WO2016050879A1 - Field-effect transistor with optimised mixed drain contact and manufacturing method - Google Patents

Field-effect transistor with optimised mixed drain contact and manufacturing method Download PDF

Info

Publication number
WO2016050879A1
WO2016050879A1 PCT/EP2015/072624 EP2015072624W WO2016050879A1 WO 2016050879 A1 WO2016050879 A1 WO 2016050879A1 EP 2015072624 W EP2015072624 W EP 2015072624W WO 2016050879 A1 WO2016050879 A1 WO 2016050879A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
elementary
drain
schottky
gate
Prior art date
Application number
PCT/EP2015/072624
Other languages
French (fr)
Inventor
Sylvain Delage
Bernard Carnez
Raphaël Aubry
Olivier JARDEL
Nicolas Michel
Mourad OUALLI
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to CN201580060895.0A priority Critical patent/CN107078153A/en
Priority to EP15774593.6A priority patent/EP3201949A1/en
Publication of WO2016050879A1 publication Critical patent/WO2016050879A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • FIELD OF THE INVENTION Field of the invention is that of the field effect components and in particular that of the transistors whose fields of application are both those of the microwave frequencies and those of the transistor. power electronics.
  • the present invention is more specifically focused on producing the contacts and access resistance of the drain contact of a field effect component while facilitating the production of components in a collective manner and which may have different characteristics, and in particular in the case of components with submicron grid sizes.
  • the field effect transistors contact a semiconductor rod (s) using three contacts:
  • a gate corresponding to a contact which may be of Schottky type (metal-semiconductor) or a junction of a semiconductor of the opposite type to that of the semiconductor in which the carriers propagate;
  • Figure 1 shows the block diagram of a field effect transistor.
  • the conventional solution is to use two ohmic contacts of DC drain and CS source subjected to a voltage Vds, to inject and collect the carriers schematized by the current Ids, whose flow is controlled by the voltage Vgs carried at the gate BOY WUT.
  • the ohmic contacts are differentiated from the so-called Schottky contacts by the function of evolution of the current as a function of the applied voltage.
  • this function is linear and passes through 0, then it has a lower threshold voltage V min for that the current is non-zero in the case of a Schottky contact.
  • a simple ohmic contact must be made in such a way that no energy barrier opposes the crossing of the interface between the ohmic contact and the semiconductor to be contacted, which limits the access resistances.
  • the present invention relates to a field effect transistor comprising a substrate and a semiconductor structure having a channel region, said transistor comprising a drain contact, a source contact and a gate said source and drain contacts for generating a charge carrier stream in the channel region, said flow being controlled by said gate, characterized in that:
  • said drain contact is a mixed drain contact comprising at least one continuous drain ohmic elementary contact and a drain Schottky elementary contact, said mixed drain contact flush with said semiconductor structure;
  • said elementary Schottky drain contact partially or totally overlapping said ohmic drain elementary contact.
  • the elemental Schottky drain contact partially or totally overlapping said ohmic drain elementary contact allows for reliable fabrication easily taking into account alignment and lithographic dimensional tolerances, perfect juxtaposition being impossible.
  • the additional advantage is to easily allow a setting at the same potential of the Schottky contact to that of the ohmic drain contact.
  • the source contact is a mixed contact comprising at least one source ohmic source contact and a source Schottky elementary contact.
  • the elementary Schottky drain contact and / or the source Schottky elemental contact partially overlaps the ohmic elementary drain contact and / or the source ohmic source contact.
  • the term partial overlap means that the ohmic drain and / or source elementary contact is covered by a Schottky elementary contact of drain and / or source, said Schottky elementary contact also having a portion in contact with said substrate.
  • said gate comprises a Schottky type contact: metal / conductor.
  • said grid has a complex shape presenting:
  • a so-called lower part in contact with the semiconductor structure comprising the channel zone and having a first section;
  • a so-called high second portion referred to as a gate cap, in contact with said lower portion and having a second section;
  • the semiconductor structure comprises a set of layers of materials III-V, of which at least two materials have different forbidden bands, the largest (s) band (s) prohibited (s) for the containment of free carriers in the smallest bandgap.
  • the transistor comprises a dielectric layer covering the source contact and / or the drain contact and / or the gate.
  • the transistor further comprises a metal field plate located on said dielectric at said gate.
  • the subject of the invention is also a component comprising a set of field effect transistors, comprising several subsets of transistors according to the invention:
  • a subset of transistors being characterized by a width between the gate and the mixed drain contact and a width between said gate and the ohmic elementary contact of said mixed drain contact, for each of the transistors of said subset;
  • said length between the gate and the ohmic elementary contact of said mixed drain contact being identical from one subset to the other.
  • control of the field effect transistors is generally carried out using a metal grid which can be isolated (for example MOSFET or MOSHEMT) or not (HEMT, MESFET, etc.) from the underlying semiconductor.
  • This metal grid is all the more difficult to realize that the cutoff frequencies of power gains and power are high. Indeed, it is necessary to control a grid foot length can be below 80 nm while ensuring a profile to reduce the series resistance obtained by increasing the section at the top of the electrode.
  • the conventional method of producing a grid uses electronic or even optical lithographs.
  • a stack of two different electro-sensitive resins (or even photosensitive for optical steppers) is used which makes it possible to form a metal grid of a suitable profile, generally called "mushroom”.
  • Solutions with successive electronic or optical lithographs are also used by first opening the gate foot through a dielectric and then making a second lithography which delimits the "hat” of the grid. A metal deposit is then made which allows to "mold” a grid in the form of Gamma or T.
  • Applicant has detected a manufacturing performance problem when attempting to modify certain key dimensions of the devices.
  • the origin of the problem lies essentially in the variations of the thicknesses of the resins used to define the gate electrode during the crossing of the walkways, in this case ohmic contacts source and drain.
  • Figure 2 shows for this purpose, the critical parameters that define the topology of an elementary component, knowing that the final component often involves the parallelization of several basic components.
  • the perpendicular dimension is not represented but it defines the total development of the transistor.
  • linear geometries are widely used although it is also possible to use circular or polygonal geometries.
  • the gate length Lg which is related to the current transit frequency, said frequency decreasing when said gate length Lg increases;
  • the section of the gate cap CG making it possible to size the gate resistance, while ensuring that said gate can have a narrow foot, this section influencing the gate resistance and the gain in microwave power;
  • the distance Lds between source and drain which influences the breakdown voltage of the component (power) and the microwave gain (the greater the distance Ldg is large and the greater the breakdown voltage is important but at the cost of a degradation of the microwave gains);
  • the ohmic contacts are defined and then the gate contact.
  • the indicated order is often conditioned by the high thermal budget to make the ohmic contacts (metal alloys, ion implantation anneals, etc.).
  • the annealing of the ohmic contacts in GaN technology often reaches 850 ° C for one to two minutes, ie a heat budget difficult to impose on Schottky contacts.
  • These ohmic contacts have a thickness e_s and e_d which is close to the height of the gate foot Hg in order to have the sufficient lithographic resolution.
  • a conventional method of producing a grid having a CG cap is to use at least two resins:
  • foot + hat is then obtained by chemistries and sensitivities different from the insolations and the physicochemical revelations
  • FIG. 3 shows the sectional view of a field effect transistor during the coating of the first resin. It is noted that the filling of the Lds interval is performed differently depending on the coating, viscosity and post-coating creep conditions of the resin, leaving an inherent width. The thickness of this first resin varies and it is even thicker than the length Lds is small.
  • the applicant estimated at 25% the variation of thickness when the distance Lds is modified from 10 ⁇ to 1, 5 ⁇ for an electrosensitive resin used for grids up to 0,15 ⁇
  • a consequence on the performance of manufacturing is shown as an example of 90% for standard topologies and drops to 40% for grid-source deviations of 0.5 ⁇ .
  • the present invention also relates to a method of manufacturing a field effect transistor according to the invention, characterized in that it comprises the following steps:
  • the method comprises the realization of a source Schottky elementary contact so as to achieve a mixed source contact comprising at least one ohmic elementary contact and a Schottky elementary contact.
  • the realization of the elementary Schottky drain and / or source contact is made by partially overlapping respectively said ohmic elementary contact drain and / or associated source.
  • the grid having:
  • a so-called lower part in contact with the semiconductor structure comprising the channel zone and having a first section;
  • a so-called high second portion referred to as a gate cap, in contact with said lower portion and having a second section;
  • said method comprises:
  • the realization of said elementary Schottky drain contact and / or Schottky elementary source contact is (are) carried out simultaneously with the production of said gate.
  • the realization of said elementary Schottky drain contact and / or said source Schottky elementary contact is (are) carried out simultaneously with the realization of said gate cap.
  • the subject of the invention is a method of collective fabrication of a set of field effect transistors, said set of transistors comprising subsets of transistors:
  • transistors of the same subset of transistors having a width between the gate and the identical mixed drain contact for each transistor of the same subset and different from one subset to the other;
  • the width between the gate and the ohmic elemental drain contact being identical from one subset to the other, characterized in that it comprises the following steps:
  • the invention thus makes it possible to improve the production efficiency of the field effect transistors while improving their power efficiencies.
  • FIG. 1 illustrates the block diagram of a field effect transistor
  • FIG. 2 illustrates the technological parameters that are important for the optimization of a field effect component.
  • FIG. 3 illustrates the effects of the deposition of a resin with step transition between drain and source contacts for the production of a field effect transistor
  • FIG. 4 illustrates a first component variant according to the invention
  • FIG. 5 shows the block diagram of a transistor according to the invention comprising a mixed drain contact
  • FIG. 6 illustrates a second component variant according to the invention
  • FIG. 7 illustrates a third component variant according to the invention
  • FIG. 8 illustrates a fourth component variant according to the invention
  • FIG. 9 illustrates an exemplary component according to the invention.
  • FIG. 10 details the grid formed according to the example illustrated in FIG. 8;
  • FIG. 11 illustrates a method of collective fabrication of transistors, making it possible to produce different sizes of components, with variable dimensions of Li G -D width between grid and mixed drain contact.
  • the present invention thus relates to a component in which the drain contact which is mixed combines a conventional elementary ohmic contact and a metal-semiconductor Schottky elementary contact. It thus makes it possible to have to optimize only once the lithographic profile of the grid and this for a wide range of distance between ohmic contacts drain and source, for a given gate-source distance.
  • Using a live Schottky elemental contact to collect carriers can also improve reliability by providing a more consistent collection of carriers.
  • the Schottky contact of the mixed ohmic contact assures a role of field shield plate (Field plate) improving the voltages of breakdown of the component.
  • FIG. 4 A first example of a component according to the present invention is illustrated in FIG. 4, comprising a mixed drain contact.
  • a substrate 1 comprising a not shown channel that can be simple or heterostructure are produced:
  • a mixed drain contact comprising an ohmic elementary contact of drain C D oh and a Schottky elementary contact of drain C D s
  • the continuity of elementary Schottky drain contact partially covering the end of the elementary contacting ohmic drain which may have imperfections, overcomes the potential defects of achieving ohmic contact.
  • the ohmic contact is located at a sufficiently distant distance for the Schottky drain contact to cover the different spacings required for the intended applications.
  • the elementary Schottky drain contact can also be realized.
  • the unevenness of conventional ohmic contacts crossed by the resins successively used to make the grid are therefore constant. This ensures a better manufacturing yield.
  • the Schottky elementary drain contact also provides the possibility of a contact with low resistance (direct-to-majority junction) above the elbow voltage of the Schottky diode. This is achieved more with a low thermal budget.
  • FIG. 5 illustrates the diagram of an ohmic drain contact by association of a conventional ohmic contact and a Schottky contact.
  • the current lds_co (in solid lines) corresponds to the current passing conventionally via the ohmic contact.
  • the lds_Sch current (in dotted lines) represents the current flowing through the Schottky contact.
  • the resistance control associated with the traditional ohmic contact is obtained either by playing on the topology of the contact (length of the semiconductor rod to be crossed, width of the ohmic contact), or on the conductivity of the semiconductor, or by using for this plate of a Schottky junction field with a low potential barrier.
  • the breakdown voltages can be improved according to the semiconductors contacted.
  • FIG. 6 schematizes a second example of a component according to the present invention comprising a mixed drain contact and a mixed source contact.
  • a substrate 1 comprising a not shown channel that can be simple or heterostructure are produced:
  • a source mixed contact comprising an ohmic elementary contact of source C S 0 h and a Schottky elementary contact of source C S s ch;
  • a mixed drain contact comprising an ohmic elementary contact of drain C D oh and a Schottky elementary contact of drain C D s
  • FIG. 7 schematizes a third example of a component according to the present invention comprising a mixed drain contact.
  • a substrate 1 comprising a not shown channel that can be simple or heterostructure are produced:
  • a mixed drain contact comprising an ohmic elementary contact of drain C D oh and a Schottky elementary contact of drain C D s
  • the mixed drain contact is associated with a field plate to avoid electric field peaks.
  • This field plate P ch which can be brought to the potential of the source or of the gate is materialized by a conducting layer above a dielectric layer 2 and surrounding said gate G.
  • FIG. 8 schematizes a fourth example of a component according to the present invention comprising a mixed drain contact.
  • a substrate 1 comprising a not shown channel that can be simple or heterostructure are produced:
  • a mixed drain contact having an ohmic drain elementary contact C D oh and a Schottky elementary contact of drain Co sch-
  • the mixed drain contact is associated with a field plate P ch that can be brought to the potential of the source or the gate and which is materialized by a conductive layer above a dielectric layer 2 and surrounding said gate G.
  • the end of the Schottky contact vis-à-vis the gate drain comprises a protuberance on the dielectric for amplifying the drain field plate effect.
  • the realization of Schottky drain contacts does not require additional level of lithography. It is possible to form these contacts at other stages of the process succeeding the realization of the gate (for example during a level of the field plate type for example).
  • Exemplary embodiment of a field effect transistor HEMT according to the invention.
  • FIG. 9 illustrates the production of a stack of layers enabling the constitution of a field effect transistor heterostructure.
  • a homogeneous crystalline substrate 100 or not SiC, Si, sapphire, GaN or composite
  • SiC, Si, sapphire, GaN or composite the following heterostructure by stacking layers below:
  • nucleation layer 101 allowing growth on the heterogeneous substrate (SiC, Si, or sapphire);
  • a layer or set of layers 102 enabling the control of mechanical stresses
  • a buffer layer 103 of GaN or doped or non-doped GaN compound allowing the confinement of the free carriers present in the layer 104;
  • a layer 104 of GaN semiconductor channel (which may have a thickness of 40 nm to 250 nm depending on the applications);
  • a barrier layer 105 in AI 2 5 % Gay 5% N (which may have a thickness 25nm) or in ln x Ali. x N;
  • a doped or undoped GaN encapsulation layer 106 (which may have a thickness of 2 nm) or another dielectric.
  • the ohmic source contact C S Oh and the elementary ohmic drain contact C D 0h are then made in a known manner by diffusion from Ti / Al / Ni / Au deposits and rapid thermal annealing operation.
  • the gate G is also produced.
  • FIG. 10 illustrates, for this purpose, the various metallic layers constituting the gate, for example: Ni / Pt / Au, in the central cavity previously made by successive resin deposits, for example, in order to obtain the complex shape.
  • the Schottky elemental drain contact C D S ch is also made with a metal structure (not shown).
  • the first layer in contact with the GaN free surface may be silicon nitride of a hundred nanometers thick.
  • the gate width Lg may typically be 0.15 ⁇ but may vary between 0.05 ⁇ to several microns;
  • the width between the drain contact and the Ldg gate may be between 0.5 ⁇ and several tens of microns depending on the cut-off frequencies of the microwave gains and the targeted breakdown voltages;
  • the width between the gate and the source contact Lgs is generally shorter than the width Ldg but may also range from 0.5 ⁇ to several microns;
  • the gate height Hg can typically be 0.25 ⁇ up to 2 ⁇ and beyond;
  • the total height of the gate may typically be 0.4 ⁇ , but also may be optimized from 0.1 ⁇ to several microns.
  • the shape of the grid can be adjusted.
  • the shape can be a mushroom as previously illustrated for grids shorter than ⁇ , ⁇ , beyond this form is not necessary.
  • a rectangular shape can be considered also for very short grids, but this may increase the series resistance of the grid.
  • the thicknesses of source and drain contacts e_s and e_d can typically be 0.2 ⁇ , this value being relatively free. According to the present invention, it is advantageous to collectively produce components having different characteristics, avoiding differentiated delicate steps to make the ohmic contacts, the most complex contacts to obtain.
  • Figure 1 1 illustrates such a collective method for producing a set of components to the surface of a substrate according to the invention.
  • the step of complex realization of the set of ohmic contacts can be performed in a uniform manner.
  • the step of producing the Schottky drain contacts is carried out in a second step and makes it possible to achieve the desired differentiation between components having different performances and characteristics by obtaining distances between grids and elementary Schottky drain contacts (C D s ch ) variables. Is thus obtained subsets of transistors ST ⁇ , ST i + comprising:
  • the invention thus enables n having to optimize lithographic once the profile of the gate and for a wide range of distance between the source and drain ohmic contacts, for a given gate-source distance.

