぞれ対応した電極となる。n型用電極26およびp型用電極27として、たとえば、銀などの金属からなる電極を用いることができる。 Inside the silicon substrate 21 having the n-type or p-type conductivity type, a plurality of pn junctions are formed at the interface between the n-type impurity diffusion region 23 or the p-type impurity diffusion region 24 and the silicon substrate 21. Therefore, each of the n-type electrode 26 connected to the n-type impurity diffusion region 23 and the p-type electrode 27 connected to the p-type impurity diffusion region 24 through the contact holes provided in the passivation film 25 is The electrodes respectively correspond to a plurality of pn junctions formed on the back side inside the silicon substrate 21. As the n-type electrode 26 and the p-type electrode 27, for example, electrodes made of a metal such as silver can be used.
 図2(b)に示すように、n型用電極26、及びp型用電極27は、それぞれ所定の間隔を開けて形成された長手方向を有する複数の矩形部を有している。n型用電極26の矩形部とp型用電極27の矩形部とは、矩形部の長手方向に直交する方向において、所定の間隔を開けて、1本ずつ交互に配置されている。n型用電極26およびp型用電極27のいずれも矩形部の幅およびピッチはほぼ一定である。矩形部の幅とは、電極の長手方向に直交する方向、すなわち短手方向の長さを示す。矩形部のピッチとは、電極の短手方向の中点と隣接する電極の短手方向の中点の間の距離を示す。 As shown in FIG. 2B, the n-type electrode 26 and the p-type electrode 27 each have a plurality of rectangular portions having a longitudinal direction formed at predetermined intervals. The rectangular portion of the n-type electrode 26 and the rectangular portion of the p-type electrode 27 are alternately arranged one by one at a predetermined interval in a direction orthogonal to the longitudinal direction of the rectangular portion. In both the n-type electrode 26 and the p-type electrode 27, the width and pitch of the rectangular portion are substantially constant. The width of the rectangular portion indicates a direction orthogonal to the longitudinal direction of the electrode, that is, a length in the short direction. The pitch of the rectangular portion indicates the distance between the midpoint of the electrodes in the short direction and the midpoint of the adjacent electrodes in the short direction.
 また、n型用電極、p型用電極は、長手方向に複数に分断された形状でも良い。
 図3は、本実施形態の配線シートの模式図である。図3(a)は、受光面側から見た図であり、図3(b)は、図3(a)のB-B’断面を示す図である。
Further, the n-type electrode and the p-type electrode may have a shape divided into a plurality in the longitudinal direction.
FIG. 3 is a schematic diagram of the wiring sheet of the present embodiment. 3A is a view as seen from the light receiving surface side, and FIG. 3B is a view showing a BB ′ cross section of FIG. 3A.
 配線シート1は、絶縁性基材11と、絶縁性基材11の一方の表面上に形成された配線16とから構成されている。絶縁性基材11として例えばPETが用いられる。また配線16としては、例えば銅などの導電性を有する材料が用いられる。本実施形態においては、配線シートの絶縁性基材として厚さ75μm程度のPETを主成分とする樹脂シートを用い、配線として厚さ約35μmの銅配線を用いた。樹脂シートの主成分はPETに限定されるものではなく、PEN等を用いてもよい。 The wiring sheet 1 is composed of an insulating base material 11 and wirings 16 formed on one surface of the insulating base material 11. For example, PET is used as the insulating substrate 11. For the wiring 16, for example, a conductive material such as copper is used. In the present embodiment, a resin sheet mainly composed of PET having a thickness of about 75 μm is used as the insulating substrate of the wiring sheet, and a copper wiring having a thickness of about 35 μm is used as the wiring. The main component of the resin sheet is not limited to PET, and PEN or the like may be used.
 図3の配線シート1上に、4行4列の計16個の裏面電極型太陽電池セルを配置し、配線シート付き裏面電極型太陽電池セルを構成する。配線シート1上の配線によって、16個の裏面電極型太陽電池セルが電気的に直列接続される。例えば、配線シート1上の領域Cに配置される裏面電極型太陽電池セルのn型用電極、p型用電極は、領域Cにあるn型用配線12、p型用配線13にそれぞれ電気的及び物理的に接続される。 3 A total of 16 back electrode type solar cells of 4 rows and 4 columns are arranged on the wiring sheet 1 of FIG. 3 to constitute a back electrode type solar cell with a wiring sheet. By the wiring on the wiring sheet 1, the 16 back electrode type solar cells are electrically connected in series. For example, the n-type electrode and the p-type electrode of the back electrode type solar cell disposed in the region C on the wiring sheet 1 are electrically connected to the n-type wire 12 and the p-type wire 13 in the region C, respectively. And physically connected.
 n型用配線12およびp型用配線13のそれぞれは略櫛形の形状を有しており、櫛の刃にあたる部分は、所定の間隔を開けて形成された複数の二等辺三角形の形状を有している。n型用配線12の櫛の刃にあたる二等辺三角形の部分とp型用配線13の櫛の刃にあたる二等辺三角形の部分とは、二等辺三角形の長手方向に直交する方向において、所定の間隔を開けて、1本ずつ交互に配置されている。二等辺三角形の長手方向に直交する方向とは、底辺方向にあたる。 Each of the n-type wiring 12 and the p-type wiring 13 has a substantially comb shape, and the portion corresponding to the comb blade has a plurality of isosceles triangular shapes formed at predetermined intervals. ing. The isosceles triangle portion corresponding to the comb blade of the n-type wiring 12 and the isosceles triangle portion corresponding to the comb blade of the p-type wiring 13 have a predetermined interval in a direction orthogonal to the longitudinal direction of the isosceles triangle. Open and arranged alternately one by one. The direction orthogonal to the longitudinal direction of the isosceles triangle corresponds to the base direction.
 接続用配線14aおよび14bは、n型用配線12およびp型用配線13の二等辺三角形の長手方向に直交する方向に延在し、n型用配線12およびp型用配線13の二等辺三角形部分は、接続用配線14aまたは14bに接続されている。 The connection wires 14a and 14b extend in a direction orthogonal to the longitudinal direction of the isosceles triangle of the n-type wire 12 and the p-type wire 13, and the isosceles triangle of the n-type wire 12 and the p-type wire 13 The portion is connected to the connection wiring 14a or 14b.
