WO2016050200A2 - 合金蠕墨铸铁、轨道车辆制动盘和熔铸方法 - Google Patents

合金蠕墨铸铁、轨道车辆制动盘和熔铸方法 Download PDF

Info

Publication number
WO2016050200A2
WO2016050200A2 PCT/CN2015/091062 CN2015091062W WO2016050200A2 WO 2016050200 A2 WO2016050200 A2 WO 2016050200A2 CN 2015091062 W CN2015091062 W CN 2015091062W WO 2016050200 A2 WO2016050200 A2 WO 2016050200A2
Authority
WO
WIPO (PCT)
Prior art keywords
iron
creeping
alloy
molten iron
pouring
Prior art date
Application number
PCT/CN2015/091062
Other languages
English (en)
French (fr)
Other versions
WO2016050200A3 (zh
Inventor
谢达昕
封雪平
张棣
鲍飞
张军
Original Assignee
常州朗锐铸造有限公司
南车戚墅堰机车车辆工艺研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州朗锐铸造有限公司, 南车戚墅堰机车车辆工艺研究所有限公司 filed Critical 常州朗锐铸造有限公司
Priority to CN201580049347.8A priority Critical patent/CN107002188A/zh
Publication of WO2016050200A2 publication Critical patent/WO2016050200A2/zh
Publication of WO2016050200A3 publication Critical patent/WO2016050200A3/zh

