WO2016051495A1 - 制御システム及び制御方法、並びにプログラム - Google Patents

制御システム及び制御方法、並びにプログラム Download PDF

Info

Publication number
WO2016051495A1
WO2016051495A1 PCT/JP2014/076061 JP2014076061W WO2016051495A1 WO 2016051495 A1 WO2016051495 A1 WO 2016051495A1 JP 2014076061 W JP2014076061 W JP 2014076061W WO 2016051495 A1 WO2016051495 A1 WO 2016051495A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
pressure
robot arm
operation mode
target
Prior art date
Application number
PCT/JP2014/076061
Other languages
English (en)
French (fr)
Inventor
大輔 原口
慧 見上
Original Assignee
リバーフィールド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リバーフィールド株式会社 filed Critical リバーフィールド株式会社
Priority to PCT/JP2014/076061 priority Critical patent/WO2016051495A1/ja
Priority to JP2016551380A priority patent/JPWO2016051495A1/ja
Publication of WO2016051495A1 publication Critical patent/WO2016051495A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • A61B2090/506Supports for surgical instruments, e.g. articulated arms using a parallelogram linkage, e.g. panthograph

Definitions

  • the present invention relates to a control system, a control method, and a program for executing pneumatic servo control on a pneumatically driven robot arm that holds and operates a medical device.
  • the present invention is not limited to an endoscope, and is a situation that applies to a general robot arm that connects medical devices.
  • the present invention has been made in view of such a situation.
  • the intuitive feeling is almost the same as when the medical device is normally held by the user himself / herself.
  • the purpose is to make it possible to operate with the.
  • a control system includes: A control system that performs pneumatic servo control on a pneumatically driven robot arm that holds and operates medical equipment.
  • the switching unit is a member that is operated by a user's contact, and is arranged at a position where the user can make contact while operating a medical device. Can be.
  • Each of the control method and the program according to one aspect of the present invention is each of the control method and the program corresponding to the above-described control system according to the one aspect of the present invention.
  • the medical device not only can the medical device be moved automatically, but it can be operated with almost the same intuitive feeling as when the medical device is normally held by the user himself / herself.
  • FIG. 4 It is a perspective view showing the outline of the appearance composition of a robot arm among robot systems concerning one embodiment of the present invention. It is the fragmentary sectional view which expanded the adapter set vicinity among the robot arms of FIG. It is a side view which shows the external appearance structure of the adapter set to which the surgical equipment was attached among the robot arms of FIG. It is a perspective view which shows the external appearance structure of the adapter set of the state by which each component was decomposed
  • FIG. 9 It is a figure of an adapter set for demonstrating the mode of a coupling
  • FIG. 1 is a perspective view showing an outline of an external configuration of a robot arm 11 in a robot system 1 according to an embodiment of the present invention.
  • the robot system 1 of the present embodiment includes a pneumatically driven robot arm 11 that can hold and operate a surgical instrument 12 such as an endoscope or forceps.
  • the robot arm 11 is driven by pneumatic servo control, and has a passive operation mode and an active operation mode as operation modes.
  • the passive operation mode is a mode that functions while a user (such as a doctor performing surgery) is pressing a switch (a changeover switch 103 in FIG. 8 described later).
  • the active operation mode is a mode in which the robot arm 11 is automatically moved to a designated target position by automatic control of position control and pressure control.
  • the robot arm 11 holds the distal end portion of the surgical instrument 12 so as to move it with four degrees of freedom. That is, the robot arm 11 rotates the surgical instrument 12 with respect to the axis C at the intersection of the axis A and the axis C (roll), rotation about the axis A (yaw), rotation by the parallel drive unit 23 (pitch), and The direction B is held so that it can be moved substantially in parallel.
  • the robot arm 11 includes a rotation drive unit 21, a connection unit 22, a parallel drive unit 23, a pneumatic cylinder 24, a rotation motor 25, a timing belt 26, a timing pulley 27, and an adapter set 28. And have.
  • the rotation driving unit 21 rotates the robot arm 11 with respect to the axis A to rotate the surgical instrument 12 by the yaw axis.
  • the connection part 22 connects the rotation drive part 21 and the parallel drive part 23 so that it may move following the rotation with respect to the axis A.
  • the parallel drive unit 23 rotates the robot arm 11 to rotate the surgical instrument 12 by pitch.
  • the pneumatic cylinder 24 is a pneumatic cylinder that drives the robot arm 11 substantially parallel to the direction B.
  • the rotary motor 25 generates a rotational force (torque) and transmits the rotational force to the timing pulley 27 via the timing belt 26.
  • the timing belt 26 is a belt that connects the rotary motor 25 and the timing pulley 27.
  • the timing pulley 27 roll-rotates the surgical instrument 12 set in the adapter set 28 by the rotational force transmitted from the rotary motor 25 via the timing belt 26.
  • the adapter set 28 includes the timing pulley 27 and is a member that rotatably attaches the surgical instrument 12 to the robot arm 11.
  • the robot arm 11 having such a configuration is an apparatus including an unclean part. Therefore, as shown in FIG. 1, the robot arm 11 composed of the unclean part is separated from the clean part where the patient under operation exists by being covered with the drape 31.
  • the surgical instrument 12 needs to be present in a clean part, it needs to be supported by the adapter set 28 so that it can rotate. Therefore, if no allowance is provided, the surgical instrument 12 may touch an unclean part via the adapter set 28. Therefore, in this embodiment, the adapter set 28 is devised so that the unclean part and the clean part are completely separated.
  • the adapter set 28 will be described in detail with reference to FIGS. 2 to 7.
  • FIG. 2 shows an enlarged partial sectional view of the vicinity of the adapter set 28 in the robot arm 11 of FIG.
  • FIG. 3 is a side view showing an external configuration of the adapter set 28 to which the surgical instrument 12 is attached in the robot arm 11 of FIG.
  • FIG. 4 is a perspective view showing an external configuration of the adapter set 28 in a state where each component is disassembled.
  • FIG. 5 is a diagram showing an external configuration of the adapter set 28 in a state in which each component shown in FIG. 4 is incorporated.
  • the distal end side (left end side in FIG. 3) of the surgical instrument 12 is hereinafter referred to as “exit side”.
  • the opposite side (the right end side in FIG. 3) is referred to as “entry side”.
  • FIG. 5A shows a front view of the outlet side of the adapter set 28.
  • FIG. 5B shows a side view of the adapter set 28.
  • FIG. 5C shows a front view of the entrance side of the adapter set 28.
  • the adapter set 28 is viewed from the exit side of the surgical instrument 12, and includes an exit drape bearing 41, an exit drape bearing cover 42, and the timing pulley 27 described above.
  • Incoming drape bearing cover 44, incoming drape bearing 45, separator 46, and adapter 47 are incorporated.
  • the drape 31 shown in FIG. 3 or the like has two holes slightly larger than the diameter of the separator 46, and as shown in FIG. The other end is sandwiched between the inlet-side drape bearing cover 44 and the inlet-side drape bearing 45.
  • the outlet-side drape bearing 41 and the outlet-side drape bearing cover 42 are sandwiched between the inlet-side drape bearing cover 44 and the inlet-side drape bearing 45.
  • the robot arm 11 is covered with the drape 31 as shown in FIGS. That is, in principle, the unclean part FA of the robot arm 11 is separated from the clean part SA.
  • the surgical instrument 12 that should be present in the clean portion SA may touch the unclean portion FA in the adapter set 28.
  • the inner surface of the separator 46 is the clean part SA. This makes it possible to completely separate the unclean part FA and the clean part SA from the inner surface of the separator 46 and the drape 31 (with the thick line in FIG. 2 as the boundary line). Further, this will be described in detail with reference to FIG.
  • FIG. 6 shows a diagram of the adapter set 28 for explaining the manner in which the adapter 47 is inserted into the separator 46.