 配線シート1の領域Cのp型用配線13は、P型取出し用配線13aに接続されている。また、領域Cのn型用配線12は、領域Dのp型用配線と接続用配線14aを介し接続されている。言い換えると、列方向に配置された隣接する裏面電極型太陽電池セル同士は、配線シート1上の接続用配線14aを介して電気的および物理的に接続される。また、行方向に配置された裏面電極型太陽電池セル同士は、接続用配線14bを介して電気的に接続される。このように、16個の裏面電極型太陽電池セルが電気的に直列接続され、光電変換により発生した電流は、p型取出し用配線13a、n型取出し用配線12aからそれぞれ取出されることとなる。また、配線シート1の終端にそれぞれ位置しているn型用配線12aおよびp型用配線13a以外の隣り合うn型用配線12とp型用配線13とは、接続用配線14aまたは14bによって電気的に接続されている。また接続用配線14bは、裏面電極型太陽電池セルが対置される部分の外側に設けられている。 The p-type wiring 13 in the region C of the wiring sheet 1 is connected to the P-type extraction wiring 13a. Further, the n-type wiring 12 in the region C is connected to the p-type wiring in the region D through the connection wiring 14a. In other words, the adjacent back electrode type solar cells arranged in the column direction are electrically and physically connected via the connection wiring 14 a on the wiring sheet 1. Further, the back electrode type solar cells arranged in the row direction are electrically connected via the connection wiring 14b. Thus, the 16 back electrode type solar cells are electrically connected in series, and the current generated by the photoelectric conversion is taken out from the p-type take-out wiring 13a and the n-type take-out wiring 12a, respectively. . Further, the n-type wiring 12 and the p-type wiring 13 other than the n-type wiring 12a and the p-type wiring 13a, which are located at the end of the wiring sheet 1, are electrically connected by the connection wiring 14a or 14b. Connected. Further, the connection wiring 14b is provided outside the portion where the back electrode type solar cells are placed.
 図4は、図3(a)におけるEの部分を拡大した図である。配線シート1上の略櫛状の配線は、ほぼ二等辺三角形の形状を有している。各配線の二等辺三角形の底辺にあたる根元部は、接続用配線14aと物理的に接触しており、配線の二等辺三角形の頂点にあたる先端部は接続用配線14aとは物理的に接触していない。根元部の幅L1を先端部の幅L2よりも大きくすることにより、配線シート付き裏面電極型太陽電池セルの出力電力を向上させることが可能となった。配線の長さ方向の電気抵抗を下げることができたためである。 FIG. 4 is an enlarged view of a portion E in FIG. The substantially comb-like wiring on the wiring sheet 1 has a substantially isosceles triangular shape. The root portion corresponding to the base of the isosceles triangle of each wiring is in physical contact with the connection wiring 14a, and the tip portion corresponding to the apex of the isosceles triangle of the wiring is not in physical contact with the connection wiring 14a. . By making the width L1 of the root portion larger than the width L2 of the tip portion, it becomes possible to improve the output power of the back electrode type solar cell with a wiring sheet. This is because the electrical resistance in the length direction of the wiring could be lowered.
 出力電力が向上した理由を、より詳しく説明すると以下のとおりである。
 配線シート付き裏面電極型太陽電池セルに熱が加わった場合、配線シート1を構成する絶縁性基材11と裏面電極型太陽電池セル2を構成するシリコン基板21の熱膨張係数の差により、本来対向する位置に配置されるべき、配線と電極との位置がずれる場合があった。位置ずれにより、P型用配線とn型用電極、またはn型用配線とp型用電極が近接する。よって、電極間短絡がおき、配線シート付き裏面電極型太陽電池セルの出力電力の低下につながる場合があった。このような位置づれによる出力電力の低下を防ぐために、配線間の距離は一定以上を有していることが望ましい。配線間の距離が狭すぎるとイオンマイグレーションの懸念もある。具体的には、50μm~300μm程度が望ましい。配線シート付き裏面電極型太陽電池セルに熱が加わる場合の例としては、約160度の加熱を行う封止工程をあげることができる。
The reason why the output power is improved will be described in more detail as follows.
When heat is applied to the back electrode type solar cell with the wiring sheet, due to the difference in thermal expansion coefficient between the insulating base material 11 constituting the wiring sheet 1 and the silicon substrate 21 constituting the back electrode type solar cell 2, In some cases, the positions of the wiring and the electrode, which should be arranged at opposing positions, are shifted. Due to the misalignment, the P-type wiring and the n-type electrode, or the n-type wiring and the p-type electrode approach each other. Therefore, a short circuit between the electrodes occurs, which may lead to a decrease in output power of the back electrode type solar cell with a wiring sheet. In order to prevent the output power from being lowered due to such positioning, it is desirable that the distance between the wirings be a certain value or more. If the distance between the wires is too small, there is a concern about ion migration. Specifically, about 50 μm to 300 μm is desirable. As an example of the case where heat is applied to the back electrode type solar cell with a wiring sheet, a sealing process in which heating at about 160 degrees can be given.
 本実施形態においては、配線のピッチは、約750μmとした。また、三角形の高さは約160mm、三角形の高さ方向におけるほぼ中央部における幅を約650μmとした。 In this embodiment, the wiring pitch is about 750 μm. Further, the height of the triangle was about 160 mm, and the width at the substantially central portion in the height direction of the triangle was about 650 μm.
 裏面電極型太陽電池セル略矩形の形状を有している。略矩形の短手方向の幅はほぼ一定である。略矩形の形状とすることで、安定した高い出力電力を得ることが可能となった。正確な電極パターンを形成しやすい形状であるからである。 The back electrode type solar cell has a substantially rectangular shape. The width in the short direction of the substantially rectangular shape is almost constant. By adopting a substantially rectangular shape, stable high output power can be obtained. This is because the shape is easy to form an accurate electrode pattern.
 本実施形態においては、対向する電極の形状と配線の形状は異なっているが、形状が異なることによる配線シート付き裏面電極型太陽電池セルの出力低下は発生しない。理由を以下に説明する。 In this embodiment, the shape of the opposing electrode and the shape of the wiring are different, but the output of the back electrode type solar cell with a wiring sheet due to the difference in shape does not occur. The reason will be described below.
 配線シート付き裏面電極型太陽電池セルは、配線シート上の配線と裏面電極上の電極が、対向する位置に配置される。裏面電極型太陽電池セルに設けられた電極においては、太陽電池セル内部で発生した電子の多くは直下の電極に向かって流れ、さらに直下の配線に向かって流れる。よって、裏面電極型太陽電池セルおいては、略矩形の電極の場所によって、電流密度が変わることはほとんどない。逆に、配線シートの配線においては先端部から根元部に向けて電流密度が除々に大きくなっていく。よって、電極の矩形部の幅はほぼ一定とし、配線の矩形部の幅が根元に向けて除々に大きくなる構造としても、抵抗ロスが大きくなるというような問題は発生しない。よって、電極が略矩形の形状であっても、裏面電極型太陽電池セルの出力電力は低下しないこととなる。 In the back electrode type solar cell with a wiring sheet, the wiring on the wiring sheet and the electrode on the back electrode are arranged at opposite positions. In the electrode provided in the back electrode type solar cell, most of the electrons generated inside the solar cell flow toward the electrode immediately below and further flow toward the wiring immediately below. Therefore, in the back electrode type solar cell, the current density hardly changes depending on the location of the substantially rectangular electrode. On the contrary, in the wiring of the wiring sheet, the current density gradually increases from the tip portion toward the root portion. Therefore, even if the width of the rectangular portion of the electrode is substantially constant and the width of the rectangular portion of the wiring gradually increases toward the root, there is no problem that the resistance loss increases. Therefore, even if an electrode is a substantially rectangular shape, the output electric power of a back surface electrode type photovoltaic cell will not fall.