Abstract

The invention relates to a field-effect transistor comprising a substrate and a semi-conductor structure having a channel area, said transistor comprising a drain contact, a source contact and a gate, said source and drain contacts making it possible to generate a flow of charge carriers in the channel area, said flow being controlled by said gate, characterised in that: said drain contact is a mixed drain contact comprising at least one elementary ohmic continuous drain contact (CDoh) and an elementary Schottky drain contact (CDSch), said mixed drain contact being flush with said semiconductor structure; said elementary Schottky drain contact (CDSch) partially or completely overlapping said elementary ohmic drain contact (CDoh). The invention also relates to a method for manufacturing said transistor.

Description

Transistor à effet de champ avec contact de drain mixte optimisé et procédé de fabrication Le domaine de l'invention est celui des composants à effet de champ et notamment celui des transistors dont les domaines d'application sont aussi bien ceux des hyperfrequences que ceux de l'électronique de puissance. La présente invention est plus précisément centrée sur la réalisation des contacts et résistance d'accès du contact de drain d'un composant à effet de champ tout en facilitant la réalisation de composants de manière collective et pouvant présenter des caractéristiques différentes, et notamment dans le cas de composants présentant des tailles de grille submicronique. FIELD OF THE INVENTION Field of the invention is that of the field effect components and in particular that of the transistors whose fields of application are both those of the microwave frequencies and those of the transistor. power electronics. The present invention is more specifically focused on producing the contacts and access resistance of the drain contact of a field effect component while facilitating the production of components in a collective manner and which may have different characteristics, and in particular in the case of components with submicron grid sizes.
De manière générale, les transistors à effet de champ contactent un barreau de semiconducteur(s) à l'aide de trois contacts :  In general, the field effect transistors contact a semiconductor rod (s) using three contacts:
- un contact ohmique de source ;  an ohmic source contact;
- une grille correspondant à un contact pouvant être de type Schottky (métal-semiconducteur) ou une jonction d'un semiconducteur de type opposé à celui du semiconducteur dans lequel les porteurs se propagent ;  a gate corresponding to a contact which may be of Schottky type (metal-semiconductor) or a junction of a semiconductor of the opposite type to that of the semiconductor in which the carriers propagate;
- un contact ohmique de drain.  an ohmic drain contact.
La figure 1 montre le schéma de principe d'un transistor à effet de champ. La solution classique est d'utiliser deux contacts ohmiques de drain CD et de source CS soumis à une tension Vds, pour injecter et collecter les porteurs schématisé par le courant Ids, dont le flux est contrôlé par la tension Vgs portée au niveau de la grille G.  Figure 1 shows the block diagram of a field effect transistor. The conventional solution is to use two ohmic contacts of DC drain and CS source subjected to a voltage Vds, to inject and collect the carriers schematized by the current Ids, whose flow is controlled by the voltage Vgs carried at the gate BOY WUT.
Ces types de composants sont largement utilisés et décrits dans des ouvrages d'introduction, dont notamment : « Physique des semiconducteurs et des composants électroniques » Cours et exercices, Henry Mathieu, Hervé Fanet Collection: Sciences Sup, Dunod 2009-5ième édition- EAN13 : 97810051 6438 These types of components are widely used and described in introductory books, including: "Physics of semiconductors and electronic components" Courses and exercises, Henry Mathieu, Herve Fanet Collection: Sciences Sup, Dunod 2009-5 th edition - EAN13 : 97810051 6438
De manière générale, on différencie les contacts ohmiques des contacts dits Schottky par la fonction d'évolution du courant en fonction de la tension appliquée. Dans le cas d'un contact ohmique, cette fonction est linéaire et passe par 0, alors qu'elle présente une tension seuil minimale Vmin pour que le courant soit non nul dans le cas d'un contact Schottky. Un contact ohmique simple doit être réalisé de telle sorte qu'aucune barrière énergétique ne s'oppose au franchissement de l'interface entre le contact ohmique et le semiconducteur à contacter, cela limitant les résistances d'accès. In general, the ohmic contacts are differentiated from the so-called Schottky contacts by the function of evolution of the current as a function of the applied voltage. In the case of an ohmic contact, this function is linear and passes through 0, then it has a lower threshold voltage V min for that the current is non-zero in the case of a Schottky contact. A simple ohmic contact must be made in such a way that no energy barrier opposes the crossing of the interface between the ohmic contact and the semiconductor to be contacted, which limits the access resistances.
Les solutions classiques de réalisation de contact ohmique reposent sur trois approches qui ne sont d'ailleurs pas exclusives l'une de l'autre. Il est important de mentionner que certains matériaux semiconducteurs ne permettent pas d'utiliser facilement l'ensemble des trois procédés pour différentes raisons (budget thermique, hétérostructure irréalisable, dopage maximal insuffisant, etc.).  Conventional ohmic contact fabrication solutions are based on three approaches that are not exclusive of each other. It is important to mention that some semiconductor materials do not make it easy to use all three processes for different reasons (thermal budget, unrealizable heterostructure, insufficient maximum doping, etc.).
Plus précisément, ces procédés sont les suivants :  More specifically, these methods are as follows:
- l'inter-diffusion d'alliages métalliques avec le semiconducteur ; the inter-diffusion of metal alloys with the semiconductor;
- le dopage très élevé du semiconducteur qui permet de diminuer fortement l'épaisseur de la zone de charge d'espace et donc le franchissement de la barrière Schottky par effet tunnel ou équivalent; the very high doping of the semiconductor, which makes it possible to greatly reduce the thickness of the space charge zone and therefore the crossing of the Schottky barrier by a tunnel effect or equivalent;
- l'utilisation sous l'électrode métallique d'un alliage semiconducteur par ingénierie des bandes d'énergie conduisant à l'absence d'une barrière Schottky à l'interface.  the use under the metal electrode of a semiconductor alloy by engineering the energy bands, leading to the absence of a Schottky barrier at the interface.
Ces trois approches requièrent toutes un budget thermique élevé, et pour certains matériaux semiconducteurs les résistances de contact à l'interface métal-semiconducteur demeurent trop élevées et altèrent les performances électriques des dispositifs. On est ainsi amené à chercher des solutions permettant de réduire les résistances d'accès, et notamment du contact de drain. Le Demandeur est parti du constat que cette résistance de contact est inférieure dans le cas d'un contact Schottky polarisé en direct, par rapport à celle d'un contact ohmique classique et propose pour résoudre le problème posé, une solution concernant un transistor à effet de champ, comportant un contact de drain mixte. These three approaches all require a high thermal budget, and for some semiconductor materials the contact resistances at the metal-semiconductor interface remain too high and impair the electrical performance of the devices. We are inclined to look for ways to reduce the resistance of access, including the drain contact. The Applicant has started from the observation that this contact resistance is lower in the case of a direct biased Schottky contact, compared to that of a conventional ohmic contact and proposed to solve the problem posed, a solution concerning an effect transistor. field, having a mixed drain contact.
II est à noter qu'il a déjà été proposé l'utilisation de contact It should be noted that the use of contact has already been proposed
Schottky et notamment dans les articles de A Girardot, A Henkel, S.L Delage, M. -A DiForte-Poisson, E. Chartier. D. Floriot, S. Cassette and P. A. Rolland, « High performance collector-up InGaP/GaAs heterojunction bipolar transistor with Schottky contact » , Electronics Letters, Vol.35. pp.670-672, 1999, ou l'article : Schottky Drain AIGaN/GaN HEMTs for mm-wave Applications, X. Zhao, J.W. Chung, H. Tang, T. Palacios, 1 - 4244-1 1 02-5/07 2007 IEEE. L'inconvénient de cette approche réside dans une tension de déchet importante puisqu'il faut que la jonction passe en direct pour conduire. Schottky and in particular in the articles of A Girardot, A Henkel, SL Delage, M. -A DiForte-Poisson, E. Chartier. D. Floriot, S. Cassette and PA Rolland, "High performance collector-up InGaP / GaAs heterojunction bipolar transistor with Schottky contact", Electronics Letters, Vol.35. pp.670-672, 1999, or article: Schottky Drain AIGaN / GaN HEMTs for mm-wave Applications, X. Zhao, JW Chung, H. Tang, T. Palacios, 1 - 4244-1 1 02-5 / 07 2007 IEEE. The disadvantage of this approach lies in an important waste voltage since it is necessary for the junction to go live to drive.
C'est pourquoi et dans ce contexte, la présente invention a pour objet un transistor à effet de champ comportant un substrat et une structure semiconductrice présentant une zone de canal, ledit transistor comportant un contact de drain, un contact de source, et une grille, lesdits contacts de source et de drain permettant de générer un flux de porteurs de charge dans la zone de canal, ledit flux étant contrôlé par ladite grille, caractérisé en ce que : For that reason, and in this context, the present invention relates to a field effect transistor comprising a substrate and a semiconductor structure having a channel region, said transistor comprising a drain contact, a source contact and a gate said source and drain contacts for generating a charge carrier stream in the channel region, said flow being controlled by said gate, characterized in that:
- ledit contact de drain est un contact mixte de drain comportant au moins un contact élémentaire ohmique de drain continu et un contact élémentaire Schottky de drain ledit contact mixte de drain affleurant ladite structure semiconductrice ;  said drain contact is a mixed drain contact comprising at least one continuous drain ohmic elementary contact and a drain Schottky elementary contact, said mixed drain contact flush with said semiconductor structure;
- ledit contact élémentaire Schottky de drain chevauchant partiellement ou totalement ledit contact élémentaire ohmique de drain.  said elementary Schottky drain contact partially or totally overlapping said ohmic drain elementary contact.
L'utilisation d'un contact continu permet une fabrication aisée avec un rendement de fabrication satisfaisant en évitant des lithographiques submicroniques. Le fait que l'extension de contact Schottky soit affleurant permet d'éviter des discontinuités et potentiel effet de pointe diminuant à la fois le champ électrique effectif accessible et risquant d'augmenter les courants de fuite du transistor. Avec le contact restant planaire, il est possible d'éviter des étapes de gravure aussi fines que 5nm critiques, même au cas où des sélectivités de gravure existent entre matériaux, le gaz d'électrons étant très sensible aux états de la surface.  The use of a continuous contact allows easy manufacture with a satisfactory manufacturing yield by avoiding submicron lithographs. The fact that the contact extension Schottky is flush avoids discontinuities and potential peak effect decreasing both the effective electric field accessible and likely to increase the leakage currents of the transistor. With the remaining planar contact, it is possible to avoid etching steps as fine as 5nm critical, even in the case where etching selectivities exist between materials, the electron gas being very sensitive to the surface conditions.
De plus, le contact élémentaire Schottky de drain chevauchant partiellement ou totalement ledit contact élémentaire ohmique de drain permet une fabrication fiable tenant compte facilement des tolérances d'alignement et dimensionnelles lithographiques, une juxtaposition parfaite étant impossible. L'avantage supplémentaire est de permettre aisément une mise au même potentiel du contact Schottky à celui du contact ohmique de drain. Selon une variante de l'invention, le contact de source est un contact mixte comportant au moins un contact élémentaire ohmique de source et un contact élémentaire Schottky de source. In addition, the elemental Schottky drain contact partially or totally overlapping said ohmic drain elementary contact allows for reliable fabrication easily taking into account alignment and lithographic dimensional tolerances, perfect juxtaposition being impossible. The additional advantage is to easily allow a setting at the same potential of the Schottky contact to that of the ohmic drain contact. According to one variant of the invention, the source contact is a mixed contact comprising at least one source ohmic source contact and a source Schottky elementary contact.
