WO2016050031A1 - 一种以太网传输路径的切换方法、装置及以太网系统 - Google Patents

一种以太网传输路径的切换方法、装置及以太网系统 Download PDF

Info

Publication number
WO2016050031A1
WO2016050031A1 PCT/CN2015/073364 CN2015073364W WO2016050031A1 WO 2016050031 A1 WO2016050031 A1 WO 2016050031A1 CN 2015073364 W CN2015073364 W CN 2015073364W WO 2016050031 A1 WO2016050031 A1 WO 2016050031A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
fault
node
switching
downstream
Prior art date
Application number
PCT/CN2015/073364
Other languages
English (en)
French (fr)
Inventor
彭媛媛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016050031A1 publication Critical patent/WO2016050031A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing

Definitions

  • the invention relates to the field of network traffic transmission, in particular to a method, a device and an Ethernet system for switching an Ethernet transmission path.
  • a dual-homed link refers to a network node connecting to another Ethernet network through two links, one of which is the primary link and the other is the standby link. Normally, the forwarding on the primary link is normal, and the forwarding on the standby link is blocked. When a failure occurs on the primary link, the forwarding of the alternate link is opened.
  • the dual-homed link networking can effectively improve the reliability of network transmission.
  • the network diagram includes nodes S1 to S5, and the switching node S1 passes the path: S1 - S2 - S4 and path: S1 - S3 - S5 to network A, wherein node S1 is configured with a protection group, the protection group includes an primary path and an alternate path. S1—S2—S4 is assumed to be the primary path, and S1—S3—S5 are the alternate paths. Under normal circumstances, network traffic is transmitted through the primary path. If the node S1 detects the failure of the primary path, it will switch the alternate path to transmit network traffic. When the fault is recovered, the protection group will decide whether to switch back to the active path according to the reverse and non-reverse modes.
  • the switching node S1 can only detect the fault of the direct link. When a fault occurs between S2 and S4, the active/standby switchover of the path cannot be initiated, causing network traffic to be interrupted.
  • the technical problem to be solved at least in the embodiments of the present invention is to provide a method, an apparatus, and an Ethernet system for switching an Ethernet transmission path, which can enable a handover node to know whether a non-direct link is faulty, thereby enabling a reasonable transmission path master. Backup switch.
  • an embodiment of the present invention provides a method for switching an Ethernet transmission path, including:
  • the switching node obtains a fault message initiated by the downstream node of the first path; the fault message is that the downstream node of the first path detects that the downstream link of the first path is directly connected to the first path. Initiated, or forwarded to its downstream nodes;
  • the switching node records that the first path is a fault path
  • the switching node determines whether the first path is a primary path
  • the switching node selects an alternate path that is not recorded as the failed path, and performs the active/standby switchover.
  • the switching method further includes:
  • the switching node When the switching node detects a downstream link fault of the first path that is directly connected to itself, the first path is recorded as a fault path.
  • the downstream node of the first path After detecting the fault of the downstream link of the first path that is directly connected to the first path, the downstream node of the first path is opened, and the upstream port corresponding to the first path is opened, so that the first line is directly connected to the first path.
  • the upstream link of a path recovers from the fault; after detecting that the downstream link of the first path is directly connected to the fault, the switch node cancels the record that the first path is the fault path.
  • the switch node further includes:
  • the switching node retries the currently used alternate path to the first path.
  • the fault packet is an Ethernet packet, and the Ethernet packet has a preset type field for identifying a faulty packet and a preset destination MAC address.
  • another embodiment of the present invention further provides an apparatus for switching an Ethernet transmission path, including:
  • a first receiving module configured to obtain a fault message initiated by a downstream node from the first path, where the fault message is that the downstream node of the first path detects the first path directly connected to itself Initiated by a downstream link failure, or forwarded to its downstream node;
  • a recording module configured to record that the first path is a fault path
  • a determining module configured to determine whether the first path is a primary path after the first path is recorded as a fault path
  • the switching module is configured to: if the determining module determines that the first path is a primary path, select an alternate path that is not recorded as a failed path, and perform an active/standby switchover.
  • the switching device further includes:
  • a detecting module configured to detect whether a downstream link of the first path is directly connected to the switching node
  • the recording module records the first path as a fault path when the detecting module detects that the downlink link of the first path is directly connected to the switching node;
  • downstream node of the first path detects that the downstream link of the first path is faulty, the downstream node of the first path is closed, and the upstream port corresponding to the first path is closed, so that it is directly connected to itself.
  • the upstream link of the first path is faulty.
  • the downstream node of the first path After detecting the fault of the downstream link of the first path that is directly connected to the first path, the downstream node of the first path is opened, and the upstream port corresponding to the first path is opened, so that the first line is directly connected to the first path.
  • the upstream link of a path recovers from failure;
  • the recording module is further configured to cancel the record that the first path is a fault path after the detecting module detects that the downstream link of the first path is directly connected to the switching node and recovers the fault.
  • the switching module retries the alternate path currently used by the switching node to the first path after the recording module cancels the record that the first path is the fault path. .
  • another embodiment of the present invention further provides an Ethernet system, where a handover node of the Ethernet system has multiple paths configured to transmit network traffic;
