WO2016049813A1 - 无线网络调度方法,接入设备及无线网络 - Google Patents

无线网络调度方法,接入设备及无线网络 Download PDF

Info

Publication number
WO2016049813A1
WO2016049813A1 PCT/CN2014/087803 CN2014087803W WO2016049813A1 WO 2016049813 A1 WO2016049813 A1 WO 2016049813A1 CN 2014087803 W CN2014087803 W CN 2014087803W WO 2016049813 A1 WO2016049813 A1 WO 2016049813A1
Authority
WO
WIPO (PCT)
Prior art keywords
access device
serving cell
terminal
subset
data
Prior art date
Application number
PCT/CN2014/087803
Other languages
English (en)
French (fr)
Inventor
权威
张戬
李秉肇
胡振兴
杨晓东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES14903141T priority Critical patent/ES2766374T3/es
Priority to PCT/CN2014/087803 priority patent/WO2016049813A1/zh
Priority to EP14903141.1A priority patent/EP3190850B1/en
Priority to CN201480030131.2A priority patent/CN105850214B/zh
Publication of WO2016049813A1 publication Critical patent/WO2016049813A1/zh
Priority to US15/473,178 priority patent/US10349426B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a wireless network scheduling method, an access device, and a wireless network.
  • LTE Long Term Evolution
  • LTE-Advance Enhanced Long Term Evolution
  • various types of network configurations are more and more, such as heterogeneous network (Hetnet), coordinated multi-point transmission ( Coordinated Multiple Points (CoMP), small cell networking (eg, Pico Cell), small cell dense networking, dual connectivity, etc.
  • Hetnet heterogeneous network
  • CoMP Coordinated Multiple Points
  • Small cell networking eg, Pico Cell
  • small cell dense networking eg, dual connectivity, etc.
  • the wireless network completes the coverage by the cell (Cell).
  • Cell Currently, there are many types of cells, usually according to the coverage range, wherein there are macro cells with small coverage, small cells with small coverage, and pico cells with small coverage. Usually small cells are deployed in urban hotspots, such as shopping malls, supermarkets, etc., or other indoor or outdoor venues that require increased coverage and capacity.
  • the access device provides physical device support for cell coverage, and the macro cell is generally provided by the base station.
  • the connection between the small cell and the macro cell is established by using the optical fiber, so that the small cell and the macro cell have the characteristics of fast communication, but the limitation of the site and the construction of the optical fiber is not suitable for the deployment of the dense cell. And the downlink data transmission performance is low.
  • the embodiment of the invention provides a wireless network scheduling method, an access device and a wireless network. It is used to implement flexible wireless deployment or wired deployment of macro cells, small cells, and pico cells, and obtain better data transmission performance.
  • An embodiment of the present invention provides a wireless network scheduling method, including:
  • the second access device determines a subset of serving cells to which the terminal belongs; the terminal is the second access device a destination terminal that is configured to send downlink data, where the subset of serving cells is a set of serving cells that the terminal can access, and each serving cell respectively has a first access device;
  • the second access device sends the downlink data and the downlink scheduling information to the first access device corresponding to the serving cell in the serving cell subset; the downlink scheduling information is used to indicate that the first access device is to the
  • the terminal transmits the downlink data.
  • the sending the downlink data and the downlink scheduling information includes:
  • the third access device forwards the downlink data and the downlink scheduling information to the first access device corresponding to the serving cell in the subset of the serving cells.
  • the method further includes:
  • the determining, by the first feedback information, that the terminal is to receive the downlink data or fails to receive the downlink data includes:
  • the received first feedback information indicates that the first access device with the set number or the set ratio successfully receives the downlink data, determining that the terminal successfully receives the downlink data, otherwise confirming that the terminal is not The downlink data is successfully received.
  • the method further includes:
  • the second access device If the second access device has a control function of the radio link control layer and the upper layer, the second access device notifies the radio link control layer to perform a retransmission operation of the automatic retransmission request.
  • the second access device determines the serving cell to which the terminal belongs, in combination with the first, the second, the third, or the fourth possible implementation manner. Child After the collection, it also includes:
  • the second access device sends uplink scheduling information to the first access device corresponding to the serving cell in the subset of the serving cell; the uplink scheduling information is used to indicate that the terminal is authorized to specify the uplink scheduling information. Sending uplink data on the resource;
  • the second access device receives the uplink data forwarded by the first access device corresponding to the serving cell in the serving cell subset.
  • the uplink data forwarded by each first access device includes:
  • the uplink data that is forwarded by the first access device is forwarded; or the first receiving device does not confirm that the uplink data is successfully received, that is, the uplink that is forwarded. data;
  • the method further includes:
  • the second access device performs combined decoding on the uplink data forwarded by each first access device.
  • the second access device sends an uplink scheduling to a first access device corresponding to the serving cell in the serving cell subset Information includes:
  • the second access device After determining, by the second access device, the serving cell subset to which the terminal belongs, if the scheduling request and/or the buffer report of the terminal device is not received, the second access device corresponds to the serving cell in the serving cell subset.
  • the first access device sends uplink scheduling information.
  • the method further includes:
  • the second access device sends first configuration information to the first access device corresponding to the serving cell in the subset of the serving cell, where the first configuration information is used to connect the first access device and/or the
  • the terminal is configured to: not send uplink data without valid data packets when there is no uplink data, or only send an uplink authorization acknowledgement message when there is no uplink data, and the uplink authorization acknowledgement message is used to indicate that there is no uplink data.
  • the second access device sends, to the first access device corresponding to the serving cell in the serving cell subset Before the first configuration information, it also includes:
  • the second access device receives capability information of the terminal forwarded by the first access device corresponding to the serving cell in the serving cell subset;
  • the second access device confirms, according to the indication of the capability information, that the terminal supports uplink data that does not have valid data packets when there is no uplink data, and then corresponds to the first serving cell in the serving cell subset.
  • the access device sends the first configuration information; or,
  • the second access device confirming, by the second access device, that the terminal supports sending only the uplink authorization confirmation message when there is no uplink data, and the first access device corresponds to the first access device corresponding to the serving cell in the subset of the serving cell. Send the first configuration information.
  • the second access device sends an uplink scheduling to a first access device corresponding to the serving cell in the serving cell subset Before the information, the method further includes:
  • the second access device sends the second configuration information to the first access device corresponding to the serving cell in the subset of the serving cell, and indicates the first access device corresponding to the serving cell in the subset of the serving cell Forwarding the second configuration information to the terminal, where the second configuration information is used to indicate that when the uplink scheduling information occupies at least two control channel elements CCE, determine the CCE to be used by the feedback resource and the used CCE.
  • the feedback resource is a feedback resource used by the terminal to send the second feedback information to the first access device and/or the second access device.
  • the method further includes:
  • the second access device receives the second encoded information of the unified coding that is repeatedly sent by the terminal device by using at least two feedback resources.
  • the second access device determines a subset of serving cells to which the terminal belongs, in combination with the first, the second, the third, or the fourth possible implementation. include:
  • the second access device determines a set of serving cells, where the set of serving cells is a set of serving cells managed by the second access device;
  • the second access device broadcasts a measurement indication message to the first access device corresponding to the serving cell in the set of serving cells, so that the first access device corresponding to the serving cell in the set of serving cells Forwarding the measurement indication message to the terminal; the measurement indication message is used to indicate that the terminal performs measurement on a downlink pilot, or is used to indicate that any terminal performs measurement on a downlink pilot;
  • the measurement result information includes:
  • the measurement result of all downlink pilots received by the first access device corresponding to the serving cell in the set of serving cells, the measurement result of the downlink pilot that meets the configuration condition, and the correspondence between the terminal identifier and the accessible serving cell At least one of the relationship information.
  • the second access device broadcasts a measurement to the first access device corresponding to the serving cell in the set of serving cells
  • the indication message includes:
  • the second access device repeatedly performs according to a predetermined rule: broadcasting a measurement indication message to a first access device corresponding to the serving cell in the serving cell set.
  • the method further includes:
  • the second access device determines a set of serving cells, where the set of serving cells is a set of serving cells managed by the second access device;
  • the first access device corresponding to the idle serving cell is activated.
  • the second embodiment of the present invention provides an access device, which is used as the second access device, and includes:
  • a subset determining unit configured to determine a serving cell subset to which the terminal belongs; the terminal is a destination terminal that sends downlink data to the second access device, where the serving cell subset is a serving cell that the terminal can access a set, each serving cell corresponding to a first access device;
  • a sending unit configured to send downlink data and downlink scheduling information to the first access device corresponding to the serving cell in the subset of serving cells determined by the subset determining unit; the downlink scheduling information is used for Instructing the first access device to send the downlink data to the terminal.
  • the sending unit is configured to send the downlink data and downlink scheduling information by using an interface between the first access device and the second access device, or send the downlink data and downlink scheduling information to the first The third access device, and instructs the third access device to forward the downlink data and the downlink scheduling information to the first access device corresponding to the serving cell in the subset of the serving cell.
  • the access device further includes:
  • a first feedback receiving unit configured to receive first feedback information sent by the first access device corresponding to the serving cell in the subset of the serving cell after the downlink data and the downlink scheduling information are sent;
  • a result determining unit configured to determine, according to the first feedback information received by the first feedback receiving unit, that the terminal successfully receives the downlink data or fails to receive the downlink data.
  • the result determining unit is configured to determine, if the first feedback information received by the first feedback receiving unit indicates that the first access device with the set number or the set ratio successfully receives the downlink data, The terminal successfully receives the downlink data, otherwise confirms that the terminal does not successfully receive the downlink data.
  • the access device further includes:
  • a retransmission control unit configured to notify the wireless chain if the result determining unit determines that the terminal does not successfully receive the downlink data, and the second access device has a control function of a radio link control layer and a layer The way control layer performs a retransmission operation of the automatic repeat request.
  • the sending unit is further configured to determine, by the subset determining unit After the subset of the serving cell to which the terminal belongs, the uplink scheduling information is sent to the first access device corresponding to the serving cell in the subset of the serving cell; the uplink scheduling information is used to indicate that the terminal is authorized to be in the uplink.
  • the uplink data is sent on the resource specified by the scheduling information; the access device further includes:
  • the data receiving unit is configured to receive uplink data forwarded by the first access device corresponding to the serving cell in the serving cell subset.
  • the uplink data that is forwarded by each first access device includes: after confirming that the uplink data is successfully received by each first access device, Forwarding the uplink data decoded by the first access device; or the uplink data that is forwarded by each of the first receiving devices without confirming that the uplink data is successfully received; The first receiving device does not confirm the uplink data that is successfully forwarded when the uplink data is received, and the access device further includes:
  • a decoding unit configured to perform combined decoding on the uplink data forwarded by each of the first access devices received by the data receiving unit.
  • the sending unit is configured to: after the subset determining unit determines the subset of the serving cells to which the terminal belongs, if the scheduling request and/or the buffer report of the terminal device is not received, the sending unit is sent to the serving cell
  • the first access device corresponding to the serving cell in the set sends uplink scheduling information.
  • the sending unit is further configured to: after the subset determining unit determines the subset of the serving cells to which the terminal belongs, send the first configuration information to the first access device corresponding to the serving cell in the subset of the serving cells
  • the first configuration information is used to configure the first access device and/or the terminal to: not send uplink data without valid data packets when there is no uplink data, or only send uplink authorization when there is no uplink data.
  • An acknowledgement message, the uplink grant acknowledgement message is used to indicate that there is no uplink data.
  • the access device further includes:
  • a capability information receiving unit configured to: before the sending unit sends the first configuration information to the first access device corresponding to the serving cell in the serving cell subset, the second access device receives by the serving cell The capability information of the terminal forwarded by the first access device corresponding to the serving cell in the subset;
  • the sending unit is configured to confirm, according to the indication of the capability information, that the terminal supports uplink data that does not have valid data packets when there is no uplink data, and then corresponds to the first serving cell in the serving cell subset.
  • the access device sends the first configuration information; or,
  • the sending unit is further configured to: before sending the uplink scheduling information to the first access device corresponding to the serving cell in the serving cell subset, to the first access corresponding to the serving cell in the serving cell subset
  • the device sends the second configuration information, and indicates that the first access device corresponding to the serving cell in the subset of the serving cell forwards the second configuration information to the terminal, where the second configuration information is used to indicate
  • the uplink scheduling information occupies at least two control channel elements CCE, determine the CCE to be used by the feedback resource and the location of the used CCE; the feedback resource is the terminal to the first access device and/or the second access device The feedback resource used to send the second feedback information.
  • the access device further includes:
  • the second feedback receiving unit is configured to receive the second encoded information of the unified coding that is repeatedly sent by the terminal device by using at least two feedback resources.
  • the subset determining unit includes:
  • a set determining unit configured to determine a set of serving cells, where the set of serving cells is a set of serving cells managed by the second access device;
  • a broadcast unit configured to broadcast a measurement indication message to a first access device corresponding to the serving cell in the set of serving cells, to enable the first access device corresponding to the serving cell in the set of serving cells to forward the terminal to the terminal
  • the measurement indication message is used to indicate that the terminal measures the downlink pilot, or is used to indicate that any terminal performs measurement on the downlink pilot;
  • And determining a subset unit configured to determine, according to the measurement result information that is forwarded by each of the first access devices, a set of serving cells that the terminal can access as a subset of serving cells to which the terminal belongs.
  • the measurement result information includes:
  • the measurement result of all downlink pilots received by the first access device corresponding to the serving cell in the set of serving cells, the measurement result of the downlink pilot that meets the configuration condition, and the correspondence between the terminal identifier and the accessible serving cell At least one of the relationship information.
  • the broadcast unit is configured to repeatedly perform according to a predetermined rule: to the set of the serving cell
  • the first access device corresponding to the serving cell broadcasts a measurement indication message.
  • the access device further includes:
  • a set determining unit configured to determine a set of serving cells, where the set of serving cells is a set of serving cells managed by the second access device;
  • An idle cell determining unit configured to determine an idle serving cell in the set of serving cells determined by the set determining unit, where the idle serving cell does not belong to any one of the serving cell subsets;
  • a detecting unit configured to detect whether a terminal enters in the idle serving cell determined by the idle cell determining unit
  • an indication sending unit configured to indicate that the first access device corresponding to the idle serving cell enters a dormant state; and if the detecting unit detects that a terminal in the idle serving cell enters, activate the first corresponding to the idle serving cell An access device.
  • the third aspect of the present invention further provides a wireless network, including: at least two access devices,
  • the at least two access devices include at least one access device used by the second access device and at least one access device used as the first access device.
  • the embodiments of the present invention have the following advantages: the access devices are classified into two types, one is a second access device that functions as a centralized management, and the other is a first connection that provides a serving cell.
  • the ingress device sends the downlink data and the scheduling information to the first access device corresponding to the at least one serving cell in the subset of the serving cell when the second access device needs to send the downlink data; the macro cell, the small cell, and the pico Flexible wireless deployment or wired deployment of the cell.
  • Each of the first access devices sends downlink data to the terminal on the resource indicated by the scheduling information, and the terminal receives the downlink data sent by each first access device corresponding to the resource indicated by the scheduling information, so that the terminal can obtain the combined gain. Improve the reliability of transmitting downlink data and scheduling information, and improve the transmission performance of downlink data.
  • FIG. 1 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a system structure and a protocol stack according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 8A is a schematic structural diagram of a service cell aggregation structure according to an embodiment of the present invention.
  • FIG. 8B is a schematic structural diagram of a service cell aggregation structure according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an access device according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an access device according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an access device according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of an access device according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of an access device according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of an access device according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of an access device according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of an access device according to an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of an access device according to an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of another access device according to an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of a wireless network according to an embodiment of the present invention.
  • the embodiment of the invention provides a wireless network scheduling method, as shown in FIG. 1 , including:
  • the second access device determines a subset of the serving cells to which the terminal belongs; the terminal is a destination terminal that sends downlink data to the second access device, where the subset of the serving cells is a set of serving cells that the terminal can access, and each The serving cells respectively correspond to the first access device;
  • the first access device is a serving cell that the terminal can access (ie, a serving cell that can serve the terminal), and the second access device is an access device that functions as a centralized control function.
  • the first and second do not have technical meanings should not be construed as limiting the embodiments of the present invention, and subsequent embodiments I will not go into details here.
  • there are many service cells that the terminal can access so there are many service cells included in the subset of serving cells.
  • the first access device may also be a serving cell that can serve the terminal. Therefore, the foregoing “serving cell subset” may correspond to: a set of serving cells that can serve the terminal. . It can be understood that the foregoing subset of serving cells should include at least one serving cell.
  • an access device may provide a plurality of serving cells. Therefore, in the embodiment of the present invention, two or more serving cells may correspond to the same access device.
  • the second access device may also provide a serving cell accessed by the terminal or provide a serving cell serving the terminal.
  • the second access device and the first access device may be physically the same access device.
  • the invention is not limited.
  • the second access device sends the downlink data and the downlink scheduling information to the first access device corresponding to the serving cell in the serving cell subset, where the downlink scheduling information is used to indicate that the first access device sends the terminal to the terminal.
  • the above downlink data is used to indicate that the first access device sends the terminal to the terminal.
  • the downlink data and the downlink scheduling information are information that needs to be transmitted in the air interface, where the downlink scheduling information is finally sent to the terminal, and the downlink scheduling information is used to indicate that the first access device sends the downlink data.
  • the scheduling information may be used to specify a parameter used by the first access device to send downlink data.
  • the process of obtaining the downlink scheduling information by the terminal may be as follows: the foregoing second access device and/or the foregoing service, as the first access device and the second access device may be the access devices corresponding to the serving cell in the serving cell subset.
  • the first access device corresponding to the serving cell in the subset of cells sends downlink scheduling information to the terminal.
  • the terminal may receive downlink data according to the received downlink scheduling information.
  • the access devices are classified into two types, one is a second access device that functions as a centralized management, and the other is a first access device that provides a serving cell, and the second access device needs to send a downlink.
  • the downlink data and the scheduling information are sent to the first access device corresponding to the serving cell in the serving network cell subset; and the flexible wireless deployment or wired deployment of the macro cell, the small cell, and the pico cell is implemented.
  • Each of the first access devices sends downlink data to the terminal on the resource indicated by the scheduling information, and the terminal receives the downlink data sent by each first access device corresponding to the resource indicated by the scheduling information, so that the terminal can obtain the combined gain.
  • Improve the reliability of transmitting downlink data and scheduling information and improve the transmission performance of downlink data.
  • the communication between the first access device and the second access device may be implemented by using an interface between the access devices, for example, an X2 interface between the base station and the base station; the first access device and the first The two access devices may not have an interface for direct communication.
  • the access device may be forwarded by other access devices.
  • the specific solution is as follows: the sending the downlink data and the downlink scheduling information, including: using the first access device and the foregoing
  • the interface between the second access device sends the downlink data and the downlink scheduling information; or sends the downlink data and the downlink scheduling information to the third access device, and instructs the third access device to use the downlink data and the downlink information.
  • the scheduling information is forwarded to the first access device corresponding to the serving cell in the subset of the serving cells.
  • the implementation manner of the second access device instructing the third device to perform the forwarding may be: carrying the indication information in the downlink scheduling information to indicate that the third device forwards, or configuring the third access device as the default forwarding.
  • the device (the third access device performs the forwarding as long as the downlink data and the downlink scheduling information are received), or sends an independent message to instruct the third device to forward, and may also carry the first connection in the downlink data and the downlink scheduling information.
  • the address of the incoming device is such that the third access device performs forwarding according to the address of the first access device. Therefore, the manner of the indication may be explicit or implicit, and the manner of the indication is not limited by the embodiment of the present invention.
  • each of the first access devices sends the scheduling information to the terminal and the downlink data is sent on the resource specified by the scheduling information.
  • the specified resource receives the first feedback information, so that the first feedback information is forwarded to the second access device, and the combined gain is also improved, and the transmission performance of the first feedback information is also improved, as follows: sending downlink data and downlink scheduling After the information, the method further includes: receiving, by the second access device, the first feedback message sent by the first access device corresponding to the serving cell in the subset of the serving cell And determining, according to the first feedback information, that the terminal successfully receives the downlink data or fails to receive the downlink data.
  • the foregoing may be as follows: determining, according to the first feedback information, that the terminal successfully receives the downlink data or fails to receive the downlink data, including :
  • the received first feedback information indicates that the first access device with the set number or the set ratio successfully receives the downlink data, determining that the terminal successfully receives the downlink data, otherwise confirming that the terminal does not successfully receive the downlink data.
  • the first feedback information is used to determine the status of the terminal receiving the downlink data
  • the type of information carried by the terminal may be many, for example, indicating that a certain downlink data is successfully received or not successfully received; or What are the downlink data that are successfully received, and which downlink data is not successfully received; or, the statistics of the success information, such as the proportion of successful/unsuccessfully received downlink data, the number of successful/unsuccessfully received downlink data, etc. . Therefore, the type of the first feedback information may be many depending on the requirements. According to the type of the different feedback information, the corresponding determining manner may be used to determine whether the terminal successfully receives the downlink data or fails to receive the downlink data. The above specific determination manner should not be construed as limiting the uniqueness of the embodiments of the present invention.
  • the set number and the set ratio can be set by the technician according to experience, or set according to the quality requirement of the downlink data transmission. In theory, only one first feedback information is displayed as the terminal. If the receiving is successful, the terminal can receive the success. The higher the setting, the higher the accuracy of determining the successful receiving of the terminal.
  • the specific parameters of the above-set number and the set ratio are not uniquely limited in this embodiment.
  • the embodiment of the present invention further provides an implementation scheme of the automatic retransmission as follows: if it is determined that the terminal does not successfully receive the downlink data, the foregoing method The method further includes: if the second access device has a radio link control layer and a control function of the upper layer, the second access device notifies the radio link control layer to perform a retransmission operation of the automatic retransmission request.
  • the retransmission operation of the radio link control layer performing the automatic retransmission request may retransmit the data that has not been successfully transmitted.
  • the automatic retransmission can be completed by the first access device, so the second access is performed.
  • Performing automatic retransmission by the device is not the only alternative implementation.
  • the foregoing embodiment is mainly used to implement the scheduling of the downlink data.
  • the embodiment of the present invention further provides the scheduling of the uplink data transmission, which is specifically as follows: after determining the subset of the serving cell to which the terminal belongs, the second access device further includes:
  • the second access device sends uplink scheduling information to the first access device corresponding to the serving cell in the subset of the serving cell; the uplink scheduling information is used to indicate that the terminal is authorized to send uplink data on the resource specified by the uplink scheduling information. ;
  • the second access device receives the uplink data forwarded by the first access device corresponding to the serving cell in the subset of the serving cells.
  • the uplink scheduling information is finally sent to the terminal, so that the terminal sends the uplink data according to the uplink scheduling information;
  • the first access device and the second access device may both be corresponding to the serving cell in the subset of the serving cell.
  • the access device, the process for obtaining the uplink scheduling information by the terminal may be as follows: the second access device and/or the first access device corresponding to the serving cell in the subset of the serving cell and/or the uplink scheduling information is sent to the terminal So that the terminal sends uplink data according to the uplink scheduling information.
  • the terminal may send the uplink data on the resource specified by the uplink scheduling information, because each first access device receives the uplink data on the resource specified by the uplink scheduling information, although the terminal only sends one copy. Data, but each first access device forwards to the second access device, and the second access device can obtain the combining gain, thereby improving the reliability of transmitting the uplink data and improving the transmission performance of the uplink data.
  • the first access device may have different options for forwarding the uplink data according to the capability, as follows:
  • the uplink data forwarded by each first access device includes:
  • Each of the first access devices after confirming that the uplink data is successfully received, the uplink data that is decoded by the first access device; or the first receiving device does not acknowledge the uplink data that is successfully received when the uplink data is received;
  • the method further includes:
  • the second access device performs combined decoding on the uplink data forwarded by each first access device.
  • the first access device after confirming that the first access device succeeds in receiving, the first access device can decode and forward the decoded data, and the decoded data amount is much smaller than the original data amount, so the access device can be saved.
  • the first access device does not perform decoding and confirms whether the reception is successful, the received uplink data may be directly forwarded, so that the second access device may obtain the combined decoding. Combine gain. Even if the first access device directly forwards, it can save about 50% of the bandwidth compared to the uplink and downlink signals before the encoding and decoding (the bandwidth required for the original signal before decoding and encoding is far more than the transmission decoding).
  • the bandwidth required after the data (the amount of data is equivalent to the amount of data before encoding), that is, the bandwidth required to transmit the decoded data is negligible compared to the original data transmitted. Therefore, if only one direction is transmitted, the original before decoding is transmitted. In the other direction, the signal is transmitted in the following direction, and the original signal before encoding is transmitted in both directions, and the bandwidth is reduced by about half.
  • the first access device forwards the decoded signal if the decoding is correct, and if the decoding cannot succeed, the original signal is forwarded. At this time, the amount of data to be forwarded is also smaller than that of directly forwarding the original signal, saving transmission bandwidth.
  • the uplink authorization of the access device to the terminal in the current communication protocol is as follows: when the terminal has uplink data to be sent, the scheduling request is first sent to the second access device and/or the first access device, and then the second access is performed.
  • the device and/or the first access device sends an uplink grant to the terminal according to the received scheduling request, and the terminal sends a buffer status report to the second access device, which may be directly sent to the second access device, or may be directly connected to the second access device.
  • the ingress device sends the second access device to the second access device, or the second access device sends the uplink authorization to the terminal again according to the status report (can be directly sent to the terminal, or
  • the two access devices are sent to the terminal, or sent to the terminal in two ways.
  • the terminal sends uplink data based on the uplink grant.
  • This process has a delay of more than ten MSs.
  • the embodiment of the present invention may be implemented in a blind scheduling manner, as follows: The foregoing, by the second access device, sending the uplink scheduling information to the first access device corresponding to the serving cell in the serving cell subset includes:
  • the first access device After determining, by the second access device, the serving cell subset to which the terminal belongs, if the scheduling request and/or the buffer report of the terminal device is not received, the first access device corresponds to the first cell in the serving cell subset.
  • the inbound device sends uplink scheduling information.
  • the blind scheduling of the embodiment of the present invention is that the second access device does not need to receive the scheduling request and/or the buffer status report of the terminal, but directly sends the uplink grant to the terminal. If the terminal has uplink data, the terminal sends the uplink request to the base station according to the uplink grant. Uplink data, which greatly reduces the uplink data transmission delay.
  • the terminal In the process of using blind scheduling, if the terminal does not send uplink data, according to the current protocol, the terminal needs to send uplink data without valid data packets according to the uplink grant, thereby causing waste of power, and may even form a neighboring cell or terminal. interference.
  • the foregoing method may further include: after the foregoing second access device determines the subset of the serving cell to which the terminal belongs, the method further includes: the second access The device sends the first configuration information to the first access device and/or the terminal corresponding to the serving cell in the subset of the serving cell, where the first configuration information configures the first access device and/or the terminal as: When the data is not sent, the uplink data of the valid data packet is not sent, or only the uplink authorization confirmation message is sent when there is no uplink data, and the uplink authorization confirmation message is used to indicate that there is no uplink data.
  • the uplink authorization acknowledgement message may specifically be a message sent on the physical uplink control channel.
  • the specific resource used by the message may be determined according to the starting position of the physical resource CCE occupied by the uplink authorization, for example, uplink.
  • the position of the control channel the starting CCE position + the offset, wherein the above offset can be configured by a higher layer such as an RRC (Radio Resource Control) message or fixed in the protocol.
  • RRC Radio Resource Control
  • the implementation of the blind scheduling in this embodiment can be implemented independently, and does not need to rely on the network architecture of the first access device and the second access device proposed by the embodiments of the present invention.
  • the first access device may have the function of supporting the information sending configuration.
  • the first access device may report its own capability first, and then the second access device supports the second access device.
  • the configured first access device is configured, and the first access device that does not support the configuration can still use its inherent mode for data forwarding, thereby achieving compatible and flexible control purposes, as follows:
  • the second access device receives the capability information of the terminal that is forwarded by the terminal by using the first access device corresponding to the serving cell in the serving cell subset;
  • the second access device confirms that the terminal supports sending uplink data without a valid data packet when there is no uplink data, and sends the uplink data to the first access device corresponding to the serving cell in the subset of the serving cell.
  • First configuration information or,
  • the second access device confirms that the terminal supports sending only an uplink authorization acknowledgement message when there is no uplink data, indicating that there is no uplink data, and the foregoing access device sends the uplink grant acknowledgement message to the serving cell.
  • the first access device corresponding to the serving cell in the subset sends the first configuration information.
  • the foregoing scheduling information may occupy different CCEs, such as one CCE, two CCEs, four CCEs, and eight CCEs, in a different channel environment to ensure reliable transmission of the foregoing scheduling commands.
  • the embodiment of the present invention provides a solution based on the following: Before the second access device sends the uplink scheduling information to the first access device corresponding to the serving cell in the subset of the serving cell, the method further includes:
  • the second access device sends the second configuration information to the first access device corresponding to the serving cell in the subset of the serving cell, and indicates that the first access device corresponding to the serving cell in the subset of the serving cell
  • the second configuration information is forwarded to the terminal, and the second configuration information is used to indicate that when the uplink scheduling information occupies at least two control channel elements CCE, determine the CCE to be used for the feedback resource and the location of the used CCE;
  • the terminal sends the feedback resource used by the second feedback information to the first access device and/or the second access device.
  • the second access device instructing the first access device to perform the forwarding operation may be: carrying the indication information in the second configuration information to instruct the first access device to perform the forwarding operation; or And the first access device forwards the second configuration information to the terminal, or sends an independent indication message to indicate the first access.
  • the device performs the forwarding operation.
  • the implementation of the second access device in the first embodiment of the present invention is not limited.
  • the terminal may further improve the reliability of the feedback information by adding the coded redundant information, as follows:
  • the foregoing method further includes:
  • the second access device receives the second encoded information of the unified coding that is repeatedly sent by the terminal device by using the at least two feedback resources.
  • the method for transmitting the uplink authorization confirmation message by the terminal and the method for the capability report and the function configuration are also applicable to the scenario where the terminal has only one serving cell, or the scenario when the carrier is aggregated, or the scenario when the dual connection is performed. For example, if there is only one scene in the serving cell, the second access device and the first access device may be combined into one access device. I will not repeat them here.
  • the embodiment of the present invention further provides a method for determining a subset of cells, where the specific method is as follows: determining, by the second access device, the subset of serving cells to which the terminal belongs includes:
  • the second access device determines a set of serving cells, where the set of serving cells is a set of serving cells managed by the second access device;
  • the second access device broadcasts a measurement indication message to the first access device corresponding to the serving cell in the set of serving cells, so that the first access device corresponding to the serving cell in the set of serving cells forwards the measurement indication to the terminal
  • the measurement indication message is used to indicate that the terminal performs measurement on the downlink pilot, or is used to instruct any terminal to measure the downlink pilot.
  • the second access device has the function of managing the first access device, and the management function can be seen in the solution of the embodiment of the present invention; and the first access device provides the terminal access.
  • the serving cell then all the serving cells provided by all the first access devices that the second access device can manage belong to the serving cell managed by the second access device, and the set of these serving cells is the second access A collection of service cells managed by the device.
  • the result of measuring the downlink pilot is used to indicate whether the terminal can access the first access device, and whether the quality of the access meets the requirement; thereby determining the service that the terminal can access.
  • the result information includes:
  • the measurement result of all downlink pilots received by the first access device corresponding to the serving cell in the set of the serving cell, the measurement result of the downlink pilot that meets the configuration condition, and the correspondence between the terminal identifier and the accessible serving cell At least one of the information.
  • the measurement indication message broadcast by the second access device to the first access device may be repeatedly performed. After repeated transmission, the subset of serving cells will be determined again, so that it can be dynamic
  • the update of the serving cell subset is specifically as follows: the foregoing second access device broadcasts the measurement indication message to the first access device corresponding to the serving cell in the set of serving cells, including:
  • the foregoing second access device repeatedly performs according to a predetermined rule: broadcasting a measurement indication message to the first access device corresponding to the serving cell in the foregoing serving cell set.
  • the broadcast measurement indication information is repeatedly sent to update the serving cell subset, and then updating the serving cell subset may have some technical requirements, such as: timeliness of update, system resource limitation occupied by the update, and the like.
  • the "predetermined rules" employed may be periodic and may be event triggered. For example, the time period of the periodic broadcast measurement indication message may be adjusted, or the event measurement triggering manner may be used to trigger the broadcast measurement indication message; the basis for adjusting the time period may be derived from the monitoring data of the second access device, for example, the terminal.
