WO2016051769A1 - 低温流体用二重構造管及び低温流体用二重構造貯槽 - Google Patents

低温流体用二重構造管及び低温流体用二重構造貯槽 Download PDF

Info

Publication number
WO2016051769A1
WO2016051769A1 PCT/JP2015/004933 JP2015004933W WO2016051769A1 WO 2016051769 A1 WO2016051769 A1 WO 2016051769A1 JP 2015004933 W JP2015004933 W JP 2015004933W WO 2016051769 A1 WO2016051769 A1 WO 2016051769A1
Authority
WO
WIPO (PCT)
Prior art keywords
inert gas
liquefied
tube
low
pipe
Prior art date
Application number
PCT/JP2015/004933
Other languages
English (en)
French (fr)
Inventor
峻太郎 海野
智教 高瀬
友章 梅村
英司 川越
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to DE112015004496.5T priority Critical patent/DE112015004496T5/de
Priority to US15/515,757 priority patent/US10139020B2/en
Publication of WO2016051769A1 publication Critical patent/WO2016051769A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/18Double-walled pipes; Multi-channel pipes or pipe assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/12Arrangements for supporting insulation from the wall or body insulated, e.g. by means of spacers between pipe and heat-insulating material; Arrangements specially adapted for supporting insulated bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/141Arrangements for the insulation of pipes or pipe systems in which the temperature of the medium is below that of the ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2201/00Special arrangements for pipe couplings
    • F16L2201/40Special arrangements for pipe couplings for special environments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0375Thermal insulations by gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0375Thermal insulations by gas
    • F17C2203/0379Inert
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0358Pipes coaxial
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a dual structure tube for cryogenic fluid and a dual structure storage tank for cryogenic fluid, and particularly relates to a structure that can transport or store a low temperature liquefied gas with a simple heat insulating structure.
  • a heat insulating structure in which the outer peripheral side of the single tube is covered with a heat insulating material such as a foam has been widely adopted.
  • a cryogenic low-temperature liquefied gas for example, liquefied helium, liquefied hydrogen, liquefied nitrogen, liquefied oxygen, etc.
  • the above-mentioned heat insulation structure is insufficient, and the inner tube and the outer tube are used to prevent convective heat transfer.
  • a vacuum heat insulating double structure tube using a heat insulating effect by forming a vacuum layer between the tube and this vacuum layer has been put to practical use.
  • the supply pipe line double structure pipe for cryogenic fluid
  • it is composed of an inner pipe made of FRP and an outer pipe made of FRP, and a non-woven fabric in which aluminum is vapor-deposited on the outer peripheral surface of the inner pipe
  • a heat insulating structure is employed in which a vacuum layer is formed between the inner tube and the outer tube to prevent vaporization of the liquefied helium flowing inside the inner tube.
  • the gas storage tank for storing the low-temperature fluid similarly to the above-described double structure pipe, it is composed of an inner tank that stores the low-temperature fluid and an outer tank that is externally fitted with a space in the inner tank.
  • a vacuum heat insulation double structure storage tank in which a vacuum layer is formed in the space between the inner tank and the outer tank is also generally known.
  • An object of the present invention is to provide a dual structure tube for cryogenic fluid and a dual structure storage tank for cryogenic fluid having a simple vacuum insulation double structure.
  • a dual structure tube for cryogenic fluid includes an inner tube through which a cryogenic fluid flows and an outer tube fitted in the inner tube with a sealed cylindrical space. And a cylindrical space between the inner tube and the outer tube is filled with an inert gas having a melting point and a boiling point equal to or higher than the temperature of the low-temperature fluid, and the inside of the inner tube is filled with the low temperature
  • the inert gas is liquefied or solidified, and at least one of a liquefied inert gas layer and a solid inert gas layer is formed on the outer peripheral surface of the inner tube, so that the cylindrical space is formed.
  • a pseudo-vacuum layer close to vacuum is formed.
  • the double-structure tube for cryogenic fluid has an inert gas having a melting point and boiling point higher than the temperature of the cryogenic fluid in the cylindrical space between the inner tube and the outer tube.
  • the inert gas is liquefied or solidified to form at least one of a liquefied inert gas layer and a solid inert gas layer on the outer peripheral surface of the inner tube.
  • the inert gas having a melting point and boiling point higher than the temperature of the cryogenic fluid filled in the cylindrical space is cooled and liquefied or solidified to solidify or condense on the outer peripheral surface of the inner pipe.
  • the liquefied inert gas layer and the solid inert gas layer is formed, so that the cylindrical space can be easily put into a pseudo vacuum state without using a vacuum pump.
  • an inert gas layer made of inert gas is formed in the cylindrical space between the inner tube and the outer tube, so that gas pressure acts on the outer tube from the inside.
  • the dual structure tube for a low-temperature fluid includes a liquefied inert gas dropped between the liquefied inert gas layer formed between the inner tube and the outer tube and formed on the outer peripheral surface of the inner tube. You may provide the receiving member which receives at least one of the solidification inert gas peeled off from the said solid inert gas layer. According to this configuration, the liquefied inert gas and the solid inert gas layer dropped between the liquefied inert gas layer formed on the outer peripheral surface of the inner tube and provided between the inner tube and the outer tube are peeled off.
  • the receiving member for receiving at least one of the solidified inert gas is prevented, at least one of the liquefied inert gas and the solidified inert gas is prevented from coming into direct contact with the outer tube exposed to normal temperature, It is possible to prevent the vacuum state of the pseudo vacuum layer from being deteriorated due to evaporation of at least one of the liquefied inert gas and the solidified inert gas.
  • the receiving member may be provided on the lower side of the inner pipe so as to be able to conduct heat between the inner pipe and the inner pipe. According to this configuration, since the receiving member is provided in the space below the inner tube so as to be able to conduct heat with the inner tube, the receiving member is disposed below the liquefied inert gas layer formed on the outer peripheral surface of the inner tube. At least one of the liquefied inert gas dropped onto the solid inert gas and the solidified inert gas peeled off from the solid inert gas layer can be reliably received by the receiving member.
  • the receiving member is cooled by the low-temperature fluid through heat conduction with the inner tube, it is possible to prevent evaporation of at least one of the liquefied inert gas and the solidified inert gas received by the receiving member. .
  • the receiving member is provided at an outer peripheral portion of the inner pipe extending in a vertical direction at appropriate intervals in the length direction, and an inner peripheral end is fixed to the outer peripheral portion of the inner pipe.
  • a plurality of annular trays may be provided.
  • the receiving member is composed of a plurality of annular trays that are provided at appropriate intervals in the length direction on the outer peripheral portion of the inner tube extending in the vertical direction and whose inner peripheral ends are fixed to the outer peripheral portion of the inner tube.
  • the liquefied inert gas dropped from the liquefied inert gas layer formed on the outer peripheral surface of the inner tube along the outer peripheral surface and the solidified inert gas peeled off from the solid inert gas layer along the outer peripheral surface At least one can be reliably received by the annular tray.
  • the cryogenic fluid may be either liquefied helium or liquefied hydrogen
  • the inert gas may be carbon dioxide.
  • the dual structure storage tank for cryogenic fluid includes an inner tank in which a cryogenic fluid is accommodated, and an outer tank that is fitted outside the inner tank with a sealed space.