 以下に、本実施形態の配線シート付き裏面電極太陽電池セルの製造方法を示す。
 図5は、図1、および図2に示す本実施形態の裏面電極型太陽電池セルの製造方法の一例を示す模式的断面図である。本実施形態の裏面電極型太陽電池セルの製造方法の一例を、図5を用いて説明する。
Below, the manufacturing method of the back electrode solar cell with a wiring sheet of this embodiment is shown.
FIG. 5 is a schematic cross-sectional view showing an example of a method for manufacturing the back electrode type solar battery cell of the present embodiment shown in FIGS. 1 and 2. An example of the manufacturing method of the back surface electrode type photovoltaic cell of this embodiment is demonstrated using FIG.
 まず、図5(a)に示すように、まずシリコン基板21を用意する。インゴットからスライスしたものであるため、シリコン基板21の表面にはスライスダメージ21aが形成されている。 First, as shown in FIG. 5A, a silicon substrate 21 is first prepared. Since it is sliced from the ingot, slice damage 21 a is formed on the surface of the silicon substrate 21.
 次に、図5(b)に示すように、シリコン基板21の表面のスライスダメージ21aを除去する。ここで、スライスダメージ21aの除去は、たとえば上記のスライス後のシリコン基板21の表面をフッ化水素水溶液と硝酸との混酸または水酸化ナトリウムなどのアルカリ水溶液などでエッチングすることなどによって行なうことができる。 Next, as shown in FIG. 5B, the slice damage 21a on the surface of the silicon substrate 21 is removed. Here, the removal of the slice damage 21a can be performed, for example, by etching the surface of the silicon substrate 21 after slicing with a mixed acid of hydrogen fluoride aqueous solution and nitric acid or an alkaline aqueous solution such as sodium hydroxide. .
 次に、図5(c)に示すように、シリコン基板21の裏面に、n型不純物拡散領域23およびp型不純物拡散領域24をそれぞれ形成する。n型不純物拡散領域23は、たとえば、POCl3のようなn型不純物であるリンを含むガスを用いた気相拡散により形成することができる。p型不純物拡散領域24は、たとえば、BBr3のようなp型不純物であるボロンを含むガスを用いた気相拡散などの方法により形成することができる。 Next, as shown in FIG. 5C, an n-type impurity diffusion region 23 and a p-type impurity diffusion region 24 are formed on the back surface of the silicon substrate 21, respectively. The n-type impurity diffusion region 23 can be formed, for example, by vapor phase diffusion using a gas containing phosphorus which is an n-type impurity such as POCl3. The p-type impurity diffusion region 24 can be formed by a method such as vapor phase diffusion using a gas containing boron which is a p-type impurity such as BBr3.
 次に、図5(d)に示すように、シリコン基板21の裏面にパッシベーション膜25を形成する。ここで、パッシベーション膜25は、たとえば、熱酸化法またはプラズマCVD(Chemical Vapor Deposition)法などの方法により形成することができる。 Next, as shown in FIG. 5D, a passivation film 25 is formed on the back surface of the silicon substrate 21. Here, the passivation film 25 can be formed by a method such as a thermal oxidation method or a plasma CVD (Chemical Vapor Deposition) method.
 次に、図5(e)に示すように、シリコン基板21の受光面の全面にテクスチャ構造などの凹凸構造を形成した後に、その凹凸構造上に反射防止膜22を形成する。テクスチャ構造は、たとえば水酸化ナトリウムまたは水酸化カリウムなどのアルカリ水溶液にイソプロピルアルコールを添加した液をたとえば70℃以上80℃以下に加熱したエッチング液を用いてシリコン基板21の受光面をエッチングすることによって形成することができる。反射防止膜22は、たとえばプラズマCVD法などにより形成することができる。 Next, as shown in FIG. 5E, an uneven structure such as a texture structure is formed on the entire light receiving surface of the silicon substrate 21, and then an antireflection film 22 is formed on the uneven structure. The texture structure is obtained by etching the light receiving surface of the silicon substrate 21 using an etching solution obtained by heating a solution obtained by adding isopropyl alcohol to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide to 70 ° C. or more and 80 ° C. or less, for example. Can be formed. The antireflection film 22 can be formed by, for example, a plasma CVD method.
 次に、図5(f)に示すように、シリコン基板21の裏面のパッシベーション膜25の一部を除去することによってコンタクトホール25aおよびコンタクトホール25bを形成する。ここで、コンタクトホール25aは、n型不純物拡散領域23の表面の少なくとも一部を露出させるように形成され、コンタクトホール25bは、p型不純物拡散領域24の表面の少なくとも一部を露出させるように形成される。 Next, as shown in FIG. 5F, a part of the passivation film 25 on the back surface of the silicon substrate 21 is removed to form a contact hole 25a and a contact hole 25b. Here, the contact hole 25a is formed to expose at least part of the surface of the n-type impurity diffusion region 23, and the contact hole 25b is exposed to at least part of the surface of the p-type impurity diffusion region 24. It is formed.
 なお、コンタクトホール25aおよび25bはそれぞれ、たとえば、フォトリソグラフィ技術を用いてコンタクトホールの形成箇所に対応する部分に開口を有するレジストパターンをパッシベーション膜25上に形成した後に、レジストパターンの開口からパッシベーション膜25をエッチングなどにより除去する方法で形成することができる。 Each of the contact holes 25a and 25b is formed, for example, by forming a resist pattern having an opening on a portion corresponding to the contact hole forming portion on the passivation film 25 using a photolithography technique, and then opening the passivation film from the opening of the resist pattern. 25 can be formed by etching or the like.
 次に、図5(g)に示すように、銀をスクリーン印刷することにより、n型用電極26とp型用電極27とを形成する。n型用電極26はコンタクトホール25aを通してn型不純物拡散領域23に接し、p型用電極27はコンタクトホール25bを通してp型不純物拡散領域24に接する。電極を略矩形とすることで、スクリーン印刷のかすれ等がおこりにくく、電極形成プロセスをより安定させることができる。 Next, as shown in FIG. 5G, the n-type electrode 26 and the p-type electrode 27 are formed by screen printing of silver. The n-type electrode 26 is in contact with the n-type impurity diffusion region 23 through the contact hole 25a, and the p-type electrode 27 is in contact with the p-type impurity diffusion region 24 through the contact hole 25b. By making the electrode substantially rectangular, screen printing fading or the like hardly occurs, and the electrode formation process can be further stabilized.