  • the switching node records the path as a fault path when obtaining a fault message initiated by a downstream node from a certain path;
  • the switching node determines whether the path recorded as the fault path is the primary path currently set to transmit network traffic
  • the switching node selects an alternate path that is not recorded as the fault path, and performs an active/standby switchover;
  • the fault message is initiated by the downstream node of the path by detecting a downlink fault directly connected to itself, or forwarding the downstream node thereof;
  • the downstream node after detecting the downstream link fault, transmits a fault message to the upstream direction of the handover node. Because the packet transmission speed between nodes is fast, the switch node can know in a timely manner which paths cannot transmit network traffic, so that the active/standby switchover of the transmission path can be performed reasonably to ensure normal network traffic transmission.
  • 1 is a schematic diagram of an existing Ethernet transmission path
  • FIG. 2 is a schematic diagram showing the steps of a method for switching an Ethernet transmission path according to the present invention
  • FIG. 3 is a schematic structural diagram of a fault packet according to the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus for switching an Ethernet transmission path according to the present invention.
  • FIG. 7 is a schematic flow chart of an apparatus for switching an Ethernet network transmission path to which an Ethernet node applies the present invention.
  • the present invention provides a method for switching an Ethernet path, which can solve the problem that an Ethernet switching node cannot successfully perform an active/standby switchover of a dual-homed path because the invisible link or the node fails to be detected.
  • the handover method of the present invention includes the following steps:
  • Step 21 The handover node obtains a fault message initiated by the downstream node from the first path, where the fault message is that the downstream node of the first path detects the downstream of the first path directly connected to itself. Initiated by a link failure, or forwarded to its downstream node;
  • Step 22 The switching node records the first path as a fault path.
  • Step 23 After the first path is recorded as a fault path, the switching node determines whether the first path is a primary path.
  • Step 24 If the first path is the primary path, the switching node selects an alternate path that is not recorded as the faulty path, and performs the active/standby switchover.
  • the downstream node after detecting the downstream link fault, transmits a fault message to the upstream direction of the handover node. Because the packet transmission speed between nodes is fast, the switch node can know in a timely manner which paths cannot transmit network traffic, so that the active/standby switchover of the transmission path can be performed reasonably to ensure normal network traffic transmission.
  • the faulty packets may not be forwarded to the upstream in time, which may result in the switch node not discovering the path in time. problem appear.
  • the handover method of the present invention further includes:
  • Step 25 When the switching node detects that the downlink link of the first path is directly connected to itself, the first path is recorded as a fault path.
  • downstream node of the first path detects that the downstream link of the first path is faulty, the downstream node of the first path is closed, and the upstream port corresponding to the first path is closed, so that it is directly connected to itself.
  • the upstream link of the first path is faulty.
  • Ethernet uses a method of transmitting a heartbeat message to determine whether a link has failed. Therefore, when a node closes a port on a path, its neighboring node detects that a failure has occurred (ie, the link of the first path fails, including that the port of the link is closed by the corresponding node). It can be seen that, in the handover method of the present invention, after the fault occurs, all non-switching nodes upstream of the fault side will gradually close the upstream port on the first path, so that the handover node finally perceives that the downstream link directly connected with itself occurs. Fault and determine that the first path is the fault path. That is, if a fault occurs anywhere in the path, the downstream link of the directly connected switch node will eventually fail, so that the switch node can sense that the entire path is no longer suitable for transmitting network traffic.
  • the switching node can finally know that the first path has failed.
  • the above solution can also enable the switching node to know in time whether the fault of the first path is restored. That is, after detecting the downstream link of the first path that is directly connected to the first path, the downstream node of the first path starts its upstream port corresponding to the first path, so that the first line directly connected to itself The upstream link of a path recovers from the fault; the handover method of the present invention further includes:
  • Step 26 After detecting that the downstream link of the first path is directly restored, the switching node cancels the record that the first path is a fault path.
  • the switching node may, but does not necessarily select, the path switchback (determined according to the original setting), that is, after the above step 26, :
  • step 27 the switching node cuts back the currently used alternate path to the first path.
  • the existing Ethernet packet as a fault message.
  • only the preset type field for packet identification and the preset destination MAC address need to be added to the Ethernet packet. That is, the node identifies the received Ethernet packet as a fault packet by using the preset type field and the preset destination MAC address.
  • FIG. 3 is an exemplary fault message, in which the preset type field occupies only 2 bytes, and the preset destination MAC address occupies 6 bytes.
  • FIG. 4 shows a networking structure of an Ethernet dual-protocol link in the first implementation manner.
  • S1 is a switching node
  • S3, S4, S5, S6, and S7 are non-switching nodes (non-switching nodes include intermediate nodes and tail nodes).
  • S1—S2—S4—S6 are the main paths
  • S1—S3—S5—S7 are the alternate paths.
  • S4 is assumed to detect a fault between the S4 and S6 links, and S4 sends an SF packet to the network element S2 and sets the port on the active path to be down.
  • S2 After receiving the SF packet, S2 forwards it to S1 and sets itself down to the port on the active path. If S2 does not receive the SF packet, after detecting a fault between the S2-S4 links, the port corresponding to the primary path may also be set to be down.
