WO2016052026A1 - Method for manufacturing article having recessed and projected structure, and article having recessed and projected structure - Google Patents

Method for manufacturing article having recessed and projected structure, and article having recessed and projected structure Download PDF

Info

Publication number
WO2016052026A1
WO2016052026A1 PCT/JP2015/074307 JP2015074307W WO2016052026A1 WO 2016052026 A1 WO2016052026 A1 WO 2016052026A1 JP 2015074307 W JP2015074307 W JP 2015074307W WO 2016052026 A1 WO2016052026 A1 WO 2016052026A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mass
article
concavo
polymerizable compound
Prior art date
Application number
PCT/JP2015/074307
Other languages
French (fr)
Japanese (ja)
Inventor
均 並河
竜二 実藤
福重 裕一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015167014A external-priority patent/JP6424150B2/en
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2016052026A1 publication Critical patent/WO2016052026A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor

Definitions

  • the present invention relates to a method for manufacturing an article having a concavo-convex structure, and an article having a concavo-convex structure manufactured by this manufacturing method.
  • the technology for forming a concavo-convex structure on an article by patterning is used in various applications and fields such as flat panel display applications such as liquid crystal display devices, semiconductor manufacturing fields, bi-technology, and pharmaceutical fields.
  • a photoresist that forms an uneven structure on the surface of an article through pattern exposure and development processes is widely used.
  • a type in which a pattern-exposed portion (exposed portion) becomes a convex portion is called a negative type
  • a type in which an exposed portion becomes a concave portion is called a positive type.
  • the solubility of the exposed area in the developing solution is reduced by pattern exposure, so that the unexposed area (unexposed area) in the pattern exposure is dissolved and removed by the developing solution in the developing process, and the exposed area does not dissolve.
  • a concavo-convex structure in which the exposed portion becomes a convex portion is formed.
  • Patent Document 1 forms a concavo-convex structure without passing through a development process by pattern exposure of an energy-sensitive negative resin composition layer formed on a substrate and subsequent heat treatment.
  • a method for forming surface irregularities is disclosed.
  • Patent Document 1 the film thickness of the portion irradiated with the active energy ray is increased as compared with the film thickness of the portion not irradiated with the active energy beam, and the active energy beam is irradiated by performing post-heating. It is described that the difference in film thickness between the exposed portion and the non-irradiated portion becomes significant (see paragraph 0006 of Patent Document 1).
  • the surface unevenness forming method described in Patent Document 1 can form an uneven structure without going through a development process. Therefore, compared to the above-described photoresist, the process is simplified, the cost is reduced by not using a developer, and the like. This can be said to be a preferable method.
  • the surface of the film is formed with a concavo-convex structure whose size is less than or equal to the wavelength of light, thereby reducing the reflectance to light. (Anti-reflection).
  • the concavo-convex structure in order to prevent reflection of light having a shorter wavelength, it is required to form a fine concavo-convex structure with a larger elevation difference on the film surface.
  • fine in the concavo-convex structure means that the interval between the convex portions is narrow.
  • the fine unevenness can provide antireflection performance in both a convex structure and a concave structure.
  • the depth of the concavo-convex structure (the distance between the highest part and the lowest part) is preferably 50 to 1000 nm, more preferably 120 to 400 nm, and particularly preferably 150 to 300 nm.
  • the height of the convex portion is 50 nm or more, the reflectance is sufficiently low and the wavelength dependence of the reflectance is small. If the height of a convex part is 1000 nm or less, the scratch resistance of a convex part will become favorable.
  • the average distance between convex portions or concave portions is preferably 50 to 400 nm, more preferably 100 to 300 nm, and particularly preferably 150 to 200 nm. If the height of the convex portion is 50 nm or more, the reflectance is sufficiently low and the wavelength dependence of the reflectance is small. If the average interval is 400 nm or less, iridescent coloring due to diffracted light can be suppressed. If the average distance is 50 nm or less, the scratch resistance is good. However, with the conventional method, it has been difficult to form a fine concavo-convex structure with a required large elevation difference.
  • An object of the present invention is to provide a method for producing an article having a concavo-convex structure that has a fine concavo-convex structure and has a large concavo-convex height difference (the height of the convex part is large), and an article having the concavo-convex structure.
  • the present inventors have determined that at least one polymerization initiator selected from a polymerizable compound, an oxime ester photopolymerization initiator, and an acylphosphine oxide photopolymerization initiator. And a step of forming a layer containing cellulose acylate, a step of pattern exposure on the surface of the layer, and a step of heating the layer after the pattern exposure. It was found that a concavo-convex structure having a large height difference can be formed.
  • the step of pattern exposure on the surface of the layer, the polymerizable compound is polymerized and cured in the exposed portion of the surface of the layer.
  • the layer contains a specific photopolymerization initiator having high sensitivity to ultraviolet rays, and the pattern-exposed region is polymerized and cured at a high rate, or is cured to the inside of the film. It is possible to make it difficult for large shape changes to occur. Therefore, the shrinkage difference between the pattern-exposed region and the heat-polymerized region can be increased, and a concavo-convex structure with a large difference in level (step) can be formed even when a fine pattern is used.
  • the large difference in level (step) between the convex portion and the concave portion enables the formation of a concave / convex shape that is recognized as a clear concave / convex portion. It is effective for forming a concavo-convex structure.
  • the above description includes inferences by the present inventors and does not limit the present invention.
  • [1] Forming a layer comprising a polymerizable compound, at least one photopolymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, and cellulose acylate; Pattern exposure on the surface of the layer; Heating the layer after the pattern exposure; A method for producing an article having a concavo-convex structure, wherein the concavo-convex structure in which the non-exposed part of the pattern exposure is a concave part is formed.
  • the step of forming the layer comprises, on the support, a polymerizable compound, at least one photopolymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, and cellulose acylate. And forming a layer by casting a composition comprising: Next, the step of peeling the layer from the support, The method for producing an article having a concavo-convex structure according to [1], wherein the pattern exposure step is performed on the peeled layer.
  • a first layer comprising a polymerizable compound, at least one photopolymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, and cellulose acylate; and Forming a laminate having a second layer containing a resin; Pattern exposure on the surface of the first layer; Heating the first layer after the pattern exposure; A method for producing an article having a concavo-convex structure, wherein the concavo-convex structure in which the non-exposed part of the pattern exposure is a concave part is formed.
  • the step of forming the first layer comprises, on the support, a polymerizable compound, at least one photopolymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, A step of casting a composition comprising cellulose acylate to form a first layer; Then, the step of peeling the first layer from the support, The method for producing an article having an uneven structure according to [5], wherein the pattern exposure step is performed on the peeled first layer.
  • the polymerizable group containing an ethylenically unsaturated bond is a polymerizable group selected from the group consisting of an acryloyloxy group, a methacryloyloxy group, an acryloyl group, and a methacryloyl group.
  • Method. [12] The method for producing an article having an uneven structure according to any one of [1] to [11], wherein the polymerizable compound is a polyfunctional polymerizable compound having two or more functions. [13] The method for producing an article having an uneven structure according to any one of [1] to [12], wherein the article is a long film.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the method for producing an article having a concavo-convex structure according to the first aspect of the present invention includes a polymerizable compound, at least one photopolymerization initiation selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator.
  • the concavo-convex structure in which the part becomes a concave part is formed.
  • a layer containing the polymerizable compound, a photopolymerization initiator, and cellulose acylate is referred to as a monolayer.
  • the method for producing an article having an uneven structure according to the second aspect of the present invention includes a polymerizable compound, at least one light selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator.
  • the brittleness of the article can be improved in addition to increasing the level difference of the concavo-convex.
  • a layer obtained by combining the first layer and the second layer is referred to as a laminate.
  • the manufacturing method will be described in more detail.
  • the polymerizable compound is a compound having at least one polymerizable group in one molecule. Such a compound may be a monomer or a multimer such as an oligomer or a prepolymer.
  • a monofunctional polymerizable compound in which the number of polymerizable groups contained in one molecule is one may be used, and the number of polymerizable groups contained in one molecule is two or more.
  • a polyfunctional polymerizable compound may be used, and a monofunctional polymerizable compound and a polyfunctional polymerizable compound may be arbitrarily mixed and used.
  • the molecular weight of these polymerizable compounds is, for example, from 80 to 30,000, but is not particularly limited.
  • the molecular weight means a weight average molecular weight measured in terms of polystyrene by gel permeation chromatography (GPC) for a multimer. Examples of specific measurement conditions include the following measurement conditions.
  • GPC device HLC-8120 (manufactured by Tosoh): Column: TSK gelMultiporeHXL-M (Tosoh, 7.8 mm ID (inner diameter) ⁇ 30.0 cm) Eluent: Tetrahydrofuran (THF)
  • the polymerizable group may be a radical polymerizable group or a cationic polymerizable group, and is preferably a radical polymerizable group.
  • examples of the polymerizable group that is preferable from the viewpoint of forming an uneven structure include polymerizable groups such as an ethylenically unsaturated bond-containing group, an epoxy group, an oxetane group, and a methylol group, and an ethylenically unsaturated bond-containing group is more preferable. .
  • Examples of the ethylenically unsaturated bond-containing group include (meth) acryloyloxy group, (meth) acryloyl group, vinyl group, styryl group, and allyl group, and (meth) acryloyloxy group and (meth) acryloyl group include More preferred is a (meth) acryloyloxy group.
  • the description “(meth) acryloyloxy group” is used in the meaning of at least one of an acryloyloxy group and a methacryloyloxy group. The same applies to “(meth) acryloyl group”, “(meth) acrylate”, “(meth) acryl” and the like.
  • the number of polymerizable groups contained in the polyfunctional polymerizable compound is 2 or more in one molecule, preferably in the range of 2 to 20, and more preferably in the range of 3 to 12.
  • a polyfunctional (meth) acrylate compound having two or more ethylenically unsaturated bond-containing groups in one molecule can be exemplified.
  • the bifunctional (meth) acrylate include ethylene glycol di (meth) acrylate, bisphenol A tetraethoxydi (meth) acrylate, bisphenol A tetrapropoxydi (meth) acrylate, and 1,6-hexanediol di (meth) acrylate.
  • Acrylate neopentyl glycol di (meth) acrylate, and the like.
  • NP-A neopentyl glycol diacrylate, molecular weight 212
  • the tri- or more functional (meth) acrylate compound include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, di Examples include pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and isocyanuric acid-modified tri (meth) acrylate.
  • the (meth) acrylate compound may be a compound in which a part of the molecular skeleton is modified. For example, those modified with ethylene oxide, propylene oxide, caprolactone, isocyanuric acid, alkyl, cyclic alkyl, aromatic, bisphenol or the like can be used.
  • examples of the polyfunctional polymerizable compound include urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, polyether (meth) acrylate, and (meth) acrylate polymer.
  • urethane (meth) acrylate is preferable from the viewpoint of transparency, for example.
  • Urethane (meth) acrylate can be obtained by reaction of polyhydric alcohol and organic diisocyanate with hydroxy (meth) acrylate.
  • polyhydric alcohol examples include neopentyl glycol, 3-methyl-1,5-pentanediol, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, trimethylolpropane, and pentaerythritol.
  • Tricyclodecane dimethylol bis- [hydroxymethyl] -cyclohexane, etc .
  • the above polyhydric alcohols and polybasic acids for example, succinic acid, phthalic acid, hexahydrophthalic anhydride, terephthalic acid, adipic acid, azelaic acid, tetrahydroanhydride
  • Polyester polyol obtained by reaction with phthalic acid, etc .
  • polycaprolactone polyol obtained by reaction of the above polyhydric alcohol with ⁇ -caprolactone
  • polycarbonate polyol for example, 1,6-hexanediol
  • Polycarbonate diols obtained by reacting diphenyl carbonate
  • polyether polyols examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and ethylene oxide-modified bisphenol A.
  • organic polyisocyanate examples include isocyanate compounds such as isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylene diisocyanate, diphenylmethane-4,4′-diisocyanate, dicyclopentanyl isocyanate, adducts of these isocyanate compounds, or these Examples include isocyanate multimers.
  • hydroxy (meth) acrylate compound examples include pentaerythritol tri (meth) acrylate, pentaerythritol di (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, hydroxyethyl (meth) ) Acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, dimethylol cyclohexyl mono (meth) acrylate, hydroxycaprolactone (meth) acrylate, and the like.
  • pentaerythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate are preferable from the viewpoint of increasing the hardness of the manufactured article.
  • the urethane (meth) acrylate is preferably 6 or more functional and more preferably 6 to 15 functional.
  • urethane (meth) acrylate Commercial products may be used as urethane (meth) acrylate. Examples of commercially available products include: Nippon Synthetic Chemical Industry: UV1700B (weight average molecular weight 2000, 10 functional), UV7600B (weight average molecular weight 1500, 6 functional), Nippon Kayaku Co., Ltd .: DPHA40H (weight average molecular weight 7000, 10 Functionality), UX5003 (weight average molecular weight 700, 6 functionalities), Negami Kogyo Co., Ltd .: UN3320HS (weight average molecular weight 5000, 15 functionalities), UN904 (weight average molecular weight 4900, 15 functionalities), UN3320HC (weight average molecular weight 1500, 10 functionalities) ), UN3320HA (weight average molecular weight 1500, 6 functional), manufactured by Arakawa Chemical Industries, Ltd .: BS577 (weight average molecular weight 1000, 6 functional), and Shin Nakamura Chemical Industries, Ltd .: U15HA (weight average
  • a fluorine-containing polymerizable compound containing one or more fluorine atoms in one molecule a silicone-based polymerizable compound having one or more siloxane bonds in one molecule, or the like can also be used.
  • the fluorine-containing polymerizable compound for example, various compounds described in JP-A-2013-130865, paragraphs 0077 to 0103 can be used.
  • the silicone-based polymerizable compound reference can be made to paragraph 0141 of JP2013-130865A and JP0119-0120A of JP2012-103689A.
  • the monofunctional compound is not particularly limited.
  • a monofunctional (meth) acrylate compound described in WO2012 / 0777807A1 paragraph 0022 a monofunctional polymerizable compound having only one vinyl bond in one molecule described in JP2008-17895A, Monofunctional radically polymerizable monomers described in paragraph 0022 of 2008-119684 can be used.
  • the concentration of the polymerizable compound relative to the cellulose acylate in the layer is not particularly limited, but from the viewpoint of facilitating formation of a concavo-convex structure having a large difference in height, cellulose is used when the layer containing the polymerizable compound is a single layer. It is preferable to set it as 50 mass parts or more with respect to 100 mass parts of acylates. On the other hand, from the viewpoint of film production, the amount of the polymerizable compound with respect to 100 parts by mass of cellulose acylate is preferably 150 parts by mass or less. Moreover, in the case of the 1st layer containing a polymeric compound, it is preferable to set it as 50 masses or more with respect to 100 mass parts of cellulose acylates. On the other hand, from the viewpoint of film production, the amount of the polymerizable compound with respect to 100 parts by mass of cellulose acylate is preferably 1000 parts by mass or less.
  • the composition for forming the layer contains at least one polymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator that are highly sensitive to ultraviolet rays.
  • a commercially available thing can be used as at least 1 type of polymerization initiator selected from the oxime ester type photoinitiator and the acylphosphine oxide type photoinitiator.
  • oxime ester photopolymerization initiator Irgacure Oxe01 (manufactured by BASF Japan), Irgacure Oxe02 (manufactured by BASF Japan), Irgacure Oxe03 (manufactured by BASF Japan), NCI 930 (manufactured by ADEKA), NCI 831 ( ADEKA Co., Ltd.), and examples of the acylphosphine oxide photopolymerization initiator include Irgacure 819 (BASF Japan Co.) and LUCILIN TPO (BASF Japan Co.).
  • the photopolymerization initiators described above may be used alone or in a combination of two or more at any ratio.
  • the mass of the photopolymerization initiator relative to the mass of the polymerizable compound in the layer is preferably 5% by mass or more and 25% by mass or less from the viewpoint of favorably causing the polymerization reaction by pattern exposure to proceed favorably.
  • the mass of the photoinitiator with respect to the mass of a polymeric compound is 5 mass% or more and 25 mass% or less.
  • a sensitizer in the present invention, can be used in the composition for forming the layer.
  • the sensitizer can be appropriately used when, for example, the photopolymerization initiator does not have proper absorption with respect to the exposure light source.
  • Any sensitizer that can be used in the present invention can be used without particular limitation as long as it absorbs actinic rays and sensitizes the photopolymerization initiator by an electron transfer mechanism or an energy transfer mechanism.
  • anthracene derivatives, acridone derivatives, thioxanthone derivatives, coumarin derivatives, base styryl derivatives, and distyrylbenzene derivatives are preferable.
  • Anthracene derivatives include anthracene, 9,10-dibutoxyanthracene, 9,10-dichloroanthracene, 2-ethyl-9,10-dimethoxyanthracene, 9-hydroxymethylanthracene, 9-bromoanthracene, 9-chloroanthracene, 9 , 10-dibromoanthracene, 2-ethylanthracene and 9,10-dimethoxyanthracene are preferred.
  • acridone derivative acridone, N-butyl-2-chloroacridone, N-methylacridone, 2-methoxyacridone and N-ethyl-2-methoxyacridone are preferable.
  • thioxanthone derivative thioxanthone, diethylthioxanthone, 1-chloro-4-propoxythioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, and 4-isopropylthioxanthone are preferable.
  • coumarin derivatives coumarin-1, coumarin-6H, coumarin-110 and coumarin-102 are preferable.
  • Examples of the base styryl derivative include 2- (4-dimethylaminostyryl) benzoxazole, 2- (4-dimethylaminostyryl) benzothiazole, and 2- (4-dimethylaminostyryl) naphthothiazole.
  • Examples of the distyrylbenzene derivative include distyrylbenzene, di (4-methoxystyryl) benzene, and di (3,4,5-trimethoxystyryl) benzene.
  • a sensitizer can be used individually by 1 type or in combination of 2 or more types.
  • the sensitizer is preferably 20 to 300 parts by weight, particularly preferably 30 to 200 parts by weight, based on 100 parts by weight of the photopolymerization initiator, from the viewpoint of achieving both sensitivity and transparency.
  • the photopolymerization initiator may be mixed with the composition together with other components such as a polymerizable compound, and added by infiltrating by applying the pattern-exposed portion of the layer formed from the composition in a spot shape. May be.
  • cellulose acylate is contained as a binder.
  • the film productivity (and brittleness) of the article can be improved.
  • JP, 2012-215812, A paragraph 0017 can be referred to for the details of the acyl group which the cellulose hydroxyl group substitutes in cellulose acylate.
  • they are an acetyl group, a propionyl group, and a butanoyl group, More preferably, they are an acetyl group and a propionyl group, More preferably, it is an acetyl group.
  • cellulose acylate having an acetyl substitution degree of 2.7 or more is preferable, more preferably 2.75 or more, and still more preferably 2.82 or more.
  • cellulose acylate having an acetyl substitution degree of 2.95 or less is preferable, more preferably 2.90 or less, and still more preferably 2.89 or less.
  • the total acyl substitution degree of the cellulose acylate is also preferably in the above-described range for the acetyl substitution degree.
  • the total acyl substitution degree and acetyl substitution degree can be measured according to the method prescribed in ASTM-D817-96.
  • the portion not substituted with an acyl group usually exists as a hydroxyl group.
  • the details of cellulose acylate can also be referred to paragraphs 0018 to 0020 of JP2012-215812A.
  • the cellulose acylate is preferably contained in an amount of 25 parts by mass or more, more preferably 50 parts by mass or more based on 100 parts by mass of the total composition forming the layer. Moreover, from a viewpoint of uneven
  • the second layer is a layer containing at least one kind or two or more kinds of resins.
  • the resin contained in the second layer may be an organic solvent soluble resin or an organic solvent insoluble resin. From the viewpoint of film forming suitability of the coating layer, an organic solvent-soluble resin is preferable.
  • the layer can be preferably formed by casting film formation, and it is preferable from the viewpoint of film forming property of casting film formation to contain an organic solvent-soluble resin.
  • organic solvent soluble means that 1% by mass or more dissolves in an organic solvent having a liquid temperature of 25 ° C.
  • the organic solvent referred to here is, for example, a composition in which one or a plurality selected from the group consisting of organic compounds having 1 to 8 carbon atoms is mixed at an arbitrary ratio and is a liquid at 25 ° C. and 1 atm. .
  • aliphatic hydrocarbons such as pentane, hexane, cyclohexane, octane and isooctane
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • methanol ethanol
  • 1-propanol 2-propanol and 1-butanol
  • Alcohols such as 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-hexanol, cyclohexanol, 1-octanol, ethylene glycol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • Ketones esters such as methyl acetate, ethyl acetate, butyl acetate, ethyl propionate, propylene glycol monomethyl ether acetate (PGMEA), ethers such as diethyl ether, tetrahydrofuran and dioxane Dichloromethane, chloroform, alkyl halides and 1,2-dichloroethane, and compositions obtained by mixing them at an arbitrary ratio can be mentioned.
  • the composition for forming a layer in the present invention contains a solvent, the solvent is not limited to the above.
  • a polymerizable compound often exhibits organic solvent solubility, and a polymer of the polymerizable compound often does not exhibit organic solvent solubility.
  • the resin concentration in the composition for forming the second layer is, for example, in the range of 1 to 40% by mass with respect to 100% by mass of the total composition for forming the layer from the viewpoint of film forming suitability.
  • the second layer is a layer containing at least a resin (resin-containing layer), and is preferably a layer mainly composed of a resin.
  • the main component refers to a component that occupies the most in the total solid content constituting the layer.
  • the inventors of the present invention that the resin occupies the largest amount in the total solid content of the second layer contributes to a large shape change due to the shrinkage of the resin due to heating, and thereby the height difference between the convex portion and the concave portion ( I think that the step can be increased. From this point, the resin concentration in the second layer is preferably 80% by mass or more, more preferably 85% by mass with respect to 100% by mass of the total solid content (total of components excluding the solvent) of the second layer.
  • the resin concentration in the second layer may be, for example, 95% by mass or less with respect to 100% by mass of the total solid content of the second layer, and 100% by mass (that is, the solid content is only the resin). It is also preferable.
  • organic solvent-soluble resin examples include (a) cellulose acylate and cocoon (b) (meth) acrylic resin.
  • a) cellulose acylate and cocoon a) (meth) acrylic resin.
  • (B) (Meth) acrylic resin (Meth) acrylic resin is a concept including both a methacrylic resin and an acrylic resin.
  • the (meth) acrylic resin also includes a copolymer of an acrylate ester and a methacrylate ester.
  • the repeating structural unit of the (meth) acrylic resin is not particularly limited.
  • the (meth) acrylic resin preferably has a repeating structural unit derived from a (meth) acrylic acid ester monomer as a repeating structural unit.
  • the (meth) acrylic resin is obtained by polymerizing at least one selected from a hydroxyl group-containing monomer, an unsaturated carboxylic acid, and a monomer represented by the following general formula (201) as a repeating structural unit.
  • the repeating structural unit may be included.
  • R 201 represents a hydrogen atom or a methyl group
  • X represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group, a —CN group, a —CO—R 202 group, or O—CO.
  • —R 203 group, and R 202 and R 203 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
  • (Meth) acrylic acid ester is not particularly limited.
  • JP, 2013-099875, A paragraph 0034 can be referred to.
  • the hydroxyl group-containing monomer is not particularly limited.
  • JP, 2013-099875, A paragraph 0035 can be referred to.
  • the unsaturated carboxylic acid is not particularly limited.
  • JP, 2013-099875, A paragraph 0036 can be referred to.
  • the (meth) acrylic resin may contain one or more lactone ring structures.
  • a lactone ring structure represented by the following general formula (401) can be given.
  • R 401 , R 402, and R 403 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms, and the organic residue may contain an oxygen atom.
  • the organic residue having 1 to 20 carbon atoms is preferably a methyl group, an ethyl group, an isopropyl group, an n-butyl group, a t-butyl group, or the like.
  • the content of the lactone ring structure represented by the general formula (401) in the structure of the lactone ring-containing (meth) acrylic resin is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, and still more preferably. It is 10 to 60% by mass, particularly preferably 10 to 50% by mass.
  • the content of the lactone ring structure is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, and still more preferably. It is 10 to 60% by mass, particularly preferably 10 to 50% by mass.
  • the method for producing the lactone ring-containing (meth) acrylic resin there is no particular limitation on the method for producing the lactone ring-containing (meth) acrylic resin.
  • the resulting polymer (p) is heat treated to introduce a lactone ring structure into the polymer.
  • the (lactone cyclization condensation step) a lactone ring-containing (meth) acrylic resin can be obtained.
  • JP, 2012-250535, A paragraphs 0040-0047 can be referred to for details, such as a preferred physical property of a lactone ring containing (meth) acrylic resin.
  • the weight average molecular weight Mw of the (meth) acrylic resin is preferably 80000 or more.
  • the weight average molecular weight Mw of the (meth) acrylic resin is 80000 or more, the mechanical strength is high and the handling suitability during production is excellent.
  • the (meth) acrylic resin preferably has a weight average molecular weight Mw of 100,000 or more.
  • the (meth) acrylic resin commercially available products or those synthesized by a known synthesis method can be used.
  • commercially available products include, but are not limited to, Delpet (Japan registered trademark) 60N, 80N (Asahi Kasei Chemicals), Dialnal (Japan registered trademark) BR80, BR85, BR88, BR102 (Mitsubishi Rayon).
  • KT75 manufactured by Denki Kagaku Kogyo).
  • composition for forming the layer contains at least the polymerizable compound described above, a photopolymerization initiator, and cellulose acylate, and can further contain one or more optional components. Below, an arbitrary component is demonstrated.
  • the composition forming the monolayer may contain a resin in addition to the cellulose acylate.
  • the first layer may also contain a resin.
  • resin the resin mentioned above can be contained.
  • the resin contained in the first layer and the resin contained in the second layer may be the same or different. Good adhesion between the first layer and the second layer is preferable from the viewpoint of durability of the formed article. From this point, it is preferable that the first layer includes the same type of resin as the second layer. In the present invention, since the first layer contains cellulose acylate, the second layer preferably also contains cellulose acylate.
  • the composition for forming the layer can optionally contain a solvent. Including a solvent is preferable from the viewpoint of adjusting the viscosity of the composition for forming the layer and improving the coating suitability.
  • the solvent is preferably an organic solvent.
  • organic solvents include ketones such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethers such as tetrahydrofuran (THF), 1,4-dioxane, 1,3-dioxolane, 1,2-dimethoxyethane, formic acid Esters such as methyl, ethyl formate, methyl acetate, ethyl acetate, amyl acetate, ⁇ -butyrolactone, methyl cellosolve, dimethylimidazolinone, dimethylformamide, dimethylacetamide, acetonitrile, dimethyl sulfoxide, sulfolane, nitroethane, methylene
  • 1,3-dioxolane, THF, methyl ethyl ketone, acetone, methyl acetate and methylene chloride are preferred.
  • the organic solvent exemplified above is the main solvent occupying the largest proportion (for example, 50% by mass or more and less than 99% by mass with respect to 100% by mass of the mixed solvent). Is preferred.
  • alcohol having 1 to 4 carbon atoms is preferable.
  • examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, and propylene glycol monomethyl.
  • One type or two or more types of ethers can be mentioned.
  • the sub-solvent can be contained in the mixed solvent at a ratio of, for example, 1% by mass to less than 50% by mass, preferably 1% by mass to 40% by mass with respect to 100% by mass of the total amount of the mixed solvent.
  • the composition may contain a small amount of water in addition to the organic solvent.
  • the concentration of water with respect to 100% by mass of the total solvent can be, for example, 0.1 to 5% by mass, preferably 0.1 to 3% by mass, and more preferably 0.2 to 2% by mass.
  • the organic solvent is 5 to 30% by mass with respect to 100% by mass of the total amount of the solvent, More preferably, the content of alcohol is 7 to 25% by mass, and more preferably 10 to 20% by mass, because peeling of the laminate from the support is facilitated when film formation is performed on the support.
  • the proportion of the total amount of the solvent is, for example, in the range of 60 to 95% by mass, and preferably in the range of 70 to 85% by mass.
  • a composition containing a solvent in the above range is preferred because it hardly causes changes in concentration and composition due to volatilization of the solvent and precipitation of solids, and a viscosity suitable for stable film formation is obtained.
  • the composition for forming the layer can optionally contain a surfactant.
  • the surfactant can function as a leveling agent, for example.
  • the silicone compound include those having a substituent at at least one of a terminal end and a side chain of a compound chain containing a plurality of dimethylsilyloxy units as repeating units.
  • the compound chain containing dimethylsilyloxy as a repeating unit may contain a structural unit other than dimethylsilyloxy.
  • the substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include acryloyl group, methacryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, fluoroalkyl group, polyoxyalkylene group, carboxyl group, amino group or these groups.
  • the molecular weight is not particularly limited, but is preferably 100,000 or less, particularly preferably 50,000 or less, and most preferably 3,000 to 30,000.
  • the molecular weight refers to a weight average molecular weight.
  • the silicone atom content of the silicone compound is not particularly limited, but is preferably 18.0% by mass or more, more preferably 25.0 to 37.8% by mass, and 30.0 to 37. More preferably, it is 0% by weight.
  • silicone compounds examples include X-22-174DX, X-22-2426, X-22-164B, X22-164C, X-22-170DX, X-22-176D, and X-22 manufactured by Shin-Etsu Chemical. 1821 (named above); Chisso FM-0725, FM-7725, DMS-U22, RMS-033, RMS-083, UMS-182 (named above). However, it is not limited to these.
  • the fluorine compound a compound having a fluoroalkyl group is preferable.
  • the fluoroalkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and a straight chain (eg, —CF 2 CF 3 , —CH 2 (CF 2 ) 4 H, —CH 2 (CF 2 ) 8 CF 3 , —CH 2 CH 2 (CF 2 ) 4 H, etc.), but branched structures (eg, CH (CF 3 ) 2 , CH 2 CF (CF 3 ) 2 , CH (CH 3) ) CF 2 CF 3 , CH (CH 3 ) (CF 2 ) 5 CF 2 H, etc.), even alicyclic structures (preferably 5-membered or 6-membered rings such as perfluorocyclohexyl groups, per It may be a fluorocyclopentyl group or an alkyl group substituted with these.
  • ether bond e.g., CH 2 OCH 2 CF 2 CF 3 , CH 2 CH 2 OCH 2 C 4 F 8 H, CH 2 CH 2 OCH 2 CH 2 C 8 F 17, CH 2 CH 2 OCF 2 CF 2 OCF 2 CF 2 H , etc.
  • Multiple fluoroalkyl groups may be contained in the same molecule.
  • the fluorine compound further has one or more substituents such as an acryloyl group, a methacryloyl group, a vinyl group, an aryl group, a cinnamoyl group, an epoxy group, an oxetanyl group, a hydroxyl group, a polyoxyalkylene group, a carboxyl group, and an amino group. May be included.
  • the fluorine-based compound may be a polymer or an oligomer with a compound not containing a fluorine atom, and the molecular weight is not particularly limited.
  • the fluorine atom content of the fluorine-based compound is not particularly limited, but is preferably 20% by mass or more, more preferably 30 to 70% by mass, and further preferably 40 to 70% by mass.
  • preferable fluorine-based compounds include R-2020, M-2020, R-3833, M-3833 (trade name) manufactured by Daikin Chemical Industries, Ltd .; MegaFac (Japan registered trademark) F-784, F-171 manufactured by DIC F-172, F-179A, F-114, F-251, F-281, F-410, F-430, F-444, F-477, F-510, F-511, F-552, F -553, F-554, F-555, F-556, F-557, F-558, F-559, F-560, F-561, F-562, F-563, F-563, F-567 , F-567, F-569, F-570, F-571, R-40, R-41, R-43, R-94, RS-72-K
  • a known cationic surfactant or a dustproof agent such as a polyoxyalkylene compound, an antistatic agent, or the like may be added as appropriate.
  • These dustproof agent and antistatic agent may contain the structural unit in the above-mentioned silicone compound or fluorine compound. Examples of preferred compounds include, but are not limited to, Megafac F-150 manufactured by DIC and SH-3748 manufactured by Toray Dow Corning.
  • Surfactants may be used singly or in combination of two or more at an arbitrary ratio.
  • the amount of the surfactant in the composition for forming the layer is not particularly limited. For example, 0.001 to 10 mass with respect to 100 mass parts of the solid content in the composition for forming the layer. Part.
  • the polymerizable compound contained in the composition for forming the layer is partially polymerized and cured by pattern exposure.
  • the present inventors consider that a polymerizable compound that has not been reacted in pattern exposure is polymerized by heating performed after pattern exposure.
  • the present inventors speculate that a large difference in shrinkage between polymerization by pattern exposure and polymerization by heating helps to form a concavo-convex structure having a large difference in elevation.
  • the composition for forming the layer may contain a thermal polymerization initiator in order to enable polymerization by heating.
  • the polymerizable group contained in the polymerizable compound upon heating may generate a radical and function as an initiator.
  • a polymerization reaction (thermal polymerization) of a polymerizable compound that has not been reacted in pattern exposure can be allowed to proceed without including a thermal polymerization initiator in the composition for forming the layer. it can.
  • the structure of the thermal polymerization initiator is not particularly limited.
  • the thermal polymerization initiator include azo compounds, hydroxylamine ester compounds, organic peroxides, hydrogen peroxide, and the like.
  • Specific examples of the organic peroxide include those described in Japanese Patent No. 5341155, paragraph 0031.
  • the azo compound may contain at least one azo bond, and may contain various substituents together with the azo bond.
  • 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylisobutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 1- Azonitrile compounds such as [(1-cyano-1-methylethyl) azo] formamide, dimethyl 2,2′-azobis (2-methylpropionate), dimethyl 1,1′-azobis (1-cyclohexanecarboxylate), etc.
  • hydroxylamine ester compound examples include a hydroxylamine ester compound represented by the formula I described in JP-A-2012-521573. Specific compounds are shown below. However, it is not limited to these.
  • the second layer may contain one or more polymerizable compounds as optional components.
  • the polymerizable compound is as described above.
  • the polymerizable compound concentration in the second layer is lower than the polymerizable compound concentration in the first layer.
  • the shrinkage of the resin by heating tends to have a larger shrinkage rate than the polymerization shrinkage by heating of the polymerizable compound. Therefore, from the viewpoint of greatly changing the shape (shrinking) of the second layer by heating, the resin shrinkage is as described above.
  • the polymerizable compound concentration in the second layer is, for example, 5% by mass or less, preferably 3% by mass or less, and 0% by mass with respect to 100% by mass of the total composition for forming the second layer. It may be.
  • the laminate including the single layer body and the first layer and the second layer may be composed of only these layers, and includes a support such as a base film and one or more other layers. May be. Moreover, it is also possible to form the said single layer body or laminated body on the surface of the article which should form an uneven structure. Since the coating layer can be formed not only on a flat surface but also on a curved surface, the surface shape of the support or article on which the layer is provided does not matter. Moreover, as an example of said other layer, the easily bonding layer and adhesive layer for improving the adhesiveness of a single layer body or a 2nd layer, and a support body and articles
  • the article which has an uneven structure on both surfaces can also be obtained by heating this.
  • an article having a concavo-convex structure on both surfaces by forming the first layer on both surfaces of the second layer and heating the laminate after performing pattern exposure to be described later on each first layer.
  • the layer containing a polymerizable compound, a photopolymerization initiator, and cellulose acylate may be formed as a single layer or a laminate formed with a layer containing a resin.
  • a composition (dope) containing a polymerizable compound, a photopolymerization initiator, and cellulose acylate in desired ratios is prepared.
  • the dope is extruded from a casting giusa and cast.
  • a layer can be formed by a well-known film forming method.
  • a coating method it can be performed by using a coating device such as a bar coater, a blade coater, a die coater, or a gravure coater, or by a method such as curtain coating or dip coating. From the viewpoint of productivity, the casting film forming method is preferable.
  • a manufacturing method can be simplified compared with the case where a laminated body is formed.
  • a polymerizable compound instead of forming the monolayer, a polymerizable compound, at least one polymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, and a cellulose acylate are used.
  • the laminate may be formed by a step of forming a first layer containing a rate and a second layer containing a resin. In this case, the surface of the first layer is subjected to pattern exposure and heated to form a concavo-convex structure.
  • the second layer may contain a polymerizable compound, but the content is preferably lower than the content of the polymerizable compound in the first layer.
  • the first layer and the second layer are formed by a casting film forming method, more specifically, a co-casting method or a sequential casting method, or a film forming method such as a coating method using a known coating apparatus. By doing so, it can be manufactured.
  • a casting dope having the composition for forming the first layer and the second layer are formed on a casting support (band or drum).
  • the dope for casting having the composition to be extruded is extruded using a casting gussa that is simultaneously extruded from another slit, etc., and each layer is simultaneously cast, peeled off from the support at an appropriate time, and dried to form a film. This is a casting method for molding.
  • the casting dope for the second layer is first extruded from the casting giusa on the casting support, cast, dried, or dried, On top of that, the dope for casting for the first layer is extruded from the casting giusa to cast and laminate the dope successively, peeled off from the support at an appropriate time, and dried to form a film.
  • the coating method can be performed using a coating device such as a bar coater, a blade coater, a die coater, or a gravure coater, and can also be performed by a method such as curtain coating or dip coating.
  • the composition for forming the first layer is prepared by using a suitable coating apparatus. It is applied to the surface of the layer and dried to produce a laminate. From the viewpoint of productivity, the casting film forming method is preferable, and the co-casting method is more preferable.
  • both the casting film forming method and the coating method include an aspect in which the second layer is laminated while the second layer is wet, and an aspect in which the first layer is laminated after the second layer is dried. Any aspect may be used. From the viewpoint of the adhesion of the laminate, the former mode is preferred.
  • the first layer Either the layer or the second layer may be on the support side.
  • pattern exposure can also be performed after laminating
  • the bonding can be performed by a known bonding method such as bonding with an adhesive layer.
  • the second layer is so positioned that the first layer subjected to pattern exposure is located on the air interface side and the second layer is located on the support side.
  • the layers may be stacked in the order of the first layer and the first layer.
  • the layer formed as a single layer or a laminate is optionally subjected to a drying step as necessary.
  • a drying process can be performed by arrangement
  • the heating temperature at the time of drying is preferably a temperature at which the polymerization reaction of the polymerizable compound does not progress and the resin does not undergo large thermal shrinkage, for example, a temperature of 50 ° C. or more and 100 ° C. or less.
  • the heating temperature refers to the temperature of warm air or the atmospheric temperature in the heating furnace. The same applies to the heating step after pattern exposure described later.
  • the method for producing an article having a concavo-convex structure of the present invention preferably has a step of peeling the layer from the support between the layer forming step and the pattern exposure step. By stripping the layer from the support and then pattern exposure, the average height of the convex portions can be increased.
  • the timing at which the layer is peeled off is not particularly limited, but is preferably performed when the solvent is dried to some extent.
  • the method for producing an article having an uneven structure according to the present invention includes a step of forming a layer on a support, a polymerizable compound, an oxime ester photopolymerization initiator, and an acylphosphine oxide photopolymerization.
  • the peeled layer is preferably subjected to a pattern exposure step described later.
  • the step of forming the first layer includes a polymerizable compound, an oxime ester photopolymerization initiator, and an acyl phosphine oxide system on the support.
  • Pattern exposure process After the drying step, the layer is pattern exposed.
  • a non-exposed portion of pattern exposure is a concave portion, and an exposed portion exposed by pattern exposure is a convex portion. Therefore, the pattern exposure is performed so that a portion where a convex portion on the surface of the layer is to be formed is exposed.
  • Pattern exposure methods are already known in the field of photoresists and the like, and those known techniques can be applied to the pattern exposure in the manufacturing method without any limitation.
  • a method of pattern exposure by placing a photomask (exposure mask) between the light source and the layer surface a method of directly irradiating the layer surface with laser light in a spot form without using a photomask (so-called direct drawing) Or a pattern direct exposure method) may be used.
  • a method of performing pattern exposure by arranging a photomask is roughly divided into a non-contact method in which the photomask is arranged at a distance from the surface of the layer and a contact method in which the photomask is arranged on the layer surface. Any method may be used, but the non-contact method is preferable from the viewpoint that there is no change in the surface property of the layer due to contact with the photomask and no adhesion of dust / dust.
  • Non-contact methods include proximity exposure and projection exposure, but either exposure method may be adopted.
  • the surface of the first layer is subjected to pattern exposure, whereby the polymerizable compound is polymerized and cured in the exposed portion.
  • the subsequent heating causes polymerization of the polymerizable compound that has not been reacted in the pattern exposure in the first layer, so that so-called polymerization shrinkage occurs.
  • the resin contained in this layer contracts due to heat. In this way, shrinkage occurs in portions other than the exposed portion, whereas the exposed portion is already polymerized and cured, so that it is considered that no significant shape change occurs during heating.
  • the present inventors speculate that an uneven shape in which the exposed portion becomes a convex portion can be formed.
  • the present inventors have contributed to increasing the height difference (step) between the convex part and the concave part as a result of a large shape change called heat shrinkage of the resin in the second coating layer. It is presumed that a fine uneven structure having a height difference can be formed.
  • the large difference in level (step) between the convex portion and the concave portion enables the formation of a concave / convex shape that is recognized as a clear concave / convex portion. It is effective for forming a concavo-convex structure.
  • the photomask 2 is arranged at a predetermined interval from the surface of the layer 1 after the drying process. Thereafter, light 3 is irradiated from above the photomask 2 toward the surface of the layer 1. Thereby, only the light irradiation area
  • the light used for pattern exposure may be determined according to the type of polymerizable compound and photopolymerization initiator contained in the layer, and in particular, ultraviolet rays (i-line, 365 nm) and laser light (405 nm) are preferable.
  • the light source for light irradiation include a high pressure mercury lamp that emits light in a wavelength range of 150 to 450 nm, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, a chemical lamp, an electrodeless discharge lamp, and an LED. be able to.
  • the light irradiation amount is preferably 50 mJ / cm 2 or more and 1000 mJ / cm 2 or less, but may be a light irradiation amount at which the polymerization reaction proceeds at the convex portion and the convex portion is cured, and is limited to the above range. It is not something.
  • a heat treatment for heating the layer 1 is performed.
  • the heat treatment can be performed by placing in the heating furnace, transporting in the heating furnace, blowing hot air, or the like.
  • the heating temperature in the heat treatment is preferably 140 to 200 ° C., and the heating time is preferably 2 to 200 minutes.
  • the thickness of the article manufactured by the manufacturing method of the present invention depends on the thickness of the layer formed in the layer forming step, and is, for example, 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more. . According to the study by the present inventors, there was a tendency that the height difference (step) between the convex portion and the concave portion becomes larger as the thickness of the layer formed in the layer forming step is thicker. This point is preferable from the viewpoint of forming a fine relief structure. Therefore, the upper limit of the layer thickness is not particularly limited.
  • the thickness of the layer may be a set film thickness at the time of application or an actual measurement value.
  • the layer in which the concavo-convex structure is formed can be used as an article having the concavo-convex structure as it is or by cutting into a shape according to the application.
  • an article having a concavo-convex structure can be obtained by laminating the layer to the article surface by a known laminating method.
  • the article having a concavo-convex structure can be, for example, a long film.
  • the film-like layer may be bonded to an article having an arbitrary shape, and the shape of the article is not limited.
  • One or more of the other layers can be arbitrarily formed on one or both of the surface having the concavo-convex structure and the other surface.
  • the article manufactured by the above manufacturing method is not limited to the article having the concavo-convex structure on the outermost surface of the article. Are also included. Thus, having an uneven structure at the interface can contribute to, for example, improving the adhesion of the interface between the two layers.
  • articles having uneven structures of various shapes and sizes including a fine uneven structure can be manufactured.
  • the size for example, it is possible to form a fine uneven structure as shown in the examples.
  • the above manufacturing method is also suitable as a method for manufacturing an article having a concavo-convex structure larger than the concavo-convex structure shown in the examples.
  • the shape of the concavo-convex structure to be formed is not particularly limited.
  • the concavo-convex structure is formed by two-dimensionally arranging a shape selected from the group consisting of a polygonal cone-like shape, a cone-like shape, a partial spheroid-like shape, and a partial sphere-like shape. Is formed.
  • the concavo-convex structure is formed by one-dimensionally arranging a shape selected from the group consisting of a partial columnar shape, a partial elliptical columnar shape, and a prismatic shape.
  • the term “one-dimensionally arranged” means that the shape is arranged only in one direction of the laminate surface (pattern-exposed surface), that is, in parallel. Such an uneven structure is sometimes called a line and space pattern.
  • the two-dimensional arrangement means that the shape is arranged in two or more directions on the surface of the laminate. For example, it is formed in two directions, that is, a certain direction and a direction orthogonal to this direction, and is not limited to a regularly formed aspect, but also includes an irregularly (randomly) formed aspect. Is done.
  • the uneven structure may be a fine uneven structure called a moth-eye structure.
  • the shape is a convex shape.
  • the shape is a concave shape. For example, by performing pattern exposure using an exposure mask having an opening corresponding to the above shape, a concavo-convex structure having a convex portion having the above shape can be formed.
  • FIG. 4 are schematic views showing the shapes of patterning photomasks that can be used in the present invention.
  • a black area indicates an exposed portion
  • a white area indicates a light shielding portion.
  • the shape of the opening of the exposed portion is a square and a photomask having a houndstooth shape
  • FIG. 5 the shape of the exposed portion of the opening is square and the light shielding portion.
  • the shape of the photomask is not limited to the shape shown in FIGS. 4 to 7, and any shape of photomask can be used.
  • the size of the exposed portion and the distance between adjacent exposed portions can also be arbitrarily set. Can be set. In the present invention and the present specification, descriptions relating to angles such as orthogonal and parallel include the range of errors allowed in the technical field to which the present invention belongs.
  • the angle is within the range of strict angle ⁇ 10 °, and the error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less.
  • the “polygonal pyramid shape” is used to mean not only a perfect polygonal pyramid shape but also a shape that approximates a polygonal pyramid.
  • a further aspect of the present invention relates to an article having a concavo-convex structure produced by the above production method (hereinafter also simply referred to as an article).
  • the manufacturing method, details of the concavo-convex structure, and the like are as described above.
  • the average height of the protrusions of the concavo-convex structure is 1% or more with respect to the average length of the concavo-convex structure.
  • the average height of the convex portion indicates the average value of the maximum distance between the top surface of the convex portion and the bottom surface of the concave portion adjacent to the convex portion.
  • the average length of the unevenness indicates an average value of a distance obtained by doubling the distance from the center of the convex portion to the center of the adjacent concave portion.
  • the composition for forming a layer contains a photopolymerization initiator having high sensitivity to ultraviolet rays, so that the difference in shrinkage between the pattern-exposed region and the heat-polymerized region is large.
  • a concavo-convex structure in which the height of the convex portion is large (the level difference of the concavo-convex is large) can be formed.
  • the ratio of the average height of the projections to the average length of the projections and depressions can be obtained as follows.
  • the height of the convex portion is determined by observing the surface of the manufactured article having a concavo-convex structure with a non-contact surface / layer cross-sectional shape measuring system (VertScan 2.0 manufactured by Ryoka System Co., Ltd.). It can be obtained by measuring the maximum distance between the bottom surface of the recess adjacent to the top surface of the surface.
  • the average length of the projections and depressions can be obtained from a mask pattern design drawing or an observation image of an optical microscope, the above-described non-contact surface / layer cross-sectional shape measurement system, an atomic force microscope, or an electron microscope.
  • the ratio of the average height of the projections to the average length of the projections and depressions can be obtained by calculating the average value of the projection heights in the numerator and the average length of the projections and depressions in the denominator.
  • the article manufactured by the manufacturing method according to the second aspect of the present invention has a concentration gradient in which the concentration of the polymer of the polymerizable compound decreases from the surface having the concavo-convex structure toward the thickness direction of the article. Can be confirmed. This is because, in the above production method, when the second layer contains a polymerizable compound, the polymerizable compound concentration in the second layer is lower than the polymerizable compound concentration in the first layer.
  • the article manufactured by the above manufacturing method may have a concentration gradient in which the resin concentration increases from the surface having the concavo-convex structure toward the thickness direction of the article.
  • the concentration gradient may increase continuously or may increase intermittently.
  • a polymer of a polymerizable compound is harder and more brittle than a resin (especially an organic solvent-soluble resin), whereas a resin is softer than a polymer of a polymerizable compound, which contributes to improving the brittleness of an article. Then, the present inventors consider.
  • the concentration gradient of the polymer of the polymerizable compound in the article can be confirmed by, for example, composition analysis by Raman spectroscopy.
  • composition analysis by Raman spectroscopy For details such as analysis conditions, the following examples can be referred to.
  • the article having the concavo-convex structure described above can be used as a constituent member of a flat panel display such as a liquid crystal display device, for example, as an antireflection film, a brightness enhancement film (for example, a prism sheet) exhibiting a light collecting effect, or the like.
  • item which has said uneven structure can also be used as a cell culture sheet which has an uneven structure in order to make peeling of the cultured cell easy.
  • the above application example is merely an example, and the article having the uneven structure can be used in various applications and fields such as flat panel display applications, semiconductor manufacturing fields, biotechnology, and pharmaceutical fields.
  • Cellulose acetate (degree of substitution 2.86, degree of polymerization 350) 100 parts by weight pentaerythritol tetraacrylate (A-TMMT manufactured by Shin-Nakamura Chemical) 100 parts by mass photopolymerization initiator (Irgacure OXE-01 manufactured by BASF) 10 parts by mass Fluorine-based leveling agent (Megafac F-784 manufactured by DIC) 0.1 part by mass Methylene chloride 525 parts by mass Methanol 133 parts by mass 1-butanol 7 parts by mass (in Table 1, cellulose acetate is described as “TAC” (Pentaerythritol tetraacrylate is described as “A-TMMT”.) In Table 1, Irgacure OXE-01 is described as Irg OXE-01.
  • the dope A was used to cast on the surface of the glass (support) with an applicator whose gap was adjusted so that the film thickness (set film thickness) was 60 ⁇ m. Thereafter, it was dried at 70 ° C. for 6 minutes in a heating oven (Incubator Safety Oven SPHH-202 manufactured by Espec Corp.). After that, the film sample is peeled off from the glass surface, placed after the frame is attached so that the air side surface at the time of film production is in close contact with the quartz exposure mask, and the proximity type exposure machine (Hitachi High-Tech Electronic Engineering Co., Ltd.) with an ultra-high pressure mercury lamp.
  • Examples 1-2 to 1-6 A patterning sample was obtained in the same manner as in Example 1-1 except that the addition amount of pentaerythritol tetraacrylate and the addition amount of the initiator were the values shown in Table 1.
  • Acrylic binder a copolymer of glycidyl methacrylate adduct to methacrylic acid / cyclohexyl methacrylate / methyl methacrylate / methacrylic acid, wherein the molar ratio of methacrylic acid / cyclohexyl methacrylate / methyl methacrylate / methacrylic acid is 20 / 46/2/32 with a weight average molecular weight of 36000 and an acid value of 66.
  • Examples 2-1 to 2-4 For the film of Example 1-1, a patterning sample was obtained in the same manner as in Example 1-1 except that the exposure amount was changed to the exposure amount shown in Table 2 instead of 100 mJ / cm 2 . Evaluation was made in the same manner, and the results are shown in Table 2 below.
  • Examples 3-1 to 3-5 A patterning sample was obtained in the same manner as in Example 1-1 except that the polymerizable compounds shown in Table 3 were added instead of pentaerythritol tetraacrylate in Example 1-1. Evaluation was made in the same manner, and the results are shown in Table 3 below.
  • Dipentaerythritol hexaacrylate Kayarad DPHA, Nippon Kayaku Co., Ltd.
  • V1000 Osaka Organic Chemical Industry Co., Ltd.
  • UV1700B Nippon Synthetic Chemical Industry Co., Ltd.
  • UA306I Kyoeisha Chemical Co., Ltd.
  • UA306H Kyoeisha Chemical Co., Ltd.
  • Example 4-1 A film was produced in the same manner as in Example 1-1 except that Irg 819 (manufactured by BASF) was added instead of Irg Oxe01 in Example 1-1.
  • This film was subjected to pattern exposure using a laser beam (wavelength: 405 nm) with a spot diameter of 600 nm and an exposure interval of 600 nm, followed by heat treatment at 170 ° C. for 60 minutes to obtain a patterning sample.
  • This sample was observed with a scanning probe microscope SPA400 (manufactured by SII).
  • the average height of the convex portions of the concavo-convex structure of this sample was 30 nm, and the pattern ratio was 2.5%.
  • the laminate (co-cast sample) in which the layer of dope A (first layer) and the layer of dope B (second layer) are laminated is peeled off from the glass surface, and the dope A layer after the frame is stretched Using a proximity-type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultra-high pressure mercury lamp with the surface facing the quartz exposure mask at an interval, a quartz exposure mask (mask pattern exposure part 600 nm) Proximity exposure (pattern exposure) was performed at a light irradiation amount of 300 mJ / cm 2 via a square, a light-shielding portion 600 nm. Thereafter, heat treatment was performed at 170 ° C. for 60 minutes in the heating oven used in the above drying treatment to obtain a patterning sample (film sample) of Example 5-1.
  • a proximity-type exposure machine manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.
  • Example 5-6 A patterning sample was obtained in the same manner as in Example 5-1, except that the addition amount of pentaerythritol tetraacrylate and the addition amount of the initiator were the values shown in Table 4.
  • a film was produced by the method of Example 5-1, except that Irg 819 was added instead of Irg Oxe01 of Example 5-1, and 300 parts by weight of pentaerythritol tetraacrylate was added instead of 100 parts by weight of pentaerythritol tetraacrylate. did.
  • This film was subjected to pattern exposure using a laser beam (wavelength: 405 nm) with a spot diameter of 600 nm and an exposure interval of 600 nm, followed by heat treatment at 170 ° C. for 60 minutes to obtain a patterning sample (Example 6).
  • This sample was observed with a scanning probe microscope SPA400 (manufactured by SII). The average height of the protrusions of the uneven structure of this sample was 59 nm, and the pattern ratio was 4.9%.
  • Example 6-1 ⁇ Preparation of first layer forming composition (polymerizable compound-containing cellulose acylate dope P)> The following composition was put into a mixing tank and stirred to dissolve each component to prepare a dope P.
  • An exposure mask (corresponding to the mask pattern in FIG. 7; exposure part width 20 ⁇ m, light-shielding part width 100 ⁇ m) in which the exposure pattern has a grid pattern is brought into contact with one surface of the sample, and laser light (405 nm) is irradiated from the mask side. Irradiation was performed to 100 mJ / cm 2 .
  • the grid-shaped exposure mask is removed, and the square of the exposure pattern (corresponding to the mask pattern in FIG. 6; exposure part width 20 ⁇ m, light-shielding part width 100 ⁇ m) is brought into contact with the other side of the sample.
  • the heat processing was performed at 170 degreeC for 60 minute (s) in the heating oven used by said drying process, and the patterning sample (film sample) was obtained.
  • the lattice pattern is convex on the side exposed from the lattice mask pattern side (like protruding from the film), and the square pattern is convex on the side exposed from the square mask pattern side. It was confirmed that it was formed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Polarising Elements (AREA)
  • Graft Or Block Polymers (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

A method for manufacturing an article having a recessed and projected structure includes: a step of forming a layer which contains a polymerizable compound, at least one type of photopolymerization initiator selected from an oxime ester based photopolymerization initiator and an acyl phosphine oxide based photopolymerization initiator, and cellulose acylate; a step of performing a pattern light exposure on a surface of the layer; and a step of heating the layer after the pattern light exposure, the method forming a recessed and projected structure in which a portion not exposed to light in the pattern light exposure is a recessed portion. The method is employed to provide a method for manufacturing an article having a recessed and projected structure with a large difference between the recesses and projections, and an article having a recessed and projected structure.