Links

Images

Definitions

  • the invention belongs to the technical field of friction braking materials, and relates to an alloy vermicular graphite cast iron, a rail vehicle brake disk using the compacted graphite iron, and a method for casting the compacted graphite iron.
  • brake systems for rail vehicles are widely used in brake disc braking mode.
  • this braking mode more than 90% of the heat is absorbed by the brake disc during braking, so that when the rail vehicle brakes, The moving plate will experience rapid heating and strong convection cooling in a short time, which will inevitably cause the brake disc to withstand high thermal load and thermal stress during braking, and it is prone to hot cracks and wear during use. problem. Therefore, the brake disc material of rail transit vehicles must have good high temperature mechanical properties, thermal fatigue resistance, stable thermal strength and certain anti-oxidation ability while ensuring its anti-friction performance. Similar performance requirements exist in other areas such as heavy duty braking.
  • the traditional rail vehicle brake disc is generally cast from gray cast iron.
  • the gray cast iron has high thermal conductivity, good shock absorption and friction performance, and satisfies the domestic railway brake to a certain extent for a period of time.
  • the use of the disk is required.
  • gray cast iron has poor toughness and low elongation, which may cause cracks in the brake disc, which may cause malfunction of the brake system and even cause a safety accident.
  • an alloyed vermicular graphite cast iron having a chemical composition and a mass percentage thereof: C: 3.3 to 3.5%, Si: 2.3 to 2.5%, Mn: 0.4 to 0.7%, Cu: 0.6 to 1.0%, Mo: 0.2 to 0.6%, Ni: 0.6 to 1.0%, P ⁇ 0.07%, S ⁇ 0.02%, and the balance of Fe.
  • Furnace preparation step weighing the required amount of pig iron, scrap steel, recycled material, high carbon ferromanganese, copper, ferromolybdenum and nickel plate according to the chemical composition of the compacted graphite iron and its mass percentage;
  • Smelting step adding the pig iron, scrap steel, recycled material, high carbon ferromanganese, electrolytic copper, and ferromolybdenum and nickel plates prepared in the preparation step of the charge to the induction furnace for melting, when the temperature in the furnace is 1480 ⁇ 10° C. More than 30 minutes of insulation, and the molten iron is released;
  • the step of invigorating and inoculating by the punching method pouring molten iron into the vitrification bag for the vigorization and inoculation treatment, wherein the creeping agent, the inoculant and the silicon steel sheet filled in the creeping package are calculated by mass percentage.
  • the creeping agent is 0.5 to 0.9% of the total amount of molten iron poured, the inoculant is 0.6 to 1.0% of the total amount of molten iron poured, and the silicon steel sheet is 0.4 to 0.6% of the total amount of molten iron poured;
  • a rail vehicle brake disc employing the above-described alloy compacted graphite iron.
  • a method of manufacturing a brake disc for a rail vehicle wherein the casting of the brake disc of the rail vehicle is prepared by the above-described casting method, and wherein a mold is used for molding A casting of the brake disc of the rail vehicle is formed.
  • the alloy vermicular graphite cast iron of the invention ensures that the mass percentages of the basic elements C and Si of the molten iron are 3.3-3.5% and 2.3-2.5%, respectively, and the mass percentages are respectively Cu: 0.6-1.0%, Mo: 0.2 to 0.6%, Ni: 0.6 to 1.0% of alloying elements, resulting in increased precipitation of worm-like graphite, reducing the tendency of shrinkage and shrinkage, and increasing tensile strength, yield strength and hardness, and effectively improving alloyed Confucianism Physical properties such as thermal conductivity and fatigue properties of cast iron.
  • the pearlite can be refined by simultaneously adding Cu, Mo and Ni elements, which effectively increases the pearlite content in the casting matrix.
  • the strength of the alloy vermicular graphite cast iron and its casting can be effectively improved, so the wear resistance is obtained. Effectively guaranteed; in particular, by adding Cu element, it can also reduce the tendency of white mouth, further improve the strength, hardness and wear resistance, can reduce the section sensitivity of cast iron, and help to slow the expansion of hot crack; by adding Mo element, The heat intensity of the brake disc can be improved, and the yield ratio of the casting can be improved; the addition of Ni element can improve the uniformity of the base of the casting, and can improve the stress ⁇ value of cracking and expansion of the disc due to thermal stress concentration, and the obtained system
  • the mechanical properties of the moving plate can meet the technical requirements, and the creeping rate can be greater than or equal to 75%, and the thermal conductivity is good.
  • the average tensile strength of the alloy vermicular graphite cast iron is about 100 MPa higher than that of the Ni alloy without the addition of the Ni alloy, and the average elongation is increased by about 0.4%.
  • the average pearlite content is about 10% higher, and the average hardness is about 20HB.
  • Fig. 1 is a metallographic structure diagram of a pearlite content of 60% in a test piece obtained in Example 1 of the alloy vermicular cast iron alloying method of the present invention.
  • Fig. 2 is a metallographic structure diagram showing a creeping rate of 85% in the test piece obtained in Example 1 of the alloy vermicular cast iron alloying method of the present invention.
  • Figure 3 is a metallographic structure diagram of the pearlite content of 55% in the test piece obtained in Example 2 of the alloy vermicular cast iron alloying method of the present invention.
  • Fig. 4 is a metallographic structure diagram showing a creeping rate of 75% in the test piece obtained in Example 2 of the alloy vermicular cast iron alloying method of the present invention.
  • An alloy compacted graphite iron according to the present invention which can be applied to a brake disc, such as a brake disc of a rail vehicle specifically for a quasi-high speed locomotive vehicle, the chemical composition of the compacted graphite cast iron, in terms of mass percentage, comprising: C:: 3.3 to 3.5%, Si: 2.3 to 2.5%, Mn: 0.4 to 0.7%, Cu: 0.6 to 1.0%, Mo: 0.2 to 0.6%, Ni: 0.6 to 1.0%, P ⁇ 0.07%, S ⁇ 0.02% to And the balance of Fe.
  • the alloy of the above chemical composition has a creeping rate of ⁇ 75% and a pearlite content of 50% to 60%.