  • the frequent switching of the visited serving cell indicates that a more timely update is required, and the time period needs to be shortened.
  • the proportion or number of serving cell update in the subset of the serving cell is less than a predetermined threshold. Then you can extend the time period.
  • predetermined rules for controlling the broadcast measurement indication message may be set according to different technical indicator requirements, which is not limited by the embodiment of the present invention.
  • the embodiment of the present invention there may be some times when no terminal needs to access the wireless network through the first access device, and then the first access device can be dormant, thereby saving power; the embodiment of the present invention provides The specific implementation scheme of controlling the first access device to enter the dormant and activating the first access device is as follows: The foregoing method further includes:
  • the second access device determines a set of serving cells, where the set of serving cells is a set of serving cells managed by the second access device;
  • the first access device corresponding to the idle serving cell is activated.
  • the idle serving cell does not belong to any one of the serving cell subsets, and then the idle serving cell does not currently have a terminal that can be accessed, so it is necessarily in an idle state. Then, the access device corresponding to the idle serving cell can be put into a sleep state.
  • "Activation" and "Sleep" are two working states of the access device. In the sleep state, there is no need for data transmission. In this state, the terminal The first access device after the activation is corresponding to the dormant state, and the activated first access device has the function of data transmission, and the first serving cell provided by the terminal can be accessed by the terminal.
  • the method for activating the first access device corresponding to the idle serving cell may be: sending the indication information to the first access device corresponding to the idle serving cell, and instructing to switch the working state to the active state.
  • how to enable the first access device to complete the switching of the working state from the dormant state to the active state is not limited by the embodiment of the present invention.
  • the second access device naming the corresponding macro cell by the centralized control node, and the second access device naming the corresponding small cell by the node, and the macro cell and the small cell adopt the same frequency coverage.
  • the terminal is a user equipment (User Equipment, UE) as an example.
  • UE User Equipment
  • the specific architecture and protocol stack are as shown in Figure 2.
  • the neighboring small cells may share the same cell identifier (such as PCI, Physical Cell Identifier, physical cell identifier), or use the same virtual cell ID (Virtual Cell ID), or use different cell identifiers between adjacent small cells. .
  • the non-ideal backhaul link can be connected.
  • the so-called non-ideal backhaul link can be understood as the transmission delay cannot be ignored.
  • Link may be an authorized or unlicensed spectrum, or may be a network cable such as a Category 5 Category 6 network cable.
  • the invention is not specifically limited. Of course, the embodiments of the present invention are equally applicable if the ideal backhaul link is conditionally deployed.
  • a node between multiple macro cells and/or small cells, there is a node (possibly a macro cell or a small cell) that implements centralized control. It is called a centralized control node.
  • Specific functions may include: 1) pre-scheduling, 2) determining a set of serving cells of the UE, 3) mobility management of the UE, 4) signaling interaction with other nodes, configuring functions of other nodes, controlling behavior of other nodes, and receiving Information about other nodes, etc.
  • the functions of other nodes include: 1) data transmission and/or retransmission according to commands of the centralized control node; 2) receiving according to commands of the centralized control node Feedback information sent by the UE, such as HARQAck (Hybrid Automatic Repeat Request Ack), NACK (Not Acknowledge), measurement report, such as CQI (Channel Quality Indicator), PHR (Power) Headroom Report, Power Headroom Report, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Receiving Quality) Receive quality) and so on.
  • HARQAck Hybrid Automatic Repeat Request Ack
  • NACK Not Acknowledge
  • measurement report such as CQI (Channel Quality Indicator), PHR (Power) Headroom Report, Power Headroom Report, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Receiving Quality) Receive quality) and so on.
  • CQI Channel Quality Indicator
  • PHR Power Headroom Report
  • Power Headroom Report Power Headroom Report
  • RSRP Reference Signal Received
  • the UE is located at the intersection of the access device 1 and the small cell under the access device 2, and the UE can access the two small cells, the two small cells belong to the serving cell subset, and the access device 1 And the access device 2 is the first access device; in FIG. 2, the larger tower-shaped access device provides the centralized control function as the second access device.
  • the protocol stack of the centralized control node is: macro/controller protocol stack; the protocol stack from top to bottom is:
  • RRC Radio Resource Control, radio resource control
  • IP Internet Protocol, Internet Protocol
  • PDCP Packet Data Convergence Protocol, packet data convergence layer protocol
  • RLC Radio Link Control, radio link control
  • MAC Medium Access Control, media access control
  • PHY Physical, physical layer
  • TNL Tranportation Network Layer, transport network layer
  • PDCP implements: Security Data Forwarding
  • RRC implements: Enhanced Mobility Resource Manage
  • MAC implements: Centralized Scheduling Flow control ).
  • the protocol stack of the node corresponding to the small cell is: a Pico protocol stack; including: Low MAC/High PHY; and PHY and TNL;
  • the low MAC/high PHY implementation is: Simple Buffer HARQ (Simple buffer HARQ ReTx).
  • the UE protocol stack on the UE side is: RRC, IP, PDCP, RLC, MAC, PHY from top to bottom; where the PHY implements: measurement (RRM/CQI(M/P..), And feedback: (A/N(M/P))(Feedback(A/N(M/P)))
  • a wired connection or a wireless connection may be used between the centralized control node and other nodes.
  • the protocol layer connected by the dashed line represents the protocol layer with information interaction.
  • the following embodiments perform refinement design on the functions of the centralized control node and other nodes mentioned in this embodiment.
  • protocol stack of the small cell may also be a combination of one or more of the following protocol functions:
  • Protocol stack with PHY, MAC layer, RLC layer and PDCP functions, or
  • a protocol with PHY, MAC layer, RLC layer, PDCP function and RRC function A protocol with PHY, MAC layer, RLC layer, PDCP function and RRC function.
  • the node corresponding to the small cell can independently provide services for the UE.
  • the functions implemented by the nodes corresponding to the small cells are different.
  • the small cell When the small cell has only the physical layer, the small cell is only responsible for transmitting and receiving data according to the instruction of the centralized control node, and does not implement the functions of the high-level protocol stack such as scheduling and retransmission. At this point, it can be considered that the small cell has no autonomy at all.
  • the small cell When the small cell has the physical layer and part of the MAC layer function, the small cell has more partial retransmission function, but still has no completely autonomous scheduling function, and is basically controlled by the centralized control node.
  • the small cell When the small cell has the physical layer and the full MAC layer function, the small cell has more scheduling functions, at least within a certain range, such as scheduling the resources that are not scheduled by the centralized control node, or allowing the scheduled resources to be configured in the centralized control node. Scheduled on.
  • the small cell When the small cell has a protocol stack of PHY, MAC layer and RLC functions, it will have the functions of segmentation of RLC and the like. By analogy, the more complete the protocol stack of a small cell, the more functions it has, and the flexibility to configure all protocol stack functions or only part of the protocol stack function.
  • the embodiment of the present invention is not limited by the embodiment of the present invention.
  • protocol stack configuration process may be as follows:
  • Step 1 The centralized control node sends configuration information of the protocol stack mode to the small cell, and is used to notify the protocol stack mode used by the small cell.
  • the configuration information of the protocol stack mode can be transmitted through an interface between the central control node and the small cell, such as an X2 interface and an X2 interface message, which is not limited in this embodiment of the present invention.
  • the specific notification form of the protocol stack mode used by the notification small cell may be, for example, numbering one or more of the foregoing protocol stack modes, each number representing a protocol stack mode, and configuration information of the protocol stack mode. Carry the above number to inform the mode of the specific protocol stack.
  • number 1 represents only the PHY function
  • number 2 represents the PHY and MAC layer part functions, etc., and only notification number 1 or 2 is required for notification.
  • the specific notification form of the protocol stack mode used by the notification small cell may also be, for example, whether to notify whether to use a specific protocol layer, such as whether there is a PHY layer, whether there is a MAC layer, whether it has an RLC layer, etc.
  • the purpose of notifying the mode of the protocol stack can be achieved.
  • the purpose of notifying the protocol stack mode used by the small cell can also be achieved by other forms, which is not limited herein.
  • the small cell may further send protocol stack mode request information to the centralized control node, where the information is used to request a protocol stack mode used by the small cell.
  • This step is used to trigger the configuration information of the protocol stack mode sent by the centralized control node.
  • the protocol stack mode request information may also carry a protocol stack mode that the small cell wants to use to implement the negotiation.
  • the protocol stack mode supported by itself may also be carried.
  • Step 2 The small cell sends the protocol stack mode configuration completion information to the centralized control node. This step is optional.
  • the foregoing process may be a process of not distinguishing the UE. For example, once the small cell is configured into a protocol stack mode, all UEs in the small cell use the mode.
  • the foregoing process may also be a process of distinguishing UEs.
  • a small cell uses one protocol stack mode, and another one or some UEs, and a small cell uses another protocol stack mode.
  • the embodiment of the invention does not limit this.
  • the message with the centralized control node may carry information that can identify the UE, such as C-RNTI (Cell Radio Network Temporary Identity), TMSI (Temporary Mobile Subscriber Identity), or other
  • C-RNTI Cell Radio Network Temporary Identity
  • TMSI Temporary Mobile Subscriber Identity
  • the information that can identify the UE may also be transmitted on the transmission channel that can identify the UE, which is not limited in this embodiment of the present invention.
  • the configuration function of the protocol stack mode provided by the embodiment of the present invention can be used for the first mode configuration of the small cell or the mode switch, that is, the small cell mode may not be static, and the change based on the scenario hit service may be Change the mode of the protocol stack.
  • step 1 the small cell sends a setup request message to the centralized control node.
  • the setup request message carries the identifier of the small cell, and the identifier may be a specific number identifier, and/or may be a type identifier, such as identifying the node as a small cell type.
  • This process is similar to the process of establishing an RRC connection with the current UE, and no details are developed here.
  • the request message may further carry a protocol stack mode that the small cell wishes to use.
  • step 2 the centralized control node sends a setup message to the small cell.
  • the setup message may carry the configuration information of the small cell, which may specifically include:
  • the resources used by the small cell to serve the UE such as frequency, bandwidth, channel resource configuration, etc., including small cell common resource configuration, small cell aggregation common resource configuration, etc.;
  • Resources used by the small cell and the centralized control node for backhaul transmission such as frequency, bandwidth, channel resource configuration, etc.;
  • step 3 the small cell sends a setup complete message to the centralized control node. This step is an optional step.
  • the flow of the implementation method of the downlink pre-scheduling function includes the following steps:
  • Step 1 The centralized control node sends the service node in the service cell subset to transmit in the air interface. Data information and scheduling information.
  • At least one serving cell in the subset of the serving cell has a serving cell corresponding to the serving node, and then at least one data node needs to transmit data information and scheduling information that needs to be transmitted in the air interface; in subsequent embodiments, the serving cell will be How to determine the subset is detailed.
  • the foregoing data information includes: data content that needs to be transmitted in an air interface.
  • the data content may be a MAC (Measurement and Control Measurement and Control) PDU (Protocol Data Unit).
  • the scheduling information to be transmitted on the air interface may include at least one or more of the following types.
  • the foregoing scheduling information may be a MAC CE (Control Element), or another message:
  • the parameters of the data include at least one of:
  • the antenna port number used by the data transmitted by the air interface is the antenna port number used by the data transmitted by the air interface
  • the masking method used for the data transmitted by the air interface such as C-RNTI (Cell Radio Network Temporary Identity), is used to characterize which UE data is scheduled.
  • C-RNTI Cell Radio Network Temporary Identity
  • the time of data transmitted by the air interface such as which subframe of which radio frame.
  • the parameters of the above data are used to notify the service node that the UE sends data, and what method should be used to send the data.
  • the physical resource used by the scheduling command corresponding to the data transmitted by the air interface such as ePDCCH, PDCCH, and/or CCE (Control Channel Element, control channel element) starting position;
  • the aggregation level used by the scheduling command corresponding to the data transmitted by the air interface such as the number of CCEs.
  • the masking mode used by the scheduling command corresponding to the data transmitted by the air interface is used to characterize which UE data is scheduled;
  • the foregoing service node performs HARQ retransmission information, such as whether to allow retransmission or retransmission times.
  • the masking method used by the air interface transmission data and the masking method used by the air interface transmission data may be used to characterize which UE data is scheduled. Therefore, You can only need one of them. Or the two are integrated into one parameter, that is, the UE identifier, which is used to characterize which UE data is scheduled.
  • the serving cell corresponding to the target serving node that is sent by the central control node may be collectively referred to as a subset of the serving cell.
  • the centralized control node may also be included in the serving cell subset to provide services for the UE.
  • the subset of the serving cells is a subset of the set of serving cells.
  • the foregoing serving node needs to perform HARQ retransmission, configure resources used for performing HARQ retransmission.
  • Step 2 Each serving node in the serving cell subset that receives the data information and the scheduling information sends a scheduling command and data information to the UE according to the data information and the scheduling information obtained in step 1.
  • each service node in the serving cell subset transmits a scheduling command using a scheduling command parameter within a specified time (air interface transmission time), and carries a data transmission parameter in the scheduling command.
  • the data information is transmitted using the data transmission parameters specified in the above scheduling command.
  • the foregoing scheduling command can also be sent through a centralized control node or other at least one neighboring cell.
  • the service nodes in this step only send data information to the UE according to the data information and scheduling information obtained in step 1.
  • Step 3 The UE receives the scheduling command, and then receives the data information according to the scheduling command, and sends feedback information to the centralized control node and/or the serving node according to the decoding status of the data information, where the feedback information is used to determine the decoding of the UE. result.
  • the feedback information may be sent to each of the service nodes, or sent to the centralized control node, or simultaneously sent to each of the service nodes and the centralized control node.
  • the resources used for feedback to each service node and the above centralized control node may be the same or different.
  • Step 4 Each serving node in the serving cell subset sends the feedback information of the UE to the centralized control node, so that the centralized control node determines whether the data information is successfully received by the UE.
  • the foregoing feedback information may be transmitted by using an interface message between each service node in the service cell subset and the centralized control node, where the interface message includes, but is not limited to, a physical layer message, a MAC layer message, or other information that can transmit the feedback information. Interface message.
  • Step 4 above is optional.
  • Step 5 The centralized control node determines whether the data information is successfully received by the UE according to the feedback information of the UE and/or the feedback information forwarded by each serving node in the serving cell subset.
  • the centralized control node may notify the RLC (Radio Link Control) layer and perform a fast ARQ (Automatic Repeat Request). Alternatively, if the receiving is successful, the centralized control node may notify the RLC layer that the foregoing data information is successfully transmitted.
  • RLC Radio Link Control
  • ARQ Automatic Repeat Request
  • the implementation of this step is directed to the scenario where the protocol stack function of the RLC layer and the upper layer is configured to be in a centralized control node.
  • the centralized control node may notify the RLC layer to perform retransmission according to the feedback situation. If it is configured at the serving node, the serving node can directly determine whether it is necessary to perform retransmission according to the feedback information of the UE.
  • each service node in the subset of the serving cell simultaneously sends the foregoing data and/or scheduling command to the UE, the UE may perform combined decoding on the foregoing data and/or scheduling command, which increases the reliability of transmitting the foregoing data information and/or scheduling command. Improve downlink data transmission performance.
  • each serving node in the serving cell subset receives the feedback information of the UE at the same time, which also increases the reliability of the uplink signal transmission, thereby ensuring the performance of the fast ARQ. For example, when the feedback information received by the majority of the serving nodes is an ACK, the feedback information fed back by the UE may be considered as an acknowledgment (ACK), and vice versa, the UE is considered to be a non-acknowledgement (NACK).
  • ACK acknowledgment
  • NACK non-acknowledgement
  • the original quantity of the feedback information of the UE may be transmitted to the centralized control node for combined decoding, thereby improving the combining gain.
  • the implementation method of the uplink pre-scheduling function is as follows:
  • Steps 1 and 2 are similar to the steps of the downlink pre-scheduling function. The difference is that it does not need to be sent.
  • the data information is sent; in addition, the content of the scheduling information is a UE uplink grant (a parameter used by the UE to transmit uplink data information).
  • the scheduling information can be delivered in the form of a scheduling command.
  • Step 3 After receiving the scheduling command, the UE assembles and sends data information to each serving node in the subset of the co-serving cells according to the scheduling command.
  • Step 4 Each service node in the serving cell subset receives the data information sent by the UE, and then sends the data information to the centralized control node after receiving the data information.
  • each serving node in the serving cell subset may also feed back an ACK to the UE to notify the UE that the foregoing data information is successfully transmitted.
  • the centralized control node may be notified, so that the centralized control node performs adaptive HARQ retransmission, or triggers an automatic ARQ (Automatic Repeat Request). Request) retransmission.
  • ARQ Automatic Repeat Request
  • each service node in the service cell subset may not necessarily determine whether the data is successfully received, but directly send the received data information to the centralized control node for merging. Decoding, in this way, the uplink data can also obtain the combined gain, which greatly improves the reliability of the uplink data transmission.
  • each serving node in the subset of the serving cell may also transmit the original data information to the centralized control node when the node in the subset of the serving cell does not successfully solve the data, and if successfully decoded, send the decoded data to the centralized set. Control node.
  • Step 5 The centralized control node performs new data transmission, adaptive HARQ retransmission or trigger (fast) ARQ retransmission according to the situation of receiving uplink data information.
  • the feedback information of the UE received by different service nodes may be different, which may affect the HARQ retransmission of different service nodes; therefore, a specific service node may be specified, and the HARQ weight is performed. It is passed that other service nodes do not perform HARQ retransmission.
  • the decoding of the different serving nodes may be different, which may affect the HARQ retransmission of the UE; after the UE reaches the maximum number of transmissions and transmissions, the Buffer is not cleared; the centralized control node sends The retransmission scheduling command, the UE performs the HARQ retransmission according to the scheduling command.
  • the ARQ Automatic Repeat Request
  • the multiple HARQ can offset the ARQ.
  • the method for determining the subset of serving cells includes the following steps:
  • Step 1 The serving node in the serving cell set sends a system broadcast message to the UE, indicating the UE. Feedback measurement results;
  • the method for sending the system broadcast message may be the same as the method for sending the scheduling information in the pre-pre-scheduling method.
  • the difference is that the UE may not perform uplink feedback.
  • the system broadcast message may be sent by using a common system broadcast message, or may be added to the current system broadcast message.
  • the added content is one or more of the following: parameters of pilots transmitted in at least one serving cell in the set of serving cells, such as: a sequence of pilots, a time or frequency position of pilots, a period of pilots, and the like;
  • the added content may be notified to the UE by using a dedicated message, instead of being notified to the UE by using a system broadcast message, which is not limited by the embodiment of the present invention;
  • the method further includes: Step 0, the parameter of the pilot may be notified to the serving cell in the serving cell set by the centralized control node in advance.
  • the specific notification method is to be transmitted in an interface message between the centralized control node and at least one serving cell in the set of serving cells, and the specific message format and the message name are not limited.
  • the transit may be performed by other serving cells, and the number of times of transiting and transiting is not limited in the embodiment of the present invention.
  • step 2 the centralized control node notifies the serving node in the set of serving cells of the uplink signal parameters that need to be measured.
  • Specific uplink signals may include:
  • a signal transmitted on a random access channel such as a random access code
  • SRS Sounding Reference Signal
  • Physical uplink shared channel such as PUSCH (Physical Uplink Shared Channel);
  • the physical uplink control channel such as a PUCCH (Physical Uplink Control Channel) may further include a scheduling request and/or channel status indication reporting, and/or HARQ feedback, and the like;
  • the above uplink signal parameters may be at least one of the following:
  • the service node in the set of serving cells may also notify the centralized control node of the trigger condition for reporting the measurement result.
  • the trigger condition for reporting the measurement result.
  • the service node reports the measurement result to the centralized control node.
  • the measurement result of the step may further include a UE identifier corresponding to the uplink signal, such as a C-RNTI.
  • Step 3 The serving node in the serving cell set performs downlink signal transmission and/or uplink signal detection according to step 0 and/or step 2.
  • Step 4 The UE measures the downlink pilot according to the configuration of the broadcast message or the dedicated message, and reports the measurement result or sends an uplink signal.
  • the foregoing measurement result may include a measurement result of at least one serving cell in the serving cell set.
  • Step 5 After receiving the measurement result reported by the UE or the uplink signal sent by the UE, the serving node sends the measurement result reported by the UE to the centralized centralized control node according to the configuration, or according to the configuration, the uplink that satisfies the condition is met.
  • the signal measurement result is sent to the centralized control node, or, according to the configuration, the UE identifier that satisfies the condition is sent to the centralized control node.
  • Step 6 The centralized control node determines, according to the measurement result information reported by the serving node in the set of serving cells, which serving cell in the set of serving cells can serve as an element of the subset of the serving cell.
  • the serving cell in the serving cell subset may correspond to a serving node, and thus may be referred to as a serving node in the serving cell subset.
  • Step 7 Each serving node in the serving cell subset provides a data transmission service for the UE.
  • the schemes of uplink pre-scheduling and downlink pre-scheduling in the embodiment refer to the schemes of uplink pre-scheduling and downlink pre-scheduling in the embodiment.
  • the UE moves, and then a mobility management solution is required. From the technical point of view, it is the process of determining the subset of serving cells, that is, re-determining the subset of serving cells.
  • the update of the subset of serving cells is transparent to the UE, so the movement is smooth.
  • FIGS. 8A and 8B are schematic diagrams of serving cells at two times T1 and T2 respectively; wherein the serving cell is represented by an access device and an implementation circle, and the set of solid circles in the outer large dashed circle is indicated as a set of serving cells, there are two UEs in the set of serving cells, and two UEs respectively have one a dotted circle, each with a solid circle inside the small circle, and a solid circle within the small circle of the dotted line is a subset of the serving cell corresponding to the UE; wherein the UE on the left moves from T1 to T2 to the right, The corresponding subset of serving cells will be re-determined.
  • the embodiment of the present invention provides intelligent resource multiplexing and intelligent on/off between service cell subsets.
  • the resources can be completely multiplexed between the two subsets of the serving cells during data transmission, as shown in FIG. 8A. This greatly increases the system capacity.
  • resource partial multiplexing can be implemented between two serving cell subsets during data transmission. In this way, the system capacity is also increased to some extent.
  • a certain serving cell When a certain serving cell does not belong to any subset of the serving cells, it indicates that there is no UE in the service area and the service area can enter the "rest" state.
  • the service node corresponding to the serving cell In the "rest” state, the service node corresponding to the serving cell only needs to be
  • the downlink pilot is periodically sent for UE measurement; or the uplink signal is detected according to the configuration of the centralized control node; no data transmission needs to be processed. If the positioning information of the UE is relatively accurate, the above-mentioned cell does not need to do the above, and the cell is activated only when there is a cell moving to the cell near the cell.
  • the serving cell may be determined that no UE needs the service under the serving cell, and then the serving cell may be shut down to enter a “rest” state. At the same time, it is detected whether a UE enters the serving cell, and the serving cell is activated when a UE enters the serving cell; thus, the intelligent On/OFF of the serving cell is implemented. Turn off the service area to save electricity.
  • the embodiment of the present invention provides an enhanced scheme for a non-ideal Backhual (backhaul) between a centralized control node and a set of serving cells.
  • the embodiment of the present invention can be implemented in a blind scheduling manner in a backhual.
  • the UE when it needs to send uplink data, it needs to send a scheduling request to the centralized control node first, and then the centralized control node sends an uplink grant to the UE based on the received scheduling request, and the UE sends a buffer status report to the centralized control node, and then centrally controls.
  • the node sends an uplink grant to the UE again based on the buffer status report, and the UE sends the uplink data based on the uplink grant, and the process is about ten MSs. Delay. What this embodiment is to achieve is to reduce the delay generated by this process.
  • the blind scheduling is that the centralized control node sends a scheduling command to the UE to perform the uplink authorization directly, and if the UE has uplink data, the blind authorization can be used according to the uplink authorization.
  • the node sends uplink data, which will greatly reduce the uplink data transmission delay.
  • the UE if the UE does not send uplink data, according to the current protocol, the UE needs to send uplink data without valid data packets according to the uplink grant, which may waste power and may even form a neighboring cell or a UE. interference.
  • the above problem if the UE is replaced with the serving node in the set of serving cells, similar problems exist between the serving node in the set of serving cells and the centralized control node. To reduce power overhead and interference, you can use the process shown in Figure 9, as follows:
  • Step 1 The UE receives an uplink grant sent by the serving node.
  • Step 2 The UE determines whether to use the uplink grant to perform uplink data transmission. If the UE needs to send uplink data at this time, the UE uses the uplink grant to perform uplink data transmission. Alternatively, if the UE does not need to send uplink data, the UE does not use the uplink grant to perform uplink data transmission.
  • the uplink data may be a service data packet such as a MAC SDU, or a control element, such as a PHR, a regular BSR, or the like.
  • a service data packet such as a MAC SDU
  • a control element such as a PHR, a regular BSR, or the like.
  • the embodiment of the invention does not limit this.
  • step 3 can also be performed:
  • Step 3 The UE sends an acknowledgement message, such as an ACK, to receive an uplink grant status on the uplink control channel associated with the physical resource location occupied by the uplink grant.
  • an acknowledgement message such as an ACK
  • the acknowledgement message may be sent only when the UE does not need to send uplink data at this time. Then, after receiving the acknowledgement message, the serving node or the centralized control node may determine that the UE does not send uplink data.
  • the uplink control channel associated with the physical resource location occupied by the uplink authorization may be the location of the uplink control channel determined according to the starting or ending location of the CCE occupied by the uplink authorization or any other specified location.
  • the position of the uplink control channel the starting CCE position + the offset, wherein the above offset may be configured by a higher layer such as an RRC message or fixed in a protocol.
  • the serving node after transmitting the uplink grant to the UE, the serving node attempts to receive the uplink data according to the uplink grant, and on the other hand, attempts to receive the acknowledgement message sent by the UE according to the uplink grant.
  • the UE may first receive the configuration message sent by the centralized control device, where the configuration message may carry the indication information of whether the UE performs step 2 or step 3 in the foregoing step.
  • the foregoing configuration message may be an RRC message, or a MAC layer message, or a physical layer message, which is not limited in this embodiment of the present invention.
  • the UE may also report whether the UE can perform the capability information of one or more steps in the foregoing step 2 or 3.
  • the message of the above-mentioned capability information may be an RRC message, or a MAC layer message, or a physical layer message, which is not limited in this embodiment of the present invention.
  • the embodiment of the present invention further provides a method for determining a feedback resource in the case where multiple CCEs exist.
  • the foregoing feedback resource is a resource for the UE to feed back downlink data receiving status or other feedback information; for example, a PUCCH resource.
  • the feedback resource is determined by scheduling the start position of the physical resource CCE occupied by the scheduling command of the downlink data information.
  • the location of the uplink control channel the starting CCE location + the offset, wherein the offset may be configured by a higher layer such as an RRC message or fixed in a protocol.
  • the scheduling command can occupy a number of different CCEs, such as one CCE, two CCEs, four CCEs, and eight CCEs, in a different channel environment to ensure reliable transmission of the above scheduling commands.
  • the embodiment of the present invention provides a method for increasing the reliability of feedback transmission. As shown in FIG. 10, the method includes the following steps:
  • Step 1 The UE receives a scheduling command.
  • the scheduling command may be a scheduling command of the uplink data (that is, a downlink assignment), a scheduling command of the downlink data (that is, an uplink authorization), or a semi-persistent scheduling resource release command, which is not limited in this embodiment of the present invention.
  • Step 2 The UE determines the feedback resource, wherein if the scheduling command occupies one CCE, the UE determines the feedback resource according to the location of the CCE; if the scheduling command occupies multiple CCEs, the UE determines the feedback resource according to the location of the multiple CCEs.
  • the manner in which the UE determines multiple feedback resources according to the locations of the multiple CCEs may be as follows:
  • the serving node may configure the UE to use the location of the multiple CCEs to determine the function of the feedback resource.
  • the specific configuration message may be an RRC message, or a MAC layer message, or a physical layer message, which is not limited by the embodiment of the present invention.
  • the serving node configures the UE to use the location of the multiple CCEs to determine the function of the feedback resource
  • one or more of the following information may be indicated:
  • the UE applies the above configuration function:
  • the UE applies the above configuration
  • the UE applies the above configuration
  • the UE uses the first two CCEs, or the last two CCEs, or the second to the third CCEs.
  • the UE uses the first two CCEs, or the last two CCEs, or the second to third CCEs;
  • the UE may further report, to the serving node, capability information that the UE can perform the one or more steps in the foregoing steps.
  • the message for reporting the capability information may be an RRC message, or a MAC layer message, or a physical layer message, which is not limited by the embodiment of the present invention.
  • Step 3 The UE sends the feedback information according to the determined one or more feedback resources.
  • the feedback information may be repeatedly sent on multiple resources, and the reliability of the feedback is improved by repeatedly transmitting.
  • the reliability is improved by 3dB, and the more the number of repetitions, the higher the reliability improvement.
  • the feedback information may be uniformly encoded and transmitted on multiple resources. The reliability of the feedback may be effectively improved by increasing the redundancy of the encoded information.
  • the inter-station bandwidth can be ensured; in addition, the fiber can be removed without the fiber, and the difficult deployment problem can be solved, and the interference can be reduced, the system capacity can be improved, and the feedback reliability can be improved.
  • the embodiment of the present invention further provides an access device, which is used as the second access device, as shown in FIG.
  • the subset determining unit 1101 is configured to determine a subset of serving cells to which the terminal belongs, and the terminal is a destination terminal that sends downlink data to the second access device, where the subset of the serving cells is a set of serving cells that the terminal can access.
  • Each serving cell corresponds to a first access device;
  • the sending unit 1102 is configured to send the downlink data and the downlink scheduling information to the first access device corresponding to the serving cell in the serving cell subset determined by the subset determining unit 1101; the downlink scheduling information is used to indicate the first access The device sends the downlink data to the terminal.
  • the first access device may also be a serving cell that can serve the terminal. Therefore, the foregoing “serving cell subset” may correspond to: a set of serving cells that can serve the terminal. . It can be understood that the foregoing subset of serving cells should include at least one serving cell.
  • an access device may provide a plurality of serving cells. Therefore, in the embodiment of the present invention, two or more serving cells may correspond to the same access device.
  • the second access device may also provide a serving cell accessed by the terminal or provide a serving cell serving the terminal.
  • the second access device and the first access device may be physically the same access device.
  • the invention is not limited.
  • the downlink data and the downlink scheduling information are information that needs to be transmitted in the air interface, where the downlink scheduling information is finally sent to the terminal, and the downlink scheduling information is used to indicate that the first access device sends the downlink data.
  • the scheduling information may be used to specify a parameter used by the first access device to send downlink data.
  • the process of obtaining the downlink scheduling information by the terminal may be as follows: the foregoing second access device and/or the foregoing service, as the first access device and the second access device may be the access devices corresponding to the serving cell in the serving cell subset.
  • the first access device corresponding to the serving cell in the subset of cells sends downlink scheduling information to the terminal.
  • the terminal may receive downlink data according to the received downlink scheduling information.
  • the access devices are classified into two types, one is a second access device that functions as a centralized management, and the other is a first access device that provides a serving cell, and the second access device needs to send a downlink.
  • Number According to the first access device corresponding to the serving cell in the subset of the serving network, the downlink data and the scheduling information are sent; the flexible wireless deployment or the wired deployment of the macro cell, the small cell, and the pico cell is implemented.
  • Each of the first access devices sends downlink data to the terminal on the resource indicated by the scheduling information, and the terminal receives the downlink data sent by each first access device corresponding to the resource indicated by the scheduling information, so that the terminal can obtain the combined gain.
  • Improve the reliability of transmitting downlink data and scheduling information and improve the transmission performance of downlink data.
  • the communication between the first access device and the second access device may be implemented by using an interface between the access devices, for example, an X2 interface between the base station and the base station; the first access device and the first The two access devices may have no direct communication interface. In this case, the access device may be forwarded by other access devices.
  • the specific solution is as follows: The sending unit 1102 is specifically configured to use the first access device and the second access device. Transmitting the downlink data and the downlink scheduling information to the interface between the devices; or transmitting the downlink data and the downlink scheduling information to the third access device, and instructing the third access device to forward the downlink data and the downlink scheduling information And a first access device corresponding to the serving cell in the subset of serving cells.
  • the implementation manner of the second access device instructing the third device to perform the forwarding may be: carrying the indication information in the downlink scheduling information to indicate that the third device forwards, or configuring the third access device as the default forwarding.
  • the device (the third access device performs the forwarding as long as the downlink data and the downlink scheduling information are received), or sends an independent message to instruct the third device to forward, and may also carry the first connection in the downlink data and the downlink scheduling information.
  • the address of the incoming device is such that the third access device performs forwarding according to the address of the first access device. Therefore, the manner of the indication may be explicit or implicit, and the manner of the indication is not limited by the embodiment of the present invention.
  • each of the first access devices sends the scheduling information to the terminal and the downlink data is sent on the resource specified by the scheduling information.
  • the specified resource receives the first feedback information, so that the first feedback information is forwarded to the second access device, and the combined gain is also improved, and the transmission performance of the first feedback information is also improved, as follows: further, as shown in FIG.
  • the access device further includes:
  • the first feedback receiving unit 1201 is configured to: after transmitting the downlink data and the downlink scheduling information, receive the first feedback information sent by the first access device corresponding to the serving cell in the subset of the serving cells;
  • the result determining unit 1202 is configured to determine, according to the first feedback information received by the first feedback receiving unit 1201, that the terminal successfully receives the downlink data or fails to receive the downlink data.
  • the first feedback information indicates that the first access device with the set number or the set ratio successfully receives the downlink data, and determines that the terminal successfully receives the downlink data, otherwise confirms that the terminal does not successfully receive the downlink data.
  • the first feedback information is used to determine the status of the terminal receiving the downlink data
  • the type of information carried by the terminal may be many, for example, indicating that a certain downlink data is successfully received or not successfully received; or What are the downlink data that are successfully received, and which downlink data is not successfully received; or, the statistics of the success information, such as the proportion of successful/unsuccessfully received downlink data, the number of successful/unsuccessfully received downlink data, etc. . Therefore, the type of the first feedback information may be many depending on the requirements. According to the type of the different feedback information, the corresponding determining manner may be used to determine whether the terminal successfully receives the downlink data or fails to receive the downlink data. The above specific determination manner should not be construed as limiting the uniqueness of the embodiments of the present invention.
  • the set number and the set ratio can be set by the technician according to experience, or set according to the quality requirement of the downlink data transmission. In theory, only one first feedback information is displayed as the terminal. If the receiving is successful, the terminal can receive the success. The higher the setting, the higher the accuracy of determining the successful receiving of the terminal.
  • the specific parameters of the above-set number and the set ratio are not uniquely limited in this embodiment.
  • the embodiment of the present invention if the second access device determines that the terminal does not successfully receive the downlink data, the embodiment of the present invention further provides an implementation scheme of automatic retransmission as follows: Further, as shown in FIG. 13, the foregoing access device Also includes:
  • the retransmission control unit 1301 is configured to notify the radio link control if the result determining unit 1202 determines that the terminal does not successfully receive the downlink data, and the second access device has a radio link control layer and a control function of the upper layer.
  • the layer performs a retransmission operation of the automatic retransmission request.