 さらに、本実施形態の裏面電極型太陽電池セルと配線シートの貼り付けについて図6を用いて説明する。 Furthermore, the attachment of the back electrode type solar cell and the wiring sheet of this embodiment will be described with reference to FIG.
 まず、図6(a)に示すように、シリコン基板21の裏面上に所定の間隔を空けて設けられたn型用電極26とp型用電極27とを含む裏面電極型太陽電池セル2を用意する。ここではn型用電極26およびp型用電極27は説明の便宜のためそれぞれ1つずつしか図示しかされていないが、それぞれ複数あってもよいことは言うまでもない。 First, as shown in FIG. 6A, a back electrode type solar cell 2 including an n type electrode 26 and a p type electrode 27 provided on the back surface of the silicon substrate 21 with a predetermined interval is provided. prepare. Here, only one n-type electrode 26 and one p-type electrode 27 are shown for convenience of explanation, but it goes without saying that there may be a plurality of each.
 次に、図6(b)に示すように、裏面電極型太陽電池セル2のシリコン基板21の裏面のn型用電極26とp型用電極27との間に、それぞれ、未硬化の固定樹脂31aを設置する。固定樹脂は、裏面電極型太陽電池セルと配線シートを固定するものである。 Next, as shown in FIG. 6B, an uncured fixing resin is interposed between the n-type electrode 26 and the p-type electrode 27 on the back surface of the silicon substrate 21 of the back electrode type solar battery cell 2, respectively. 31a is installed. The fixing resin fixes the back electrode type solar cell and the wiring sheet.
 固定樹脂31aの設置方法としては、たとえば、スクリーン印刷、ディスペンサ塗布またはインクジェット塗布などの方法を挙げることができる。なかでも、スクリーン印刷を用いることが好ましい。簡易に、低コストで、かつ短時間で固定樹脂31aを設置することができる。 Examples of the method for installing the fixing resin 31a include screen printing, dispenser coating, and inkjet coating. Among these, it is preferable to use screen printing. The fixing resin 31a can be easily installed at low cost and in a short time.
 裏面電極型太陽電池セル2のシリコン基板21側における固定樹脂31aの幅は、n型用電極26およびp型用電極27と接触しないような幅であることが好ましい。裏面電極型太陽電池セル2の電極と配線シート1の配線との間の電気的な接続の安定性の向上が期待できるからである。 The width of the fixing resin 31a on the silicon substrate 21 side of the back electrode type solar battery cell 2 is preferably a width that does not contact the n-type electrode 26 and the p-type electrode 27. This is because an improvement in the stability of the electrical connection between the electrode of the back electrode type solar cell 2 and the wiring of the wiring sheet 1 can be expected.
 なお、本実施の形態においては、裏面電極型太陽電池セル2の電極間に固定樹脂31aを設置する場合について説明するが、配線シート1の配線間に固定樹脂31aを設置してもよく、裏面電極型太陽電池セル2の電極間および配線シート1の配線間のそれぞれに固定樹脂31aを設置してもよい。 In the present embodiment, the case where the fixing resin 31a is installed between the electrodes of the back electrode type solar battery cell 2 will be described. However, the fixing resin 31a may be installed between the wirings of the wiring sheet 1, and the back surface. The fixing resin 31 a may be installed between the electrodes of the electrode type solar battery cell 2 and between the wirings of the wiring sheet 1.
 固定樹脂31aの形状は、裏面電極型太陽電池セル2のn型用電極26およびp型用電極27のそれぞれに沿うライン状とすることが好ましいが、後述する封止材中への封止工程において、第1硬化状態の固定樹脂が軟化して十分に拡がることできる程度の隙間が電極との間に設けられていれば、断続的に配置するような形状でも構わない。 The shape of the fixing resin 31a is preferably a line shape along each of the n-type electrode 26 and the p-type electrode 27 of the back electrode type solar cell 2, but a sealing step into a sealing material to be described later In this case, the gap may be intermittently arranged as long as the gap is provided between the first cured resin and the electrode so as to be sufficiently expanded.
 固定樹脂31aとしては、Bステージ化可能な樹脂が用いられることが好ましい。Bステージ化可能な樹脂とは、液体状態の未硬化の固定樹脂31aを加熱したときに、粘度が上昇して硬化状態(第1の硬化状態)となった後に粘度が低下して軟化し、その後に再度粘度が上昇して硬化状態(第2の硬化状態)となる樹脂のことである。 As the fixing resin 31a, it is preferable to use a resin that can be B-staged. The B-stageable resin means that when the liquid uncured fixing resin 31a is heated, the viscosity increases and becomes a cured state (first cured state), and then the viscosity decreases and softens. Thereafter, the viscosity is increased again, and the resin becomes a cured state (second cured state).
 次に、図6(c)の模式的断面図に示すように、未硬化の固定樹脂31aを硬化して第1の硬化状態の固定樹脂31bとする。未硬化の固定樹脂31aは、たとえば、加熱および/または紫外線などの光の照射などによって硬化して第1の硬化状態となる。これにより、未硬化の固定樹脂31aの状態と比べて、粘着力および流動性が低下した第1の硬化状態の固定樹脂31bを得ることができる。 Next, as shown in the schematic cross-sectional view of FIG. 6C, the uncured fixing resin 31a is cured to form the first cured fixing resin 31b. The uncured fixing resin 31a is cured by, for example, heating and / or irradiation with light such as ultraviolet rays to be in a first cured state. Thereby, compared with the state of uncured fixed resin 31a, fixed resin 31b in the first cured state with reduced adhesive force and fluidity can be obtained.
 また、第1の硬化状態の固定樹脂31bは、常温(約25℃)における未硬化状態と比べて粘度が高く、形状保持性(外力を加えない限り変形しない性質)を有しており、かつ接着性の低い状態(固定樹脂31bの表面に裏面電極型太陽電池セル2や配線シート1を接触させても裏面電極型太陽電池セル2や配線シートに固定樹脂31bが付着しない程度の接着性を有する状態)であることが好ましい。この場合には、後述する接合部材を設置する工程において、生産性の高い印刷工程を採用することが可能となる。さらには、後述する裏面電極型太陽電池セル2と配線シート1とを重ね合わせる工程において、裏面電極型太陽電池セル2と配線シート1とを重ね合わせた後においても、裏面電極型太陽電池セル2と配線シート1とを容易に取り外しできる傾向にある。そのため、裏面電極型太陽電池セル2の電極と配線シート1の配線との位置合わせを容易かつ高精度に行なうことができる傾向にある。 In addition, the fixed resin 31b in the first cured state has a higher viscosity than the uncured state at room temperature (about 25 ° C.), has shape retainability (a property that does not deform unless an external force is applied), and Low adhesiveness (adhesiveness to the extent that the fixing resin 31b does not adhere to the back electrode solar cell 2 or the wiring sheet even if the back electrode solar cell 2 or the wiring sheet 1 is brought into contact with the surface of the fixing resin 31b. It is preferable that the In this case, it is possible to employ a printing process with high productivity in the process of installing the joining member described later. Further, in the step of overlapping the back electrode type solar battery cell 2 and the wiring sheet 1 described later, the back electrode type solar battery cell 2 even after the back electrode type solar battery cell 2 and the wiring sheet 1 are overlapped. And the wiring sheet 1 tend to be easily removable. Therefore, it exists in the tendency which can align the electrode of the back surface electrode type photovoltaic cell 2 and the wiring of the wiring sheet 1 easily and with high precision.