  • the above-mentioned creeping rate and pearlite content are defined by volume ratio; and, in the embodiment of the invention, the alloy is The description of the chemical composition of the vermicular graphite iron, the creeping agent, and the inoculant is based on the mass percentage.
  • the mass percentage content of C is designed to be 3.3 to 3.5%.
  • the mass percentage of Si is designed to be 2.3 to 2.5%, which can increase the content of pearlite and strengthen the ferrite.
  • the mass percentage content of Mn is designed to be 0.4-0.7%, which can stabilize the pearlite content and increase
  • the strength and hardness of the casting also solve the problem of a large amount of cementite structure due to excessive Mn.
  • the Mn content is increased in the formula of the alloy vermicular cast iron, and at the same time, the content of Si is decreased, and the increase of the pearlite is facilitated, and the tendency of the cementite and the white mouth of the casting is increased by increasing the alloying elements. problem.
  • the mass percentage content of the copper is controlled to 0.6-1.0%, which is beneficial to increase and refine the pearlite, reduce the tendency of the white mouth, and improve the vibrating ink of the alloy.
  • the strength, hardness and wear resistance of cast iron can reduce the cross-section sensitivity of the alloy vermicular cast iron; the mass percentage of Mo is designed to be 0.2-0.6%, which is beneficial to increase the strength while increasing and refining the pearlite.
  • Abrasion resistance and heat resistance in particular, can improve the heat strength of the brake disc, thereby increasing the yield ratio of the casting; in particular, the combination of Cu and Mo can fully exert the improvement of the pearlite content and the strength and At the same time as the hardness, the formation of carbides is avoided.
  • the mass percentage of Ni is designed to be 0.6-1.6%, and Ni can improve the uniformity of the casting, refine the grain size and graphite size, contribute to the decomposition of the carbide, and improve the impact of the vermicular graphite cast iron. toughness.
  • the alloy vermicular graphite cast iron according to the invention has a chemical composition and a mass percentage thereof preferably: C: 3.35 to 3.47%, Si: 2.38 to 2.47%, Mn: 0.47 to 0.64%, Cu: 0.7 to 0.88%. Mo: 0.36 to 0.51%, Ni: 0.62 to 0.91%, P ⁇ 0.05%, S ⁇ 0.02%, and the balance of iron.
  • the charge of the embodiment of the present invention is based on the mass percentage.
  • the amount of pig iron can be controlled at 40-75%, and the scrap steel contains 0.12.
  • the amount of scrap can be controlled at 10-20%, recycled material, high carbon ferromanganese, electrolytic copper, ferromolybdenum and The nickel plate is appropriately added according to the target component of the molten iron.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 Example 8
  • Example 9 pig iron 48.95 70.05 56.34 72.72 62.05 68.13 59.39 56.74 63.18 Scrap 12.46 18.02 11.87 18.44 15.26 16.12 14.37 15.44 10.48
  • Back charge 34.91 6.64 27.93 3.47 18.03 11.15 22.70 24.98
  • Ferrosilicon 0 0.52 0 0.73 0.25 0.41 0.04 0.07 0.49
  • High carbon ferromanganese 0.39 0.73 0.59 0.62 0.36 0.45 0.45 0.14 0.70
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 Example 8
  • Silicon steel sheet 0.48 0.56 0.60 0.47 0.53 0.45 0.58 0.4 0.6
  • the chemical composition of the creeping agent of the present invention in terms of mass percentage, Mg: 4 to 7%, Ca: ⁇ 3%, RE: 7 to 12%, Si: 40 to 46%, and Al: ⁇ 1%, And the balance of Fe; preferably the chemical composition of the creeping agent is controlled at Mg: 4.4 ⁇ 6.45%, Ca: ⁇ 2.5%, RE: 7.5 ⁇ 11.2%, Si: 41.5 ⁇ 45.5% and Al: ⁇ 0.9% and The balance of Fe.
  • the molten iron is subjected to a vigorization treatment in a creeping bag.
  • pouring and heat preservation treatment stirring and slaging the surface of the molten iron after the germination treatment, when the temperature of the molten iron reaches the pouring temperature of 1360-1420 ° C, the molten iron is cast in the mold,
  • the pouring time of the molten iron in the creeping bag is less than 10 minutes.
  • the iron in the creeping bag is exhausted twice, and the inoculation agent is again placed in the creeping bag twice, in the second time.
  • the creeping agent When the molten iron is discharged, the creeping agent is melted under the action of the molten iron in the creeping bag to carry out the second incubation; after the pouring is finished, the mold is naturally cooled to a temperature of ⁇ 300 ° C, and the mold is unpacked and cleared.
  • vermicular cast iron castings such as brake discs.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 Example 9 Release temperature (°C) 1488 1482 1477 1472 1480 1486 1482 1470 1490
  • Pouring temperature (°C) 1392 1377 1374 1410 1400 1418 1386 1360 1420
  • the test piece of the vermicular graphite cast iron obtained by the alloying methods of the first embodiment and the second embodiment is 220 ⁇ 25Y type; the test piece obtained in the first embodiment is used to obtain the gold shown in FIG. 1 and FIG.
  • the phase diagram it can be seen that the pearlite content is about 60% (see Figure 1), and the creeping rate is about 85% (see Figure 2); the test block obtained in Example 2 is magnified 100 times as shown in Figure 3.
  • the pearlite content is about 55% (see Figure 3), and the creep rate is about 75% (see Figure 4).
  • the mechanical properties of the alloy vermicular graphite cast iron prepared in the above examples were tested.
  • the tensile strength and elongation after fracture are tested using the standard GB/T 228.1-2010 "Metal material tensile test Part 1: room temperature test method".
  • the pearlite, hardness and creep rate of the alloy vermicular graphite cast iron prepared by the above examples are standard JB/T 3829-1999 "metallographic test of vermicular graphite iron” and GB/T 231.1-2009 “metal Brinell hardness test”.
  • Part 1 Test Methods" for testing.
  • the specific properties of the alloy vermicular graphite cast iron prepared in the above examples are shown in Table 6.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 Example 8
  • Example 9 Tensile strength Rm (MPa) 511 522 536 518 533 525 509 478 568 Elongation A (%) 3 3 3 3 2.5 3 2.5 2.5 2 3.5
  • the vermicular graphite cast iron prepared by the invention can improve the stress ⁇ value of cracking and expansion of the disk body due to thermal stress concentration, and meet the technical condition requirements of the mechanical properties of the brake disk.
  • alloy vermicular graphite cast iron provided by the above embodiments of the present invention can be used not only for preparing a brake disc such as a high speed rail vehicle, but also for a workpiece having a frictional braking condition, for example, Mining machinery and so on.