  • S1 After receiving the SF packet, S1 marks the active path as the fault path and performs the active/standby switchover of the path, so that the network traffic is transmitted using the alternate path. If S1 does not receive the SF packet, after detecting a fault between S1 and S2, the active path may also be marked as a faulty path, and an active/standby switchover is initiated.
  • the port corresponding to the primary path is set to UP.
  • S2 detects the failure recovery between the S2-S4 links, and sets the port corresponding to the primary path to UP.
  • S1 detects the fault recovery between the S1 and S2 links, cancels the record of the fault path for the active path, and initiates active/standby switchback.
  • FIG. 5 shows an Ethernet networking structure in the second implementation manner.
  • S1 is a switching node.
  • S1—S2—S5—S8 are the main paths, S1—S3—S6—S9 alternate paths 1, and S1—S4—S7—S10 are alternate paths 2.
  • S4 detects a fault between the S7-S10 links (may be a node fault or a link fault), S7 sends an SF packet to S4, and sets itself to the port on the used path, so that S4— A failure has occurred between S7.
  • S4 After receiving the SF packet, S4 forwards it to S1 and sets itself down to the port on the active path. If the S4 does not receive the SF packet, after detecting a fault between S4 and S7, the port corresponding to the primary path may be set to be down.
  • S1 After receiving the SF packet, S1 records the alternate path 2 as the fault path, and does not consider using the alternate path recorded as the fault path when performing the active/standby switchover of the trail. If S1 does not receive the SF message, the alternate path 2 may also be recorded as the fault path after detecting a failure between the S1-S4 links.
  • the port corresponding to the primary path is set to UP, so that the fault between S4 and S7 is restored.
  • S4 After detecting the fault recovery between the S4 and S7 links, S4 sets the port corresponding to the primary path to UP, so that the fault between the S1 and S4 links is restored.
  • the handover method of the present invention enables the handover node to know whether the non-linear link is faulty, so that the active/standby handover of the path can be performed reasonably.
  • another embodiment of the present invention further provides an apparatus for switching an Ethernet transmission path, as shown in FIG. 6, including:
  • a first receiving module configured to obtain a fault message initiated by a downstream node from the first path, where the fault message is that the downstream node of the first path detects the first path directly connected to itself Initiated by a downstream link failure, or forwarded to its downstream node;
  • a recording module configured to record that the first path is a fault path
  • a determining module configured to determine whether the first path is a primary path after the first path is recorded as a fault path
  • the switching module is configured to: if the determining module determines that the first path is a primary path, select an alternate path that is not recorded as a failed path, and perform an active/standby switchover.
  • the switching device in this embodiment can enable the downstream node to transmit a fault message to the switching node after detecting that the downstream link is faulty, so that the switching node can know the state of the transmission path in time, thereby reasonably performing the active and standby operations. Switch to ensure the normal transmission of network traffic.
  • the switching apparatus of this embodiment further includes:
  • a detecting module configured to detect whether a downstream link of the first path is directly connected to the switching node
  • the recording module records the first path as a fault path when the detecting module detects that the downlink link of the first path is directly connected to the switching node;
  • downstream node of the first path detects that the downstream link of the first path is faulty, the downstream node of the first path is closed, and the upstream port corresponding to the first path is closed, so that it is directly connected to itself.
  • the upstream link of the first path is faulty.
  • the downstream node of the first path opens the upstream port corresponding to the first path after detecting the downlink link failure of the first path directly connected to itself, so that the first line directly connected to itself
  • the upstream link of the path recovers the fault
  • the recording module is further configured to: after the detecting module detects that the downstream link of the first path is directly connected to the switching node, the first path is cancelled. The record of the path.
  • the switching module switches back the alternate path currently used by the switching node to the first path.
  • each node can determine its own transmission path. Location, to choose to run the corresponding module.
  • step A2 determining the location of the own node in the transmission path; if it is not the first node (ie, indicating the non-handover node), step A3 is performed; if it is the head node (ie, indicating the switching node), step A5 is performed.
  • A3 Send an SF packet to the upstream node, and then perform step A4.
  • step A4 close the upstream port of its corresponding path, and then return to step A1.
  • the record path is the fault path.
  • the switching device applied to the non-switching node of the present embodiment corresponds to the switching method applied to the non-switching node of the present invention, and the same technical effect can be achieved.
  • an embodiment of the present invention further provides an Ethernet system, where a switching node of the Ethernet system has multiple paths configured to transmit network traffic;
  • the switching node records the path as a fault path when obtaining a fault message initiated by a downstream node from a certain path;
  • the switching node determines whether the path recorded as the fault path is the primary path currently set to transmit network traffic
  • the switching node selects an alternate path that is not recorded as the fault path, and performs an active/standby switchover;
  • the fault message is initiated by the downstream node of the path by detecting a downlink fault directly connected to itself, or forwarding the downstream node thereof;
  • the method, device, and Ethernet system for switching an Ethernet transmission path provided by the embodiment of the present invention have the following beneficial effects: after detecting a downstream link failure, the downstream node transmits to the upstream direction of the switching node. Fault message. Because the packet transmission speed between nodes is fast, the switch node can know in a timely manner which paths cannot transmit network traffic, so that the active/standby switchover of the transmission path can be performed reasonably to ensure normal network traffic transmission.