  • FIG. 6A shows a side view of the adapter set 28.
  • FIG. 6B shows a cross-sectional view of the adapter set 28.
  • FIG. 6C shows a front view of the entrance side of the adapter set 28.
  • FIG. 6B is a cross-sectional view taken along line A in FIG.
  • the adapter 47 in which the surgical instrument 12 is set is inserted into the separator 46 from the entry side to the exit side. Since the surgical instrument 12 may touch the inside of the separator 46 when the adapter 47 is inserted, it should not be the unclean portion FA. Therefore, at least the inner surface of the separator 46 is a clean part that has been sterilized, as described above. Accordingly, the adapter 47 can be inserted into the separator 46 without the surgical instrument 12 contacting the unclean part FA. Further, since the adapter 47 is also a sterilized clean part, even after the adapter 47 is inserted into the separator 46 and incorporated, as shown in FIG. 2, the inner surface of the separator 46 and the drape 31 are used as a boundary (FIG. 2). The unclean part FA and the clean part SA are completely separated.
  • FIG. 7 shows a diagram of the adapter set 28 for explaining how the timing pulley 27, the separator 46, and the adapter 47 are coupled.
  • FIG. 7A shows a side view of the adapter set 28.
  • FIG. 7B shows a cross-sectional view of the adapter set 28.
  • FIG. 7B is a cross-sectional view taken along line A in FIG.
  • the timing pulley 27 has a claw male portion 27a on the entry side.
  • the separator 46 has a claw female portion 46 a that fits into the claw male portion 27 a when inserted into the timing pulley 27. That is, the timing pulley 27 and the separator 46 are coupled by fitting the claw male part 27a and the claw female part 46a.
  • the adapter 47 has a claw female portion 47b on the entry side.
  • the separator 46 has a claw male portion 46 b that fits into the claw female portion 47 b when inserted into the adapter 47. That is, the separator 46 and the adapter 47 are coupled by fitting the claw female portion 47b and the claw male portion 46b.
  • the degree of coupling between the separator 46 and the adapter 47 is the degree of coupling between the timing pulley 27 and the separator 46 (claws).
  • the degree of fitting between the male part 27a and the claw female part 46a) is looser.
  • each of the claw 41C and the claw 42C is also provided at each coupling portion between the outlet drape bearing 41 and the outlet drape bearing cover 42. That is, the fitting structure of the claw 41C and the claw 42C is used to prevent the outlet drape bearing 41 from coming off.
  • each of the claw 41e and the claw 46e is also provided at the coupling portion such as the inside of each of the outlet drape bearing 41 and the separator 46. In other words, the fitting structure of the claw 41e and the claw 46e allows the outlet-side drape bearing 41 and the separator 46 to be fitted, and as a result, the insertion port of the drape 31 can be fixed.
  • each of the coupling portions between the entry-side drape bearing 45 and the entry-side drape bearing cover 44 is provided with a claw 45d and a claw 44d. That is, the engagement structure of the claw 45d and the claw 44d is used to prevent the entry-side drape bearing 45 from coming off. As a result, it is possible to reliably prevent the drape 31 from coming off and exposing the unclean part FA of the robot arm 11 to the clean part SA.
  • the adapter set 28 is A separator 46 which is connected to a timing pulley 27 which is a rotation mechanism of the robot arm 11 which is an unclean part, has an inner air structure, and has an inner side surface which is a clean part;
  • An adapter 47 that can be fixed to the surgical instrument 12 and is inserted into the interior of the separator 46;
  • An output side drape bearing 41 and an input side drape bearing 45 are provided for attaching a drape 31 that covers the robot arm 11 including the timing pulley 27 and cuts off the clean portion. This makes it possible to completely separate the dirty part and the clean part.
  • a claw female portion 47b and a claw male portion 46b are provided as fitting portions in order to couple the separator 46 and the adapter 47 to transmit rotational force and to fix the surgical instrument 12.
  • the separator 46 and the timing pulley 27 that is the rotation mechanism of the robot arm 11 are also provided with a claw male portion 27a and a claw female portion 46a as fitting portions for transmitting the rotational force.
  • the degree of fitting between the separator 46 and the adapter 47 is loosened compared to the degree of fitting between the separator 46 and the robot arm 11.
  • deviates from the separator 46 is implement
  • FIG. 8 is a block diagram showing a hardware configuration for realizing pneumatic servo control for the robot arm 11 in the robot system 1 according to the embodiment of the present invention.
  • a pneumatic pressure source 104 in order to realize pneumatic servo control for the robot arm 11, a pneumatic pressure source 104, a servo valve 105, a pressure detection unit 106, an input / output unit 107, and a control unit 108 are provided. Yes.
  • the robot arm 11 is provided with a position detection unit 101, a pneumatic actuator 102, and a changeover switch 103.
  • FIG. 9 is a functional block diagram showing an outline of a control system of pneumatic servo control for the robot arm 11 realized by the hardware configuration of FIG.
  • Each functional block in FIG. 9 is provided in the control unit 108 in FIG. 8 in this embodiment.
  • Each functional block may be configured by hardware alone, may be configured by software alone, or may be configured by a combination of software and hardware.
  • the position target input unit 201 outputs a position target.
  • a difference (error) between this position target and the current position from the position control object 204 is input to the position controller 202.
  • the position controller 202 performs position control so as to make this error zero, and outputs a pressure target as the control result.
  • the position detection target 204 is the robot arm 11 in this embodiment. Therefore, a position signal from the position detection unit 101 provided in the robot arm 11 is input to the control unit 108 via the input / output unit 107. This position signal or a signal obtained by processing the position signal is used as the current position in FIG.
  • the position control constitutes the main loop system.
  • the pressure control constitutes a sub-loop system.
  • the passive operation mode and the active operation mode can be selectively used.
  • the output of the position controller 202 is input to the pressure controller 203 as a pressure target.
  • the passive operation mode the output of the position controller 202 is prohibited (the output becomes 0), and the output of the self-weight compensation controller 205 is input to the pressure controller 203 as a pressure target. That is, the self-weight compensation controller 205 compensates the self-weight based on the current position, and outputs the result of the compensation as a pressure target.
  • the difference (error) between this pressure target and the current pressure is input to the pressure controller 203.
  • the pressure controller 203 executes pressure control so as to make this error zero.
  • the control result of the pressure controller 203 that is, the output of the pressure controller 203 is supplied to the position control object 204.
  • the position control object 204 is the robot arm 11 in this embodiment.
  • the output of the pressure controller 203 is input to the servo valve 105 as a voltage output via the input / output unit 107.
  • the servo valve 105 provides air from the pneumatic source 104 to the pneumatic actuator 102 at a pressure corresponding to the voltage output. That is, the pressure corresponding to the voltage output is the driving pressure, and the pneumatic actuator 102 is driven according to the driving pressure.
  • the pneumatic actuator 102 typically corresponds to the pneumatic cylinder 24 of FIG. 1, but is not particularly limited to this, and includes the whole that drives the robot arm 11 with air pressure.
  • This driving pressure is detected by the pressure detection unit 106 and input to the control unit 108 via the input / output unit 107 as a pressure signal.
  • This pressure signal or the signal from which it is processed is used as the current pressure in FIG.
  • FIG. 10 is a flowchart showing a pneumatic servo control process executed by the control unit 108 of FIG. 8 operating in the control system of FIG.