Description

凹凸構造を有する物品の製造方法及び凹凸構造を有する物品Method for manufacturing article having concavo-convex structure and article having concavo-convex structure
 本発明は、凹凸構造を有する物品の製造方法、及びこの製造方法により製造された凹凸構造を有する物品に関する。 The present invention relates to a method for manufacturing an article having a concavo-convex structure, and an article having a concavo-convex structure manufactured by this manufacturing method.
 パターニングにより物品に凹凸構造を形成する技術は、液晶表示装置等のフラットパネルディスプレイ用途、半導体製造分野、バイテクノロジー、医薬分野等の様々な用途・分野に用いられている。 The technology for forming a concavo-convex structure on an article by patterning is used in various applications and fields such as flat panel display applications such as liquid crystal display devices, semiconductor manufacturing fields, bi-technology, and pharmaceutical fields.
 パターニングを用いる技術としては、パターン露光と現像工程を経て物品表面に凹凸構造を形成するフォトレジストが広く用いられている。フォトレジストでは、パターン露光された部分(露光部)が凸部となるタイプはネガ型、露光部が凹部となるタイプはポジ型と呼ばれる。ネガ型では、パターン露光によって露光部の現像液に対する溶解性が低下することで、パターン露光で露光されなかった部分(未露光部)は現像工程において現像液により溶解除去され露光部は溶解せずに残ることにより、露光部が凸部となる凹凸構造が形成される。一方、ポジ型ではこの逆に、パターン露光により露光部の現像液に対する溶解性が高まることにより、現像工程において露光部が溶解除去される結果、露光部が凹部となる凹凸構造が形成される。 As a technique using patterning, a photoresist that forms an uneven structure on the surface of an article through pattern exposure and development processes is widely used. In a photoresist, a type in which a pattern-exposed portion (exposed portion) becomes a convex portion is called a negative type, and a type in which an exposed portion becomes a concave portion is called a positive type. In the negative type, the solubility of the exposed area in the developing solution is reduced by pattern exposure, so that the unexposed area (unexposed area) in the pattern exposure is dissolved and removed by the developing solution in the developing process, and the exposed area does not dissolve. As a result, a concavo-convex structure in which the exposed portion becomes a convex portion is formed. On the other hand, in the positive type, conversely, by increasing the solubility of the exposed portion in the developer by pattern exposure, the exposed portion is dissolved and removed in the development process, resulting in the formation of a concavo-convex structure in which the exposed portion becomes a recess.
 これに対し特許文献1には、基板上に形成された感エネルギー性ネガ型樹脂組成物層に対してパターン露光し、その後に加熱処理を施すことにより、現像工程を経ることなく凹凸構造を形成する表面凹凸形成方法が開示されている。 On the other hand, Patent Document 1 forms a concavo-convex structure without passing through a development process by pattern exposure of an energy-sensitive negative resin composition layer formed on a substrate and subsequent heat treatment. A method for forming surface irregularities is disclosed.
日本国特開2004-37518号公報Japanese Laid-Open Patent Publication No. 2004-37518
 特許文献1には、活性エネルギー線を照射された部分の膜厚が、活性エネルギー線を照射されていない部分の膜厚に比べて増加し、後加熱を行うことで、活性エネルギー線を照射された部分と照射されない部分との膜厚差が顕著になることが記載されている(特許文献1の段落0006参照)。 In Patent Document 1, the film thickness of the portion irradiated with the active energy ray is increased as compared with the film thickness of the portion not irradiated with the active energy beam, and the active energy beam is irradiated by performing post-heating. It is described that the difference in film thickness between the exposed portion and the non-irradiated portion becomes significant (see paragraph 0006 of Patent Document 1).
 上記の特許文献1に記載の表面凹凸形成方法は、現像工程を経ることなく凹凸構造を形成することができるため、前述のフォトレジストと比べ、工程簡略化、現像液不使用によるコスト低減等の点で好ましい方法と言える。
 一方、近年、各種分野では、用途に応じた様々な形状・サイズの凹凸構造を形成することが求められている。一例として、反射防止用途に用いられるフィルム(反射防止フィルム)については、フィルム表面に、凸部同士の間隔が光の波長以下のサイズの凹凸構造を形成することにより、その光に対する反射率を低減(反射防止)することができる。したがって、より短波長の光の反射を防止するためには、フィルム表面に、より大きい高低差で微細な凹凸構造を形成することが求められる。
 なおここで凹凸構造について微細とは、凸部同士の間隔が狭いことをいうものとする。微細凹凸は、凸型の構造でも凹型の構造でも反射防止性能を得ることが出来る。また一つの構造が周期的に並んだものでもランダムに並んだものでも反射防止性能を得ることが出来る。凹凸構造の深さ(最高部と最低部の距離)は50~1000nmが好ましく、120~400nmがより好ましく、150~300nmが特に好ましい。凸部の高さが50nm以上であれば、反射率が十分低くなり、かつ反射率の波長依存性が少ない。凸部の高さが1000nm以下であれば、凸部の耐擦傷性が良好となる。凸部間若しくは凹部間の平均間隔は50~400nmが好ましく、100~300nmがより好ましく、150~200nmが特に好ましい。凸部の高さが50nm以上であれば、反射率が十分低くなり、かつ反射率の波長依存性が少ない。平均間隔が400nm以下であれば、回折光による虹色の着色が抑えられる。平均間隔が50nm以下であれば耐擦傷性が良好となる。
 しかしながら、従来の方法では、要求される大きい高低差で微細な凹凸構造を形成することは困難であった。
The surface unevenness forming method described in Patent Document 1 can form an uneven structure without going through a development process. Therefore, compared to the above-described photoresist, the process is simplified, the cost is reduced by not using a developer, and the like. This can be said to be a preferable method.
On the other hand, in recent years, in various fields, it has been required to form uneven structures having various shapes and sizes according to applications. As an example, for films used for antireflection applications (antireflection films), the surface of the film is formed with a concavo-convex structure whose size is less than or equal to the wavelength of light, thereby reducing the reflectance to light. (Anti-reflection). Therefore, in order to prevent reflection of light having a shorter wavelength, it is required to form a fine concavo-convex structure with a larger elevation difference on the film surface.
Here, “fine” in the concavo-convex structure means that the interval between the convex portions is narrow. The fine unevenness can provide antireflection performance in both a convex structure and a concave structure. In addition, it is possible to obtain antireflection performance even if one structure is periodically arranged or randomly arranged. The depth of the concavo-convex structure (the distance between the highest part and the lowest part) is preferably 50 to 1000 nm, more preferably 120 to 400 nm, and particularly preferably 150 to 300 nm. If the height of the convex portion is 50 nm or more, the reflectance is sufficiently low and the wavelength dependence of the reflectance is small. If the height of a convex part is 1000 nm or less, the scratch resistance of a convex part will become favorable. The average distance between convex portions or concave portions is preferably 50 to 400 nm, more preferably 100 to 300 nm, and particularly preferably 150 to 200 nm. If the height of the convex portion is 50 nm or more, the reflectance is sufficiently low and the wavelength dependence of the reflectance is small. If the average interval is 400 nm or less, iridescent coloring due to diffracted light can be suppressed. If the average distance is 50 nm or less, the scratch resistance is good.
However, with the conventional method, it has been difficult to form a fine concavo-convex structure with a required large elevation difference.
 本発明の目的は、微細な凹凸構造であって、凹凸の高低差が大きい(凸部の高さが大きい)凹凸構造を有する物品の製造方法及び凹凸構造を有する物品を提供することにある。 An object of the present invention is to provide a method for producing an article having a concavo-convex structure that has a fine concavo-convex structure and has a large concavo-convex height difference (the height of the convex part is large), and an article having the concavo-convex structure.
 本発明者らは上記目的を達成するために鋭意検討を重ねた結果、重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の重合開始剤と、セルロースアシレートと、を含む層を形成する工程と、上記層の表面にパターン露光する工程と、上記パターン露光後の層を加熱する工程と、により、上記パターン露光の非露光部が凹部となる高低差が大きい凹凸構造を形成することができることを見出した。 As a result of intensive studies to achieve the above object, the present inventors have determined that at least one polymerization initiator selected from a polymerizable compound, an oxime ester photopolymerization initiator, and an acylphosphine oxide photopolymerization initiator. And a step of forming a layer containing cellulose acylate, a step of pattern exposure on the surface of the layer, and a step of heating the layer after the pattern exposure. It was found that a concavo-convex structure having a large height difference can be formed.
 以下は、本発明を何ら限定するものではないが、上記凹凸構造を有する物品の製造方法により、高低差が大きい微細な凹凸構造の形成が可能となる理由について、本発明者らは次のように考えている。
 まず重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の重合開始剤と、セルロースアシレートと、を含む層を形成する工程と、上記層の表面にパターン露光する工程と、により、層の表面の露光部において重合性化合物が重合し硬化する。その後、加熱することにより、パターン露光では未反応であった重合性化合物の重合が進行し、いわゆる重合収縮が発生する。本発明においては、層中に、紫外線に対する感度が高い特定の光重合開始剤が含まれており、パターン露光した領域が高い割合で重合硬化したり、フィルム内部まで硬化するため、その後の加熱時に大きな形状変化を起こしにくくすることができる。したがって、パターン露光した領域と加熱重合した領域との収縮差を大きくすることができ、微細なパターンを用いた場合であっても高低差(段差)が大きい凹凸構造を形成することができる。
 また、このように凸部と凹部との高低差(段差)が大きいことは、明確な凹凸と認識される凹凸形状の形成を可能とするため、微細凹凸構造に限らず様々な形状・サイズの凹凸構造の形成に有効である。
 ただし、以上の記載は本発明者らによる推察を含むものであり、本発明を何ら限定するものではない。
The following is not intended to limit the present invention at all, but the inventors of the present invention have the following reason why a fine concavo-convex structure with a large difference in height can be formed by the method for producing an article having the concavo-convex structure. I am thinking.
First, a step of forming a layer comprising a polymerizable compound, at least one polymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, and cellulose acylate, and the above layer And the step of pattern exposure on the surface of the layer, the polymerizable compound is polymerized and cured in the exposed portion of the surface of the layer. Thereafter, by heating, polymerization of a polymerizable compound that has not been reacted in pattern exposure proceeds, and so-called polymerization shrinkage occurs. In the present invention, the layer contains a specific photopolymerization initiator having high sensitivity to ultraviolet rays, and the pattern-exposed region is polymerized and cured at a high rate, or is cured to the inside of the film. It is possible to make it difficult for large shape changes to occur. Therefore, the shrinkage difference between the pattern-exposed region and the heat-polymerized region can be increased, and a concavo-convex structure with a large difference in level (step) can be formed even when a fine pattern is used.
In addition, the large difference in level (step) between the convex portion and the concave portion enables the formation of a concave / convex shape that is recognized as a clear concave / convex portion. It is effective for forming a concavo-convex structure.
However, the above description includes inferences by the present inventors and does not limit the present invention.
[1]
 重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の光重合開始剤と、セルロースアシレートと、を含む層を形成する工程と、
 上記層の表面にパターン露光する工程と、
 上記パターン露光後の層を加熱する工程と、
を有し、上記パターン露光の非露光部が凹部となる凹凸構造を形成する、凹凸構造を有する物品の製造方法。
[2]
 上記層を形成する工程が、支持体上に、重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の光重合開始剤と、セルロースアシレートと、を含む組成物を流延して層を形成する工程であり、
 次いで、上記層を上記支持体から剥ぎ取る工程を有し、
 上記剥ぎ取った層に対して、上記パターン露光する工程を行う、[1]に記載の凹凸構造を有する物品の製造方法。
[3]
 上記層中におけるセルロースアシレートの質量に対する重合性化合物の質量は、50質量%以上150質量%以下である、[1]又は[2]に記載の凹凸構造を有する物品の製造方法。
[4]
 上記層中における重合性化合物の質量に対する光重合開始剤の質量は、5質量%以上25質量%以下である、[1]~[3]のいずれか1項に記載の凹凸構造を有する物品の製造方法。
[5]
 重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の光重合開始剤と、セルロースアシレートと、を含む第1の層、及び、
 樹脂を含有する第2の層を有する積層体を形成する工程と、
 上記第1の層の表面にパターン露光する工程と、
 上記パターン露光後の第1の層を加熱する工程と、
を有し、上記パターン露光の非露光部が凹部となる凹凸構造を形成する、凹凸構造を有する物品の製造方法。
[6]
 上記第1の層を形成する工程が、支持体上に、重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の光重合開始剤と、セルロースアシレートと、を含む組成物を流延して第1の層を形成する工程であり、
 次いで、上記第1の層を上記支持体から剥ぎ取る工程を有し、
 上記剥ぎ取った第1の層に対して、上記パターン露光する工程を行う、[5]に記載の凹凸構造を有する物品の製造方法。
[7]
 上記第1の層中におけるセルロースアシレートの質量に対する重合性化合物の質量は、50質量%以上1000質量%以下である、[5]又は[6]に記載の凹凸構造を有する物品の製造方法。
[8]
 上記第1の層中における重合性化合物の質量に対する光重合開始剤の質量は、5質量%以上25質量%以下である、[5]~[7]のいずれか1項に記載の凹凸構造を有する物品の製造方法。
[9]
 上記パターン露光する工程において、光照射量を50mJ/cm以上1000mJ/cm以下とする、[1]~[8]のいずれか1項に記載の凹凸構造を有する物品の製造方法。
[10]
 上記重合性化合物は、エチレン性不飽和結合を含む重合性基を有する[1]~[9]のいずれか1項に記載の凹凸構造を有する物品の製造方法。
[11]
 上記エチレン性不飽和結合を含む重合性基は、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイル基及びメタクリロイル基からなる群から選ばれる重合性基である[10]に記載の凹凸構造を有する物品の製造方法。
[12]
 上記重合性化合物は、2官能以上の多官能重合性化合物である[1]~[11]のいずれか1項に記載の凹凸構造を有する物品の製造方法。
[13]
 上記物品は長尺状フィルムである、[1]~[12]のいずれか1項に記載の凹凸構造を有する物品の製造方法。
[14]
 [1]~[13]のいずれか1項に記載の製造方法により製造され、凸部の平均高さが凹凸の平均長さに対して1%以上である、凹凸構造を有する物品。
[15]
 凹凸構造を有する面から厚み方向に向かって、上記重合性化合物の重合体の濃度が低下する濃度勾配を有する、[14]に記載の凹凸構造を有する物品。
[1]
Forming a layer comprising a polymerizable compound, at least one photopolymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, and cellulose acylate;
Pattern exposure on the surface of the layer;
Heating the layer after the pattern exposure;
A method for producing an article having a concavo-convex structure, wherein the concavo-convex structure in which the non-exposed part of the pattern exposure is a concave part is formed.
[2]
The step of forming the layer comprises, on the support, a polymerizable compound, at least one photopolymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, and cellulose acylate. And forming a layer by casting a composition comprising:
Next, the step of peeling the layer from the support,
The method for producing an article having a concavo-convex structure according to [1], wherein the pattern exposure step is performed on the peeled layer.
[3]
The method for producing an article having an uneven structure according to [1] or [2], wherein the mass of the polymerizable compound relative to the mass of the cellulose acylate in the layer is 50% by mass or more and 150% by mass or less.
[4]
The mass of the photopolymerization initiator relative to the mass of the polymerizable compound in the layer is 5 to 25% by mass of the article having an uneven structure according to any one of [1] to [3]. Production method.
[5]
A first layer comprising a polymerizable compound, at least one photopolymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, and cellulose acylate; and
Forming a laminate having a second layer containing a resin;
Pattern exposure on the surface of the first layer;
Heating the first layer after the pattern exposure;
A method for producing an article having a concavo-convex structure, wherein the concavo-convex structure in which the non-exposed part of the pattern exposure is a concave part is formed.
[6]
The step of forming the first layer comprises, on the support, a polymerizable compound, at least one photopolymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, A step of casting a composition comprising cellulose acylate to form a first layer;
Then, the step of peeling the first layer from the support,
The method for producing an article having an uneven structure according to [5], wherein the pattern exposure step is performed on the peeled first layer.
[7]
The method for producing an article having an uneven structure according to [5] or [6], wherein the mass of the polymerizable compound relative to the mass of the cellulose acylate in the first layer is 50% by mass or more and 1000% by mass or less.
[8]
The uneven structure according to any one of [5] to [7], wherein the mass of the photopolymerization initiator relative to the mass of the polymerizable compound in the first layer is 5% by mass or more and 25% by mass or less. A method for manufacturing an article having the same.
[9]
The method for producing an article having a concavo-convex structure according to any one of [1] to [8], wherein, in the pattern exposure step, the light irradiation amount is 50 mJ / cm 2 or more and 1000 mJ / cm 2 or less.
[10]
The method for producing an article having an uneven structure according to any one of [1] to [9], wherein the polymerizable compound has a polymerizable group containing an ethylenically unsaturated bond.
[11]
The polymerizable group containing an ethylenically unsaturated bond is a polymerizable group selected from the group consisting of an acryloyloxy group, a methacryloyloxy group, an acryloyl group, and a methacryloyl group. Method.
[12]
The method for producing an article having an uneven structure according to any one of [1] to [11], wherein the polymerizable compound is a polyfunctional polymerizable compound having two or more functions.
[13]
The method for producing an article having an uneven structure according to any one of [1] to [12], wherein the article is a long film.
[14]
An article having a concavo-convex structure produced by the production method according to any one of [1] to [13], wherein the average height of the convex portions is 1% or more with respect to the average length of the concave and convex portions.
[15]
The article having a concavo-convex structure according to [14], having a concentration gradient in which the concentration of the polymer of the polymerizable compound decreases from the surface having the concavo-convex structure in the thickness direction.
 本発明によれば、凹凸の高低差が大きい凹凸構造を有する物品の製造方法及び凹凸構造を有する物品を提供することが可能となる。 According to the present invention, it is possible to provide a method for manufacturing an article having a concavo-convex structure with a large unevenness level and an article having a concavo-convex structure.
非接触方式によるパターン露光工程を示す模式図である。It is a schematic diagram which shows the pattern exposure process by a non-contact system. パターン露光後の層構造を示す模式図である。It is a schematic diagram which shows the layer structure after pattern exposure. 加熱後の層構造を示す模式図である。It is a schematic diagram which shows the layer structure after a heating. 本発明において用いることができるパターニングフォトマスクの形状を示す模式図である。It is a schematic diagram which shows the shape of the patterning photomask which can be used in this invention. 本発明において用いることができるパターニングフォトマスクの形状を示す模式図である。It is a schematic diagram which shows the shape of the patterning photomask which can be used in this invention. 本発明において用いることができるパターニングフォトマスクの形状を示す模式図である。It is a schematic diagram which shows the shape of the patterning photomask which can be used in this invention. 本発明において用いることができるパターニングフォトマスクの形状を示す模式図である。It is a schematic diagram which shows the shape of the patterning photomask which can be used in this invention.
 以下の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本発明及び本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 The following description may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present invention and the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[凹凸構造を有する物品の製造方法]
 本発明の第1の形態に係る凹凸構造を有する物品の製造方法は、重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の光重合開始剤と、セルロースアシレートと、を含む層を形成する工程と、上記層の表面にパターン露光する工程と、上記パターン露光後の層を加熱する工程と、を有し、上記パターン露光の非露光部が凹部となる凹凸構造を形成するものである。
 以下、本明細書においては、上記重合性化合物と、光重合開始剤と、セルロースアシレートと、を含む層を単層体という。
 また、本発明の第2の形態に係る凹凸構造を有する物品の製造方法は、重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の光重合開始剤と、セルロースアシレートと、を含む第1の層、及び、樹脂を含有する第2の層を有する積層体形成する工程と、上記第1の層の表面にパターン露光する工程と、上記パターン露光後の層を加熱する工程と、を有し、上記パターン露光の非露光部が凹部となる凹凸構造を形成するものである。第2の形態に係る凹凸構造を有する物品の製造方法によれば、凹凸の高低差を大きくすることに加え、物品の脆性も改良することができる。
 以下、本明細書においては、上記第1の層と第2の層を合わせた層を積層体という。
 以下、上記製造方法について、更に詳細に説明する。
[Production method of article having uneven structure]
The method for producing an article having a concavo-convex structure according to the first aspect of the present invention includes a polymerizable compound, at least one photopolymerization initiation selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator. A step of forming a layer containing an agent and cellulose acylate, a step of pattern exposure on the surface of the layer, and a step of heating the layer after the pattern exposure. The concavo-convex structure in which the part becomes a concave part is formed.
Hereinafter, in the present specification, a layer containing the polymerizable compound, a photopolymerization initiator, and cellulose acylate is referred to as a monolayer.
The method for producing an article having an uneven structure according to the second aspect of the present invention includes a polymerizable compound, at least one light selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator. A step of forming a laminate having a first layer containing a polymerization initiator and cellulose acylate, and a second layer containing a resin, and a step of pattern exposing the surface of the first layer; Heating the layer after the pattern exposure, and forming a concavo-convex structure in which the non-exposed portion of the pattern exposure is a recess. According to the method for manufacturing an article having a concavo-convex structure according to the second embodiment, the brittleness of the article can be improved in addition to increasing the level difference of the concavo-convex.
Hereinafter, in this specification, a layer obtained by combining the first layer and the second layer is referred to as a laminate.
Hereinafter, the manufacturing method will be described in more detail.
 先ず、層(単層体及び第1の層)を形成するための組成物について説明する。
<重合性化合物>
 重合性化合物とは、1分子中に少なくとも1つの重合性基を有する化合物である。そのような化合物であれば、モノマーであっても、オリゴマーやプレポリマー等の多量体であってもよい。重合性化合物としては、1分子中に含まれる重合性基の数が1つである単官能重合性化合物を用いてもよく、1分子中に含まれる重合性基の数が2つ以上である多官能化重合性合物を用いてもよく、単官能重合性化合物と多官能重合性化合物とを任意に割合で混合して用いてもよい。また、多官能重合性化合物として、異なる種類の多官能重合性化合物を任意の割合で混合して用いてもよい。これら重合性化合物の分子量は、例えば80以上30,000以下であるが、特に限定されるものではない。なお本発明において分子量とは、多量体については、ゲル浸透クロマトグラフィー(GPC)によりポリスチレン換算で測定される重量平均分子量を言うものとする。具体的な測定条件の一例としては、以下の測定条件を挙げることができる。
 GPC装置:HLC-8120(東ソー製):
 カラム:TSK gelMultiporeHXL-M(東ソー製、7.8mmID(内径)×30.0cm)
 溶離液:テトラヒドロフラン(THF)
First, the composition for forming a layer (a single layer body and a 1st layer) is demonstrated.
<Polymerizable compound>
The polymerizable compound is a compound having at least one polymerizable group in one molecule. Such a compound may be a monomer or a multimer such as an oligomer or a prepolymer. As the polymerizable compound, a monofunctional polymerizable compound in which the number of polymerizable groups contained in one molecule is one may be used, and the number of polymerizable groups contained in one molecule is two or more. A polyfunctional polymerizable compound may be used, and a monofunctional polymerizable compound and a polyfunctional polymerizable compound may be arbitrarily mixed and used. Moreover, you may mix and use a polyfunctional polymerizable compound of a different kind in arbitrary ratios as a polyfunctional polymerizable compound. The molecular weight of these polymerizable compounds is, for example, from 80 to 30,000, but is not particularly limited. In the present invention, the molecular weight means a weight average molecular weight measured in terms of polystyrene by gel permeation chromatography (GPC) for a multimer. Examples of specific measurement conditions include the following measurement conditions.
GPC device: HLC-8120 (manufactured by Tosoh):
Column: TSK gelMultiporeHXL-M (Tosoh, 7.8 mm ID (inner diameter) × 30.0 cm)
Eluent: Tetrahydrofuran (THF)
 重合性基としては、ラジカル重合性基であってもカチオン重合性基であってもよく、ラジカル重合性基が好ましい。凹凸構造形成の観点から好ましい重合性基としては、エチレン性不飽和結合含有基、エポキシ基、オキセタン基、メチロール基等の重合性基を挙げることができ、エチレン性不飽和結合含有基がより好ましい。エチレン性不飽和結合含有基としては、(メタ)アクリロイルオキシ基、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基を挙げることができ、(メタ)アクリロイルオキシ基及び(メタ)アクリロイル基がより好ましく、(メタ)アクリロイルオキシ基がいっそう好ましい。なお本発明において、「(メタ)アクリロイルオキシ基」との記載は、アクリロイルオキシ基とメタクリロイルオキシ基の少なくともいずれかの意味で用いるものとする。「(メタ)アクリロイル基」、「(メタ)アクリレート」、「(メタ)アクリル」等も同様である。多官能重合性化合物に含まれる重合性基の数は1分子中に2以上であり、好ましくは2~20の範囲であり、より好ましくは3~12の範囲である。 The polymerizable group may be a radical polymerizable group or a cationic polymerizable group, and is preferably a radical polymerizable group. Examples of the polymerizable group that is preferable from the viewpoint of forming an uneven structure include polymerizable groups such as an ethylenically unsaturated bond-containing group, an epoxy group, an oxetane group, and a methylol group, and an ethylenically unsaturated bond-containing group is more preferable. . Examples of the ethylenically unsaturated bond-containing group include (meth) acryloyloxy group, (meth) acryloyl group, vinyl group, styryl group, and allyl group, and (meth) acryloyloxy group and (meth) acryloyl group include More preferred is a (meth) acryloyloxy group. In the present invention, the description “(meth) acryloyloxy group” is used in the meaning of at least one of an acryloyloxy group and a methacryloyloxy group. The same applies to “(meth) acryloyl group”, “(meth) acrylate”, “(meth) acryl” and the like. The number of polymerizable groups contained in the polyfunctional polymerizable compound is 2 or more in one molecule, preferably in the range of 2 to 20, and more preferably in the range of 3 to 12.
 多官能重合性化合物の好ましい一態様としては、エチレン性不飽和結合含有基を1分子中に2つ以上有する多官能性(メタ)アクリレート系化合物を挙げることができる。
 具体例として、2官能(メタ)アクリレートとしては、エチレングリコールジ(メタ)アクリレート、ビスフェノールAテトラエトキシジ(メタ)アクリレート、ビスフェノールAテトラプロポキシジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。市販品の一例としては、共栄社化学製:ライトアクリレートNP-A(ネオペンチルグリコールジアクリレート、分子量212)等を挙げることもできる。
 3官能以上の(メタ)アクリレート系化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、イソシアヌル酸変性トリ(メタ)アクリレート等が挙げられる。市販品の一例としては、新中村化学製:A-TMMT(ペンタエリスリトールテトラアクリレート)、日本化薬製:KAYARAD(日本登録商標)DPHA(ジペンタエリスリトールヘキサアクリレート)、東亜合成製:アロニックス(日本登録商標)M-309(トリメチロールプロパントリアクリレート)等を挙げることもできる。
 また、上記(メタ)アクリレート系化合物は、分子骨格の一部が変性されているものでもよい。例えば、エチレンオキサイド、プロピレンオキサイド、カプロラクトン、イソシアヌル酸、アルキル、環状アルキル、芳香族、ビスフェノール等による変性がなされたものを使用することができる。
As a preferable embodiment of the polyfunctional polymerizable compound, a polyfunctional (meth) acrylate compound having two or more ethylenically unsaturated bond-containing groups in one molecule can be exemplified.