Selon une variante de l'invention, le contact élémentaire Schottky de drain et/ou le contact élémentaire Schottky de source chevauche partiellement le contact élémentaire ohmique de drain et/ou le contact élémentaire ohmique de source. Le terme chevauchement partiel signifie que le contact élémentaire ohmique de drain et/ou de source est recouvert d'un contact élémentaire Schottky de drain et/ou de source, ledit contact élémentaire Schottky présentant également une partie en contact avec ledit substrat.  According to a variant of the invention, the elementary Schottky drain contact and / or the source Schottky elemental contact partially overlaps the ohmic elementary drain contact and / or the source ohmic source contact. The term partial overlap means that the ohmic drain and / or source elementary contact is covered by a Schottky elementary contact of drain and / or source, said Schottky elementary contact also having a portion in contact with said substrate.
Selon une variante de l'invention, ladite grille comprend un contact de type Schottky : métal/conducteur.  According to a variant of the invention, said gate comprises a Schottky type contact: metal / conductor.
Selon une variante de l'invention, ladite grille a une forme complexe présentant :  According to one variant of the invention, said grid has a complex shape presenting:
- une partie dite basse appelée pied de grille, en contact avec la structure semiconductrice comportant la zone de canal et présentant une première section ;  a so-called lower part, called a gate foot, in contact with the semiconductor structure comprising the channel zone and having a first section;
- une seconde partie dite haute appelée chapeau de grille, en contact avec ladite partie inférieure et présentant une seconde section ;  a so-called high second portion, referred to as a gate cap, in contact with said lower portion and having a second section;
- ladite première section étant inférieure à ladite seconde section. Selon une variante de l'invention, la structure semiconductrice comporte un ensemble de couches de matériaux lll-V, dont au moins deux matériaux présentent des bandes interdites différentes, la(les) plus grande(s) bande(s) interdite(s) servant au confinement de porteurs libres dans la plus petite bande interdite.  said first section being lower than said second section. According to a variant of the invention, the semiconductor structure comprises a set of layers of materials III-V, of which at least two materials have different forbidden bands, the largest (s) band (s) prohibited (s) for the containment of free carriers in the smallest bandgap.
Selon une variante de l'invention, le transistor comprend une couche de diélectrique recouvrant le contact de source et/ou le contact de drain et/ou la grille.  According to a variant of the invention, the transistor comprises a dielectric layer covering the source contact and / or the drain contact and / or the gate.
Selon une variante de l'invention, le transistor comporte de plus une plaque métallique de champ située sur ledit diélectrique au niveau de ladite grille. L'invention a aussi pour objet un composant comprenant un ensemble de transistors à effet de champ, comprenant plusieurs sous- ensembles de transistors selon l'invention : According to a variant of the invention, the transistor further comprises a metal field plate located on said dielectric at said gate. The subject of the invention is also a component comprising a set of field effect transistors, comprising several subsets of transistors according to the invention:
- un sous-ensemble de transistors étant caractérisé par une largeur entre la grille et le contact mixte de drain et une largeur entre ladite grille et le contact élémentaire ohmique dudit contact mixte de drain, pour chacun des transistors dudit sous- ensemble ;  a subset of transistors being characterized by a width between the gate and the mixed drain contact and a width between said gate and the ohmic elementary contact of said mixed drain contact, for each of the transistors of said subset;
- ladite largeur entre la grille et le contact mixte de drain étant différente d'un sous-ensemble à l'autre ;  said width between the gate and the mixed drain contact being different from one subset to the other;
- ladite longueur entre la grille et le contact élémentaire ohmique dudit contact mixte de drain étant identique d'un sous-ensemble à l'autre. II est à noter que la commande des transistors à effet de champ est généralement réalisée à l'aide d'une grille métallique qui peut-être isolée (par exemple MOSFET ou MOSHEMT) ou non (HEMT, MESFET, etc.) du barreau de semiconducteur sous-jacent. Cette grille métallique est d'autant plus délicate à réaliser que les fréquences de coupure des gains en courant et de la puissance sont élevées. En effet, il est nécessaire de maîtriser un pied de grille de longueur pouvant être en deçà de 80 nm tout en assurant un profil permettant de réduire les résistances série obtenues par augmentation de la section en haut de l'électrode.  said length between the gate and the ohmic elementary contact of said mixed drain contact being identical from one subset to the other. It should be noted that the control of the field effect transistors is generally carried out using a metal grid which can be isolated (for example MOSFET or MOSHEMT) or not (HEMT, MESFET, etc.) from the underlying semiconductor. This metal grid is all the more difficult to realize that the cutoff frequencies of power gains and power are high. Indeed, it is necessary to control a grid foot length can be below 80 nm while ensuring a profile to reduce the series resistance obtained by increasing the section at the top of the electrode.
Le procédé classique de réalisation de grille utilise des lithographies électroniques, voire optiques. Un empilement de deux résines électro-sensibles différentes (voire photosensibles pour des steppers optiques) est utilisé qui permet de former une grille métallique d'un profil adéquat, dénommé généralement «champignon».  The conventional method of producing a grid uses electronic or even optical lithographs. A stack of two different electro-sensitive resins (or even photosensitive for optical steppers) is used which makes it possible to form a metal grid of a suitable profile, generally called "mushroom".
Des solutions avec des lithographies électroniques ou optiques successives sont également utilisées en ouvrant tout d'abord le pied de grille à travers un diélectrique puis en réalisant une seconde lithographie qui délimite le «chapeau» de la grille. Un dépôt métallique est alors réalisé qui permet de « mouler» une grille en forme de Gamma ou de T.  Solutions with successive electronic or optical lithographs are also used by first opening the gate foot through a dielectric and then making a second lithography which delimits the "hat" of the grid. A metal deposit is then made which allows to "mold" a grid in the form of Gamma or T.
Du fait des reliefs présents liés aux différentes topologies et au process, la calibration des procédés de fabrication de la grille est critique et entraine des variations dimensionnelles, voire fonctionnelles, insatisfaisantes affectant les rendements de fabrication et les performances des composants. Due to the current reliefs related to the different topologies and the process, the calibration of the grid manufacturing processes is critical and causes dimensional, even functional, unsatisfactory variations affecting manufacturing yields and component performance.
Il est à noter, de plus que pour des applications analogiques ou de puissance il est utile de modifier certaines dimensions des composants. Il devient ainsi très intéressant de pouvoir disposer d'un maximum de reproductibilité dans les procédés collectifs de fabrication d'ensembles de transistors réalisés simultanément et collectivement, les transistors au sein d'un même ensemble étant identiques mais différents d'un ensemble à l'autre.  It should be noted, more than for analog or power applications it is useful to modify certain dimensions of the components. It thus becomes very interesting to be able to have a maximum of reproducibility in the collective processes for manufacturing sets of transistors made simultaneously and collectively, the transistors within the same set being identical but different from one set to the same. other.
En utilisant les techniques classiques de fabrication, le Using conventional manufacturing techniques, the
Demandeur a détecté un problème de rendement de fabrication lorsque l'on cherche à modifier certaines dimensions clefs des dispositifs. Applicant has detected a manufacturing performance problem when attempting to modify certain key dimensions of the devices.
L'origine du problème réside pour l'essentiel dans les variations des épaisseurs des résines utilisée pour définir l'électrode de grille lors du franchissement des passages de marche, en l'occurrence des contacts ohmiques de source et de drain.  The origin of the problem lies essentially in the variations of the thicknesses of the resins used to define the gate electrode during the crossing of the walkways, in this case ohmic contacts source and drain.
La figure 2 montre à cet effet, les paramètres critiques qui définissent la topologie d'un composant élémentaire, sachant que le composant final consiste souvent en la mise en parallèle de plusieurs composants élémentaires. La dimension perpendiculaire n'est pas représentée mais elle définit le développement total du transistor. Figure 2 shows for this purpose, the critical parameters that define the topology of an elementary component, knowing that the final component often involves the parallelization of several basic components. The perpendicular dimension is not represented but it defines the total development of the transistor.
On peut également noter que des géométries linéaires sont largement utilisées bien qu'il soit également possible d'utiliser des géométries circulaires ou polygonales.  It can also be noted that linear geometries are widely used although it is also possible to use circular or polygonal geometries.
II apparaît ainsi que les paramètres suivants ont les impacts suivants sur le fonctionnement du composant :  It thus appears that the following parameters have the following impacts on the operation of the component:
- la longueur de grille Lg qui est liée à la fréquence de transit du courant, ladite fréquence diminuant lorsque que ladite longueur de grille Lg augmente ;  the gate length Lg which is related to the current transit frequency, said frequency decreasing when said gate length Lg increases;
- la section du chapeau de grille CG permettant de dimensionner la résistance de grille, tout en assurant que ladite grille puisse avoir un pied étroit, cette section influençant la résistance de grille et le gain en puissance hyperfréquence ;  the section of the gate cap CG making it possible to size the gate resistance, while ensuring that said gate can have a narrow foot, this section influencing the gate resistance and the gain in microwave power;
- la hauteur du pied de grille Hg qui influence la capacité grille- source et plus cette hauteur Hg est élevée, moins le couplage entre le chapeau de la grille et le canal est important, permettant d'augmenter le gain en puissance ; the height of the gate foot Hg which influences the gate-source capacity and the higher this height Hg, the less the coupling between the gate cap and the channel is important, allowing to increase the gain in power;
- la distance Lds entre source et drain qui influence la tension de claquage du composant (puissance) et le gain hyperfréquence (plus la distance Ldg est grande et plus la tension de claquage est importante mais au prix d'une dégradation des gains hyperfréquences) ;  the distance Lds between source and drain which influences the breakdown voltage of the component (power) and the microwave gain (the greater the distance Ldg is large and the greater the breakdown voltage is important but at the cost of a degradation of the microwave gains);
- la distance Lgs entre la grille et la source qui influence la résistance série Rs et la tenue en tension Grille-Source.  the distance Lgs between the gate and the source which influences the series resistance Rs and the Grid-Source voltage resistance.