  • step S1 the control unit 108 acquires the current position and the current pressure. As described above, the control unit 108 acquires the position signal from the position detection unit 101 as the current position via the input / output unit 107, and also uses the pressure signal from the pressure detection unit 106 as the current pressure. Through 107.
  • step S2 the control unit 108 determines whether or not it is a passive operation mode.
  • the passive operation mode is set when the changeover switch 103 in FIG. 8 is pressed, and the active operation mode is set in other states.
  • the passive operation mode is a mode in which a user (doctor or the like) operates as if operating the surgical instrument 12 manually. Therefore, in the vicinity of the head (opposite end of the distal end, that is, the entrance end) of the surgical instrument 12, A changeover switch 103 may be provided.
  • step S3 the control unit 108 calculates a pressure target value from the position target and the current position.
  • step S6 the control unit 108 calculates a voltage output value from the pressure target and the current pressure.
  • the voltage output value is input to the servo valve 105 via the input / output unit 107.
  • the servo valve 105 provides air from the air pressure source 104 to the pneumatic actuator 102 using a pressure corresponding to the voltage output value as a driving pressure. In this way, drive control of the pneumatic actuator 102 in the active operation mode is realized.
  • step S4 the control unit 108 rewrites the position target to the current position. That is, since the error becomes 0, the output of the position controller 202 in FIG.
  • step S5 the control unit 108 calculates a pressure target value necessary for self-weight compensation from the position information (current position). That is, the self-weight compensation controller 205 in FIG. 9 calculates the pressure target value.
  • step S6 the control unit 108 calculates a voltage output value from the pressure target and the current pressure. The voltage output value is input to the servo valve 105 via the input / output unit 107.
  • the servo valve 105 provides air from the air pressure source 104 to the pneumatic actuator 102 using a pressure corresponding to the voltage output value as a driving pressure. In this way, drive control of the pneumatic actuator 102 in the passive operation mode is realized. More precisely, the control in steps S4 to S6 in the passive operation mode relates to the pitch axis, and control other than the pitch axis is performed so that the differential pressure is zero.
  • the robot arm 11 that is the target of air pressure control is a pneumatically driven four-degree-of-freedom robot arm that holds the surgical instrument 12 such as an endoscope.
  • the changeover switch 103 is disposed in the vicinity of the head (endoscope head) of the surgical instrument 12 when the surgical instrument 12 is set on the robot arm 11.
  • the user can shift to the passive operation mode by simply pressing the changeover switch 103, and in the passive operation mode, the conventional endoscope can be smoothly moved with his / her hand. It is possible to move the surgical instrument 12 set on the robot arm 11 with the same feeling.
  • the pneumatic actuator 102 operates by pneumatic servo control using the pneumatic servo valve 105.
  • pneumatic servo control is realized by external force tracking control using pressure feedback, but in the passive operation mode, light weight and smooth operation can be achieved especially by compensating for its own weight by pressure feedback control of the pneumatic actuator 102. Can be realized. Further, when the pressing of the changeover switch 103 is released, the active operation mode is set, and automatic position control can be realized.
  • the present invention is not limited to the present embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.
  • the surgical device 12 such as an endoscope or forceps is set on the robot arm 11, but the present invention is not limited to this, and it is a rotatable medical device that needs to keep a clean part. Anything is enough.
  • the shape of the adapter 47 that holds the medical device and the separator 46 into which the adapter 47 is inserted is not particularly limited to a cylindrical shape, and the medical device can be attached so as to be rotatable about a predetermined axis. Any shape that can be used is sufficient.
  • the separator 46 is in the shape of a hollow cylinder in order to insert the adapter 47, and the inner surface of the cylinder needs to be a clean part.
  • the rotation mechanism of the robot arm 11 is not limited to an image in which the timing pulley 27 is employed, and any mechanism capable of transmitting the rotational force to the medical device via the separator 46 and the adapter 47 is possible. It ’s enough.
  • the robot arm 11 is not particularly required, and the present invention can be applied to an unclean part device having a rotation mechanism for rotating a medical device.
  • the set of the output drape bearing 41 and the output drape bearing cover 42, and the input drape bearing 45 And a set of the entrance side drape bearing cover 44 are employed, but the present invention is not limited to this.
  • the adapter component (set) to which the present invention is applied only needs to have the following configuration, and can take various embodiments. That is, an adapter part for connecting the medical device to an unclean part device having a rotation mechanism for rotating the medical device, An adapter for holding the medical device; A hollow cylinder for inserting the adapter, at least the inner surface of the cylinder is a clean part, a separator connected to the rotation mechanism on the outer surface of the cylinder, A connection for connecting a drape that isolates the device including the rotating mechanism from a clean part; Adapter parts with Thereby, it becomes possible to isolate an unclean part and a clean part reliably.
  • the rotational force of the rotation mechanism is reliably transmitted to the medical device.
  • a first fitting portion for fitting the adapter and the separator It is good to further provide the 2nd fitting part which fits the separator and the rotation mechanism.
  • the degree of fitting of the first fitting portion is weaker than the degree of fitting of the second fitting portion. This is because when the pressing force of a certain level or more is applied to the medical device, the adapter is detached from the separator, so that the risk of piercing the medical device is reduced and the unclean portion can be reliably prevented from being exposed.
  • the present invention only needs to have the following configuration as a control system for executing pneumatic servo control for a pneumatically driven robot arm that holds and operates a medical device.
  • a control system including a control unit that sets a pressure target necessary for self-weight compensation from the current position of the robot arm and executes pressure control based on the pressure target is sufficient.
  • the passive operation mode the user (physician) holds the robot arm on which the medical device is set with an intuitive feeling almost the same as when holding a medical device such as a normal endoscope. Manual operation will be possible.
  • the switching unit is a member operated by a user's contact, and is disposed at a position where the user can make contact while operating the medical device. This is because the operability is significantly improved for the user.
  • a program constituting the software can be installed on a computer or the like via a network or from a recording medium.
  • the computer may be a computer incorporating dedicated hardware, or may be a general-purpose personal computer capable of executing various functions by installing various programs.
  • the recording medium including various programs for executing a series of processes according to the present invention may be a removable medium distributed to provide a program to a user, separately from the information processing apparatus main body, or the information processing apparatus main body It may be a recording medium or the like incorporated in advance.
  • the removable medium is composed of, for example, a magnetic disk (including a floppy disk), an optical disk, a magneto-optical disk, or the like.
  • a recording medium incorporated in advance in the apparatus main body for example, a ROM in which a program is recorded, a hard disk, or the like may be used.
  • the step of describing the program recorded on the recording medium is not limited to the processing performed in time series along the order, but is not necessarily performed in time series, either in parallel or individually.
  • the process to be executed is also included.
  • system represents the entire apparatus composed of a plurality of apparatuses and processing units.