Landscapes

  • Braking Arrangements (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

本发明提供一种合金蠕墨铸铁、轨道车辆制动盘和熔铸方法,属于摩擦制动材料技术领域。本发明的合金蠕墨铸铁的化学组成及其质量百分比为:C:3.3~3.5%,Si:2.3~2.5%,Mn:0.4~0.7%,Cu:0.6~1.0%,Mo:0.2~0.6%,Ni:0.6~1.0%,P≤0.07%,S≤0.02%,以及余量的Fe。本发明的合金蠕墨铸铁具有良好的导热性、强度、耐磨性等物理性能,基于该合金蠕墨铸铁制备的轨道车辆制动盘不易形成热裂纹且热裂纹不易扩展。

Description

合金蠕墨铸铁、轨道车辆制动盘和熔铸方法 技术领域
本发明属于摩擦制动材料技术领域,涉及一种合金蠕墨铸铁、使用该蠕墨铸铁的轨道车辆制动盘以及该蠕墨铸铁的熔铸方法。
背景技术
目前,轨道车辆用制动系统正广泛采用制动盘制动方式,这种制动方式在制动过程中90%以上的热量被制动盘所吸收,从而,在轨道车辆制动时,制动盘在短时间内会经历快速升温和强对流降温过程,这必然导致制动盘在制动过程中要承受很高的热载荷和热应力,在使用过程中容易产生热裂纹、磨损快等问题。因此,轨道交通车辆制动盘材料在保证其耐摩性能的同时必须具有良好的高温力学性能、抗热疲劳性能、稳定的热强性以及一定的抗氧化能力。在其他重载制动等领域中也存在类似的性能要求。
传统的轨道车辆制动盘一般由灰口铸铁铸造而成,灰口铸铁具有高的导热率,良好的减震性和摩擦性能等特点,在一段时间内在一定程度上满足了国内铁路用制动盘的使用需要。但是,灰口铸铁的韧性差、延伸率低,易造成制动盘产生裂纹,进而导致刹车系统发生故障,甚至引发安全事故。
为了提高铸铁制动盘的物理性能,目前大都采用综合加入Cu、Cr、Ni、Mo等元素的合金化方法,这种合金蠕墨铸铁虽然一定程度上增强了制动盘的力学性能、延长了制动盘的寿命,但是,随着轨道车辆的行驶速度越来越高,例如,准高速列车的行驶速度160km/h,制动盘的工作环境也更为恶劣,制动盘由于工作时热冷交替而产生裂纹并扩展的倾向进一步加大,从而不能满足使用要求。
有鉴于此,有必要提出一种新型的适合应用于在类似于轨道车辆制动盘的工况条件下的合金蠕墨铸铁。
发明内容
本发明的目的在于,提高合金蠕墨铸铁的物理性能以使其适合应用在类似于轨道车辆制动盘的工况条件下。
按照本发明的一方面,提供一种合金蠕墨铸铁,所述蠕墨铸铁的化学组成及其质量百分比为:C:3.3~3.5%,Si:2.3~2.5%,Mn:0.4~0.7%,Cu:0.6~1.0%,Mo:0.2~0.6%,Ni:0.6~1.0%,P≤0.07%,S≤0.02%,以及余量的Fe。
按照本发明又一方面,提供一种以上所述的合金蠕墨铸铁的熔铸方法,其包括步骤:
炉料配制步骤:按所述蠕墨铸铁的化学组成及其质量百分比称取所需量的生铁、废钢、回炉料、高碳锰铁、铜、钼铁和镍板;
熔炼步骤:将所述炉料配制步骤准备的生铁、废钢、回炉料、高碳锰铁、电解铜以及钼铁和镍板加入至感应电炉中进行熔炼,当炉内温度至1480±10℃进行不超过30分钟的保温,并将铁水出炉;
采用冲入法进行的蠕化孕育处理步骤:将铁水倒入蠕化包内进行蠕化孕育处理,其中蠕化包中填入的蠕化剂、孕育剂和硅钢片,按质量百分比计,所述蠕化剂为倒入铁水总量的0.5~0.9%、所述孕育剂为倒入铁水总量的0.6~1.0%、以及所述硅钢片为倒入铁水总量的0.4~0.6%;以及
浇注和保温步骤。
按照本发明还一方面,提供一种轨道车辆制动盘,其采用以上所述的合金蠕墨铸铁。
按照本发明再一方面,提供一种以上所述轨道车辆制动盘的制备方法,其中,采用以上所述熔铸方法来制备所述轨道车辆制动盘的铸件,并且,其中使用铸型来成型形成所述轨道车辆制动盘的铸件。
本发明的合金蠕墨铸铁在保证铁液基本元素C和Si的质量百分含量分别在3.3~3.5%和2.3~2.5%的基础上,加入质量百分含量分别为Cu:0.6~1.0%、Mo:0.2~0.6%、Ni:0.6~1.0%的合金元素,导致增加析出的蠕虫状石墨,减少缩孔缩松倾向,并增加抗拉强度、屈服强度和硬度,能有效的提高了合金儒墨铸铁的导热性能、疲劳性能等物理性能。合金蠕墨铸铁内通过同时增加Cu、Mo以及Ni元素能细化珠光体,有效增加铸件基体内的珠光体含量,合金蠕墨铸铁及其铸件的强度能得到有效提高,因此其耐磨性能得到有效保证;尤其地,通过加入Cu元素,还能降低白口倾向,进一步提高强度、硬度和耐磨性,能减少铸铁的断面敏感性,有利于减缓热裂纹的扩展;通过加入Mo元素, 能提高制动盘的热强性,进而提高铸件的屈强比;通过加入Ni元素能提高铸件基体内均匀性,可提高因热应力集中造成盘体开裂及扩展的应力阙值,得到的制动盘的力学性能能达到技术条件要求,并且蠕化率可以大于或等于75%,导热性能好。并且,本发明在其他合金材料的基础上加入Ni合金之后,合金蠕墨铸铁的平均抗拉强度比相同条件下不加Ni合金的要高100MPa左右,平均伸长率要提高0.4%左右,基体的珠光体平均含量高出10%左右,硬度平均值高出20HB左右。
附图说明
从结合附图的以下详细说明中,将会使本发明的上述和其他目的及优点更加完整清楚。
图1是用本发明合金蠕墨铸铁合金化方法实施例1中制得的试块中珠光体含量60%的金相组织图。
图2是用本发明合金蠕墨铸铁合金化方法实施例1中制得的试块中蠕化率85%的金相组织图。
图3是用本发明合金蠕墨铸铁合金化方法实施例2中制得的试块中珠光体含量55%的金相组织图。
图4是用本发明合金蠕墨铸铁合金化方法实施例2中制得的试块中蠕化率75%的金相组织图。
具体实施方式
下面介绍的是本发明的多个可能实施例中的一些,旨在提供对本发明的基本了解,并不旨在确认本发明的关键或决定性的要素或限定所要保护的范围。容易理解,根据本发明的技术方案,在不变更本发明的实质精神下,本领域的一般技术人员可以提出可相互替换的其他实现方式。因此,以下具体实施方式以及附图仅是对本发明的技术方案的示例性说明,而不应当视为本发明的全部或者视为对本发明技术方案的限定或限制。
本发明的一种合金蠕墨铸铁,其可以应用在制动盘中,例如具体应用于准高速机车车辆的轨道车辆的制动盘,该蠕墨铸铁的化学组成,以质量百分比计,包括:C::3.3~3.5%,Si:2.3~2.5%,Mn:0.4~0.7%,Cu:0.6~1.0%,Mo:0.2~0.6%,Ni:0.6~1.0%,P≤0.07%,S≤0.02%,以 及余量的Fe。在该实施例中,以上化学组成的合金蠕墨铸铁的蠕化率≥75%、珠光体含量为50%~60%。需要理解是,按照本领域技术人员对应铸铁蠕化率和珠光体含量的计量确定方法,以上所述蠕化率和珠光体含量均是以体积比定义的;并且,本发明实施例中关于合金蠕墨铸铁、蠕化剂、孕育剂的化学组成描述中,均是按质量百分比来计的。
在一实施例中,将C的质量百分比含量设计在3.3~3.5%,通过控制含碳量,既能增加析出的蠕虫状石墨数量,可以减少缩孔缩松倾向,同时也解决由于铸铁的抗拉强度因碳含量增加导致的石墨数量增加、珠光体减少有所下降的问题;将Si的质量百分比含量设计在2.3~2.5%,能增加可减少珠光体的含量的同时,强化铁素体,并有利于石墨数量增加,增加抗拉强度、屈服强度和硬度,也解决了塑性指标会有所降低的问题;将Mn的质量百分比含量设计在0.4~0.7%,可以稳定珠光体含量,并增加铸件的强度和硬度,也解决由于Mn过多而产生较多的渗碳体组织的问题。以上实施例,在合金蠕墨铸铁的配方体系中增加Mn含量,同时又降低Si的含量,在有利于珠光体的增多的同时,可通过增加合金元素解决渗碳体和铸件白口倾向增加的问题。
进一步,在本发明实施例中,在合金蠕墨铸铁的配方体系中,将铜的质量百分比含量控制在0.6~1.0%,有利于增加并细化珠光体,降低白口倾向,提高合金蠕墨铸铁的强度、硬度和耐磨性,从而能减少合金蠕墨铸铁的断面敏感性;将Mo的质量百分比含量设计在0.2~0.6%,在增加并细化珠光体的同时,有利于提高强度、耐磨性和耐热性,尤其能提高制动盘的热强性,进而提高铸件的屈强比;尤其地,Cu和Mo的配合使用,可以在充分发挥提高组织珠光体含量、提高强度和硬度的作用的同时,避免碳化物的形成。在本发明实施例中,将Ni的质量百分比含量设计在0.6~1.6%,Ni能提高铸件的均匀性,细化晶粒和石墨尺寸,有助于碳化物的分解,改善蠕墨铸铁的冲击韧性。