  • the retransmission operation of the radio link control layer performing the automatic retransmission request may retransmit the data that has not been successfully transmitted.
  • the first access device has For the control function of the radio link control layer and the upper layer, the automatic retransmission can be completed by the first access device, so that the automatic retransmission by the second access device is not the only alternative implementation.
  • the foregoing embodiment is mainly used to implement scheduling of downlink data.
  • the embodiment of the present invention further provides scheduling of uplink data transmission, which is specifically as follows:
  • the sending unit 1102 is further configured to determine in the foregoing subset. After determining the subset of the serving cells to which the terminal belongs, the unit 1101 sends the uplink scheduling information to the first access device corresponding to the serving cell in the subset of the serving cells; the uplink scheduling information is used to indicate that the terminal is authorized to be in the uplink scheduling information.
  • the uplink data is sent on the specified resource; the foregoing access device further includes:
  • the data receiving unit 1401 is configured to receive uplink data forwarded by the first access device corresponding to the serving cell in the serving cell subset.
  • the uplink scheduling information is finally sent to the terminal, so that the terminal sends the uplink data according to the uplink scheduling information;
  • the first access device and the second access device may both be corresponding to the serving cell in the subset of the serving cell.
  • the access device, the process for obtaining the uplink scheduling information by the terminal may be as follows: the second access device and/or the first access device corresponding to the serving cell in the subset of the serving cell and/or the uplink scheduling information is sent to the terminal So that the terminal sends uplink data according to the uplink scheduling information.
  • the terminal may send the uplink data on the resource specified by the uplink scheduling information, because each first access device receives the uplink data on the resource specified by the uplink scheduling information, although the terminal only sends one copy. Data, but each first access device forwards to the second access device, and the second access device can obtain the combining gain, thereby improving the reliability of transmitting the uplink data and improving the transmission performance of the uplink data.
  • the first access device may have different options for forwarding the uplink data according to the capability, as follows: further, as shown in FIG. 15, the uplink data forwarded by each first access device includes: After the first access device confirms that the uplink data is successfully received, the uplink data that is decoded by the first access device is forwarded; or the first receiving device does not confirm the uplink data that is successfully forwarded when the uplink data is received;
  • the uplink data that is forwarded by each of the first access devices is: the uplink data that is forwarded by each of the first receiving devices after the first receiving device does not confirm that the uplink data is successfully received, and the access device further includes:
  • the decoding unit 1501 is configured to perform combined decoding on the uplink data forwarded by each of the first access devices received by the data receiving unit 1401.
  • the first access device after confirming that the first access device succeeds in receiving, the first access device can decode and forward the decoded data, and the decoded data amount is much smaller than the original data amount, thereby saving bandwidth between the access devices.
  • the received uplink data may be directly forwarded, so that the second access device may obtain the combining gain at the time of the combined decoding. Even if the first access device directly forwards, it can save about 50% of the bandwidth compared to the uplink and downlink signals before the encoding and decoding (the bandwidth required for the original signal before decoding and encoding is far more than the transmission decoding).
  • the bandwidth required after the data (the amount of data is equivalent to the amount of data before encoding), that is, the bandwidth required to transmit the decoded data is negligible compared to the original data transmitted. Therefore, if only one direction is transmitted, the original before decoding is transmitted. In the other direction, the signal is transmitted in the following direction, and the original signal before encoding is transmitted in both directions, and the bandwidth is reduced by about half.
  • the first access device forwards the decoded signal if the decoding is correct, and if the decoding cannot succeed, the original signal is forwarded. At this time, the amount of data to be forwarded is also smaller than that of directly forwarding the original signal, saving transmission bandwidth.
  • the uplink authorization of the access device to the terminal in the current communication protocol is as follows: when the terminal has uplink data to be sent, the scheduling request is first sent to the second access device and/or the first access device, and then the second access is performed.
  • the device and/or the first access device sends an uplink grant to the terminal according to the received scheduling request, and the terminal sends a buffer status report to the second access device, which may be directly sent to the second access device, or may be directly connected to the second access device.
  • the ingress device sends the second access device to the second access device, or the second access device sends the uplink authorization to the terminal again according to the status report (can be directly sent to the terminal, or
  • the two access devices are sent to the terminal, or sent to the terminal in two ways.
  • the terminal sends uplink data based on the uplink grant.
  • This process has a delay of more than ten MSs.
  • the embodiment of the present invention may be implemented in a blind scheduling manner, as follows.
  • the sending unit 1102 is configured to: after the subset determining unit 1101 determines the subset of serving cells to which the terminal belongs, If the scheduling request and/or the buffer report of the terminal device are not received, the uplink scheduling information is sent to the first access device corresponding to the serving cell in the subset of the serving cell.
  • the blind scheduling of the embodiment of the present invention is that the second access device does not need to receive the scheduling request and/or the buffer status report of the terminal, but directly sends the uplink grant to the terminal. If the terminal has uplink data, the terminal sends the uplink request to the base station according to the uplink grant. Uplink data, which greatly reduces the uplink data transmission delay.
  • the terminal In the process of using blind scheduling, if the terminal does not send uplink data, according to the current protocol, the terminal needs to send uplink data without valid data packets according to the uplink grant, thereby causing waste of power, and may even form a neighboring cell or terminal. interference.
  • the foregoing sending unit 1102 is further configured to: after the subset determining unit 1101 determines the subset of serving cells to which the terminal belongs, Sending the first configuration information to the first access device corresponding to the serving cell in the foregoing serving cell subset, where the first configuration information is used to configure the first access device and/or the terminal to be: when there is no uplink data, The uplink data with no valid data packet is sent, or only the uplink authorization acknowledgement message is sent when there is no uplink data, and the uplink authorization acknowledgement message is used to indicate that there is no uplink data.
  • the uplink authorization acknowledgement message may specifically be a message sent on the physical uplink control channel.
  • the specific resource used by the message may be determined according to the starting position of the physical resource CCE occupied by the uplink authorization, for example, uplink.
  • the position of the control channel the starting CCE position + the offset, wherein the above offset can be configured by a higher layer such as an RRC (Radio Resource Control) message or fixed in the protocol.
  • RRC Radio Resource Control
  • the implementation of the blind scheduling in this embodiment can be implemented independently, and does not need to rely on the network architecture of the first access device and the second access device proposed by the embodiments of the present invention.
  • the first access device may have the function of supporting the information sending configuration.
  • the first access device may report its own capability first, and then the second access device supports the second access device.
  • the configured first access device is configured, and the first access device that does not support the configuration can still use its inherent mode for data forwarding, thereby achieving compatible and flexible control purposes, as follows:
  • the access device further includes:
  • the capability information receiving unit 1601 is configured to: before the sending unit 1102 sends the first configuration information to the first access device corresponding to the serving cell in the serving cell subset, the second access device receives the subset of the serving cell The capability information of the terminal forwarded by the first access device corresponding to the serving cell;
  • the sending unit 1102 is configured to confirm, according to the indication of the capability information, that the terminal supports the first access device corresponding to the serving cell in the subset of the serving cell when the uplink data without the valid data packet is not sent when there is no uplink data. Send the first configuration information; or,
  • the foregoing scheduling information may occupy different CCEs, such as one CCE, two CCEs, four CCEs, and eight CCEs, in a different channel environment to ensure reliable transmission of the foregoing scheduling commands.
  • the sending unit 1102 is further configured to: before sending the uplink scheduling information to the first access device corresponding to the serving cell in the serving cell subset, The first access device corresponding to the serving cell in the subset of the serving cell sends the second configuration information, and indicates that the first access device corresponding to the serving cell in the subset of the serving cell forwards the second configuration information to the terminal.
  • the second configuration information is used to indicate that when the uplink scheduling information occupies at least two control channel elements CCE, determine the CCE to be used by the feedback resource and the location of the used CCE; the feedback resource is that the terminal is to the first access device. And/or a feedback resource used by the second access device to send the second feedback information.
  • the second access device instructing the first access device to perform the forwarding operation may be: carrying the indication information in the second configuration information to instruct the first access device to perform the forwarding operation; or And the first access device forwards the second configuration information to the terminal, or sends an independent indication message to indicate the first access.
  • the device performs the forwarding operation.
  • the implementation of the second access device in the first embodiment of the present invention is not limited.
  • the terminal may further improve the reliability of the feedback information by adding the coded redundant information, as follows: As shown in FIG. 17, the access device further includes:
  • the second feedback receiving unit 1701 is configured to receive the second encoded information of the unified encoding that is repeatedly sent by the terminal device by using the at least two feedback resources.
  • the method for transmitting the uplink authorization confirmation message by the terminal and the method for the capability report and the function configuration are also applicable to the scenario where the terminal has only one serving cell, or the scenario when the carrier is aggregated, or the scenario when the dual connection is performed. For example, if there is only one scene in the serving cell, the second access device and the first access device may be combined into one access device. I will not repeat them here.
  • the embodiment of the present invention further provides a method for determining a subset of cells, which is specifically as follows:
  • the subset determining unit 1101 includes:
  • a set determining unit 1801 configured to determine a set of serving cells, where the set of serving cells is a set of serving cells managed by the second access device;
  • the broadcast unit 1802 is configured to broadcast, to the first access device corresponding to the serving cell in the set of serving cells, a measurement indication message, so that the first access device corresponding to the serving cell in the serving cell set forwards the measurement indication to the terminal
  • the measurement indication message is used to indicate that the terminal performs measurement on the downlink pilot, or is used to instruct any terminal to measure the downlink pilot.
  • the determining subset unit 1803 is configured to determine, according to the measurement result information forwarded by each of the first access devices, a set of serving cells that the terminal can access as a subset of serving cells to which the terminal belongs.
  • the second access device has the function of managing the first access device, and the management function can be seen in the solution of the embodiment of the present invention; and the first access device provides the terminal access.
  • the serving cell then all the serving cells provided by all the first access devices that the second access device can manage belong to the serving cell managed by the second access device, and the set of these serving cells is the second access A collection of service cells managed by the device.
  • the result of measuring the downlink pilot is used to indicate whether the terminal can access the first access device, and whether the quality of the access meets the requirement; thereby determining the service that the terminal can access.
  • a serving cell that can serve as a subset of the serving cell in the cell; for this purpose, the result of measuring the downlink pilot in the embodiment of the present invention can be achieved in various forms, as follows:
  • the above measurement result information includes:
  • the measurement result of all downlink pilots received by the first access device corresponding to the serving cell in the set of the serving cell, the measurement result of the downlink pilot that meets the configuration condition, and the correspondence between the terminal identifier and the accessible serving cell At least one of the information.
  • the measurement indication message broadcast by the second access device to the first access device may be repeatedly performed. After repeated transmission, the subset of serving cells will be determined again, so that it can be dynamic
  • the update service cell subset is specifically as follows:
  • the broadcast unit 1802 is configured to repeatedly perform according to a predetermined rule: broadcasting a measurement indication message to a first access device corresponding to the serving cell in the service cell set.
  • the broadcast measurement indication information is repeatedly sent to update the serving cell subset, and then updating the serving cell subset may have some technical requirements, such as: timeliness of update, system resource limitation occupied by the update, and the like.
  • the "predetermined rules" employed may be periodic and may be event triggered. For example, the time period of the periodic broadcast measurement indication message may be adjusted, or the event measurement triggering manner may be used to trigger the broadcast measurement indication message; the basis for adjusting the time period may be derived from the monitoring data of the second access device, for example, the terminal.
  • the frequent switching of the visited serving cell indicates that a more timely update is required, and the time period needs to be shortened.
  • the proportion or number of serving cell update in the subset of the serving cell is less than a predetermined threshold. Then you can extend the time period.
  • predetermined rules for controlling the broadcast measurement indication message may be set according to different technical indicator requirements, which is not limited by the embodiment of the present invention.
  • the access device further includes:
  • a set determining unit 1801 configured to determine a set of serving cells, where the set of serving cells is a set of serving cells managed by the second access device;
  • the idle cell determining unit 1901 is configured to determine an idle serving cell in the set of serving cells determined by the set determining unit 1801, where the idle serving cell does not belong to any one of the serving cell subsets;
  • the detecting unit 1902 is configured to detect whether a terminal enters in the idle serving cell determined by the idle cell determining unit 1901;
  • the indication sending unit 1903 is configured to indicate that the first access device corresponding to the idle serving cell enters a dormant state; if the detecting unit 1902 detects that a terminal in the idle serving cell enters, the first connection corresponding to the idle serving cell is activated. Into the device.
  • the idle serving cell does not belong to any one of the serving cell subsets, and then the idle serving cell does not currently have a terminal that can be accessed, so it is necessarily in an idle state. Then, the access device corresponding to the idle serving cell can be put into a sleep state. "Activate” and “Hibernate” are access devices The two working states. In the sleep state, the data transmission is not required. In this state, the terminal cannot access; the first access device after the subsequent activation corresponds to the sleep state, and the activated first access device has the function of data transmission. The first serving cell provided by the terminal can be accessed by the terminal.
  • the method for activating the first access device corresponding to the idle serving cell may be: sending the indication information to the first access device corresponding to the idle serving cell, and instructing to switch the working state to the active state.
  • how to enable the first access device to complete the switching of the working state from the dormant state to the active state is not limited by the embodiment of the present invention.
  • the embodiment of the present invention further provides another access device, as shown in FIG. 20, including: a receiver 2001, a transmitter 2002, a processor 2003, and a memory 2004; the access device is used as a second access device;
  • the processor 2003 is configured to perform control: determining a subset of serving cells to which the terminal belongs; the terminal is a destination terminal that sends downlink data to the second access device, where the subset of the serving cells is a serving cell that the terminal can access And the first access device is configured to send the downlink data and the downlink scheduling information to the first access device corresponding to the serving cell in the subset of the serving cell; the downlink scheduling information is used to indicate the first The access device sends the downlink data to the terminal.
  • the first access device may also be a serving cell that can serve the terminal. Therefore, the foregoing “serving cell subset” may correspond to: a set of serving cells that can serve the terminal. . It can be understood that the foregoing subset of serving cells should include at least one serving cell.
  • an access device may provide a plurality of serving cells. Therefore, in the embodiment of the present invention, two or more serving cells may correspond to the same access device.
  • the second access device may also provide a serving cell accessed by the terminal or provide a serving cell serving the terminal.
  • the second access device and the first access device may be physically the same access device.
  • the invention is not limited.
  • the downlink data and the downlink scheduling information are information that needs to be transmitted in the air interface, where the downlink scheduling information is finally sent to the terminal, and the downlink scheduling information is used to indicate that the first access device sends the downlink data.
  • the scheduling information may be used to specify a parameter used by the first access device to send downlink data.
  • the first access device and the second access device may be the access devices corresponding to the serving cell in the serving cell subset, and the process of obtaining the downlink scheduling information by the terminal may be as follows: The first access device corresponding to the serving cell in the second access device and/or the serving cell subset sends downlink scheduling information to the terminal. After receiving the downlink scheduling information, the terminal may receive downlink data according to the received downlink scheduling information.
  • the access devices are classified into two types, one is a second access device that functions as a centralized management, and the other is a first access device that provides a serving cell, and the second access device needs to send a downlink.
  • the downlink data and the scheduling information are sent to the first access device corresponding to the serving cell in the serving network cell subset; and the flexible wireless deployment or wired deployment of the macro cell, the small cell, and the pico cell is implemented.
  • Each of the first access devices sends downlink data to the terminal on the resource indicated by the scheduling information, and the terminal receives the downlink data sent by each first access device corresponding to the resource indicated by the scheduling information, so that the terminal can obtain the combined gain.
  • Improve the reliability of transmitting downlink data and scheduling information and improve the transmission performance of downlink data.
  • the communication between the first access device and the second access device may be implemented by using an interface between the access devices, for example, an X2 interface between the base station and the base station; the first access device and the first The two access devices may not have an interface for direct communication. In this case, the device may be forwarded by other access devices.
  • the processor 2003 is specifically configured to perform control: by using the first access
  • the downlink data and the downlink scheduling information are sent by the interface between the device and the second access device; or the downlink data and the downlink scheduling information are sent to the third access device, and the third access device is instructed to perform the downlink
  • the data and the downlink scheduling information are forwarded to the first access device corresponding to the serving cell in the subset of the serving cells.
  • the implementation manner of the second access device instructing the third device to perform the forwarding may be: carrying the indication information in the downlink scheduling information to indicate that the third device forwards, or configuring the third access device as the default forwarding.
  • the device (the third access device performs the forwarding as long as the downlink data and the downlink scheduling information are received), or sends an independent message to instruct the third device to forward, and may also carry the first connection in the downlink data and the downlink scheduling information.
  • the address of the incoming device is such that the third access device performs forwarding according to the address of the first access device. Therefore, the manner of the indication may be explicit or implicit, and the manner of the indication is not limited by the embodiment of the present invention.
  • each of the first access devices sends the scheduling information to the terminal and the downlink data is sent on the resource specified by the scheduling information.
  • the specified resource receives the first feedback information, so that the first feedback information is forwarded to the second
  • the convergence performance is also increased, and the transmission performance of the first feedback information is also improved.
  • the processor 2003 is further configured to perform control: receiving the service after transmitting the downlink data and the downlink scheduling information.
  • the processor 2003 is specifically configured to perform control: if the received first feedback information indication is received If the first access device with the set number or the set ratio successfully receives the downlink data, it is determined that the terminal successfully receives the downlink data, otherwise, it is confirmed that the terminal does not successfully receive the downlink data.
  • the first feedback information is used to determine the status of the terminal receiving the downlink data
  • the type of information carried by the terminal may be many, for example, indicating that a certain downlink data is successfully received or not successfully received; or What are the downlink data that are successfully received, and which downlink data is not successfully received; or, the statistics of the success information, such as the proportion of successful/unsuccessfully received downlink data, the number of successful/unsuccessfully received downlink data, etc. . Therefore, the type of the first feedback information may be many depending on the requirements. According to the type of the different feedback information, the corresponding determining manner may be used to determine whether the terminal successfully receives the downlink data or fails to receive the downlink data. The above specific determination manner should not be construed as limiting the uniqueness of the embodiments of the present invention.
  • the set number and the set ratio can be set by the technician according to experience, or set according to the quality requirement of the downlink data transmission. In theory, only one first feedback information is displayed as the terminal. If the receiving is successful, the terminal can receive the success. The higher the setting, the higher the accuracy of determining the successful receiving of the terminal.
  • the specific parameters of the above-set number and the set ratio are not uniquely limited in this embodiment.
  • the embodiment of the present invention if the second access device determines that the terminal does not successfully receive the downlink data, the embodiment of the present invention further provides an implementation scheme of the automatic retransmission as follows: Further, the processor 2003 is further configured to control execution: If it is determined that the terminal does not successfully receive the downlink data, if the second access device has a control function of a radio link control layer and a layer, the second access device notifies the radio link control layer to perform an automatic retransmission request. Retransmission operation.
  • the retransmission operation of the radio link control layer to perform the automatic retransmission request may be retransmitted. Lose data that was not successfully transmitted.
  • the automatic retransmission can be completed by the first access device, so the second access device performs automatic Retransmission is not the only alternative implementation.
  • the foregoing embodiment is mainly used to implement the scheduling of the downlink data.
  • the embodiment of the present invention further provides the scheduling of the uplink data transmission, which is specifically as follows.
  • the processor 2003 is further configured to perform control: determining the serving cell to which the terminal belongs. After the collection, the uplink scheduling information is sent to the first access device corresponding to the serving cell in the subset of the serving cell; the uplink scheduling information is used to indicate that the terminal is authorized to send uplink data on the resource specified by the uplink scheduling information; Uplink data forwarded by the first access device corresponding to the serving cell in the serving cell subset.
  • the uplink scheduling information is finally sent to the terminal, so that the terminal sends the uplink data according to the uplink scheduling information;
  • the first access device and the second access device may both be corresponding to the serving cell in the subset of the serving cell.
  • the access device, the process for obtaining the uplink scheduling information by the terminal may be as follows: the second access device and/or the first access device corresponding to the serving cell in the subset of the serving cell and/or the uplink scheduling information is sent to the terminal So that the terminal sends uplink data according to the uplink scheduling information.
  • the terminal may send the uplink data on the resource specified by the uplink scheduling information, because each first access device receives the uplink data on the resource specified by the uplink scheduling information, although the terminal only sends one copy. Data, but each first access device forwards to the second access device, and the second access device can obtain the combining gain, thereby improving the reliability of transmitting the uplink data and improving the transmission performance of the uplink data.
  • the first access device may have different options for forwarding the uplink data according to the capability, as follows:
  • the uplink data forwarded by each first access device includes:
  • the uplink data that is decoded by the first access device is forwarded; or the first receiving device does not confirm the uplink data that is successfully forwarded when the uplink data is received;
  • the method further includes:
  • the second access device performs combined decoding on the uplink data forwarded by each first access device.
  • the first access device after confirming that the first access device succeeds in receiving, the first access device can decode and forward the decoded data, and the decoded data amount is much smaller than the original data amount, so the access device can be saved.
  • the first access device does not perform decoding and confirms whether the reception is successful, the received uplink data may be directly forwarded, so that the second access device may obtain the combined decoding. Combine gain. Even if the first access device directly forwards, it can save about 50% of the bandwidth compared to the uplink and downlink signals before the encoding and decoding (the bandwidth required for the original signal before decoding and encoding is far more than the transmission decoding).
  • the bandwidth required after the data (the amount of data is equivalent to the amount of data before encoding), that is, the bandwidth required to transmit the decoded data is negligible compared to the original data transmitted. Therefore, if only one direction is transmitted, the original before decoding is transmitted. In the other direction, the signal is transmitted in the following direction, and the original signal before encoding is transmitted in both directions, and the bandwidth is reduced by about half.
  • the first access device forwards the decoded signal if the decoding is correct, and if the decoding cannot succeed, the original signal is forwarded. At this time, the amount of data to be forwarded is also smaller than that of directly forwarding the original signal, saving transmission bandwidth.
  • the uplink authorization of the access device to the terminal in the current communication protocol is as follows: when the terminal has uplink data to be sent, the scheduling request is first sent to the second access device and/or the first access device, and then the second access is performed.
  • the device and/or the first access device sends an uplink grant to the terminal according to the received scheduling request, and the terminal sends a buffer status report to the second access device, which may be directly sent to the second access device, or may be directly connected to the second access device.
  • the ingress device sends the second access device to the second access device, or the second access device sends the uplink authorization to the terminal again according to the status report (can be directly sent to the terminal, or
  • the two access devices are sent to the terminal, or sent to the terminal in two ways.
  • the terminal sends uplink data based on the uplink grant.
  • This process has a delay of more than ten MSs.
  • the embodiment of the present invention may be implemented in a blind scheduling manner, as follows.
  • the processor 2003 is specifically configured to perform control: the second access device determines the subset of serving cells to which the terminal belongs. Then, if the scheduling request and/or the buffer report of the terminal device are not received, the uplink scheduling information is sent to the first access device corresponding to the serving cell in the subset of the serving cell.
  • the blind scheduling of the embodiment of the present invention is that the second access device does not need to receive the scheduling request and/or the buffer status report of the terminal, but directly sends the uplink grant to the terminal. If the terminal has uplink data, the terminal sends the uplink request to the base station according to the uplink grant. Uplink data, which greatly reduces the uplink data transmission delay.
  • the embodiment of the present invention may be as follows. Further, the processor 2003 is further configured to perform control: after determining the subset of serving cells to which the terminal belongs, to the serving cell. The first access device corresponding to the serving cell in the subset sends the first configuration information, where the first configuration information is used to configure the first access device and/or the terminal to: send no valid data when there is no uplink data.
  • the uplink data of the packet, or only the uplink grant acknowledgement message is sent when there is no uplink data, and the uplink grant acknowledgement message is used to indicate that there is no uplink data.
  • the uplink authorization acknowledgement message may specifically be a message sent on the physical uplink control channel.
  • the specific resource used by the message may be determined according to the starting position of the physical resource CCE occupied by the uplink authorization, for example, uplink.
  • the position of the control channel the starting CCE position + the offset, wherein the above offset can be configured by a higher layer such as an RRC (Radio Resource Control) message or fixed in the protocol.
  • RRC Radio Resource Control
  • the implementation of the blind scheduling in this embodiment can be implemented independently, and does not need to rely on the network architecture of the first access device and the second access device proposed by the embodiments of the present invention.
  • the first access device may have the function of supporting the information sending configuration.
  • the first access device may report its own capability first, and then the second access device supports the second access device.
  • the configured first access device is configured, and the first access device that does not support the configuration can still perform data forwarding in its inherent manner, thereby achieving compatible and flexible control purposes, as follows: Further, the foregoing processing
  • the controller 2003 is further configured to: control, before the second access device sends the first configuration information to the first access device corresponding to the serving cell in the serving cell subset, receive the serving cell in the subset of the serving cell The capability information of the terminal that is forwarded by the corresponding first access device;
  • the second access device confirms that the terminal supports sending only the uplink authorization confirmation message when there is no uplink data, and then sends the first configuration to the first access device corresponding to the serving cell in the subset of the serving cell. information.
  • the feedback resource (uplink control channel) is scheduled according to the scheduling.
  • the starting position of the physical resource CCE occupied by the scheduling information of the row data is determined.
  • the location of the uplink control channel the starting CCE location + the offset, wherein the offset may be configured by a higher layer, such as an RRC (Radio Resource Control) message, or fixed in the protocol.
  • the foregoing scheduling information may occupy different CCEs, such as one CCE, two CCEs, four CCEs, and eight CCEs, in a different channel environment to ensure reliable transmission of the foregoing scheduling commands.
  • the processor 2003 is further configured to: perform: before sending the uplink scheduling information to the first access device corresponding to the serving cell in the serving cell subset, Transmitting the second configuration information to the first access device corresponding to the serving cell in the subset of the serving cell, and instructing the first access device corresponding to the serving cell in the subset of the serving cell to forward the second configuration information to the foregoing
  • the second configuration information is used to indicate that when the uplink scheduling information occupies at least two control channel elements CCE, the CCE used by the feedback resource and the location of the used CCE are determined; the feedback resource is the first access of the terminal to the terminal.
  • the device and/or the second access device send feedback resources used by the second feedback information.
  • the second access device instructing the first access device to perform the forwarding operation may be: carrying the indication information in the second configuration information to instruct the first access device to perform the forwarding operation; or And the first access device forwards the second configuration information to the terminal, or sends an independent indication message to indicate the first access.
  • the device performs the forwarding operation.
  • the implementation of the second access device in the first embodiment of the present invention is not limited.
  • the terminal may further improve the reliability of the feedback information by adding the coded redundant information, as follows: further, the processor 2003 is further configured to perform control: receiving the terminal device to use at least two feedback resources respectively The second encoded information of the unified coding is repeatedly transmitted.
  • the method for transmitting the uplink authorization confirmation message by the terminal and the method for the capability report and the function configuration are also applicable to the scenario where the terminal has only one serving cell, or the scenario when the carrier is aggregated, or the scenario when the dual connection is performed. For example, if there is only one scene in the serving cell, the second access device and the first access device may be combined into one access device. I will not repeat them here.
  • the embodiment of the present invention further provides a method for determining a subset of cells, which is specifically as follows: optionally, the foregoing
  • the processor 2003 is specifically configured to perform control: the second access device determines a set of serving cells, where the set of serving cells is a set of serving cells managed by the second access device;
  • the first access device corresponding to the serving cell in the set of serving cells And transmitting, by the first access device corresponding to the serving cell in the set of serving cells, a measurement indication message, so that the first access device corresponding to the serving cell in the serving cell set forwards the measurement indication message to the terminal;
  • the measurement indication message For indicating that the terminal performs measurement on the downlink pilot, or is used to instruct any terminal to measure the downlink pilot;
  • the second access device has the function of managing the first access device, and the management function can be seen in the solution of the embodiment of the present invention; and the first access device provides the terminal access.
  • the serving cell then all the serving cells provided by all the first access devices that the second access device can manage belong to the serving cell managed by the second access device, and the set of these serving cells is the second access A collection of service cells managed by the device.
  • the result of measuring the downlink pilot is used to indicate whether the terminal can access the first access device, and whether the quality of the access meets the requirement; thereby determining the service that the terminal can access.
  • a serving cell that can serve as a subset of the serving cell in the cell; for this purpose, the result of measuring the downlink pilot in the embodiment of the present invention can be achieved in various forms, as follows:
  • the above measurement result information includes:
  • the measurement result of all downlink pilots received by the first access device corresponding to the serving cell in the set of the serving cell, the measurement result of the downlink pilot that meets the configuration condition, and the correspondence between the terminal identifier and the accessible serving cell At least one of the information.
  • the measurement indication message broadcast by the second access device to the first access device may be repeatedly performed. After the transmission is repeated, the serving cell subset is determined again, so that the serving cell subset can be dynamically updated, as follows:
  • the processor 2003 is specifically configured to perform control: the second access device according to the predetermined rule Repeatedly: broadcasting a measurement indication message to a first access device corresponding to the serving cell in the foregoing set of serving cells.
  • the broadcast measurement indication information is repeatedly sent to update the serving cell subset, and then updating the serving cell subset may have some technical requirements, such as: timeliness of update, system resource limitation occupied by the update, and the like.
  • the "predetermined rules" employed may be periodic and may be event triggered. example For example, the time period of the periodic broadcast measurement indication message may be adjusted, or the event triggering manner may be used to trigger the broadcast measurement indication message; the basis for adjusting the time period may be derived from the monitoring data of the second access device, for example, the terminal The frequent switching of the visited serving cell indicates that a more timely update is required, and the time period needs to be shortened.
  • the proportion or number of serving cell update in the subset of the serving cell is less than a predetermined threshold. Then you can extend the time period.
  • predetermined rules for controlling the broadcast measurement indication message may be set according to different technical indicator requirements, which is not limited by the embodiment of the present invention.
  • the embodiment of the present invention there may be some times when no terminal needs to access the wireless network through the first access device, and then the first access device can be dormant, thereby saving power; the embodiment of the present invention provides The specific implementation scheme of controlling the first access device to enter the dormant and activating the first access device is as follows: further, the processor 2003 is further configured to perform control: determining a set of serving cells, where the set of serving cells is the second access a collection of service cells managed by the device;
  • the first access device corresponding to the idle serving cell is activated.
  • the idle serving cell does not belong to any one of the serving cell subsets, and then the idle serving cell does not currently have a terminal that can be accessed, so it is necessarily in an idle state. Then, the access device corresponding to the idle serving cell can be put into a sleep state.
  • "Activation" and "Sleep" are two working states of the access device. In the sleep state, the data transmission is not required. In this state, the terminal cannot access; the first access device after the subsequent activation corresponds to the sleep state, and the activated first access device has the function of data transmission. The first serving cell provided by the terminal can be accessed by the terminal.
  • the method for activating the first access device corresponding to the idle serving cell may be: sending the indication information to the first access device corresponding to the idle serving cell, and instructing to switch the working state to the active state.
  • how to enable the first access device to complete the switching of the working state from the dormant state to the active state is not limited by the embodiment of the present invention.
  • the embodiment of the present invention further provides a wireless network, including: at least two access devices, as shown in FIG. 21;
  • the at least two access devices include at least one access device used by the second access device 2101 and at least one access device used as the first access device 2102.
  • FIG. 21 is a typical application scenario, including a second access device and n first access devices; the number of access devices is related to a subset of serving cells, and the subset of serving cells is a terminal
  • the serving cell that can be accessed is related, and the serving cell that the terminal can access changes with the change of the terminal, and also changes with the location of the terminal, the working state of the access device/terminal, and the competition between the terminals. . Therefore, in the process of providing the service, the second access device and the first access device may be in a process of changing, and the number of the first access devices is not necessarily fixed.
  • the number of access devices shown in FIG. 21 above is only an example and should not be construed as limiting the embodiments of the present invention.
  • the access devices are classified into two types, one is a second access device that functions as a centralized management, and the other is a first access device that provides a serving cell, and the second access device needs to send a downlink.
  • the downlink data and the scheduling information are sent to the first access device corresponding to the serving cell in the serving network cell subset; and the flexible wireless deployment or wired deployment of the macro cell, the small cell, and the pico cell is implemented.
  • Each of the first access devices sends downlink data to the terminal on the resource indicated by the scheduling information, and the terminal receives the downlink data sent by each first access device corresponding to the resource indicated by the scheduling information, so that the terminal can obtain the combined gain.
  • Improve the reliability of transmitting downlink data and scheduling information and improve the transmission performance of downlink data.
  • the storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线网络调度方法,接入设备及无线网络,其中方法的实现包括:第二接入设备确定终端所属的服务小区子集;所述终端为所述第二接入设备发送下行数据的目的终端,所述服务小区子集为所述终端能够接入的服务小区的集合,各服务小区分别对应有第一接入设备;所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备,发送下行数据以及下行调度信息;所述下行调度信息用于指示第一接入设备向所述终端发送所述下行数据。可以实现小区灵活的无线部署或有线部署。各第一接入设备都会在调度信息指示的资源上向终端发送下行数据,终端则会对应的在调度信息指示的资源上接收各第一接入设备发送的下行数据,这样终端可以获得合并增益,提高传输下行数据和调度信息的可靠性,并且提升下行数据的传输性能。