Specific examples of the bifunctional (meth) acrylate include ethylene glycol di (meth) acrylate, bisphenol A tetraethoxydi (meth) acrylate, bisphenol A tetrapropoxydi (meth) acrylate, and 1,6-hexanediol di (meth) acrylate. ) Acrylate, neopentyl glycol di (meth) acrylate, and the like. As an example of a commercially available product, Kyoeisha Chemical Co., Ltd .: Light acrylate NP-A (neopentyl glycol diacrylate, molecular weight 212) can also be mentioned.
Examples of the tri- or more functional (meth) acrylate compound include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, di Examples include pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and isocyanuric acid-modified tri (meth) acrylate. Examples of commercially available products are: Shin-Nakamura Chemical: A-TMMT (pentaerythritol tetraacrylate), Nippon Kayaku: KAYARAD (Japan registered trademark) DPHA (dipentaerythritol hexaacrylate), Toa Gosei: Aronix (registered in Japan) (Trademark) M-309 (trimethylolpropane triacrylate) etc. can also be mentioned.
The (meth) acrylate compound may be a compound in which a part of the molecular skeleton is modified. For example, those modified with ethylene oxide, propylene oxide, caprolactone, isocyanuric acid, alkyl, cyclic alkyl, aromatic, bisphenol or the like can be used.
 また、多官能重合性化合物としては、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、(メタ)アクリレート系重合体等を挙げることもできる。これらの中でも、例えば透明性等の点からウレタン(メタ)アクリレートが好ましい。ウレタン(メタ)アクリレートは、多価アルコール及び有機ジイソシアネートとヒドロキシ(メタ)アクリレートとの反応によって得ることができる。 Also, examples of the polyfunctional polymerizable compound include urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, polyether (meth) acrylate, and (meth) acrylate polymer. Among these, urethane (meth) acrylate is preferable from the viewpoint of transparency, for example. Urethane (meth) acrylate can be obtained by reaction of polyhydric alcohol and organic diisocyanate with hydroxy (meth) acrylate.
 上記多価アルコールとしては、例えば、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、トリシクロデカンジメチロール、ビス-[ヒドロキシメチル]-シクロヘキサン等;上記多価アルコールと多塩基酸(例えば、コハク酸、フタル酸、ヘキサヒドロ無水フタル酸、テレフタル酸、アジピン酸、アゼライン酸、テトラヒドロ無水フタル酸等)との反応によって得られるポリエステルポリオール;上記多価アルコールとε-カプロラクトンとの反応によって得られるポリカプロラクトンポリオール;ポリカーボネートポリオール(例えば、1,6-ヘキサンジオールとジフェニルカーボネートとの反応によって得られるポリカーボネートジオール等);及び、ポリエーテルポリオールを挙げることができる。上記ポリエーテルポリオールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレンオキサイド変性ビスフェノールA等を挙げることができる。 Examples of the polyhydric alcohol include neopentyl glycol, 3-methyl-1,5-pentanediol, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, trimethylolpropane, and pentaerythritol. , Tricyclodecane dimethylol, bis- [hydroxymethyl] -cyclohexane, etc .; the above polyhydric alcohols and polybasic acids (for example, succinic acid, phthalic acid, hexahydrophthalic anhydride, terephthalic acid, adipic acid, azelaic acid, tetrahydroanhydride) Polyester polyol obtained by reaction with phthalic acid, etc .; polycaprolactone polyol obtained by reaction of the above polyhydric alcohol with ε-caprolactone; polycarbonate polyol (for example, 1,6-hexanediol) Polycarbonate diols obtained by reacting diphenyl carbonate); and, may be mentioned polyether polyols. Examples of the polyether polyol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and ethylene oxide-modified bisphenol A.
 上記有機ポリイソシアネートとしては、例えばイソホロンジイソシアネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジシクロペンタニルイソシアネート等のイソシアネート化合物、これらイソシアネート化合物の付加体、又はこれらイソシアネートの多量体等が挙げられる。 Examples of the organic polyisocyanate include isocyanate compounds such as isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylene diisocyanate, diphenylmethane-4,4′-diisocyanate, dicyclopentanyl isocyanate, adducts of these isocyanate compounds, or these Examples include isocyanate multimers.
 上記ヒドロキシ(メタ)アクリレート化合物としては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ジメチロールシクロヘキシルモノ(メタ)アクリレート、ヒドロキシカプロラクトン(メタ)アクリレート等が挙げられる。
 中でも、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートであることが、製造される物品の高硬度化の面から好ましい。
Examples of the hydroxy (meth) acrylate compound include pentaerythritol tri (meth) acrylate, pentaerythritol di (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, hydroxyethyl (meth) ) Acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, dimethylol cyclohexyl mono (meth) acrylate, hydroxycaprolactone (meth) acrylate, and the like.
Among these, pentaerythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate are preferable from the viewpoint of increasing the hardness of the manufactured article.
 上記ウレタン(メタ)アクリレートは、6官能以上であることが好ましく、6~15官能であることがより好ましい。 The urethane (meth) acrylate is preferably 6 or more functional and more preferably 6 to 15 functional.
 ウレタン(メタ)アクリレートとしては、市販品を用いてもよい。市販品としては、例えば、日本合成化学工業社製:UV1700B(重量平均分子量2000、10官能)、UV7600B(重量平均分子量1500、6官能)、日本化薬社製:DPHA40H(重量平均分子量7000、10官能)、UX5003(重量平均分子量700、6官能)、根上工業社製:UN3320HS(重量平均分子量5000、15官能)、UN904(重量平均分子量4900、15官能)、UN3320HC(重量平均分子量1500、10官能)、UN3320HA(重量平均分子量1500、6官能)、荒川化学工業社製:BS577(重量平均分子量1000、6官能)、及び、新中村化学工業社製:U15HA(重量平均分子量2300、15官能)、U-6LPA(重量平均分子量800、6官能)、等を挙げることができる。 Commercial products may be used as urethane (meth) acrylate. Examples of commercially available products include: Nippon Synthetic Chemical Industry: UV1700B (weight average molecular weight 2000, 10 functional), UV7600B (weight average molecular weight 1500, 6 functional), Nippon Kayaku Co., Ltd .: DPHA40H (weight average molecular weight 7000, 10 Functionality), UX5003 (weight average molecular weight 700, 6 functionalities), Negami Kogyo Co., Ltd .: UN3320HS (weight average molecular weight 5000, 15 functionalities), UN904 (weight average molecular weight 4900, 15 functionalities), UN3320HC (weight average molecular weight 1500, 10 functionalities) ), UN3320HA (weight average molecular weight 1500, 6 functional), manufactured by Arakawa Chemical Industries, Ltd .: BS577 (weight average molecular weight 1000, 6 functional), and Shin Nakamura Chemical Industries, Ltd .: U15HA (weight average molecular weight 2300, 15 functional), U-6LPA (weight average molecular weight 800, hexafunctional), It can be mentioned.
 多官能重合性化合物としては、1分子中に1つ以上のフッ素原子を含むフッ素含有重合性化合物、1分子中に1つ以上のシロキサン結合を有するシリコーン系重合性化合物等を用いることもできる。フッ素含有重合性化合物としては、例えば、特開2013-130865公報段落0077~0103に記載の各種化合物を用いることができる。一方、シリコーン系重合性化合物については、特開2013-130865公報段落0141及び特開2012-103689号公報0119~0120を参照できる。 As the polyfunctional polymerizable compound, a fluorine-containing polymerizable compound containing one or more fluorine atoms in one molecule, a silicone-based polymerizable compound having one or more siloxane bonds in one molecule, or the like can also be used. As the fluorine-containing polymerizable compound, for example, various compounds described in JP-A-2013-130865, paragraphs 0077 to 0103 can be used. On the other hand, with respect to the silicone-based polymerizable compound, reference can be made to paragraph 0141 of JP2013-130865A and JP0119-0120A of JP2012-103689A.
 単官能性化合物としては、特に限定されるものではない。例えば、WO2012/077807A1段落0022に記載の単官能(メタ)アクリレート系化合物、特開2008-178995号公報段落0022に記載のビニル結合を1分子中に1つのみ有する単官能重合性化合物、特開2008-119684号公報段落0022に記載の単官能ラジカル重合性モノマー等を使用することができる。 The monofunctional compound is not particularly limited. For example, a monofunctional (meth) acrylate compound described in WO2012 / 0777807A1 paragraph 0022, a monofunctional polymerizable compound having only one vinyl bond in one molecule described in JP2008-17895A, Monofunctional radically polymerizable monomers described in paragraph 0022 of 2008-119684 can be used.
 層中のセルロースアシレートに対する重合性化合物濃度は、特に限定されるものではないが、高低差が大きい凹凸構造の形成を容易にする観点から、重合性化合物を含む層が単層の場合はセルロースアシレート100質量部に対して50質量部以上とすることが好ましい。一方、フィルム作製の観点からは、セルロースアシレート100質量部に対する重合性化合物量を150質量部以下とすることが好ましい。
 また、重合性化合物を含む第1の層の場合はセルロースアシレート100質量部に対して50質量以上とすることが好ましい。一方、フィルム作製の観点からは、セルロースアシレート100質量部に対する重合性化合物量を、1000質量部以下にすることが好ましい。
The concentration of the polymerizable compound relative to the cellulose acylate in the layer is not particularly limited, but from the viewpoint of facilitating formation of a concavo-convex structure having a large difference in height, cellulose is used when the layer containing the polymerizable compound is a single layer. It is preferable to set it as 50 mass parts or more with respect to 100 mass parts of acylates. On the other hand, from the viewpoint of film production, the amount of the polymerizable compound with respect to 100 parts by mass of cellulose acylate is preferably 150 parts by mass or less.
Moreover, in the case of the 1st layer containing a polymeric compound, it is preferable to set it as 50 masses or more with respect to 100 mass parts of cellulose acylates. On the other hand, from the viewpoint of film production, the amount of the polymerizable compound with respect to 100 parts by mass of cellulose acylate is preferably 1000 parts by mass or less.
<オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の重合開始剤>
 本発明においては、層を形成するための組成物中に、紫外線に対する感度が高いオキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の重合開始剤を含有させることにより、パターン露光した領域と加熱重合した領域との収縮差を大きくして、高低差が大きい凹凸構造を形成することができる。
 オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の重合開始剤としては、市販のものを用いることができる。例えば、オキシムエステル系光重合開始剤としては、Irgacure Oxe01(BASFジャパン社製)、Irgacure Oxe02(BASFジャパン社製)、Irgacure Oxe03(BASFジャパン社製)、NCI 930(ADEKA社製)、NCI 831(ADEKA社製)を挙げることができ、アシルホスフィンオキサイド系光重合開始剤としては、Irgacure 819(BASFジャパン社製)、LUCILIN TPO(BASFジャパン社製)を挙げることができる。
<At least one polymerization initiator selected from oxime ester photopolymerization initiators and acylphosphine oxide photopolymerization initiators>
In the present invention, the composition for forming the layer contains at least one polymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator that are highly sensitive to ultraviolet rays. Thereby, the shrinkage difference between the pattern-exposed region and the heat-polymerized region can be increased to form a concavo-convex structure with a large difference in height.
A commercially available thing can be used as at least 1 type of polymerization initiator selected from the oxime ester type photoinitiator and the acylphosphine oxide type photoinitiator. For example, as an oxime ester photopolymerization initiator, Irgacure Oxe01 (manufactured by BASF Japan), Irgacure Oxe02 (manufactured by BASF Japan), Irgacure Oxe03 (manufactured by BASF Japan), NCI 930 (manufactured by ADEKA), NCI 831 ( ADEKA Co., Ltd.), and examples of the acylphosphine oxide photopolymerization initiator include Irgacure 819 (BASF Japan Co.) and LUCILIN TPO (BASF Japan Co.).
 以上記載した光重合開始剤は、一種単独で用いてもよく、二種以上を任意の割合で組み合わせて用いてもよい。光重合開始剤は、パターン露光による重合反応を良好に進行させる観点から、層中の重合性化合物の質量に対する光重合開始剤の質量は、5質量%以上25質量%以下であることが好ましい。
 また、重合性化合物を含む第1の層の場合も、重合性化合物の質量に対する光重合開始剤の質量は、5質量%以上25質量%以下であることが好ましい。
The photopolymerization initiators described above may be used alone or in a combination of two or more at any ratio. The mass of the photopolymerization initiator relative to the mass of the polymerizable compound in the layer is preferably 5% by mass or more and 25% by mass or less from the viewpoint of favorably causing the polymerization reaction by pattern exposure to proceed favorably.
Moreover, also in the case of the 1st layer containing a polymeric compound, it is preferable that the mass of the photoinitiator with respect to the mass of a polymeric compound is 5 mass% or more and 25 mass% or less.
(増感剤)
 本発明においては、層を形成するための組成物中に、増感剤を用いることができる。増感剤は、例えば光重合開始剤が露光光源に対し適正な吸収を持たない場合に、適宜用いることが出来る。
 本発明に用いることができる増感剤としては、活性光線を吸収し、光重合開始剤に対して電子移動機構又はエネルギー移動機構で増感させるものであれば、特に制限なく使用することができる。
 増感剤としては、アントラセン誘導体、アクリドン誘導体、チオキサントン誘導体、クマリン誘導体、ベーススチリル誘導体、ジスチリルベンゼン誘導体が好ましい。
 アントラセン誘導体としては、アントラセン、9,10-ジブトキシアントラセン、9,10-ジクロロアントラセン、2-エチル-9,10-ジメトキシアントラセン、9-ヒドロキシメチルアントラセン、9-ブロモアントラセン、9-クロロアントラセン、9,10-ジブロモアントラセン、2-エチルアントラセン、9,10-ジメトキシアントラセンが好ましい。
 アクリドン誘導体としては、アクリドン、N-ブチル-2-クロロアクリドン、N-メチルアクリドン、2-メトキシアクリドン、N-エチル-2-メトキシアクリドンが好ましい。
 チオキサントン誘導体としては、チオキサントン、ジエチルチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントンが好ましい。クマリン誘導体としては、クマリン-1、クマリン-6H、クマリン-110、クマリン-102が好ましい。
 ベーススチリル誘導体としては、2-(4-ジメチルアミノスチリル)ベンゾオキサゾール、2-(4-ジメチルアミノスチリル)ベンゾチアゾール、2-(4-ジメチルアミノスチリル)ナフトチアゾールが挙げられる。
 ジスチリルベンゼン誘導体としては、ジスチリルベンゼン、ジ(4-メトキシスチリル)ベンゼン、ジ(3,4,5-トリメトキシスチリル)ベンゼンが挙げられる。
 また、増感剤は、1種単独又は2種類以上を組み合わせて使用することができる。
 増感剤は、感度、透明性の両立の観点から、光重合開始剤100質量部に対して、20~300質量部が好ましく、30~200質量部が特に好ましい。
(Sensitizer)
In the present invention, a sensitizer can be used in the composition for forming the layer. The sensitizer can be appropriately used when, for example, the photopolymerization initiator does not have proper absorption with respect to the exposure light source.
Any sensitizer that can be used in the present invention can be used without particular limitation as long as it absorbs actinic rays and sensitizes the photopolymerization initiator by an electron transfer mechanism or an energy transfer mechanism. .
As the sensitizer, anthracene derivatives, acridone derivatives, thioxanthone derivatives, coumarin derivatives, base styryl derivatives, and distyrylbenzene derivatives are preferable.
Anthracene derivatives include anthracene, 9,10-dibutoxyanthracene, 9,10-dichloroanthracene, 2-ethyl-9,10-dimethoxyanthracene, 9-hydroxymethylanthracene, 9-bromoanthracene, 9-chloroanthracene, 9 , 10-dibromoanthracene, 2-ethylanthracene and 9,10-dimethoxyanthracene are preferred.
As the acridone derivative, acridone, N-butyl-2-chloroacridone, N-methylacridone, 2-methoxyacridone and N-ethyl-2-methoxyacridone are preferable.
As the thioxanthone derivative, thioxanthone, diethylthioxanthone, 1-chloro-4-propoxythioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, and 4-isopropylthioxanthone are preferable. As the coumarin derivatives, coumarin-1, coumarin-6H, coumarin-110 and coumarin-102 are preferable.
Examples of the base styryl derivative include 2- (4-dimethylaminostyryl) benzoxazole, 2- (4-dimethylaminostyryl) benzothiazole, and 2- (4-dimethylaminostyryl) naphthothiazole.
Examples of the distyrylbenzene derivative include distyrylbenzene, di (4-methoxystyryl) benzene, and di (3,4,5-trimethoxystyryl) benzene.
Moreover, a sensitizer can be used individually by 1 type or in combination of 2 or more types.
The sensitizer is preferably 20 to 300 parts by weight, particularly preferably 30 to 200 parts by weight, based on 100 parts by weight of the photopolymerization initiator, from the viewpoint of achieving both sensitivity and transparency.
 また、光重合開始剤は、重合性化合物等の他の成分とともに組成物に混合してもよく、組成物から形成した層のパターン露光される部分にスポット状に塗布することにより浸透させて添加してもよい。 In addition, the photopolymerization initiator may be mixed with the composition together with other components such as a polymerizable compound, and added by infiltrating by applying the pattern-exposed portion of the layer formed from the composition in a spot shape. May be.
<セルロースアシレート>
 層中には、バインダーとしてセルロースアシレートを含む。セルロースアシレートを用いることにより、物品のフィルム生産性(及び脆性)を向上させることができる。
 セルロースアシレートとしては、特に制限はない。セルロースアシレートにおいて、セルロースの水酸基の置換するアシル基の詳細については、特開2012-215812号公報段落0017を参照できる。好ましくは、アセチル基、プロピオニル基、ブタノイル基であり、より好ましくはアセチル基、プロピオニル基であり、更に好ましくはアセチル基である。溶剤溶解性等の観点からは、アセチル置換度が2.7以上のセルロースアシレートが好ましく、より好ましくは2.75以上、更に好ましくは2.82以上である。一方、光学性能の観点からは、アセチル置換度が2.95以下のセルロースアシレートが好ましく、より好ましくは2.90以下、更に好ましくは2.89以下である。同様の観点から、セルロースアシレートの総アシル置換度も、アセチル置換度について上記した範囲にあることが好ましい。なお総アシル置換度及びアセチル置換度は、ASTM-D817-96に規定の方法に準じて測定することができる。アシル基で置換されていない部分は通常水酸基として存在している。その他、セルロースアシレートの詳細については、特開2012-215812号公報段落0018~0020も参照できる。
<Cellulose acylate>
In the layer, cellulose acylate is contained as a binder. By using cellulose acylate, the film productivity (and brittleness) of the article can be improved.
There is no restriction | limiting in particular as a cellulose acylate. JP, 2012-215812, A paragraph 0017 can be referred to for the details of the acyl group which the cellulose hydroxyl group substitutes in cellulose acylate. Preferably, they are an acetyl group, a propionyl group, and a butanoyl group, More preferably, they are an acetyl group and a propionyl group, More preferably, it is an acetyl group. From the viewpoint of solvent solubility and the like, cellulose acylate having an acetyl substitution degree of 2.7 or more is preferable, more preferably 2.75 or more, and still more preferably 2.82 or more. On the other hand, from the viewpoint of optical performance, cellulose acylate having an acetyl substitution degree of 2.95 or less is preferable, more preferably 2.90 or less, and still more preferably 2.89 or less. From the same viewpoint, the total acyl substitution degree of the cellulose acylate is also preferably in the above-described range for the acetyl substitution degree. The total acyl substitution degree and acetyl substitution degree can be measured according to the method prescribed in ASTM-D817-96. The portion not substituted with an acyl group usually exists as a hydroxyl group. In addition, the details of cellulose acylate can also be referred to paragraphs 0018 to 0020 of JP2012-215812A.
 セルロースアシレートは、フィルム生産性の観点から、層を形成する組成物全量を100質量部として25質量部以上含まれることが好ましく、50質量部以上含まれることがより好ましい。また、凹凸形成の観点からは、組成物100質量部に対して500質量部以下の使用が好ましく、200質量部以下であることがより好ましい。 From the viewpoint of film productivity, the cellulose acylate is preferably contained in an amount of 25 parts by mass or more, more preferably 50 parts by mass or more based on 100 parts by mass of the total composition forming the layer. Moreover, from a viewpoint of uneven | corrugated formation, use of 500 mass parts or less is preferable with respect to 100 mass parts of compositions, and it is more preferable that it is 200 mass parts or less.
 次に、第2の層を形成するための組成物について説明する。 Next, the composition for forming the second layer will be described.
<樹脂>
 第2の層は、少なくとも、一種又は二種以上の樹脂を含む層である。第2の層に含まれる樹脂は、有機溶剤可溶性樹脂であってもよく、有機溶剤不溶性樹脂であってもよい。塗布層の製膜適性等の観点からは、有機溶剤可溶性樹脂が好ましい。なお、本発明において、層は、好ましくは流延製膜により形成することができ、有機溶剤可溶性樹脂を含むことは、流延製膜の製膜性の観点からも好ましい。本発明において「有機溶剤可溶性」とは、液温25℃の有機溶剤に1質量%以上溶解することを言うものとする。ここでいう有機溶剤とは、例えば、炭素数1以上8以下の有機化合物からなる群から選ばれる一種又は複数を任意の割合で混合した組成物で、25℃1気圧において液体であるものを言う。具体的には、ペンタン、ヘキサン、シクロヘキサン、オクタン、イソオクタン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、1-ヘキサノール、シクロヘキサノール、1-オクタノール、エチレングリコール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸エチル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等のエステル類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化アルキル類、及びこれらを任意の割合で混合した組成物が挙げられる。ただし、本発明において層を形成するための組成物が溶剤を含む場合、溶剤は上記のものに限定されるものではない。また、一般に、重合性化合物は有機溶剤可溶性を示すことが多く、重合性化合物の重合体は有機溶剤可溶性を示さないことが多い。
<Resin>
The second layer is a layer containing at least one kind or two or more kinds of resins. The resin contained in the second layer may be an organic solvent soluble resin or an organic solvent insoluble resin. From the viewpoint of film forming suitability of the coating layer, an organic solvent-soluble resin is preferable. In the present invention, the layer can be preferably formed by casting film formation, and it is preferable from the viewpoint of film forming property of casting film formation to contain an organic solvent-soluble resin. In the present invention, “organic solvent soluble” means that 1% by mass or more dissolves in an organic solvent having a liquid temperature of 25 ° C. The organic solvent referred to here is, for example, a composition in which one or a plurality selected from the group consisting of organic compounds having 1 to 8 carbon atoms is mixed at an arbitrary ratio and is a liquid at 25 ° C. and 1 atm. . Specifically, aliphatic hydrocarbons such as pentane, hexane, cyclohexane, octane and isooctane, aromatic hydrocarbons such as benzene, toluene and xylene, methanol, ethanol, 1-propanol, 2-propanol and 1-butanol Alcohols such as 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-hexanol, cyclohexanol, 1-octanol, ethylene glycol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc. Ketones, esters such as methyl acetate, ethyl acetate, butyl acetate, ethyl propionate, propylene glycol monomethyl ether acetate (PGMEA), ethers such as diethyl ether, tetrahydrofuran and dioxane Dichloromethane, chloroform, alkyl halides and 1,2-dichloroethane, and compositions obtained by mixing them at an arbitrary ratio can be mentioned. However, when the composition for forming a layer in the present invention contains a solvent, the solvent is not limited to the above. In general, a polymerizable compound often exhibits organic solvent solubility, and a polymer of the polymerizable compound often does not exhibit organic solvent solubility.
 第2の層を形成するための組成物中における樹脂濃度は、製膜適性の観点からは、層を形成するための組成物全量100質量%に対して、例えば1~40質量%の範囲であることが好ましい。製膜の容易性の観点からは、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。また、例えば流延製膜を行う際の送液の容易性の観点からは、35質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。 The resin concentration in the composition for forming the second layer is, for example, in the range of 1 to 40% by mass with respect to 100% by mass of the total composition for forming the layer from the viewpoint of film forming suitability. Preferably there is. From the viewpoint of film formation, it is more preferably 5% by mass or more, and further preferably 10% by mass or more. Further, for example, from the viewpoint of ease of liquid feeding when performing casting film formation, it is more preferably 35% by mass or less, and further preferably 30% by mass or less.
 第2の層は、少なくとも樹脂を含む層(樹脂含有層)であり、樹脂を主成分とする層であることが好ましい。ここで主成分とは、層を構成する全固形分において最も多くを占める成分をいう。本発明者らは、第2の層の全固形分において樹脂が最も多くを占めることは、加熱による樹脂の収縮により大きな形状変化をもたらすことに寄与し、これにより凸部と凹部の高低差(段差)を大きくすることができると考えている。この点から、第2の層における樹脂濃度は、第2の層の全固形分(溶剤を除く成分の合計)100質量%に対して、好ましくは80質量%以上であり、より好ましくは85質量%以上であり、更に好ましくは90質量%以上である。また、第2の層における樹脂濃度は、第2の層の全固形分100質量%に対して、例えば95質量%以下であってもよく、また、100質量%(つまり固形分が樹脂のみ)であることも好ましい。 The second layer is a layer containing at least a resin (resin-containing layer), and is preferably a layer mainly composed of a resin. Here, the main component refers to a component that occupies the most in the total solid content constituting the layer. The inventors of the present invention that the resin occupies the largest amount in the total solid content of the second layer contributes to a large shape change due to the shrinkage of the resin due to heating, and thereby the height difference between the convex portion and the concave portion ( I think that the step can be increased. From this point, the resin concentration in the second layer is preferably 80% by mass or more, more preferably 85% by mass with respect to 100% by mass of the total solid content (total of components excluding the solvent) of the second layer. % Or more, more preferably 90% by mass or more. The resin concentration in the second layer may be, for example, 95% by mass or less with respect to 100% by mass of the total solid content of the second layer, and 100% by mass (that is, the solid content is only the resin). It is also preferable.
 有機溶剤可溶性樹脂の好ましい具体例としては、(a)セルロースアシレート、 (b)(メタ)アクリル系樹脂を挙げることができる。以下、これら有機溶剤可溶性樹脂の具体的態様について説明するが、本発明は下記の態様に限定されるものではない。有機溶剤可溶性樹脂としては、前述の規定に該当するものであれば、何ら制限なく用いることができる。 Preferred examples of the organic solvent-soluble resin include (a) cellulose acylate and cocoon (b) (meth) acrylic resin. Hereinafter, although the specific aspect of these organic solvent soluble resin is demonstrated, this invention is not limited to the following aspect. Any organic solvent-soluble resin can be used without any limitation as long as it meets the above-mentioned regulations.
 (a)セルロースアシレート
 セルロースアシレートとしては、上述したものを挙げることができる。
(A) Cellulose acylate Examples of cellulose acylate include those described above.
 (b)(メタ)アクリル系樹脂
 (メタ)アクリル系樹脂は、メタクリル系樹脂とアクリル系樹脂の両方を含む概念である。また、(メタ)アクリル系樹脂には、アクリレートエステルとメタクリレートエステルとの共重合体も含まれる。(メタ)アクリル系樹脂の繰り返し構造単位は、特に限定されない。(メタ)アクリル系樹脂は、繰り返し構造単位として(メタ)アクリル酸エステル単量体由来の繰り返し構造単位を有することが好ましい。
(B) (Meth) acrylic resin (Meth) acrylic resin is a concept including both a methacrylic resin and an acrylic resin. The (meth) acrylic resin also includes a copolymer of an acrylate ester and a methacrylate ester. The repeating structural unit of the (meth) acrylic resin is not particularly limited. The (meth) acrylic resin preferably has a repeating structural unit derived from a (meth) acrylic acid ester monomer as a repeating structural unit.
 (メタ)アクリル系樹脂は、繰り返し構造単位として、更に、水酸基含有単量体、不飽和カルボン酸及び下記一般式(201)で表される単量体から選ばれる少なくとも1種を重合して得られる繰り返し構造単位を含んでいてもよい。 The (meth) acrylic resin is obtained by polymerizing at least one selected from a hydroxyl group-containing monomer, an unsaturated carboxylic acid, and a monomer represented by the following general formula (201) as a repeating structural unit. The repeating structural unit may be included.
一般式(201)
 CH=C(X)R201
Formula (201)
CH 2 = C (X) R 201
 一般式(201)中、R201は水素原子又はメチル基を表し、Xは水素原子、炭素数1~20のアルキル基、アリール基、-CN基、-CO-R202基、又はO-CO-R203基を表し、R202及びR203は、それぞれ独立に水素原子又は炭素数1~20の有機残基を表す。 In General Formula (201), R 201 represents a hydrogen atom or a methyl group, and X represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group, a —CN group, a —CO—R 202 group, or O—CO. —R 203 group, and R 202 and R 203 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