按照本发明一的合金蠕墨铸铁,其化学成分及其质量百分含量优选地为:C:3.35~3.47%,Si:2.38~2.47%,Mn:0.47~0.64%,Cu:0.7~0.88%,Mo:0.36~0.51%,Ni:0.62~0.91%,P≤0.05%,S≤0.02%,以及余量的铁。
以下提供9个具体实施例的铁道车辆制动盘用合金蠕墨铸铁的化学组成,以质量百分比计,具体见表1所示。
表1
Figure PCTCN2015091062-appb-000001
本发明一实施例的铁道车辆制动盘用合金蠕墨铸铁的熔铸方法大致包括如下步骤:
(1)炉料配制:按蠕墨铸铁制动盘的化学组成称取所需量的生铁、废钢、回炉料、高碳锰铁、电解铜、钼铁和镍板;
本发明实施例的炉料按质量百分比计,当Q10生铁中含有在4.57%-4.69%的C及0.67%-0.83%的Si,生铁的加入量可控制在40-75%,当废钢中含有0.12%-0.17%的C、0.13%-0.19%的Si以及0.40%-0.51%的Mn时,废钢的加入量可控制在10-20%,回炉料、高碳锰铁、电解铜、钼铁和镍板依据铁水目标成分适当加入。
具体炉料按质量百分比计见表2所示。
表2
炉料组成 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7 实施例8 实施例9
生铁 48.95 70.05 56.34 72.72 62.05 68.13 59.39 56.74 63.18
废钢 12.46 18.02 11.87 18.44 15.26 16.12 14.37 15.44 10.48
回炉料 34.91 6.64 27.93 3.47 18.03 11.15 22.70 24.98 20.96
硅铁 0 0.52 0 0.73 0.25 0.41 0.04 0.07 0.49
高碳锰铁 0.39 0.73 0.59 0.62 0.36 0.45 0.45 0.14 0.70
电解铜 0.48 0.59 0.66 0.83 0.62 0.60 0.42 0.43 0.84
钼铁 0.39 0.66 0.70 0.58 0.69 0.86 0.53 0.21 0.91
镍板 0.56 0.70 0.59 0.77 0.54 0.63 0.48 0.45 0.79
(2)熔炼:将生铁、废钢、回炉料、高碳锰铁、电解铜以及钼铁和镍板加入至感应电炉中进行熔炼,当炉内温度至1480±10℃时进行不超过30分钟的保温并出炉,用除渣剂对铁水扒渣,具体可采用珍珠岩质除渣剂进行聚渣和除渣。随后可以将熔炼的铁水出炉将铁水倒入蠕化包。
(3)采用冲入法进行蠕化孕育处理:在蠕化包对应的包底挖坑,并从下至上按顺序填入蠕化剂、孕育剂和硅钢片,按质量百分比计,分别填入倒入的铁水总量的0.5-0.9%的蠕化剂、0.6~1.0%的孕育剂以及0.4~0.6%的硅钢片。
各个实施例对应的蠕化剂、孕育剂和硅钢片相对钢水总量的质量百分比见表3所示。
表3
炉料组成 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7 实施例8 实施例9
蠕化剂 0.52 0.74 0.88 0.61 0.81 0.56 0.78 0.5 0.9
孕育剂 0.86 0.79 0.95 0.72 0.86 0.64 0.91 0.6 1.0
硅钢片 0.48 0.56 0.60 0.47 0.53 0.45 0.58 0.4 0.6
其中,本发明的蠕化剂的化学组成,以质量百分比计,Mg:4~7%,Ca:<3%,RE:7~12%,Si:40~46%和Al:<1%,以及余量的Fe;最好将蠕化剂的化学组成控制在Mg:4.4~6.45%,Ca:<2.5%,RE:7.5~11.2%,Si:41.5~45.5%和Al:<0.9%和余量的Fe。将铁水在蠕化包内进行蠕化孕育处理。
各个实施例对应的蠕化剂的化学组成见表4所示。
表4
蠕化剂 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7 实施例8 实施例9
Mg 6.41 4.94 4.12 5.63 4.41 5.26 6.15 4.00 7.00
Ca 2.52 2.34 2.61 2.12 2.73 2.72 2.46 2.98 2.88
RE 11.13 8.69 9.56 7.86 10.24 9.56 10.52 7.00 12.00
Si 43.52 42.16 40.56 45.11 41.67 44.69 45.19 40.00 46.00
Al 0.48 0.68 0.75 0.52 0.81 0.86 0.71 0.90 0.95
Fe 35.94 41.19 42.4 38.76 40.14 36.91 34.97 45.12 31.17
(4)浇注和保温处理:对蠕化孕育处理后的铁水表面进行搅拌和扒渣,当铁水温度至浇注温度1360-1420℃时,将铁水浇铸在铸型中, 蠕化包内的铁水浇注时间在10分钟以内,在一实施例中,蠕化包内铁水分两次出尽,两次出铁水间隙再次向蠕化包内放入孕育剂,在第二次出铁水时,在对蠕化包内铁水的搅拌作用下,熔化蠕化剂从而进行二次孕育;浇注结束后,待铸型自然冷却至温度≤300℃,对铸型开箱落砂清理,制得蠕墨铸铁铸件,例如制动盘。
各个实施例对应的出炉温度、浇注温度、控制温度和浇注时间见表5所示。
表5
名称 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7 实施例8 实施例9
出炉温度(℃) 1488 1482 1477 1472 1480 1486 1482 1470 1490
浇注温度(℃) 1392 1377 1374 1410 1400 1418 1386 1360 1420
浇注时间(min) 8.8 9.2 9.0 8.9 9.3 8.9 8..8 9.5 9.0
对以上实施例制备的合金蠕墨铸铁进行金相样品制备。具体采用以上实施例1和实施例2的合金方法制得的蠕墨铸铁试块为220×25Y型;采用实施例1制得的试块获得放大100倍的如图1和2所示的金相组织图,可以看出,珠光体含量达60%左右(参见图1),蠕化率85%左右(参见图2);采用实施例2制得的试块获得放大100倍的如图3和4中的金相组织图,可以看出,珠光体含量达55%左右(参见图3),蠕化率75%左右(参见图4)。
进一步,对以上实施例制备的合金蠕墨铸铁进行力学性能试验。在一实施例中,抗拉强度和断后伸长率是采用标准GB/T228.1-2010《金属材料拉伸试验第1部分:室温试验方法》进行测试的。并且,对以上实施例制备的合金蠕墨铸铁的珠光体、硬度和蠕化率采用标准JB/T 3829-1999《蠕墨铸铁金相检验》和GB/T 231.1-2009《金属布氏硬度试验第一部分:试验方法》进行测试。以上实施例制备的合金蠕墨铸铁的具体性能见表6所示,
表6
检测名称 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7 实施例8 实施例9
抗拉强度Rm(MPa) 511 522 536 518 533 525 509 478 568
伸长率A(%) 3 3 3 2.5 3 2.5 2.5 2 3.5
珠光体P(%) 60 55 60 50 60 55 50 50 60
蠕化率(%) 85 85 75 85 75 85 85 90 75
HB 219 221 229 215 216 211 206 194 242
本发明制得的蠕墨铸铁可提高因热应力集中造成盘体开裂及扩展的应力阙值,满足制动盘的力学性能的技术条件要求。
需要理解的是,本发明以上实施例提供的合金蠕墨铸铁不仅可以用来制备诸如高速轨道车辆上的制动盘,还可以应用于具有类似摩擦制动工况的工件上,例如,应用在矿山机械领域等。