Abstract

 医療用機器を自動的に移動させるだけではなく、医療用機器を通常ユーザ自身で保持している場合とほぼ同じ直感的な感覚で操作すること。 医療用機器を保持操作する空気圧駆動のロボットアームに対して、空気圧サーボ制御が次のように実行される。能動操作モードのとき(ステップS2NO)には、ロボットアームの現在位置の位置目標に対する誤差を用いた位置制御の結果に基づいて圧力目標を設定し、当該圧力目標に基づいて圧力制御を実行する(ステップS3,S6)。これに対して、受動操作モードのとき(ステップS2YES)には、ロボットアームの現在位置から自重補償に必要な圧力目標を設定し、当該圧力目標に基づいて圧力制御を実行する(ステップS4乃至S6)。

Description

制御システム及び制御方法、並びにプログラム
 本発明は、医療用機器を保持操作する空気圧駆動のロボットアームに対して、空気圧サーボ制御を実行する制御システム及び制御方法、並びにプログラムに関する。
 従来より、外科手術において、術後の回復が速く、手術の際の傷口が小さい等の利点から開腹手術に代えて内視鏡手術が広く行われている。このような内視鏡手術においては、内視鏡を保持操作するロボットアームを用いた内視鏡操作システムが提案されている(例えば特許文献1参照)。
特開2014-094039号公報
 しかしながら、ユーザ(手術をする医師等)から、内視鏡を自動的に移動させるだけではなく、通常内視鏡を自身で保持している場合とほぼ同じ直感的な感覚で操作したいという要望が挙げられている。特許文献1を含め従来の技術では、このような要望に応えられない状況である。
 この点、内視鏡に限定されず、医療用機器を接続するロボットアーム一般にあてはまる状況である。
 本発明は、このような状況に鑑みてなされたものであり、医療用機器を自動的に移動させるだけではなく、医療用機器を通常ユーザ自身で保持している場合とほぼ同じ直感的な感覚で操作することを実現可能にすることを目的とする。
 本発明の一側面の制御システムは、
 医療用機器を保持操作する空気圧駆動のロボットアームに対して、空気圧サーボ制御を実行する制御システムであり、
 受動操作モードと能動操作モードを切り替える切替部と、
 前記能動操作モードのときには、前記ロボットアームの現在位置の位置目標に対する誤差を用いた位置制御の結果に基づいて圧力目標を設定し、当該圧力目標に基づいて圧力制御を実行し、前記受動操作モードのときには、前記ロボットアームの現在位置から自重補償に必要な圧力目標を設定し、当該圧力目標に基づいて圧力制御を実行する制御部と
 を備えることを特徴とする。
 前記切替部は、ユーザの接触により操作される部材であり、当該ユーザが医療用機器を操作しながら接触が可能な位置に配置されている、
 ようにすることができる。
 本発明の一側面の制御方法及びプログラムの夫々は、上述の本発明の一側面の制御システムに対応する制御方法及びプログラムの夫々である。
 本発明によれば、医療用機器を自動的に移動させるだけではなく、医療用機器を通常ユーザ自身で保持している場合とほぼ同じ直感的な感覚で操作することができる。
本発明の一実施形態に係るロボットシステムのうち、ロボットアームの外観構成の概略を示す斜視図である。 図1のロボットアームのうち、アダプタセット付近を拡大した部分断面図である。 図1のロボットアームのうち、手術機器が取り付けられたアダプタセットの外観的構成を示す側面図である。 各構成要素が分解された状態のアダプタセットの外観的構成を示す斜視図である。 図4の各構成要素が組み込まれた状態のアダプタセットの外観的構成を示す図である。 アダプタをセパレータに挿入する際の様子を説明するための、アダプタセットの図である。 タイミングプーリー、セパレータ、及びアダプタの結合の様子を説明するための、アダプタセットの図である。 本発明の一実施形態に係るロボットシステムのうち、ロボットアームに対する空気圧サーボ制御を実現するためのハードウェア構成を示すブロック図である。 図8のハードウェア構成により実現されるロボットアームに対する空気圧サーボ制御の制御系の概略を示す機能ブロック図である。 図9の制御系で動作する図8の制御部が実行する空気圧サーボ制御の処理を示すフローチャートである。
 以下、本発明の一実施形態を図面に基づいて説明する。
 図1は、本発明の一実施形態に係るロボットシステム1のうち、ロボットアーム11の外観構成の概略を示す斜視図である。
 本実施形態のロボットシステム1は、内視鏡や鉗子等の手術機器12を保持操作することが可能な、空気圧駆動のロボットアーム11を有している。
 ロボットアーム11は、空気圧サーボ制御により駆動され、動作モードとして、受動操作モードと能動操作モードを有している。
 受動操作モードとは、本実施形態ではユーザ(手術をする医師等)がスイッチ(後述の図8の切替スイッチ103)を押下している間に機能するモードであり、ユーザが、通常の内視鏡等の手術機器を保持している場合とほぼ同様の直感的な感覚で、ロボットアーム11をあたかも手動操作で移動させる(実際には自重補償制御及び圧力制御を実行している)モードである。
 能動操作モードとは、位置制御と圧力制御の自動制御により、指定された目標位置まで、ロボットアーム11を自動的に移動させるモードである。
 ロボットアーム11は、手術機器12の先端部を4自由度で移動させるように保持する。即ち、ロボットアーム11は、手術機器12を、軸Aと軸Cとの交点における、軸Cに対する回転(ロール)、軸Aに対する回転(ヨー)、及び並行駆動部23による回転(ピッチ)、並びに、方向Bの略平行への移動を可能なように保持する。
 具体的には、ロボットアーム11は、回転駆動部21と、連結部22と、並行駆動部23と、空気圧シリンダ24と、回転モータ25と、タイミングベルト26と、タイミングプーリー27と、アダプタセット28とを有している。
 回転駆動部21は、ロボットアーム11を軸Aに対して回転駆動させることで、手術機器12をヨー軸回転させる。
 連結部22は、軸Aに対する回転に追従して移動するように、回転駆動部21と並行駆動部23とを連結する。
 並行駆動部23は、ロボットアーム11を回転駆動させることで、手術機器12をピッチ回転させる。
 空気圧シリンダ24は、ロボットアーム11を方向Bに略平行に駆動させることさせる空気圧シリンダである。
 回転モータ25は、回転力(トルク)を発生し、当該回転力をタイミングベルト26を介してタイミングプーリー27に伝達する。
 タイミングベルト26は、回転モータ25とタイミングプーリー27を繋ぐベルトである。
 タイミングプーリー27は、回転モータ25からタイミングベルト26を介して伝達された回転力により、アダプタセット28にセットされた手術機器12をロール回転させる。
 アダプタセット28は、当該タイミングプーリー27を含み、手術機器12をロボットアーム11に対して回転可能に取り付ける部材である。
 このような構成のロボットアーム11は、不潔部分からなる装置である。
 従って、図1に示すように、不潔部分からなるロボットアーム11は、ドレープ31により覆われることによって、手術中の患者が存在する清潔部分から分離されることになる。