Comme mentionné précédemment, il est cependant nécessaire de pouvoir définir sur la même plaquette de semiconducteur des composants de topologies variables pour obtenir des niveaux de puissance, des gains et des rendements électriques adaptés.  As mentioned above, it is however necessary to be able to define on the same semiconductor wafer components of variable topologies to obtain power levels, gains and electrical efficiencies.
Pour ce faire, les optimisations nécessaires sont très lourdes du fait des variations d'épaisseurs des résines électro-sensibles ou photosensibles lors des passages de marche.  To do this, the necessary optimizations are very heavy because of the thickness variations of electro-sensitive or photosensitive resins during walking.
Dans un procédé classique les contacts ohmiques sont définis et ensuite le contact de grille. L'ordre indiqué est souvent conditionné par le budget thermique élevé pour réaliser les contacts ohmiques (alliages métalliques, recuits d'implantation ionique, etc.). Pour illustrer la difficulté, le recuit des contacts ohmiques en technologie GaN atteint souvent 850°C pendant une à deux minutes, soit un budget thermique difficile à imposer à des contacts Schottky. Ces contacts ohmiques ont une épaisseur e_s et e_d qui est proche de la hauteur du pied de grille Hg afin d'avoir la résolution lithographique suffisante.  In a conventional method the ohmic contacts are defined and then the gate contact. The indicated order is often conditioned by the high thermal budget to make the ohmic contacts (metal alloys, ion implantation anneals, etc.). To illustrate the difficulty, the annealing of the ohmic contacts in GaN technology often reaches 850 ° C for one to two minutes, ie a heat budget difficult to impose on Schottky contacts. These ohmic contacts have a thickness e_s and e_d which is close to the height of the gate foot Hg in order to have the sufficient lithographic resolution.
Un procédé classique de réalisation d'une grille possédant un chapeau CG est d'utiliser au moins deux résines :  A conventional method of producing a grid having a CG cap is to use at least two resins:
- pouvant être déposées l'une sur l'autre (la cavité qui définit la forme complexe : pied + chapeau est obtenue alors par des chimies et sensibilités différentes aux insolations et aux révélations physicochimiques) ;  can be deposited on one another (the cavity which defines the complex shape: foot + hat is then obtained by chemistries and sensitivities different from the insolations and the physicochemical revelations);
- ou deux masquages successifs (une première résine, avec gravure d'un diélectrique permettant de définir le pied de grille, suivie de l'utilisation d'une seconde résine permettant de définir la forme du chapeau CG). La cavité complexe étant ainsi préalablement définie, on procède au remplissage final de la cavité par un sandwich métallique. or two successive masks (a first resin, with etching of a dielectric to define the gate foot, followed by the use of a second resin to define the shape of the cap CG). The complex cavity being thus defined beforehand, the final filling of the cavity is carried out by a metal sandwich.
La figure 3 montre la vue en coupe d'un transistor à effet de champ lors de l'enduction de la première résine. On remarque que le comblement de l'intervalle Lds s'effectue différemment selon les conditions d'enduction, de viscosité et de fluage post-enduction de la résine, laissant une largeur Liteau inhérente. L'épaisseur de cette première résine varie et elle est d'autant plus épaisse que la longueur Lds est petite.  FIG. 3 shows the sectional view of a field effect transistor during the coating of the first resin. It is noted that the filling of the Lds interval is performed differently depending on the coating, viscosity and post-coating creep conditions of the resin, leaving an inherent width. The thickness of this first resin varies and it is even thicker than the length Lds is small.
Selon la distance, le demandeur a estimé à 25% la variation d'épaisseur lorsque la distance Lds est modifiée de 10 μηι à 1 ,5 μηι pour une résine électrosensible utilisée pour des grilles pouvant atteindre 0,15 μητ Une conséquence sur le rendement de fabrication constaté est à titre d'exemple de 90% pour des topologies standard et chute à 40% pour des écartements grille-source de 0,5 μηι.  According to the distance, the applicant estimated at 25% the variation of thickness when the distance Lds is modified from 10 μηι to 1, 5 μηι for an electrosensitive resin used for grids up to 0,15 μητ A consequence on the performance of manufacturing is shown as an example of 90% for standard topologies and drops to 40% for grid-source deviations of 0.5 μηι.
Concrètement plus la longueur de grille diminue, et plus les optimisations des doses électroniques pour définir la grille (longueur et forme) deviennent critiques. Il est nécessaire de définir des doses spécifiques pour des conditions d'enduction données pour chaque distance d'une famille donnée et donc des dimensions Lds, Lgs, Lg souhaitées.  In concrete terms, the longer the gate length decreases, the more the optimizations of the electronic doses to define the grid (length and shape) become critical. It is necessary to define specific doses for given coating conditions for each distance of a given family and therefore dimensions Lds, Lgs, Lg desired.
C'est pourquoi dans ce contexte, la présente invention a aussi pour objet un procédé de fabrication d'un transistor à effet de champ selon l'invention, caractérisé en ce qu'il comporte les étapes suivantes :  Therefore, in this context, the present invention also relates to a method of manufacturing a field effect transistor according to the invention, characterized in that it comprises the following steps:
- la réalisation d'au moins un contact élémentaire ohmique de source et d'un contact élémentaire ohmique de drain continu à la surface d'une structure semiconductrice ;  the realization of at least one source ohmic source contact and a continuous drain ohmic elementary contact on the surface of a semiconductor structure;
- la réalisation d'une grille ;  - the realization of a grid;
- la réalisation d'au moins un contact élémentaire Schottky de drain de manière à réaliser un contact mixte de drain comportant au moins un contact élémentaire ohmique et un contact élémentaire Schottky.  - The realization of at least one Schottky elementary drain contact so as to achieve a mixed drain contact comprising at least one ohmic elementary contact and a Schottky elementary contact.
Selon une variante de l'invention, le procédé comporte la réalisation d'un contact élémentaire Schottky de source de manière à réaliser un contact mixte de source comportant au moins un contact élémentaire ohmique et un contact élémentaire Schottky. Selon une variante de l'invention, la réalisation du contact élémentaire Schottky de drain et/ou de source est effectuée par chevauchement partiel respectivement dudit contact élémentaire ohmique de drain et/ou de source associé. According to a variant of the invention, the method comprises the realization of a source Schottky elementary contact so as to achieve a mixed source contact comprising at least one ohmic elementary contact and a Schottky elementary contact. According to a variant of the invention, the realization of the elementary Schottky drain and / or source contact is made by partially overlapping respectively said ohmic elementary contact drain and / or associated source.
Selon une variante de l'invention, la grille présentant : According to a variant of the invention, the grid having:
- une partie dite basse appelée pied de grille, en contact avec la structure semiconductrice comportant la zone de canal et présentant une première section ; a so-called lower part, called a gate foot, in contact with the semiconductor structure comprising the channel zone and having a first section;
- une seconde partie dite haute appelée chapeau de grille, en contact avec ladite partie inférieure et présentant une seconde section;  a so-called high second portion, referred to as a gate cap, in contact with said lower portion and having a second section;
- ladite première section étant inférieure à ladite seconde section, ledit procédé comprend :  said first section being smaller than said second section, said method comprises:
- la réalisation successive d'au moins deux étapes de dépôts de résine et de photolithographie pour définir lesdites première et seconde parties de ladite grille, postérieures à la réalisation desdits contacts ohmiques de source et de drain.  successively carrying out at least two resin deposition and photolithography steps to define said first and second portions of said grid, subsequent to the production of said ohmic source and drain contacts.
Selon une variante de l'invention, la réalisation dudit contact élémentaire Schottky de drain et/ou dudit contact élémentaire Schottky de source est(sont) effectuée(s) simultanément à la réalisation de ladite grille.  According to a variant of the invention, the realization of said elementary Schottky drain contact and / or Schottky elementary source contact is (are) carried out simultaneously with the production of said gate.
Selon une variante de l'invention, la réalisation dudit contact élémentaire Schottky de drain et/ou dudit contact élémentaire Schottky de source est(sont) effectuée(s) simultanément à la réalisation dudit chapeau de grille.  According to a variant of the invention, the realization of said elementary Schottky drain contact and / or said source Schottky elementary contact is (are) carried out simultaneously with the realization of said gate cap.
L'invention a enfin pour objet un procédé de fabrication collective d'un ensemble de transistors à effet de champ, ledit ensemble de transistors comprenant des sous-ensembles de transistors :  Finally, the subject of the invention is a method of collective fabrication of a set of field effect transistors, said set of transistors comprising subsets of transistors:
- les transistors d'un même sous-ensemble de transistors présentant une largeur entre la grille et le contact mixte de drain identique pour chaque transistor d'un même sous-ensemble et différente d'un sous-ensemble à l'autre ;  transistors of the same subset of transistors having a width between the gate and the identical mixed drain contact for each transistor of the same subset and different from one subset to the other;
- la largeur entre la grille et le contact élémentaire ohmique de drain étant identique d'un sous-ensemble à l'autre, caractérisé en ce qu'il comprend les étapes suivantes :  the width between the gate and the ohmic elemental drain contact being identical from one subset to the other, characterized in that it comprises the following steps:
- la réalisation des contacts ohmiques de source et de drain ; - la réalisation des grilles ; the realization of ohmic source and drain contacts; - the realization of the grids;
- la réalisation des contacts élémentaires Schottky de drain, les largeurs entre lesdites grilles et lesdits contacts élémentaires Schottky de drain étant différentes d'un sous-ensemble à l'autre et identiques pour les transistors d'un même sous-ensemble. - The realization of Schottky elementary drain contacts, the widths between said grids and said elementary Schottky drain contacts being different from one subset to the other and identical for the transistors of the same subset.
L'invention permet ainsi d'améliorer le rendement de fabrication des transistors à effet de champ tout en en améliorant leurs rendements en puissance. The invention thus makes it possible to improve the production efficiency of the field effect transistors while improving their power efficiencies.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles : The invention will be better understood and other advantages will become apparent on reading the description which follows given by way of non-limiting example and by virtue of the appended figures among which:
- la figure 1 illustre le schéma de principe d'un transistor à effet de champ ;  FIG. 1 illustrates the block diagram of a field effect transistor;
- la figure 2 illustre les paramètres technologiques importants pour l'optimisation d'un composant à effet de champ FIG. 2 illustrates the technological parameters that are important for the optimization of a field effect component.
- la figure 3 illustre les effets du dépôt d'une résine avec passage de marche entre contacts de drain et de source pour la réalisation d'un transistor à effet de champ ; FIG. 3 illustrates the effects of the deposition of a resin with step transition between drain and source contacts for the production of a field effect transistor;
- la figure 4 illustre une première variante de composant selon l'invention ;  FIG. 4 illustrates a first component variant according to the invention;
- la figure 5 montre le schéma de principe d'un transistor selon l'invention comprenant un contact de drain mixte ;  FIG. 5 shows the block diagram of a transistor according to the invention comprising a mixed drain contact;
