WO2016049913A1 - Procédé simplifié pour les modes de modélisation de profondeur - Google Patents

Procédé simplifié pour les modes de modélisation de profondeur Download PDF

Info

Publication number
WO2016049913A1
WO2016049913A1 PCT/CN2014/088038 CN2014088038W WO2016049913A1 WO 2016049913 A1 WO2016049913 A1 WO 2016049913A1 CN 2014088038 W CN2014088038 W CN 2014088038W WO 2016049913 A1 WO2016049913 A1 WO 2016049913A1
Authority
WO
WIPO (PCT)
Prior art keywords
wedgelet
size
equal
larger
starting
Prior art date
Application number
PCT/CN2014/088038
Other languages
English (en)
Inventor
Xianguo Zhang
Kai Zhang
Jian-Liang Lin
Jicheng An
Yi-Wen Chen
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Priority to PCT/CN2014/088038 priority Critical patent/WO2016049913A1/fr
Priority to AU2015327521A priority patent/AU2015327521B2/en
Priority to US15/509,831 priority patent/US9860562B2/en
Priority to KR1020177009943A priority patent/KR101846137B1/ko
Priority to PCT/CN2015/086469 priority patent/WO2016050120A1/fr
Priority to EP15846087.3A priority patent/EP3178229A4/fr
Priority to CN201580039152.5A priority patent/CN106576169A/zh
Priority to JP2017514808A priority patent/JP2017532871A/ja
Publication of WO2016049913A1 publication Critical patent/WO2016049913A1/fr
Priority to US15/816,946 priority patent/US9986257B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques

Definitions

  • the invention relates generally to Multi-view video coding and Three-Dimensional (3D) video coding.
  • the present invention relates to simplified methods for Depth Modeling modes (DMMs) in 3D video coding.
  • DDMs Depth Modeling modes
  • 3D video coding is developed for encoding or decoding video data of multiple views simultaneously captured by several cameras. Because coding the depth information consumes a lot of bits, kinds of coding tools are proposed to enhance the depth picture coding efficiency. Among these tools, the two Depth Modeling Modes (DMM1 and DMM4) are adopted to improve the intra prediction efficiency of depth pictures.
  • DMM1 and DMM4 are separately based on Wedgelet and Contour partitioning.
  • a Wedgelet partition the two regions are defined to be separated by a straight line, as illustrated in Figure 1, in which the two regions are labeled with P 1 and P 2 .
  • the separation line is determined by the start point S and the end point P, both located on different borders of the block.
  • the separation line can be described by the equation of a straight line.
  • the middle image of Figure 1 illustrates the partitioning for the discrete sample space.
  • the block consists of an array of samples with size u B ⁇ v B and the start and end points correspond to border samples.
  • the separation line can be described by a line equation as well, the definition of regions P 1 and P 2 is different here, as only complete samples can be assigned as part of either of the two regions.
  • the partition information is stored in the form of partition patterns. Such a pattern consists of an array of size u B ⁇ v B and each element contains the binary information whether the corresponding sample belongs to region P 1 and P 2 .
  • the regions P 1 and P 2 are represented by black and white samples in Figure 1 (right) , respectively.
  • the separation line between the two regions of a Contour partition of a block cannot be easily described by a geometrical function.
  • the two regions P 1 and P 2 can be arbitrary shaped and even consist of multiple parts.
  • the partition pattern (see example in Figure 2, right) is derived individually for each block from the signal of a reference block. Due to the lack of a functional description of the region separation line, no pattern lookup lists and consequently no search of the best matching partition are used for Contour partitions.
  • DMM1 has the advantage of significant BDRate savings
  • the number of wedgelet patterns for DMM1 consumes a large table in both encoder and decoder to store the candidate patterns for intra prediction.
  • Table 1 lists the size of each table for each Intra PU size in the JCT3V-I1001, 3D-HEVC Draft Text 5.
  • the wedgelet patterns of DMM1 can be classified into 6 categories, as Fig. 3 shows, including up-left corner, up-right corner, down-left corner, down-right corner, horizontal and vertical directions, numbered as 1 ⁇ 6 th direction.
  • the methods include the following three kinds of simplifications: (1) Constraining the available wedgelet candidates’ starting or ending points; (2) Down scaling the starting and ending points of the wedgelets in the tables of larger PUs, and then utilizing the down-scaled wedgelet candidates for smaller intra PUs. (3) While adding wedgelet patterns into the wedgelet pattern list, constrain the total number of available wedgelets to a fixed number and do not add any pattern any more when the wedgelet list is full.
  • Fig. 1 is a diagram illustrating the wedgelet partition example of DMM1, continuous (left) and discrete signal space (middle) with corresponding partition pattern (right) .
  • Fig. 2 is a diagram illustrating the contour partition example of DMM4, continuous (left) and discrete signal space (middle) with corresponding partition pattern (right) .
  • Fig. 3 is a diagram illustrating the current available wedgelet candidates’ starting or ending points.
  • Fig. 4 is a diagram illustrating the simplification example of constraining the available wedgelet candidates’ starting or ending points.
  • Another embodiment of method 1 is to constrain the ending point position (x, y) to be from a limited set of values, such as x ⁇ k or y ⁇ t.
  • Another embodiment of method 1 is to constrain the starting point position (x, y) to be from a limited set of values, such as x ⁇ k or y ⁇ t.
  • Another embodiment of method 1 is to constrain the starting point or ending point only for a selected subset of PU sizes.
  • Another embodiment of method 1 is to constrain the starting point or ending point only for a selected subset of wedgelet directions, among all the 6 wedgelet directions.
  • L denote size of A, L is smaller than 6.
  • Fig. 4 illustrates one example, which constrains the starting and ending points’ coordinates be even values.
  • Another embodiment of method 1 is to only utilize the wedgelet from a selected subset of all the wedgelet directions, A. Let L denote size of A, L is smaller than 6.
  • a first embodiment of method 2 is to re-use the tables for n1xn1 size intra prediction for n2xn2 size intra prediction, when n2 is smaller than n1.
  • one temporal table in the re-using procedure, can be generated by down scaling the table used for the larger intra PUs. And then, this generated table is utilized for the smaller intra PUs.
  • a first embodiment of method 3 is to constrain total available wedgelet number (or the table size) of the k ⁇ k intra PU to be the n to the power of 2, where n is larger for larger intra PUs.
  • Another embodiment of method 3 is to only select limited wedgelet patterns for each wedgelet direction to make the total wedgelet storage size be smaller than the pre-defined table size.
  • an embodiment of the present invention can be a circuit integrated into a video compression chip or program codes integrated into video compression software to perform the processing described herein.
  • An embodiment of the present invention may also be program codes to be executed on a Digital Signal Processor (DSP) to perform the processing described herein.
  • DSP Digital Signal Processor
  • the invention may also involve a number of functions to be performed by a computer processor, a digital signal processor, a microprocessor, or field programmable gate array (FPGA) .
  • processors can be configured to perform particular tasks according to the invention, by executing machine-readable software code or firmware code that defines the particular methods embodied by the invention.
  • the software code or firmware codes may be developed in different programming languages and different format or style.
  • the software code may also be compiled for different target platform.
  • different code formats, styles and languages of software codes and other means of configuring code to perform the tasks in accordance with the invention will not depart from the spirit and scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