 しかし、手術機器12は、清潔部分に存在させる必要がある一方で、回転可能なようにアダプタセット28に支持される必要もある。従って、何ら手当をしないと、アダプタセット28を介して手術機器12が不潔部分に触れるおそれもある。
 そこで、本実施形態では、アダプタセット28において、不潔部分と清潔部分とが完全に分離される工夫がなされている。
 以下、図2乃至図7を参照して、このようなアダプタセット28について具体的に説明する。
 図2は、図1のロボットアーム11のうち、アダプタセット28付近を拡大した部分断面図を示している。
 図3は、図1のロボットアーム11のうち、手術機器12が取り付けられたアダプタセット28の外観的構成を示す側面図を示している。
 図4は、各構成要素が分解された状態のアダプタセット28の外観的構成を示す斜視図を示している。
 図5は、図4の各構成要素が組み込まれた状態のアダプタセット28の外観的構成を示す図を示している。ここで、手術機器12の先端側(図3の左端側)を、以下「出側」と呼ぶ。この逆側(図3の右端側)を「入側」と呼ぶ。図5(A)は、アダプタセット28の出側の正面図を示している。図5(B)は、アダプタセット28の側面図を示している。図5(C)は、アダプタセット28の入側の正面図を示している。
 図2乃至図5(特に図4)に示すように、アダプタセット28は、手術機器12の出側からみて、出側ドレープベアリング41と、出側ドレープベアリングカバー42と、上述のタイミングプーリー27と、入側ドレープベアリングカバー44と、入側ドレープベアリング45と、セパレータ46と、アダプタ47と、を組み込むことで構成される。
 ここで、図3等に示すドレープ31には、セパレータ46の直径より少し大きい程度の孔が2ケ所あけられており、図2に示すように、当該2ケ所の孔のうち、一方の縁が、出側ドレープベアリング41と出側ドレープベアリングカバー42とに挟まれ、他方の縁が、入側ドレープベアリングカバー44と入側ドレープベアリング45とに挟まれる。
 これにより、図1乃至図3に示すように、ロボットアーム11がドレープ31に覆われるようになる。即ち、原則として、ロボットアーム11の不潔部分FAは、清潔部分SAと分離されることになる。
 ただし、清潔部分SAに存在すべき手術機器12は、アダプタセット28において、不潔部分FAと触れる可能性がある。このため、本実施形態では、セパレータ46の内側面が清潔部分SAになっている。
 これにより、セパレータ46の内側面及びドレープ31を境にして(図2の太線を境界線にして)、不潔部分FAと清潔部分SAとを完全分離させることが可能になる。さらに、このことについて図6を参照に詳しく説明する。
 図6は、アダプタ47をセパレータ46に挿入する際の様子を説明するための、アダプタセット28の図を示している。
 具体的には、図6(A)は、アダプタセット28の側面図を示している。図6(B)は、アダプタセット28の断面図を示している。図6(C)は、アダプタセット28の入側の正面図を示している。図6(C)の線Aによる断面図が図6(B)になっている。
 図6に示すように、手術機器12がセットされたアダプタ47は、入側から出側にむけて、セパレータ46の内部に挿入される。このようなアダプタ47の挿入時において、手術機器12は、セパレータ46の内部に触れる可能性があるため、ここが不潔部分FAであってはならない。
 そこで、セパレータ46の少なくとも内側面は、上述したように、滅菌がされた清潔部分になっている。これにより、手術機器12が不潔部分FAに接することなく、アダプタ47がセパレータ46に挿入させることが可能になる。
 また、アダプタ47も滅菌された清潔部分のため、アダプタ47がセパレータ46に挿入されて組み込まれた後も、図2に示すように、セパレータ46の内側面及びドレープ31を境にして(図2の太線を境界線にして)、不潔部分FAと清潔部分SAとが完全分離される。
 さらに、本実施形態では手術機器12は自転(図1の軸Cに対して回転)するため、回転モータ25からの回転力が、タイミングプーリー27を介して、手術機器12に伝達される必要がある。このための構成について、図7を参照して説明する。
 図7は、タイミングプーリー27、セパレータ46、及びアダプタ47の結合の様子を説明するための、アダプタセット28の図を示している。
 具体的には、図7(A)は、アダプタセット28の側面図を示している。図7(B)は、アダプタセット28の断面図を示している。図7(A)の線Aによる断面図が図7(B)になっている。
 図7に示すように、タイミングプーリー27は、入側においてツメ雄部27aを有している。セパレータ46は、タイミングプーリー27に挿入される際にツメ雄部27aに嵌合する、ツメ雌部46aを有している。
 即ち、ツメ雄部27aとツメ雌部46aとが嵌合することによって、タイミングプーリー27とセパレータ46とが結合する。
 図7に示すように、アダプタ47は、入側においてツメ雌部47bを有している。セパレータ46は、アダプタ47に挿入される際にツメ雌部47bに嵌合する、ツメ雄部46bを有している。
 即ち、ツメ雌部47bとツメ雄部46bとが嵌合することによって、セパレータ46とアダプタ47とが結合する。
 ここで、本実施形態では、セパレータ46とアダプタ47との結合の度合(ツメ雌部47bとツメ雄部46bとの嵌合の度合)が、タイミングプーリー27とセパレータ46との結合の度合(ツメ雄部27aとツメ雌部46aとの嵌合の度合)よりも緩くなっている。
 これにより、手術機器12の軸方向(図7(A)参照)に力が加わった際に、セパレータ46とアダプタ47とが先に外れることになる。
 その結果、手術機器12を突き刺すリスクが低減すると共に、不潔部分FAが清潔部分SAに露出してしまうことを確実に防止することができる。
 また、出側ドレープベアリング41と出側ドレープベアリングカバー42との夫々の結合部においても、ツメ41Cとツメ42Cの夫々が設けられている。即ち、ツメ41Cとツメ42Cとの嵌め合い構造とすることにより、出側ドレープベアリング41が抜けないようにしている。また、出側ドレープベアリング41とセパレータ46の夫々の内側等の結合部においても、ツメ41eとツメ46eの夫々が設けられる。即ち、ツメ41eとツメ46eとの嵌め合い構造とすることで、出側ドレープベアリング41とセパレータ46とが勘合し、その結果、ドレープ31の挿入口の固定が可能になる。
 同様に、入側ドレープベアリング45と入側ドレープベアリングカバー44との夫々の結合部においても、ツメ45dとツメ44dの夫々が設けられている。即ち、ツメ45dとツメ44dとの嵌め合い構造とすることにより、入側ドレープベアリング45が抜けないようにしている。
 これにより、ドレープ31が外れてロボットアーム11の不潔部分FAが清潔部分SAに露出してしまうことを確実に防止することができる。
 以上説明したように、アダプタセット28は、
 不潔部分であるロボットアーム11の回転機構たるタイミングプーリー27に接続され、内空構造を有し、内側面が清潔部分となっているセパレータ46と、
 手術機器12に取り付け固定が可能であって、セパレータ46の内空に挿入されるアダプタ47と、
 タイミングプーリー27を含むロボットアーム11を覆うことで清潔部分から遮断するドレープ31を取り付けるための、出側ドレープベアリング41及び入側ドレープベアリング45を有している。