Claims (15)

  1. 一种合金蠕墨铸铁,其特征在于,所述蠕墨铸铁的化学组成及其质量百分比为:C:3.3~3.5%,Si:2.3~2.5%,Mn:0.4~0.7%,Cu:0.6~1.0%,Mo:0.2~0.6%,Ni:0.6~1.0%,P≤0.07%,S≤0.02%,以及余量的Fe。
  2. 根据权利要求1所述的合金蠕墨铸铁,其特征在于,所述蠕墨铸铁的蠕化率≥75%,所述蠕墨铸铁中的珠光体含量为50%~60%。
  3. 根据权利要求1或2所述的合金蠕墨铸铁,其特征在于,所述蠕墨铸铁的化学组成及其质量百分比进一步为:C:3.35~3.47%,Si:2.38~2.47%,Mn:0.47~0.64%,Cu:0.7~0.88%,Mo:0.36~0.51%,Ni:0.62~0.91%,P≤0.05%,S≤0.02%,以及余量的铁。
  4. 根据权利要求1或2所述的合金蠕墨铸铁,其特征在于,所述合金蠕墨铸铁用于铸造轨道车辆制动盘。
  5. 一种如权利要求1-4中任一项所述的合金蠕墨铸铁的熔铸方法,其特征在于,包括步骤:
    炉料配制步骤:按所述蠕墨铸铁的化学组成及其质量百分比称取所需量的生铁、废钢、回炉料、高碳锰铁、铜、钼铁和镍板;
    熔炼步骤:将所述炉料配制步骤准备的生铁、废钢、回炉料、高碳锰铁、电解铜以及钼铁和镍板加入至感应电炉中进行熔炼,当炉内温度至1480±10℃进行不超过30分钟的保温,并将铁水出炉;
    采用冲入法进行的蠕化孕育处理步骤:将铁水倒入蠕化包内进行蠕化孕育处理,其中蠕化包中填入的蠕化剂、孕育剂和硅钢片,按质量百分比计,所述蠕化剂为倒入铁水总量的0.5~0.9%、所述孕育剂为倒入铁水总量的0.6~1.0%、以及所述硅钢片为倒入铁水总量的0.4~0.6%;以及
    浇注和保温步骤。
  6. 根据权利要求5所述的熔铸方法,其特征在于,所述蠕化剂的化学组成及其质量百分比为:Mg:4~7%,Ca:<3%,RE:7~12%,Si:40~46%,Al:<1%和余量的Fe。
  7. 根据权利要求6所述的熔铸方法,其特征在于,所述蠕化剂的 化学组成及其质量百分比为:Mg:4.4~6.45%,Ca:<2.5%,RE:7.5~11.2%,Si:41.5~45.5%和Al:<0.9%和余量的Fe。
  8. 根据权利要求5所述的熔铸方法,其特征在于,在所述熔炼步骤中,在所述保温的期间,用除渣剂对铁水扒渣。
  9. 根据权利要求5所述的熔铸方法,其特征在于,在所述蠕化孕育处理步骤中,在蠕化包的包底挖坑,并从下至上按顺序填入所述蠕化剂,孕育剂和硅钢片。
  10. 根据权利要求5所述的熔铸方法,其特征在于,在所述浇注和保温处理步骤中,对蠕化孕育处理后的铁水进行搅拌和扒渣,当铁水温度至浇注温度1360-1420℃时,将铁水浇铸至铸型中,蠕化包内的铁水浇注时间控制在10分钟以内。
  11. 根据权利要求5或10所述的熔铸方法,其特征在于,在所述浇注和保温处理步骤中,浇注结束后,待铸型自然冷却至温度小于或等于300℃,对铸型开箱落砂清理,从而制得所述合金蠕墨铸铁。
  12. 根据权利要求11所述的熔铸方法,其特征在于,在所述浇注和保温处理步骤中,将铁水浇铸在铸型的过程中,所述蠕化包内的铁水浇注时间小于或等于10分钟,所述蠕化包内的铁水分两次出尽,并且在该两次出铁水间隙中再次向所述蠕化包内放入所述孕育剂,在对应蠕化包的第二次出铁水期间对所述蠕化包内的铁水的搅拌以熔化所述蠕化剂从而进行二次孕育。
  13. 根据权利要求5所述的熔铸方法,其特征在于,所述孕育剂选用硅系的FeSi75孕育剂。
  14. 一种轨道车辆制动盘,其特征在于,采用如权利要求1至3中任一项所述的合金蠕墨铸铁。
  15. 一种如权利要求14所述的轨道车辆制动盘的制备方法,其特征在于,采用如权利要求5至13中任一项所述的熔铸方法来制备所述轨道车辆制动盘的铸件,并且,其中使用铸型来成型形成所述轨道车辆制动盘的铸件。
PCT/CN2015/091062 2014-09-29 2015-09-29 合金蠕墨铸铁、轨道车辆制动盘和熔铸方法 WO2016050200A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580049347.8A CN107002188A (zh) 2014-09-29 2015-09-29 合金蠕墨铸铁、轨道车辆制动盘和熔铸方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410510550.8A CN105483508B (zh) 2014-09-29 2014-09-29 铁道车辆制动盘用合金蠕墨铸铁及其熔炼方法
CN201410510550.8 2014-09-29