La présente invention concerne des procédés de modes de modélisation de profondeur (DMM) pour un codage vidéo à multiples vues et un codage vidéo 3D. La présente invention concerne plusieurs procédés pour réduire la complexité du mode DMM1 consistant (1) à forcer les points de départ ou de fin de candidats wedgelets disponibles, ou les directions de wedgelets disponibles; (2) réduire l'échelle des points de départ et de fin des wedgelets dans les tables de PU plus grandes, et ensuite utiliser les candidats wedgelets sous-échantillonnés pour des PU intra plus petites; (3) restreindre le nombre de wedgelets disponibles (ou la taille de la table) pour chaque taille de PU.
PCT/CN2014/088038 2014-09-30 2014-09-30 Procédé simplifié pour les modes de modélisation de profondeur WO2016049913A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/CN2014/088038 WO2016049913A1 (fr) 2014-09-30 2014-09-30 Procédé simplifié pour les modes de modélisation de profondeur
AU2015327521A AU2015327521B2 (en) 2014-09-30 2015-08-10 Method of lookup table size reduction for depth modelling mode in depth coding
US15/509,831 US9860562B2 (en) 2014-09-30 2015-08-10 Method of lookup table size reduction for depth modelling mode in depth coding
KR1020177009943A KR101846137B1 (ko) 2014-09-30 2015-08-10 깊이 코딩에서의 깊이 모델링 모드에 대한 룩업 테이블 크기 감소 방법
PCT/CN2015/086469 WO2016050120A1 (fr) 2014-09-30 2015-08-10 Procédé de réduction de la taille d'une table de consultation pour un mode de modélisation de profondeur dans un codage de profondeur
EP15846087.3A EP3178229A4 (fr) 2014-09-30 2015-08-10 Procédé de réduction de la taille d'une table de consultation pour un mode de modélisation de profondeur dans un codage de profondeur
CN201580039152.5A CN106576169A (zh) 2014-09-30 2015-08-10 深度编码中用于深度建模模式的查找表尺寸减小的方法
JP2017514808A JP2017532871A (ja) 2014-09-30 2015-08-10 深さコーディングにおける深さモデリングモードのルックアップテーブルサイズ減少方法
US15/816,946 US9986257B2 (en) 2014-09-30 2017-11-17 Method of lookup table size reduction for depth modelling mode in depth coding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088038 WO2016049913A1 (fr) 2014-09-30 2014-09-30 Procédé simplifié pour les modes de modélisation de profondeur

Publications (1)

Publication Number Publication Date
WO2016049913A1 true WO2016049913A1 (fr) 2016-04-07

Family

ID=55629338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088038 WO2016049913A1 (fr) 2014-09-30 2014-09-30 Procédé simplifié pour les modes de modélisation de profondeur