 (メタ)アクリル酸エステルは、特に限定されない。詳細については、特開2013-099875号公報段落0034を参照できる。 (Meth) acrylic acid ester is not particularly limited. For details, JP, 2013-099875, A paragraph 0034 can be referred to.
 水酸基含有単量体も、特に限定されない。詳細については、特開2013-099875号公報段落0035を参照できる。 The hydroxyl group-containing monomer is not particularly limited. For details, JP, 2013-099875, A paragraph 0035 can be referred to.
 不飽和カルボン酸も、特に限定されない。詳細については、特開2013-099875号公報段落0036を参照できる。 The unsaturated carboxylic acid is not particularly limited. For details, JP, 2013-099875, A paragraph 0036 can be referred to.
 一般式(201)で表される単量体の詳細については、特開2013-099875号公報段落0037を参照できる。 JP, 2013-099875, A paragraph 0037 can be referred to for details of a monomer denoted by general formula (201).
 (メタ)アクリル系樹脂は、1つ以上のラクトン環構造を含んでいてもよい。ラクトン環構造の一態様としては、下記一般式(401)で示されるラクトン環構造を挙げることができる。
 一般式(401):
The (meth) acrylic resin may contain one or more lactone ring structures. As one embodiment of the lactone ring structure, a lactone ring structure represented by the following general formula (401) can be given.
General formula (401):
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(401)中、R401、R402及びR403は、それぞれ独立に、水素原子又は炭素原子数1~20の有機残基を表し、有機残基は酸素原子を含有していてもよい。ここで、炭素原子数1~20の有機残基としては、メチル基、エチル基、イソプロピル基、n-ブチル基、t-ブチル基などが好ましい。 In general formula (401), R 401 , R 402, and R 403 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms, and the organic residue may contain an oxygen atom. . Here, the organic residue having 1 to 20 carbon atoms is preferably a methyl group, an ethyl group, an isopropyl group, an n-butyl group, a t-butyl group, or the like.
 ラクトン環含有(メタ)アクリル系樹脂の構造中における上記一般式(401)で示されるラクトン環構造の含有割合は、好ましくは5~90質量%、より好ましくは10~70質量%、更に好ましくは10~60質量%、特に好ましくは10~50質量%である。ラクトン環構造の含有割合を5質量%以上とすることにより、樹脂の耐熱性、及び表面硬度が向上する傾向にあり、ラクトン環構造の含有割合を90質量%以下とすることにより、樹脂の成形加工性が向上する傾向にある。 The content of the lactone ring structure represented by the general formula (401) in the structure of the lactone ring-containing (meth) acrylic resin is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, and still more preferably. It is 10 to 60% by mass, particularly preferably 10 to 50% by mass. By setting the content of the lactone ring structure to 5% by mass or more, the heat resistance and surface hardness of the resin tend to be improved. By setting the content of the lactone ring structure to 90% by mass or less, molding of the resin Workability tends to improve.
 ラクトン環含有(メタ)アクリル系樹脂の製造方法については、特に制限はない。例えば、重合工程によって分子鎖中に水酸基とエステル基とを有する重合体(p)を得た後に、得られた重合体(p)を加熱処理することによりラクトン環構造を重合体に導入すること(ラクトン環化縮合工程)により、ラクトン環含有(メタ)アクリル系樹脂を得ることができる。ラクトン環含有(メタ)アクリル系樹脂の好ましい物性等の詳細については、特開2012-250535号公報段落0040~0047を参照できる。 There is no particular limitation on the method for producing the lactone ring-containing (meth) acrylic resin. For example, after obtaining a polymer (p) having a hydroxyl group and an ester group in the molecular chain by a polymerization step, the resulting polymer (p) is heat treated to introduce a lactone ring structure into the polymer. By the (lactone cyclization condensation step), a lactone ring-containing (meth) acrylic resin can be obtained. JP, 2012-250535, A paragraphs 0040-0047 can be referred to for details, such as a preferred physical property of a lactone ring containing (meth) acrylic resin.
 また、(メタ)アクリル系樹脂の重量平均分子量Mwは80000以上であることが好ましい。(メタ)アクリル樹脂の質量平均分子量Mwが80000以上であれば、機械的強度が高く、製造時のハンドリング適性に優れる。この観点から、(メタ)アクリル系樹脂の重量平均分子量Mwは100000以上であることが好ましい。 Further, the weight average molecular weight Mw of the (meth) acrylic resin is preferably 80000 or more. When the weight average molecular weight Mw of the (meth) acrylic resin is 80000 or more, the mechanical strength is high and the handling suitability during production is excellent. In this respect, the (meth) acrylic resin preferably has a weight average molecular weight Mw of 100,000 or more.
 (メタ)アクリル系樹脂としては、市販品又は公知の合成方法により合成されたものを使用することができる。市販品としては、これらに限定されるものではないが、例えば、デルペット(日本登録商標)60N、80N(旭化成ケミカルズ製)、ダイヤナール(日本登録商標)BR80、BR85、BR88、BR102(三菱レイヨン製)、KT75(電気化学工業製)等が挙げられる。 As the (meth) acrylic resin, commercially available products or those synthesized by a known synthesis method can be used. Examples of commercially available products include, but are not limited to, Delpet (Japan registered trademark) 60N, 80N (Asahi Kasei Chemicals), Dialnal (Japan registered trademark) BR80, BR85, BR88, BR102 (Mitsubishi Rayon). And KT75 (manufactured by Denki Kagaku Kogyo).
(任意成分)
 層を形成するための組成物中には、以上説明した重合性化合物、光重合開始剤、及びセルロースアシレートを少なくとも含み、任意成分の一種以上を更に含むことができる。
 以下に、任意成分について説明する。
(Optional component)
The composition for forming the layer contains at least the polymerizable compound described above, a photopolymerization initiator, and cellulose acylate, and can further contain one or more optional components.
Below, an arbitrary component is demonstrated.
(1)樹脂
 本発明の第1の形態にかかる製造方法において、単層体を形成する組成物中には、セルロースアシレートの他に、樹脂が含有されていてもよい。また、第2の形態に係る製造方法においては、第1の層にも樹脂が含有されていてもよい。樹脂としては、上述した樹脂を含有することができる。
(1) Resin In the production method according to the first aspect of the present invention, the composition forming the monolayer may contain a resin in addition to the cellulose acylate. In the manufacturing method according to the second embodiment, the first layer may also contain a resin. As resin, the resin mentioned above can be contained.
 なお、第1の層に含まれる樹脂と第2の層に含まれる樹脂は、同種のものであっても異種のものであってもよい。第1の層と第2の層との密着性が良好であることは、形成される物品の耐久性の観点から好ましい。この点からは、第1の層は、第2の層と同種の樹脂を含むことが好ましい。本発明においては、第1の層がセルロースアシレートを含むことから、第2の層もセルロースアシレートを含むことが好ましい。 The resin contained in the first layer and the resin contained in the second layer may be the same or different. Good adhesion between the first layer and the second layer is preferable from the viewpoint of durability of the formed article. From this point, it is preferable that the first layer includes the same type of resin as the second layer. In the present invention, since the first layer contains cellulose acylate, the second layer preferably also contains cellulose acylate.
(2)溶剤
 層を形成するための組成物中には、任意に溶剤を含むことができる。溶剤を含むことは、層を形成するための組成物の粘度を調整し塗布適性を向上する観点から好ましい。溶剤としては有機溶剤が好ましい。有機溶剤の例としては、アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノンなどのケトン類、テトラヒドロフラン(THF)、1,4-ジオキサン、1,3-ジオキソラン、1,2-ジメトキシエタンなどのエーテル類、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸アミル、γ-ブチロラクトン等のエステル類の他、メチルセロソルブ、ジメチルイミダゾリノン、ジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル、ジメチルスルフォキシド、スルホラン、ニトロエタン、塩化メチレン(メチレンクロライド)、アセト酢酸メチルなどが挙げられる。1,3-ジオキソラン、THF、メチルエチルケトン、アセトン、酢酸メチル及びメチレンクロライドが好ましい。二種以上の溶剤を混合した混合溶剤においては、上記例示した有機溶剤が最も多くの割合(例えば混合溶剤全量100質量%に対して50質量%以上99質量%未満)を占める主溶剤であることが好ましい。
(2) Solvent The composition for forming the layer can optionally contain a solvent. Including a solvent is preferable from the viewpoint of adjusting the viscosity of the composition for forming the layer and improving the coating suitability. The solvent is preferably an organic solvent. Examples of organic solvents include ketones such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethers such as tetrahydrofuran (THF), 1,4-dioxane, 1,3-dioxolane, 1,2-dimethoxyethane, formic acid Esters such as methyl, ethyl formate, methyl acetate, ethyl acetate, amyl acetate, γ-butyrolactone, methyl cellosolve, dimethylimidazolinone, dimethylformamide, dimethylacetamide, acetonitrile, dimethyl sulfoxide, sulfolane, nitroethane, methylene chloride (Methylene chloride), methyl acetoacetate and the like. 1,3-dioxolane, THF, methyl ethyl ketone, acetone, methyl acetate and methylene chloride are preferred. In the mixed solvent in which two or more kinds of solvents are mixed, the organic solvent exemplified above is the main solvent occupying the largest proportion (for example, 50% by mass or more and less than 99% by mass with respect to 100% by mass of the mixed solvent). Is preferred.
 混合溶剤に主溶剤とともに含まれる有機溶剤(副溶媒)としては、炭素原子数1~4のアルコールが好ましい。炭素原子数1~4のアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、プロピレングリコールモノメチルエーテルの一種又は二種以上を挙げることができる。副溶媒は、混合溶剤全量100質量%に対して、例えば1質量%以上50質量%未満、好ましくは1質量%以上40質量%以下の割合で混合溶剤に含まれ得る。なお組成物には、有機溶剤に加えて少量の水が含まれていてもよい。水を含む場合、溶剤全量100質量%に対する水の濃度は、例えば0.1~5質量%、好ましくは0.1~3質量%、より好ましくは0.2~2質量%とすることができる。
 なおセルロースアシレートを含有する層においては、セルロースアシレートは水酸基やエステル、ケトン等の水素結合性の官能基を含むため、有機溶剤は、溶剤全量100質量%に対して5~30質量%、より好ましくは7~25質量%、更に好ましくは10~20質量%のアルコールを含有することが、支持体上で製膜を行う場合に支持体からの積層体の剥離が容易となり好ましい。
As the organic solvent (subsolvent) contained in the mixed solvent together with the main solvent, alcohol having 1 to 4 carbon atoms is preferable. Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, and propylene glycol monomethyl. One type or two or more types of ethers can be mentioned. The sub-solvent can be contained in the mixed solvent at a ratio of, for example, 1% by mass to less than 50% by mass, preferably 1% by mass to 40% by mass with respect to 100% by mass of the total amount of the mixed solvent. The composition may contain a small amount of water in addition to the organic solvent. When water is contained, the concentration of water with respect to 100% by mass of the total solvent can be, for example, 0.1 to 5% by mass, preferably 0.1 to 3% by mass, and more preferably 0.2 to 2% by mass. .
In the layer containing cellulose acylate, since cellulose acylate contains hydrogen-bonding functional groups such as hydroxyl groups, esters, and ketones, the organic solvent is 5 to 30% by mass with respect to 100% by mass of the total amount of the solvent, More preferably, the content of alcohol is 7 to 25% by mass, and more preferably 10 to 20% by mass, because peeling of the laminate from the support is facilitated when film formation is performed on the support.
 また、層を形成するための組成物全量を100質量%として、溶剤全量の占める割合は、例えば60~95質量%の範囲であり、好ましくは70~85質量%の範囲である。上記範囲で溶剤を含む組成物は、溶剤の揮発による濃度・組成の変化や固形分の析出を起こしにくく、また、安定した製膜に適した粘度が得られるため、好ましい。 Further, assuming that the total amount of the composition for forming the layer is 100% by mass, the proportion of the total amount of the solvent is, for example, in the range of 60 to 95% by mass, and preferably in the range of 70 to 85% by mass. A composition containing a solvent in the above range is preferred because it hardly causes changes in concentration and composition due to volatilization of the solvent and precipitation of solids, and a viscosity suitable for stable film formation is obtained.
(3)界面活性剤
 層を形成するための組成物は、任意に界面活性剤を含むこともできる。界面活性剤は、例えばレベリング剤として機能することができる。界面活性剤としては特に制限はなく、市販品又は公知の方法で合成可能な各種界面活性剤を用いることができる。具体例としては、下記に限定されるものではないが、シリコーン系化合物及びフッ素系化合物を挙げることができる。
(3) Surfactant The composition for forming the layer can optionally contain a surfactant. The surfactant can function as a leveling agent, for example. There is no restriction | limiting in particular as surfactant, Various surfactants synthesize | combined by a commercial item or a well-known method can be used. Specific examples include, but are not limited to, silicone compounds and fluorine compounds.
 シリコーン系化合物の好ましい例としては、ジメチルシリルオキシ単位を繰り返し単位として複数個含む化合物鎖の末端及び側鎖の少なくとも一方に置換基を有するものが挙げられる。ジメチルシリルオキシを繰り返し単位として含む化合物鎖中には、ジメチルシリルオキシ以外の構造単位を含んでもよい。置換基は同一であっても異なっていてもよく、複数個あることが好ましい。好ましい置換基の例としては、アクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、フルオロアルキル基、ポリオキシアルキレン基、カルボキシル基、アミノ基又はこれらの基を含む基が挙げられる。分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることが特に好ましく、3000~30000であることが最も好ましい。ここで分子量とは、重量平均分子量を言うものとする。後述のフッ素系化合物についても同様である。シリコーン系化合物のシリコーン原子含有量には特に制限はないが、18.0質量%以上であることが好ましく、25.0~37.8質量%であることがより好ましく、30.0~37.0量%であることが更に好ましい。好ましいシリコーン系化合物の例としては、信越化学製X-22-174DX、X-22-2426、X-22-164B、X22-164C、X-22-170DX、X-22-176D、X-22-1821(以上商品名);チッソ製FM-0725、FM-7725、DMS-U22、RMS-033、RMS-083、UMS-182(以上商品名)などが挙げられる。ただし、これらに限定されるものではない。 Preferable examples of the silicone compound include those having a substituent at at least one of a terminal end and a side chain of a compound chain containing a plurality of dimethylsilyloxy units as repeating units. The compound chain containing dimethylsilyloxy as a repeating unit may contain a structural unit other than dimethylsilyloxy. The substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include acryloyl group, methacryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, fluoroalkyl group, polyoxyalkylene group, carboxyl group, amino group or these groups. And a group containing. The molecular weight is not particularly limited, but is preferably 100,000 or less, particularly preferably 50,000 or less, and most preferably 3,000 to 30,000. Here, the molecular weight refers to a weight average molecular weight. The same applies to the fluorine-based compounds described later. The silicone atom content of the silicone compound is not particularly limited, but is preferably 18.0% by mass or more, more preferably 25.0 to 37.8% by mass, and 30.0 to 37. More preferably, it is 0% by weight. Examples of preferable silicone compounds include X-22-174DX, X-22-2426, X-22-164B, X22-164C, X-22-170DX, X-22-176D, and X-22 manufactured by Shin-Etsu Chemical. 1821 (named above); Chisso FM-0725, FM-7725, DMS-U22, RMS-033, RMS-083, UMS-182 (named above). However, it is not limited to these.
 フッ素系化合物としては、フルオロアルキル基を有する化合物が好ましい。フルオロアルキル基は、炭素数1~20であることが好ましく、より好ましくは炭素数1~10であり、直鎖(例えば-CFCF、-CH(CFH、-CH(CFCF、-CHCH(CFH等)であっても、分岐構造(例えばCH(CF、CHCF(CF、CH(CH)CFCF、CH(CH)(CFCFH等)であっても、脂環式構造(好ましくは5員環又は6員環、例えばパーフルオロシクロへキシル基、パーフルオロシクロペンチル基又はこれらで置換されたアルキル基等)であってもよい。また、エーテル結合を有していてもよい(例えばCHOCHCFCF、CHCHOCHH、CHCHOCHCH17、CHCHOCFCFOCFCFH等)。フルオロアルキル基は、同一分子中に複数含まれていてもよい。 As the fluorine compound, a compound having a fluoroalkyl group is preferable. The fluoroalkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and a straight chain (eg, —CF 2 CF 3 , —CH 2 (CF 2 ) 4 H, —CH 2 (CF 2 ) 8 CF 3 , —CH 2 CH 2 (CF 2 ) 4 H, etc.), but branched structures (eg, CH (CF 3 ) 2 , CH 2 CF (CF 3 ) 2 , CH (CH 3) ) CF 2 CF 3 , CH (CH 3 ) (CF 2 ) 5 CF 2 H, etc.), even alicyclic structures (preferably 5-membered or 6-membered rings such as perfluorocyclohexyl groups, per It may be a fluorocyclopentyl group or an alkyl group substituted with these. Also, which may have an ether bond (e.g., CH 2 OCH 2 CF 2 CF 3 , CH 2 CH 2 OCH 2 C 4 F 8 H, CH 2 CH 2 OCH 2 CH 2 C 8 F 17, CH 2 CH 2 OCF 2 CF 2 OCF 2 CF 2 H , etc.). Multiple fluoroalkyl groups may be contained in the same molecule.
 フッ素系化合物は、更に、アクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ基等の置換基を1つ又は複数個含んでいてもよい。また、フッ素系化合物は、フッ素原子を含まない化合物とのポリマーであってもオリゴマーであってもよく、分子量に特に制限はない。フッ素系化合物のフッ素原子含有量には特に制限はないが、20質量%以上であることが好ましく、30~70質量%であることがより好ましく、40~70質量%であることが更に好ましい。
 好ましいフッ素系化合物の例としては、ダイキン化学工業製R-2020、M-2020、R-3833、M-3833(以上商品名);DIC製メガファック(日本登録商標)F-784、F-171、F-172、F-179A、F-114、F-251、F-281、F-410、F-430、F-444、F-477、F-510、F-511、F-552、F-553、F-554、F-555、F-556、F-557、F-558、F-559、F-560、F-561、F-562、F-563、F-563、F-567、F-567、F-569、F-570、F-571、R-40、R-41、R-43、R-94、RS-72-K、RS-72-K、RS-76-E、RS-76-NS、RS-90、ディフェンサ(日本登録商標)MCF-300(以上商品名)等を挙げることができる。
The fluorine compound further has one or more substituents such as an acryloyl group, a methacryloyl group, a vinyl group, an aryl group, a cinnamoyl group, an epoxy group, an oxetanyl group, a hydroxyl group, a polyoxyalkylene group, a carboxyl group, and an amino group. May be included. The fluorine-based compound may be a polymer or an oligomer with a compound not containing a fluorine atom, and the molecular weight is not particularly limited. The fluorine atom content of the fluorine-based compound is not particularly limited, but is preferably 20% by mass or more, more preferably 30 to 70% by mass, and further preferably 40 to 70% by mass.
Examples of preferable fluorine-based compounds include R-2020, M-2020, R-3833, M-3833 (trade name) manufactured by Daikin Chemical Industries, Ltd .; MegaFac (Japan registered trademark) F-784, F-171 manufactured by DIC F-172, F-179A, F-114, F-251, F-281, F-410, F-430, F-444, F-477, F-510, F-511, F-552, F -553, F-554, F-555, F-556, F-557, F-558, F-559, F-560, F-561, F-562, F-563, F-563, F-567 , F-567, F-569, F-570, F-571, R-40, R-41, R-43, R-94, RS-72-K, RS-72-K, RS-76-E , RS-76-NS, RS-90, Defender ( Mention may be made of this registered trademark) MCF-300 (trade name), and the like.
 また、防塵性、帯電防止等の特性を付与する目的で、公知のカチオン系界面活性剤又はポリオキシアルキレン系化合物等の防塵剤、帯電防止剤等を適宜添加することもできる。これら防塵剤、帯電防止剤は、前述のシリコーン系化合物やフッ素系化合物に、その構造単位が含まれていてもよい。好ましい化合物の例としては、DIC製メガファックF-150;東レダウコーニング製SH-3748等が挙げられるが、これらに限定されるものではない。 In addition, for the purpose of imparting properties such as dust resistance and antistatic properties, a known cationic surfactant or a dustproof agent such as a polyoxyalkylene compound, an antistatic agent, or the like may be added as appropriate. These dustproof agent and antistatic agent may contain the structural unit in the above-mentioned silicone compound or fluorine compound. Examples of preferred compounds include, but are not limited to, Megafac F-150 manufactured by DIC and SH-3748 manufactured by Toray Dow Corning.
 界面活性剤は、一種単独で用いてもよく、二種以上任意の割合で組み合わせて用いてもよい。層を形成するための組成物における界面活性剤量は特に限定されるものではないが、例えば、層を形成するための組成物中の固形分100質量部に対して、0.001~10質量部とすることができる。 Surfactants may be used singly or in combination of two or more at an arbitrary ratio. The amount of the surfactant in the composition for forming the layer is not particularly limited. For example, 0.001 to 10 mass with respect to 100 mass parts of the solid content in the composition for forming the layer. Part.
(4)熱重合開始剤
 層を形成するための組成物中に含まれる重合性化合物は、パターン露光されることにより一部が重合し硬化する。パターン露光では未反応であった重合性化合物は、パターン露光後に行われる加熱により重合すると本発明者らは考えている。本発明においては、パターン露光による重合と加熱による重合との収縮差が大きいことが、高低差の大きい凹凸構造の形成の一助になっていると、本発明者らは推察している。層を形成するための組成物中には、加熱による重合を可能とするために熱重合開始剤を含んでいてもよい。ただし、加熱により重合性化合物に含まれる重合性基がラジカルを発生し開始剤として機能する場合もある。そのような場合には、層を形成するための組成物中に熱重合開始剤を含ませることなく、パターン露光では未反応であった重合性化合物の重合反応(熱重合)を進行させることができる。
(4) Thermal polymerization initiator The polymerizable compound contained in the composition for forming the layer is partially polymerized and cured by pattern exposure. The present inventors consider that a polymerizable compound that has not been reacted in pattern exposure is polymerized by heating performed after pattern exposure. In the present invention, the present inventors speculate that a large difference in shrinkage between polymerization by pattern exposure and polymerization by heating helps to form a concavo-convex structure having a large difference in elevation. The composition for forming the layer may contain a thermal polymerization initiator in order to enable polymerization by heating. However, the polymerizable group contained in the polymerizable compound upon heating may generate a radical and function as an initiator. In such a case, a polymerization reaction (thermal polymerization) of a polymerizable compound that has not been reacted in pattern exposure can be allowed to proceed without including a thermal polymerization initiator in the composition for forming the layer. it can.
 層を形成するための組成物が熱重合開始剤を含む場合、熱重合開始剤の構造については、特に限定されるものではない。熱重合開始剤の具体的態様としては、アゾ化合物、ヒドロキシルアミンエステル化合物、有機過酸化物、過酸化水素等を挙げることができる。有機過酸化物の具体例については、特許第5341155号公報段落0031に記載のものを挙げることができる。 When the composition for forming the layer contains a thermal polymerization initiator, the structure of the thermal polymerization initiator is not particularly limited. Specific examples of the thermal polymerization initiator include azo compounds, hydroxylamine ester compounds, organic peroxides, hydrogen peroxide, and the like. Specific examples of the organic peroxide include those described in Japanese Patent No. 5341155, paragraph 0031.
 アゾ化合物は、少なくとも1つのアゾ結合を含めばよく、アゾ結合とともに各種置換基を含むことができる。具体的には、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルイソブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド等のアゾニトリル化合物、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、ジメチル1,1’-アゾビス(1-シクロヘキサンカルボキシレート)等のアゾエステル化合物、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)等のアゾアミド化合物、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジヒドロキシクロライド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]等のアゾイミダゾリン化合物、2,2’-アゾビス(2,4,4-トリメチルペンタン等のアゾアルキル化合物、更にはアゾアミジン化合物、アゾ結合を有する繰り返し単位を含むポリマーの使用も可能である。アゾ化合物は、レドックス分解や誘発分解が生じにくい点等で好ましい熱重合開始剤である。 The azo compound may contain at least one azo bond, and may contain various substituents together with the azo bond. Specifically, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylisobutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 1- Azonitrile compounds such as [(1-cyano-1-methylethyl) azo] formamide, dimethyl 2,2′-azobis (2-methylpropionate), dimethyl 1,1′-azobis (1-cyclohexanecarboxylate), etc. 2,2′-azobis [N- (2-propenyl) -2-methylpropionamide], 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis Azoamide compounds such as (N-cyclohexyl-2-methylpropionamide), 2,2′-azobis [2- [1- (2-hydroxyethyl)- -Imidazolin-2-yl] propane] dihydroxychloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] and the like, 2,2′-azobis (2,4,4 -It is also possible to use an azoalkyl compound such as trimethylpentane, an azoamidine compound, or a polymer containing a repeating unit having an azo bond, which is a preferred thermal polymerization initiator because redox decomposition and induced decomposition are unlikely to occur. is there.
 また、ヒドロキシルアミンエステル化合物としては、特表2012-521573号公報に記載の式Iで表されるヒドロキシルアミンエステル化合物を挙げることができる。具体的な化合物を以下に示す。ただしこれらに限定されるものではない。 Further, examples of the hydroxylamine ester compound include a hydroxylamine ester compound represented by the formula I described in JP-A-2012-521573. Specific compounds are shown below. However, it is not limited to these.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(5)他の任意成分
 第2の層は、任意成分として、一種又は二種以上の重合性化合物を含んでもよい。重合性化合物については、先に記載した通りである。ただし第2の層が重合性化合物を含む場合、第2の層における重合性化合物濃度は、第1の層の重合性化合物濃度より低いものとする。一般に、加熱による樹脂の収縮は、重合性化合物の加熱による重合収縮よりも収縮率が大きい傾向があるため、加熱により第2の層を大きく形状変化(収縮)させる観点から、上記の通りとする。第2の層における重合性化合物濃度は、第2の層を形成するための組成物全量100質量%に対して、例えば5質量%以下であり、好ましくは3質量%以下であり、0質量%であってもよい。
(5) Other optional components The second layer may contain one or more polymerizable compounds as optional components. The polymerizable compound is as described above. However, when the second layer contains a polymerizable compound, the polymerizable compound concentration in the second layer is lower than the polymerizable compound concentration in the first layer. Generally, the shrinkage of the resin by heating tends to have a larger shrinkage rate than the polymerization shrinkage by heating of the polymerizable compound. Therefore, from the viewpoint of greatly changing the shape (shrinking) of the second layer by heating, the resin shrinkage is as described above. . The polymerizable compound concentration in the second layer is, for example, 5% by mass or less, preferably 3% by mass or less, and 0% by mass with respect to 100% by mass of the total composition for forming the second layer. It may be.
{任意の層、支持体}
 上記単層体、並びに第1の層及び第2の層を含む積層体は、これらの層のみから構成されていてもよく、ベースフィルム等の支持体や、他の層の一層以上を含んでいてもよい。また、凹凸構造を形成すべき物品の表面に、上記単層体又は積層体を形成することも可能である。塗布層の形成は平面上のみならず曲面上でも可能であるため、層を設ける支持体や物品の表面形状は問わない。また、上記の他の層の一例としては、単層体又は第2の層と支持体や物品との密着性を向上するための易接着層や粘着層を挙げることができる。これらの層としては、公知のものを何ら制限なく適用することができる。また、上記単層体の両面にパターン露光を行った後に、これを加熱することにより、両表面に凹凸構造を有する物品を得ることもできる。
 同様に、第2の層の両面にそれぞれ第1の層を形成し、それぞれの第1の層に後述するパターン露光を行った後に積層体を加熱することにより、両表面に凹凸構造を有する物品を得ることもできる。このように第1の層が複数含まれる積層体においては、複数含まれる第1の層の処方や厚みは同じでもよく、異なっていてもよい。
{Arbitrary layer, support}
The laminate including the single layer body and the first layer and the second layer may be composed of only these layers, and includes a support such as a base film and one or more other layers. May be. Moreover, it is also possible to form the said single layer body or laminated body on the surface of the article which should form an uneven structure. Since the coating layer can be formed not only on a flat surface but also on a curved surface, the surface shape of the support or article on which the layer is provided does not matter. Moreover, as an example of said other layer, the easily bonding layer and adhesive layer for improving the adhesiveness of a single layer body or a 2nd layer, and a support body and articles | goods can be mentioned. As these layers, known ones can be applied without any limitation. Moreover, after performing pattern exposure to both surfaces of the said single layer body, the article which has an uneven structure on both surfaces can also be obtained by heating this.
Similarly, an article having a concavo-convex structure on both surfaces by forming the first layer on both surfaces of the second layer and heating the laminate after performing pattern exposure to be described later on each first layer. You can also get As described above, in a laminate including a plurality of first layers, the prescription and thickness of the plurality of first layers may be the same or different.
<物品の製造方法>
 本発明においては、重合性化合物、光重合開始剤、及びセルロースアシレートを含む層は、単層体として形成しても、樹脂を含有する層と共に形成する積層体として形成してもよい。先ず、単層体を用いた物品の製造方法を説明する。
<Production method>