Description

无线网络调度方法,接入设备及无线网络 技术领域
本发明涉及通信技术领域,特别涉及一种无线网络调度方法,接入设备及无线网络。
背景技术
在长期演进(Long Term Evolution,LTE)系统及增强的长期演进(LTE-Advance)系统中,各种布网形态越来越多,比如异构网络(heterogeneous network,Hetnet),协同多点传输(Coordinated Multiple Points,CoMP),小小区组网(如:微微小区Pico Cell),小小区密集组网,双连接等。
无线网络通过小区(Cell)完成覆盖,目前存在的小区种类较多,通常按照覆盖范围,其中覆盖范围小大的有宏小区,覆盖范围较小的有小小区、微微小区等。通常小小区部署在城区热点,如商场,超市等,或者其它需要提升覆盖和容量的室内或室外场所。接入设备提供小区覆盖的物理设备支撑,宏小区一般由基站提供。
提高无线网络系统的容量、覆盖率,以及优化整个无线网络系统的传输是无线网络一直追求的目标。
目前,有一种小小区的部署方式是通过光纤拉远实现的。该方案,使用光纤建立小小区与宏小区之间的连接,这样小小区与宏小区之间具有快速通信的特点,但是部署光纤的受场地以及施工等限制,不太适用于密集小区的部署,并且下行数据的传输性能较低。
发明内容
本发明实施例提供了一种无线网络调度方法,接入设备及无线网络。用于实现宏小区、小小区、微微小区灵活的的无线部署或有线部署,并且获得较好的数据传输性能。
本发明实施例一方面提供了一种无线网络调度方法,包括:
第二接入设备确定终端所属的服务小区子集;所述终端为所述第二接入设 备发送下行数据的目的终端,所述服务小区子集为所述终端能够接入的服务小区的集合,各服务小区分别对应有第一接入设备;
所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备,发送下行数据以及下行调度信息;所述下行调度信息用于指示第一接入设备向所述终端发送所述下行数据。
结合一方面的实现方式,在第一种可能的实现方式中,所述发送下行数据以及下行调度信息,包括:
通过第一接入设备与所述第二接入设备之间的接口发送所述下行数据以及下行调度信息;或者,将所述下行数据以及下行调度信息发送给第三接入设备,并指示所述第三接入设备将所述下行数据以及下行调度信息转发给所述服务小区子集内的服务小区对应的第一接入设备。
结合一方面的实现方式,在第二种可能的实现方式中,在发送下行数据以及下行调度信息之后,所述方法还包括:
所述第二接入设备接收所述服务小区子集内的服务小区对应的第一接入设备发送的第一反馈信息;
依据所述第一反馈信息确定所述终端成功接收所述下行数据或未成功接收所述下行数据。
结合一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述依据所述第一反馈信息确定所述终端是功接收所述下行数据或未成功接收所述下行数据,包括:
若接收到的所述第一反馈信息指示有设定数量或者设定比例的第一接入设备成功接收所述下行数据,则确定所述终端成功接收所述下行数据,否则确认所述终端未成功接收所述下行数据。
结合一方面的第二种可能的实现方式,在第四种可能的实现方式中,若确定所述终端未成功接收所述下行数据,所述方法还包括:
若所述第二接入设备具备无线链路控制层及以上层的控制功能,则所述第二接入设备通知无线链路控制层执行自动重传请求的重传操作。
结合一方面的第一种、第二种、第三种或者第四种可能的实现方式,在第五种可能的实现方式中,所述第二接入设备在确定所述终端所属的服务小区子 集后,还包括:
所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息;所述上行调度信息用于指示授权所述终端在所述上行调度信息指定的资源上发送上行数据;
所述第二接入设备接收所述服务小区子集内的服务小区对应的第一接入设备转发的上行数据。
结合一方面的第五种可能的实现方式,在第六种可能的实现方式中,各第一接入设备转发的上行数据包括:
各第一接入设备在确认所述上行数据接收成功后,转发的经第一接入设备解码后的上行数据;或者,各第一接收设备在未确认所述上行数据接收成功即转发的上行数据;
若所述各第一接入设备转发的上行数据为:各第一接收设备在未确认所述上行数据接收成功即转发的上行数据,所述方法还包括:
所述第二接入设备对各第一接入设备转发的上行数据进行合并解码。
结合一方面的第五种可能的实现方式,在第七种可能的实现方式中,所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息包括:
所述第二接入设备在确定所述终端所属的服务小区子集后,若未收到所述终端设备的调度请求和/或缓存报告,则向所述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息。
结合一方面的第七种可能的实现方式,在第八种可能的实现方式中,在所述第二接入设备在确定所述终端所属的服务小区子集之后,所述方法还包括:
所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息,所述第一配置信息用于将第一接入设备和/或所述终端配置为:在没有上行数据时不发送没有有效数据包的上行数据,或者,在没有上行数据时仅发送上行授权确认消息,所述上行授权确认消息用于表示没有上行数据。
结合一方面的第八种可能的实现方式,在第九种可能的实现方式中,在所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备发送 第一配置信息之前,还包括:
所述第二接入设备接收由所述服务小区子集内的服务小区对应的第一接入设备转发的所述终端的能力信息;
所述第二接入设备依据所述能力信息的指示确认所述终端支持在没有上行数据时不发送没有有效数据包的上行数据,则向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息;或者,
所述第二接入设备依据所述能力信息的指示确认所述终端支持在没有上行数据时仅发送上行授权确认消息,则向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息。
结合一方面的第五种可能的实现方式,在第十种可能的实现方式中,所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息之前,所述方法还包括:
所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备发送第二配置信息,并指示所述服务小区子集内的服务小区对应的第一接入设备将所述第二配置信息转发给所述终端,所述第二配置信息用于指示在所述上行调度信息占用至少两个控制信道元素CCE时,确定反馈资源应使用的CCE以及使用的CCE的位置;所述反馈资源为所述终端向第一接入设备和/或第二接入设备发送第二反馈信息所使用的反馈资源。
结合一方面的第十种可能的实现方式,在第十一种可能的实现方式中,所述方法还包括:
所述第二接入设备接收所述终端设备使用至少两个反馈资源分别重复发送的统一编码的第二反馈信息。
结合一方面的第一种、第二种、第三种或者第四种可能的实现方式,在第十二种可能的实现方式中,所述第二接入设备确定终端所属的服务小区子集包括:
第二接入设备确定服务小区集合,所述服务小区集合为所述第二接入设备管理的服务小区的集合;
所述第二接入设备向所述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息,使所述服务小区集合内的服务小区对应的第一接入设备 向所述终端转发所述测量指示消息;所述测量指示消息,用于指示所述终端对下行导频进行测量,或者,用于指示任意终端对下行导频进行测量;
根据所述各第一接入设备转发的测量结果信息,确定所述终端能够接入的服务小区的集合作为所述终端所属的服务小区子集。
结合一方面的第十二种可能的实现方式,在第十三种可能的实现方式中,所述测量结果信息包括:
所述服务小区集合内的服务小区对应的第一接入设备接收到的所有下行导频的测量结果、符合配置条件的下行导频的测量结果,以及终端标识与能够接入的服务小区的对应关系信息中的至少一项。
结合一方面的第十二种可能的实现方式,在第十四种可能的实现方式中,所述第二接入设备向所述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息包括:
所述第二接入设备按照预定的规则重复执行:向所述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息。
结合一方面可能的实现方式,在第十五种可能的实现方式中,所述方法还包括:
第二接入设备确定服务小区集合,所述服务小区集合为所述第二接入设备管理的服务小区的集合;
确定所述服务小区集合内的空闲服务小区,所述空闲服务小区不属于任何一个服务小区子集;
指示所述空闲服务小区对应的第一接入设备进入休眠状态;
若检测到所述空闲服务小区内有终端进入,则激活所述空闲服务小区对应的第一接入设备。
本发明实施例二方面提供了一种接入设备,作为第二接入设备使用,包括:
子集确定单元,用于确定终端所属的服务小区子集;所述终端为所述第二接入设备发送下行数据的目的终端,所述服务小区子集为所述终端能够接入的服务小区的集合,各服务小区分别对应有第一接入设备;
发送单元,用于向所述子集确定单元确定的服务小区子集内的服务小区对应的第一接入设备,发送下行数据以及下行调度信息;所述下行调度信息用于 指示第一接入设备向所述终端发送所述下行数据。
结合二方面的实现方式,在第一种可能的实现方式中,
所述发送单元,具体用于通过第一接入设备与所述第二接入设备之间的接口发送所述下行数据以及下行调度信息;或者,将所述下行数据以及下行调度信息发送给第三接入设备,并指示所述第三接入设备将所述下行数据以及下行调度信息转发给所述服务小区子集内的服务小区对应的第一接入设备。
结合二方面的实现方式,在第二种可能的实现方式中,所述接入设备还包括:
第一反馈接收单元,用于在发送下行数据以及下行调度信息之后,接收所述服务小区子集内的服务小区对应的第一接入设备发送的第一反馈信息;
结果确定单元,用于依据所述第一反馈接收单元接收到的所述第一反馈信息确定所述终端成功接收所述下行数据或未成功接收所述下行数据。
结合二方面的第二种可能的实现方式,在第三种可能的实现方式中
所述结果确定单元,用于若所述第一反馈接收单元接收到的所述第一反馈信息指示有设定数量或者设定比例的第一接入设备成功接收所述下行数据,则确定所述终端成功接收所述下行数据,否则确认所述终端未成功接收所述下行数据。
结合二方面的第二种可能的实现方式,在第四种可能的实现方式中,所述接入设备还包括:
重传控制单元,用于若所述结果确定单元确定所述终端未成功接收所述下行数据,并且所述第二接入设备具备无线链路控制层及以上层的控制功能,则通知无线链路控制层执行自动重传请求的重传操作。
结合二方面的第一种、第二种、第三种或者第四种可能的实现方式,在第五种可能的实现方式中,所述发送单元,还用于在所述子集确定单元确定所述终端所属的服务小区子集后,向所述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息;所述上行调度信息用于指示授权所述终端在所述上行调度信息指定的资源上发送上行数据;所述接入设备还包括:
数据接收单元,用于接收所述服务小区子集内的服务小区对应的第一接入设备转发的上行数据。
结合二方面的第五种可能的实现方式,在第六种可能的实现方式中,各第一接入设备转发的上行数据包括:各第一接入设备在确认所述上行数据接收成功后,转发的经第一接入设备解码后的上行数据;或者,各第一接收设备在未确认所述上行数据接收成功即转发的上行数据;若所述各第一接入设备转发的上行数据为:各第一接收设备在未确认所述上行数据接收成功即转发的上行数据,所述接入设备还包括:
解码单元,用于对所述数据接收单元接收到的各第一接入设备转发的上行数据进行合并解码。
结合二方面的第五种可能的实现方式,在第七种可能的实现方式中,
所述发送单元,用于在所述子集确定单元确定所述终端所属的服务小区子集后,若未收到所述终端设备的调度请求和/或缓存报告,则向所述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息。
结合二方面的第七种可能的实现方式,在第八种可能的实现方式中,
所述发送单元,还用于在所述子集确定单元确定所述终端所属的服务小区子集之后,向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息,所述第一配置信息用于将第一接入设备和/或所述终端配置为:在没有上行数据时不发送没有有效数据包的上行数据,或者,在没有上行数据时仅发送上行授权确认消息,所述上行授权确认消息用于表示没有上行数据。
结合二方面的第八种可能的实现方式,在第九种可能的实现方式中,所述接入设备还包括:
能力信息接收单元,用于在所述发送单元向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息之前,所述第二接入设备接收由所述服务小区子集内的服务小区对应的第一接入设备转发的所述终端的能力信息;
所述发送单元,用于依据所述能力信息的指示确认所述终端支持在没有上行数据时不发送没有有效数据包的上行数据,则向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息;或者,
依据所述能力信息的指示确认所述终端支持在没有上行数据时仅发送上行授权确认消息,则向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息。
结合二方面的第五种可能的实现方式,在第十种可能的实现方式中,
所述发送单元,还用于在向所述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息之前,向所述服务小区子集内的服务小区对应的第一接入设备发送第二配置信息,并指示所述服务小区子集内的服务小区对应的第一接入设备将所述第二配置信息转发给所述终端,所述第二配置信息用于指示在所述上行调度信息占用至少两个控制信道元素CCE时,确定反馈资源应使用的CCE以及使用的CCE的位置;所述反馈资源为所述终端向第一接入设备和/或第二接入设备发送第二反馈信息所使用的反馈资源。
结合二方面的第十种可能的实现方式,在第十一种可能的实现方式中,所述接入设备还包括:
第二反馈接收单元,用于接收所述终端设备使用至少两个反馈资源分别重复发送的统一编码的第二反馈信息。
结合二方面的第一种、第二种、第三种或者第四种可能的实现方式,在第十二种可能的实现方式中,其特征在于,所述子集确定单元包括:
集合确定单元,用于确定服务小区集合,所述服务小区集合为所述第二接入设备管理的服务小区的集合;
广播单元,用于向所述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息,使所述服务小区集合内的服务小区对应的第一接入设备向所述终端转发所述测量指示消息;所述测量指示消息,用于指示所述终端对下行导频进行测量,或者,用于指示任意终端对下行导频进行测量;
确定子集单元,用于根据所述各第一接入设备转发的测量结果信息,确定所述终端能够接入的服务小区的集合作为所述终端所属的服务小区子集。
结合二方面的第十二种可能的实现方式,在第十三种可能的实现方式中,所述测量结果信息包括:
所述服务小区集合内的服务小区对应的第一接入设备接收到的所有下行导频的测量结果、符合配置条件的下行导频的测量结果,以及终端标识与能够接入的服务小区的对应关系信息中的至少一项。
结合二方面的第十二种可能的实现方式,在第十四种可能的实现方式中,
所述广播单元,用于按照预定的规则重复执行:向所述服务小区集合内的 服务小区对应的第一接入设备广播测量指示消息。
结合二方面可能的实现方式,在第十五种可能的实现方式中,所述接入设备还包括:
集合确定单元,用于确定服务小区集合,所述服务小区集合为所述第二接入设备管理的服务小区的集合;
空闲小区确定单元,用于确定所述集合确定单元确定的服务小区集合内的空闲服务小区,所述空闲服务小区不属于任何一个服务小区子集;
检测单元,用于检测所述空闲小区确定单元确定的所述空闲服务小区内是否有终端进入;
指示发送单元,用于指示所述空闲服务小区对应的第一接入设备进入休眠状态;若所述检测单元检测到所述空闲服务小区内有终端进入,则激活所述空闲服务小区对应的第一接入设备。
本发明实施例三方面还提供了一种无线网络,包括:至少两个接入设备,
所述至少两个接入设备中,至少包括一个本发明实施例提供的任意一项作为第二接入设备使用的接入设备,以及至少一个作为第一接入设备使用的接入设备。
从以上技术方案可以看出,本发明实施例具有以下优点:将接入设备分为两类,一类是起集中管理作用的第二接入设备,另一类是提供服务小区的第一接入设备,在第二接入设备需要发送下行数据的时候,向服务小区子集内的至少一个服务小区对应的第一接入设备发送下行数据以及调度信息;可以实现宏小区、小小区、微微小区灵活的无线部署或有线部署。各第一接入设备都会在调度信息指示的资源上向终端发送下行数据,终端则会对应的在调度信息指示的资源上接收各第一接入设备发送的下行数据,这样终端可以获得合并增益,提高传输下行数据和调度信息的可靠性,并且提升下行数据的传输性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提 下,还可以根据这些附图获得其他的附图。
图1为本发明实施例方法流程示意图;
图2为本发明实施例系统结构以及协议栈结构示意图;
图3为本发明实施例方法流程示意图;
图4为本发明实施例方法流程示意图;
图5为本发明实施例方法流程示意图;
图6为本发明实施例方法流程示意图;
图7为本发明实施例方法流程示意图;
图8A为本发明实施例服务小区集合结构示意图;
图8B为本发明实施例服务小区集合结构示意图;
图9为本发明实施例方法流程示意图;
图10为本发明实施例方法流程示意图;
图11为本发明实施例接入设备结构示意图;
图12为本发明实施例接入设备结构示意图;
图13为本发明实施例接入设备结构示意图;
图14为本发明实施例接入设备结构示意图;
图15为本发明实施例接入设备结构示意图;
图16为本发明实施例接入设备结构示意图;
图17为本发明实施例接入设备结构示意图;
图18为本发明实施例接入设备结构示意图;
图19为本发明实施例接入设备结构示意图;
图20为本发明实施例另一接入设备结构示意图;
图21为本发明实施例无线网络结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例提供了一种无线网络调度方法,如图1所示,包括:
101:第二接入设备确定终端所属的服务小区子集;上述终端为上述第二接入设备发送下行数据的目的终端,上述服务小区子集为上述终端能够接入的服务小区的集合,各服务小区分别对应有第一接入设备;
在本发明实施例中,第一接入设备对应的是终端能够接入的服务小区(即:能够为终端服务的服务小区),第二接入设备是起集中控制功能的接入设备,为了区分两种不同类型的接入设备,采用“第一”和“第二”进行区分,“第一”和“第二”不具有技术含义不应理解为对本发明实施例的限定,后续实施例对此不再一一赘述。通常来说,终端能够接入的服务小区会很多,因此服务小区子集内包含的服务小区是会很多的。
在本发明实施例中,由于第一接入设备对应的也可以是能够为终端服务的服务小区,因此上述“服务小区子集”则可以对应的是:能够为上述终端服务的服务小区的集合。可以理解的是,上述服务小区子集应该包含至少一个服务小区。另外,一个接入设备可以提供很多服务小区,因此在本发明实施例中,可以由两个或者两个以上的服务小区对应同一个接入设备。
可以理解的,第二接入设备也可能提供终端接入的服务小区,或者提供为终端服务的服务小区。此时,第二接入设备和第一接入设备在物理上可以是同一个接入设备。本发明不作限制。
102:上述第二接入设备向上述服务小区子集内的服务小区对应的第一接入设备,发送下行数据以及下行调度信息;上述下行调度信息用于指示第一接入设备向上述终端发送上述下行数据。
在本发明实施例中,以上下行数据以及下行调度信息是需要在空口传输的信息,其中下行调度信息最终会被发送给终端;下行调度信息是用来指示第一接入设备发送下行数据的信息,在调度信息中可以指定第一接入设备发送下行数据时采用的参数。由于第一接入设备和第二接入设备都可能是服务小区子集内服务小区对应的接入设备,那么终端获得下行调度信息的过程可以如下:上述第二接入设备和/或上述服务小区子集内的服务小区对应的第一接入设备向上述终端发送下行调度信息。终端在接收到上述下行调度信息后,则可以根据接收到的下行调度信息接收下行数据。
以上实施例,将接入设备分为两类,一类是起集中管理作用的第二接入设备,另一类是提供服务小区的第一接入设备,在第二接入设备需要发送下行数据的时候,向服务网小区子集内的服务小区对应的第一接入设备发送下行数据以及调度信息;实现宏小区、小小区、微微小区灵活的无线部署或有线部署。各第一接入设备都会在调度信息指示的资源上向终端发送下行数据,终端则会对应的在调度信息指示的资源上接收各第一接入设备发送的下行数据,这样终端可以获得合并增益,提高传输下行数据和调度信息的可靠性,并且提升下行数据的传输性能。
在本发明实施例中,第一接入设备和第二接入设备之间通信可以采用接入设备之间的接口实现,例如:基站与基站之间的X2接口;第一接入设备和第二接入设备之间可能没有直接通信的接口,这时,是可以通过其他接入设备进行转发的,具体方案如下:上述发送下行数据以及下行调度信息,包括:通过第一接入设备与上述第二接入设备之间的接口发送上述下行数据以及下行调度信息;或者,将上述下行数据以及下行调度信息发送给第三接入设备,并指示上述第三接入设备将上述下行数据以及下行调度信息转发给上述服务小区子集内的服务小区对应的第一接入设备。
在本实施例中,第二接入设备指示第三设备执行转发的实现方式可以是:在下行调度信息中携带指示信息指示第三设备转发,或者,将第三接入设备配置为默认的转发设备(第三接入设备只要接收到上述下行数据以及下行调度信息就执行转发),或者,发送独立的消息来指示第三设备转发,还可以在上述下行数据以及下行调度信息中携带第一接入设备的地址,使第三接入设备根据上述第一接入设备的地址执行转发。因此,指示的方式可以是显式的也可以是隐含的,具体如何指示的方式本发明实施例不做唯一性限定。
在本发明实施例中,由于每个第一接入设备都向终端下发过调度信息并且在调度信息指定的资源上发送了下行数据,那么按照协议规定各第一接入设备会在调度信息指定的资源接收第一反馈信息,这样第一反馈信息被转发到第二接入设备时也会有合并增益,也会提高第一反馈信息的传输性能,具体如下:在发送下行数据以及下行调度信息之后,上述方法还包括:上述第二接入设备接收上述服务小区子集内的服务小区对应的第一接入设备发送的第一反馈信 息,依据上述第一反馈信息确定上述终端成功接收上述下行数据或未成功接收上述下行数据。
在接收第一反馈信息以后如何确定终端成功接收下行数据或未成功接收上述下行数据,具体可以如下:上述依据上述第一反馈信息确定上述终端成功接收上述下行数据或未成功接收上述下行数据,包括:
若接收到的上述第一反馈信息指示有设定数量或者设定比例的第一接入设备成功接收上述下行数据,则确定上述终端成功接收上述下行数据,否则确认上述终端未成功接收上述下行数据。
在本发明实施例中,第一反馈信息是用来确定终端接收下行数据的状况的信息,其携带的信息种类可以有很多,例如:指示某一下行数据接收成功或者未接收成功;或者,指示接收成功的下行数据有哪些,未接收成功的下行数据有哪些;或者,接收成功信息的统计信息,如:成功/未成功接收的下行数据的比例、成功/未成功接收的下行数据的数量等。因此第一反馈信息的种类依据需求可能有很多,按照不同的反馈信息的种类,可以采用对应的确定方式来确定上述终端成功接收上述下行数据或未成功接收上述下行数据。以上具体的确定方式不应理解为对本发明实施例的唯一性限定。
在本实施例中,设定的数量和设定的比例都可以由技术人员根据经验进行设定,或者根据下行数据传输的质量要求进行设定,理论上只要有一个第一反馈信息显示为终端接收成功则终端可以接收成功,设定得越高则越能提高确定终端成功接收的准确性。本实施例对以上设定的数量和设定的比例的具体参数不作唯一性限定。
在本发明实施例中,如果第二接入设备确定终端未成功接收下行数据,那么本发明实施例还提供了自动重传的实现方案如下:若确定上述终端未成功接收上述下行数据,上述方法还包括:若上述第二接入设备具备无线链路控制层及以上层的控制功能,则上述第二接入设备通知无线链路控制层执行自动重传请求的重传操作。在本实施例中,无线链路控制层执行自动重传请求的重传操作可以重新传输没有成功传输的数据。
按照协议规定或者配置的不同,第一接入设备如果具备无线链路控制层及以上层的控制功能,自动重传是可以由第一接入设备完成的,因此由第二接入 设备执行自动重传并不是唯一可选实现方案。
以上实施例主要用于实现下行数据的调度,本发明实施例还提供了上行数据发送的调度,具体如下:上述第二接入设备在确定上述终端所属的服务小区子集后,还包括:
上述第二接入设备向上述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息;上述上行调度信息用于指示授权上述终端在上述上行调度信息指定的资源上发送上行数据;
上述第二接入设备接收上述服务小区子集内的服务小区对应的第一接入设备转发的上行数据。
在本发明实施例中,上行调度信息最终会被发送给终端,使终端根据上行调度信息发送上行数据;由于第一接入设备和第二接入设备都可能是服务小区子集内服务小区对应的接入设备,那么终端获得上行调度信息的过程可以如下:上述第二接入设备和/或上述服务小区子集内的服务小区对应的第一接入设备和/或向终端发送上行调度信息,以使得上述终端根据上述上行调度信息发送上行数据。终端在接收到上行调度信息以后,则可以在上行调度信息指定的资源上发送上行数据,由于各第一接入设备都会在上行调度信息指定的资源上接收上行数据,虽然终端只用发一份数据,但是各第一接入设备转发给第二接入设备,第二接入设备则可以获得合并增益,从而提高传输上行数据的可靠性,并且提升上行数据的传输性能。
在本发明实施例中,第一接入设备按照能力的如何转发上行数据则可以有不同的选择,具体如下:各第一接入设备转发的上行数据包括:
各第一接入设备在确认上述上行数据接收成功后转发的经第一接入设备解码后的上行数据;或者,各第一接收设备在未确认上述上行数据接收成功即转发的上行数据;
若上述各第一接入设备转发的上行数据为:各第一接收设备在未确认上述上行数据接收成功即转发的上行数据,上述方法还包括:
上述第二接入设备对各第一接入设备转发的上行数据进行合并解码。
在本实施例中,第一接入设备在确认接收成功以后,可以进行解码并转发解码后的数据,解码后的数据量会远小于原始数据量,因此可以节省对接入设 备之间带宽的占用;另外,如果第一接入设备不执行解码以及确认是否接收成功的步骤,则可以直接转发接收到的上行数据,这样在第二接入设备则可以在合并解码时获得合并增益。即使第一接入设备直接转发,相比于上下行均传输编码后解码前的信号,仍然可以节省约50%的带宽(传输编码后解码前的原始信号所需要的带宽要远远超过传输解码后(数据量相当于编码前的数据量)的数据所需要的带宽,即传输解码后的数据所需要带宽相比传输原始数据,可以忽略。因此,如果只一个方向如上行传输解码前的原始信号,另外一个方向如下行传输编码前的信号,相比两个方向都传输编码后解码前的原始信号,带宽大约减少一半)。另外,如果在上行数据传输时将转发原始信号和解码后的信号的方式进行结合,即第一接入设备如果能解码正确,则转发解码后的信号,如果不能解码成功,则转发原始信号,此时,要转发的数据量也比直接转发原始信号小,节省传输带宽。
目前通信协议中接入设备给终端的上行授权,处理流程如下:终端有上行数据需要发送时,需要先发调度请求给第二接入设备和/或第一接入设备,然后第二接入设备和/或第一接入设备基于接收到的调度请求向终端发送上行授权,终端再发送缓存状态报告给第二接入设备(可以直接发送给第二接入设备,也可以通过第一接入设备发送给第二接入设备,或者结合两种方式发送给第二接入设备),然后第二接入设备基于状态报告再次向终端发送上行授权(可以直接发送给终端,也可以通过第二接入设备发送给终端,或者结合两种方式发送给终端),终端基于上行授权发送上行数据,这一过程大概有十几MS的时延。为了减少延时,本发明实施例可以通过盲调度的方式实现,具体如下:上述第二接入设备向上述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息包括:
上述第二接入设备在确定上述终端所属的服务小区子集后,若未收到上述终端设备的调度请求和/或缓存报告,则向上述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息。
本发明实施例的盲调度是第二接入设备不需要接收终端的调度请求和/或缓存状态报告,而直接向终端发送上行授权,此时如果终端有上行数据,则根据上行授权向基站发送上行数据,这大大减少了上行数据传输时延。
在使用盲调度的过程中,如果终端没有上行数据发送,按照目前的协议,终端需要根据上行授权发送没有有效数据包的上行数据,从而带来功率的浪费,甚至可能对相邻小区或终端形成干扰。本发明实施例为了解决以上问题,并且减少终端不必要的功耗,可以如下:在上述第二接入设备在确定上述终端所属的服务小区子集之后,上述方法还包括:上述第二接入设备向上述服务小区子集内的服务小区对应的第一接入设备和/或终端发送第一配置信息,上述第一配置信息将第一接入设备和/或上述终端配置为:在没有上行数据时不发送没有有效数据包的上行数据,或者,在没有上行数据时仅发送上行授权确认消息,上述上行授权确认消息用于表示没有上行数据。其中,上行授权确认消息具体可以是物理上行控制信道上发送的消息;另外,该消息所使用的具体资源可以根据上述上行授权占用的物理资源CCE的起始位置来确定,具体的,如:上行控制信道的位置=起始CCE位置+偏移量,其中上述偏移量可以由高层如RRC(Radio Resource Control,无线资源控制)消息进行配置,或者在协议中固定。
本实施例中盲调度的实现方案可以独立实现,并不需要依赖于本发明实施例提出的第一接入设备和第二接入设备的网络构架。
在本发明实施例中,由于第一接入设备可能存在支持信息发送配置的功能,为了提高网络兼容性,可以由第一接入设备先上报自身的能力,然后由第二接入设备对支持配置的第一接入设备进行配置,而那些不支持配置的第一接入设备则可以仍然采用其固有方式进行数据转发,从而实现兼容的和灵活控制的目的,具体如下:在上述第二接入设备向上述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息之前,还包括:
上述第二接入设备接收由上述终端通过上述服务小区子集内的服务小区对应的第一接入设备转发的上述终端的能力信息;
上述第二接入设备依据上述能力信息的指示确认上述终端支持在没有上行数据时不发送没有有效数据包的上行数据,则向上述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息;或者,
上述第二接入设备依据上述能力信息的指示确认上述终端支持在没有上行数据时仅发送上行授权确认消息用于表示没有上行数据,则向上述服务小区 子集内的服务小区对应的第一接入设备发送第一配置信息。
终端根据下行数据接收情况进行上行HARQ(Hybrid Automatic Repeat Request,混合自动重传)反馈时,其反馈资源(上行控制信道)根据调度下行数据的调度信息占用的物理资源CCE的起始位置来确定。具体的,如:上行控制信道的位置=起始CCE位置+偏移量,其中上述偏移量可以由高层如RRC(Radio Resource Control,无线资源控制)消息进行配置,或者在协议中固定。其中上述调度信息可以占用1个CCE,2个CCE,4个CCE,8个CCE等不同的CCE个数,以适不同的信道环境,以保证上述调度命令的可靠传输。但是,当上述调度信息占用多个CCE时,反馈资源也仍然与起始CCE位置相关联,将会使第二反馈信息的可靠性会受到影响,从而,导致上述第二反馈信息丢失,或者错误。本发明实施例提供了基于此的解决方案,如下:上述第二接入设备向上述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息之前,上述方法还包括:
上述第二接入设备向上述服务小区子集内的服务小区对应的第一接入设备发送第二配置信息,并指示上述服务小区子集内的服务小区对应的第一接入设备将上述第二配置信息转发给上述终端,上述第二配置信息用于指示在上述上行调度信息占用至少两个控制信道元素CCE时,确定反馈资源应使用的CCE以及使用的CCE的位置;上述反馈资源为上述终端向第一接入设备和/或第二接入设备发送第二反馈信息所使用的反馈资源。
在本实施例中,第二接入设备指示第一接入设备执行转发操作的实现方式可以是:在第二配置信息中携带指示信息用于指示第一接入设备执行转发操作;或者,在携带上述第二配置信息的消息中指定上述终端的地址,从而使第一接入设备将上述第二配置信息转发给上述终端;或者,另外发一个独立的指示消息,用来指示第一接入设备执行转发操作。第二接入设备具体如何指示第一接入设备执行转发第二配置信息的实现方案,本发明实施例不予唯一性限定。
进一步地,终端还可以通过增加编码的冗余信息的方式,提升反馈信息的可靠性,具体如下:上述方法还包括:
上述第二接入设备接收上述终端设备使用至少两个反馈资源分别重复发送的统一编码的第二反馈信息。
可以理解的,上述终端发送上行授权确认消息的方法以及能力上报和功能配置的方法也适用于终端只有一个服务小区的场景,或者载波聚合时的场景,或者双连接时的场景等。比如只有一个服务小区时的场景,则第二接入设备和第一接入设备可以合并成一个接入设备。在此不作赘述。
本发明实施例还提供了小区子集的确定方式,具体如下:上述第二接入设备确定终端所属的服务小区子集包括:
第二接入设备确定服务小区集合,上述服务小区集合为上述第二接入设备管理的服务小区的集合;
上述第二接入设备向上述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息,使上述服务小区集合内的服务小区对应的第一接入设备向上述终端转发上述测量指示消息;上述测量指示消息,用于指示上述终端对下行导频进行测量,或者,用于指示任意终端对下行导频进行测量;
根据上述各第一接入设备转发的测量结果信息,确定上述终端能够接入的服务小区的集合作为上述终端所属的服务小区子集。
在本发明实施例中,第二接入设备具有管理第一接入设备的功能,这一点在本发明实施例的方案中可以看出其管理功能;而第一接入设备会提供终端接入的服务小区,那么第二接入设备所能管理的所有第一接入设备所提供的全部服务小区均应属于第二接入设备管理的服务小区,这些服务小区的集合即为第二接入设备管理的服务小区的集合。
在本发明实施例中,对下行导频进行测量的结果,用于表示终端是否能够接入到第一接入设备,并且接入的质量是否满足要求;从而用来确定终端能够接入的服务小区中能够作为服务小区子集的服务小区;基于此种目的,本发明实施例中的对下行导频进行测量的结果,可以通过各种不同的形式来达到这一要求,具体如下:上述测量结果信息包括:
上述服务小区集合内的服务小区对应的第一接入设备接收到的所有下行导频的测量结果、符合配置条件的下行导频的测量结果,以及终端标识与能够接入的服务小区的对应关系信息中的至少一项。
在本发明实施例中,第二接入设备向第一接入设备广播的测量指示消息可以是重复执行的。重复发送以后,将会再次确定服务小区子集,这样可以动态 的更新服务小区子集,具体如下:上述第二接入设备向上述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息包括:
上述第二接入设备按照预定的规则重复执行:向上述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息。
本实施例重复发送广播测量指示信息是为了更新服务小区子集,那么更新服务小区子集会有一些技术需求,例如:更新的及时性、更新所占用的系统资源限制等。采用的“预定的规则”可以是周期性的,可以是事件触发型的。例如:可以调整周期性广播测量指示消息的时间周期,或者,采用事件触发的方式来触发广播测量指示消息;调整上述时间周期的依据则可以来源于第二接入设备的监测数据,例如:终端接入的服务小区切换频繁则表示需要更及时的更新,需要缩短时间周期;或者,相邻两次广播测量指示消息后,服务小区子集内的服务小区更新比例或者数量少于预定的阈值,则可以延长时间周期。以上用于控制广播测量指示消息的“预定的规则”可以依据不同的技术指标需求进行设定,本发明实施例对此不予唯一性限定。
在本发明实施例中,可能在有些时候,没有终端需要通过第一接入设备接入无线网络,那么该第一接入设备是可以休眠的,从而节省电能;本发明实施例基于此提供了控制第一接入设备进入休眠和激活第一接入设备的具体实现方案,如下:上述方法还包括:
第二接入设备确定服务小区集合,上述服务小区集合为上述第二接入设备管理的服务小区的集合;
确定上述服务小区集合内的空闲服务小区,上述空闲服务小区不属于任何一个服务小区子集;
指示上述空闲服务小区对应的第一接入设备进入休眠状态;
若检测到上述空闲服务小区内有终端进入,则激活上述空闲服务小区对应的第一接入设备。
在本实施例中,空闲的服务小区不属于任何一个服务小区子集,那么空闲的服务小区当前没有可以接入的终端,因此其必然处于空闲状态。那么可以让空闲服务小区对应的接入设备进入休眠状态。“激活”和“休眠”是接入设备的两种工作状态。休眠状态下是不需要进行数据传输的状态,这种状态下终端 无法接入;后续激活后的第一接入设备与休眠状态是对应的,激活后的第一接入设备具有数据传输的功能,其提供的第一服务小区能够被终端接入。在本实施例中激活空闲服务小区对应的第一接入设备的方式,可以是向上述空闲服务小区对应的第一接入设备发送指示信息,指示其将工作状态切换为激活状态。具体如何使第一接入设备完成工作状态从休眠状态到激活状态的切换,本发明实施例不作唯一性限定。
以下实施例中,第二接入设备以集中控制节点命名对应宏小区,第二接入设备以节点命名对应小小区,宏小区和小小区采用同频覆盖。终端则一用户设备(User Equipment,UE)为例子,具体的架构和协议栈如图2所示,具有如下特点:
相邻小小区之间可以共享相同的小区标识(如PCI,Physical Cell Identifier,物理小区标识),或者使用相同的虚拟小区标识(Virtual Cell ID),或者相邻小小区之间使用不同的小区标识。宏小区和小小区之间,或者小小区与小小区之间,甚至宏小区和宏小区之间可以通过非理想回传链路相连,所谓非理想回传链路,可以理解为不能忽略传输时延的链路。具体的,该非理想回传链路可以是授权或非授权频谱,还可以是网线如超5类6类网线等。本发明不作具体限制。当然如果有条件部署理想回传链路,本发明实施例同样适用。
在多个宏小区和/或小小区之间,有一个节点(可能是宏小区,也可能是小小区)实现集中控制的功能。称为集中控制节点。具体功能可以包括:1)预调度,2)确定UE的服务小区集,3)UE的移动性管理,4)与其它节点进行信令交互,配置其它节点的功能,控制其它节点的行为,接收其它节点的信息等。
除集中控制节点外,其它节点(可能是宏小区,也可能是小小区)的功能包括:1)根据集中控制节点的命令进行数据传输和/或重传;2)根据集中控制节点的命令接收UE发送的反馈信息,如HARQAck(Hybrid Automatic Repeat Request Ack,混合自动重传应答)、NACK(Not Acknowledge,非确认应答),测量报告,如CQI(Channel Quality Indicator,信道质量信息),PHR(Power Headroom Report,功率余量报告),RSRP(Reference Signal Received Power,参考信号接收功率),RSRQ(Reference Signal Receiving Quality,参考信号接 收质量)等。本发明实施例的架构对UE基本没有影响,可以采用原有的UE实现本发明实施例方案。
在以上图2中,UE位于接入设备1和接入设备2下的小小区的交汇处,UE可以接入这两个小小区,这两个小小区属于服务小区子集,接入设备1和接入设备2则均为第一接入设备;在图2中,比较大的那个塔形接入设备,提供集中控制功能为第二接入设备。
集中控制节点的协议栈为:宏/控制器的协议栈(Macro/controller protocol stack);协议栈上到下依次为:
RRC:Radio Resource Control,无线资源控制;
IP:Internet Protocol,互联网协议;
PDCP:Packet Data Convergence Protocol,分组数据汇聚层协议;
RLC:Radio Link Control,无线链路控制;
MAC:Medium Access Control,媒体接入控制;
PHY:Physical,物理层;
TNL:Tranportation Network Layer,传送网络层;
其中,PDCP实现的是:安全的数据转发(Security Data Forwarding);RRC实现的是:增强流动性的资源管理(Enhanced Mobility Resource Manage);MAC实现的是:集中调度的流量控制(Centralized Scheduling Flow control)。
小小区对应的节点的协议栈为:微微的协议栈(Pico protocol stack);包括:低MAC/高PHY(Low MAC/High PHY);以及PHY和TNL;
其中,低MAC/高PHY实现的是:简单缓冲的HARQ(Simple buffer HARQ ReTx)。
在UE一侧的协议栈(UE protocol stack)从上到下依次为:RRC,IP,PDCP,RLC,MAC,PHY;其中PHY实现的是:测量(RRM/CQI(M/P..),以及反馈:(A/N(M/P))(Feedback(A/N(M/P)))
在图2中,集中控制节点与其它节点之间可以采用有线连接也可以采用无线连接。虚线连接的协议层表示有信息交互的协议层。
下面实施例就本实施例中提到的集中控制节点和其它节点的功能,进行细化设计。
进一步可选的,上述小小区的协议栈还可以是具有下面协议功能的一种或多种的组合:
只具有PHY功能的协议栈,或者,
具有PHY和MAC层部分功能的协议栈,或者,
具有PHY和MAC层完整功能的协议栈,或者,
具有PHY、MAC层和RLC功能的协议栈,或者,
具有PHY、MAC层,RLC层和PDCP功能的协议栈,或者,
具有PHY、MAC层,RLC层,PDCP功能和RRC功能的协议。
在最后一种情况下,小小区对应的节点可以独立为UE提供服务。
上述不同的协议栈模式中,小小区对应的节点实现的功能有所不同。协议层越多,小小区对应的节点执行的功能也越多,可选的,自主性也越强。如:
当小小区只有物理层时,小小区只负责根据集中控制节点的指令进行数据的收发,完全不实现调度、重传等高层协议栈的功能。此时,可以认为小小区完全没有自主能力。
当小小区有物理层和部分MAC层功能时,小小区就多了部分重传功能,但还是没有完全自主的调度功能,基本受控于集中控制节点。
当小小区有物理层和完全MAC层功能时,小小区多了部分调度功能,至少在一定范围内,如集中控制节点没有调度的资源上进行调度,或者在集中控制节点配置的允许调度的资源上进行调度。
当小小区有PHY、MAC层和RLC功能的协议栈时,将具有RLC的分段等功能。依此类推,小小区的协议栈越完整,则会具有越多的功能,可以根据需要灵活配置具有全部协议栈功能,还是只有部分协议栈功能。小小区协议栈如何配置,本发明实施例不作唯一性限定。
在具体的应用过程中,根据不同的场景以及小小区对应节点的能力,可以应用使用不同协议栈功能,即,多个协议栈功能之间可以相互切换。为了方便描述,将小小区对应的节点,简述为小小区;典型的,协议栈配置流程,如图3所示,可以如下:
步骤1,集中控制节点向小小区发送协议栈模式的配置信息,用于通知小小区所使用的协议栈模式。
可以理解的,协议栈模式的配置信息可以通过集中控制节点与小小区之间的接口如X2接口,X2接口消息进行传递,本发明实施例对此不作限制。
具体的通知小小区所使用的协议栈模式的通知形式可以是比如:将上述协议栈模式中的一种或多种进行编号,每个编号代表一种协议栈模式,协议栈模式的配置信息中携带上述编号,用于通知具体的协议栈的模式。
更具体的,比如:编号1代表只有PHY功能,编号2代表有PHY和MAC层部分功能等,在通知时,只需要通知编号1或2即可。
具体的通知小小区所使用的协议栈模式的通知形式还可以是比如:通知是否使用具体的协议层,如:是否具有PHY层,是否具有MAC层,是否具有RLC层等,这种方式也同样可以达到通知协议栈的模式的目的。
进一步的,可以使用比特地图(bitMap)的方式,如:用abcde分别代表PHY,MAC层,RLC,PDCP层,RRC等,a=1代表使用物理层协议栈,a=0代表不使用物理层协议栈,其它依此类推。
也可以通过其它形式达到通知小小区所使用的协议栈模式的目的,在此不作限制。
可选的,在步骤1之前,小小区还可以向集中控制节点发送协议栈模式请求信息,该信息用于请求小小区所使用的协议栈模式。该步骤用于触发集中控制节点下发协议栈模式的配置信息。
进一步可选的,上述协议栈模式请求信息中,还可以携带小小区希望使用的协议栈模式,实现协商的目的。在上述协议栈模式请求信息中,还可以携带自身支持的协议栈模式。
步骤2,小小区向集中控制节点发送协议栈模式配置完成信息。本步骤可选。
可以理解的,上述过程可以是不区分UE的过程,如一旦小小区被配置成一种协议栈模式,则该小小区下所有的UE均使用该模式。
可以理解的,上述过程还可以是区分UE的过程,如对某个或某些UE,小小区使用一种协议栈模式,而另外一个或一些UE,小小区使用另外一种协议栈模式。本发明实施例对此不作限制。
进一步的,当上述过程是区分UE的过程时,以上流程中所涉及的小小区 与集中控制节点之间的消息中可以携带能标识UE的信息,如C-RNTI(Cell Radio Network Temporary Identity,无线蜂窝网络临时识别),TMSI(Temporary Mobile Subscriber Identity,临时移动用户识别),或其它能标识UE的信息,还可以是在能标识UE的传输通道上进行传输,本发明实施例对此不作限制。
可以理解的,本发明实施例提供的协议栈模式的配置功能,既可用于小小区首次模式配置,也可以用于模式切换,即小小区模式可以不是一成不变的,基于场景一击服务的变化可以改变协议栈的模式。
当上述协议栈配置流程不区分UE时,还与如下过程结合:
当小小区刚被部署时,上述小小区需要向所属集中控制节点报到。具体的报到过程,如图4所示,可以如下:
步骤1,小小区向集中控制节点发送建立请求消息。
在本步骤中,建立请求消息中携带有该小小区的标识,该标识可以是具体的号码标识,和/或可以是类型标识,如标识该节点为小小区类型。
该过程与当前UE建立RRC连接过程类似,在此不作细节展开。
可选的,若本步骤与协议栈模式过程结合,在请求消息中则还可以携带小小区希望使用的协议栈模式。
步骤2,集中控制节点向小小区发送建立消息。
在本步骤中,建立消息可以携带小小区的配置信息,具体可以包括:
1、小小区为UE服务时所使用的资源,如频率,带宽,信道资源配置等,包括小小区公共资源配置,小小区集合公共资源配置等;
2、小小区与集中控制节点进行回程传输时所使用的资源,如频率,带宽,信道资源配置等;
3、小小区为UE服务时所使用的协议栈模式;
4、其它配置信息,如承载配置信息,传输通道配置信息等。
步骤3,小小区向集中控制节点发送建立完成消息。本步骤为可选步骤。
下面实施例将对本发明实施例中提到的集中控制节点和其它节点的功能,进行更详细的举例说明。
一、下行预调度功能的实现方法流程,如图5所示,包括如下步骤:
步骤1,集中控制节点向服务小区子集中的服务节点发送需要在空口传输 的数据信息和调度信息。
服务小区子集中的服务小区有至少一个,服务小区与服务节点是对应的,那么就会至少向一个服务节点发送需要在空口传输的数据信息以及调度信息;后续实施例中,将会对服务小区子集如何确定进行详细说明。
在本步骤中,上述数据信息包括:需要要在空口传输的数据内容,通常,该数据内容可以是一个MAC(Measurement and Control测量与控制;)PDU(Protocol Data Unit,协议数据单元)。
在本步骤中,要在空口传输的调度信息,具体可以包括以下至少一种或多种,通常,下面上述调度信息可以是一个MAC CE(Control Element,控制元素),或者是一个其它消息:
1、数据的参数(或者说调度命令的内容)包括如至少一个:
空口传输的数据所使用的物理资源;
空口传输的数据所使用的调制编码方式;
空口传输的数据所使用的天线端口号;
空口传输的数据所使用的加掩方式,如C-RNTI(Cell Radio Network Temporary Identity,小区无线网络临时标识),用于表征调度哪个UE的数据;
空口传输的数据的时间,如哪个无线帧的哪个子帧。
以上数据的参数,用于通知给UE发送数据的服务节点,应该使用什么样的方式发送数据。
2、调度命令的参数:
空口传输的数据对应的调度命令所使用的物理资源,如ePDCCH,PDCCH,和/或CCE(Control Channel Element,控制信道元素)起始位置;
空口传输的数据对应的调度命令所使用的聚合等级,如CCE个数。
3、空口传输的数据对应的调度命令所使用的加掩方式,如C-RNTI,用于表征调度哪个UE的数据;
4、前述服务节点执行HARQ重传的信息,如:是否允许重传或重传次数等。
在以上调度信息中,空口传输的数据所使用的加掩方式和空口传输的数据对应的调度命令所使用的加掩方式,均可用于表征调度哪个UE的数据,因此, 可以只需要其中一个。或者二者整合为一个参数,即UE标识,用于表征调度哪个UE的数据。
在以上调度信息中,集中控制节点发送的目标服务节点对应的服务小区可以统称为一个服务小区子集,可选的,前述集中控制节点也可以包含在上述服务小区子集中为UE提供服务。其中,上述服务小区子集是服务小区集合的一个子集。
在以上调度信息中,如果存在一个或多个在协议中已经固定,则不需要在步骤1中传输。
在以上调度信息中,如果存在一个或多个已经可以在步骤1之前通知给服务小区子集中的各服务节点,也可以不需要在步骤1中传输这些已经通知过的参数。
可选的,在需要前述服务节点执行HARQ重传时,配置执行HARQ重传所使用的资源。
步骤2,接收到数据信息和调度信息的服务小区子集中的各服务节点根据步骤1获得的数据信息和调度信息,向UE发送调度命令和数据信息。
其中,调度命令所使用的相关参数和调度命令中的内容详见步骤1中关于调度信息的说明,发送数据信息所使用的相关参数也参见步骤1中关于调度信息的说明。
可以理解的,服务小区子集中的各服务节点在规定的时间内(空口传输时间),使用调度命令参数传输调度命令,并在调度命令中携带数据传输参数。同时使用上述调度命令中规定的数据传输参数传输上述数据信息。
可以理解的,上述调度命令也可以通过集中控制节点,或者其它至少一个相邻小区发送。而本步骤中的各服务节点只根据步骤1获得的数据信息和调度信息,向UE发送数据信息。
步骤3,UE接收上述调度命令,然后根据上述调度命令接收上述数据信息;并根据对数据信息的解码情况向集中控制节点和/或服务节点发送反馈信息,上述反馈信息用于确定上述UE的解码结果。
其中,上述反馈信息可以是发送给上述各服务节点,或者,发送给上述集中控制节点;或者同时发送给上述各服务节点和上述集中控制节点。
反馈给各服务节点和上述集中控制节点所使用的资源可以相同,也可以不同。
步骤4,服务小区子集中的各服务节点将上述UE的反馈信息发送给集中控制节点,以便上述集中控制节点判断上述数据信息是否被UE成功接收。
其中,上述反馈信息可以通过服务小区子集中的各服务节点与集中控制节点间的接口消息进行传输,上述接口消息包括但不限于,物理层消息,MAC层消息,或者其它可以传输上述反馈信息的接口消息。
以上步骤4是可选的。
步骤5,集中控制节点根据UE的反馈信息和/或服务小区子集中的各服务节点转发的上述反馈信息,判断上述数据信息是否被UE成功接收。
如果没有成功接收,上述集中控制节点可以通知RLC(Radio Link Control,无线链路控制)层,执行快速ARQ(Automatic Repeat Request,自动重传请求)。或者,如果接收成功,上述集中控制节点可以通知RLC层,上述数据信息发送成功。
本步骤的执行,针对的是RLC层及以上层的协议栈功能配置在集中控制节点的场景,此时,集中控制节点可以根据反馈情况,通知RLC层作重传。如果配置在服务节点,则可以由服务节点直接根据UE的反馈信息确定是否需要执行重传。
由于服务小区子集中的各服务节点同时向UE发送上述数据和/或调度命令,UE可以对上述数据和/或调度命令进行合并解码,增加了传输上述数据信息和/或调度命令的可靠性,提升下行数据传输性能。另外,服务小区子集中的各服务节点同时接收UE的反馈信息,也会增加上行信号传输的可靠性,进而也保证了快速ARQ的性能。比如,当有多数服务节点接收到的反馈信息是ACK时,则可以认为UE反馈的反馈信息的是确认(ACK),反之,则认为上述UE反馈的是非确认(NACK)。
在本发明实施例中,与传输上行数据类似,也可以将UE的反馈信息的原始量传输给集中控制节点进行合并译码,从而提升合并增益。
二、上行预调度功能的实现方法流程,如图6所示,如下:
步骤1和步骤2,与下行预调度功能的步骤类似,区别在于只是不需要发 送数据信息;另外,调度信息的内容是UE上行授权(授权UE发送上行数据信息所使用的参数)。调度信息可以采用调度命令的形式下发。
步骤3,UE接收上述调度命令后,根据上述调度命令组装并发送数据信息给共服务小区子集中的各服务节点。
步骤4,服务小区子集中的各服务节点接收UE发送的数据信息,在接收数据信息成功后再将上述数据信息发送给集中控制节点。
进一步的,在本步骤中,服务小区子集中的各服务节点还可以向UE反馈ACK,以通知上述UE上述数据信息发送成功。
可选的,上述服务小区子集中的各服务节点接收数据失败时,也可以通知上述集中控制节点,以便上述集中控制节点进行自适应HARQ重传,或者,触发快速ARQ(Automatic Repeat Request,自动重复请求)重传。
可选的,在本发明实施例中,上述服务小区子集中的各服务节点在接收到数据信息后,可以不必确定是否成功接收,而是直接将接收到的数据信息发送给集中控制节点进行合并解码,这样,上行数据也可以获得合并增益,大大提升上行数据传输可靠性。或者,服务小区子集中的各服务节点也可以在上述服务小区子集中的节点没有成功解出数据时,才传原始数据信息给集中控制节点,如果能成功解码,则发送解码后的数据给集中控制节点。
步骤5,集中控制节点根据接收上行数据信息的情况,进行新数据传输,自适应HARQ重传或者触发(快速)ARQ重传。
在本发明实施例中,对于下行数据信息,由于不同服务节点接收到UE的反馈信息可能不同,可能会影响不同服务节点的HARQ重传;因此,可以指定某一个特定的服务节点,执行HARQ重传,其它服务节点不执行HARQ重传。对于上行数据信息,如果由服务节点执行解码,那么由于不同的服务节点的解码情况可能不同,会影响UE的HARQ重传;由于UE达到最大发送发送次数后,不清空Buffer;由集中控制节点发送重传调度命令,UE再根据调度命令执行HARQ重传;在本发明实施例中,ARQ(Automatic Repeat Request,自动重传请求)可以和HARQ联动,多次HARQ可以抵掉一次ARQ。
三、服务小区子集的确定方法,如图7所示,包括如下步骤:
步骤1,服务小区集合内的服务节点向UE发送系统广播消息,指示UE 反馈测量结果;
在本步骤中,系统广播消息的发送方法可以如下行预预调度方法中发送调度信息方式相同,区别在于UE可以不作上行反馈。
在本步骤中,系统广播消息可以是采用常用的系统广播消息发送,也还可以在目前的系统广播消息中增加新的内容。其中,增加的内容为如下一种或多种:服务小区集合内至少一个服务小区内发送的导频的参数,如:导频的序列、导频的时间或频率位置、导频的周期等;
可选的,在本发明实施例中,增加的内容可以通过专用消息通知给UE,而不是采用系统广播消息的方式通知给UE,对此本发明实施例对此不作限制;
在步骤1之前,还可以进一步包括:步骤0,上述导频的参数可以事先由集中控制节点通知给服务小区集合内的服务小区。具体通知方法是在集中控制节点与服务小区集合内的至少一个服务小区之间的接口消息中传输,具体消息格式和消息名称不限。
另外,当集中控制节点与服务小区集合内的服务小区之间没有直接的接口时,也可以通过其它服务小区进行中转,对是否中转以及中转的次数本发明实施例不作限制。
步骤2,集中控制节点通知服务小区集合内的服务节点需要测量的上行信号参数。
具体的上行信号可以包括:
随机接入信道上发送的信号如随机接入码;
侦听参考信号,如SRS(Sounding Reference Signal,信道探测参考信号);
物理上行共享信道,如PUSCH(Physical Uplink Shared Channel,上行链路共享物理信道);
物理上行控制信道,如PUCCH(Physical Uplink Control Channel,物理上行控制信道),具体还可以包括调度请求和/或信道状态指示上报,和/或HARQ反馈等;
还可以是其它UE发送的上行信号的参数,本发明实施例对此不作限制。
上述上行信号参数则可以为下面至少一种:
上行信号的时间信息、频率位置信息、功率信息等
可选的,本步骤中还可以通知服务小区集合内的服务节点向集中控制节点上报测量结果的触发条件。如接收信号强度的门限值,或者,接收信号质量的门限值等。在符合触发条件时,服务节点向集中控制节点发上报测量结果。
可选的,在本步骤测量结果中还可以包含上行信号对应的UE标识,如C-RNTI。
另需说明的是,以上步骤2和步骤1并没有执行先后顺序,且还可以和步骤0合并执行。
步骤3,服务小区集合内的服务节点根据步骤0和/或步骤2,进行下行信号发送和/或上行信号检测。
步骤4,UE根据广播消息或专用消息的配置,对下行导频进行测量,并上报测量结果,或发送上行信号。
具体的,上述测量结果中可以包含服务小区集合内的至少一个服务小区的测量结果。
步骤5,服务小区集合内的服务节点接收到UE上报的测量结果或发送的上行信号后,根据配置,将UE上报的测量结果发送给集中集中控制节点,或者,根据配置,将满足条件的上行信号测量结果发送给集中控制节点,或者,根据配置,将满足条件的UE标识发送给集中控制节点。
步骤6,集中控制节点根据服务小区集合内的服务节点上报的测量结果信息,确定哪些服务小区集合内的服务小区可以作为服务小区子集的元素。服务小区子集中的服务小区会对应有服务节点,因此可以称为服务小区子集中的服务节点。
步骤7,服务小区子集中的各服务节点为UE提供数据传输服务,具体方法详见实施例上行预调度和下行预调度的方案。
在本发明实施例中,UE会移动,那么需要有移动性管理的方案。从技术实质上来说,是服务小区子集的确定过程,即重新确定服务小区子集。服务小区子集的更新对UE是透明的,因此移动是平滑的。
如图8A和8B所示,分别的T1和T2两个时刻的服务小区示意图;其中,服务小区以一个接入设备和一个实现圆表示,外围的大虚线圆内的实线圆的集合示意为服务小区集合,服务小区集合内有两个UE,两个UE分别对应有一 个虚线小圆,每个虚线小圆内又有实线圆,虚线小圆内的实线圆则是该UE对应的服务小区子集;其中左边这个UE从T1到T2往右移动了,其对应的服务小区子集会被重新确定。
四、本发明实施例给出服务小区子集间智能资源复用和智能开/关(On/OFF)。
本发明实施例中,如果服务小区子集之间没有重叠时,数据传输时在两个服务小区子集间可以实现资源完全复用,如图8A所示。这样,大大增加了系统容量。当服务小区子集之间有部分重叠时。如图8B所示,数据传输时在两个服务小区子集间可以实现资源部分复用。这样,也在一定程度上增加了系统容量。
当某个服务小区不属于任何一个服务小区子集时,说明该服务区下没有UE需要服务,则该服务区可以进入“休息”状态,在“休息”状态时服务小区对应的服务节点仅需定期发下行导频用于UE测量;或者,根据集中控制节点的配置进行上行信号的检测;不需要处理数据传输。如果UE的定位信息比较准确的话,上述小区甚至连上述事情都不需要做,只有当有UE移动到上述小区附近的小区时,该小区才会被激活。
在本发明实施例中,只要服务小区集合内的某个服务小区不属于任何服务小区子集那么可以确定该服务小区下没有UE需要服务,那么可以关闭该服务小区,使其进入“休息”状态,同时检测是否有UE进入该服务小区,在有UE进入该服务小区时激活该服务小区;这样就实现了服务小区的智能On/OFF。关闭服务小区以节电。
五、本发明实施例提供了对集中控制节点与服务小区集合间的非理想Backhual(回程)的增强方案。
为了减少时延,本发明实施例可以在反距离(backhual)中采用盲调度的方式实现。
通常,UE有上行数据需要发送时,需要先发调度请求给集中控制节点,然后集中控制节点基于接收到的调度请求向UE发送上行授权,UE再发送缓存状态报告给集中控制节点,然后集中控制节点基于缓存状态报告再次向UE发送上行授权,UE基于上行授权发送上行数据,这一过程大概有十几MS的 时延。本实施例要实现的是减少这个过程产生的时延。
而盲调度是集中控制节点在未接收到UE的调度请求和/或缓存状态报告的情况下,直接向UE发送调度命令执行上行授权,此时如果UE有上行数据,则可以根据上行授权向服务节点发送上行数据,这将大大减少了上行数据传输时延。
在本发明实施例中,如果UE没有上行数据发送,按照目前的协议,UE需要根据上行授权发送没有有效数据包的上行数据,这样会带来功率的浪费,甚至可能对相邻小区或UE形成干扰。另外,以上问题,如果当把UE替换成服务小区集合中的服务节点时,服务小区集合中的服务节点与集中控制节点之间同样存在类似的问题。为了减少功率开销和干扰,可以采用如图9所示流程,如下:
步骤1,UE接收服务节点发送的上行授权。
步骤2,UE确定是否使用上述上行授权进行上行数据发送。如果UE此时有上行数据需要发送,则UE使用上述上行授权进行上行数据发送;或者,如果UE此时没有上行数据需要发送,则UE不使用上述上行授权进行上行数据发送。
具体的,上述上行数据可以是业务数据包如MAC SDU,或者是控制元素,如PHR,常规BSR等。本发明实施例对此不作限制。
进一步的可选的,还可以执行步骤3:
步骤3,UE在上行授权占用的物理资源位置关联的上行控制信道上发送对接收上行授权情况的确认消息,如:ACK。
在本步骤中,上述确认消息可以只在UE此时没有上行数据需要发送时发送。那么服务节点或者集中控制节点在接收到确认消息以后就可以确定UE没有上行数据发送。
在本步骤中,上述上行授权占用的物理资源位置关联的上行控制信道可以是根据上述上行授权占用的CCE的起始位置或者结束位置或者其它任意指定位置,确定出的上行控制信道的位置。以CCE起始位置为例,上行控制信道的位置=起始CCE位置+偏移量,其中上述偏移量可以由高层如RRC消息进行配置,或者在协议中固定。
相应的,服务节点在向UE发送了上行授权之后,一方面,在根据上述上行授权尝试接收上行数据,另一方面,根据上述上行授权尝试接收UE发送的确认消息。
可选的,在UE执行上述步骤1~3之前,可以先接收集中控制设备发送的配置消息,上述配置消息中可以携带UE是否执行上述步骤中2或步骤3的指示信息。上述配置消息可以是RRC消息,或者MAC层消息,或者物理层消息,本发明实施例对此不作限制。
进一步可选的,在UE执行上述步骤之前,UE还可以先上报UE是否能够执行上述步骤2或3中的一步或多步的能力信息。上述上报能力信息的消息可以是RRC消息,或者MAC层消息,或者物理层消息,本发明实施例对此不作限制。
六、本发明实施例还提供了存在多个CCE的情况下,如何确定反馈资源的方法。
上述反馈资源是UE反馈下行数据接收状况或者其他反馈信息的资源;比如PUCCH资源。
目前,UE根据下行数据接收的情况进行上行HARQ反馈时,其反馈资源(上行控制信道)通过调度下行数据信息的调度命令所占用的物理资源CCE的起始位置来确定。具体的,如:上行控制信道的位置=起始CCE位置+偏移量,其中上述偏移量可以由高层如RRC消息进行配置,或者在协议中固定。其中,调度命令可以占用1个CCE,2个CCE,4个CCE,8个CCE等不同的CCE个数,以适不同的信道环境,以保证上述调度命令的可靠传输。
但是,当上述调度命令占用多个CCE时,目前的反馈资源确定方式也只与起始CCE位置相关联。后果是反馈信息的可靠性会受到影响,从而导致上述反馈信息丢失,或者错误。基于此,本发明实施例提供了增加反馈传输可靠性的方法,如图10所示,包括如下步骤:
步骤1,UE接收调度命令;
其中上述调度命令可以是上行数据的调度命令(即下行指派),也可以是下行数据的调度命令(即上行授权),还可以是半静态调度资源释放命令,本发明实施例对此不作限制。
步骤2,UE确定反馈资源,其中如果上述调度命令占用一个CCE,则UE根据该CCE的位置确定反馈资源;如果上述调度命令占用多个CCE,则UE根据上述多个CCE的位置确定反馈资源。
具体的,UE根据上述多个CCE的位置确定出多个反馈资源的方式可以如下:
可选的,在上述步骤1和步骤2之前,服务节点可以配置UE使用多个CCE的位置确定反馈资源的功能。具体的配置消息可以是RRC消息,或者MAC层消息,或者物理层消息,本发明实施例对此不作限制。
进一步可选的,服务节点配置UE使用多个CCE的位置确定反馈资源的功能时,可以指示如下一个或多个信息:
1、当上述调度命令占用的CCE个数是多少时,UE应用上述配置功能:
如,当CCE个数是4时,UE应用上述配置;
如,当CCE个数是2及以上时,UE应用上述配置;
2、UE应用上述配置功能时,使用的CCE的个数及位置:
如:当CCE个数是4时,UE使用前两2个CCE,或者后两个CCE,或者第2个到第3个CCE,
如:当CCE个数是2及以上时,UE使用前两个CCE,或者后两个CCE,或者第2个到第3个CCE;
...
可选的,在上述步骤之前,UE还可以向服务节点上报UE能够执行上述步骤中的一步或多步功能的能力信息。具体的,上述上报能力信息的消息可以是RRC消息,或者MAC层消息,或者物理层消息,本发明实施例对此不作限制。
步骤3,UE根据确定的一个或多个反馈资源,发送反馈信息。
具体的,当UE使用多个反馈资源发送反馈时,可以是将上述反馈信息在多个资源上重复发送,通过重复发送,提升反馈的可靠性。当重复一次时,可靠性提升3dB,重复次数的越多,可靠性提升越高。当UE使用多个反馈资源发送反馈时,还可以是将上述反馈信息在多个资源上统一编码发送,由于增加了编码信息的冗余,也可以有效提升反馈的可靠性。
本发明实施例,解决小小区密集连续组网时,站间带宽能够得到保证;另外,可以不用光纤拉远,部署难的问题也可以解决,并减少干扰,可以提升系统容量,提升反馈可靠性。
本发明实施例还提供了一种接入设备,作为第二接入设备使用,如图11所示,包括:
子集确定单元1101,用于确定终端所属的服务小区子集;上述终端为上述第二接入设备发送下行数据的目的终端,上述服务小区子集为上述终端能够接入的服务小区的集合,各服务小区分别对应有第一接入设备;
发送单元1102,用于向上述子集确定单元1101确定的服务小区子集内的服务小区对应的第一接入设备,发送下行数据以及下行调度信息;上述下行调度信息用于指示第一接入设备向上述终端发送上述下行数据。
在本发明实施例中,由于第一接入设备对应的也可以是能够为终端服务的服务小区,因此上述“服务小区子集”则可以对应的是:能够为上述终端服务的服务小区的集合。可以理解的是,上述服务小区子集应该包含至少一个服务小区。另外,一个接入设备可以提供很多服务小区,因此在本发明实施例中,可以由两个或者两个以上的服务小区对应同一个接入设备。
可以理解的,第二接入设备也可能提供终端接入的服务小区,或者提供为终端服务的服务小区。此时,第二接入设备和第一接入设备在物理上可以是同一个接入设备。本发明不作限制。
在本发明实施例中,以上下行数据以及下行调度信息是需要在空口传输的信息,其中下行调度信息最终会被发送给终端;下行调度信息是用来指示第一接入设备发送下行数据的信息,在调度信息中可以指定第一接入设备发送下行数据时采用的参数。由于第一接入设备和第二接入设备都可能是服务小区子集内服务小区对应的接入设备,那么终端获得下行调度信息的过程可以如下:上述第二接入设备和/或上述服务小区子集内的服务小区对应的第一接入设备向上述终端发送下行调度信息。终端在接收到上述下行调度信息后,则可以根据接收到的下行调度信息接收下行数据。
以上实施例,将接入设备分为两类,一类是起集中管理作用的第二接入设备,另一类是提供服务小区的第一接入设备,在第二接入设备需要发送下行数 据的时候,向服务网小区子集内的服务小区对应的第一接入设备发送下行数据以及调度信息;实现宏小区、小小区、微微小区灵活的无线部署或有线部署。各第一接入设备都会在调度信息指示的资源上向终端发送下行数据,终端则会对应的在调度信息指示的资源上接收各第一接入设备发送的下行数据,这样终端可以获得合并增益,提高传输下行数据和调度信息的可靠性,并且提升下行数据的传输性能。
在本发明实施例中,第一接入设备和第二接入设备之间通信可以采用接入设备之间的接口实现,例如:基站与基站之间的X2接口;第一接入设备和第二接入设备之间可能没有直接通信的接口,这时,是可以通过其他接入设备进行转发的,具体方案如下:上述发送单元1102,具体用于通过第一接入设备与上述第二接入设备之间的接口发送上述下行数据以及下行调度信息;或者,将上述下行数据以及下行调度信息发送给第三接入设备,并指示上述第三接入设备将上述下行数据以及下行调度信息转发给上述服务小区子集内的服务小区对应的第一接入设备。
在本实施例中,第二接入设备指示第三设备执行转发的实现方式可以是:在下行调度信息中携带指示信息指示第三设备转发,或者,将第三接入设备配置为默认的转发设备(第三接入设备只要接收到上述下行数据以及下行调度信息就执行转发),或者,发送独立的消息来指示第三设备转发,还可以在上述下行数据以及下行调度信息中携带第一接入设备的地址,使第三接入设备根据上述第一接入设备的地址执行转发。因此,指示的方式可以是显式的也可以是隐含的,具体如何指示的方式本发明实施例不做唯一性限定。
在本发明实施例中,由于每个第一接入设备都向终端下发过调度信息并且在调度信息指定的资源上发送了下行数据,那么按照协议规定各第一接入设备会在调度信息指定的资源接收第一反馈信息,这样第一反馈信息被转发到第二接入设备时也会有合并增益,也会提高第一反馈信息的传输性能,具体如下:进一步地,如图12所示,上述接入设备还包括:
第一反馈接收单元1201,用于在发送下行数据以及下行调度信息之后,接收上述服务小区子集内的服务小区对应的第一接入设备发送的第一反馈信息;
结果确定单元1202,用于依据上述第一反馈接收单元1201接收到的上述第一反馈信息确定上述终端成功接收上述下行数据或未成功接收上述下行数据。
在接收第一反馈信息以后如何确定终端成功接收下行数据或未成功接收上述下行数据,具体可以如下:可选地,上述结果确定单元1202,用于若上述第一反馈接收单元1201接收到的上述第一反馈信息指示有设定数量或者设定比例的第一接入设备成功接收上述下行数据,则确定上述终端成功接收上述下行数据,否则确认上述终端未成功接收上述下行数据。