- la figure 6 illustre une seconde variante de composant selon l'invention ;  FIG. 6 illustrates a second component variant according to the invention;
- la figure 7 illustre une troisième variante de composant selon l'invention ;  FIG. 7 illustrates a third component variant according to the invention;
- la figure 8 illustre une quatrième variante de composant selon l'invention ;  FIG. 8 illustrates a fourth component variant according to the invention;
- la figure 9 illustre un exemple de composant selon l'invention ; FIG. 9 illustrates an exemplary component according to the invention;
- la figure 10 détaille la grille formée selon l'exemple illustré en figure 8 ; FIG. 10 details the grid formed according to the example illustrated in FIG. 8;
- la figure 1 1 illustre un procédé de fabrication collective de transistors, permettant de réaliser différentes tailles de composants, avec des dimensions variables de largeur Li G-D entre grille et contact mixte de drain. FIG. 11 illustrates a method of collective fabrication of transistors, making it possible to produce different sizes of components, with variable dimensions of Li G -D width between grid and mixed drain contact.
La présente invention a ainsi pour objet un composant dans lequel, le contact de drain qui est mixte associe un contact ohmique élémentaire classique et un contact élémentaire Schottky métal- semiconducteur. Elle permet ainsi de n'avoir à optimiser qu'une seule fois le profil lithographique de la grille et cela pour une gamme étendue de distance entre les contacts ohmiques drain et source, pour une distance grille-source donnée. The present invention thus relates to a component in which the drain contact which is mixed combines a conventional elementary ohmic contact and a metal-semiconductor Schottky elementary contact. It thus makes it possible to have to optimize only once the lithographic profile of the grid and this for a wide range of distance between ohmic contacts drain and source, for a given gate-source distance.
Elle permet de préserver voire d'améliorer les rendements de puissance ajoutée sans dégradation des gains petits signaux (tensions de claquage améliorée, amélioration légère des résistances série).  It makes it possible to preserve or even improve the added power efficiencies without deterioration of the small signal gains (improved breakdown voltages, slight improvement of the series resistances).
Elle permet également de définir un contact de drain précis limitant les risques d'effet de pointe provenant soit de mauvaise définition lithographique ou d'interdiffusions, les contacts ohmiques conventionnels présentant notamment un risque de fluctuation locale des résistances de contact et donc l'apparition de phénomènes de filamentation.  It also makes it possible to define a precise drain contact limiting the risks of peak effect arising either from poor lithographic definition or from interdiffusions, the conventional ohmic contacts presenting in particular a risk of local fluctuation of the contact resistances and therefore the appearance of filamentation phenomena.
L'utilisation d'un contact élémentaire Schottky en direct pour collecter les porteurs peut également améliorer la fiabilité en offrant une collection plus homogène des porteurs. De plus, en mode bloqué à forte tension (fonctionnement à faible courant ldsco et ldsCh et forte tension Vds) le contact Schottky du contact ohmique mixte assure un rôle de plaque d'écran de champ (Field plate) améliorant les tensions de claquage du composant. Using a live Schottky elemental contact to collect carriers can also improve reliability by providing a more consistent collection of carriers. In addition, in the high-voltage locked mode (low current operation lds co and lds C h and high voltage Vds), the Schottky contact of the mixed ohmic contact assures a role of field shield plate (Field plate) improving the voltages of breakdown of the component.
Un premier exemple de composant selon la présente invention est illustré en figure 4, comportant un contact mixte de drain. Sur un substrat 1 comprenant un canal non représenté pouvant être simple ou à hétérostructure sont réalisés : A first example of a component according to the present invention is illustrated in FIG. 4, comprising a mixed drain contact. On a substrate 1 comprising a not shown channel that can be simple or heterostructure are produced:
- un contact ohmique de source Cs oh ! an ohmic contact of source C s oh!
- une grille G en forme de champignon ;  a gate G in the form of a mushroom;
- un contact mixte de drain comportant un contact élémentaire ohmique de drain CD oh et un contact élémentaire Schottky de drain CD sch- Ainsi, selon la présente invention, la continuité du contact élémentaire Schottky de drain, recouvrant partiellement l'extrémité du contact élémentaire ohmique de drain pouvant présenter des imperfections, permet de pallier des défauts potentiels de réalisation des contacts ohmiques. Le contact ohmique est situé à une distance suffisamment éloignée pour que le contact Schottky de drain puisse couvrir les différents espacements nécessaires aux applications visées. a mixed drain contact comprising an ohmic elementary contact of drain C D oh and a Schottky elementary contact of drain C D s Thus, according to the present invention, the continuity of elementary Schottky drain contact, partially covering the end of the elementary contacting ohmic drain which may have imperfections, overcomes the potential defects of achieving ohmic contact. The ohmic contact is located at a sufficiently distant distance for the Schottky drain contact to cover the different spacings required for the intended applications.
Lors de la réalisation de la grille, le contact élémentaire Schottky de drain peut également être réalisé. Les dénivelés des contacts ohmiques classiques franchis par les résines successivement employées pour réaliser la grille sont donc constants. Cela assure donc un rendement de fabrication meilleur.  When making the gate, the elementary Schottky drain contact can also be realized. The unevenness of conventional ohmic contacts crossed by the resins successively used to make the grid are therefore constant. This ensures a better manufacturing yield.
Le contact élémentaire Schottky de drain apporte de plus la possibilité d'un contact présentant une résistance faible (jonction en direct à porteurs majoritaires) au-dessus de la tension de coude de la diode Schottky. Cela est obtenu de plus avec un faible budget thermique.  The Schottky elementary drain contact also provides the possibility of a contact with low resistance (direct-to-majority junction) above the elbow voltage of the Schottky diode. This is achieved more with a low thermal budget.
La résistance conventionnelle en parallèle sur la diode Schottky gouverne le courant à partir duquel la diode passe en direct. Au-delà d'un seuil de courant Ids, la diode Schottky passe en direct et la résistance de drain devient très faible. En dessous de ce seuil le contact Schottky est bloqué et permet de créer une plaque de champ (« field plate») pouvant limiter le champ maximal en bord du contact de drain (amélioration de la fiabilité). Le seuil de conduction de la diode Schottky est atteint lorsque l'équation ci-après est obtenue :  Conventional resistance in parallel on the Schottky diode governs the current from which the diode passes live. Beyond a current threshold Ids, the Schottky diode goes live and the drain resistance becomes very low. Below this threshold, the Schottky contact is blocked and makes it possible to create a field plate which can limit the maximum field at the edge of the drain contact (improvement of the reliability). The conduction threshold of the Schottky diode is reached when the following equation is obtained:
(Rco+Rsh')*lds_co = Vschottky_seuil. (Rco + Rsh ') * lds_co = Vschottky_seuil.
La figure 5 illustre le schéma d'un contact ohmique de drain par association d'un contact ohmique classique et d'un contact Schottky. Le courant lds_co (en traits pleins) correspond au courant passant classiquement via le contact ohmique.  FIG. 5 illustrates the diagram of an ohmic drain contact by association of a conventional ohmic contact and a Schottky contact. The current lds_co (in solid lines) corresponds to the current passing conventionally via the ohmic contact.
Le courant lds_Sch (en traits pointillés) représente le courant passant via le contact Schottky.  The lds_Sch current (in dotted lines) represents the current flowing through the Schottky contact.
Le contrôle de la résistance associé au contact ohmique traditionnel est obtenu soit en jouant sur la topologie du contact (longueur du barreau de semiconducteur à franchir, largeur du contact ohmique), soit sur la conductivité du semiconducteur, soit en utilisant pour cette plaque de champ une jonction Schottky présentant une faible barrière de potentiel.The resistance control associated with the traditional ohmic contact is obtained either by playing on the topology of the contact (length of the semiconductor rod to be crossed, width of the ohmic contact), or on the conductivity of the semiconductor, or by using for this plate of a Schottky junction field with a low potential barrier.
La définition dimensionnelle des contacts Schottky étant souvent meilleure tant dans le plan de la surface que verticalement au sein des matériaux, les tensions de claquage peuvent être améliorées selon les semiconducteurs contactés. As the dimensional definition of the Schottky contacts is often better both in the plane of the surface and vertically within the materials, the breakdown voltages can be improved according to the semiconductors contacted.
La figure 6 schématise un second exemple de composant selon la présente invention comportant un contact mixte de drain et un contact mixte de source. FIG. 6 schematizes a second example of a component according to the present invention comprising a mixed drain contact and a mixed source contact.
Pour certaines applications, il est en effet possible de réaliser le même contact mixte pour la source (contact Schottky mis également à proximité de la grille et le contact ohmique classique éloigné). Cette structure symétrique permet un fonctionnement symétrique. Cela est néanmoins obtenu avec une augmentation de la résistance source.  For some applications, it is indeed possible to achieve the same mixed contact for the source (Schottky contact also placed close to the gate and the distant conventional ohmic contact). This symmetrical structure allows symmetrical operation. This is nevertheless achieved with an increase in the source resistance.
Sur un substrat 1 comprenant un canal non représenté pouvant être simple ou à hétérostructure sont réalisés :  On a substrate 1 comprising a not shown channel that can be simple or heterostructure are produced:
- un contact mixte de source comportant un contact élémentaire ohmique de source CS 0h et un contact élémentaire Schottky de source CS sch ; a source mixed contact comprising an ohmic elementary contact of source C S 0 h and a Schottky elementary contact of source C S s ch;
- une grille G en forme de champignon ;  a gate G in the form of a mushroom;
- un contact mixte de drain comportant un contact élémentaire ohmique de drain CD oh et un contact élémentaire Schottky de drain CD sch- a mixed drain contact comprising an ohmic elementary contact of drain C D oh and a Schottky elementary contact of drain C D s
La figure 7 schématise un troisième exemple de composant selon la présente invention comportant un contact mixte de drain. Sur un substrat 1 comprenant un canal non représenté pouvant être simple ou à hétérostructure sont réalisés : FIG. 7 schematizes a third example of a component according to the present invention comprising a mixed drain contact. On a substrate 1 comprising a not shown channel that can be simple or heterostructure are produced:
- un contact ohmique de source CS 0h ; an ohmic contact of source C S 0 h;
- une grille G en forme de champignon ;  a gate G in the form of a mushroom;
- un contact mixte de drain comportant un contact élémentaire ohmique de drain CD oh et un contact élémentaire Schottky de drain CD sch-a mixed drain contact comprising an ohmic elementary contact of drain C D oh and a Schottky elementary contact of drain C D s
Le contact mixte de drain est associé à une plaque de champ destinée à éviter les pics de champ électrique. Cette plaque de champ Pch pouvant être portée au potentiel de la source ou de la grille est matérialisée par une couche conductrice au dessus d'une couche de diélectrique 2 et entourant ladite grille G. The mixed drain contact is associated with a field plate to avoid electric field peaks. This field plate P ch which can be brought to the potential of the source or of the gate is materialized by a conducting layer above a dielectric layer 2 and surrounding said gate G.
Cette plaque de champ peut être ou non réalisée avec le même métal que celui du contact élémentaire Schottky de drain CD sch- This field plate may or may not be made of the same metal as that of the Schottky elemental drain contact C D s