In the present invention, the layer containing a polymerizable compound, a photopolymerization initiator, and cellulose acylate may be formed as a single layer or a laminate formed with a layer containing a resin. First, the manufacturing method of the articles | goods using a single layer body is demonstrated.
(層形成工程)
〔単層体の形成方法〕
 まず、重合性化合物、光重合開始剤、及びセルロースアシレートを所望の割合で含む組成物(ドープ)を調製する。流延法により層を形成する場合には、上記ドープを流延用ギーサから押出して流延する。本発明においては、流延製膜法に限定されず、公知の製膜法により層を形成することができる。例えば、塗布法により層を形成する場合には、バーコータ―、ブレードコーター、ダイコーター、グラビアコーター等の塗布装置を用いて行うことができ、カーテンコートやディップコートといった方法によって行うこともできる。生産性の観点からは、流延製膜法が好ましい。単層体を形成する場合、積層体を形成する場合と比較して、製造方法を簡略化することができる。
(Layer formation process)
[Method for forming monolayer]
First, a composition (dope) containing a polymerizable compound, a photopolymerization initiator, and cellulose acylate in desired ratios is prepared. In the case of forming a layer by the casting method, the dope is extruded from a casting giusa and cast. In this invention, it is not limited to the casting film forming method, A layer can be formed by a well-known film forming method. For example, when a layer is formed by a coating method, it can be performed by using a coating device such as a bar coater, a blade coater, a die coater, or a gravure coater, or by a method such as curtain coating or dip coating. From the viewpoint of productivity, the casting film forming method is preferable. When forming a single layer body, a manufacturing method can be simplified compared with the case where a laminated body is formed.
〔積層体の形成方法〕
 本発明においては、上記単層体を形成する代わりに、重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の重合開始剤と、セルロースアシレートと、を含む第1の層、及び、樹脂を含有する第2の層を形成する工程により、積層体を形成してもよい。この場合は、第1の層の表面にパターン露光し、加熱を施して、凹凸構造を形成する。
 第2の層には重合性化合物を含んでもよいが、その含有率は第1の層における重合性化合物の含有率よりも低いことが好ましい。
 積層体は、第1の層及び第2の層を、流延製膜法、より詳しくは共流延法若しくは逐次流延法、又は公知の塗布装置を用いる塗布法等の製膜法により形成することによって、作製することができる。共流延法(重層同時流延)は、流延用支持体(バンド又はドラム)の上に、上記第1の層を形成する組成を有する流延用ドープと、上記第2の層を形成する組成を有する流延用ドープとを、別のスリットなどから同時に押出す流延用ギーサを用いて押出して、各層同時に流延し、適当な時期に支持体から剥ぎ取って、乾燥しフィルムを成形する流延法である。
 一方、逐次流延法は、流延用支持体の上に、まず第2の層用の流延用ドープを流延用ギーサから押出して、流延し、乾燥し、又は乾燥することなく、その上に第1の層用の流延用ドープを流延用ギーサから押出して流延することにより逐次ドープを流延・積層して、適当な時期に支持体から剥ぎ取って乾燥させ製膜する流延法である。
 塗布法は、バーコータ―、ブレードコーター、ダイコーター、グラビアコーター等の塗布装置を用いて行うことができ、カーテンコートやディップコートといった方法によって行うこともできる。塗布法では、一般的には、第2の層を任意の製膜法によりフィルム状に製膜した後、適当な塗布装置を用いて、第1の層を形成するための組成物を第2の層の表面に塗布し乾燥させ、積層体を作製する。
 生産性の観点からは、流延製膜法が好ましく、共流延法がより好ましい。また、流延製膜法、塗布法とも、第2の層が湿潤状態のうちに第1の層を積層する態様と、第2の層の乾燥後に第1の層を積層する態様があり、いずれの態様を用いてもよい。積層体の密着性の観点からは、前者の態様が好ましい。
 第1の層と第2の層とを支持体上に形成する態様において、パターン露光前に第1の層と第2の層を含む積層体を支持体から剥離する場合には、第1の層と第2の層のいずれの層が支持体側であってもよい。また、こうして剥離された積層体を、凹凸構造を形成すべき物品表面に貼り合せた後に、パターン露光を行うこともできる。貼り合せは、粘着層による貼り合せ等の公知の貼り合せ方法により行うことができる。一方、支持体や凹凸構造を形成すべき物品上でパターン露光を行う場合には、パターン露光される第1の層が空気界面側、第2の層が支持体側に位置するように、第2の層、第1の層の順に層を積層すればよい。
[Method for forming laminate]
In the present invention, instead of forming the monolayer, a polymerizable compound, at least one polymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, and a cellulose acylate are used. The laminate may be formed by a step of forming a first layer containing a rate and a second layer containing a resin. In this case, the surface of the first layer is subjected to pattern exposure and heated to form a concavo-convex structure.
The second layer may contain a polymerizable compound, but the content is preferably lower than the content of the polymerizable compound in the first layer.
In the laminate, the first layer and the second layer are formed by a casting film forming method, more specifically, a co-casting method or a sequential casting method, or a film forming method such as a coating method using a known coating apparatus. By doing so, it can be manufactured. In the co-casting method (multi-layer simultaneous casting), a casting dope having the composition for forming the first layer and the second layer are formed on a casting support (band or drum). The dope for casting having the composition to be extruded is extruded using a casting gussa that is simultaneously extruded from another slit, etc., and each layer is simultaneously cast, peeled off from the support at an appropriate time, and dried to form a film. This is a casting method for molding.
On the other hand, in the sequential casting method, the casting dope for the second layer is first extruded from the casting giusa on the casting support, cast, dried, or dried, On top of that, the dope for casting for the first layer is extruded from the casting giusa to cast and laminate the dope successively, peeled off from the support at an appropriate time, and dried to form a film. This is the casting method.
The coating method can be performed using a coating device such as a bar coater, a blade coater, a die coater, or a gravure coater, and can also be performed by a method such as curtain coating or dip coating. In the coating method, in general, after the second layer is formed into a film by an arbitrary film forming method, the composition for forming the first layer is prepared by using a suitable coating apparatus. It is applied to the surface of the layer and dried to produce a laminate.
From the viewpoint of productivity, the casting film forming method is preferable, and the co-casting method is more preferable. In addition, both the casting film forming method and the coating method include an aspect in which the second layer is laminated while the second layer is wet, and an aspect in which the first layer is laminated after the second layer is dried. Any aspect may be used. From the viewpoint of the adhesion of the laminate, the former mode is preferred.
In the aspect in which the first layer and the second layer are formed on the support, when the laminate including the first layer and the second layer is peeled off from the support before pattern exposure, the first layer Either the layer or the second layer may be on the support side. Moreover, pattern exposure can also be performed after laminating | stacking the laminated body thus peeled on the article surface which should form an uneven structure. The bonding can be performed by a known bonding method such as bonding with an adhesive layer. On the other hand, when pattern exposure is performed on the support or the article on which the concavo-convex structure is to be formed, the second layer is so positioned that the first layer subjected to pattern exposure is located on the air interface side and the second layer is located on the support side. The layers may be stacked in the order of the first layer and the first layer.
 単層体又は積層体として形成された層は、必要に応じて任意に乾燥工程に付される。乾燥工程は、加熱炉内への配置、加熱炉内での搬送、温風の吹き付け等により行うことができる。乾燥時の加熱温度は、重合性化合物の重合反応の進行や樹脂の大きな熱収縮が生じない程度の温度、例えば、50℃以上100℃以下の温度とすることが好ましい。ここで加熱温度とは、温風の温度又は加熱炉内の雰囲気温度をいうものとする。後述するパターン露光後の加熱工程についても同様である。 The layer formed as a single layer or a laminate is optionally subjected to a drying step as necessary. A drying process can be performed by arrangement | positioning in a heating furnace, conveyance in a heating furnace, blowing of warm air, etc. The heating temperature at the time of drying is preferably a temperature at which the polymerization reaction of the polymerizable compound does not progress and the resin does not undergo large thermal shrinkage, for example, a temperature of 50 ° C. or more and 100 ° C. or less. Here, the heating temperature refers to the temperature of warm air or the atmospheric temperature in the heating furnace. The same applies to the heating step after pattern exposure described later.
 本発明の凹凸構造を有する物品の製造方法は、層の形成工程とパターン露光工程の間に、層を支持体から剥ぎ取る工程を有することが好ましい。層を支持体から剥ぎ取ってからパターン露光することにより、凸部の平均高さをより大きくすることができる。層を剥ぎ取るタイミングは特に限定されないが、溶媒がある程度乾燥したときに行うのが好ましい。
 単層体の場合、本発明の凹凸構造を有する物品の製造方法は、層を形成する工程が、支持体上に、重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の光重合開始剤と、セルロースアシレートと、を含む組成物を流延して層を形成する工程であり、次いで、層を支持体から剥ぎ取る工程を有し、剥ぎ取った層に対して、後述のパターン露光する工程を行うものであることが好ましい。
 積層体の場合、本発明の凹凸構造を有する物品の製造方法は、第1の層を形成する工程が、支持体上に、重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の光重合開始剤と、セルロースアシレートと、を含む組成物を流延して第1の層を形成する工程であり、次いで、第1の層を支持体から剥ぎ取る工程を有し、剥ぎ取った第1の層に対して、パターン露光する工程を行うことが好ましい。
The method for producing an article having a concavo-convex structure of the present invention preferably has a step of peeling the layer from the support between the layer forming step and the pattern exposure step. By stripping the layer from the support and then pattern exposure, the average height of the convex portions can be increased. The timing at which the layer is peeled off is not particularly limited, but is preferably performed when the solvent is dried to some extent.
In the case of a single layer body, the method for producing an article having an uneven structure according to the present invention includes a step of forming a layer on a support, a polymerizable compound, an oxime ester photopolymerization initiator, and an acylphosphine oxide photopolymerization. A step of casting a composition comprising at least one photopolymerization initiator selected from initiators and cellulose acylate to form a layer, and then a step of peeling the layer from the support The peeled layer is preferably subjected to a pattern exposure step described later.
In the case of a laminate, in the method for producing an article having an uneven structure according to the present invention, the step of forming the first layer includes a polymerizable compound, an oxime ester photopolymerization initiator, and an acyl phosphine oxide system on the support. A step of casting a composition containing at least one photopolymerization initiator selected from photopolymerization initiators and cellulose acylate to form a first layer, and then supporting the first layer It is preferable to include a step of peeling from the body, and to perform a pattern exposure step on the peeled first layer.
(パターン露光工程)
 乾燥工程の後、層に対してパターン露光される。本発明に係る製造方法では、パターン露光の非露光部が凹部となり、パターン露光により露光された露光部が凸部となる、いわゆるネガ型の凹凸形成が行われる。したがって、パターン露光は、層の表面の凸部を形成したい部分が露光されるように行われる。パターン露光の手法はフォトレジスト等の分野において既に公知であり、上記製造方法におけるパターン露光には、それら公知技術を何ら制限なく適用することができる。例えば、光源と層表面との間にフォトマスク(露光マスク)を配置してパターン露光を行う方法、フォトマスクを介さずに、層表面にレーザー光をスポット状に直接照射する方法(いわゆる直接描画法、パターン直接露光法)のいずれを用いてもよい。フォトマスクを配置してパターン露光を行う方法は、フォトマスクを層の表面と間隔をおいて配置する非接触方式と層表面上に配置する接触方式に大別される。いずれの方式を用いてもよいが、フォトマスクとの接触による層の表面性の変化や塵・埃の付着等がない点からは、非接触方式が好ましい。非接触方式には、プロキシミティ露光とプロジェクション露光があるが、いずれの露光方式を採用してもよい。
(Pattern exposure process)
After the drying step, the layer is pattern exposed. In the manufacturing method according to the present invention, a non-exposed portion of pattern exposure is a concave portion, and an exposed portion exposed by pattern exposure is a convex portion. Therefore, the pattern exposure is performed so that a portion where a convex portion on the surface of the layer is to be formed is exposed. Pattern exposure methods are already known in the field of photoresists and the like, and those known techniques can be applied to the pattern exposure in the manufacturing method without any limitation. For example, a method of pattern exposure by placing a photomask (exposure mask) between the light source and the layer surface, a method of directly irradiating the layer surface with laser light in a spot form without using a photomask (so-called direct drawing) Or a pattern direct exposure method) may be used. A method of performing pattern exposure by arranging a photomask is roughly divided into a non-contact method in which the photomask is arranged at a distance from the surface of the layer and a contact method in which the photomask is arranged on the layer surface. Any method may be used, but the non-contact method is preferable from the viewpoint that there is no change in the surface property of the layer due to contact with the photomask and no adhesion of dust / dust. Non-contact methods include proximity exposure and projection exposure, but either exposure method may be adopted.
 本発明の第2の形態にかかる製造方法では、第1の層の表面にパターン露光することにより、露光部において重合性化合物が重合し硬化する。そして、その後に行われる加熱により、第1の層ではパターン露光では未反応であった重合性化合物の重合が進行し、いわゆる重合収縮が発生する。加えて、第2の層では、この層に含まれている樹脂の熱による収縮が生じる。このように露光部以外の部分で収縮が生じるのに対し、露光部は既に重合硬化しているため加熱時に大きな形状変化を起こすことはないと考えられる。その結果、露光部が凸部となる凹凸形状を形成することができると、本発明者らは推察している。更に本発明者らは、第2の塗布層における樹脂の熱収縮という、大きな形状変化が生じることが、凸部と凹部との高低差(段差)を大きくすることに寄与し、その結果、大きい高低差を有する微細凹凸構造の形成が可能になると推察している。また、このように凸部と凹部との高低差(段差)が大きいことは、明確な凹凸と認識される凹凸形状の形成を可能とするため、微細凹凸構造に限らず様々な形状・サイズの凹凸構造の形成に有効である。 In the manufacturing method according to the second embodiment of the present invention, the surface of the first layer is subjected to pattern exposure, whereby the polymerizable compound is polymerized and cured in the exposed portion. The subsequent heating causes polymerization of the polymerizable compound that has not been reacted in the pattern exposure in the first layer, so that so-called polymerization shrinkage occurs. In addition, in the second layer, the resin contained in this layer contracts due to heat. In this way, shrinkage occurs in portions other than the exposed portion, whereas the exposed portion is already polymerized and cured, so that it is considered that no significant shape change occurs during heating. As a result, the present inventors speculate that an uneven shape in which the exposed portion becomes a convex portion can be formed. Furthermore, the present inventors have contributed to increasing the height difference (step) between the convex part and the concave part as a result of a large shape change called heat shrinkage of the resin in the second coating layer. It is presumed that a fine uneven structure having a height difference can be formed. In addition, the large difference in level (step) between the convex portion and the concave portion enables the formation of a concave / convex shape that is recognized as a clear concave / convex portion. It is effective for forming a concavo-convex structure.
 単層体に対して非接触方式によりパターン露光し、その後の加熱工程により凹凸構造を形成する製造方法について、図1~3を用いて説明する。先ず、乾燥工程を終えた層1の表面から所定の間隔をあけて、フォトマスク2を配置する。その後、フォトマスク2の上から層1の表面に向けて、光3を照射する。これにより、フォトマスク2により被覆されていない光照射領域(露光部)1aのみに光3が照射されて、光照射領域1aにおける重合性化合物が重合して硬化する。パターン露光のために用いる光としては、層に含まれる重合性化合物及び光重合開始剤の種類に応じて決定すればよいが、特に、紫外線(i線、365nm)、レーザー光(405nm)が好ましい。光照射のための光源としては、例えば、150~450nm波長域の光を発する高圧水銀ランプ、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、無電極放電ランプ、LED等を挙げることができる。また、光照射量は、50mJ/cm以上1000mJ/cm以下とすることが好ましいが、凸部において重合反応が進行し凸部が硬化する光照射量とすればよく、上記範囲に限定されるものではない。 A manufacturing method in which a single layer body is subjected to pattern exposure by a non-contact method and a concavo-convex structure is formed by a subsequent heating step will be described with reference to FIGS. First, the photomask 2 is arranged at a predetermined interval from the surface of the layer 1 after the drying process. Thereafter, light 3 is irradiated from above the photomask 2 toward the surface of the layer 1. Thereby, only the light irradiation area | region (exposure part) 1a which is not coat | covered with the photomask 2 is irradiated with the light 3, and the polymeric compound in the light irradiation area | region 1a superposes | polymerizes and hardens | cures. The light used for pattern exposure may be determined according to the type of polymerizable compound and photopolymerization initiator contained in the layer, and in particular, ultraviolet rays (i-line, 365 nm) and laser light (405 nm) are preferable. . Examples of the light source for light irradiation include a high pressure mercury lamp that emits light in a wavelength range of 150 to 450 nm, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, a chemical lamp, an electrodeless discharge lamp, and an LED. be able to. Further, the light irradiation amount is preferably 50 mJ / cm 2 or more and 1000 mJ / cm 2 or less, but may be a light irradiation amount at which the polymerization reaction proceeds at the convex portion and the convex portion is cured, and is limited to the above range. It is not something.
(加熱工程)
 層1の表面へのパターン露光後、層1を加熱する加熱処理を行う。加熱処理は、加熱炉内への配置、加熱炉内での搬送、温風の吹き付け等により行うことができる。加熱処理における加熱温度は140~200℃とすることが好ましく、加熱時間は2~200分間とすることが好ましい。ここでの加熱により、層1の光照射領域1aを除く領域において、重合性化合物の熱重合に伴う重合収縮及び樹脂の収縮が発生する。これにより、図3に示すように、光照射領域1aが凸部となる凹凸形状を形成することができる。
(Heating process)
After the pattern exposure on the surface of the layer 1, a heat treatment for heating the layer 1 is performed. The heat treatment can be performed by placing in the heating furnace, transporting in the heating furnace, blowing hot air, or the like. The heating temperature in the heat treatment is preferably 140 to 200 ° C., and the heating time is preferably 2 to 200 minutes. By heating here, in the area | region except the light irradiation area | region 1a of the layer 1, the shrinkage | contraction and the shrinkage | contraction of resin accompanying thermal polymerization of a polymeric compound generate | occur | produce. Thereby, as shown in FIG. 3, the uneven | corrugated shape from which the light irradiation area | region 1a becomes a convex part can be formed.
(層の厚さ)
 本発明の製造方法により製造される物品の厚さは、層形成工程において形成される層の厚さに依存し、例えば1μm以上であり、好ましくは5μm以上であり、より好ましくは10μm以上である。なお本発明者らによる検討によれば、層形成工程において形成される層の厚さが厚いほど凸部と凹部の高低差(段差)が大きくなる傾向が見られた。この点は、微細凹凸構造形成の観点から好ましい。したがって、層の厚さの上限は特に限定されるものではない。一例として、例えば100μm以下程度とすることができるが、凹凸構造が形成された物品の用途等に応じて適宜設定すればよい。ここで層の厚さとは、塗布時の設定膜厚でもよく、実測値でもよい。
(Layer thickness)
The thickness of the article manufactured by the manufacturing method of the present invention depends on the thickness of the layer formed in the layer forming step, and is, for example, 1 μm or more, preferably 5 μm or more, more preferably 10 μm or more. . According to the study by the present inventors, there was a tendency that the height difference (step) between the convex portion and the concave portion becomes larger as the thickness of the layer formed in the layer forming step is thicker. This point is preferable from the viewpoint of forming a fine relief structure. Therefore, the upper limit of the layer thickness is not particularly limited. As an example, it can be set to about 100 μm or less, for example, but may be set as appropriate according to the use of the article on which the concavo-convex structure is formed. Here, the thickness of the layer may be a set film thickness at the time of application or an actual measurement value.
 こうして凹凸構造が形成された層はそのまま、又は用途に応じた形状に裁断して、凹凸構造を有する物品として用いることができる。又は、層を公知の貼り合せ方法により物品表面に貼り合せることにより、凹凸構造を有する物品を得ることもできる。凹凸構造を有する物品は、例えば長尺状フィルムであることができる。ただし、フィルム状の層を任意の形状の物品に貼り合せたものであってもよく、物品の形状は限定されるものではない。
 また、凹凸構造を有する表面、他方の表面の一方又は両方に、他の層の一層以上を任意に形成することもできる。なお上記製造方法により製造された物品は、凹凸構造を物品最表面に有するものに限定されず、凹凸構造を有する表面に他の層が形成された結果、二層の界面に凹凸構造を有する物品も包含される。このように界面に凹凸構造を有することは、例えば、二層の界面の密着向上等に寄与することができる。
Thus, the layer in which the concavo-convex structure is formed can be used as an article having the concavo-convex structure as it is or by cutting into a shape according to the application. Alternatively, an article having a concavo-convex structure can be obtained by laminating the layer to the article surface by a known laminating method. The article having a concavo-convex structure can be, for example, a long film. However, the film-like layer may be bonded to an article having an arbitrary shape, and the shape of the article is not limited.
One or more of the other layers can be arbitrarily formed on one or both of the surface having the concavo-convex structure and the other surface. The article manufactured by the above manufacturing method is not limited to the article having the concavo-convex structure on the outermost surface of the article. Are also included. Thus, having an uneven structure at the interface can contribute to, for example, improving the adhesion of the interface between the two layers.
 上記製造方法によれば、微細な凹凸構造をはじめとする様々な形状・サイズの凹凸構造を有する物品を製造することができる。サイズについては、例えば一例として、実施例で示すような微細な凹凸構造の形成が可能である。ただしもちろん、実施例で示す凹凸構造よりもサイズの大きな凹凸構造を有する物品の製造方法としても、上記製造方法は好適である。
 また、形成される凹凸構造の形状は、特に限定されるものではない。例えば、一態様では、凹凸構造は、多角錐様形状、円錐様形状、部分回転楕円体様形状、及び部分球様形状からなる群から選択される形状が、二次元的に配置されることにより形成されている。また他の一態様では、凹凸構造は、部分円柱様形状、部分楕円柱様形状及び角柱様形状からなる群から選択される形状が、一次元的に配置されることにより形成されている。
 ここで、一次元的に配置されているとは、上記形状が積層体表面(パターン露光された表面)の一方向のみに、即ち平行に配置されていることをいう。このような凹凸構造は、ラインアンドスペースパターンと呼ばれることもある。
 これに対し、二次元的に配置されているとは、上記形状が積層体表面の二方向以上に配置されていることをいう。例えば、ある方向と、この方向に直交する方向との二方向に形成されていることや、規則的に形成されている態様に限らず、不規則に(ランダムに)形成されている態様も包含される。また、凹凸構造は、モスアイ構造と呼ばれる微細凹凸構造であることもできる。
 一態様では、上記形状は凸部形状である。また、他の一態様では上記形状は凹部形状である。例えば、上記形状に対応する開口部を有する露光マスクを用いてパターン露光を行うことにより、上記形状の凸部を有する凹凸構造を形成することができる。また、上記形状に対応する部分が非露光部となるような隔壁パターンを有する露光マスクを用いることにより、上記形状の凹部を有する凹凸構造を形成することができる。
 図4~7は本発明において用いることができるパターニングフォトマスクの形状を示す模式図である。図4~7において、黒で示す領域は露光部を示し、白で示す領域は遮光部を示す。例えば、図4に示すように、露光部の開口の形状が正方形であり、千鳥格子の形状を有するフォトマスク、図5に示すように、露光部の開口の形状が正方形であり、遮光部が十字の形状を有するフォトマスク、図6に示すように、露光部が等間隔で配置された正方形の形状を有するフォトマスク、図7に示すように、露光部が格子の形状を有するフォトマスク等を挙げることができる。但し、フォトマスクの形状は、図4~7に示す形状に限定されず、任意の形状のフォトマスクを用いることができ、露光部の大きさ、及び隣り合う露光部間の距離についても任意に設定することができる。
 なお本発明及び本明細書において、直交、平行等の角度に関する記載については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、厳密な角度±10°未満の範囲内であることを意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。また、「多角錐様形状」とは、完全な多角錐形状のみならず、多角錐に近似する形状も含む意味で用いるものとする。
According to the above manufacturing method, articles having uneven structures of various shapes and sizes including a fine uneven structure can be manufactured. As for the size, for example, it is possible to form a fine uneven structure as shown in the examples. However, of course, the above manufacturing method is also suitable as a method for manufacturing an article having a concavo-convex structure larger than the concavo-convex structure shown in the examples.
Moreover, the shape of the concavo-convex structure to be formed is not particularly limited. For example, in one aspect, the concavo-convex structure is formed by two-dimensionally arranging a shape selected from the group consisting of a polygonal cone-like shape, a cone-like shape, a partial spheroid-like shape, and a partial sphere-like shape. Is formed. In another aspect, the concavo-convex structure is formed by one-dimensionally arranging a shape selected from the group consisting of a partial columnar shape, a partial elliptical columnar shape, and a prismatic shape.
Here, the term “one-dimensionally arranged” means that the shape is arranged only in one direction of the laminate surface (pattern-exposed surface), that is, in parallel. Such an uneven structure is sometimes called a line and space pattern.
On the other hand, the two-dimensional arrangement means that the shape is arranged in two or more directions on the surface of the laminate. For example, it is formed in two directions, that is, a certain direction and a direction orthogonal to this direction, and is not limited to a regularly formed aspect, but also includes an irregularly (randomly) formed aspect. Is done. The uneven structure may be a fine uneven structure called a moth-eye structure.
In one aspect, the shape is a convex shape. In another embodiment, the shape is a concave shape. For example, by performing pattern exposure using an exposure mask having an opening corresponding to the above shape, a concavo-convex structure having a convex portion having the above shape can be formed. In addition, by using an exposure mask having a partition pattern in which a portion corresponding to the shape becomes a non-exposed portion, a concavo-convex structure having a concave portion of the shape can be formed.
4 to 7 are schematic views showing the shapes of patterning photomasks that can be used in the present invention. 4 to 7, a black area indicates an exposed portion, and a white area indicates a light shielding portion. For example, as shown in FIG. 4, the shape of the opening of the exposed portion is a square and a photomask having a houndstooth shape, and as shown in FIG. 5, the shape of the exposed portion of the opening is square and the light shielding portion. , A photomask having a cross shape, as shown in FIG. 6, a photomask having a square shape in which exposed portions are arranged at equal intervals, and a photomask having an exposed portion having a lattice shape as shown in FIG. 7. Etc. However, the shape of the photomask is not limited to the shape shown in FIGS. 4 to 7, and any shape of photomask can be used. The size of the exposed portion and the distance between adjacent exposed portions can also be arbitrarily set. Can be set.
In the present invention and the present specification, descriptions relating to angles such as orthogonal and parallel include the range of errors allowed in the technical field to which the present invention belongs. For example, it means that the angle is within the range of strict angle ± 10 °, and the error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less. Further, the “polygonal pyramid shape” is used to mean not only a perfect polygonal pyramid shape but also a shape that approximates a polygonal pyramid.
[凹凸形状を有する物品]
 本発明の更なる一態様は、上記製造方法により製造された、凹凸構造を有する物品(以下、単に物品とも記載する。)に関する。その製造方法、凹凸構造の詳細等については、先に記載した通りである。