  • the space between the tank and the outer tank is filled with an inert gas having a melting point and a boiling point equal to or higher than the temperature of the low-temperature fluid, and when the low-temperature fluid is stored inside the inner tank, As the inert gas is liquefied or solidified and at least one of a liquefied inert gas layer and a solid inert gas layer is formed on the outer peripheral surface of the inner tank, a pseudo-vacuum layer close to a vacuum in the sealed space Is formed.
  • the space between the inner tank and the outer tank is filled with an inert gas having a melting point and boiling point equal to or higher than the temperature of the low temperature fluid.
  • a cryogenic fluid is contained, and the inert gas is liquefied or solidified to form at least one of a liquefied inert gas layer and a solid inert gas layer on the outer peripheral surface of the inner tank, so that the space is close to a vacuum. Since the pseudo vacuum layer is formed, it is possible to prevent convective heat transfer in a space sealed by the pseudo vacuum layer having a simple structure and to ensure heat insulation performance.
  • FIG. 1 It is a top view of the double-structure pipe
  • the dual structure tube 1 for cryogenic fluid includes an inner tube 2 and an outer tube 3 fitted outside the inner tube 2 with a sealed cylindrical space. Yes.
  • a low temperature fluid 4 for example, liquefied helium or liquefied hydrogen
  • a vacuum is formed in the cylindrical space between the inner tube 2 and the outer tube 3.
  • a pseudo-vacuum layer 5 close to is formed.
  • the inner tube 2 and the outer tube 3 are manufactured using, for example, a material tube made of stainless steel or aluminum alloy.
  • the size of the inner tube 2 is, for example, about 6 inches
  • the size of the outer tube 3 is, for example, about 8 inches
  • the thicknesses of the tube walls of the inner tube 2 and the outer tube 3 are, for example, 1.0-3. 0 mm.
  • these numerical values are examples, and are not limited to these numerical values.
  • a super insulation for blocking radiant heat is wound around the outer periphery of the inner tube 2.
  • the cylindrical space between the inner tube 2 and the outer tube 3 is filled with an inert gas (for example, carbon dioxide gas or nitrogen gas) having a melting point and boiling point higher than the temperature of the cryogenic fluid 4, and the inside of the inner tube 2.
  • an inert gas for example, carbon dioxide gas or nitrogen gas
  • the inert gas is liquefied or solidified to form at least one of the liquefied inert gas layer 6a and the solid inert gas layer 6b on the outer peripheral surface of the inner tube 2, A pseudo vacuum layer 5 is formed.
  • the thickness of the solid inert gas layer 6b is, for example, about 0.02 to 0.05 mm, and the pseudo vacuum layer 5 at this time
  • the pressure is, for example, about 4.0 ⁇ 10 ⁇ 7 to 7.0 ⁇ 10 ⁇ 8 Pa, but is not necessarily limited to this range.
  • the pseudo vacuum layer 5 is formed in the cylindrical space.
  • the cylindrical space contains An inert gas layer of an inert gas having a melting point and a boiling point equal to or higher than the temperature of the cryogenic fluid 4 flowing inside the inner pipe 2 is formed.
  • the low-temperature fluid 4 is, for example, any one of liquefied helium and liquefied hydrogen, but is not limited thereto, and may be a gas-liquid two-phase fluid of the above liquefied gas.
  • Carbon dioxide is suitable as the inert gas having a melting point and boiling point equal to or higher than the temperature of the low-temperature fluid 4, but other inert gases can be used depending on the type of the low-temperature fluid 4. In the case of carbon dioxide, since it is solidified almost without being liquefied, there is an effect that it is difficult to separate from the outer peripheral surface of the inner tube as compared with other inert gases.
  • the dual structure pipe 1 for cryogenic fluid includes a receiving member 7 provided in a cylindrical space between the inner pipe 2 and the outer pipe 3.
  • the receiving member 7 receives at least one of the liquefied inert gas dropped from the liquefied inert gas layer 6a formed on the outer peripheral surface of the inner tube 2 and the solidified inert gas dropped from the solid inert gas layer 6b.
  • the receiving member 7 includes at least one or more bowl-shaped trays 8 provided on the inner tube 2 extending in the horizontal direction, and a plurality of annular trays 9 provided on the inner tube 2 extending in the vertical direction. Yes. In FIG. 1, one bowl-shaped tray 8 is partially illustrated, and three annular trays 9 among the plurality of annular trays 9 are illustrated.
  • the bowl-shaped receiving tray 8 As shown in FIGS. 1 to 3, the bowl-shaped tray 8 is provided below the inner tube 2. The bowl-shaped receiving tray 8 is provided over the entire length in the longitudinal direction of the pipe portion extending in the horizontal direction or the inclined direction of the inner pipe 2. The bowl-shaped receiving tray 8 is formed by bending a stainless steel thin plate excellent in heat conduction performance and has a vertical cross section of a semicircular shape or a U shape.
  • a support plate member 11 for supporting and fixing the bowl-shaped tray 8 to the inner pipe 2 is provided between the inner tube 2 and the bowl-shaped tray 8.
  • the support plate member 11 is composed of one or more strip-like thin plates made of stainless steel that are continuously or intermittently arranged in the longitudinal direction of the inner tube 2.
  • the upper end portion of the support plate member 11 is joined to the lower end portion of the outer peripheral surface of the inner tube 2, and the lower end portion of the support plate member 11 is joined to the center portion of the upper surface of the bowl-shaped receiving tray 8.
  • the curvature of the bowl-shaped tray 8 is set to be smaller than the curvature of the inner tube 2 and larger than the curvature of the outer tube 3. Both end portions (upper end portions) in the radial direction of the bowl-shaped receiving tray 8 are provided so as to be located slightly below the height position of the axis of the inner tube 2.
  • each annular tray 9 is an annular body having a circular shape in plan view, and is configured by an outer peripheral side portion of a flat cup-shaped body, and an inner peripheral end thereof is fixed to an outer peripheral portion of the inner tube 2. That is, each annular receiving tray 9 is provided so as to protrude radially outward from the outer peripheral portion of the inner tube 2.
  • the operation and effect of the dual structure pipe 1 for cryogenic fluid will be described.
  • an inert gas having a melting point and boiling point equal to or higher than the temperature of the low-temperature fluid 4 flows inside the inner tube 2.
  • the pseudo-vacuum that is close to a vacuum in the cylindrical space is formed by liquefying or solidifying the inert gas and forming at least one of the liquefied inert gas layer 6a and the solid inert gas layer 6b on the outer peripheral surface of the inner tube 2. Since the layer 5 is formed, the quasi-vacuum layer 5 having a simple structure can prevent convective heat transfer in the cylindrical space and ensure heat insulation performance.
  • the inert gas having a melting point and boiling point higher than the temperature of the cryogenic fluid 4 filled in the cylindrical space is cooled and liquefied or solidified, and the outer circumference of the inner pipe 2. Since at least one of the liquefied inert gas layer 6a and the solid inert gas layer 6b is formed by solidifying or adhering to the surface, the cylindrical space can be easily put into a pseudo vacuum state without using a vacuum pump. Therefore, labor and cost can be reduced as compared with the case of vacuuming.
  • an inert gas layer made of an inert gas is formed in the cylindrical space between the inner tube 2 and the outer tube 3.
  • the gas pressure acts from the outside to prevent the entry of outside air into the outer pipe 3, and the cylinder between the inner pipe 2 and the outer pipe 3 is repaired when the double-structure pipe 1 for cryogenic fluid is damaged. It is only necessary to fill the gas space with an inert gas.