 加熱により、未硬化状態の固定樹脂31aを第1の硬化状態の第1の固定樹脂31bとする場合は、第1の硬化状態の第1の固定樹脂31bとなる温度は、後述する第1の硬化状態の第1の固定樹脂31bが軟化する温度および軟化状態の第1の固定樹脂31cが第2の硬化状態となる温度よりも低いことが好ましい。これにより、加熱温度を制御することで、未硬化状態の固定樹脂31aが軟化状態や第2の硬化状態まで進行してしまうことを防止することができる。 When the uncured fixed resin 31a is changed to the first fixed resin 31b in the first cured state by heating, the temperature that becomes the first fixed resin 31b in the first cured state is the first temperature described later. The temperature is preferably lower than the temperature at which the cured first fixing resin 31b is softened and the temperature at which the softened first fixing resin 31c is in the second cured state. Thereby, by controlling the heating temperature, it is possible to prevent the uncured fixed resin 31a from proceeding to the softened state or the second cured state.
 次に、図6(d)の模式的断面図に示すように、裏面電極型太陽電池セル2のn型用電極26およびp型用電極27のそれぞれの表面に接合部材32を設置する。接合部材32としては、たとえば半田などの導電性物質を含む材質を用いることができる。接合部材32は、たとえば、スクリーン印刷、ディスペンサ塗布またはインクジェット塗布などの方法により設置することができる。なかでも、スクリーン印刷を用いることが好ましい。簡易に、低コストで、かつ短時間で接合部材32を設置することができるためである。 Next, as shown in the schematic cross-sectional view of FIG. 6 (d), the bonding member 32 is installed on each surface of the n-type electrode 26 and the p-type electrode 27 of the back electrode type solar battery cell 2. As the joining member 32, for example, a material containing a conductive substance such as solder can be used. The joining member 32 can be installed by methods, such as screen printing, dispenser application | coating, or inkjet application | coating, for example. Among these, it is preferable to use screen printing. This is because the joining member 32 can be easily installed at a low cost and in a short time.
 なお、本実施の形態においては、裏面電極型太陽電池セル2の電極上に接合部材32を設置する場合について説明するが、配線シートの配線上に接合部材32を設置してもよく、裏面電極型太陽電池セル2の電極上および配線シートの配線上のそれぞれに接合部材32を設置してもよい。また、固定樹脂31aと接合部材32との両方を裏面電極型太陽電池セル2若しくは配線シート1に設置するようにしなくてもよく、たとえば、裏面電極型太陽電池セル2の電極間に固定樹脂31aを設置して、配線シートの配線上に接合部材32を設置してもよい。 In the present embodiment, the case where the bonding member 32 is installed on the electrode of the back electrode type solar battery cell 2 will be described. However, the bonding member 32 may be installed on the wiring of the wiring sheet. The joining member 32 may be installed on each of the electrodes of the solar cell 2 and the wiring of the wiring sheet. Further, both the fixed resin 31a and the bonding member 32 may not be installed on the back electrode type solar cell 2 or the wiring sheet 1. For example, the fixed resin 31a is interposed between the electrodes of the back electrode type solar cell 2. And the joining member 32 may be installed on the wiring of the wiring sheet.
 次に、図6(e)に示すように、裏面電極型太陽電池セル2と配線シート1とを重ね合わせる。裏面電極型太陽電池セル2と配線シート1との重ね合わせは、裏面電極型太陽電池セル2のn型用電極26およびp型用電極27が、それぞれ配線シート1の絶縁性基材11上に設けられたn型用配線12およびp型用配線13と接合部材32を介して対向するようにして行なわれる。 Next, as shown in FIG. 6 (e), the back electrode type solar cells 2 and the wiring sheet 1 are overlapped. When the back electrode type solar cell 2 and the wiring sheet 1 are overlapped, the n type electrode 26 and the p type electrode 27 of the back electrode type solar cell 2 are respectively placed on the insulating substrate 11 of the wiring sheet 1. The n-type wiring 12 and the p-type wiring 13 provided are opposed to each other through the bonding member 32.
 次に、上記のようにして重ね合わせた裏面電極型太陽電池セル2と配線シート1とを加圧しながら加熱および/または光を照射することによって、配線シート付き裏面電極型太陽電池セルを作製する。 Next, by heating and / or irradiating light while pressurizing the back electrode type solar cell 2 and the wiring sheet 1 that are overlapped as described above, a back electrode type solar cell with a wiring sheet is produced. .
 ここで、図6(f)の模式的断面図に示すように、第1の硬化状態の固定樹脂31bは、加熱および/または紫外線などの光の照射によって粘度が低下して軟化し、軟化状態の固定樹脂32cになる。 Here, as shown in the schematic cross-sectional view of FIG. 6 (f), the fixed resin 31b in the first cured state is softened due to a decrease in viscosity due to heating and / or irradiation with light such as ultraviolet rays. Fixing resin 32c.
 そして、図6(g)の模式的断面図に示すように、裏面電極型太陽電池セル2の電極間に位置する軟化状態の固定樹脂31cは、裏面電極型太陽電池セル2と配線シート1との間の加圧によって変形して、配線シート1の配線間に入り込む。また、接合部材32中の導電性物質も加熱されることによって溶融し、裏面電極型太陽電池セル2と配線シート1との間の加圧によって裏面電極型太陽電池セル2の電極と配線シート1の配線との間で変形する。 As shown in the schematic cross-sectional view of FIG. 6G, the softened fixing resin 31 c located between the electrodes of the back electrode solar cell 2 is composed of the back electrode solar cell 2, the wiring sheet 1, and the like. Is deformed by the pressurization between the wires and enters between the wirings of the wiring sheet 1. Further, the conductive material in the bonding member 32 is also melted by being heated, and the electrode of the back electrode solar cell 2 and the wiring sheet 1 are pressed by the pressure between the back electrode solar cell 2 and the wiring sheet 1. Deforms between the wires.