[Articles with irregular shapes]
A further aspect of the present invention relates to an article having a concavo-convex structure produced by the above production method (hereinafter also simply referred to as an article). The manufacturing method, details of the concavo-convex structure, and the like are as described above.
 本発明の製造方法により製造された物品は、例えば、凹凸構造の凸部の平均高さが凹凸の平均長さに対して1%以上である。ここで、凸部の平均高さは、凸部の上面と隣接する凹部の底面の最大距離の平均値を指す。凹凸の平均長さは、凸部の中央から隣接する凹部の中央までの距離を2倍した距離の平均値を指す。上述の通り、本発明においては、層を形成するための組成物中に、紫外線に対する感度が高い光重合開始剤を含有させることにより、パターン露光した領域と加熱重合した領域との収縮差が大きくなり、凸部の高さが大きい(凹凸の高低差が大きい)凹凸構造を形成することができる。
 凹凸の平均長さに対する凸部の平均高さの比率は以下のようにして求めることができる。
 凸部の高さは、製造された凹凸構造を有する物品の表面を、非接触表面・層断面形状計測システム(株式会社菱化システム製VertScan2.0)で観察し、この観察結果から、凸部の上面と隣接する凹部の底面の最大距離を測定することにより、求めることができる。次に凹凸の平均長さは、マスクパターンの設計図や、実際に光学顕微鏡や上述の非接触表面・層断面形状計測システム、原子間力顕微鏡、電子顕微鏡の観察像から求めることが出来る。凹凸の平均長さに対する凸部の平均高さの比率は、分子に凸部の高さの平均値、分母に凹凸の平均長さの平均値を置き、計算することで求めることが出来る。
In the article manufactured by the manufacturing method of the present invention, for example, the average height of the protrusions of the concavo-convex structure is 1% or more with respect to the average length of the concavo-convex structure. Here, the average height of the convex portion indicates the average value of the maximum distance between the top surface of the convex portion and the bottom surface of the concave portion adjacent to the convex portion. The average length of the unevenness indicates an average value of a distance obtained by doubling the distance from the center of the convex portion to the center of the adjacent concave portion. As described above, in the present invention, the composition for forming a layer contains a photopolymerization initiator having high sensitivity to ultraviolet rays, so that the difference in shrinkage between the pattern-exposed region and the heat-polymerized region is large. Thus, a concavo-convex structure in which the height of the convex portion is large (the level difference of the concavo-convex is large) can be formed.
The ratio of the average height of the projections to the average length of the projections and depressions can be obtained as follows.
The height of the convex portion is determined by observing the surface of the manufactured article having a concavo-convex structure with a non-contact surface / layer cross-sectional shape measuring system (VertScan 2.0 manufactured by Ryoka System Co., Ltd.). It can be obtained by measuring the maximum distance between the bottom surface of the recess adjacent to the top surface of the surface. Next, the average length of the projections and depressions can be obtained from a mask pattern design drawing or an observation image of an optical microscope, the above-described non-contact surface / layer cross-sectional shape measurement system, an atomic force microscope, or an electron microscope. The ratio of the average height of the projections to the average length of the projections and depressions can be obtained by calculating the average value of the projection heights in the numerator and the average length of the projections and depressions in the denominator.
 また、本発明の第2の形態にかかる製造方法により製造された物品は、凹凸構造を有する面から物品の厚み方向に向かって、重合性化合物の重合体の濃度が低下する濃度勾配を有することにより、確認することができる。上記製造方法では、第2の層が重合性化合物を含む場合、第2の層の重合性化合物濃度は、第1の層の重合性化合物濃度より低いからである。また、二層の形成を、共流延のように一層目の層が湿潤状態のうちに二層目の層を積層する態様により行い製造された物品では、第1の層と第2の層との界面において成分の混合や層間移動が起こる結果、凹凸構造を有する面から物品の厚み方向に向かって、重合性化合物の重合体の濃度が連続的に低下する濃度勾配が確認される場合がある。一方、二層の形成を、一層目の層の乾燥後に二層目の層を積層する態様により行い製造された物品では、上記のような成分の混合や層間移動が起こり難いため、第1の層と第2の層との界面付近で、重合性化合物の重合体の急激な濃度低下(断続的な濃度低下)が確認される場合がある。 Further, the article manufactured by the manufacturing method according to the second aspect of the present invention has a concentration gradient in which the concentration of the polymer of the polymerizable compound decreases from the surface having the concavo-convex structure toward the thickness direction of the article. Can be confirmed. This is because, in the above production method, when the second layer contains a polymerizable compound, the polymerizable compound concentration in the second layer is lower than the polymerizable compound concentration in the first layer. In the case of an article manufactured by forming the two layers in a mode in which the second layer is laminated while the first layer is in a wet state as in co-casting, the first layer and the second layer As a result of mixing of components and inter-layer movement at the interface, the concentration gradient in which the concentration of the polymer of the polymerizable compound continuously decreases from the surface having the concavo-convex structure toward the thickness direction of the article may be confirmed. is there. On the other hand, in an article manufactured by forming the second layer in a mode in which the second layer is laminated after the first layer is dried, the above components are not easily mixed or moved between layers. In the vicinity of the interface between the layer and the second layer, a rapid concentration drop (intermittent concentration drop) of the polymer of the polymerizable compound may be confirmed.
 また、上記製造方法により製造された物品は、一態様では、凹凸構造を有する面から物品の厚み方向に向かって、樹脂の濃度が増加する濃度勾配を有することもできる。濃度勾配は、連続的に増加してもよく、断続的に増加してもよい。詳細は、重合性化合物の重合体の濃度勾配についての上記記載を参照できる。このように、凹凸構造を有する表面を備えた領域の下層領域として、凹凸構造を有する表面を備えた領域よりも樹脂濃度の高い領域を有することは、物品の脆性向上に寄与すると、本発明者らは推察している。詳しくは、一般的に、重合性化合物の重合体は樹脂(中でも有機溶剤可溶性樹脂)よりも硬く脆いのに対し、樹脂は重合性化合物の重合体と比べ柔らかいことが、物品の脆性向上に寄与すると、本発明者らは考えている。 In addition, in one aspect, the article manufactured by the above manufacturing method may have a concentration gradient in which the resin concentration increases from the surface having the concavo-convex structure toward the thickness direction of the article. The concentration gradient may increase continuously or may increase intermittently. For details, reference can be made to the above description of the concentration gradient of the polymer of the polymerizable compound. As described above, when the region having a higher resin concentration than the region having the surface having the concavo-convex structure as the lower layer region of the region having the surface having the concavo-convex structure contributes to improvement of the brittleness of the article, the present inventor Et al. Specifically, in general, a polymer of a polymerizable compound is harder and more brittle than a resin (especially an organic solvent-soluble resin), whereas a resin is softer than a polymer of a polymerizable compound, which contributes to improving the brittleness of an article. Then, the present inventors consider.
 なお上記物品における重合性化合物の重合体の濃度勾配は、例えばラマン分光法による組成分析によって確認することができる。分析条件等の詳細については、後述の実施例を参照することができる。 The concentration gradient of the polymer of the polymerizable compound in the article can be confirmed by, for example, composition analysis by Raman spectroscopy. For details such as analysis conditions, the following examples can be referred to.
 以上説明した凹凸構造を有する物品は、例えば、反射防止膜、集光効果を示す輝度向上膜(例えばプリズムシート)等として液晶表示装置等のフラットパネルディスプレイの構成部材として用いることができる。又は、培養した細胞の剥離を容易にするために凹凸構造を有する細胞培養シートとして、上記の凹凸構造を有する物品を使用することもできる。以上の適用例はあくまでも一例であって、上記の凹凸構造を有する物品は、フラットパネルディスプレイ用途、半導体製造分野、バイオテクノロジー、医薬分野等の様々な用途・分野において使用することができる。 The article having the concavo-convex structure described above can be used as a constituent member of a flat panel display such as a liquid crystal display device, for example, as an antireflection film, a brightness enhancement film (for example, a prism sheet) exhibiting a light collecting effect, or the like. Or the article | item which has said uneven structure can also be used as a cell culture sheet which has an uneven structure in order to make peeling of the cultured cell easy. The above application example is merely an example, and the article having the uneven structure can be used in various applications and fields such as flat panel display applications, semiconductor manufacturing fields, biotechnology, and pharmaceutical fields.
 以下に実施例に基づき本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described more specifically based on examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
(単層試料の作製)
[実施例1-1]
<層形成用組成物(重合性化合物含有セルロースアシレートドープA)の調製>
 下記組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、ドープAを調製した。
(Preparation of single layer sample)
[Example 1-1]
<Preparation of layer forming composition (polymerizable compound-containing cellulose acylate dope A)>
The following composition was put into a mixing tank and stirred to dissolve each component to prepare Dope A.
セルロースアセテート(置換度2.86、重合度350) 100質量部
ペンタエリスリトールテトラアクリレート(新中村化学製A-TMMT)
                           100質量部
光重合開始剤(BASF社製 Irgacure OXE-01) 
                            10質量部
フッ素系レベリング剤(DIC製メガファックF-784)0.1質量部
メチレンクロライド                  525質量部
メタノール                      133質量部
1-ブタノール                      7質量部
(表1中、セルロースアセテートは「TAC」と記載、ペンタエリスリトールテトラアクリレートは「A-TMMT」と記載。)
 表1においてIrgacure OXE-01をIrg OXE-01と記載した。
Cellulose acetate (degree of substitution 2.86, degree of polymerization 350) 100 parts by weight pentaerythritol tetraacrylate (A-TMMT manufactured by Shin-Nakamura Chemical)
100 parts by mass photopolymerization initiator (Irgacure OXE-01 manufactured by BASF)
10 parts by mass Fluorine-based leveling agent (Megafac F-784 manufactured by DIC) 0.1 part by mass Methylene chloride 525 parts by mass Methanol 133 parts by mass 1-butanol 7 parts by mass (in Table 1, cellulose acetate is described as “TAC” (Pentaerythritol tetraacrylate is described as “A-TMMT”.)
In Table 1, Irgacure OXE-01 is described as Irg OXE-01.
<セルロースアシレートフィルムの流延製膜>
 上記のドープAを用い、膜厚(設定膜厚)が60μmとなるようにギャップを調整したアプリケーターにてガラス(支持体)表面に流延した。その後、加熱オーブン(エスペック株式会社製恒温器セーフティーオーブンSPHH-202)にて70℃で6分間乾燥処理した。
 その後、フィルム試料をガラス面から剥ぎ取り、枠張り後にフィルム作製時の空気側表面が石英露光マスクと密着するように配置し、超高圧水銀灯を有するプロキシミティ型露光機(日立ハイテク電子エンジニアリング(株)製)を用いて、石英露光マスクを介して100mJ/cmにてプロキシミティ露光(パターン露光)した。
 その後、上記の乾燥処理で用いた加熱オーブンにて170℃で60分間加熱処理を行い、パターニングサンプル(フィルムサンプル)を得た。
<Casting of cellulose acylate film>
The dope A was used to cast on the surface of the glass (support) with an applicator whose gap was adjusted so that the film thickness (set film thickness) was 60 μm. Thereafter, it was dried at 70 ° C. for 6 minutes in a heating oven (Incubator Safety Oven SPHH-202 manufactured by Espec Corp.).
After that, the film sample is peeled off from the glass surface, placed after the frame is attached so that the air side surface at the time of film production is in close contact with the quartz exposure mask, and the proximity type exposure machine (Hitachi High-Tech Electronic Engineering Co., Ltd.) with an ultra-high pressure mercury lamp. )) Was used for proximity exposure (pattern exposure) at 100 mJ / cm 2 through a quartz exposure mask.
Then, the heat processing was performed at 170 degreeC for 60 minute (s) in the heating oven used by said drying process, and the patterning sample (film sample) was obtained.
[実施例1-2~1-6]
 ペンタエリスリトールテトラアクリレートの添加量、開始剤の添加量を表1に示す値とした点以外、実施例1-1と同様にパターニングサンプルを得た。
[Examples 1-2 to 1-6]
A patterning sample was obtained in the same manner as in Example 1-1 except that the addition amount of pentaerythritol tetraacrylate and the addition amount of the initiator were the values shown in Table 1.
 [比較例1~3]
 下記表1に記載した処方のドープを用いた以外、実施例1-1と同様にパターニングサンプルを得た。
[Comparative Examples 1 to 3]
A patterning sample was obtained in the same manner as in Example 1-1 except that the dope having the formulation described in Table 1 below was used.
<凹凸構造の観察>
 以上のパターン露光では、露光用の開口部の形状が正方形であり、隣り合う正方形の間隔(ピッチ)が20μmの露光パターンを有する露光マスクを用いた。
 上記実施例で作製したパターニングサンプル表面(パターン露光された表面)を、非接触表面・層断面形状計測システム(株式会社菱化システム製VertScan2.0)で観察し、四角柱形状の凸部と凹部を有する凹凸構造が形成されていることを確認した。更に、観察結果から、凸部の高さ(凸部の上面と隣接する凹部の底面の鉛直方向における最大距離)の平均値、及び凹凸部の長さ(凸部の中央から凹部の中央までの距離の2倍)を求めた。
 パターン比=凸部の平均高さ/凹凸の平均長さ×100(%)として表1に記載した。
<Observation of uneven structure>
In the above pattern exposure, an exposure mask having an exposure pattern in which the shape of the opening for exposure is square and the interval (pitch) between adjacent squares is 20 μm was used.
The patterning sample surface (pattern-exposed surface) prepared in the above example was observed with a non-contact surface / layer cross-sectional shape measurement system (VertScan 2.0, manufactured by Ryoka System Co., Ltd.). It was confirmed that the concavo-convex structure having Furthermore, from the observation results, the average value of the height of the convex portion (the maximum distance in the vertical direction of the bottom surface of the concave portion adjacent to the top surface of the convex portion) and the length of the concave and convex portion (from the center of the convex portion to the center of the concave portion) Twice the distance).
The ratio is shown in Table 1 as pattern ratio = average height of protrusions / average length of unevenness × 100 (%).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 アクリルバインダー:メタクリル酸/メタクリル酸シクロヘキシル/メタクリル酸メチル/メタクリル酸へのメタクリル酸グリシジル付加物の共重合体であって、メタクリル酸/メタクリル酸シクロヘキシル/メタクリル酸メチル/メタクリル酸のモル比が、20/46/2/32であり、重量平均分子量36000、酸価66のもの。 Acrylic binder: a copolymer of glycidyl methacrylate adduct to methacrylic acid / cyclohexyl methacrylate / methyl methacrylate / methacrylic acid, wherein the molar ratio of methacrylic acid / cyclohexyl methacrylate / methyl methacrylate / methacrylic acid is 20 / 46/2/32 with a weight average molecular weight of 36000 and an acid value of 66.
 BCIM
Figure JPOXMLDOC01-appb-C000004
BCIM
Figure JPOXMLDOC01-appb-C000004
 EABF
Figure JPOXMLDOC01-appb-C000005
EABF
Figure JPOXMLDOC01-appb-C000005
  実施例の試料は、いずれもパターン比が大きく、性能を満足するものであった。実施例に対して比較例のものは、パターン比が小さかったり、フィルムを作製できないものであった。アクリルバインダーを用いた比較例3のフィルムはガラス支持体から剥ぎ取ることができなかった。 All the samples of the examples had a large pattern ratio and satisfied the performance. Compared to the examples, the comparative example had a small pattern ratio or could not produce a film. The film of Comparative Example 3 using an acrylic binder could not be peeled off from the glass support.
[実施例2-1~2-4]
 実施例1-1のフィルムについて、露光量を100mJ/cmとする代わりに、表2の露光量とする以外、実施例1-1と同様にパターニングサンプルを得た。同様に評価し、結果を下記表2に記載した。
[Examples 2-1 to 2-4]
For the film of Example 1-1, a patterning sample was obtained in the same manner as in Example 1-1 except that the exposure amount was changed to the exposure amount shown in Table 2 instead of 100 mJ / cm 2 . Evaluation was made in the same manner, and the results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[実施例3-1~3-5]
 実施例1-1のペンタエリスリトールテトラアクリレートの代わりに、表3に記載の重合性化合物を添加した以外、実施例1-1と同様にパターニングサンプルを得た。同様に評価し、結果を下記表3に記載した。
[Examples 3-1 to 3-5]
A patterning sample was obtained in the same manner as in Example 1-1 except that the polymerizable compounds shown in Table 3 were added instead of pentaerythritol tetraacrylate in Example 1-1. Evaluation was made in the same manner, and the results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 ジペンタエリスリトールヘキサアクリレート:カヤラッドDPHA、日本化薬株式会社製
 V1000:大阪有機化学工業株式会社製
 UV1700B:日本合成化学工業株式会社製
 UA306I:共栄社化学株式会社製
 UA306H:共栄社化学株式会社製
Dipentaerythritol hexaacrylate: Kayarad DPHA, Nippon Kayaku Co., Ltd. V1000: Osaka Organic Chemical Industry Co., Ltd. UV1700B: Nippon Synthetic Chemical Industry Co., Ltd. UA306I: Kyoeisha Chemical Co., Ltd. UA306H: Kyoeisha Chemical Co., Ltd.
[実施例4-1]
 実施例1-1のIrg Oxe01の代わりに、Irg 819(BASF社製)を添加した他は実施例1-1と同様に、フィルムを作製した。
 このフィルムに、レーザー光(波長 405nm)を用い、スポット径600nm、露光間隔600nmのパターン露光を行い、170℃で60分加熱処理を行い、パターニングサンプルを得た。この試料を走査型プローブ顕微鏡SPA400(SII社製)で観察した。この試料の凹凸構造の凸部の平均高さは30nmであり、パターン比は2.5%であった。
[Example 4-1]
A film was produced in the same manner as in Example 1-1 except that Irg 819 (manufactured by BASF) was added instead of Irg Oxe01 in Example 1-1.
This film was subjected to pattern exposure using a laser beam (wavelength: 405 nm) with a spot diameter of 600 nm and an exposure interval of 600 nm, followed by heat treatment at 170 ° C. for 60 minutes to obtain a patterning sample. This sample was observed with a scanning probe microscope SPA400 (manufactured by SII). The average height of the convex portions of the concavo-convex structure of this sample was 30 nm, and the pattern ratio was 2.5%.
(重層試料の作製)
[実施例5-1]
<第2の層形成用組成物(セルロースアシレートドープB)の調製>
 下記組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、ドープBを調製した。
(Preparation of multi-layer sample)
[Example 5-1]
<Preparation of second layer forming composition (cellulose acylate dope B)>
The following composition was put into a mixing tank and stirred to dissolve each component to prepare Dope B.
――――――――――――――――――――――――――――――――――
 セルロースアセテート(置換度2.86、重合度350)
  固形分濃度(組成物全量100質量%に対して)    24質量%
(溶剤組成比:溶剤全量100質量%に対して、括弧内はセルロースアセテート100質量部に対する含有量)
 メチレンクロライド           79質量%(625質量部)
 メタノール               20質量%(158質量部)
 1-ブタノール              1質量%(8質量部)
――――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――――
Cellulose acetate (substitution degree 2.86, polymerization degree 350)
Solid content concentration (based on 100% by mass of the total composition) 24% by mass
(Solvent composition ratio: The content in parentheses is 100 mass parts of cellulose acetate with respect to 100 mass% of the total amount of solvent)
Methylene chloride 79% by mass (625 parts by mass)
Methanol 20% by mass (158 parts by mass)
1-butanol 1% by mass (8 parts by mass)
――――――――――――――――――――――――――――――――――
<セルロースアシレートフィルムの流延製膜>
 上記のドープA、Bを用い、空気面側から支持体面側に向かってドープA、ドープBの順序になるように、それぞれの膜厚(設定膜厚)が30μmの値になるようにギャップを調整したアプリケーターにてガラス(支持体)表面に共流延した。その後、加熱オーブン(エスペック株式会社製恒温器セーフティーオーブンSPHH-202)にて70℃で6分間乾燥処理した。
 その後、ドープAの層(第1の層)とドープBの層(第2の層)が積層された積層体(共流延サンプル)をガラス面から剥ぎ取り、枠張り後にドープAの層の表面が石英露光マスクと間隔をあけて向き合うように配置し、超高圧水銀灯を有するプロキシミティ型露光機(日立ハイテク電子エンジニアリング(株)製)を用いて、石英露光マスク(マスクパターン露光部600nmの四角、遮光部600nm)を介して光照射量300mJ/cmにてプロキシミティ露光(パターン露光)した。
 その後、上記の乾燥処理で用いた加熱オーブンにて170℃で60分間加熱処理を行い、実施例5-1のパターニングサンプル(フィルムサンプル)を得た。
<Casting of cellulose acylate film>
Using the above-mentioned dopes A and B, gaps are set so that the respective film thicknesses (set film thicknesses) are 30 μm so that the order of dope A and dope B is from the air surface side to the support surface side. It co-cast on the glass (support body) surface with the adjusted applicator. Thereafter, it was dried at 70 ° C. for 6 minutes in a heating oven (Incubator Safety Oven SPHH-202 manufactured by Espec Corp.).
Thereafter, the laminate (co-cast sample) in which the layer of dope A (first layer) and the layer of dope B (second layer) are laminated is peeled off from the glass surface, and the dope A layer after the frame is stretched Using a proximity-type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultra-high pressure mercury lamp with the surface facing the quartz exposure mask at an interval, a quartz exposure mask (mask pattern exposure part 600 nm) Proximity exposure (pattern exposure) was performed at a light irradiation amount of 300 mJ / cm 2 via a square, a light-shielding portion 600 nm.
Thereafter, heat treatment was performed at 170 ° C. for 60 minutes in the heating oven used in the above drying treatment to obtain a patterning sample (film sample) of Example 5-1.
[実施例5-2~5-6]
 ペンタエリスリトールテトラアクリレートの添加量、開始剤の添加量を表4に示す値とした点以外、実施例5-1と同様にパターニングサンプルを得た。
[Examples 5-2 to 5-6]
A patterning sample was obtained in the same manner as in Example 5-1, except that the addition amount of pentaerythritol tetraacrylate and the addition amount of the initiator were the values shown in Table 4.
[比較例4]
 下記表4に記載した処方のドープを用いた以外、実施例5-1と同様にパターニングサンプルを得た。
[Comparative Example 4]
A patterning sample was obtained in the same manner as in Example 5-1, except that the dope having the formulation described in Table 4 below was used.
 得られた実施例及び比較例の試料を上記と同様に評価し、下記表4に結果を記載した。 The samples of the obtained examples and comparative examples were evaluated in the same manner as described above, and the results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例5-1のIrg Oxe01の代わりにIrg 819を、ペンタエリスリトールテトラアクリレート100質量部の代わりに、ペンタエリスリトールテトラアクリレート300質量部を添加する他は、実施例5-1の方法でフィルムを作成した。
 このフィルムに、レーザー光(波長 405nm)を用い、スポット径600nm、露光間隔600nmのパターン露光を行い、170℃で60分加熱処理を行い、パターニングサンプル(実施例6)を得た。この試料を走査型プローブ顕微鏡SPA400(SII社製)で観察した。この試料の凹凸構造の凸部の平均高さは59nmであり、パターン比は4.9%であった。
A film was produced by the method of Example 5-1, except that Irg 819 was added instead of Irg Oxe01 of Example 5-1, and 300 parts by weight of pentaerythritol tetraacrylate was added instead of 100 parts by weight of pentaerythritol tetraacrylate. did.
This film was subjected to pattern exposure using a laser beam (wavelength: 405 nm) with a spot diameter of 600 nm and an exposure interval of 600 nm, followed by heat treatment at 170 ° C. for 60 minutes to obtain a patterning sample (Example 6). This sample was observed with a scanning probe microscope SPA400 (manufactured by SII). The average height of the protrusions of the uneven structure of this sample was 59 nm, and the pattern ratio was 4.9%.
[実施例6-1]
<第1の層形成用組成物(重合性化合物含有セルロースアシレートドープP)の調製>
下記組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、ドープPを調製した。
セルロースアセテート(置換度2.86、重合度350) 100質量部
ペンタエリスリトールテトラアクリレート(新中村化学製A-TMMT)
                           100質量部
光重合開始剤(BASF社製 Irg OXE-01)    5質量部
光重合開始剤(BASF社製 Irg 819)       5質量部
フッ素系レベリング剤(DIC製メガファックF-784)0.1質量部
メチレンクロライド                  525質量部
メタノール                      133質量部
1-ブタノール                      7質量部
[Example 6-1]
<Preparation of first layer forming composition (polymerizable compound-containing cellulose acylate dope P)>
The following composition was put into a mixing tank and stirred to dissolve each component to prepare a dope P.
Cellulose acetate (degree of substitution 2.86, degree of polymerization 350) 100 parts by weight pentaerythritol tetraacrylate (A-TMMT manufactured by Shin-Nakamura Chemical)
100 parts by mass photopolymerization initiator (Irg OXE-01 manufactured by BASF) 5 parts by mass photopolymerization initiator (Irg 819 manufactured by BASF) 5 parts by mass fluorine-based leveling agent (Megafac F-784 manufactured by DIC) 0.1 mass Methylene chloride 525 parts by mass Methanol 133 parts by mass 1-butanol 7 parts by mass
<セルロースアシレートフィルムの流延製膜>
 上記のドープPを用い、膜厚(設定膜厚)が60μmになるようにギャップを調整したアプリケーターにてガラス(支持体)表面に流延した。その後、加熱オーブンにて70℃で6分間乾燥処理した。
 その後、試料をガラス面から剥ぎ取った。
<Casting of cellulose acylate film>
Using the above-mentioned dope P, it was cast on the surface of glass (support) with an applicator in which the gap was adjusted so that the film thickness (set film thickness) was 60 μm. Then, it dried for 6 minutes at 70 degreeC in heating oven.
Thereafter, the sample was peeled off from the glass surface.
<表裏面に異なるパターンのあるサンプルの作製>
 試料の片方の面に露光パターンが格子状となる露光マスク(図7のマスクパターンに該当。露光部幅20μm、遮光部幅100μm)を接触させ、マスク側からレーザー光(405nm)を、照射量100mJ/cmとなるよう照射した。次に格子状の露光マスクを外し、試料のもう片方の面に露光パターンが四角(図6のマスクパターンに該当。露光部幅20μm、遮光部幅100μm)を接触させ、マスク側から紫外線(強度の中心が365nm)を、照射量が100mJ/cmとなるよう照射した。
 その後、上記の乾燥処理で用いた加熱オーブンにて170℃で60分間加熱処理を行い、パターニングサンプル(フィルムサンプル)を得た。
 このサンプルは、光学顕微鏡で観察した結果、格子マスクパターン側から露光した側には格子パターンが凸に(フィルムから飛び出している様)、四角マスクパターン側から露光した側には四角パターンが凸に形成されていることが確認された。
<Production of samples with different patterns on the front and back sides>
An exposure mask (corresponding to the mask pattern in FIG. 7; exposure part width 20 μm, light-shielding part width 100 μm) in which the exposure pattern has a grid pattern is brought into contact with one surface of the sample, and laser light (405 nm) is irradiated from the mask side. Irradiation was performed to 100 mJ / cm 2 . Next, the grid-shaped exposure mask is removed, and the square of the exposure pattern (corresponding to the mask pattern in FIG. 6; exposure part width 20 μm, light-shielding part width 100 μm) is brought into contact with the other side of the sample. Was irradiated at a dose of 100 mJ / cm 2 .
Then, the heat processing was performed at 170 degreeC for 60 minute (s) in the heating oven used by said drying process, and the patterning sample (film sample) was obtained.
As a result of observing this sample with an optical microscope, the lattice pattern is convex on the side exposed from the lattice mask pattern side (like protruding from the film), and the square pattern is convex on the side exposed from the square mask pattern side. It was confirmed that it was formed.
 本発明によれば、凹凸の高低差が大きい凹凸構造を有する物品の製造方法及び凹凸構造を有する物品を提供することが可能となる。 According to the present invention, it is possible to provide a method for manufacturing an article having a concavo-convex structure with a large unevenness level and an article having a concavo-convex structure.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2014年9月30日出願の日本特許出願(特願2014-202538)及び2015年8月26日出願の日本特許出願(特願2015-167014)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on September 30, 2014 (Japanese Patent Application No. 2014-202538) and a Japanese patent application filed on August 26, 2015 (Japanese Patent Application No. 2015-167014). Incorporated herein by reference.
 1   層
 1a  光照射領域(露光部)
 2   フォトマスク
 3   光
1 layer 1a Light irradiation area (exposure part)
2 Photomask 3 Light