  • a receiving member 7 is provided for receiving at least one of the liquefied inert gas dropped from the liquefied inert gas layer 6a formed on the outer peripheral surface of the inner tube 2 and the solidified inert gas peeled off from the solid inert gas layer 6b. Therefore, the outer tube 3 exposed to normal temperature, at least one of the liquefied inert gas and the solidified inert gas are prevented from coming into direct contact with each other, and by evaporation of at least one of the liquefied inert gas and the solidified inert gas. It is possible to prevent the vacuum state of the pseudo vacuum layer 5 from deteriorating. Further, since the receiving member 7 is cooled by the low temperature fluid 4 through the inner pipe 2, it is possible to prevent evaporation of at least one of the liquefied inert gas and the solidified inert gas received by the receiving member 7. .
  • the bowl-shaped receiving tray 8 Since the bowl-shaped receiving tray 8 is provided in the space below the inner tube 2 so as to be able to conduct heat with the inner tube 2, the bowl-shaped receiving plate 8 extends from the liquefied inert gas layer 6 a formed on the outer peripheral surface of the inner tube 2. At least one of the liquefied inert gas dropped on the side and the solidified inert gas peeled off from the solid inert gas layer 6 b can be reliably received by the bowl-shaped receiving tray 8. Further, since the bowl-shaped receiving tray 8 is connected to the inner tube 2 by one or a plurality of support plate members 11 so as to be able to conduct heat, at least one of liquefied inert gas and solidified inert gas accumulated in the receiving tray 8 is used. Evaporation can be prevented.
  • the plurality of annular receiving trays 9 are provided on the outer peripheral portion of the inner tube 2 extending in the vertical direction at appropriate intervals in the length direction, and the inner peripheral ends are joined to the outer peripheral portion of the inner tube 2. At least one of the liquefied inert gas dropped along the outer peripheral surface from the liquefied inert gas layer 6a formed on the outer peripheral surface and the solidified inert gas peeled off from the solid inert gas layer 6b along the outer peripheral surface is formed into an annular shape. It can be reliably received by the tray 9.
  • the dual structure storage tank 21 for low-temperature fluid includes an inner tank 22 and an outer tank 23 that is fitted outside the inner tank 22 with a space sealed.
  • a low-temperature fluid for example, liquefied helium, liquefied hydrogen, etc.
  • a sealed space between the inner tank 22 and the outer tank 23 is formed.
  • the inner tub 22 is made of, for example, stainless steel, and has a substantially cylindrical body part 22a, an upper end plate part 22b welded to the upper end of the body part 22a, and a lower side welded to the lower end of the body part 22a. Although it is integrally formed from the end plate portion 22c, this shape is not particularly limited and can be appropriately changed.
  • the outer tub 23 is made of, for example, stainless steel or aluminum alloy and is formed in a box shape. However, this shape is not particularly limited and can be changed as appropriate.
  • the inner tub 22 includes a plurality of support legs 22d extending downward from the bottom.
  • the plurality of support legs 22d are provided on the outer peripheral portion of the lower end plate portion 22c of the inner tub 22 at positions equally divided in the circumferential direction.
  • Each support leg 22d is configured as a vertically long block body made of a thin steel plate.
  • the space between the inner tub 22 and the outer tub 23 is filled with an inert gas (for example, nitrogen gas) having a melting point and a boiling point equal to or higher than the temperature of the low-temperature fluid.
  • an inert gas for example, nitrogen gas
  • the dual structure storage tank 21 for a cryogenic fluid includes a receiving member 27 provided between an inner tank 22 and an outer tank 23.
  • the receiving member 27 receives at least one of the liquefied inert gas dropped from the liquefied inert gas layer formed on the outer peripheral surface of the inner tank 22 and the solidified inert gas dropped from the solid inert gas layer.
  • the receiving member 27 is constituted by a tray provided on the lower side of the inner tank 22. This tray is formed in a partially spherical shape by bending a thin plate made of stainless steel.
  • a support portion 31 made of stainless steel for supporting and fixing the receiving member 27 to the inner tank 22 is provided between the inner tank 22 and the receiving member 27, a support portion 31 made of stainless steel for supporting and fixing the receiving member 27 to the inner tank 22 is provided.
  • the upper end portion of the support portion 31 is joined to the lower end portion of the lower end plate portion 22 c of the inner tub 22, and the lower end portion of the support portion 31 is joined to the center portion of the upper surface of the receiving member 27.
  • the inner tank 22 is supported by three support legs 22d made of, for example, GFRP (glass fiber reinforced plastic) having excellent heat insulation.
  • the receiving member 27 is formed with openings 27a so as to correspond to the plurality of support legs 22d. Cylindrical portions 27b projecting upward are formed on the periphery of the opening 27a.
  • the three support legs 22d are inserted through the cylindrical portion 27a and the opening 27b, and the lower ends thereof are fixed to the upper end surface of the bottom plate of the outer tub 23, respectively.
  • the space between the inner tub 22 and the outer tub 23 is filled with an inert gas having a melting point and a boiling point equal to or higher than the temperature of the low-temperature fluid.
  • the active gas is liquefied or solidified to form at least one of a liquefied inert gas layer and a solid inert gas layer on the outer peripheral surface of the inner tank 22, thereby forming a pseudo-vacuum layer 25 close to a vacuum in the space. Therefore, the quasi-vacuum layer 25 having a simple structure can prevent convective heat transfer in the space and ensure heat insulation performance.
  • a cryogenic fluid is accommodated in the inner tank 22, and an inert gas having a melting point and a boiling point equal to or higher than the temperature of the cryogenic fluid filled in the space is cooled and liquefied or solidified to solidify on the outer peripheral surface of the inner tank 22. Since at least one of the liquefied inert gas layer and the solid inert gas layer is formed by adhesion, the space can be easily put into a pseudo vacuum state without using a vacuum pump.
  • an inert gas layer made of an inert gas is formed in the space between the inner tank 22 and the outer tank 23. Pressure can be applied to prevent the entry of outside air into the outer tub 23, and after the repair of the double structure pipe is damaged, the space between the inner tub 22 and the outer tub 23 is filled with an inert gas. Therefore, labor and cost can be reduced as compared with the case of vacuuming.
  • the receiving member 27 for receiving at least one of the liquefied inert gas dropped from the liquefied inert gas layer formed on the outer peripheral surface of the inner tank 22 and the solidified inert gas peeled off from the solid inert gas layer is provided, At least one of the liquefied inert gas and the solidified inert gas can be prevented from coming into direct contact with the outer tank 23 at room temperature, and the vacuum state of the pseudo vacuum layer 25 can be prevented from being deteriorated. Further, since the receiving member 27 is cooled by the low temperature fluid via the inner tank 22, it is possible to prevent evaporation of at least one of the liquefied inert gas and the solidified inert gas received by the receiving member 27.
  • a heat insulating material such as a synthetic resin foam or an inter-fiber air layer heat insulating material may be provided on the back side thereof.
  • the inert gas does not adhere to the back surfaces of the receiving members 7 and 27, and the liquefied inert gas layer and the solidified inert gas layer are not formed. Therefore, the liquefied inert gas is received from the receiving members 7 and 27.
  • the vacuum state of the pseudo-vacuum layers 5 and 25 can be more reliably maintained without dropping to the lower side or peeling off the solidified inert gas.
  • the bowl-shaped receiving tray 8 is connected to the inner tube 2 by one or a plurality of support plate members 11 so as to be able to conduct heat, but the bowl-shaped receiving tray 8 is provided with the support plate member 11. It may be directly connected to the inner pipe 2 without going through.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Thermal Insulation (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