La figure 8 schématise un quatrième exemple de composant selon la présente invention comportant un contact mixte de drain. Sur un substrat 1 comprenant un canal non représenté pouvant être simple ou à hétérostructure sont réalisés : FIG. 8 schematizes a fourth example of a component according to the present invention comprising a mixed drain contact. On a substrate 1 comprising a not shown channel that can be simple or heterostructure are produced:
- un contact ohmique de source CS 0h ; an ohmic contact of source C S 0 h;
- une grille G en forme de champignon ;  a gate G in the form of a mushroom;
- un contact mixte de drain comportant un contact élémentaire ohmique de drain CD oh et un contact élémentaire Schottky de drain Co sch-a mixed drain contact having an ohmic drain elementary contact C D oh and a Schottky elementary contact of drain Co sch-
Le contact mixte de drain est associé à une plaque de champ Pch pouvant être portée au potentiel de la source ou de la grille et qui est matérialisée par une couche conductrice au dessus d'une couche de diélectrique 2 et entourant ladite grille G. The mixed drain contact is associated with a field plate P ch that can be brought to the potential of the source or the gate and which is materialized by a conductive layer above a dielectric layer 2 and surrounding said gate G.
Cette plaque de champ peut être ou non réalisée avec le même métal que celui du contact élémentaire Schottky de drain CD sch-This field plate may or may not be made of the same metal as that of the Schottky elemental drain contact C D s
L'extrémité du contact Schottky de drain vis-à-vis de la grille comporte une excroissance sur le diélectrique permettant d'amplifier l'effet de plaque de champ du drain. The end of the Schottky contact vis-à-vis the gate drain comprises a protuberance on the dielectric for amplifying the drain field plate effect.
Les simulations physiques réalisées montrent que l'invention permet d'obtenir, pour les applications hyperfréquences, des performances préservées voire améliorées au-delà de 10GHz probablement grâce à la diminution de la résistance en dynamique de la résistance du drain (une simulation préliminaire indique une amélioration des rendements électriques et des puissances émises Pout : +2% du rendement de puissance ajoutée (RPA = [Pout - Pin] / Pdc où Pin est la puissance RF incidente sur le composant et Pdc est la puissance électrique consommée par le composant à 20GHz et +6% de puissance vis-à-vis d'un composant classique à 10 GHz). Il est à noter que les modélisations ne tiennent pas compte de l'amélioration pouvant être attendue des tensions de claquage grâce à la présence de plaque de champ intégrée dans les contacts de drain. The physical simulations carried out show that the invention makes it possible to obtain, for microwave applications, preserved or even improved performances above 10 GHz, probably by reducing the resistance in dynamics of the resistance of the drain (a preliminary simulation indicates a improvement of the electrical efficiencies and power output Pout: + 2% of the power output added (RPA = [Pout - Pin] / Pdc where Pin is the RF power incident on the component and Pdc is the electrical power consumed by the component at 20GHz and + 6% power compared to a conventional 10 GHz component.) It should be noted that the modelizations do not do not take into account the improvement that can be expected in the breakdown voltages due to the presence of integrated field plate in the drain contacts.
Dans une variante simple, la réalisation de contacts Schottky de drain ne nécessite pas de réaliser de niveau de lithographie supplémentaire. Il est possible de former ces contacts à d'autres étapes du procédé succédant à la réalisation de la grille (par exemple lors d'un niveau du type plaque de champ par exemple).  In a simple variant, the realization of Schottky drain contacts does not require additional level of lithography. It is possible to form these contacts at other stages of the process succeeding the realization of the gate (for example during a level of the field plate type for example).
Exemple de réalisation d'un transistor à effet de champ HEMT, selon l'invention. Exemplary embodiment of a field effect transistor HEMT, according to the invention.
La figure 9, illustre la réalisation d'un empilement de couches permettant la constitution d'une hétérostructure de transistor à effet de champ.  FIG. 9 illustrates the production of a stack of layers enabling the constitution of a field effect transistor heterostructure.
Sur un substrat 100 cristallin homogène ou non (SiC, Si, saphir, GaN ou composite), on réalise l'hétérostructure suivante par l'empilement de couches ci-après : On a homogeneous crystalline substrate 100 or not (SiC, Si, sapphire, GaN or composite) is carried out the following heterostructure by stacking layers below:
- une couche 101 de nucléation permettant la croissance sur le substrat pouvant être hétérogène (SiC, Si, ou saphir) ;  a nucleation layer 101 allowing growth on the heterogeneous substrate (SiC, Si, or sapphire);
- une couche ou un ensemble de couches 102 permettant le contrôle des contraintes mécaniques ;  a layer or set of layers 102 enabling the control of mechanical stresses;
- une couche tampon 103 de GaN ou de composé GaN dopé ou non permettant le confinement des porteurs libres présents dans la couche 104 ;  a buffer layer 103 of GaN or doped or non-doped GaN compound allowing the confinement of the free carriers present in the layer 104;
- une couche 104 de canal semiconducteur en GaN (pouvant avoir une épaisseur de 40nm à 250nm selon les applications) ; a layer 104 of GaN semiconductor channel (which may have a thickness of 40 nm to 250 nm depending on the applications);
- une couche barrière 105 en AI25%Gay5%N (pouvant avoir une épaisseur 25nm) ou en lnxAli.xN ; a barrier layer 105 in AI 2 5 % Gay 5% N (which may have a thickness 25nm) or in ln x Ali. x N;
- une couche d'encapsulation 106 en GaN dopée ou non dopée (pouvant avoir une épaisseur 2nm) ou un autre diélectrique.  a doped or undoped GaN encapsulation layer 106 (which may have a thickness of 2 nm) or another dielectric.
On réalise alors le contact ohmique de source CS Oh et le contact ohmique élémentaire de drain CD 0h de manière connue par diffusion à partir de dépôts de Ti /Al /Ni /Au et opération de recuit thermique rapide. On réalise également la grille G. La figure 10 illustre à cet effet, les différentes couches métalliques constitutives de la grille, par exemple : Ni/Pt/Au, dans la cavité centrale réalisée préalablement par dépôts successifs de résine par exemple, pour obtenir la forme complexe. The ohmic source contact C S Oh and the elementary ohmic drain contact C D 0h are then made in a known manner by diffusion from Ti / Al / Ni / Au deposits and rapid thermal annealing operation. The gate G is also produced. FIG. 10 illustrates, for this purpose, the various metallic layers constituting the gate, for example: Ni / Pt / Au, in the central cavity previously made by successive resin deposits, for example, in order to obtain the complex shape.
On réalise également le contact élémentaire Schottky de drain CD Sch avec une structure métallique (non représenté). The Schottky elemental drain contact C D S ch is also made with a metal structure (not shown).
Les couches supérieures de passivation ne sont pas représentées. La première couche en contact avec la surface libre GaN peut être en nitrure de silicium d'une centaine de nanomètres d'épaisseur. Upper layers of passivation are not shown. The first layer in contact with the GaN free surface may be silicon nitride of a hundred nanometers thick.
Les dimensions des différents éléments peuvent être les suivantes :  The dimensions of the various elements can be as follows:
- la largeur de grille Lg peut typiquement être de 0,15μηι mais peut varier entre 0,05μηπ à plusieurs microns ;  the gate width Lg may typically be 0.15μηι but may vary between 0.05μηπ to several microns;
- la largeur entre le contact de drain et la grille Ldg peut être comprise entre 0,5μηπ et plusieurs dizaines de microns selon les fréquences de coupure des gains hyperfréquences et les tensions de claquage visées ;  the width between the drain contact and the Ldg gate may be between 0.5μηπ and several tens of microns depending on the cut-off frequencies of the microwave gains and the targeted breakdown voltages;
- la largeur entre la grille et le contact de source Lgs est en général plus courte que la largeur Ldg mais peut également s'étendre de 0,5μηπ à plusieurs microns ;  the width between the gate and the source contact Lgs is generally shorter than the width Ldg but may also range from 0.5μηπ to several microns;
- la hauteur de grille Hg peut typiquement être de 0,25 μηι pouvant atteindre 2 μηι et au-delà ;  - The gate height Hg can typically be 0.25 μηι up to 2 μηι and beyond;
- la hauteur totale de la grille peut être de 0,4 μηι typiquement mais également peut être optimisée de 0,1 μηη à plusieurs microns.  the total height of the gate may typically be 0.4 μηι, but also may be optimized from 0.1 μηη to several microns.
Selon les performances visées en termes d'hyperfréquences et de courants, la forme de la grille peut être adaptée. Typiquement, la forme peut être un champignon comme illustré précédemment pour les grilles plus courtes que Ο,δμηπ, au-delà, cette forme n'est pas nécessaire. Une forme rectangulaire peut être envisagée également pour les grilles très courtes, mais cela risque d'augmenter les résistances série de la grille. According to the target performance in terms of microwave frequencies and currents, the shape of the grid can be adjusted. Typically, the shape can be a mushroom as previously illustrated for grids shorter than Ο, δμηπ, beyond this form is not necessary. A rectangular shape can be considered also for very short grids, but this may increase the series resistance of the grid.
Les épaisseurs de contacts de source et de drain e_s et e_d peuvent typiquement être de 0,2μηι, cette valeur étant relativement libre. Selon la présente invention, on peut avantageusement réaliser de manière collective des composants présentant des caractéristiques différentes, en évitant des étapes délicates différenciées pour réaliser les contacts ohmiques, contacts les plus complexes à obtenir. The thicknesses of source and drain contacts e_s and e_d can typically be 0.2μηι, this value being relatively free. According to the present invention, it is advantageous to collectively produce components having different characteristics, avoiding differentiated delicate steps to make the ohmic contacts, the most complex contacts to obtain.
La figure 1 1 illustre un tel procédé collectif de réalisation d'un ensemble de composants à la surface d'un substrat selon l'invention. Avantageusement l'étape de réalisation complexe de l'ensemble des contacts ohmiques peut être réalisée de manière uniforme. Figure 1 1 illustrates such a collective method for producing a set of components to the surface of a substrate according to the invention. Advantageously, the step of complex realization of the set of ohmic contacts can be performed in a uniform manner.
L'étape de réalisation des contacts Schottky de drain est réalisée dans un second temps et permet de réaliser la différenciation recherchée entre composants présentant des performances et caractéristiques différentes et ce en obtenant des distances entre grilles et contacts élémentaires Schottky de drain (CD sch) variables. On obtient ainsi des sous- ensembles de transistors ST\, STi+ comportant : The step of producing the Schottky drain contacts is carried out in a second step and makes it possible to achieve the desired differentiation between components having different performances and characteristics by obtaining distances between grids and elementary Schottky drain contacts (C D s ch ) variables. Is thus obtained subsets of transistors ST \, ST i + comprising:
- des largeurs entre grille et contact mixte de drain Li G-D variable d'un sous-ensemble à l'autre, soit Li G-D≠ L i+1 G-D ; gate widths and Li G -D mixed drain contact varying from one subset to the other, ie Li G -D ≠ L i + 1 G -D;
- des largeurs entre grille et contact élémentaire ohmique de drain égales d'un sous-ensemble à l'autre, soit : Li G-CD oh = L i+1 G-cD oh gate widths and ohmic elementary drain contact equal from one subassembly to the other, ie: Li G -CD oh = L i + 1 G- cD oh
L'invention permet ainsi de n'avoir à optimiser qu'une seule fois le profil lithographique de la grille et cela pour une gamme étendue de distance entre les contacts ohmiques drain et source, pour une distance grille-source donnée. The invention thus enables n having to optimize lithographic once the profile of the gate and for a wide range of distance between the source and drain ohmic contacts, for a given gate-source distance.