Abstract

本发明提供一种以太网传输路径的切换方法、装置及以太网系统。方法包括:切换节点获得来自第一路径的下游节点发起的故障报文;所述故障报文是由所述第一路径的下游节点因检测出与自身直连的、所述第一路径的下游链路故障所发起的,或者是转发其下游节点的;切换节点记录所述第一路径为故障路径;切换节点在所述第一路径被记录为故障路径后,判断该第一路径是否为主用路径;若所述第一路径为主用路径,则切换节点选择一个未被记录为故障路径的备用路径,执行主备切换。本发明的方案使切换节点能够获知非直链路是否发生故障,从而能够合理进行传输路径的主备切换。

Description

一种以太网传输路径的切换方法、装置及以太网系统 技术领域
本发明涉及网络流量传输领域,特别是一种以太网传输路径的切换方法、装置及以太网系统。
背景技术
在以太网络中,为了保证网络的稳定性,常常利用双归链路对链路进行保护备份。双归链路是指在一个网络节点通过两条链路分别连接到另外的以太网络中,其中一条链路是主用链路,另外一条链路是备用链路。正常情况下,主用链路上转发正常,备用链路上的转发是被阻塞的。当主用链路上出现故障时,备用链路的转发被打开。采用双归链路组网可以有效提高网络传输的可靠性。
在实际组网中,常常会用到图1所示的双归组网图,该组网图中包括了节点S1至节点S5,切换节点S1通过路径:S1—S2—S4和路径:S1—S3—S5到网络A上,其中节点S1配置了一个保护组,该保护组包含一个主用路径和一个备用路径。假设S1—S2—S4为主用路径,S1—S3—S5为备用路径,在正常情况下,网络流量通过主用路径进行传输。若节点S1检测到主用路径故障时,就会切换备用路径来传输网络流量。当故障恢复后,保护组会根据反转和非反转模式,决定是否回切到主用路径。
但是,切换节点S1只能感知直连链路出现的故障,当S2—S4之间出现故障,就会无法发起路径的主备切换,致使网络流量中断。
发明内容
本发明实施例至少要解决的技术问题是提供一种以太网传输路径的切换方法、装置及以太网系统,能够使切换节点能够获知非直链路是否发生故障,从而能够合理进行传输路径的主备切换。
为至少解决上述技术问题,本发明的实施例提供一种以太网传输路径的切换方法,包括:
切换节点获得来自第一路径的下游节点发起的故障报文;所述故障报文是由所述第一路径的下游节点因检测出与自身直连的、所述第一路径的下游链路故障所发起的,或者是转发其下游节点的;
切换节点记录所述第一路径为故障路径;
切换节点在所述第一路径被记录为故障路径后,判断该第一路径是否为主用路径;
若所述第一路径为主用路径,则切换节点选择一个未被记录为故障路径的备用路径,执行主备切换。
其中,所述第一路径的下游节点在检测出与自身直连的、所述第一路径的下游链路故障时,关闭其对应于第一路径的上游端口,使得与其自身直连的、所述第一路径的上游链路发生故障;所述切换方法还包括:
切换节点检测出与自身直连的、所述第一路径的下游链路故障时,记录所述第一路径为故障路径。
其中,所述第一路径的下游节点在检测与自身直连的、第一路径的下游链路恢复故障后,开启其对应于第一路径的上游端口,使得与其自身直连的、所述第一路径的上游链路恢复故障;切换节点在检测到与自身直连的、第一路径的下游链路恢复故障后,取消所述第一路径为故障路径的记录。
其中,若所述第一路径为主用路径,则在切换节点取消所述第一路径为故障路径的记录后,还包括:
切换节点将当前使用的备用路径回切至第一路径。
其中,所述故障报文为以太网报文,所述以太网报文具有进行故障报文识别的预设type字段以及预设目的MAC地址。
此外,本发明的另一实施例还提供一种以太网传输路径的切换装置,包括:
第一接收模块,设置为获得来自第一路径的下游节点发起的故障报文;所述故障报文是由所述第一路径的下游节点因检测出与自身直连的、所述第一路径的下游链路故障所发起的,或者是转发其下游节点的;
记录模块,设置为记录所述第一路径为故障路径;
判断模块,设置为在所述第一路径被记录为故障路径后,判断该第一路径是否为主用路径;
切换模块,设置为若所述判断模块判断出所述第一路径为主用路径,则选择一个未被记录为故障路径的备用路径,执行主备切换。
其中,所述切换装置还包括:
检测模块,设置为检测与切换节点直连的、所述第一路径的下游链路是否故障;
所述记录模块在所述检测模块监测出与切换节点直连的、所述第一路径的下游链路故障时,记录所述第一路径为故障路径;
其中,所述第一路径的下游节点在检测出与自身直连的、所述第一路径的下游链路故障时,关闭其对应于第一路径的上游端口,使得与其自身直连的、所述第一路径的上游链路故障。
其中,所述第一路径的下游节点在检测与自身直连的、第一路径的下游链路恢复故障后,开启其对应于第一路径的上游端口,使得与其自身直连的、所述第一路径的上游链路恢复故障;
所述记录模块还设置为:在所述检测模块检测到与切换节点直连的、第一路径的下游链路恢复故障后,取消所述第一路径为故障路径的记录。
其中,若所述第一路径为主用路径,则在所述记录模块取消所述第一路径为故障路径的记录后,所述切换模块将切换节点当前使用的备用路径回切至第一路径。
此外,本发明的另一实施例还提供一种以太网系统,所述以太网系统的切换节点具有多条设置为传输网络流量的路径;
切换节点在获得来自某一路径的下游节点发起的故障报文时,将该路径记录为故障路径;