Claims (15)

  1.  重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の光重合開始剤と、セルロースアシレートと、を含む層を形成する工程と、
     前記層の表面にパターン露光する工程と、
     前記パターン露光後の層を加熱する工程と、
    を有し、前記パターン露光の非露光部が凹部となる凹凸構造を形成する、凹凸構造を有する物品の製造方法。
    Forming a layer comprising a polymerizable compound, at least one photopolymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, and cellulose acylate;
    Pattern exposure on the surface of the layer;
    Heating the layer after pattern exposure;
    A method for producing an article having a concavo-convex structure, wherein a concavo-convex structure is formed in which a non-exposed portion of the pattern exposure is a concave portion.
  2.  前記層を形成する工程が、支持体上に、重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の光重合開始剤と、セルロースアシレートと、を含む組成物を流延して層を形成する工程であり、
     次いで、前記層を前記支持体から剥ぎ取る工程を有し、
     前記剥ぎ取った層に対して、前記パターン露光する工程を行う、請求項1に記載の凹凸構造を有する物品の製造方法。
    The step of forming the layer comprises, on the support, a polymerizable compound, at least one photopolymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, and cellulose acylate. And forming a layer by casting a composition comprising:
    Then, the step of peeling the layer from the support,
    The manufacturing method of the article | item which has the uneven structure of Claim 1 which performs the process of carrying out the said pattern exposure with respect to the said peeled layer.
  3.  前記層中におけるセルロースアシレートの質量に対する重合性化合物の質量は、50質量%以上150質量%以下である、請求項1又は2に記載の凹凸構造を有する物品の製造方法。 The method for producing an article having a concavo-convex structure according to claim 1 or 2, wherein a mass of the polymerizable compound with respect to a mass of the cellulose acylate in the layer is 50% by mass or more and 150% by mass or less.
  4.  前記層中における重合性化合物の質量に対する光重合開始剤の質量は、5質量%以上25質量%以下である、請求項1~3のいずれか1項に記載の凹凸構造を有する物品の製造方法。 The method for producing an article having a concavo-convex structure according to any one of claims 1 to 3, wherein a mass of the photopolymerization initiator with respect to a mass of the polymerizable compound in the layer is 5% by mass or more and 25% by mass or less. .
  5.  重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の光重合開始剤と、セルロースアシレートと、を含む第1の層、及び、
     樹脂を含有する第2の層を有する積層体を形成する工程と、
     前記第1の層の表面にパターン露光する工程と、
     前記パターン露光後の第1の層を加熱する工程と、
    を有し、前記パターン露光の非露光部が凹部となる凹凸構造を形成する、凹凸構造を有する物品の製造方法。
    A first layer comprising a polymerizable compound, at least one photopolymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, and cellulose acylate; and
    Forming a laminate having a second layer containing a resin;
    Pattern exposure on the surface of the first layer;
    Heating the first layer after the pattern exposure;
    A method for producing an article having a concavo-convex structure, wherein a concavo-convex structure is formed in which a non-exposed portion of the pattern exposure is a concave portion.
  6.  前記第1の層を形成する工程が、支持体上に、重合性化合物と、オキシムエステル系光重合開始剤及びアシルホスフィンオキサイド系光重合開始剤から選択された少なくとも一種の光重合開始剤と、セルロースアシレートと、を含む組成物を流延して第1の層を形成する工程であり、
     次いで、前記第1の層を前記支持体から剥ぎ取る工程を有し、
     前記剥ぎ取った第1の層に対して、前記パターン露光する工程を行う、請求項5に記載の凹凸構造を有する物品の製造方法。
    The step of forming the first layer comprises, on the support, a polymerizable compound, at least one photopolymerization initiator selected from an oxime ester photopolymerization initiator and an acylphosphine oxide photopolymerization initiator, A step of casting a composition comprising cellulose acylate to form a first layer;
    Then, the step of peeling the first layer from the support,
    The manufacturing method of the article | item which has the uneven structure of Claim 5 which performs the process of carrying out the said pattern exposure with respect to the said peeled 1st layer.
  7.  前記第1の層中におけるセルロースアシレートの質量に対する重合性化合物の質量は、50質量%以上1000質量%以下である、請求項5又は6に記載の凹凸構造を有する物品の製造方法。 The method for producing an article having an uneven structure according to claim 5 or 6, wherein a mass of the polymerizable compound with respect to a mass of the cellulose acylate in the first layer is 50% by mass or more and 1000% by mass or less.
  8.  前記第1の層中における重合性化合物の質量に対する光重合開始剤の質量は、5質量%以上25質量%以下である、請求項5~7のいずれか1項に記載の凹凸構造を有する物品の製造方法。 The article having a concavo-convex structure according to any one of claims 5 to 7, wherein a mass of the photopolymerization initiator with respect to a mass of the polymerizable compound in the first layer is 5% by mass or more and 25% by mass or less. Manufacturing method.
  9.  前記パターン露光する工程において、光照射量を50mJ/cm以上1000mJ/cm以下とする、請求項1~8のいずれか1項に記載の凹凸構造を有する物品の製造方法。 The method for producing an article having a concavo-convex structure according to any one of claims 1 to 8, wherein, in the pattern exposure step, a light irradiation amount is 50 mJ / cm 2 or more and 1000 mJ / cm 2 or less.
  10.  前記重合性化合物は、エチレン性不飽和結合を含む重合性基を有する請求項1~9のいずれか1項に記載の凹凸構造を有する物品の製造方法。 The method for producing an article having a concavo-convex structure according to any one of claims 1 to 9, wherein the polymerizable compound has a polymerizable group containing an ethylenically unsaturated bond.
  11.  前記エチレン性不飽和結合を含む重合性基は、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイル基及びメタクリロイル基からなる群から選ばれる重合性基である請求項10に記載の凹凸構造を有する物品の製造方法。 The polymerizable group containing an ethylenically unsaturated bond is a polymerizable group selected from the group consisting of an acryloyloxy group, a methacryloyloxy group, an acryloyl group, and a methacryloyl group. Method.
  12.  前記重合性化合物は、2官能以上の多官能重合性化合物である請求項1~11のいずれか1項に記載の凹凸構造を有する物品の製造方法。 The method for producing an article having an uneven structure according to any one of claims 1 to 11, wherein the polymerizable compound is a polyfunctional polymerizable compound having two or more functions.
  13.  前記物品は長尺状フィルムである、請求項1~12のいずれか1項に記載の凹凸構造を有する物品の製造方法。 The method for producing an article having an uneven structure according to any one of claims 1 to 12, wherein the article is a long film.
  14.  請求項1~13のいずれか1項に記載の製造方法により製造され、凸部の平均高さが凹凸の平均長さに対して1%以上である、凹凸構造を有する物品。 An article having a concavo-convex structure manufactured by the manufacturing method according to any one of claims 1 to 13, wherein the average height of the convex portions is 1% or more with respect to the average length of the concave and convex portions.
  15.  凹凸構造を有する面から厚み方向に向かって、前記重合性化合物の重合体の濃度が低下する濃度勾配を有する、請求項14に記載の凹凸構造を有する物品。 The article having a concavo-convex structure according to claim 14, which has a concentration gradient in which the concentration of the polymer of the polymerizable compound decreases from the surface having the concavo-convex structure in the thickness direction.
PCT/JP2015/074307 2014-09-30 2015-08-27 Method for manufacturing article having recessed and projected structure, and article having recessed and projected structure WO2016052026A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-202538 2014-09-30
JP2014202538 2014-09-30
JP2015-167014 2015-08-26
JP2015167014A JP6424150B2 (en) 2014-09-30 2015-08-26 Method for manufacturing article having concavo-convex structure and article having concavo-convex structure