在本发明实施例中,第一反馈信息是用来确定终端接收下行数据的状况的信息,其携带的信息种类可以有很多,例如:指示某一下行数据接收成功或者未接收成功;或者,指示接收成功的下行数据有哪些,未接收成功的下行数据有哪些;或者,接收成功信息的统计信息,如:成功/未成功接收的下行数据的比例、成功/未成功接收的下行数据的数量等。因此第一反馈信息的种类依据需求可能有很多,按照不同的反馈信息的种类,可以采用对应的确定方式来确定上述终端成功接收上述下行数据或未成功接收上述下行数据。以上具体的确定方式不应理解为对本发明实施例的唯一性限定。
在本实施例中,设定的数量和设定的比例都可以由技术人员根据经验进行设定,或者根据下行数据传输的质量要求进行设定,理论上只要有一个第一反馈信息显示为终端接收成功则终端可以接收成功,设定得越高则越能提高确定终端成功接收的准确性。本实施例对以上设定的数量和设定的比例的具体参数不作唯一性限定。
在本发明实施例中,如果第二接入设备确定终端未成功接收下行数据,那么本发明实施例还提供了自动重传的实现方案如下:进一步地,如图13所示,上述接入设备还包括:
重传控制单元1301,用于若上述结果确定单元1202确定上述终端未成功接收上述下行数据,并且上述第二接入设备具备无线链路控制层及以上层的控制功能,则通知无线链路控制层执行自动重传请求的重传操作。
在本实施例中,无线链路控制层执行自动重传请求的重传操作可以重新传输没有成功传输的数据。按照协议规定或者配置的不同,第一接入设备如果具 备无线链路控制层及以上层的控制功能,自动重传是可以由第一接入设备完成的,因此由第二接入设备执行自动重传并不是唯一可选实现方案。
以上实施例主要用于实现下行数据的调度,本发明实施例还提供了上行数据发送的调度,具体如下:进一步地,如图14所示,上述发送单元1102,还用于在上述子集确定单元1101确定上述终端所属的服务小区子集后,向上述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息;上述上行调度信息用于指示授权上述终端在上述上行调度信息指定的资源上发送上行数据;上述接入设备还包括:
数据接收单元1401,用于接收上述服务小区子集内的服务小区对应的第一接入设备转发的上行数据。
在本发明实施例中,上行调度信息最终会被发送给终端,使终端根据上行调度信息发送上行数据;由于第一接入设备和第二接入设备都可能是服务小区子集内服务小区对应的接入设备,那么终端获得上行调度信息的过程可以如下:上述第二接入设备和/或上述服务小区子集内的服务小区对应的第一接入设备和/或向终端发送上行调度信息,以使得上述终端根据上述上行调度信息发送上行数据。终端在接收到上行调度信息以后,则可以在上行调度信息指定的资源上发送上行数据,由于各第一接入设备都会在上行调度信息指定的资源上接收上行数据,虽然终端只用发一份数据,但是各第一接入设备转发给第二接入设备,第二接入设备则可以获得合并增益,从而提高传输上行数据的可靠性,并且提升上行数据的传输性能。
在本发明实施例中,第一接入设备按照能力的如何转发上行数据则可以有不同的选择,具体如下:进一步地,如图15所示,各第一接入设备转发的上行数据包括:各第一接入设备在确认上述上行数据接收成功后,转发的经第一接入设备解码后的上行数据;或者,各第一接收设备在未确认上述上行数据接收成功即转发的上行数据;若上述各第一接入设备转发的上行数据为:各第一接收设备在未确认上述上行数据接收成功即转发的上行数据,上述接入设备还包括:
解码单元1501,用于对上述数据接收单元1401接收到的各第一接入设备转发的上行数据进行合并解码。
在本实施例中,第一接入设备在确认接收成功以后,可以进行解码并转发解码后的数据,解码后的数据量会远小于原始数据量,因此可以节省对接入设备之间带宽的占用;另外,如果第一接入设备不执行解码以及确认是否接收成功的步骤,则可以直接转发接收到的上行数据,这样在第二接入设备则可以在合并解码时获得合并增益。即使第一接入设备直接转发,相比于上下行均传输编码后解码前的信号,仍然可以节省约50%的带宽(传输编码后解码前的原始信号所需要的带宽要远远超过传输解码后(数据量相当于编码前的数据量)的数据所需要的带宽,即传输解码后的数据所需要带宽相比传输原始数据,可以忽略。因此,如果只一个方向如上行传输解码前的原始信号,另外一个方向如下行传输编码前的信号,相比两个方向都传输编码后解码前的原始信号,带宽大约减少一半)。另外,如果在上行数据传输时将转发原始信号和解码后的信号的方式进行结合,即第一接入设备如果能解码正确,则转发解码后的信号,如果不能解码成功,则转发原始信号,此时,要转发的数据量也比直接转发原始信号小,节省传输带宽。
目前通信协议中接入设备给终端的上行授权,处理流程如下:终端有上行数据需要发送时,需要先发调度请求给第二接入设备和/或第一接入设备,然后第二接入设备和/或第一接入设备基于接收到的调度请求向终端发送上行授权,终端再发送缓存状态报告给第二接入设备(可以直接发送给第二接入设备,也可以通过第一接入设备发送给第二接入设备,或者结合两种方式发送给第二接入设备),然后第二接入设备基于状态报告再次向终端发送上行授权(可以直接发送给终端,也可以通过第二接入设备发送给终端,或者结合两种方式发送给终端),终端基于上行授权发送上行数据,这一过程大概有十几MS的时延。为了减少延时,本发明实施例可以通过盲调度的方式实现,具体如下:可选地,上述发送单元1102,用于在上述子集确定单元1101确定上述终端所属的服务小区子集后,若未收到上述终端设备的调度请求和/或缓存报告,则向上述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息。
本发明实施例的盲调度是第二接入设备不需要接收终端的调度请求和/或缓存状态报告,而直接向终端发送上行授权,此时如果终端有上行数据,则根据上行授权向基站发送上行数据,这大大减少了上行数据传输时延。
在使用盲调度的过程中,如果终端没有上行数据发送,按照目前的协议,终端需要根据上行授权发送没有有效数据包的上行数据,从而带来功率的浪费,甚至可能对相邻小区或终端形成干扰。本发明实施例为了解决以上问题,并且减少终端不必要的功耗,可以如下:进一步地,上述发送单元1102,还用于在上述子集确定单元1101确定上述终端所属的服务小区子集之后,向上述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息,上述第一配置信息用于将第一接入设备和/或上述终端配置为:在没有上行数据时不发送没有有效数据包的上行数据,或者,在没有上行数据时仅发送上行授权确认消息,上述上行授权确认消息用于表示没有上行数据。其中,上行授权确认消息具体可以是物理上行控制信道上发送的消息;另外,该消息所使用的具体资源可以根据上述上行授权占用的物理资源CCE的起始位置来确定,具体的,如:上行控制信道的位置=起始CCE位置+偏移量,其中上述偏移量可以由高层如RRC(Radio Resource Control,无线资源控制)消息进行配置,或者在协议中固定。
本实施例中盲调度的实现方案可以独立实现,并不需要依赖于本发明实施例提出的第一接入设备和第二接入设备的网络构架。
在本发明实施例中,由于第一接入设备可能存在支持信息发送配置的功能,为了提高网络兼容性,可以由第一接入设备先上报自身的能力,然后由第二接入设备对支持配置的第一接入设备进行配置,而那些不支持配置的第一接入设备则可以仍然采用其固有方式进行数据转发,从而实现兼容的和灵活控制的目的,具体如下:如图16所示,上述接入设备还包括:
能力信息接收单元1601,用于在上述发送单元1102向上述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息之前,上述第二接入设备接收由上述服务小区子集内的服务小区对应的第一接入设备转发的上述终端的能力信息;
上述发送单元1102,用于依据上述能力信息的指示确认上述终端支持在没有上行数据时不发送没有有效数据包的上行数据,则向上述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息;或者,
依据上述能力信息的指示确认上述终端支持在没有上行数据时仅发送上 行授权确认消息,则向上述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息。
终端根据下行数据接收情况进行上行HARQ(Hybrid Automatic Repeat Request,混合自动重传)反馈时,其反馈资源(上行控制信道)根据调度下行数据的调度信息占用的物理资源CCE的起始位置来确定。具体的,如:上行控制信道的位置=起始CCE位置+偏移量,其中上述偏移量可以由高层如RRC(Radio Resource Control,无线资源控制)消息进行配置,或者在协议中固定。其中上述调度信息可以占用1个CCE,2个CCE,4个CCE,8个CCE等不同的CCE个数,以适不同的信道环境,以保证上述调度命令的可靠传输。但是,当上述调度信息占用多个CCE时,反馈资源也仍然与起始CCE位置相关联,将会使第二反馈信息的可靠性会受到影响,从而,导致上述第二反馈信息丢失,或者错误。本发明实施例提供了基于此的解决方案,如下:进一步地,上述发送单元1102,还用于在向上述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息之前,向上述服务小区子集内的服务小区对应的第一接入设备发送第二配置信息,并指示上述服务小区子集内的服务小区对应的第一接入设备将上述第二配置信息转发给上述终端,上述第二配置信息用于指示在上述上行调度信息占用至少两个控制信道元素CCE时,确定反馈资源应使用的CCE以及使用的CCE的位置;上述反馈资源为上述终端向第一接入设备和/或第二接入设备发送第二反馈信息所使用的反馈资源。
在本实施例中,第二接入设备指示第一接入设备执行转发操作的实现方式可以是:在第二配置信息中携带指示信息用于指示第一接入设备执行转发操作;或者,在携带上述第二配置信息的消息中指定上述终端的地址,从而使第一接入设备将上述第二配置信息转发给上述终端;或者,另外发一个独立的指示消息,用来指示第一接入设备执行转发操作。第二接入设备具体如何指示第一接入设备执行转发第二配置信息的实现方案,本发明实施例不予唯一性限定。
进一步地,终端还可以通过增加编码的冗余信息的方式,提升反馈信息的可靠性,具体如下:如图17所示,上述接入设备还包括:
第二反馈接收单元1701,用于接收上述终端设备使用至少两个反馈资源分别重复发送的统一编码的第二反馈信息。
可以理解的,上述终端发送上行授权确认消息的方法以及能力上报和功能配置的方法也适用于终端只有一个服务小区的场景,或者载波聚合时的场景,或者双连接时的场景等。比如只有一个服务小区时的场景,则第二接入设备和第一接入设备可以合并成一个接入设备。在此不作赘述。
本发明实施例还提供了小区子集的确定方式,具体如下:可选地,如图18所示,上述子集确定单元1101包括:
集合确定单元1801,用于确定服务小区集合,上述服务小区集合为上述第二接入设备管理的服务小区的集合;
广播单元1802,用于向上述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息,使上述服务小区集合内的服务小区对应的第一接入设备向上述终端转发上述测量指示消息;上述测量指示消息,用于指示上述终端对下行导频进行测量,或者,用于指示任意终端对下行导频进行测量;
确定子集单元1803,用于根据上述各第一接入设备转发的测量结果信息,确定上述终端能够接入的服务小区的集合作为上述终端所属的服务小区子集。
在本发明实施例中,第二接入设备具有管理第一接入设备的功能,这一点在本发明实施例的方案中可以看出其管理功能;而第一接入设备会提供终端接入的服务小区,那么第二接入设备所能管理的所有第一接入设备所提供的全部服务小区均应属于第二接入设备管理的服务小区,这些服务小区的集合即为第二接入设备管理的服务小区的集合。
在本发明实施例中,对下行导频进行测量的结果,用于表示终端是否能够接入到第一接入设备,并且接入的质量是否满足要求;从而用来确定终端能够接入的服务小区中能够作为服务小区子集的服务小区;基于此种目的,本发明实施例中的对下行导频进行测量的结果,可以通过各种不同的形式来达到这一要求,具体如下:可选地,上述测量结果信息包括:
上述服务小区集合内的服务小区对应的第一接入设备接收到的所有下行导频的测量结果、符合配置条件的下行导频的测量结果,以及终端标识与能够接入的服务小区的对应关系信息中的至少一项。
在本发明实施例中,第二接入设备向第一接入设备广播的测量指示消息可以是重复执行的。重复发送以后,将会再次确定服务小区子集,这样可以动态 的更新服务小区子集,具体如下:可选地,上述广播单元1802,用于按照预定的规则重复执行:向上述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息。
本实施例重复发送广播测量指示信息是为了更新服务小区子集,那么更新服务小区子集会有一些技术需求,例如:更新的及时性、更新所占用的系统资源限制等。采用的“预定的规则”可以是周期性的,可以是事件触发型的。例如:可以调整周期性广播测量指示消息的时间周期,或者,采用事件触发的方式来触发广播测量指示消息;调整上述时间周期的依据则可以来源于第二接入设备的监测数据,例如:终端接入的服务小区切换频繁则表示需要更及时的更新,需要缩短时间周期;或者,相邻两次广播测量指示消息后,服务小区子集内的服务小区更新比例或者数量少于预定的阈值,则可以延长时间周期。以上用于控制广播测量指示消息的“预定的规则”可以依据不同的技术指标需求进行设定,本发明实施例对此不予唯一性限定。
在本发明实施例中,可能在有些时候,没有终端需要通过第一接入设备接入无线网络,那么该第一接入设备是可以休眠的,从而节省电能;本发明实施例基于此提供了控制第一接入设备进入休眠和激活第一接入设备的具体实现方案,如下:进一步地,如图19所示,上述接入设备还包括:
集合确定单元1801,用于确定服务小区集合,上述服务小区集合为上述第二接入设备管理的服务小区的集合;
空闲小区确定单元1901,用于确定上述集合确定单元1801确定的服务小区集合内的空闲服务小区,上述空闲服务小区不属于任何一个服务小区子集;
检测单元1902,用于检测上述空闲小区确定单元1901确定的上述空闲服务小区内是否有终端进入;
指示发送单元1903,用于指示上述空闲服务小区对应的第一接入设备进入休眠状态;若上述检测单元1902检测到上述空闲服务小区内有终端进入,则激活上述空闲服务小区对应的第一接入设备。
在本实施例中,空闲的服务小区不属于任何一个服务小区子集,那么空闲的服务小区当前没有可以接入的终端,因此其必然处于空闲状态。那么可以让空闲服务小区对应的接入设备进入休眠状态。“激活”和“休眠”是接入设备 的两种工作状态。休眠状态下是不需要进行数据传输的状态,这种状态下终端无法接入;后续激活后的第一接入设备与休眠状态是对应的,激活后的第一接入设备具有数据传输的功能,其提供的第一服务小区能够被终端接入。在本实施例中激活空闲服务小区对应的第一接入设备的方式,可以是向上述空闲服务小区对应的第一接入设备发送指示信息,指示其将工作状态切换为激活状态。具体如何使第一接入设备完成工作状态从休眠状态到激活状态的切换,本发明实施例不作唯一性限定。
本发明实施例还提供了另一种接入设备,如图20所示,包括:接收器2001、发射器2002、处理器2003以及存储器2004;上述接入设备作为第二接入设备使用;
其中,上述处理器2003用于控制执行:确定终端所属的服务小区子集;上述终端为上述第二接入设备发送下行数据的目的终端,上述服务小区子集为上述终端能够接入的服务小区的集合,各服务小区分别对应有第一接入设备;向上述服务小区子集内的服务小区对应的第一接入设备,发送下行数据以及下行调度信息;上述下行调度信息用于指示第一接入设备向上述终端发送上述下行数据。
在本发明实施例中,由于第一接入设备对应的也可以是能够为终端服务的服务小区,因此上述“服务小区子集”则可以对应的是:能够为上述终端服务的服务小区的集合。可以理解的是,上述服务小区子集应该包含至少一个服务小区。另外,一个接入设备可以提供很多服务小区,因此在本发明实施例中,可以由两个或者两个以上的服务小区对应同一个接入设备。
可以理解的,第二接入设备也可能提供终端接入的服务小区,或者提供为终端服务的服务小区。此时,第二接入设备和第一接入设备在物理上可以是同一个接入设备。本发明不作限制。
在本发明实施例中,以上下行数据以及下行调度信息是需要在空口传输的信息,其中下行调度信息最终会被发送给终端;下行调度信息是用来指示第一接入设备发送下行数据的信息,在调度信息中可以指定第一接入设备发送下行数据时采用的参数。由于第一接入设备和第二接入设备都可能是服务小区子集内服务小区对应的接入设备,那么终端获得下行调度信息的过程可以如下:上 述第二接入设备和/或上述服务小区子集内的服务小区对应的第一接入设备向上述终端发送下行调度信息。终端在接收到上述下行调度信息后,则可以根据接收到的下行调度信息接收下行数据。
以上实施例,将接入设备分为两类,一类是起集中管理作用的第二接入设备,另一类是提供服务小区的第一接入设备,在第二接入设备需要发送下行数据的时候,向服务网小区子集内的服务小区对应的第一接入设备发送下行数据以及调度信息;实现宏小区、小小区、微微小区灵活的无线部署或有线部署。各第一接入设备都会在调度信息指示的资源上向终端发送下行数据,终端则会对应的在调度信息指示的资源上接收各第一接入设备发送的下行数据,这样终端可以获得合并增益,提高传输下行数据和调度信息的可靠性,并且提升下行数据的传输性能。
在本发明实施例中,第一接入设备和第二接入设备之间通信可以采用接入设备之间的接口实现,例如:基站与基站之间的X2接口;第一接入设备和第二接入设备之间可能没有直接通信的接口,这时,是可以通过其他接入设备进行转发的,具体方案如下:可选地,上述处理器2003具体用于控制执行:通过第一接入设备与上述第二接入设备之间的接口发送上述下行数据以及下行调度信息;或者,将上述下行数据以及下行调度信息发送给第三接入设备,并指示上述第三接入设备将上述下行数据以及下行调度信息转发给上述服务小区子集内的服务小区对应的第一接入设备。
在本实施例中,第二接入设备指示第三设备执行转发的实现方式可以是:在下行调度信息中携带指示信息指示第三设备转发,或者,将第三接入设备配置为默认的转发设备(第三接入设备只要接收到上述下行数据以及下行调度信息就执行转发),或者,发送独立的消息来指示第三设备转发,还可以在上述下行数据以及下行调度信息中携带第一接入设备的地址,使第三接入设备根据上述第一接入设备的地址执行转发。因此,指示的方式可以是显式的也可以是隐含的,具体如何指示的方式本发明实施例不做唯一性限定。
在本发明实施例中,由于每个第一接入设备都向终端下发过调度信息并且在调度信息指定的资源上发送了下行数据,那么按照协议规定各第一接入设备会在调度信息指定的资源接收第一反馈信息,这样第一反馈信息被转发到第二 接入设备时也会有合并增益,也会提高第一反馈信息的传输性能,具体如下:进一步地,上述处理器2003还用于控制执行:在发送下行数据以及下行调度信息之后,接收上述服务小区子集内的服务小区对应的第一接入设备发送的第一反馈信息;依据上述第一反馈信息确定上述终端成功接收上述下行数据或未成功接收上述下行数据。
在接收第一反馈信息以后如何确定终端成功接收下行数据或未成功接收上述下行数据,具体可以如下:可选地,上述处理器2003具体用于控制执行:若接收到的上述第一反馈信息指示有设定数量或者设定比例的第一接入设备成功接收上述下行数据,则确定上述终端成功接收上述下行数据,否则确认上述终端未成功接收上述下行数据。
在本发明实施例中,第一反馈信息是用来确定终端接收下行数据的状况的信息,其携带的信息种类可以有很多,例如:指示某一下行数据接收成功或者未接收成功;或者,指示接收成功的下行数据有哪些,未接收成功的下行数据有哪些;或者,接收成功信息的统计信息,如:成功/未成功接收的下行数据的比例、成功/未成功接收的下行数据的数量等。因此第一反馈信息的种类依据需求可能有很多,按照不同的反馈信息的种类,可以采用对应的确定方式来确定上述终端成功接收上述下行数据或未成功接收上述下行数据。以上具体的确定方式不应理解为对本发明实施例的唯一性限定。
在本实施例中,设定的数量和设定的比例都可以由技术人员根据经验进行设定,或者根据下行数据传输的质量要求进行设定,理论上只要有一个第一反馈信息显示为终端接收成功则终端可以接收成功,设定得越高则越能提高确定终端成功接收的准确性。本实施例对以上设定的数量和设定的比例的具体参数不作唯一性限定。
在本发明实施例中,如果第二接入设备确定终端未成功接收下行数据,那么本发明实施例还提供了自动重传的实现方案如下:进一步地,上述处理器2003还用于控制执行:若确定上述终端未成功接收上述下行数据,若上述第二接入设备具备无线链路控制层及以上层的控制功能,则上述第二接入设备通知无线链路控制层执行自动重传请求的重传操作。
在本实施例中,无线链路控制层执行自动重传请求的重传操作可以重新传 输没有成功传输的数据。按照协议规定或者配置的不同,第一接入设备如果具备无线链路控制层及以上层的控制功能,自动重传是可以由第一接入设备完成的,因此由第二接入设备执行自动重传并不是唯一可选实现方案。
以上实施例主要用于实现下行数据的调度,本发明实施例还提供了上行数据发送的调度,具体如下:进一步地,上述处理器2003还用于控制执行:在确定上述终端所属的服务小区子集后,向上述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息;上述上行调度信息用于指示授权上述终端在上述上行调度信息指定的资源上发送上行数据;接收上述服务小区子集内的服务小区对应的第一接入设备转发的上行数据。
在本发明实施例中,上行调度信息最终会被发送给终端,使终端根据上行调度信息发送上行数据;由于第一接入设备和第二接入设备都可能是服务小区子集内服务小区对应的接入设备,那么终端获得上行调度信息的过程可以如下:上述第二接入设备和/或上述服务小区子集内的服务小区对应的第一接入设备和/或向终端发送上行调度信息,以使得上述终端根据上述上行调度信息发送上行数据。终端在接收到上行调度信息以后,则可以在上行调度信息指定的资源上发送上行数据,由于各第一接入设备都会在上行调度信息指定的资源上接收上行数据,虽然终端只用发一份数据,但是各第一接入设备转发给第二接入设备,第二接入设备则可以获得合并增益,从而提高传输上行数据的可靠性,并且提升上行数据的传输性能。
在本发明实施例中,第一接入设备按照能力的如何转发上行数据则可以有不同的选择,具体如下:可选地,各第一接入设备转发的上行数据包括:
各第一接入设备在确认上述上行数据接收成功后,转发的经第一接入设备解码后的上行数据;或者,各第一接收设备在未确认上述上行数据接收成功即转发的上行数据;
若上述各第一接入设备转发的上行数据为:各第一接收设备在未确认上述上行数据接收成功即转发的上行数据,上述方法还包括:
上述第二接入设备对各第一接入设备转发的上行数据进行合并解码。
在本实施例中,第一接入设备在确认接收成功以后,可以进行解码并转发解码后的数据,解码后的数据量会远小于原始数据量,因此可以节省对接入设 备之间带宽的占用;另外,如果第一接入设备不执行解码以及确认是否接收成功的步骤,则可以直接转发接收到的上行数据,这样在第二接入设备则可以在合并解码时获得合并增益。即使第一接入设备直接转发,相比于上下行均传输编码后解码前的信号,仍然可以节省约50%的带宽(传输编码后解码前的原始信号所需要的带宽要远远超过传输解码后(数据量相当于编码前的数据量)的数据所需要的带宽,即传输解码后的数据所需要带宽相比传输原始数据,可以忽略。因此,如果只一个方向如上行传输解码前的原始信号,另外一个方向如下行传输编码前的信号,相比两个方向都传输编码后解码前的原始信号,带宽大约减少一半)。另外,如果在上行数据传输时将转发原始信号和解码后的信号的方式进行结合,即第一接入设备如果能解码正确,则转发解码后的信号,如果不能解码成功,则转发原始信号,此时,要转发的数据量也比直接转发原始信号小,节省传输带宽。
目前通信协议中接入设备给终端的上行授权,处理流程如下:终端有上行数据需要发送时,需要先发调度请求给第二接入设备和/或第一接入设备,然后第二接入设备和/或第一接入设备基于接收到的调度请求向终端发送上行授权,终端再发送缓存状态报告给第二接入设备(可以直接发送给第二接入设备,也可以通过第一接入设备发送给第二接入设备,或者结合两种方式发送给第二接入设备),然后第二接入设备基于状态报告再次向终端发送上行授权(可以直接发送给终端,也可以通过第二接入设备发送给终端,或者结合两种方式发送给终端),终端基于上行授权发送上行数据,这一过程大概有十几MS的时延。为了减少延时,本发明实施例可以通过盲调度的方式实现,具体如下:可选地,上述处理器2003具体用于控制执行:上述第二接入设备在确定上述终端所属的服务小区子集后,若未收到上述终端设备的调度请求和/或缓存报告,则向上述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息。
本发明实施例的盲调度是第二接入设备不需要接收终端的调度请求和/或缓存状态报告,而直接向终端发送上行授权,此时如果终端有上行数据,则根据上行授权向基站发送上行数据,这大大减少了上行数据传输时延。
在使用盲调度的过程中,如果终端没有上行数据发送,按照目前的协议,终端需要根据上行授权发送没有有效数据包的上行数据,从而带来功率的浪 费,甚至可能对相邻小区或终端形成干扰。本发明实施例为了解决以上问题,并且减少终端不必要的功耗,可以如下:进一步地,上述处理器2003还用于控制执行:在确定上述终端所属的服务小区子集之后,向上述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息,上述第一配置信息用于将第一接入设备和/或上述终端配置为:在没有上行数据时不发送没有有效数据包的上行数据,或者,在没有上行数据时仅发送上行授权确认消息,上述上行授权确认消息用于表示没有上行数据。其中,上行授权确认消息具体可以是物理上行控制信道上发送的消息;另外,该消息所使用的具体资源可以根据上述上行授权占用的物理资源CCE的起始位置来确定,具体的,如:上行控制信道的位置=起始CCE位置+偏移量,其中上述偏移量可以由高层如RRC(Radio Resource Control,无线资源控制)消息进行配置,或者在协议中固定。
本实施例中盲调度的实现方案可以独立实现,并不需要依赖于本发明实施例提出的第一接入设备和第二接入设备的网络构架。
在本发明实施例中,由于第一接入设备可能存在支持信息发送配置的功能,为了提高网络兼容性,可以由第一接入设备先上报自身的能力,然后由第二接入设备对支持配置的第一接入设备进行配置,而那些不支持配置的第一接入设备则可以仍然采用其固有方式进行数据转发,从而实现兼容的和灵活控制的目的,具体如下:进一步地,上述处理器2003还用于控制执行:在上述第二接入设备向上述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息之前,接收由上述服务小区子集内的服务小区对应的第一接入设备转发的上述终端的能力信息;
依据上述能力信息的指示确认上述终端支持在没有上行数据时不发送没有有效数据包的上行数据,则向上述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息;或者,
上述第二接入设备依据上述能力信息的指示确认上述终端支持在没有上行数据时仅发送上行授权确认消息,则向上述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息。
终端根据下行数据接收情况进行上行HARQ(Hybrid Automatic Repeat Request,混合自动重传)反馈时,其反馈资源(上行控制信道)根据调度下 行数据的调度信息占用的物理资源CCE的起始位置来确定。具体的,如:上行控制信道的位置=起始CCE位置+偏移量,其中上述偏移量可以由高层如RRC(Radio Resource Control,无线资源控制)消息进行配置,或者在协议中固定。其中上述调度信息可以占用1个CCE,2个CCE,4个CCE,8个CCE等不同的CCE个数,以适不同的信道环境,以保证上述调度命令的可靠传输。但是,当上述调度信息占用多个CCE时,反馈资源也仍然与起始CCE位置相关联,将会使第二反馈信息的可靠性会受到影响,从而,导致上述第二反馈信息丢失,或者错误。本发明实施例提供了基于此的解决方案,如下:进一步地,上述处理器2003还用于控制执行:向上述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息之前,向上述服务小区子集内的服务小区对应的第一接入设备发送第二配置信息,并指示上述服务小区子集内的服务小区对应的第一接入设备将上述第二配置信息转发给上述终端,上述第二配置信息用于指示在上述上行调度信息占用至少两个控制信道元素CCE时,确定反馈资源应使用的CCE以及使用的CCE的位置;上述反馈资源为上述终端向第一接入设备和/或第二接入设备发送第二反馈信息所使用的反馈资源。
在本实施例中,第二接入设备指示第一接入设备执行转发操作的实现方式可以是:在第二配置信息中携带指示信息用于指示第一接入设备执行转发操作;或者,在携带上述第二配置信息的消息中指定上述终端的地址,从而使第一接入设备将上述第二配置信息转发给上述终端;或者,另外发一个独立的指示消息,用来指示第一接入设备执行转发操作。第二接入设备具体如何指示第一接入设备执行转发第二配置信息的实现方案,本发明实施例不予唯一性限定。
进一步地,终端还可以通过增加编码的冗余信息的方式,提升反馈信息的可靠性,具体如下:进一步地,上述处理器2003还用于控制执行:接收上述终端设备使用至少两个反馈资源分别重复发送的统一编码的第二反馈信息。
可以理解的,上述终端发送上行授权确认消息的方法以及能力上报和功能配置的方法也适用于终端只有一个服务小区的场景,或者载波聚合时的场景,或者双连接时的场景等。比如只有一个服务小区时的场景,则第二接入设备和第一接入设备可以合并成一个接入设备。在此不作赘述。
本发明实施例还提供了小区子集的确定方式,具体如下:可选地,上述处 理器2003具体用于控制执行:第二接入设备确定服务小区集合,上述服务小区集合为上述第二接入设备管理的服务小区的集合;
向上述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息,使上述服务小区集合内的服务小区对应的第一接入设备向上述终端转发上述测量指示消息;上述测量指示消息,用于指示上述终端对下行导频进行测量,或者,用于指示任意终端对下行导频进行测量;
根据上述各第一接入设备转发的测量结果信息,确定上述终端能够接入的服务小区的集合作为上述终端所属的服务小区子集。
在本发明实施例中,第二接入设备具有管理第一接入设备的功能,这一点在本发明实施例的方案中可以看出其管理功能;而第一接入设备会提供终端接入的服务小区,那么第二接入设备所能管理的所有第一接入设备所提供的全部服务小区均应属于第二接入设备管理的服务小区,这些服务小区的集合即为第二接入设备管理的服务小区的集合。
在本发明实施例中,对下行导频进行测量的结果,用于表示终端是否能够接入到第一接入设备,并且接入的质量是否满足要求;从而用来确定终端能够接入的服务小区中能够作为服务小区子集的服务小区;基于此种目的,本发明实施例中的对下行导频进行测量的结果,可以通过各种不同的形式来达到这一要求,具体如下:可选地,上述测量结果信息包括:
上述服务小区集合内的服务小区对应的第一接入设备接收到的所有下行导频的测量结果、符合配置条件的下行导频的测量结果,以及终端标识与能够接入的服务小区的对应关系信息中的至少一项。
在本发明实施例中,第二接入设备向第一接入设备广播的测量指示消息可以是重复执行的。重复发送以后,将会再次确定服务小区子集,这样可以动态的更新服务小区子集,具体如下:可选地,上述处理器2003具体用于控制执行:上述第二接入设备按照预定的规则重复执行:向上述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息。
本实施例重复发送广播测量指示信息是为了更新服务小区子集,那么更新服务小区子集会有一些技术需求,例如:更新的及时性、更新所占用的系统资源限制等。采用的“预定的规则”可以是周期性的,可以是事件触发型的。例 如:可以调整周期性广播测量指示消息的时间周期,或者,采用事件触发的方式来触发广播测量指示消息;调整上述时间周期的依据则可以来源于第二接入设备的监测数据,例如:终端接入的服务小区切换频繁则表示需要更及时的更新,需要缩短时间周期;或者,相邻两次广播测量指示消息后,服务小区子集内的服务小区更新比例或者数量少于预定的阈值,则可以延长时间周期。以上用于控制广播测量指示消息的“预定的规则”可以依据不同的技术指标需求进行设定,本发明实施例对此不予唯一性限定。
在本发明实施例中,可能在有些时候,没有终端需要通过第一接入设备接入无线网络,那么该第一接入设备是可以休眠的,从而节省电能;本发明实施例基于此提供了控制第一接入设备进入休眠和激活第一接入设备的具体实现方案,如下:进一步地,上述处理器2003还用于控制执行:确定服务小区集合,上述服务小区集合为上述第二接入设备管理的服务小区的集合;
确定上述服务小区集合内的空闲服务小区,上述空闲服务小区不属于任何一个服务小区子集;
指示上述空闲服务小区对应的第一接入设备进入休眠状态;
若检测到上述空闲服务小区内有终端进入,则激活上述空闲服务小区对应的第一接入设备。
在本实施例中,空闲的服务小区不属于任何一个服务小区子集,那么空闲的服务小区当前没有可以接入的终端,因此其必然处于空闲状态。那么可以让空闲服务小区对应的接入设备进入休眠状态。“激活”和“休眠”是接入设备的两种工作状态。休眠状态下是不需要进行数据传输的状态,这种状态下终端无法接入;后续激活后的第一接入设备与休眠状态是对应的,激活后的第一接入设备具有数据传输的功能,其提供的第一服务小区能够被终端接入。在本实施例中激活空闲服务小区对应的第一接入设备的方式,可以是向上述空闲服务小区对应的第一接入设备发送指示信息,指示其将工作状态切换为激活状态。具体如何使第一接入设备完成工作状态从休眠状态到激活状态的切换,本发明实施例不作唯一性限定。
本发明实施例还提供了一种无线网络,包括:至少两个接入设备,如图21所示;
上述至少两个接入设备中,至少包括一个本发明实施例提供的任意一种作为第二接入设备2101使用的接入设备,以及至少一个作为第一接入设备2102使用的接入设备。
图21作为一个典型的应用场景,包含了一个第二接入设备以及n个第一接入设备;接入设备的个数是与服务小区子集相关的,而服务小区子集则是与终端能够接入的服务小区相关,终端能够接入的服务小区会随着终端的变化而变化,还会随着终端的位置移动、接入设备/终端的工作状态,以及终端之间的竞争而变化。因此,无线网络在提供服务的过程中,第二接入设备以及第一接入设备会处于变化的过程中,第一接入设备的数量并不一定是固定的。以上图21中所示的接入设备的个数仅作为一个示例不应理解为对本发明实施例的限定。
以上实施例,将接入设备分为两类,一类是起集中管理作用的第二接入设备,另一类是提供服务小区的第一接入设备,在第二接入设备需要发送下行数据的时候,向服务网小区子集内的服务小区对应的第一接入设备发送下行数据以及调度信息;实现宏小区、小小区、微微小区灵活的无线部署或有线部署。各第一接入设备都会在调度信息指示的资源上向终端发送下行数据,终端则会对应的在调度信息指示的资源上接收各第一接入设备发送的下行数据,这样终端可以获得合并增益,提高传输下行数据和调度信息的可靠性,并且提升下行数据的传输性能。
值得注意的是,上述装置只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
另外,本领域普通技术人员可以理解实现上述各方法实施例中的全部或部分步骤是可以通过程序来指令相关的硬件完成,相应的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (33)