Country Status (1)

Country Link
WO (1) WO2016049913A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110363212A (zh) * 2019-03-28 2019-10-22 西南石油大学 基于边界扫描的多wedgelet图像近似方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013068566A1 (fr) * 2011-11-11 2013-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Codage de partition adaptatif
CN103237216A (zh) * 2013-04-12 2013-08-07 华为技术有限公司 深度图像的编解码方法和编解码装置
CN103281541A (zh) * 2013-05-10 2013-09-04 北方工业大学 基于深度图像的帧内预测楔形分块方法
WO2014005248A1 (fr) * 2012-07-02 2014-01-09 Qualcomm Incorporated Codage intra de cartes de profondeur pour un codage vidéo en 3d
CN103686165A (zh) * 2012-09-05 2014-03-26 乐金电子(中国)研究开发中心有限公司 深度图像帧内编解码方法及视频编解码器
KR20140047772A (ko) * 2012-10-12 2014-04-23 광주과학기술원 깊이 영상 부호화를 위한 깊이 영상 모델링 방법
CN104038760A (zh) * 2014-06-13 2014-09-10 南京理工大学 一种3d视频深度图像帧内楔形分割模式选择方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013068566A1 (fr) * 2011-11-11 2013-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Codage de partition adaptatif
WO2014005248A1 (fr) * 2012-07-02 2014-01-09 Qualcomm Incorporated Codage intra de cartes de profondeur pour un codage vidéo en 3d
CN103686165A (zh) * 2012-09-05 2014-03-26 乐金电子(中国)研究开发中心有限公司 深度图像帧内编解码方法及视频编解码器
KR20140047772A (ko) * 2012-10-12 2014-04-23 광주과학기술원 깊이 영상 부호화를 위한 깊이 영상 모델링 방법
CN103237216A (zh) * 2013-04-12 2013-08-07 华为技术有限公司 深度图像的编解码方法和编解码装置
CN103281541A (zh) * 2013-05-10 2013-09-04 北方工业大学 基于深度图像的帧内预测楔形分块方法
CN104038760A (zh) * 2014-06-13 2014-09-10 南京理工大学 一种3d视频深度图像帧内楔形分割模式选择方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MERKLE, P. ET AL.: "The effects of multiview depth video compression on multiview rendering", SIGNAL PROCESSING:IMAGE COMMUNICATION, vol. 24, 31 December 2009 (2009-12-31), pages 73 - 88, XP025884346, DOI: doi:10.1016/j.image.2008.10.010 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110363212A (zh) * 2019-03-28 2019-10-22 西南石油大学 基于边界扫描的多wedgelet图像近似方法

Similar Documents

Publication Publication Date Title
US10116934B2 (en) Image processing method and apparatus
US11089330B2 (en) Method for sub-PU motion information inheritance in 3D video coding
US10212411B2 (en) Methods of depth based block partitioning
WO2015169200A1 (fr) Procédé de prédiction de vecteur de bloc pour codage à mode de copie de bloc intra
US9307239B2 (en) Method and apparatus for derivation of motion vector candidate and motion vector prediction candidate
WO2016054979A1 (fr) Procédé de codage d'une vidéo en 3d ou multivue comprenant une prédiction par synthèse de vues
US9736498B2 (en) Method and apparatus of disparity vector derivation and inter-view motion vector prediction for 3D video coding
WO2016008157A1 (fr) Procédés de compensation de mouvement faisant appel au modèle de mouvement d'ordre élevé
WO2015003383A1 (fr) Procédés de prédiction de mouvement inter-vues
KR20160106338A (ko) 양안 시차 영상에 대한 타일 기반 렌더링 방법 및 장치
US20150264356A1 (en) Method of Simplified Depth Based Block Partitioning
WO2015100731A1 (fr) Procédés de détermination de subdivisions de prédiction
US9986257B2 (en) Method of lookup table size reduction for depth modelling mode in depth coding
WO2014166109A1 (fr) Procédés de dérivation de vecteur de disparité
WO2016049913A1 (fr) Procédé simplifié pour les modes de modélisation de profondeur
US20140184739A1 (en) Foreground extraction method for stereo video
US10257529B2 (en) Techniques for generating wave front groups for parallel processing a video frame by a video encoder
WO2015103747A1 (fr) Remplissage de trous de paramètres de mouvement
WO2015113245A1 (fr) Procédés de fusion de la créasion de listes candidates
WO2015192314A1 (fr) Procédé simplifié pour le partitionnement de blocs en fonction de la profondeur
WO2015188332A1 (fr) Procédé de sélection d'un vecteur par défaut pour la prédiction de vecteur de copie de bloc dans la compression vidéo
CN110365987A (zh) 一种运动矢量确定方法、装置及其设备
WO2015100712A1 (fr) Procédé d'exécution de déblocage d'un bord de sous-pu
WO2015100713A1 (fr) Procédés de prédiction intra

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903116

Country of ref document: EP

Kind code of ref document: A1