切换节点判断记录为故障路径的路径是否为当前设置为传输网络流量的主用路径;
若是,则切换节点选择一个未被记录为故障路径的备用路径,执行主备切换;
其中,故障报文是由路径的下游节点因检测出与自身直连的下游链路故障所发起的,或者是转发其下游节点的;
本发明实施例的上述技术方案的有益效果如下:
在本发明的方案中,下游节点在检测出下游链路故障后,会向切换节点的上游方向传递故障报文。由于节点之间的报文传递速度很快,因此切换节点能够及时了解哪些路径无法传输网络流量,从而能够合理执行传输路径的主备切换,以保障网络流量的正常传输。
附图说明
图1为现有以太网传输路径的示意图;
图2为本发明的以太网传输路径的切换方法的步骤示意图;
图3为本发明的故障报文的结构示意图;
图4和图5为不同的以太网传输路径的示意图;
图6为本发明的以太网传输路径的切换装置的结构示意图;
图7为以太网节点应用本发明的太网传输路径的切换装置的流程示意图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明提供一种以太网路径的切换方法,能够解决以太网切换节点因无法感知非直链路或节点发生故障,而不能顺利完成双归路径的主备切换的问题。
如图2所示,本发明的切换方法包括如下步骤:
步骤21,切换节点获得来自第一路径的下游节点发起的故障报文;所述故障报文是由所述第一路径的下游节点因检测出与自身直连的、所述第一路径的下游链路故障所发起的,或者是转发其下游节点的;
步骤22,切换节点记录所述第一路径为故障路径;
步骤23,切换节点在所述第一路径被记录为故障路径后,判断该第一路径是否为主用路径;
步骤24,若所述第一路径为主用路径,则切换节点选择一个未被记录为故障路径的备用路径,执行主备切换。
通过上述描述可以知道,在本发明的切换方法中,下游节点在检测出下游链路故障后,会向切换节点的上游方向传递故障报文。由于节点之间的报文传递速度很快,因此切换节点能够及时了解哪些路径无法传输网络流量,从而能够合理执行传输路径的主备切换,以保障网络流量的正常传输。
此外,在一些特别的场景下,如相邻两个节点之间的传输速度因为某些原因过慢,可能会使故障报文并未及时向上游传递出去,最终导致了切换节点不能及时发现路径出现问题。
为此,作为优选方案,因避免上述现象发生,即,本发明的切换方法还包括:
步骤25,切换节点检测出与自身直连的、所述第一路径的下游链路故障时,记录所述第一路径为故障路径;
其中,所述第一路径的下游节点在检测出与自身直连的、所述第一路径的下游链路故障时,关闭其对应于第一路径的上游端口,使得与其自身直连的、所述第一路径的上游链路故障。
在现有技术中,以太网采用传递心跳报文的方法来确定某一链路是否发生故障的。因此,当节点关闭路径上的端口,其相邻的节点就检测出故障发生(即,第一路径的链路发生故障包括该链路的端口被对应的节点关闭)。可见,在本发明的切换方法中,一旦故障发生后,故障侧上游的所有非切换节点会陆续关闭第一路径上的上游端口,从而使得切换节点最终感知到与自身直连的下游链路发生故障,并确定第一路径为故障路径。即,路径任一地方发生故障,最终都会导致切换节点直连的下游链路发生故障,从而使切换节点能够感知整个路径不再适合传输网络流量。
这样一来,即便是不通过故障报文,切换节点最终也能够会获知第一路径发生故障。
同理,上述方案也可以让切换节点能够及时了解第一路径的故障是否恢复。即,所述第一路径的下游节点在检测与自身直连的、第一路径的下游链路恢复故障后,开启其对应于第一路径的上游端口,使得与其自身直连的、所述第一路径的上游链路恢复故障;在本发明的切换方法中还包括:
步骤26,切换节点在检测到与自身直连的、第一路径的下游链路恢复故障后,取消所述第一路径为故障路径的记录。
通过上述描述,可以知道,一旦故障链路恢复后,上游侧的所有非切换节点会陆续打开第一路径上的上游端口,最终使得切换节点直连的下游链路恢复故障,使切换节点能够感知到。需要给予说明的是,若第一路径为主用路径,则在确定主用路径恢复故障后,切换节点可以但不一定选择路径回切(根据原先设置决定),即上述步骤26后还可以执行:
步骤27,切换节点将当前使用的备用路径回切至第一路径。
此外,为了不额外添加本方法的实施难度,优选将现有的以太网报文来作为故障报文。在具体实现时,只需要在以太网报文中添加用于报文识别的预设type字段以及预设目的MAC地址。即,节点通过预设type字段以及预设目的MAC地址,来识别接收到的以太网报文为故障报文。图3即一个示例性的故障报文,其中预设type字段只占用2个字节,预设目的MAC地址占用6个字节。
下面结合实现方式对本发明的切换方法进行详细介绍。
<实现方式一>
图4所示的是实现方式一中的以太网双规链路的组网结构。其中,S1为切换节点,S3、S4、S5、S6以及S7均为非切换节点(非切换节点包括中间节点和尾节点)。S1—S2—S4—S6为主用路径,S1—S3—S5—S7为备用路径。
假设S4检测到S4—S6链路间发生故障,S4向网元S2发送SF报文,并将其主用路径上的端口置down。
S2收到SF报文后,将其向S1转发,并将自身对应于主用路径上的端口置down。若S2没有收到SF报文,则在检测到S2—S4链路之间发生故障后,也可将自身对应于主用路径上的端口置down。