  1. 一种无线网络调度方法,其特征在于,包括:
    第二接入设备确定终端所属的服务小区子集;所述终端为所述第二接入设备发送下行数据的目的终端,所述服务小区子集为所述终端能够接入的服务小区的集合,各服务小区分别对应有第一接入设备;
    所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备,发送下行数据以及下行调度信息;所述下行调度信息用于指示第一接入设备向所述终端发送所述下行数据。
  2. 根据权利要求1所述方法,其特征在于,所述发送下行数据以及下行调度信息,包括:
    通过第一接入设备与所述第二接入设备之间的接口发送所述下行数据以及下行调度信息;或者,将所述下行数据以及下行调度信息发送给第三接入设备,并指示所述第三接入设备将所述下行数据以及下行调度信息转发给所述服务小区子集内的服务小区对应的第一接入设备。
  3. 根据权利要求1所述方法,其特征在于,在发送下行数据以及下行调度信息之后,所述方法还包括:
    所述第二接入设备接收所述服务小区子集内的服务小区对应的第一接入设备发送的第一反馈信息;
    依据所述第一反馈信息确定所述终端成功接收所述下行数据或未成功接收所述下行数据。
  4. 根据权利要求3所述方法,其特征在于,所述依据所述第一反馈信息确定所述终端是功接收所述下行数据或未成功接收所述下行数据,包括:
    若接收到的所述第一反馈信息指示有设定数量或者设定比例的第一接入设备成功接收所述下行数据,则确定所述终端成功接收所述下行数据,否则确认所述终端未成功接收所述下行数据。
  5. 根据权利要求3所述方法,其特征在于,若确定所述终端未成功接收所述下行数据,所述方法还包括:
    若所述第二接入设备具备无线链路控制层及以上层的控制功能,则所述第二接入设备通知无线链路控制层执行自动重传请求的重传操作。
  6. 根据权利要求1至5任意一项所述方法,其特征在于,所述第二接入设备在确定所述终端所属的服务小区子集后,还包括:
    所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息;所述上行调度信息用于指示授权所述终端在所述上行调度信息指定的资源上发送上行数据;
    所述第二接入设备接收所述服务小区子集内的服务小区对应的第一接入设备转发的上行数据。
  7. 根据权利要求6所述方法,其特征在于,各第一接入设备转发的上行数据包括:
    各第一接入设备在确认所述上行数据接收成功后,转发的经第一接入设备解码后的上行数据;或者,各第一接收设备在未确认所述上行数据接收成功即转发的上行数据;
    若所述各第一接入设备转发的上行数据为:各第一接收设备在未确认所述上行数据接收成功即转发的上行数据,所述方法还包括:
    所述第二接入设备对各第一接入设备转发的上行数据进行合并解码。
  8. 根据权利要求6所述方法,其特征在于,所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息包括:
    所述第二接入设备在确定所述终端所属的服务小区子集后,若未收到所述终端设备的调度请求和/或缓存报告,则向所述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息。
  9. 根据权利要求8所述方法,其特征在于,在所述第二接入设备在确定所述终端所属的服务小区子集之后,所述方法还包括:
    所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息,所述第一配置信息用于将第一接入设备和/或所述终端配置为:在没有上行数据时不发送没有有效数据包的上行数据,或者,在没有上行数据时仅发送上行授权确认消息,所述上行授权确认消息用于表示没有上行数据。
  10. 根据权利要求9所述方法,其特征在于,在所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息之前,还包 括:
    所述第二接入设备接收由所述服务小区子集内的服务小区对应的第一接入设备转发的所述终端的能力信息;
    所述第二接入设备依据所述能力信息的指示确认所述终端支持在没有上行数据时不发送没有有效数据包的上行数据,则向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息;或者,
    所述第二接入设备依据所述能力信息的指示确认所述终端支持在没有上行数据时仅发送上行授权确认消息,则向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息。
  11. 根据权利要求6所述方法,其特征在于,所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息之前,所述方法还包括:
    所述第二接入设备向所述服务小区子集内的服务小区对应的第一接入设备发送第二配置信息,并指示所述服务小区子集内的服务小区对应的第一接入设备将所述第二配置信息转发给所述终端,所述第二配置信息用于指示在所述上行调度信息占用至少两个控制信道元素CCE时,确定反馈资源应使用的CCE以及使用的CCE的位置;所述反馈资源为所述终端向第一接入设备和/或第二接入设备发送第二反馈信息所使用的反馈资源。
  12. 根据权利要求11所述方法,其特征在于,所述方法还包括:
    所述第二接入设备接收所述终端设备使用至少两个反馈资源分别重复发送的统一编码的第二反馈信息。
  13. 根据权利要求1至5任意一项所述方法,其特征在于,所述第二接入设备确定终端所属的服务小区子集包括:
    第二接入设备确定服务小区集合,所述服务小区集合为所述第二接入设备管理的服务小区的集合;
    所述第二接入设备向所述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息,使所述服务小区集合内的服务小区对应的第一接入设备向所述终端转发所述测量指示消息;所述测量指示消息,用于指示所述终端对下行导频进行测量,或者,用于指示任意终端对下行导频进行测量;
    根据所述各第一接入设备转发的测量结果信息,确定所述终端能够接入的服务小区的集合作为所述终端所属的服务小区子集。
  14. 根据权利要求13所述方法,其特征在于,所述测量结果信息包括:
    所述服务小区集合内的服务小区对应的第一接入设备接收到的所有下行导频的测量结果、符合配置条件的下行导频的测量结果,以及终端标识与能够接入的服务小区的对应关系信息中的至少一项。
  15. 根据权利要求13所述方法,其特征在于,所述第二接入设备向所述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息包括:
    所述第二接入设备按照预定的规则重复执行:向所述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息。
  16. 根据权利要求1所述方法,其特征在于,所述方法还包括:
    第二接入设备确定服务小区集合,所述服务小区集合为所述第二接入设备管理的服务小区的集合;
    确定所述服务小区集合内的空闲服务小区,所述空闲服务小区不属于任何一个服务小区子集;
    指示所述空闲服务小区对应的第一接入设备进入休眠状态;
    若检测到所述空闲服务小区内有终端进入,则激活所述空闲服务小区对应的第一接入设备。
  17. 一种接入设备,其特征在于,作为第二接入设备使用,包括:
    子集确定单元,用于确定终端所属的服务小区子集;所述终端为所述第二接入设备发送下行数据的目的终端,所述服务小区子集为所述终端能够接入的服务小区的集合,各服务小区分别对应有第一接入设备;
    发送单元,用于向所述子集确定单元确定的服务小区子集内的服务小区对应的第一接入设备,发送下行数据以及下行调度信息;所述下行调度信息用于指示第一接入设备向所述终端发送所述下行数据。
  18. 根据权利要求17所述接入设备,其特征在于,
    所述发送单元,具体用于通过第一接入设备与所述第二接入设备之间的接口发送所述下行数据以及下行调度信息;或者,将所述下行数据以及下行调度信息发送给第三接入设备,并指示所述第三接入设备将所述下行数据以及下行 调度信息转发给所述服务小区子集内的服务小区对应的第一接入设备。
  19. 根据权利要求17所述接入设备,其特征在于,所述接入设备还包括:
    第一反馈接收单元,用于在发送下行数据以及下行调度信息之后,接收所述服务小区子集内的服务小区对应的第一接入设备发送的第一反馈信息;
    结果确定单元,用于依据所述第一反馈接收单元接收到的所述第一反馈信息确定所述终端成功接收所述下行数据或未成功接收所述下行数据。
  20. 根据权利要求19所述接入设备,其特征在于,
    所述结果确定单元,用于若所述第一反馈接收单元接收到的所述第一反馈信息指示有设定数量或者设定比例的第一接入设备成功接收所述下行数据,则确定所述终端成功接收所述下行数据,否则确认所述终端未成功接收所述下行数据。
  21. 根据权利要求19所述接入设备,其特征在于,所述接入设备还包括:
    重传控制单元,用于若所述结果确定单元确定所述终端未成功接收所述下行数据,并且所述第二接入设备具备无线链路控制层及以上层的控制功能,则通知无线链路控制层执行自动重传请求的重传操作。
  22. 根据权利要求17至21任意一项所述接入设备,其特征在于,
    所述发送单元,还用于在所述子集确定单元确定所述终端所属的服务小区子集后,向所述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息;所述上行调度信息用于指示授权所述终端在所述上行调度信息指定的资源上发送上行数据;所述接入设备还包括:
    数据接收单元,用于接收所述服务小区子集内的服务小区对应的第一接入设备转发的上行数据。
  23. 根据权利要求22所述接入设备,其特征在于,各第一接入设备转发的上行数据包括:各第一接入设备在确认所述上行数据接收成功后,转发的经第一接入设备解码后的上行数据;或者,各第一接收设备在未确认所述上行数据接收成功即转发的上行数据;若所述各第一接入设备转发的上行数据为:各第一接收设备在未确认所述上行数据接收成功即转发的上行数据,所述接入设备还包括:
    解码单元,用于对所述数据接收单元接收到的各第一接入设备转发的上行 数据进行合并解码。
  24. 根据权利要求22所述接入设备,其特征在于,
    所述发送单元,用于在所述子集确定单元确定所述终端所属的服务小区子集后,若未收到所述终端设备的调度请求和/或缓存报告,则向所述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息。
  25. 根据权利要求24所述接入设备,其特征在于,
    所述发送单元,还用于在所述子集确定单元确定所述终端所属的服务小区子集之后,向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息,所述第一配置信息用于将第一接入设备和/或所述终端配置为:在没有上行数据时不发送没有有效数据包的上行数据,或者,在没有上行数据时仅发送上行授权确认消息,所述上行授权确认消息用于表示没有上行数据。
  26. 根据权利要求25所述接入设备,其特征在于,所述接入设备还包括:
    能力信息接收单元,用于在所述发送单元向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息之前,所述第二接入设备接收由所述服务小区子集内的服务小区对应的第一接入设备转发的所述终端的能力信息;
    所述发送单元,用于依据所述能力信息的指示确认所述终端支持在没有上行数据时不发送没有有效数据包的上行数据,则向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息;或者,
    依据所述能力信息的指示确认所述终端支持在没有上行数据时仅发送上行授权确认消息,则向所述服务小区子集内的服务小区对应的第一接入设备发送第一配置信息。
  27. 根据权利要求22所述接入设备,其特征在于,
    所述发送单元,还用于在向所述服务小区子集内的服务小区对应的第一接入设备发送上行调度信息之前,向所述服务小区子集内的服务小区对应的第一接入设备发送第二配置信息,并指示所述服务小区子集内的服务小区对应的第一接入设备将所述第二配置信息转发给所述终端,所述第二配置信息用于指示在所述上行调度信息占用至少两个控制信道元素CCE时,确定反馈资源应使用的CCE以及使用的CCE的位置;所述反馈资源为所述终端向第一接入设备和/或第二接入设备发送第二反馈信息所使用的反馈资源。
  28. 根据权利要求27所述接入设备,其特征在于,所述接入设备还包括:
    第二反馈接收单元,用于接收所述终端设备使用至少两个反馈资源分别重复发送的统一编码的第二反馈信息。
  29. 根据权利要求17至21任意一项所述接入设备,其特征在于,所述子集确定单元包括:
    集合确定单元,用于确定服务小区集合,所述服务小区集合为所述第二接入设备管理的服务小区的集合;
    广播单元,用于向所述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息,使所述服务小区集合内的服务小区对应的第一接入设备向所述终端转发所述测量指示消息;所述测量指示消息,用于指示所述终端对下行导频进行测量,或者,用于指示任意终端对下行导频进行测量;
    确定子集单元,用于根据所述各第一接入设备转发的测量结果信息,确定所述终端能够接入的服务小区的集合作为所述终端所属的服务小区子集。
  30. 根据权利要求29所述接入设备,其特征在于,所述测量结果信息包括:
    所述服务小区集合内的服务小区对应的第一接入设备接收到的所有下行导频的测量结果、符合配置条件的下行导频的测量结果,以及终端标识与能够接入的服务小区的对应关系信息中的至少一项。
  31. 根据权利要求29所述接入设备,其特征在于,
    所述广播单元,用于按照预定的规则重复执行:向所述服务小区集合内的服务小区对应的第一接入设备广播测量指示消息。
  32. 根据权利要求17所述接入设备,其特征在于,所述接入设备还包括:
    集合确定单元,用于确定服务小区集合,所述服务小区集合为所述第二接入设备管理的服务小区的集合;
    空闲小区确定单元,用于确定所述集合确定单元确定的服务小区集合内的空闲服务小区,所述空闲服务小区不属于任何一个服务小区子集;
    检测单元,用于检测所述空闲小区确定单元确定的所述空闲服务小区内是否有终端进入;
    指示发送单元,用于指示所述空闲服务小区对应的第一接入设备进入休眠 状态;若所述检测单元检测到所述空闲服务小区内有终端进入,则激活所述空闲服务小区对应的第一接入设备。
  33. 一种无线网络,包括:至少两个接入设备,其特征在于,
    所述至少两个接入设备中,至少包括一个权利要求17~32中任意一项作为第二接入设备使用的接入设备,以及至少一个作为第一接入设备使用的接入设备。
PCT/CN2014/087803 2014-09-29 2014-09-29 无线网络调度方法,接入设备及无线网络 WO2016049813A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES14903141T ES2766374T3 (es) 2014-09-29 2014-09-29 Método de programación de red inalámbrica y dispositivo de acceso
PCT/CN2014/087803 WO2016049813A1 (zh) 2014-09-29 2014-09-29 无线网络调度方法,接入设备及无线网络
EP14903141.1A EP3190850B1 (en) 2014-09-29 2014-09-29 Wireless network scheduling method and access device
CN201480030131.2A CN105850214B (zh) 2014-09-29 2014-09-29 无线网络调度方法,接入设备及无线网络
US15/473,178 US10349426B2 (en) 2014-09-29 2017-03-29 Wireless network scheduling method, access device, and wireless network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087803 WO2016049813A1 (zh) 2014-09-29 2014-09-29 无线网络调度方法,接入设备及无线网络