 その後、図6(h)の模式的断面図に示すように、軟化状態の固定樹脂31cがさらに加熱および/または紫外線などの光の照射によって粘度が上昇して再度硬化し、第2の硬化状態の固定樹脂31dになる。第2の硬化状態は樹脂の架橋反応による硬化であるため、第2の硬化状態の固定樹脂31dは再度軟化することなく状態が安定する。すなわち、裏面電極型太陽電池セル2と配線シート1とを強固に接合することができる。 Thereafter, as shown in the schematic cross-sectional view of FIG. 6 (h), the fixed resin 31c in the softened state further increases in viscosity by heating and / or irradiation with light such as ultraviolet rays, and is cured again. The fixing resin 31d. Since the second cured state is cured by a crosslinking reaction of the resin, the state of the fixed resin 31d in the second cured state is stabilized without being softened again. That is, the back electrode type solar cell 2 and the wiring sheet 1 can be firmly bonded.
 その後、受光面側から、透光性基材、封止樹脂、配線シート付き裏面電極型太陽電池セル、封止樹脂、裏面側保護材となるように配置し、加熱及び加圧を行うことで封止した。透光性基材としてはガラスを用いた。また、封止樹脂としてEVA(エチレンビニルアセテート樹脂)を用いた。EVAに限定する必然性はなく、例えばオレフィン系の樹脂を用いても良い。 Then, from the light receiving surface side, it is arranged to be a translucent base material, sealing resin, back electrode solar cell with wiring sheet, sealing resin, back surface side protective material, and by heating and pressing Sealed. Glass was used as the translucent substrate. Moreover, EVA (ethylene vinyl acetate resin) was used as the sealing resin. There is no necessity to limit to EVA, and for example, an olefin resin may be used.
 配線シート付き裏面電極型太陽電池セルは、p型取出し用配線とn型取出し用配線とを有しており、それぞれ端子ボックスに電気的に接続した。さらに、封止した配線シート付き付き裏面電極型太陽電池セルの側部にフレームを嵌め込み高い強度を得る構造とした。 The back electrode type solar cell with wiring sheet had p-type extraction wiring and n-type extraction wiring, and each was electrically connected to the terminal box. Furthermore, it was set as the structure which inserts a flame | frame in the side part of the back electrode type solar cell with a wiring sheet | seat with a seal | sticker, and obtains high intensity | strength.
 [実施形態2]
 実施形態2に係る配線シート付き裏面電極型太陽電池セルについて、図面を参照し説明すれば以下のとおりである。実施形態1と異なる点は、配線シート上のn型用電極及びp型用電極の形状を三角形ではなく、台形としたことである。
[Embodiment 2]
The back electrode type solar cell with wiring sheet according to Embodiment 2 will be described below with reference to the drawings. The difference from the first embodiment is that the shape of the n-type electrode and the p-type electrode on the wiring sheet is not a triangle but a trapezoid.
 図7に本実施形態の配線シートの一部を示す。実施形態1の説明で用いた図3(a)におけるEの部分の拡大図に該当する。n型用配線121は、複数の台形からなる形状を有している。P型用配線131も同様に、複数の台形からなる形状を有している。配線に鋭角部分があると、配線の幅の細い箇所で断線がおきる可能性があったが、鋭角部分をなくすことで断線を高い精度でおさえることが可能となった。 FIG. 7 shows a part of the wiring sheet of this embodiment. This corresponds to an enlarged view of a portion E in FIG. 3A used in the description of the first embodiment. The n-type wiring 121 has a shape composed of a plurality of trapezoids. Similarly, the P-type wiring 131 has a plurality of trapezoidal shapes. If there was an acute angle part in the wiring, there was a possibility that the disconnection would occur at a narrow part of the wiring, but it became possible to suppress the disconnection with high accuracy by eliminating the acute angle part.
 [実施形態3]
 実施形態3に係る配線シート付き裏面電極型太陽電池セルについて、図面を参照し説明すれば以下のとおりである。実施形態2と異なる点は、配線シート上の接続用配線の形状である。
[Embodiment 3]
The back electrode type solar cell with wiring sheet according to Embodiment 3 will be described below with reference to the drawings. The difference from the second embodiment is the shape of the connection wiring on the wiring sheet.
 図8に本実施形態の配線シートの一部を示す。実施形態1の説明で用いた図3(a)におけるEの部分の拡大図に該当する。n型用配線122及びp型用配線132のいずれも複数の略台形からなる部分を有している。また、接続用配線142aとつながるn型用配線122及びp型用配線132の根元部が、曲率を有する曲線状となっている。配線の角部は、クラックの起点となる場合があった。配線にクラックが発生すると、配線の電気抵抗が大きくなる。角部をなくしたことにより、配線にクラックが発生しにくくなり、高い変換効率を安定して確保することが可能となった。 FIG. 8 shows a part of the wiring sheet of this embodiment. This corresponds to an enlarged view of a portion E in FIG. 3A used in the description of the first embodiment. Each of the n-type wiring 122 and the p-type wiring 132 has a plurality of substantially trapezoidal portions. Further, the root portions of the n-type wiring 122 and the p-type wiring 132 connected to the connection wiring 142a are curved with a curvature. The corner portion of the wiring sometimes becomes a starting point of the crack. When cracks occur in the wiring, the electrical resistance of the wiring increases. By eliminating the corners, cracks are less likely to occur in the wiring, and high conversion efficiency can be secured stably.
 [実施形態4]
 実施形態4に係る配線シート付き裏面電極型太陽電池セルについて、図面を参照し説明すれば以下のとおりである。実施形態3と異なる点は、配線の先端部を曲線状としたことである。
[Embodiment 4]
The back electrode type solar cell with wiring sheet according to Embodiment 4 will be described with reference to the drawings. The difference from the third embodiment is that the tip of the wiring is curved.
 図9に配線シートの櫛型電極の一部を示す。実施形態1の説明で用いた図3(a)におけるEの部分の拡大図に相当する。n型用配線123及びp型用配線133のいずれも複数の略台形からなる部分を有しており、先端部は曲線状となっている。先端部とは、台形の向かい合う平行な1組の辺のうち、長さが短い辺に該当する箇所である。また、n型用配線123及びp型用配線133は、根元部が接続用配線143aとつながっている。配線の先端部の角部をなくしたことにより、より配線にクラックを発生しにくくすることが可能となった。 Fig. 9 shows a part of the comb-shaped electrode of the wiring sheet. This corresponds to an enlarged view of a portion E in FIG. 3A used in the description of the first embodiment. Each of the n-type wiring 123 and the p-type wiring 133 has a plurality of substantially trapezoidal portions, and the tip portion is curved. The tip is a portion corresponding to a short side of a pair of parallel sides of a trapezoid facing each other. Further, the n-type wiring 123 and the p-type wiring 133 are connected to the connection wiring 143a at the roots. By eliminating the corners at the tip of the wiring, it is possible to make it harder for the wiring to crack.
 [実施形態5]
 実施形態5に係る配線シート付き裏面電極型太陽電池セルについて、図面を参照し説明すれば以下のとおりである。実施形態3と異なる点は、配線の先端部の角部にアールを設けた点である。
[Embodiment 5]
The back electrode type solar cell with wiring sheet according to Embodiment 5 will be described below with reference to the drawings. The difference from the third embodiment is that a radius is provided at the corner of the tip of the wiring.