 これにより、不潔部分と清潔部分とを完全に分離することが可能になる。
 さらに、セパレータ46とアダプタ47とが結合して、回転力を伝達しかつ手術機器12を固定するために、嵌合部分としてのツメ雌部47b及びツメ雄部46bが設けられている。
 また、セパレータ46と、ロボットアーム11の回転機構たるタイミングプーリー27についても、回転力を伝達する嵌合部分としてのツメ雄部27aとツメ雌部46aが設けられている。
 ここで、本実施形態では、セパレータ46とアダプタ47との嵌合の度合を、セパレータ46とロボットアーム11との嵌合の度合と比較して緩めている。これにより、手術機器12に一定以上の押しつけ力が加わると、アダプタ47がセパレータ46から外れる機能が実現されている。
 次に、図8乃至図10を参照して、ロボットアーム11に対する空気圧サーボ制御について説明する。
 図8は、本発明の一実施形態に係るロボットシステム1のうち、ロボットアーム11に対する空気圧サーボ制御を実現するためのハードウェア構成を示すブロック図である。
 図8に示すように、ロボットアーム11に対する空気圧サーボ制御を実現するために、空気圧源104と、サーボ弁105と、圧力検出部106と、入出力部107と、制御部108とが設けられている。
 また、ロボットアーム11には、位置検出部101と、空気圧アクチュエータ102と、切替スイッチ103とが設けられている。
 図9は、図8のハードウェア構成により実現されるロボットアーム11に対する空気圧サーボ制御の制御系の概略を示す機能ブロック図である。
 図9の各機能ブロックは、本実施形態では、図8の制御部108内に設けられている。なお、各機能ブロックは、ハードウェア単体で構成してもよいし、ソフトウェア単体で構成してもよいし、或いはまた、ソフトウェアとハードウェアとの組み合わせにより構成してもよい。
 図9の制御系では、位置目標入力部201は、位置目標を出力する。
 この位置目標と、位置制御対象204からの現在位置との差分(誤差)が、位置制御器202に入力される。位置制御器202は、この誤差を0にするような位置制御を実行し、その制御結果として圧力目標を出力する。
 ここで、位置検出対象204は、本実施形態ではロボットアーム11である。このため、ロボットアーム11に備えられた位置検出部101からの位置信号が入出力部107を介して制御部108に入力される。この位置信号又はそれが加工された信号が、図9の現在位置として用いられる。
 このように、図9の制御系では、位置制御がメインループ系を構成している。
 さらに、図9の制御系では、圧力制御がサブループ系を構成している。
 ここで本実施形態では、上述したように受動操作モードと能動操作モードとが選択的に使用可能となっている。
 能動操作モード時には、位置制御器202の出力が圧力目標として、圧力制御器203に入力される。
 一方、受動操作モード時には、位置制御器202の出力は禁止され(出力が0になり)、自重補償制御器205の出力が圧力目標として、圧力制御器203に入力される。即ち、自重補償制御器205は、現在位置に基づいて自重を補償し、その補償の結果を圧力目標として出力する。
 この圧力目標と現在圧力との差分(誤差)が、圧力制御器203に入力される。圧力制御器203は、この誤差を0にするような圧力制御を実行する。
 圧力制御器203の制御結果、即ち圧力制御器203の出力は、位置制御対象204に供給される。ここで、位置制御対象204は、本実施形態ではロボットアーム11である。
 具体的には、圧力制御器203の出力は、入出力部107を介して電圧出力としてサーボ弁105に入力される。
 サーボ弁105は、当該電圧出力に応じた圧力で、空気圧源104の空気を空気圧アクチュエータ102に提供する。即ち、当該電圧出力に応じた圧力が駆動圧力であり、この駆動圧力に応じて空気圧アクチュエータ102が駆動する。この空気圧アクチュエータ102は、代表的には図1の空気圧シリンダ24が該当するが、特にこれだけに限定されず、ロボットアーム11を空気圧で駆動させるもの全体を含む。
 この駆動圧力は、圧力検出部106によって検出され、圧力信号として入出力部107を介して制御部108に入力される。この圧力信号又はそれが加工された信号が、図9の現在圧力として用いられる。
 図10は、図9の制御系で動作する図8の制御部108が実行する空気圧サーボ制御の処理を示すフローチャートである。
 ステップS1において、制御部108は、現在の位置及び現在の圧力を取得する。
 上述したように、制御部108は、位置検出部101からの位置信号を現在の位置として入出力部107を介して取得すると共に、圧力検出部106からの圧力信号を現在の圧力として入出力部107を介して取得する。
 ステップS2において、制御部108は、受動操作モードか否かを判定する。
 本実施形態では、図8の切替スイッチ103が押下されている状態のとき、受動操作モードになり、それ以外の状態のとき、能動操作モードになるものとする。
 受動操作モードとは、ユーザ(医師等)があたかも手術機器12を手動操作する感覚で動作するモードであるため、手術機器12のヘッド(先端の反対側端、即ち入側の端)近傍に、切替スイッチ103が設けられるとよい。
 切替スイッチ103が押下されていない場合、ステップS2においてNOであると判定されて、即ち能動操作モードであると判定されて、処理はステップS3に進む。
 ステップS3において、制御部108は、位置目標と現在の位置から圧力目標値を計算する。
 ステップS6において、制御部108は、圧力目標と現在の圧力から電圧出力値を計算する。
 当該電圧出力値は、入出力部107を介してサーボ弁105に入力される。サーボ弁105は、当該電圧出力値に応じた圧力を駆動圧力として、空気圧源104の空気を空気圧アクチュエータ102に提供する。
 このようにして、能動操作モードによる空気圧アクチュエータ102の駆動制御が実現される。
 これに対して、切替スイッチ103が押下されている場合、ステップS2においてYESであると判定されて、即ち受動操作モードであると判定されて、処理はステップS4に進む。
 ステップS4において、制御部108は、位置目標を現在の位置に書き換える。即ち、誤差が0になるので図9の位置制御器202の出力は0になる。
 ステップS5において、制御部108は、位置情報(現在位置)から自重補償に必要な圧力目標値を計算する。即ち、図9の自重補償制御器205が圧力目標値を計算する。
 ステップS6において、制御部108は、圧力目標と現在の圧力から電圧出力値を計算する。
 当該電圧出力値は、入出力部107を介してサーボ弁105に入力される。サーボ弁105は、当該電圧出力値に応じた圧力を駆動圧力として、空気圧源104の空気を空気圧アクチュエータ102に提供する。
 このようにして、受動操作モードによる空気圧アクチュエータ102の駆動制御が実現される。
 なお、より正確には、受動操作モードにおける上記ステップS4乃至S6の制御はピッチ軸に関するものであり、ピッチ軸以外は差圧を0にするような制御がなされている。
 以上説明したように、本実施形態の空気圧制御の対象となるロボットアーム11は、内視鏡等の手術機器12を保持する空気圧駆動の4自由度ロボットアームである。