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/473,178 Continuation US10349426B2 (en) 2014-09-29 2017-03-29 Wireless network scheduling method, access device, and wireless network

Publications (1)

Publication Number Publication Date
WO2016049813A1 true WO2016049813A1 (zh) 2016-04-07

Family

ID=55629240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087803 WO2016049813A1 (zh) 2014-09-29 2014-09-29 无线网络调度方法,接入设备及无线网络

Country Status (5)

Country Link
US (1) US10349426B2 (zh)
EP (1) EP3190850B1 (zh)
CN (1) CN105850214B (zh)
ES (1) ES2766374T3 (zh)
WO (1) WO2016049813A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476979B2 (en) * 2015-09-21 2022-10-18 Lg Electronics Inc. Method for handling an adaptive retransmission in a wireless communication system and device therefor
EP3226639B1 (en) * 2016-04-01 2018-09-19 ASUSTek Computer Inc. Method and apparatus for improving a transmission using a configured resource in a wireless communication system
CN109150451B (zh) * 2017-06-16 2023-06-20 华为技术有限公司 通信方法、网络节点和无线接入网系统
CN110999455B (zh) * 2017-08-11 2022-04-29 华为技术有限公司 一种通信方法及相关设备
WO2019028925A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 一种通信方法及相关设备
CN112910608B (zh) * 2019-11-19 2022-09-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115276924A (zh) * 2021-04-30 2022-11-01 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877890A (zh) * 2009-04-28 2010-11-03 大唐移动通信设备有限公司 确定参与CoMP传输小区和传输数据方法、系统及装置
CN102056264A (zh) * 2009-10-27 2011-05-11 大唐移动通信设备有限公司 多点协同传输中协同小区及传输点确定方法、系统和设备
CN102480756A (zh) * 2010-11-29 2012-05-30 中兴通讯股份有限公司 多点协作传输的配置方法和系统
CN102638295A (zh) * 2011-02-12 2012-08-15 中国移动通信集团公司 协作控制信息发送、数据发送方法、装置及系统
WO2013173801A1 (en) * 2012-05-17 2013-11-21 Huawei Technologies Co., Ltd. System and method for adaptive downlink comp operation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005951A2 (en) * 2008-07-07 2010-01-14 Interdigital Patent Holdings, Inc. Method and apparatus for cooperative relaying in wireless communications
KR101633495B1 (ko) * 2009-09-22 2016-06-24 삼성전자주식회사 무선 통신 시스템에서 지연을 고려한 다중노드 협력 방법
EP2721858B1 (en) * 2011-08-08 2017-10-18 BlackBerry Limited Method and system for uplink interference management in heterogeneous cellular networks
US9036578B2 (en) * 2012-12-19 2015-05-19 Blackberry Limited Method and apparatus for control channel configuration in a heterogeneous network architecture
EP2944156B1 (en) * 2013-01-11 2018-11-21 Interdigital Patent Holdings, Inc. Range extension in wireless local area networks
US9578671B2 (en) * 2013-03-15 2017-02-21 Blackberry Limited Establishing multiple connections between a user equipment and wireless access network nodes
US9160665B2 (en) * 2013-04-25 2015-10-13 Telefonaktiebolaget L M Ericsson (Publ) Method and system of transmission management in a network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877890A (zh) * 2009-04-28 2010-11-03 大唐移动通信设备有限公司 确定参与CoMP传输小区和传输数据方法、系统及装置
CN102056264A (zh) * 2009-10-27 2011-05-11 大唐移动通信设备有限公司 多点协同传输中协同小区及传输点确定方法、系统和设备
CN102480756A (zh) * 2010-11-29 2012-05-30 中兴通讯股份有限公司 多点协作传输的配置方法和系统
CN102638295A (zh) * 2011-02-12 2012-08-15 中国移动通信集团公司 协作控制信息发送、数据发送方法、装置及系统
WO2013173801A1 (en) * 2012-05-17 2013-11-21 Huawei Technologies Co., Ltd. System and method for adaptive downlink comp operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3190850A4 *

Also Published As

Publication number Publication date
EP3190850B1 (en) 2019-11-06
CN105850214A (zh) 2016-08-10
US20170208607A1 (en) 2017-07-20
CN105850214B (zh) 2019-09-03
ES2766374T3 (es) 2020-06-12
EP3190850A1 (en) 2017-07-12
EP3190850A4 (en) 2017-10-25
US10349426B2 (en) 2019-07-09

Similar Documents

Publication Publication Date Title
US10750521B2 (en) Terminal operation method in accordance with uplink SPS in wireless communication system and terminal using same
WO2016049813A1 (zh) 无线网络调度方法,接入设备及无线网络
JP2021534629A (ja) 5G eV2Xのためのリソース管理
WO2015192726A1 (zh) 无线通信系统中的用户设备侧的电子设备和无线通信方法
KR20210135336A (ko) V2x(vehicle-to-everything) 통신을 위한 rrc(radio resource control) 연결을 개시하는 방법 및 장치
WO2021232176A1 (en) Discontinuous reception for sidelink communications in wireless communications systems
WO2011150783A1 (zh) 无线网络中的数据传输方法和装置
US11395325B2 (en) Method for transmitting downlink control information for sidelink scheduling in wireless communication system and terminal using same
US20230396965A1 (en) Methods and systems for rrc state maintenance for receiving multicast and broadcast services
EP4272468A1 (en) Downlink control channel monitoring for multicast/broadcast services
JP2023506128A (ja) 複数のアクティブグラント設定におけるタイマーハンドリング
WO2024066145A1 (zh) 侧行通信的方法及装置
JP2023542294A (ja) パス切り替えのための方法および装置
KR20230039610A (ko) 전력 절약 모드를 기반으로 통신을 수행하는 방법 및 장치
WO2017054126A1 (zh) 协作通信方法及装置
WO2020091681A1 (en) Energy detection indicator
US20230199749A1 (en) Configured grant enhancements in unlicensed band
KR20240041951A (ko) Nr v2x에서 사이드링크 전송 상태 지시 기반의 sl drx 동작 방법 및 장치
CN117795880A (zh) 用于操作辅站的方法
CN114651467B (zh) 用于上行链路主导业务的信道状态信息触发
KR102586390B1 (ko) 무선 통신 시스템에서 비선호 자원의 결정을 위한 방법 및 그 장치
US20240172321A1 (en) Methods, Node, UE and Computer Readable Media for Aligning Partial Sensing Configuration with DRX Configuration
KR20240062070A (ko) 단말 장치, 방법 및 집적 회로
KR20240062071A (ko) 단말 장치, 방법 및 집적 회로
EP4223011A1 (en) Monitoring procedure for relay path scenarios

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014903141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014903141

Country of ref document: EP