 図10に配線シートの櫛形電極の一部を示す。図10(a)は実施形態1の説明で用いた図3(a)におけるEの部分の拡大図に相当し、図10(b)は図10(a)におけるFの部分の拡大図である。n型用配線124及びP型用配線134のいずれも複数の略台形からなる部分を有しており、根元部は接続用配線144aとつながっている。本実施形態においては先端部の角部がアールを有する構造となっている。配線の先端部の角部にアールを設けたことにより、より配線にクラックが発生しにくくなった。 Fig. 10 shows a part of the comb-shaped electrode of the wiring sheet. 10A corresponds to an enlarged view of a portion E in FIG. 3A used in the description of the first embodiment, and FIG. 10B is an enlarged view of a portion F in FIG. 10A. . Each of the n-type wiring 124 and the P-type wiring 134 has a plurality of substantially trapezoidal portions, and the root portion is connected to the connection wiring 144a. In this embodiment, the corner portion of the tip has a rounded structure. By providing rounded corners at the tip of the wiring, the wiring is less likely to crack.
 さらに、本実施形態においては、配線の直線部分と曲線部分の変曲点が固定樹脂で覆われるように固定樹脂を配置した。変曲点は応力が集中しやすいためクラックの起点になりやすい傾向があったが、を固定樹脂で覆うことにより、より確実にクラックの発生を防ぐことができるようなった。これは、配線を配線シートに固定樹脂で接着することで、面内での変形を防止する効果が得られているためと考えられる。 Further, in this embodiment, the fixing resin is arranged so that the inflection points of the straight line portion and the curved portion of the wiring are covered with the fixing resin. Inflection points tend to be the starting point of cracks because stress tends to concentrate, but by covering them with a fixing resin, the generation of cracks can be prevented more reliably. This is presumably because the effect of preventing in-plane deformation is obtained by bonding the wiring to the wiring sheet with a fixing resin.
 [実施形態6]
 実施形態6に係る配線シート付き裏面電極型太陽電精セルについて、図面を参照して説明すれば以下のとおりである、実施形態1と異なる点は、配線シート上の接続用配線に開口部を設けた点である。
[Embodiment 6]
The back electrode type solar electrolysis cell with wiring sheet according to the sixth embodiment will be described below with reference to the drawings. The difference from the first embodiment is that the connection wiring on the wiring sheet has an opening. It is a point provided.
 図11に配線シートの櫛形電極の一部を示す。図11は、実施形態1の説明で用いた図3(a)におけるEの部分の拡大図に該当する。配線シートには、n型用配線125、p型用配線135、及び接続用配線145aが設けられている。n型用配線125、p型用配線135は、裏面電極型太陽電池セルのn型用電極、p型用電極にそれぞれ電気的及び物理的に接続される。接続用配線145aは、列方向に配置された隣接する裏面電極型太陽電池セル同士を接続する配線である。本実施形態においては、接続用配線145aに開口部17を設けた。開口部17は直径約500μmの円状であり、各n型用配線及びp型用配線の根元部に配置した。接続用配線に開口部を設けることにより、配線にクラックを発生しにくくすることが可能となった。 Fig. 11 shows a part of the comb-shaped electrode of the wiring sheet. FIG. 11 corresponds to an enlarged view of a portion E in FIG. 3A used in the description of the first embodiment. The wiring sheet is provided with an n-type wiring 125, a p-type wiring 135, and a connection wiring 145a. The n-type wiring 125 and the p-type wiring 135 are electrically and physically connected to the n-type electrode and the p-type electrode of the back electrode type solar cell, respectively. The connection wiring 145a is a wiring that connects adjacent back-surface electrode type solar cells arranged in the column direction. In the present embodiment, the opening 17 is provided in the connection wiring 145a. The opening 17 has a circular shape with a diameter of about 500 μm, and is arranged at the root of each n-type wiring and p-type wiring. By providing an opening in the connection wiring, it is possible to make it difficult for the wiring to crack.
 開口部17の直径は、100μm~600μm程度が望ましい。100μmより小さいと配線に明確なパターンを形成することが困難となり、600μmより大きいと接続用配線の抵抗増加により変換効率の低下がおきるためである。開口部を円ではなく楕円状としても良い。また本実施形態においては、接続用配線に開口部をじぐざぐ状に配置したが、直線状に配置しても良い。 The diameter of the opening 17 is preferably about 100 μm to 600 μm. If it is smaller than 100 μm, it is difficult to form a clear pattern on the wiring, and if it is larger than 600 μm, the conversion efficiency is lowered due to an increase in resistance of the connecting wiring. The opening may be an ellipse instead of a circle. Further, in the present embodiment, the connection wiring is arranged so as to open the opening, but may be arranged linearly.
 以上、実施形態1から実施形態6について具体的に説明を行ったが、本発明はそれらに限定されるものではない。上述した6つの実施形態それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 As mentioned above, although Embodiment 1 to Embodiment 6 was specifically described, the present invention is not limited to them. Embodiments obtained by appropriately combining the technical means disclosed in the six embodiments described above are also included in the technical scope of the present invention.
 なお、今回開示した実施形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。従って、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、請求の範囲の記載に基づいて画定される。また、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 It should be noted that the embodiment disclosed this time is an example in all respects and does not serve as a basis for limited interpretation. Therefore, the technical scope of the present invention is not interpreted only by the above-described embodiments, but is defined based on the description of the scope of claims. Moreover, all the changes within the meaning and range equivalent to a claim are included.
 1 配線シート、2 裏面電極型太陽電池セル、11 絶縁性基材、12 n型用配線、13 p型用配線、14 接続用配線、16 配線、17 開口部、21 シリコン基板、22 反射防止膜、23 n型不純物拡散領域、24 p型不純物拡散領域、25 パッシベーション膜、26 n型用電極、27 p型用電極、31 固定樹脂、32 接合部材、100 配線シート付き裏面電極型太陽電池セル。 DESCRIPTION OF SYMBOLS 1 Wiring sheet, 2 Back electrode type photovoltaic cell, 11 Insulating base material, 12 n type wiring, 13 p type wiring, 14 connection wiring, 16 wiring, 17 opening part, 21 silicon substrate, 22 antireflection film , 23 n-type impurity diffusion region, 24 p-type impurity diffusion region, 25 passivation film, 26 n-type electrode, 27 p-type electrode, 31 fixing resin, 32 bonding member, 100 back sheet solar cell with wiring sheet.