Publications (2)

Publication Number Publication Date
WO2016050200A2 true WO2016050200A2 (zh) 2016-04-07
WO2016050200A3 WO2016050200A3 (zh) 2016-05-26

Family

ID=55631715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091062 WO2016050200A2 (zh) 2014-09-29 2015-09-29 合金蠕墨铸铁、轨道车辆制动盘和熔铸方法

Country Status (2)

Country Link
CN (2) CN105483508B (zh)
WO (1) WO2016050200A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112536420A (zh) * 2020-11-19 2021-03-23 湖北恩腾机械有限公司 一种偏心铸造耐磨弯管的制备工艺
CN113862553A (zh) * 2021-09-06 2021-12-31 武汉理工大学 一种等温淬火合成蠕墨铸铁RuT1000-2及其制备方法
CN114262839A (zh) * 2021-12-28 2022-04-01 江苏润曼机械设备有限公司 一种高强度薄壁灰铁铸件及其制备方法
CN114406195A (zh) * 2021-12-07 2022-04-29 武汉建恒同创金属科技有限公司 一种真空密封铸造生产电梯制动盘的方法
CN115055649A (zh) * 2022-06-20 2022-09-16 山西汤荣机械制造股份有限公司 一体式复合制动鼓轮毂铸件产品及其制备方法
CN115323258A (zh) * 2022-08-23 2022-11-11 一汽解放汽车有限公司 灰铸铁及其制备方法和应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106011603A (zh) * 2016-07-01 2016-10-12 宁国市开源电力耐磨材料有限公司 一种高强度蠕墨铸铁的熔炼工艺
CN105970075B (zh) * 2016-07-15 2017-08-25 江苏一汽铸造股份有限公司 一种制备蠕墨铸铁材料的工艺方法
CN106048402B (zh) * 2016-08-17 2018-03-09 河南理工大学 耐热疲劳蠕墨铸铁、铸铁模及其制备方法
CN108624807B (zh) * 2017-08-29 2019-12-17 西安工业大学 一种铸态高珠光体量高蠕化率蠕墨铸铁及其制备方法
CN108060284A (zh) * 2017-12-20 2018-05-22 山西东方恒略精密铸造有限公司襄汾新盛分公司 一种蠕墨铸铁蠕化处理方法
CN109371316B (zh) * 2018-12-20 2020-07-17 苏州石川制铁有限公司 一种蠕化铸件的制备方法
CN110982977B (zh) * 2019-12-23 2021-12-07 山东时风(集团)有限责任公司 一种蠕墨铸铁汽车排气歧管的制备方法
CN110904381B (zh) * 2019-12-30 2021-08-06 江西久旺汽车配件制造有限公司 一种蠕墨铸铁材料及其制备方法和应用
CN113337777A (zh) * 2020-03-02 2021-09-03 常州中车柴油机零部件有限公司 蠕墨铸铁及活塞环及制备方法及其应用
CN111690868A (zh) * 2020-05-19 2020-09-22 赵纪明 一种等温淬火蠕墨铸铁及其制备方法
CN112210711B (zh) * 2020-10-12 2021-11-16 朝阳飞马车辆设备股份公司 一种多合金tmm-r-01制动盘材质、其制备方法及其用途
CN113832382A (zh) * 2021-09-14 2021-12-24 汶上海纬机车配件有限公司 一种蠕墨铸铁石墨细化的制备方法
CN114318119A (zh) * 2021-11-29 2022-04-12 四川共享铸造有限公司 一种高强度蠕墨铸铁及其生产方法
CN117004875B (zh) * 2023-07-28 2024-03-22 武汉万向汽车制动器有限公司 一种蠕墨铸铁制动盘及其铸造工艺