 低温流体用二重構造管は、内部を低温流体が流れる内管と、密閉された筒状空間を空けて内管に外嵌された外管とを備え、内管と外管との間の筒状空間に、低温流体の温度以上の融点と沸点を有する不活性ガスを充填されており、内管の内部を低温流体が流れるときに、不活性ガスが液化又は固体化されて内管の外周面に液化不活性ガス層と固体不活性ガス層の少なくとも一方が形成されることで、筒状空間に真空に近い疑似真空層が形成される。

Description

低温流体用二重構造管及び低温流体用二重構造貯槽
 本発明は低温流体用二重構造管及び低温流体用二重構造貯槽に関し、特に簡単な断熱構造でもって低温液化ガスを輸送可能又は貯留可能に構成したものに関する。
 従来から、LPGやLNG等の低温流体を流す一重管では、その一重管の外周側を発泡体等の断熱材で覆う断熱構造が広く採用されている。しかし、極低温の低温液化ガス(例えば、液化ヘリウム、液化水素、液化窒素、液化酸素等)を流す場合、上記の断熱構造では不十分であり、対流熱伝達を防止する為に内管と外管との間に真空層を形成し、この真空層による断熱効果を利用した真空断熱二重構造管が実用に供されている。
 例えば、特許文献1に記載の供給管路(低温流体用二重構造管)においては、FRP製の内管とFRP製の外管とから構成され、内管の外周面にアルミニウムを蒸着した不織布を巻き付け、内管と外管との間に真空層を形成し、内管の内部を流れる液化ヘリウムが気化するのを防止する断熱構造が採用されている。
 また、低温流体を収容する為のガス貯槽においても、上記の二重構造管と同様に、低温流体を収容した内槽と、この内槽に空間を空けて外嵌された外槽とで構成され、内槽と外槽との間の空間に真空層を形成した真空断熱二重構造貯槽も一般に知られている。
特開平8-15397号公報
 従来の真空断熱二重構造管において、内管と外管との間の筒状空間に真空層を形成する為には、真空ポンプを利用して筒状空間から空気を排出する真空引きを行う必要があり、真空層を形成するのに多大の労力とコストがかかるという問題がある。二重構造貯槽等の他の真空断熱二重構造体においても、上記と同様の問題がある。
 本発明の目的は、簡易的な真空断熱二重構造を有する低温流体用二重構造管及び低温流体用二重構造貯槽を提供することである。
 上記の課題を解決するために、本発明に係る低温流体用二重構造管は、内部を低温流体が流れる内管と、密閉された筒状空間を空けて前記内管に外嵌された外管とを備え、前記内管と前記外管との間の筒状空間に、前記低温流体の温度以上の融点と沸点を有する不活性ガスを充填されており、前記内管の内部を前記低温流体が流れるときに、前記不活性ガスが液化又は固体化されて前記内管の外周面に液化不活性ガス層と固体不活性ガス層の少なくとも一方が形成されることで、前記筒状空間に真空に近い疑似真空層が形成される。
 上記の低温流体用二重構造管によれば、低温流体用二重構造管は、内管と外管との間の筒状空間に、低温流体の温度以上の融点と沸点を有する不活性ガスが充填されており、内管の内部を低温流体が流れるときに、不活性ガスが液化又は固体化されて内管の外周面に液化不活性ガス層と固体不活性ガス層の少なくとも一方が形成されることで、筒状空間に真空に近い疑似真空層が形成されるので、簡単な構造の疑似真空層によって筒状空間における対流熱伝達を防止して断熱性能を確保することができる。
 内管の内部を低温流体が流れるとき、筒状空間に充填された低温流体の温度以上の融点と沸点を有する不活性ガスが冷却されて液化又は固体化して内管の外周面に凝固又は凝着して液化不活性ガス層と固体不活性ガス層の少なくとも一方が形成されるので、真空ポンプを使用せずに、容易に筒状空間を疑似的な真空状態にすることができる。
 内管の内部を低温流体が流れていない場合、内管と外管との間の筒状空間に不活性ガスからなる不活性ガス層が形成されるので、外管に内側からガス圧が作用し、外管内への外気の侵入を防止することができ、低温流体用二重構造管の破損時の修理後に、内管と外管との間の筒状空間に不活性ガスを充填するだけで済むので、真空引きする場合と比較して労力やコストを軽減することができる。
 上記の低温流体用二重構造管は、前記内管と前記外管との間に設けられた、前記内管の外周面に形成された前記液化不活性ガス層から滴下した液化不活性ガスと前記固体不活性ガス層から剥落した固体化不活性ガスの少なくとも一方を受け止める受容部材を備えていてもよい。この構成によれば、前記内管と前記外管との間に設けられた、内管の外周面に形成された液化不活性ガス層から滴下した液化不活性ガスと固体不活性ガス層から剥落した固体化不活性ガスの少なくとも一方を受け止める受容部材を備えているので、液化不活性ガスと固体化不活性ガスの少なくとも一方が常温に晒されている外管と直接接触するのを防止し、液化不活性ガスと固体化不活性ガスの少なくとも一方の蒸発により疑似真空層の真空状態が劣化するのを防止することができる。
 上記の低温流体用二重構造管において、前記受容部材は、前記内管の下側に前記内管との間で熱伝導可能に設けられてもよい。この構成によれば、受容部材は、内管の下側の空間に内管との間で熱伝導可能に設けられたので、内管の外周面に形成された液化不活性ガス層から下側に滴下した液化不活性ガスと固体不活性ガス層から剥落した固体化不活性ガスの少なくとも一方を受容部材によって確実に受け止めることができる。また、受容部材は、内管との熱伝導を介して低温流体によって冷却されているので、受容部材で受け止めた液化不活性ガスと固体化不活性ガスの少なくとも一方の蒸発を防止することができる。