Claims (5)

  1.  配線シートと裏面電極型太陽電池セルからなる配線シート付き裏面電極型太陽電池セルであって、
     前記配線シートは、絶縁性基材と前記絶縁性基材の受光面側に設けられた配線とを有し、
     前記裏面電極型太陽電池セルは、シリコン基板と前記シリコン基板の裏面側に設けられた電極とを有しており、
     前記配線は、複数の櫛部を有する略櫛形であり、
     前記櫛部の根元部の幅が前記櫛部の先端部の幅よりも長い、配線シート付き裏面電極型太陽電池セル。
    A back electrode type solar cell with a wiring sheet consisting of a wiring sheet and a back electrode type solar cell,
    The wiring sheet has an insulating base and wiring provided on the light receiving surface side of the insulating base,
    The back electrode type solar cell has a silicon substrate and an electrode provided on the back side of the silicon substrate,
    The wiring has a substantially comb shape having a plurality of comb portions,
    A back electrode type solar cell with a wiring sheet, wherein a width of a base portion of the comb portion is longer than a width of a tip portion of the comb portion.
  2.  前記根元部は曲線を有する、請求項1に記載の配線シート付き裏面電極型太陽電池セル。 The back electrode type solar cell with a wiring sheet according to claim 1, wherein the root portion has a curve.
  3.  前記先端部は曲線を有する、請求項1又は2に記載の配線シート付き裏面電極型太陽電池セル。 The back electrode type solar cell with wiring sheet according to claim 1 or 2, wherein the tip has a curve.
  4.  前記配線シートと前記裏面電極型太陽電池セルとの間に固定樹脂が配置された前記配線シート付き裏面電極型太陽電池セルであって、
     前記配線の前記櫛部は長手方向に直線を有しており、
     前記配線の形状を構成する直線と曲線との変曲点が固定樹脂で覆われるように固定樹脂が配置されている、請求項2または3に記載の配線シート付き裏面電極型太陽電池セル。
    A back electrode solar cell with the wiring sheet in which a fixing resin is disposed between the wiring sheet and the back electrode solar cell,
    The comb portion of the wiring has a straight line in the longitudinal direction,
    The back electrode type solar cell with a wiring sheet according to claim 2 or 3, wherein a fixing resin is arranged so that an inflection point between a straight line and a curve constituting the shape of the wiring is covered with the fixing resin.
  5.  前記電極は、略矩形の形状であり、短手方向の幅がほぼ一定である、請求項1から4のいずれかに記載の配線シート付き裏面電極型太陽電池セル。 The back electrode type solar cell with a wiring sheet according to any one of claims 1 to 4, wherein the electrode has a substantially rectangular shape and a width in a short side direction is substantially constant.
PCT/JP2015/074608 2014-09-29 2015-08-31 Reverse-surface-electrode solar battery cell with wiring sheet WO2016052041A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201590000973.3U CN207353269U (en) 2014-09-29 2015-08-31 Back electrode type solar battery cell with distribution piece

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-197740 2014-09-29
JP2014197740 2014-09-29
JP2015-047831 2015-03-11
JP2015047831A JP2016072597A (en) 2014-09-29 2015-03-11 Reverse face electrode type solar cell with wiring sheet

Publications (1)

Publication Number Publication Date
WO2016052041A1 true WO2016052041A1 (en) 2016-04-07

Family

ID=55630087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074608 WO2016052041A1 (en) 2014-09-29 2015-08-31 Reverse-surface-electrode solar battery cell with wiring sheet

Country Status (1)

Country Link
WO (1) WO2016052041A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019041A1 (en) * 2022-07-21 2024-01-25 シャープ株式会社 Solar battery module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090256254A1 (en) * 2008-04-10 2009-10-15 General Electric Company Wafer level interconnection and method
JP2011519182A (en) * 2008-04-29 2011-06-30 アプライド マテリアルズ インコーポレイテッド Photovoltaic modules manufactured using monolithic module assembly techniques.
JP2012099569A (en) * 2010-10-29 2012-05-24 Sharp Corp Manufacturing method of solar cell with wiring sheet, manufacturing method of solar cell module, solar cell with wiring sheet, and solar cell module
JP2013048146A (en) * 2011-08-29 2013-03-07 Kyocera Corp Solar cell module
JP2014127551A (en) * 2012-12-26 2014-07-07 Sharp Corp Solar battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090256254A1 (en) * 2008-04-10 2009-10-15 General Electric Company Wafer level interconnection and method
JP2011519182A (en) * 2008-04-29 2011-06-30 アプライド マテリアルズ インコーポレイテッド Photovoltaic modules manufactured using monolithic module assembly techniques.
JP2012099569A (en) * 2010-10-29 2012-05-24 Sharp Corp Manufacturing method of solar cell with wiring sheet, manufacturing method of solar cell module, solar cell with wiring sheet, and solar cell module
JP2013048146A (en) * 2011-08-29 2013-03-07 Kyocera Corp Solar cell module
JP2014127551A (en) * 2012-12-26 2014-07-07 Sharp Corp Solar battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019041A1 (en) * 2022-07-21 2024-01-25 シャープ株式会社 Solar battery module

Similar Documents

Publication Publication Date Title
US11538952B2 (en) Solar cell module and method for manufacturing the same
JP6141223B2 (en) Light receiving element module and manufacturing method thereof
JP4040659B2 (en) Solar cell, solar cell string, and solar cell module
TWI488315B (en) Solar cell module and producing method thereof
EP2012362A1 (en) Solar cell, solar cell string and solar cell module
JPWO2008090718A1 (en) Solar cell, solar cell array and solar cell module
JP5450595B2 (en) Solar cell with wiring sheet, solar cell module, method for manufacturing solar cell with wiring sheet, and method for manufacturing solar cell module
JP5046308B2 (en) Wiring sheet, solar cell with wiring sheet, solar cell module, and wiring sheet roll
JP2009043842A (en) Solar battery module
JP2007109956A (en) Solar cell, solar cell string and solar cell module
JP5273728B2 (en) Solar cell with wiring sheet and solar cell module
JP2013048146A (en) Solar cell module
WO2016052041A1 (en) Reverse-surface-electrode solar battery cell with wiring sheet
JP4519089B2 (en) Solar cell, solar cell string and solar cell module
JP6877897B2 (en) Solar cell module
EP2448008A1 (en) Solar cell, solar cell with wiring sheet attached, and solar cell module
JP2006278695A (en) Solar cell module
JP6817722B2 (en) Back electrode type solar cell with wiring sheet
JP2016072597A (en) Reverse face electrode type solar cell with wiring sheet
JP5942136B2 (en) Solar cell module and manufacturing method thereof
JP2011003721A (en) Solar cell and method for manufacturing the same
JP2014027133A (en) Solar cell, solar cell with interconnector and solar cell module
JP2016100494A (en) Back electrode solar cell with wiring sheet
JP2013093610A (en) Solar cell structure and solar cell module
JP2013258310A (en) Solar cell string, solar cell module, and manufacturing method of wiring sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846211

Country of ref document: EP

Kind code of ref document: A1