Claims

REVENDICATIONS 1 . Transistor à effet de champ comportant un substrat et une structure semiconductrice présentant une zone de canal, ledit transistor comportant un contact de drain, un contact de source, et une grille, lesdits contacts de source et de drain permettant de générer un flux de porteurs de charge dans la zone de canal, ledit flux étant contrôlé par ladite grille, caractérisé en ce que : CLAIMS 1. A field effect transistor having a substrate and a semiconductor structure having a channel region, said transistor having a drain contact, a source contact, and a gate, said source and drain contacts for generating a carrier stream. charge in the channel area, said flow being controlled by said gate, characterized in that:
- ledit contact de drain est un contact mixte de drain comportant au moins un contact élémentaire ohmique de drain continu (CD oh) et un contact élémentaire Schottky de drain (CD sch), ledit contact mixte de drain affleurant ladite structure semiconductrice ;  said drain contact is a mixed drain contact comprising at least one continuous drain ohmic elementary contact (CD oh) and a drain Schottky elementary contact (CD sch), said mixed drain contact flush with said semiconductor structure;
- ledit contact élémentaire Schottky de drain (CD sch) chevauchant partiellement ou totalement ledit contact élémentaire ohmique de drain (CD oh)-  said elementary Schottky drain contact (CD sch) overlapping partially or totally said ohmic elementary drain contact (CD oh) -
2. Transistor à effet de champ selon la revendication 1 , caractérisé en ce que le contact de source est un contact mixte comportant au moins un contact élémentaire ohmique de source (Cs oh) et un contact élémentaire Schottky de source (Cs sch)- 2. Field effect transistor according to claim 1, characterized in that the source contact is a mixed contact comprising at least one source ohmic source contact (Cs oh) and a source element Schottky contact (Cs sch) -
3. Transistor à effet de champ selon la revendication 1 ou la revendication 2, caractérisé en ce que le contact élémentaire Schottky de drain (CD sch) et/ou le contact élémentaire Schottky de source (Cs sch) chevauche(nt) partiellement le contact élémentaire ohmique de drain (CD oh) et/ou le contact élémentaire ohmique de source (Cs oh)- 4. Transistor à effet de champ selon l'une des revendications 1 ouField effect transistor according to Claim 1 or Claim 2, characterized in that the Schottky elemental drain contact (CD sch) and / or the Schottky elementary source contact (Cs sch) overlap (s) partially the contact. resistor ohmic element (CD oh) and / or ohmic elementary source contact (Cs oh) - 4. Field effect transistor according to one of claims 1 or
3, caractérisé en ce que ladite grille comprend un contact de type Schottky : métal/conducteur. 3, characterized in that said grid comprises a contact of Schottky type: metal / conductor.
5. Transistor à effet de champ selon l'une des revendications 1 à 4, caractérisé en ce que ladite grille a une forme complexe présentant : - une partie dite basse appelée pied de grille, en contact avec la structure semiconductrice comportant la zone de canal et présentant une première section ; 5. Field effect transistor according to one of claims 1 to 4, characterized in that said gate has a complex shape having: a so-called lower part, called a gate foot, in contact with the semiconductor structure comprising the channel zone and having a first section;
- une seconde partie dite haute appelée chapeau de grille, en contact avec ladite partie inférieure et présentant une seconde section ;  a so-called high second portion, referred to as a gate cap, in contact with said lower portion and having a second section;
- ladite première section étant inférieure à ladite seconde section.  said first section being lower than said second section.
6. Transistor à effet de champ selon l'une des revendications 1 à 5, caractérisé en ce que la structure semiconductrice comporte un ensemble de couches de matériaux lll-V, dont au moins deux matériaux présentent des bandes interdites différentes, la(les) plus grande(s) bande(s) interdite(s) servant au confinement de porteurs libres dans la plus petite bande interdite. 6. field effect transistor according to one of claims 1 to 5, characterized in that the semiconductor structure comprises a set of layers of materials III-V, at least two materials have different band gaps, the (the) largest prohibited band (s) for confinement of free carriers in the smallest bandgap.
7. Transistor à effet de champ selon l'une des revendications 1 àField effect transistor according to one of claims 1 to
6, caractérisé en ce qu'il comprend une couche de diélectrique recouvrant le contact de source et/ou le contact de drain et/ou la grille. 6, characterized in that it comprises a dielectric layer covering the source contact and / or the drain contact and / or the gate.
8. Transistor à effet de champ selon la revendication 7, caractérisé en ce qu'il comporte une plaque métallique de champ située sur ledit diélectrique au niveau de ladite grille. 8. Field effect transistor according to claim 7, characterized in that it comprises a metal field plate located on said dielectric at said gate.
9. Composant comprenant un ensemble de transistors à effet de champ, comprenant plusieurs sous-ensembles de transistors selon l'une des revendications 1 à 8 : 9. Component comprising a set of field effect transistors, comprising several subsets of transistors according to one of claims 1 to 8:
- un sous-ensemble de transistors (STi) étant caractérisé par une largeur entre la grille et le contact mixte de drain (LÏG-D) et une largeur entre ladite grille et le contact élémentaire ohmique (Li G-cD oh) dudit contact mixte de drain, pour chacun des transistors dudit sous-ensemble ; a subset of transistors (STi) being characterized by a width between the gate and the mixed drain contact (L1 G- D) and a width between said gate and the ohmic elementary contact (Li G-cD oh) of said contact mixed drain, for each of the transistors of said subset;
- ladite largeur entre la grille et le contact mixte de drain (LÏG-D) étant différente d'un sous-ensemble à l'autre ; - said width between the gate and the combined drain contact (Li G-D) being different from one subset to another;
- ladite largeur entre la grille et le contact élémentaire ohmique (Li G-CD oh) dudit contact mixte de drain étant identique d'un sous-ensemble à l'autre. said width between the gate and the ohmic elementary contact (Li G-CD oh) of said mixed drain contact being identical from one subset to the other.
10. Procédé de fabrication d'au moins un transistor à effet de champ selon l'une des revendications 1 à 8, caractérisé en ce qu'il comporte les étapes suivantes : 10. A method of manufacturing at least one field effect transistor according to one of claims 1 to 8, characterized in that it comprises the following steps:
- la réalisation d'au moins un contact élémentaire ohmique de source (Cs 0h) et d'un contact élémentaire ohmique de drain continu (CD 0h) à la surface d'une structure semiconductrice ;the realization of at least one source ohmic source contact (C s 0 h) and a continuous drain resistive elementary contact (C D 0 h) on the surface of a semiconductor structure;
- la réalisation d'une grille ; - the realization of a grid;
- la réalisation d'au moins un contact élémentaire Schottky de drain (CD SCh) de manière à réaliser un contact mixte de drain comportant au moins un contact élémentaire ohmique (CD 0h) et un contact élémentaire Schottky (CD sch)- the realization of at least one Schottky elementary drain contact (C D SC h) so as to produce a mixed drain contact comprising at least one ohmic elementary contact (C D 0 h) and a Schottky elementary contact (C D s); hp) -
1 1 . Procédé de fabrication d'un transistor à effet de champ selon la revendication 10, caractérisé en ce qu'il comporte la réalisation d'un contact élémentaire Schottky de source (Cs SCh) de manière à réaliser un contact mixte de source comportant au moins un contact élémentaire ohmique (CS 0h) et un contact élémentaire Schottky (CS sch)-1 1. A method of manufacturing a field effect transistor according to claim 10, characterized in that it comprises the realization of a source Schottky elementary contact (C s SC h) so as to achieve a mixed source contact comprising at least one minus an ohmic elementary contact (C S 0 h) and a Schottky elementary contact (C S s ch) -
12. Procédé de fabrication d'un transistor à effet de champ selon la revendication 1 1 , caractérisé en ce que la réalisation du contact élémentaire Schottky de drain et/ou de source est effectuée par chevauchement partiel respectivement dudit contact élémentaire ohmique de drain et/ou de source associé. 12. A method of manufacturing a field effect transistor according to claim 1 1, characterized in that the realization of the Schottky elementary contact drain and / or source is performed by partial overlap respectively of said ohmic elementary drain contact and / or or associated source.
13. Procédé de fabrication d'un transistor à effet de champ selon l'une des revendications 10 à 12, caractérisé en ce que la grille présentant : 13. A method of manufacturing a field effect transistor according to one of claims 10 to 12, characterized in that the gate having:
- une partie dite basse appelée pied de grille, en contact avec la structure semiconductrice comportant la zone de canal et présentant une première section ;  a so-called lower part, called a gate foot, in contact with the semiconductor structure comprising the channel zone and having a first section;
- une seconde partie dite haute appelée chapeau de grille, en contact avec ladite partie inférieure et présentant une seconde section ;  a so-called high second portion, referred to as a gate cap, in contact with said lower portion and having a second section;
- ladite première section étant inférieure à ladite seconde section, ledit procédé comprend : - la réalisation successive d'au moins deux étapes de dépôts de résine et de photolithographie pour définir lesdites première et seconde parties de ladite grille, postérieures à la réalisation desdits contacts ohmiques de source et de drain. said first section being smaller than said second section, said method comprises: successively carrying out at least two resin deposition and photolithography steps to define said first and second portions of said grid, subsequent to the production of said ohmic source and drain contacts.
14. Procédé de fabrication d'un transistor à effet de champ selon l'une des revendications 10 à 13, caractérisé en ce que la réalisation dudit contact élémentaire Schottky de drain (CD sch) et/ou dudit contact élémentaire Schottky de source (Cs SCh) est(sont) effectuée(s) simultanément à la réalisation de ladite grille. 14. A method of manufacturing a field effect transistor according to one of claims 10 to 13, characterized in that the realization of said elementary Schottky drain contact (C D s ch) and / or said source Schottky elementary contact. (C s SC h) is (are) performed simultaneously with the realization of said grid.
15. Procédé de fabrication d'un transistor à effet de champ selon les revendications 13 et 14, caractérisé en ce que la réalisation dudit contact élémentaire Schottky de drain (CD SCh) et/ou dudit contact élémentaire Schottky de source (Cs SCh) est(sont) effectuée(s) simultanément à la réalisation dudit chapeau de grille. 15. A method of manufacturing a field effect transistor according to claims 13 and 14, characterized in that the realization of said Schottky elementary drain contact (C D SC h) and / or said source Schottky elementary contact (C s SC h) is (are) performed simultaneously with the realization of said gate hat.
16. Procédé de fabrication collective d'un ensemble de transistors à effet de champ, ledit ensemble de transistors comprenant des sous- ensembles de transistors ; 16. A method of collective fabrication of a set of field effect transistors, said set of transistors comprising subsets of transistors;
- les transistors d'un même sous-ensemble de transistors (STi) présentant une largeur (LÏG-D) entre la grille et le contact mixte de drain identique pour chaque transistor d'un même sous- ensemble et différente d'un sous-ensemble à l'autre ; the transistors of the same subset of transistors (STi) having a width (L 1 G -D) between the gate and the identical mixed drain contact for each transistor of the same subset and different from a sub - together with the other;
- la largeur entre la grille et le contact élémentaire ohmique de drain (Li o-cD oh) étant identique d'un sous-ensemble à l'autre, caractérisé en ce qu'il comprend les étapes suivantes :  the width between the gate and the ohmic elemental drain contact (Li o-cD oh) being identical from one subset to the other, characterized in that it comprises the following steps:
- la réalisation des contacts ohmiques de source et de drain ; the realization of ohmic source and drain contacts;
- la réalisation des grilles ; - the realization of the grids;
- la réalisation des contacts élémentaires Schottky de drain - The realization of Schottky elementary drain contacts
(CD sch), les largeurs entre lesdites grilles et lesdits contacts élémentaires Schottky de drain étant différentes d'un sous- ensemble à l'autre et identiques pour les transistors d'un même sous-ensemble. (C D sch), the widths between said grids and said elementary Schottky drain contacts being different from one subset to the other and identical for the transistors of the same subset.
PCT/EP2015/072624 2014-10-03 2015-09-30 Field-effect transistor with optimised mixed drain contact and manufacturing method WO2016050879A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580060895.0A CN107078153A (en) 2014-10-03 2015-09-30 The field-effect transistor and its manufacture method of mixing drain contact with optimization
EP15774593.6A EP3201949A1 (en) 2014-10-03 2015-09-30 Field-effect transistor with optimised mixed drain contact and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1402238A FR3026892B1 (en) 2014-10-03 2014-10-03 FIELD EFFECT TRANSISTOR WITH OPTIMIZED MIXED DRAIN CONTACT AND METHOD OF MANUFACTURE
FR1402238 2014-10-03