 上記の低温流体用二重構造管において、前記受容部材は、鉛直方向に延びる前記内管の外周部に長さ方向適当間隔おきに設けられ且つ内周端が前記内管の外周部に固定された複数の環状の受け皿を備えてもよい。この構成によれば、受容部材は、鉛直方向に延びる内管の外周部に長さ方向適当間隔おきに設けられ且つ内周端が内管の外周部に固定された複数の環状の受け皿で構成されたので、内管の外周面に形成された液化不活性ガス層から外周面に沿って滴下した液化不活性ガスと固体不活性ガス層から外周面に沿って剥落した固体化不活性ガスの少なくとも一方を環状の受け皿によって確実に受け止めることができる。
 上記の低温流体用二重構造管において、前記低温流体が、液化ヘリウムと液化水素のうちの何れかであり、前記不活性ガスが二酸化炭素であってもよい。この構成によれば、低温流体が、液化ヘリウム、液化水素のうちの何れかであり、不活性ガスが二酸化炭素であるので、内管がその内部を流れる低温流体で冷却されると、内管の外周面に固体炭酸ガスが形成されるため、固体炭酸ガスの剥離が生じにくく、固体炭酸ガスと外管の接触が生じない。
 また、本発明に係る低温流体用二重構造貯槽は、内部に低温流体が収容される内槽と、密閉された空間を空けて前記内槽に外嵌された外槽とを備え、前記内槽と前記外槽との間の空間に、前記低温流体の温度以上の融点と沸点を有する不活性ガスが充填されており、前記内槽の内部に前記低温流体が収容されるときに、前記不活性ガスが液化又は固体化されて前記内槽の外周面に液化不活性ガス層と固体不活性ガス層の少なくとも一方が形成されることで、前記密閉された空間に真空に近い疑似真空層が形成される。
 上記の低温流体用二重構造貯槽によれば、内槽と外槽との間の空間に、低温流体の温度以上の融点と沸点を有する不活性ガスが充填されており、内槽の内部に低温流体が収容されており、不活性ガスが液化又は固体化されて内槽の外周面に液化不活性ガス層と固体不活性ガス層の少なくとも一方が形成されることで、空間に真空に近い疑似真空層が形成されるので、簡単な構造の疑似真空層によって密閉された空間における対流熱伝達を防止して断熱性能を確保することができる。
 本発明によれば、簡易的な真空断熱二重構造を有する低温流体用二重構造管及び低温流体用二重構造貯槽を提供することができる。
本発明の実施例1に係る低温流体用二重構造管の平面図である。 低温流体用二重構造管の部分断面斜視図である。 図1のIII-III線断面図である。 低温流体用二重構造管の部分断面斜視図である。 図1のV-V線断面図である。 実施例2に係る低温流体用二重構造貯槽の正面図である。 図6の部分拡大断面図である。
 以下、本発明を実施するための形態について実施例に基づいて説明する。
 先ず、低温流体用二重構造管1の全体構造について説明する。
 図1~図5に示すように、低温流体用二重構造管1は、内管2と、この内管2に密閉された筒状空間を空けて外嵌された外管3とを備えている。この低温流体用二重構造管1においては、内管2の内部に低温流体4(例えば、液化ヘリウム又は液化水素等)が流れ、内管2と外管3との間の筒状空間に真空に近い疑似真空層5が形成される。
 内管2と外管3は、例えば、ステンレス鋼やアルミニウム合金で製作された素材管を用いて製作される。内管2のサイズは、例えば約6インチであり、外管3のサイズは、例えば約8インチであり、内管2及び外管3の管壁の厚さは、例えば1.0~3.0mmである。但し、これらの数値は例示であり、これらの数値に限定されるものではない。
 尚、図示省略したが、内管2の外周側には輻射熱遮断用のスーパーインシュレーションが巻装されている。
 内管2と外管3との間の筒状空間に、低温流体4の温度以上の融点と沸点を有する不活性ガス(例えば炭酸ガスや窒素ガス)が充填されており、内管2の内部を低温流体4が流れるときに、不活性ガスが液化又は固体化されて内管2の外周面に液化不活性ガス層6aと固体不活性ガス層6bの少なくとも一方が形成されることで、前記疑似真空層5が形成される。尚、全ての不活性ガスが内管2の外周面に固着した場合、固体不活性ガス層6bの厚さは、例えば約0.02~0.05mmであり、このときの疑似真空層5の圧力は、例えば約4.0×10-7~7.0×10-8Paであるが、必ずしもこの範囲に限らない。
 尚、内管2の内部を低温流体4が流れるとき、筒状空間に疑似真空層5が形成されるが、内管2の内部に低温流体4が流れていない場合、筒状空間には、内管2の内部を流れる低温流体4の温度以上の融点と沸点を有する不活性ガスの不活性ガス層が形成される。
 低温流体4は、例えば、液化ヘリウム、液化水素のうちの何れかであるが、これらに限定されるものではないし、上記の液化ガスの気液二相流体の場合もある。上記の低温流体4の温度以上の融点と沸点を有する不活性ガスとして、二酸化炭素が好適であるが、低温流体4の種類によっては、他の不活性ガスを採用可能である。尚、二酸化炭素の場合、殆ど液化せずに固体化するため、他の不活性ガスと比較すると、内管の外周面から剥離しにくいという効果がある。
 次に、受容部材7について説明する。
 図1~図5に示すように。低温流体用二重構造管1は、内管2と外管3との間の筒状空間に設けられた受容部材7を備えている。受容部材7は、内管2の外周面に形成された液化不活性ガス層6aから滴下した液化不活性ガスと固体不活性ガス層6bから剥落した固体化不活性ガスの少なくとも一方を受け止める。この受容部材7は、少なくとも水平方向に延びる内管2に設けられた1又は複数の樋状の受け皿8と、鉛直方向に延びる内管2に設けられた複数の環状の受け皿9とを備えている。尚、図1には、1つの樋状の受け皿8が部分的に図示され、複数の環状の受け皿9のうちの3つの環状の受け皿9が図示されている。