 ここで、本実施形態では、手術機器12がロボットアーム11にセットされた際における当該手術機器12のヘッド(内視鏡ヘッド)の近傍に、切替スイッチ103が配置されているものとする。これにより、ユーザ(医師等)は、当該切替スイッチ103を押下するだけで、受動操作モードに移行させることができ、当該受動操作モード時には、従来の内視鏡を自分の手で滑らかに動かすのと同等の感覚で、ロボットアーム11にセットされた手術機器12を動かすことができる。
 この滑らかな動作の実現のために、本実施形態では、空気圧アクチュエータ102は空気圧のサーボ弁105を用いた空気圧サーボ制御で動作する。つまり、空気圧サーボ制御は、圧力フィードバックによる外力追従制御によって実現されているが、受動操作モードの際には、特に、空気圧アクチュエータ102の圧力フィードバック制御によって、自重を補償することで、軽く滑らかな操作の実現が可能になっている。
 さらに、切替スイッチ103の押下が解除されると、能動操作モードとなり、自動的な位置制御が実現可能になる。
 なお、本発明は本実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば上述の実施形態では、ロボットアーム11には、内視鏡や鉗子等の手術機器12がセットされたが、特にこれに限定されず、清潔部分を保つ必要がある回転可能な医療用機器であれば足りる。
 また、当該医療用機器を保持するアダプタ47や、当該アダプタ47が挿入されるセパレータ46の形状は、特に円柱状に限定されず、所定の軸に対して回転可能に医療用機器を取り付けることができる形状であれば足りる。ただし、セパレータ46は、アダプタ47を挿入するために中空の筒の形状であり、筒の内側面が清潔部になっている必要がある。
 また、ロボットアーム11の回転機構としては、タイミングプーリー27が採用された画、特にこれに限定されず、セパレータ46及びアダプタ47を介して、医療用機器に回転力を伝達可能なものであれば足りる。さらに言えば、ロボットアーム11である必要も特になく、医療用機器を回転させるための回転機構を有する不潔部分の装置一般に、本発明は適用可能である。
 さらにまた、回転機構を含む装置を清潔部分から隔離するドレープ31を接続するためには、上述の実施形態では、出側ドレープベアリング41と出側ドレープベアリングカバー42の組と、入側ドレープベアリング45と入側ドレープベアリングカバー44の組とが採用されたが、特にこれに限定されない。
 換言すると、本発明が適用されるアダプタ部品(セット)は、次のような構成を取れば足り、各種各様の実施の形態を取ることができる。
 即ち、医療用機器を回転させるための回転機構を有する不潔部分の装置に対して、当該医療用機器を接続するためのアダプタ部品であって、
 当該医療用機器を保持するアダプタと、
 前記アダプタを挿入するための中空の筒の形状を有し、少なくとも当該筒の内側面が清潔部分となっており、当該筒の外側面において前記回転機構と接続するセパレータと、
 前記回転機構を含む前記装置を清潔部分から隔離するドレープを接続するための接続部と、
 を備えるアダプタ部品であれば足りる。
 これにより、不潔部分と清潔部分とを確実に隔離することが可能になる。
 さらに、回転機構の回転力を医療用機器に確実に伝達すると好適である。
 このためには、前記アダプタと前記セパレータとを嵌合する第1嵌合部と、
 前記セパレータと前記回転機構とを嵌合する第2嵌合部と
 をさらに備えるとよい。
 この場合、前記第1嵌合部の嵌合の度合は、前記第2嵌合部の嵌合の度合よりも弱いとさらに好適である。
 医療用機器に一定以上の押しつけ力が加わるとアダプタがセパレータから外れるため、医療用機器を突き刺すリスクが低減すると共に、不潔部分が露出することを確実に防止することができるからである。
 また、本発明は、医療用機器を保持操作する空気圧駆動のロボットアームに対して、空気圧サーボ制御を実行する制御システムとして、次のような構成を有すれば足り、各種各様の実施の形態を取ることができる。
 即ち、受動操作モードと能動操作モードを切り替える切替部と、
 前記能動操作モードのときには、前記ロボットアームの現在位置の位置目標に対する誤差を用いた位置制御の結果に基づいて圧力目標を設定し、当該圧力目標に基づいて圧力制御を実行し、前記受動操作モードのときには、前記ロボットアームの現在位置から自重補償に必要な圧力目標を設定し、当該圧力目標に基づいて圧力制御を実行する制御部と
 を備える制御システムであれば足りる。
 これにより、受動操作モードでは、ユーザ(医師)が、通常の内視鏡等の医療用機器を保持している場合とほぼ同様な直感的な感覚で、医療用機器がセットされたロボットアームを手動操作できるようになる。
 ここで、切替部は、ユーザの接触により操作される部材であり、当該ユーザが医療用機器を操作しながら接触が可能な位置に配置されている。
 ユーザにとって、操作性が格段に向上するからである。
 ところでこのような、空気圧サーボ制御を実現するための本発明に係る一連の処理は、ソフトウェアにより実行させることも、ハードウェアにより実行させることもできる。
 一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムを、コンピュータ等にネットワークを介して、或いは、記録媒体からインストールすることができる。コンピュータは、専用のハードウェアを組み込んだコンピュータであってもよいし、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータであってもよい。
 本発明に係る一連の処理を実行するための各種プログラムを含む記録媒体は、情報処理装置本体とは別に、ユーザにプログラムを提供するために配布されるリムーバブルメディアでもよく、或いは、情報処理装置本体に予め組み込まれた記録媒体等でもよい。リムーバブルメディアは、例えば、磁気ディスク(フロッピディスクを含む)、光ディスク、又は光磁気ディスク等により構成される。また、装置本体に予め組み込まれた記録媒体としては、例えば、プログラムが記録されているROMや、ハードディスク等でもよい。
 なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的或いは個別に実行される処理をも含むものである。
 また、本明細書において、システムとは、複数の装置や処理部により構成される装置全体を表すものである。
 1   ロボットシステム
 11  ロボットアーム
 12  手術機器
 21 回転駆動部
 22 連結部
 23 並行駆動部
 24 空気圧シリンダ
 25 回転モータ
 26 タイミングベルト
 27 タイミングプーリー
 28 アダプタ
 31 ドレープ
 41 ドレープベアリング
 42 出側ドレープベアリングカバー
 44 入側ドレープベアリングカバー
 45 入側ドレープベアリング
 46 セパレータ
 47 アダプタ
 101 位置検出部
 102 空気圧アクチュエータ
 103 切替スイッチ
 104 空気圧源
 105 サーボ弁
 106 圧力検出部
 107 入出力部
 108 制御部
 201 位置目標入力部
 202 位置制御器
 203 圧力制御器
 204 位置検出部
 205 自重補償制御器
 