S1收到SF报文后,将主用路径标记为故障路径,并执行路径的主备切换,使网络流量使用备用路径进行传输。若S1没有收到SF报文,则在检测到S1—S2之间发生故障后,也可将主用路径标记为故障路径,并发起主备切换。
当S4检测到S4—S6链路间的故障恢复后,将其对应于主用路径的端口置UP。
S2检测到S2—S4链路间的故障恢复,将其对应于主用路径的端口置UP。
S1检测到S1—S2链路间的故障恢复,取消对主用路径为故障路径的记录,并发起主备回切。
<实现方式二>
图5所示的是实现方式二中的以太网组网结构。其中,S1为切换节点。S1—S2—S5—S8为主用路径,S1—S3—S6—S9备用路径1,S1—S4—S7—S10为备用路径2。
假设S4检测到S7—S10链路间发生故障(可能是节点故障也可能是链路故障),S7向S4发送SF报文,并将自身对应于被用路径上的端口置down,使得S4—S7之间发生故障。
S4收到SF报文后,将其向S1转发,并将自身对应于主用路径上的端口置down。若S4没有收到SF报文,则在检测到S4—S7之间发生故障后,也可将自身对应于主用路径上的端口置down。
S1收到SF报文后,将备用路径2记录为故障路径,并在后续执行路径的主备切换时,不考虑使用被记录为故障路径的备用路径。若S1没有收到SF报文,则在检测到S1—S4链路间发生故障后,也可将备用路径2记录为故障路径。
当S7检测到S7—S10链路间的故障恢复后,将其对应于主用路径的端口置UP,使得S4—S7间的故障恢复。
S4检测到S4—S7链路间的故障恢复后,将自身对应于主用路径的端口置UP,使得S1—S4链路间的故障恢复。
S1检测到S1—S4链路间的故障恢复后,取消对备用路径2为故障路径的记录。
综上所述,本发明的切换方法使切换节点能够获知非直链路是否发生故障,从而能够合理进行路径的主备切换。
此外,本发明的另一实施例还提供一种以太网传输路径的切换装置,如图6所示,包括:
第一接收模块,设置为获得来自第一路径的下游节点发起的故障报文;所述故障报文是由所述第一路径的下游节点因检测出与自身直连的、所述第一路径的下游链路故障所发起的,或者是转发其下游节点的;
记录模块,设置为记录所述第一路径为故障路径;
判断模块,设置为在所述第一路径被记录为故障路径后,判断该第一路径是否为主用路径;
切换模块,设置为若所述判断模块判断出所述第一路径为主用路径,则选择一个未被记录为故障路径的备用路径,执行主备切换。
通过上述描述可以知道,本实施例的切换装置能够让下游节点在检测到下游链路发生故障后,向切换节点传递故障报文,可使切换节点及时了解传输路径的状态,从而合理进行主备切换,以保证网路流量的正常传输。
此外,作为优选方案,本实施例的切换装置还包括:
检测模块,设置为检测与切换节点直连的、所述第一路径的下游链路是否故障;
所述记录模块在所述检测模块监测出与切换节点直连的、所述第一路径的下游链路故障时,记录所述第一路径为故障路径;
其中,所述第一路径的下游节点在检测出与自身直连的、所述第一路径的下游链路故障时,关闭其对应于第一路径的上游端口,使得与其自身直连的、所述第一路径的上游链路故障。
此外,所述第一路径的下游节点在检测与自身直连的、第一路径的下游链路恢复故障后,开启其对应于第一路径的上游端口,使得与其自身直连的、所述第一路径的上游链路恢复故障;所述记录模块还设置为:在所述检测模块检测到与切换节点直连的、第一路径的下游链路恢复故障后,取消所述第一路径为故障路径的记录。
若所述第一路径为主用路径,则在所述记录模块取消所述第一路径为故障路径的记录后,所述切换模块将切换节点当前使用的备用路径回切至第一路径。
此外,还需要说明的是,在以太网中,切换节点与非切换的下游节点在硬件上是没有却别的,所以在具体实现时本发明的方案时,各个节点可判断自身在传输路径的位置,来选择运行相应的模块。
例如,在检测下游链路出现故障时,执行如图7所示的流程:
A1,检测到下游链路故障。
A2,判断自身节点在传输路径中的位置;如果不是首节点(即表示非切换节点),则执行步骤A3;如果是首节点(即表示切换节点),执行步骤A5。
A3,向上游节点发送SF报文,之后执行步骤A4。
A4,关闭自身对应路径的上游端口,之后回到步骤A1。
A5,记录路径为故障路径。
显然,本实施例的应用于非切换节点的切换装置与本发明的应用于非切换节点的切换方法相对应,均能够达到相同的技术效果。
此外,本发明的实施例还提供一种以太网系统,所述以太网系统的切换节点具有多条设置为传输网络流量的路径;
切换节点在获得来自某一路径的下游节点发起的故障报文时,将该路径记录为故障路径;
切换节点判断记录为故障路径的路径是否为当前设置为传输网络流量的主用路径;
若是,则切换节点选择一个未被记录为故障路径的备用路径,执行主备切换;
其中,故障报文是由路径的下游节点因检测出与自身直连的下游链路故障所发起的,或者是转发其下游节点的;
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
如上所述,本发明实施例提供的一种以太网传输路径的切换方法、装置及以太网系统,具有以下有益效果:下游节点在检测出下游链路故障后,会向切换节点的上游方向传递故障报文。由于节点之间的报文传递速度很快,因此切换节点能够及时了解哪些路径无法传输网络流量,从而能够合理执行传输路径的主备切换,以保障网络流量的正常传输。