 次に、樋状の受け皿8について説明する。
 図1~図3に示すように、樋状の受け皿8は、内管2の下側に設けられている。樋状の受け皿8は、内管2のうちの水平方向や傾斜方向に延びる配管部分の長手方向の全長に亙って設けられている。樋状の受け皿8は、熱伝導性能に優れたステンレス鋼製の薄板を曲げ形成して鉛直断面が半円形状又はU形状に構成されている。
 内管2と樋状の受け皿8との間には、樋状の受け皿8を内管2に支持固定する為の支持板部材11が設けられている。支持板部材11は、内管2の長手方向に連続的又は間欠的に配置されるステンレス鋼製の1又は複数の帯状の薄板で構成されている。支持板部材11の上端部が、内管2の外周面の下端部に接合され、支持板部材11の下端部が、樋状の受け皿8の上面の中央部に接合されている。
 樋状の受け皿8の曲率は、内管2の曲率より小さく且つ外管3の曲率より大きくなるように設定されている。樋状の受け皿8の径方向の両端部(上端部)は、内管2の軸心の高さ位置寄りやや下側に位置するように設けられている。
 次に、環状の受け皿9について説明する。
 図1,図4,図5に示すように、複数の環状の受け皿9は、鉛直方向に延びる内管2の外周部に長さ方向適当間隔おきに且つ内管2と外管3との間の筒状空間に設けられている。各環状の受け皿9は、平面視円形の環状体であり、扁平なカップ形状体の外周側部分で構成され、その内周端が内管2の外周部に固定されている。即ち、各環状の受け皿9は、内管2の外周部から径方向の外方に張り出すように設けられている。
 次に、低温流体用二重構造管1の作用及び効果について説明する。
 内管2と外管3との間の筒状空間に、低温流体4の温度以上の融点と沸点を有する不活性ガスが充填されており、内管2の内部を低温流体4が流れるときに、不活性ガスが液化又は固体化されて内管2の外周面に液化不活性ガス層6aと固体不活性ガス層6bの少なくとも一方が形成されることで、筒状空間に真空に近い疑似真空層5が形成されるので、簡単な構造の疑似真空層5によって筒状空間における対流熱伝達を防止して断熱性能を確保することができる。
 内管2の内部を低温流体4が流れるとき、筒状空間に充填された低温流体4の温度以上の融点と沸点を有する不活性ガスが冷却されて液化又は固体化されて内管2の外周面に凝固又は凝着して液化不活性ガス層6aと固体不活性ガス層6bの少なくとも一方が形成されるので、真空ポンプを使用せずに、容易に筒状空間を疑似的な真空状態にすることができ、真空引きする場合と比較して労力やコストを軽減することができる。
 内管2の内部を低温流体4が流れていない場合、内管2と外管3との間の筒状空間に不活性ガスからなる不活性ガス層が形成されるので、外管3に内側からガス圧が作用し、外管3内への外気の侵入を防止することができ、低温流体用二重構造管1の破損時の修理後に、内管2と外管3との間の筒状空間に不活性ガスを充填するだけで済む。
 内管2の外周面に形成された液化不活性ガス層6aから滴下した液化不活性ガスと固体不活性ガス層6bから剥落した固体化不活性ガスの少なくとも一方を受け止める受容部材7を備えているので、常温に晒されている外管3と液化不活性ガスと固体化不活性ガスの少なくとも一方が直接接触するのを防止し、液化不活性ガスと固体化不活性ガスの少なくとも一方の蒸発により疑似真空層5の真空状態が劣化するのを防止することができる。また、受容部材7は、低温流体4によって内管2を介して冷却されているので、受容部材7で受け止めた液化不活性ガスと固体化不活性ガスの少なくとも一方の蒸発を防止することができる。
 樋状の受け皿8は、内管2の下側の空間に内管2との間で熱伝導可能に設けられたので、内管2の外周面に形成された液化不活性ガス層6aから下側に滴下した液化不活性ガスと固体不活性ガス層6bから剥落した固体化不活性ガスの少なくとも一方を樋状の受け皿8によって確実に受け止めることができる。また、樋状の受け皿8は1又は複数の支持板部材11により内管2と熱伝導可能に接続されているため、受け皿8に溜まった液化不活性ガスと固体化不活性ガスの少なくとも一方の蒸発を防止することができる。
 複数の環状の受け皿9は、鉛直方向に延びる内管2の外周部に長さ方向適当間隔おきに設けられ且つ内周端が内管2の外周部に接合されているため、内管2の外周面に形成された液化不活性ガス層6aから外周面に沿って滴下した液化不活性ガスと固体不活性ガス層6bから外周面に沿って剥落した固体化不活性ガスの少なくとも一方を環状の受け皿9によって確実に受け止めることができる。また、これら環状の受け皿9の内周端が内管2に接合されて内管2との間で熱伝導可能になっているため、環状の受け皿9に溜まった液化不活性ガスと固体化不活性ガスの少なくとも一方の蒸発を防止することができる。
 次に、低温流体用二重構造貯槽21の全体構造について説明する。
 図6に示すように、低温流体用二重構造貯槽21は、内槽22と、この内槽22に密閉された空間を空けて外嵌された外槽23とを備えている。この低温流体用二重構造貯槽21においては、内槽22の内部に低温流体(例えば、液化ヘリウム、液化水素等)が収容されるときに、内槽22と外槽23との間の密閉空間に真空に近い疑似真空層25が形成される。