Publications (1)

Publication Number Publication Date
WO2016050879A1 true WO2016050879A1 (en) 2016-04-07

Family

ID=52779682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/072624 WO2016050879A1 (en) 2014-10-03 2015-09-30 Field-effect transistor with optimised mixed drain contact and manufacturing method

Country Status (4)

Country Link
EP (1) EP3201949A1 (en)
CN (1) CN107078153A (en)
FR (1) FR3026892B1 (en)
WO (1) WO2016050879A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021071571A1 (en) * 2019-10-11 2021-04-15 Raytheon Company Ohmic alloy contact region sealing layer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190126A (en) * 2019-04-30 2019-08-30 福建省福联集成电路有限公司 A kind of semiconductor devices and production method of anti-reflective energizing signal
CN111952356A (en) * 2020-07-13 2020-11-17 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) HEMT device structure and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110018002A1 (en) * 2009-07-27 2011-01-27 The Hong Kong University Of Science And Technology Transistors and rectifiers utilizing hybrid electrodes and methods of fabricating the same
US20110233612A1 (en) * 2010-03-25 2011-09-29 Samsung Electro-Mechanics., Ltd. Semiconductor device and method of manufacturing the same
US20120205717A1 (en) * 2011-02-10 2012-08-16 Fujitsu Limited Compound semiconductor device, method for manufacturing the device and electric device
US20120267687A1 (en) * 2011-04-25 2012-10-25 Samsung Electro-Mechanics Co., Ltd. Nitride semiconductor device and manufacturing method thereof
WO2014029223A1 (en) * 2012-08-21 2014-02-27 中山大学 Reverse-conducting and heterogeneous structure field effect transistor and method of fabricating same
US20140252370A1 (en) * 2013-03-05 2014-09-11 Seoul Semiconductor Co., Ltd. Nitride semiconductor device and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546777A (en) * 1977-06-17 1979-01-19 Nec Corp Field effect type transistor
JP2577719B2 (en) * 1984-07-06 1997-02-05 テキサス インスツルメンツ インコ−ポレイテツド Source electrode structure of field effect transistor
JPH03238831A (en) * 1990-02-15 1991-10-24 Nec Corp Compound semiconductor field effect transistor
JP2008098400A (en) * 2006-10-12 2008-04-24 Mitsubishi Electric Corp Field effect transistor, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110018002A1 (en) * 2009-07-27 2011-01-27 The Hong Kong University Of Science And Technology Transistors and rectifiers utilizing hybrid electrodes and methods of fabricating the same
US20110233612A1 (en) * 2010-03-25 2011-09-29 Samsung Electro-Mechanics., Ltd. Semiconductor device and method of manufacturing the same
US20120205717A1 (en) * 2011-02-10 2012-08-16 Fujitsu Limited Compound semiconductor device, method for manufacturing the device and electric device
US20120267687A1 (en) * 2011-04-25 2012-10-25 Samsung Electro-Mechanics Co., Ltd. Nitride semiconductor device and manufacturing method thereof
WO2014029223A1 (en) * 2012-08-21 2014-02-27 中山大学 Reverse-conducting and heterogeneous structure field effect transistor and method of fabricating same
US20140252370A1 (en) * 2013-03-05 2014-09-11 Seoul Semiconductor Co., Ltd. Nitride semiconductor device and method of manufacturing the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A GIRARDOT; A HENKEL; S.L DELAGE; M.-A DIFORTE-POISSON; E. CHARTIER; D. FLORIOT; S. CASSETTE; P.A. ROLLAND: "High performance collector-up InGaP/GaAs heterojunction bipolar transistor with Schottky contact", ELECTRONICS LETTERS, vol. 35, 1999, pages 670 - 672
FENG-JUNG HUANG ET AL: "Schottky-clamped NMOS transistors implemented in a conventional 0.8- m CMOS process", IEEE ELECTRON DEVICE LETTERS, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 191, 10, no. 9, 1 September 1998 (1998-09-01), pages 326 - 328, XP011424178, ISSN: 0741-3106, DOI: 10.1109/55.709629 *
HENRY MATHIEU; HERVÉ FANET: "Cours et exercices", 2009, article "Physique des semiconducteurs et des composants électroniques"
See also references of EP3201949A1 *
X. ZHAO; J.W. CHUNG; H. TANG; T. PALACIOS: "Schottky Drain AGaN/GaN HEMTs for mm-wave Applications", 2007, IEEE, pages: 1 - 4244,1 1

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021071571A1 (en) * 2019-10-11 2021-04-15 Raytheon Company Ohmic alloy contact region sealing layer
US11145735B2 (en) 2019-10-11 2021-10-12 Raytheon Company Ohmic alloy contact region sealing layer
AU2020364996B2 (en) * 2019-10-11 2022-02-17 Raytheon Company Ohmic alloy contact region sealing layer
JP7438343B2 (en) 2019-10-11 2024-02-26 レイセオン カンパニー Ohmic alloy contact area sealing layer

Also Published As

Publication number Publication date
FR3026892A1 (en) 2016-04-08
FR3026892B1 (en) 2017-12-01
EP3201949A1 (en) 2017-08-09
CN107078153A (en) 2017-08-18

Similar Documents

Publication Publication Date Title
EP2736079B1 (en) Method for manufacturing a normally blocked heterojunction transistor
EP3203526B1 (en) Heterojunction transistor with improved electron gas confinement
EP3235006A1 (en) Hemt transistor
EP3055886A1 (en) Hemt made from a heterojunction
EP3369115A1 (en) Field-effect transistor with optimised performance and gain
JP4838171B2 (en) Method for forming T-gate of high electron mobility transistor
EP3240041A1 (en) Normally-off heterojunction transistor with high threshold voltage
EP3201949A1 (en) Field-effect transistor with optimised mixed drain contact and manufacturing method
EP3350841A1 (en) Enhancement-mode field-effect transistor comprising an algan/gan heterojunction and a p-doped diamond gate
WO2015150582A1 (en) Optimized buffer layer for high mobility field-effect transistor
FR2489045A1 (en) GAAS FIELD EFFECT TRANSISTOR WITH NON-VOLATILE MEMORY
EP0149390A2 (en) Field effect transistor with a vertical sub-micronic structure and process for its production
EP3648166A1 (en) Bipolar transistor with light emission
EP4078681A1 (en) Hemt transistor
Adivarahan et al. Double-recessed high-frequency AlInGaN/InGaN/GaN metal–oxide double heterostructure field-effect transistors
WO2016107870A1 (en) Multilayer passivation of the upper face of the stack of semiconductor materials of a field-effect transistor
US20190267481A1 (en) Field-Effect Transistors (FETs)
FR3080710A1 (en) HEMT TRANSISTOR AND METHODS OF MANUFACTURING ENABLING LENGTH AND REDUCED GRADE LEAKAGE
Al-Khalidi Advanced gallium nitride technology for microwave power amplifiers
EP3542401B1 (en) Electronic component with a high-electron-mobility heterojunction
WO2023148210A1 (en) Two-dimensional electron gas field-effect transistor having side gates
EP3624202A1 (en) Bidirectional heterojunction transistor having small on resistance
EP2157613B1 (en) Method for monolithic integration of a pseudomorphic Resonant Interband Tuneling Diode (RITD) and a transistor made from III-V materials
Alnuaimi Fabrication, Characterization and Modeling P-channel III-V MOSFET Competitive with Ge P-channel MOSFET
FR3068512A1 (en) TWO-DIMENSIONAL ELECTRON GAS FIELD EFFECT TRANSISTOR, COMPONENT AND RELATED METHODS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015774593

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015774593

Country of ref document: EP