Claims (10)

  1. 一种以太网传输路径的切换方法,包括:
    切换节点获得来自第一路径的下游节点发起的故障报文;所述故障报文是由所述第一路径的下游节点因检测出与自身直连的、所述第一路径的下游链路故障所发起的,或者是转发其下游节点的;
    切换节点记录所述第一路径为故障路径;
    切换节点在所述第一路径被记录为故障路径后,判断该第一路径是否为主用路径;
    若所述第一路径为主用路径,则切换节点选择一个未被记录为故障路径的备用路径,执行主备切换。
  2. 根据权利要求1所述的切换方法,其中,所述第一路径的下游节点在检测出与自身直连的、所述第一路径的下游链路故障时,关闭其对应于第一路径的上游端口,使得与其自身直连的、所述第一路径的上游链路发生故障;所述切换方法还包括:
    切换节点检测出与自身直连的、所述第一路径的下游链路故障时,记录所述第一路径为故障路径。
  3. 根据权利要求2所述的切换方法,其中,所述第一路径的下游节点在检测与自身直连的、第一路径的下游链路恢复故障后,开启其对应于第一路径的上游端口,使得与其自身直连的、所述第一路径的上游链路恢复故障;
    切换节点在检测到与自身直连的、第一路径的下游链路恢复故障后,取消所述第一路径为故障路径的记录。
  4. 根据权利要求3所述的切换方法,其中,
    若所述第一路径为主用路径,则在切换节点取消所述第一路径为故障路径的记录后,还包括:
    切换节点将当前使用的备用路径回切至第一路径。
  5. 根据权利要求1所述的方法,其中,所述故障报文为以太网报文,所述以太网报文具有进行故障报文识别的预设type字段以及预设目的MAC地址。
  6. 一种以太网传输路径的切换装置,包括:
    第一接收模块,设置为获得来自第一路径的下游节点发起的故障报文;所述故障报文是由所述第一路径的下游节点因检测出与自身直连的、所述第一路径的下游链路故障所发起的,或者是转发其下游节点的;
    记录模块,设置为记录所述第一路径为故障路径;
    判断模块,设置为在所述第一路径被记录为故障路径后,判断该第一路径是否为主用路径;
    切换模块,设置为若所述判断模块判断出所述第一路径为主用路径,则选择一个未被记录为故障路径的备用路径,执行主备切换。
  7. 根据权利要求6所述的切换装置,其中,还包括:
    检测模块,设置为检测与切换节点直连的、所述第一路径的下游链路是否故障;
    所述记录模块在所述检测模块监测出与切换节点直连的、所述第一路径的下游链路故障时,记录所述第一路径为故障路径;
    其中,所述第一路径的下游节点在检测出与自身直连的、所述第一路径的下游链路故障时,关闭其对应于第一路径的上游端口,使得与其自身直连的、所述第一路径的上游链路故障。
  8. 根据权利要求7所述的切换装置,其中,所述第一路径的下游节点在检测与自身直连的、第一路径的下游链路恢复故障后,开启其对应于第一路径的上游端口,使得与其自身直连的、所述第一路径的上游链路恢复故障;
    所述记录模块还设置为:在所述检测模块检测到与切换节点直连的、第一路径的下游链路恢复故障后,取消所述第一路径为故障路径的记录。
  9. 根据权利要求8所述的切换装置,其中,
    若所述第一路径为主用路径,则在所述记录模块取消所述第一路径为故障路径的记录后,所述切换模块将切换节点当前使用的备用路径回切至第一路径。
  10. 一种以太网系统,所述以太网系统的切换节点具有多条设置为传输网络流量的路径:
    切换节点在获得来自某一路径的下游节点发起的故障报文时,将该路径记录为故障路径;
    切换节点判断记录为故障路径的路径是否为当前设置为传输网络流量的主用路径;
    若是,则切换节点选择一个未被记录为故障路径的备用路径,执行主备切换;
    其中,故障报文是由路径的下游节点因检测出与自身直连的下游链路故障所发起的,或者是转发其下游节点的。
PCT/CN2015/073364 2014-09-29 2015-02-27 一种以太网传输路径的切换方法、装置及以太网系统 WO2016050031A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410514101.0A CN105530181A (zh) 2014-09-29 2014-09-29 一种以太网传输路径的切换方法、装置及以太网系统
CN201410514101.0 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016050031A1 true WO2016050031A1 (zh) 2016-04-07