 内槽22は、例えば、ステンレス鋼製のものであり、略円筒状の胴体部22a、胴体部22aの上端に溶接接合された上側鏡板部22b、胴体部22aの下端に溶接接合された下側鏡板部22cから一体的に形成されているが、この形状は特に限定する必要はなく、適宜変更可能である。外槽23も同様に、例えば、ステンレス鋼製やアルミニウム合金製のものであり、箱状に構成されているが、この形状は特に限定する必要はなく、適宜変更可能である。
 内槽22は、その底部から下方へ延びる複数の支持脚22dを備えている。複数の支持脚22dは、内槽22の下側鏡板部22cの外周部に周方向3等分位置に設けられている。各支持脚22dは、薄鋼板製の縦長のブロック体に構成されている。
 内槽22と外槽23との間の空間に、低温流体の温度以上の融点と沸点を有する不活性ガス(例えば窒素ガス)が充填されており、疑似真空層25は、内槽22の内部に低温流体が収容されるときに、不活性ガスが液化又は固体化されて内槽22の外周面に液化不活性ガス層と固体不活性ガス層の少なくとも一方が形成されることで形成される。
 図6,図7に示すように、低温流体用二重構造貯槽21は、内槽22と外槽23との間に設けられた受容部材27を備えている。受容部材27は、内槽22の外周面に形成された液化不活性ガス層から滴下した液化不活性ガスと固体不活性ガス層から剥落した固体化不活性ガスの少なくとも一方を受け止める。この受容部材27は、内槽22の下側に設けられた受け皿で構成されている。この受け皿は、ステンレス鋼製の薄板を曲げ形成して部分球面状に構成されている。
 内槽22と受容部材27との間には、受容部材27を内槽22に支持固定する為のステンレス鋼製の支持部31が設けられている。支持部31の上端部が、内槽22の下側鏡板部22cの下端部に接合され、支持部31の下端部が、受容部材27の上面の中央部に接合されている。
 さらに、内槽22は、例えば断熱性に優れるGFRP(ガラス繊維強化プラスチック)製の3本の支持脚22dで支持されている。受容部材27には、複数の支持脚22dに対応するように開口部27aが形成されている。開口部27aの周縁には、上方に突出する筒状部27bが夫々形成されている。3本の支持脚22dは、筒状部27aと開口部27bを挿通して、その下端部が外槽23の底板の上端面に夫々固定されている。
 次に、低温流体用二重構造貯槽21の作用及び効果について説明する。
 内槽22と外槽23との間の空間に、低温流体の温度以上の融点と沸点を有する不活性ガスが充填されており、内槽22の内部に低温流体が収容されるときに、不活性ガスが液化又は固体化されて内槽22の外周面に液化不活性ガス層と固体不活性ガス層の少なくとも一方が形成されることで、空間に真空に近い疑似真空層25が形成されるので、簡単な構造の疑似真空層25によって空間における対流熱伝達を防止して断熱性能を確保することができる。
 内槽22の内部に低温流体が収容され、空間に充填された低温流体の温度以上の融点と沸点を有する不活性ガスが冷却されて液化又は固体化されて内槽22の外周面に凝固又は凝着して液化不活性ガス層と固体不活性ガス層の少なくとも一方が形成されるので、真空ポンプを使用せずに、容易に空間を疑似的な真空状態にすることができる。
 内槽22の内部に低温流体が収容されていない場合、内槽22と外槽23との間の空間に不活性ガスからなる不活性ガス層が形成されるので、外槽23に内側からガス圧が作用し、外槽23内への外気の侵入を防止することができ、二重構造管の破損時の修理後に、内槽22と外槽23との間の空間に不活性ガスを充填するだけで済むので、真空引きする場合と比較して労力やコストを軽減することができる。
 内槽22の外周面に形成された液化不活性ガス層から滴下した液化不活性ガスと固体不活性ガス層から剥落した固体化不活性ガスの少なくとも一方を受け止める受容部材27を備えているので、液化不活性ガスと固体化不活性ガスの少なくとも一方が常温の外槽23と直接接触するのを防止し、疑似真空層25の真空状態の劣化を防止することができる。また、受容部材27は、低温流体によって内槽22を介して冷却されているので、受容部材27で受け止めた液化不活性ガスと固体化不活性ガスの少なくとも一方の蒸発を防止することができる。
 次に、前記実施例1,2を部分的に変更した形態について説明する。
 前記実施例1,2の受容部材7,27において、その裏面側に合成樹脂発砲体や繊維間空気層断熱材等の断熱材を設けても良い。この構造の場合、受容部材7,27の裏面側に不活性ガスが固着せず、液化不活性ガス層や固体化不活性ガス層が形成されないので、受容部材7,27から液化不活性ガスが下側に滴下することや固体化不活性ガスが剥落することがなく、疑似真空層5,25の真空状態をより確実に維持することができる。
 前記実施例1の受容部材7において、樋状の受け皿8は1又は複数の支持板部材11により内管2と熱伝導可能に接続されていたが、樋状の受け皿8は、支持板部材11を介さずに直接内管2に接続されていてもよい。
 その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例1,2の種々の変更を付加した形態で実施可能で、本発明はそのような変更形態を包含するものである。
1    低温流体用二重構造管
2    内管
3    外管
4    低温流体
5,25 疑似真空層
6    固体不活性ガス層
7,27 受容部材
8    樋状の受け皿
9    環状の受け皿
21   低温流体用二重構造貯槽
22   内槽
23   外槽