Claims (4)

  1.  医療用機器を保持操作する空気圧駆動のロボットアームに対して、空気圧サーボ制御を実行する制御システムにおいて、
     受動操作モードと能動操作モードを切り替える切替部と、
     前記能動操作モードのときには、前記ロボットアームの現在位置の位置目標に対する誤差を用いた位置制御の結果に基づいて圧力目標を設定し、当該圧力目標に基づいて圧力制御を実行し、前記受動操作モードのときには、前記ロボットアームの現在位置から自重補償に必要な圧力目標を設定し、当該圧力目標に基づいて圧力制御を実行する制御部と
     を備える制御システム。
  2.  前記切替部は、ユーザの接触により操作される部材であり、当該ユーザが医療用機器を操作しながら接触が可能な位置に配置されている、
     請求項1に記載の制御システム。
  3.  医療用機器を保持操作する空気圧駆動のロボットアームに対して、空気圧サーボ制御を実行する制御システムであって、受動操作モードと能動操作モードを切り替える切替部を備える制御システムが、
     前記能動操作モードのときには、前記ロボットアームの現在位置の位置目標に対する誤差を用いた位置制御の結果に基づいて圧力目標を設定し、当該圧力目標に基づいて圧力制御を実行し、
     前記受動操作モードのときには、前記ロボットアームの現在位置から自重補償に必要な圧力目標を設定し、当該圧力目標に基づいて圧力制御を実行する
     制御方法。
  4.  医療用機器を保持操作する空気圧駆動のロボットアームに対して、空気圧サーボ制御を実行する制御システムであって、受動操作モードと能動操作モードを切り替える切替部を備える制御システムに含まれるコンピュータに対して、
     前記能動操作モードのときには、前記ロボットアームの現在位置の位置目標に対する誤差を用いた位置制御の結果に基づいて圧力目標を設定し、当該圧力目標に基づいて圧力制御を実行し、
     前記受動操作モードのときには、前記ロボットアームの現在位置から自重補償に必要な圧力目標を設定し、当該圧力目標に基づいて圧力制御を実行する
     制御処理を実行させるプログラム。
PCT/JP2014/076061 2014-09-30 2014-09-30 制御システム及び制御方法、並びにプログラム WO2016051495A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/076061 WO2016051495A1 (ja) 2014-09-30 2014-09-30 制御システム及び制御方法、並びにプログラム
JP2016551380A JPWO2016051495A1 (ja) 2014-09-30 2014-09-30 制御システム及び制御方法、並びにプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076061 WO2016051495A1 (ja) 2014-09-30 2014-09-30 制御システム及び制御方法、並びにプログラム

Publications (1)

Publication Number Publication Date
WO2016051495A1 true WO2016051495A1 (ja) 2016-04-07

Family

ID=55629594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076061 WO2016051495A1 (ja) 2014-09-30 2014-09-30 制御システム及び制御方法、並びにプログラム

Country Status (2)

Country Link
JP (1) JPWO2016051495A1 (ja)
WO (1) WO2016051495A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107049208A (zh) * 2017-05-16 2017-08-18 中国医科大学附属盛京医院 医用内窥镜自动锁紧支架
JP2019013445A (ja) * 2017-07-06 2019-01-31 リバーフィールド株式会社 マニピュレータシステム
WO2020195433A1 (ja) * 2019-03-26 2020-10-01 リバーフィールド株式会社 医用ロボットシステム
WO2021210180A1 (ja) 2020-04-17 2021-10-21 リバーフィールド株式会社 医療用ロボットの空気圧駆動機構
WO2022030142A1 (ja) * 2020-08-04 2022-02-10 ソニーグループ株式会社 情報処理装置、プログラム、学習モデル及び学習モデルの生成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070142823A1 (en) * 2005-12-20 2007-06-21 Intuitive Surgical Inc. Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator
JP2009527366A (ja) * 2006-02-24 2009-07-30 フェルロボティクス コンプライアント ロボット テクノロジー ゲーエムベーハー ロボットアーム
JP2013510632A (ja) * 2009-11-16 2013-03-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 内視鏡支援ロボットのための人‐ロボット共用制御
JP2014061327A (ja) * 2013-09-07 2014-04-10 Tokyo Institute Of Technology 力覚提示機能を有する操縦システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070142823A1 (en) * 2005-12-20 2007-06-21 Intuitive Surgical Inc. Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator
JP2009527366A (ja) * 2006-02-24 2009-07-30 フェルロボティクス コンプライアント ロボット テクノロジー ゲーエムベーハー ロボットアーム
JP2013510632A (ja) * 2009-11-16 2013-03-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 内視鏡支援ロボットのための人‐ロボット共用制御
JP2014061327A (ja) * 2013-09-07 2014-04-10 Tokyo Institute Of Technology 力覚提示機能を有する操縦システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107049208A (zh) * 2017-05-16 2017-08-18 中国医科大学附属盛京医院 医用内窥镜自动锁紧支架
CN107049208B (zh) * 2017-05-16 2019-04-19 中国医科大学附属盛京医院 医用内窥镜自动锁紧支架
JP2019013445A (ja) * 2017-07-06 2019-01-31 リバーフィールド株式会社 マニピュレータシステム
WO2020195433A1 (ja) * 2019-03-26 2020-10-01 リバーフィールド株式会社 医用ロボットシステム
WO2021210180A1 (ja) 2020-04-17 2021-10-21 リバーフィールド株式会社 医療用ロボットの空気圧駆動機構
CN115052548A (zh) * 2020-04-17 2022-09-13 瑞德医疗机器股份有限公司 医疗用机器人的空气压驱动机构
WO2022030142A1 (ja) * 2020-08-04 2022-02-10 ソニーグループ株式会社 情報処理装置、プログラム、学習モデル及び学習モデルの生成方法

Also Published As

Publication number Publication date
JPWO2016051495A1 (ja) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6027290B2 (ja) アダプタ部品
JP6956761B2 (ja) クランプ又は発射の不成功を検出するシステム
WO2016051495A1 (ja) 制御システム及び制御方法、並びにプログラム
US20200315720A1 (en) Flexible robotic endoscopy system
US10420625B2 (en) Vibration detection module, vibration detection method, and surgical system
JP5537204B2 (ja) 医療用マニピュレータシステム
JP6652775B2 (ja) ロボット支援手術の為のデバイス
US20170209227A1 (en) Manipulator and manipulator system
US20210007583A1 (en) Enhanced flexible robotic endoscopy apparatus
JP2017136400A (ja) 器具インターフェース
EP3714829B1 (en) Adaptor
US20060074408A1 (en) Medical manipulator
JP2009226126A (ja) 線状体の駆動装置
KR20190086400A (ko) 멸균 어댑터 어셈블리를 액추에이터 어셈블리에 고정하기 위한 로봇 수술 시스템용 락킹 메커니즘
US11553978B2 (en) Stopper and adaptor
EP3968890A1 (en) Interlock mechanisms to disengage and engage a teleoperation mode
JP2020508725A (ja) 外科用内視鏡および外科用ロボット
US20220296085A1 (en) Endoscope system
US20220313380A1 (en) Integrated robotic insufflation and smoke evacuation
JP2017056214A (ja) アダプタ部品
WO2023177554A1 (en) Manual jaw grip release detection
US20210282878A1 (en) Surgeon disengagement detection during termination of teleoperation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551380

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30.06.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14903123

Country of ref document: EP

Kind code of ref document: A1