Family

ID=55629385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073364 WO2016050031A1 (zh) 2014-09-29 2015-02-27 一种以太网传输路径的切换方法、装置及以太网系统

Country Status (2)

Country Link
CN (1) CN105530181A (zh)
WO (1) WO2016050031A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300951A (zh) * 2020-02-21 2021-08-24 华为技术有限公司 一种发送报文的方法、设备及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274869B1 (en) * 1999-11-29 2007-09-25 Nokia Networks Oy System and method for providing destination-to-source protection switch setup in optical network topologies
CN101163057A (zh) * 2007-11-20 2008-04-16 华为技术有限公司 故障通知方法和装置、以及业务接收方法和装置
CN102891769A (zh) * 2012-10-16 2013-01-23 杭州华三通信技术有限公司 链路故障通告方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101145981B (zh) * 2006-09-13 2011-06-22 中兴通讯股份有限公司 包含多环的以太环网的环路检测和切换方法
CN101483558B (zh) * 2008-01-10 2012-07-04 华为技术有限公司 网络设备接入分组交换网络的方法、系统及装置
US20090249115A1 (en) * 2008-02-01 2009-10-01 Allied Telesis Holdings Kabushiki Kaisha Method and system for dynamic link failover management

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274869B1 (en) * 1999-11-29 2007-09-25 Nokia Networks Oy System and method for providing destination-to-source protection switch setup in optical network topologies
CN101163057A (zh) * 2007-11-20 2008-04-16 华为技术有限公司 故障通知方法和装置、以及业务接收方法和装置
CN102891769A (zh) * 2012-10-16 2013-01-23 杭州华三通信技术有限公司 链路故障通告方法和设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300951A (zh) * 2020-02-21 2021-08-24 华为技术有限公司 一种发送报文的方法、设备及系统
WO2021164249A1 (zh) * 2020-02-21 2021-08-26 华为技术有限公司 一种发送报文的方法、设备及系统
CN113300951B (zh) * 2020-02-21 2023-10-24 华为技术有限公司 一种发送报文的方法、设备及系统

Also Published As

Publication number Publication date
CN105530181A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
JP4899959B2 (ja) Vpn装置
AU2009237405B2 (en) Connectivity fault management traffic indication extension
JP5521663B2 (ja) 通信装置、通信システムおよび通信方法
WO2016116050A1 (zh) 环保护链路故障保护方法、设备及系统
WO2015196676A1 (zh) 组网保护方法、装置及组网中的汇聚主用网元
US20100254257A1 (en) Method for processing failure of slave port of master node in ethernet ring network system
US9590815B2 (en) Relay system and switching device
WO2016034127A1 (zh) 一种实现双节点互联伪线的系统及方法
WO2010031295A1 (zh) 一种以太网故障恢复的控制方法
US8705346B2 (en) Method and system for joint detection of Ethernet part segment protection
WO2010020146A1 (zh) 流量工程隧道的关联保护方法、装置及系统
WO2013049981A1 (zh) 一种基于共享通道的混合环网保护方法及系统
CN101883038B (zh) Eaps环网保护倒换的方法及eaps环网中的主节点
CN103825754B (zh) 一种环网多点故障发现和恢复处理方法
WO2016086548A1 (zh) 一种伪线双归保护切换系统、方法和装置
US8811157B2 (en) Protection switching method and system for ethernet dual-homed link
WO2015154423A1 (zh) 跨域业务处理方法、装置及系统
CN104202184A (zh) 一种快速回切业务的方法和装置
WO2019056923A1 (zh) Vpls双归属业务模型的上行流量快速切换系统及方法
JP2006352544A (ja) レイヤ2ネットワークの冗長化システム
JP6190281B2 (ja) 中継システムおよびスイッチ装置
WO2016169214A1 (zh) 一种隧道保护切换的方法和装置
CN101547131A (zh) Eaps环网单通故障定位和保护方法
WO2012122817A1 (zh) 一种p2mp组播隧道的保护切换方法和系统
WO2012097571A1 (zh) 恢复环网业务的方法及节点设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846753

Country of ref document: EP

Kind code of ref document: A1