Claims (6)

  1.  内部を低温流体が流れる内管と、密閉された筒状空間を空けて前記内管に外嵌された外管とを備え、
     前記内管と前記外管との間の筒状空間に、前記低温流体の温度以上の融点と沸点を有する不活性ガスを充填されており、前記内管の内部を前記低温流体が流れるときに、前記不活性ガスが液化又は固体化されて前記内管の外周面に液化不活性ガス層と固体不活性ガス層の少なくとも一方が形成されることで、前記筒状空間に真空に近い疑似真空層が形成されることを特徴とする低温流体用二重構造管。
  2.  前記内管と前記外管との間に設けられた、前記内管の外周面に形成された前記液化不活性ガス層から滴下した液化不活性ガスと前記固体不活性ガス層から剥落した固体化不活性ガスの少なくとも一方を受け止める受容部材を備えていることを特徴とする請求項1に記載の低温流体用二重構造管。
  3.  前記受容部材は、前記内管の下側に前記内管との間で熱伝導可能に設けられたことを特徴とする請求項2に記載の低温流体用二重構造管。
  4.  前記受容部材は、鉛直方向に延びる前記内管の外周部に長さ方向適当間隔おきに設けられ且つ内周端が前記内管の外周部に固定された複数の環状の受け皿を備えたことを特徴とする請求項2に記載の低温流体用二重構造管。
  5.  前記低温流体が、液化ヘリウムと液化水素のうちの何れかであり、前記不活性ガスが二酸化炭素であることを特徴とする請求項1~4の何れか1項に記載の低温流体用二重構造管。
  6.  内部に低温流体が収容される内槽と、密閉された空間を空けて前記内槽に外嵌された外槽とを備え、
     前記内槽と前記外槽との間の空間に、前記低温流体の温度以上の融点と沸点を有する不活性ガスを充填されており、前記内槽の内部に前記低温流体が収容されるときに、前記不活性ガスが液化又は固体化されて前記内槽の外周面に液化不活性ガス層と固体不活性ガス層の少なくとも一方が形成されることで、前記密閉された空間に真空に近い疑似真空層が形成されることを特徴とする低温流体用二重構造貯槽。
PCT/JP2015/004933 2014-09-30 2015-09-29 低温流体用二重構造管及び低温流体用二重構造貯槽 WO2016051769A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112015004496.5T DE112015004496T5 (de) 2014-09-30 2015-09-29 Doppelstrukturrohr für Tieftemperaturfluide und Doppelstrukturspeichertank für Tieftemperaturfluide
US15/515,757 US10139020B2 (en) 2014-09-30 2015-09-29 Low temperature fluid dual structure pipe and low temperature fluid dual structure storage tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-200615 2014-09-30
JP2014200615A JP6619551B2 (ja) 2014-09-30 2014-09-30 低温流体用二重構造管及び低温流体用二重構造貯槽

Publications (1)

Publication Number Publication Date
WO2016051769A1 true WO2016051769A1 (ja) 2016-04-07

Family

ID=55629837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004933 WO2016051769A1 (ja) 2014-09-30 2015-09-29 低温流体用二重構造管及び低温流体用二重構造貯槽

Country Status (4)

Country Link
US (1) US10139020B2 (ja)
JP (1) JP6619551B2 (ja)
DE (1) DE112015004496T5 (ja)
WO (1) WO2016051769A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109595403A (zh) * 2019-01-23 2019-04-09 安徽管益生新材料科技有限公司 一种单边承插式弯管
JP2022103799A (ja) * 2020-12-28 2022-07-08 川崎重工業株式会社 極低温液体用配管構造およびこれを備えた船舶

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815397A (ja) * 1994-06-30 1996-01-19 Osaka Gas Co Ltd 液体ヘリウムを用いる装置
JP2012251606A (ja) * 2011-06-03 2012-12-20 Taiyo Nippon Sanso Corp 液化水素貯蔵供給設備
JP2013228060A (ja) * 2012-04-26 2013-11-07 Mitsubishi Heavy Ind Ltd 二重管

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945878B2 (ja) * 1978-04-13 1984-11-09 三菱電機株式会社 クライオスタツト
JPH02107895A (ja) * 1988-10-14 1990-04-19 Hitachi Ltd トランスフアーチユーブの接続配管
US4924679A (en) * 1989-10-02 1990-05-15 Zwick Energy Research Organization, Inc. Apparatus and method for evacuating an insulated cryogenic hose
US6216745B1 (en) * 1998-10-28 2001-04-17 Mve, Inc. Vacuum insulated pipe
US7305837B2 (en) * 2004-09-16 2007-12-11 Praxair Technology, Inc. Cryogenic piping system
US7562534B2 (en) * 2006-03-23 2009-07-21 Praxair Technology, Inc. Cryogenic aerogel insulation system
JP5188769B2 (ja) * 2007-09-21 2013-04-24 国立大学法人北海道大学 極低温流体移送管
US8893748B2 (en) * 2012-11-08 2014-11-25 Linde Aktiengesellschaft Pipeline for high pressure cryogenic applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815397A (ja) * 1994-06-30 1996-01-19 Osaka Gas Co Ltd 液体ヘリウムを用いる装置
JP2012251606A (ja) * 2011-06-03 2012-12-20 Taiyo Nippon Sanso Corp 液化水素貯蔵供給設備
JP2013228060A (ja) * 2012-04-26 2013-11-07 Mitsubishi Heavy Ind Ltd 二重管

Also Published As

Publication number Publication date
JP2016070373A (ja) 2016-05-09
DE112015004496T5 (de) 2017-06-29
US10139020B2 (en) 2018-11-27
US20170307112A1 (en) 2017-10-26
JP6619551B2 (ja) 2019-12-11

Similar Documents

Publication Publication Date Title
JP6186122B2 (ja) 低温用真空断熱容器
JP6909635B2 (ja) 低温液化ガス貯蔵タンク
JP2019501064A5 (ja)
JP6251284B2 (ja) 液化ガスタンクとそれを備えた水上構造物
JP7279058B2 (ja) 液化ガスを保存して輸送するための容器
JP6378388B2 (ja) 低温用真空断熱容器
WO2016051769A1 (ja) 低温流体用二重構造管及び低温流体用二重構造貯槽
US3380611A (en) Cryogenic storage container
JP2017116096A (ja) タンク
US20160230932A1 (en) Low heat loss cryogenic fluid storage equipment using multilayered cylindrical support
WO2020202577A1 (ja) 液化ガス貯留構造および液化ガス運搬船
KR100924099B1 (ko) 액화천연가스 운송선의 화물창과 그 시공방법
KR20140004166U (ko) 독립형 저장탱크의 누출액 수집 장치
JP6482228B2 (ja) 液化水素用二重管
KR101403621B1 (ko) 액화천연가스 저장용기의 구조 및 제작방법
KR101485110B1 (ko) 액화천연가스 저장용기의 구조
CN205504469U (zh) 一种新型低温液体储罐内筒支撑装置
KR20170047750A (ko) 액화가스 저장 탱크 및 그 제조 방법
JP5713185B2 (ja) 低温二重殻タンクの断熱構造
JP5968985B2 (ja) タンク支持構造及び船舶
KR101465592B1 (ko) 통합형 초저온 액화가스 저장용기
WO2022145383A1 (ja) 極低温液体用配管構造およびこれを備えた船舶
KR101433295B1 (ko) 초저온 액화가스 저장용기
JP7261007B2 (ja) 二重殻タンク
NO329738B1 (no) Tank for transport og lagring av flytende gass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847440

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15515757

Country of ref document: US

Ref document number: 112015004496

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847440

Country of ref document: EP

Kind code of ref document: A1