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247036A (ja) * 1984-05-22 1985-12-06 Mitsui Eng & Shipbuild Co Ltd Cv鋳鉄製シリンダライナ
JPS6379937A (ja) * 1986-09-22 1988-04-09 Ube Ind Ltd 高強度コンパクト/バ−ミキユラ−黒鉛鋳鉄
JP3730044B2 (ja) * 1999-03-12 2005-12-21 川崎重工業株式会社 車両用ブレーキディスク材
DE102004040056A1 (de) * 2004-08-18 2006-02-23 Federal-Mogul Burscheid Gmbh Hoch- und verschleißfester, korrosionsbeständiger Gusseisenwerkstoff
CN1928141A (zh) * 2005-09-05 2007-03-14 河南科技大学 抗热裂蠕墨铸铁制动材料及由其制备而成的蠕墨铸铁制动盘
KR20080102567A (ko) * 2007-05-21 2008-11-26 현대자동차주식회사 브레이크 드럼 조성물
CN101555565B (zh) * 2008-04-11 2011-05-18 广西玉柴机器股份有限公司 冲天炉-工频炉双联熔炼生产蠕墨铸铁工艺
CN102002627B (zh) * 2010-12-08 2012-05-30 山西汤荣机械制造股份有限公司 一种蠕墨铸铁制动鼓的生产方法
CN102140605A (zh) * 2011-01-28 2011-08-03 中国铁道科学研究院机车车辆研究所 一种轨道交通车辆制动盘用合金蠕墨铸铁
CN102851568B (zh) * 2012-08-16 2014-02-26 苏州东方模具科技股份有限公司 合金蠕墨铸铁玻璃模具材料及其制备方法
CN102796939B (zh) * 2012-08-29 2014-05-07 丹阳市锦雄机械制造有限公司 一种采用混合蠕化剂制备蠕墨铸铁的方法
CN103255335A (zh) * 2013-05-11 2013-08-21 罗云 生产高速重载汽车刹车鼓的合金蠕墨铸铁

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112536420A (zh) * 2020-11-19 2021-03-23 湖北恩腾机械有限公司 一种偏心铸造耐磨弯管的制备工艺
CN113862553A (zh) * 2021-09-06 2021-12-31 武汉理工大学 一种等温淬火合成蠕墨铸铁RuT1000-2及其制备方法
CN113862553B (zh) * 2021-09-06 2022-11-15 武汉理工大学 一种等温淬火合成蠕墨铸铁RuT1000-2及其制备方法
CN114406195A (zh) * 2021-12-07 2022-04-29 武汉建恒同创金属科技有限公司 一种真空密封铸造生产电梯制动盘的方法
CN114406195B (zh) * 2021-12-07 2023-08-01 武汉建恒同创金属科技有限公司 一种真空密封铸造生产电梯制动盘的方法
CN114262839A (zh) * 2021-12-28 2022-04-01 江苏润曼机械设备有限公司 一种高强度薄壁灰铁铸件及其制备方法
CN115055649A (zh) * 2022-06-20 2022-09-16 山西汤荣机械制造股份有限公司 一体式复合制动鼓轮毂铸件产品及其制备方法
CN115055649B (zh) * 2022-06-20 2024-01-05 山西汤荣机械制造股份有限公司 一体式复合制动鼓轮毂铸件产品及其制备方法
CN115323258A (zh) * 2022-08-23 2022-11-11 一汽解放汽车有限公司 灰铸铁及其制备方法和应用

Also Published As

Publication number Publication date
WO2016050200A3 (zh) 2016-05-26
CN105483508A (zh) 2016-04-13
CN107002188A (zh) 2017-08-01
CN105483508B (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
WO2016050200A2 (zh) 合金蠕墨铸铁、轨道车辆制动盘和熔铸方法
CN108624807B (zh) 一种铸态高珠光体量高蠕化率蠕墨铸铁及其制备方法
CN106929750B (zh) 蠕铁制动鼓及其制备方法
CN107058883B (zh) 一种高速列车制动盘合金钢材料及其制备方法
CN104357736B (zh) 一种钒钛蠕墨铸铁
CN104532118B (zh) 活塞镶圈专用高性能高镍奥氏体蠕墨铸铁及其制备方法
CN103352170B (zh) 合金锻钢及其生产方法和应用
CN102851575A (zh) 抗氧化性合金化灰口铸铁及其制备方法
EP2468903B1 (en) Manufacturing process of castings with spheroidal graphite
CN106884126A (zh) 一种髙铬钢轧辊及其制造方法
CN106566999A (zh) 一种用于高速列车制动盘的耐磨材料及其制备方法
CN104775067A (zh) 一种轨道车辆制动盘用合金球墨铸铁
CN103146988B (zh) 高耐热疲劳性合金球墨铸铁玻璃模具材料及其制备方法
CN104233052A (zh) 铬钼铜合金蠕铁制动鼓及其制备方法
CN102851574A (zh) 一种耐热合金蠕墨铸铁及其制备方法
CN110093554A (zh) 一种兼具高导热率和高强度的蠕墨铸铁及其制备方法与应用
CN101880815B (zh) 城市轨道交通车辆及铁路机车车辆制动盘用合金蠕墨铸铁
CN102191424A (zh) 一种铸态低合金高热疲劳强度灰铸铁制动材料
WO2019120122A1 (zh) -40℃低温高强高韧球墨铸铁及其制备方法和铁路机车零部件
CN103255335A (zh) 生产高速重载汽车刹车鼓的合金蠕墨铸铁
CN105543642B (zh) 城市轨道交通轮用等温淬火球墨铸铁合金材料
CN104630636A (zh) 一种铸造低碳钢及其制备方法
CN102102165A (zh) 一种用于高速动车组车辆制动盘的合金结构钢材料
CN106521323A (zh) 一种中铬合金衬板及其制作方法
CN103556037A (zh) 一种发动机干式气缸用球墨铸铁的制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846495

Country of ref document: EP

Kind code of ref document: A2