Publications (1)

Publication Number Publication Date
WO2016052026A1 true WO2016052026A1 (en) 2016-04-07

Family

ID=55630072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074307 WO2016052026A1 (en) 2014-09-30 2015-08-27 Method for manufacturing article having recessed and projected structure, and article having recessed and projected structure

Country Status (1)

Country Link
WO (1) WO2016052026A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854734A (en) * 1994-08-12 1996-02-27 Tokyo Ohka Kogyo Co Ltd Photosensitive resin composition and photosensitive dry film using the same
JPH10508882A (en) * 1994-11-23 1998-09-02 ビーエーエスエフ アクチェンゲゼルシャフト Method for coating and printing a support
JP2002082428A (en) * 2000-09-06 2002-03-22 Kyoto Elex Kk Alkali developable photosensitive paste composition
JP2004037522A (en) * 2002-06-28 2004-02-05 Hitachi Chem Co Ltd Surface unevenness formation method, optical film and diffusion reflecting plate obtained by the method and diffusion reflecting plate production method
WO2007144967A1 (en) * 2006-06-13 2007-12-21 Sekisui Chemical Co., Ltd. Process for producing patterned film and photosensitive resin composition
JP2009192964A (en) * 2008-02-18 2009-08-27 Fujifilm Corp Optical recording composition and holographic recording medium
JP2009237057A (en) * 2008-03-26 2009-10-15 Taiyo Ink Mfg Ltd Photocurable resin composition, dry film thereof, cured object, and printed wiring board using same
JP2010008713A (en) * 2008-06-26 2010-01-14 Mitsubishi Chemicals Corp Composition for forming hologram recording layer, hologram recording material using the same, and hologram optical recording medium
JP2010501687A (en) * 2006-08-30 2010-01-21 スティッチング ダッチ ポリマー インスティテュート Method for preparing polymer relief structure
JP2010524037A (en) * 2007-04-11 2010-07-15 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Advantageous recording medium for holographic applications
WO2012090532A1 (en) * 2010-12-28 2012-07-05 太陽インキ製造株式会社 Photocurable resin composition, dry film and cured object obtained therefrom, and printed wiring board obtained using these
JP2013080020A (en) * 2011-09-30 2013-05-02 Taiyo Holdings Co Ltd Photosensitive conductive resin composition, photosensitive conductive paste and conductor pattern

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854734A (en) * 1994-08-12 1996-02-27 Tokyo Ohka Kogyo Co Ltd Photosensitive resin composition and photosensitive dry film using the same
JPH10508882A (en) * 1994-11-23 1998-09-02 ビーエーエスエフ アクチェンゲゼルシャフト Method for coating and printing a support
JP2002082428A (en) * 2000-09-06 2002-03-22 Kyoto Elex Kk Alkali developable photosensitive paste composition
JP2004037522A (en) * 2002-06-28 2004-02-05 Hitachi Chem Co Ltd Surface unevenness formation method, optical film and diffusion reflecting plate obtained by the method and diffusion reflecting plate production method
WO2007144967A1 (en) * 2006-06-13 2007-12-21 Sekisui Chemical Co., Ltd. Process for producing patterned film and photosensitive resin composition
JP2010501687A (en) * 2006-08-30 2010-01-21 スティッチング ダッチ ポリマー インスティテュート Method for preparing polymer relief structure
JP2010524037A (en) * 2007-04-11 2010-07-15 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Advantageous recording medium for holographic applications
JP2009192964A (en) * 2008-02-18 2009-08-27 Fujifilm Corp Optical recording composition and holographic recording medium
JP2009237057A (en) * 2008-03-26 2009-10-15 Taiyo Ink Mfg Ltd Photocurable resin composition, dry film thereof, cured object, and printed wiring board using same
JP2010008713A (en) * 2008-06-26 2010-01-14 Mitsubishi Chemicals Corp Composition for forming hologram recording layer, hologram recording material using the same, and hologram optical recording medium
WO2012090532A1 (en) * 2010-12-28 2012-07-05 太陽インキ製造株式会社 Photocurable resin composition, dry film and cured object obtained therefrom, and printed wiring board obtained using these
JP2013080020A (en) * 2011-09-30 2013-05-02 Taiyo Holdings Co Ltd Photosensitive conductive resin composition, photosensitive conductive paste and conductor pattern

Similar Documents

Publication Publication Date Title
JP7168696B2 (en) Photosensitive resin composition for touch panel, its cured film, and touch panel having the cured film
TWI736530B (en) Coating curable composition having marring resistance
JP5596367B2 (en) Pattern manufacturing method
TWI735678B (en) Anti-glare hard coat laminate
TW200941032A (en) Anti-glare film and production method thereof
JP6424150B2 (en) Method for manufacturing article having concavo-convex structure and article having concavo-convex structure
JP6213689B1 (en) Photosensitive resin composition, cured film, laminate, touch panel member and method for producing cured film
TWI571456B (en) Photosensitive resin composition
JP5453169B2 (en) Anti-glare gas barrier film and method for producing the same
WO2016052026A1 (en) Method for manufacturing article having recessed and projected structure, and article having recessed and projected structure
JP6259374B2 (en) Method for manufacturing article having concavo-convex structure
TW202227518A (en) Curable composition and cured film
WO2017155003A1 (en) Transfer film, electrode protective film, laminate, capacitive input device, method for manufacturing capacitive input device, and method for manufacturing transfer film
CN113614585A (en) Anti-glare laminate
JP2005042072A (en) Curable composition and cured product using the same
JP6651821B2 (en) Method of manufacturing hard coat film, method of manufacturing polarizing plate including hard coat film, method of manufacturing transmission type liquid crystal display including hard coat film
JP6658544B2 (en) Method for manufacturing resin sheet
JP6292406B2 (en) Manufacturing method of resin sheet
TW201912691A (en) Resin sheet and hardened composition for producing the resin sheet
JP6561446B2 (en) Method for producing photocurable resin molding
US20240004291A1 (en) Composition, transfer film, manufacturing method of laminate, cured film, and device
TW202214713A (en) Curable composition Improving the hardenability of the curable composition
TW202229369A (en) Curable composition
CN113467186A (en) Photosensitive resin composition, cured film thereof, and color filter having the cured film
WO2017043525A1 (en) Bonding film and method for producing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846159

Country of ref document: EP

Kind code of ref document: A1