WO2016047910A1 - 시멘트계 복합체 구조용 합성섬유 및 이의 제조방법 - Google Patents

시멘트계 복합체 구조용 합성섬유 및 이의 제조방법 Download PDF

Info

Publication number
WO2016047910A1
WO2016047910A1 PCT/KR2015/007447 KR2015007447W WO2016047910A1 WO 2016047910 A1 WO2016047910 A1 WO 2016047910A1 KR 2015007447 W KR2015007447 W KR 2015007447W WO 2016047910 A1 WO2016047910 A1 WO 2016047910A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
fiber
based composite
fibers
surface treatment
Prior art date
Application number
PCT/KR2015/007447
Other languages
English (en)
French (fr)
Inventor
원종필
이수진
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Publication of WO2016047910A1 publication Critical patent/WO2016047910A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed

Definitions

  • the present invention relates to a fiber for improving the material performance of the structural synthetic fibers and at the same time the adhesion performance with the cement composite, and a cement-based composite material using the fiber and a method of manufacturing the same.
  • cement materials such as mortar, concrete and shotcrete (hereinafter abbreviated as "concrete") do not significantly affect the structural performance, but increase the permeability to lower their durability and durability. Deterioration is the cause of accelerated destruction of the structure. Therefore, concrete must be prevented from cracking to ensure proper durability.
  • synthetic fibers refer to fibers made of a polymer material as a raw material, and may be classified into polyester, polyamide, polyvinyl chloride, polyurethane, and polypropylene based on the type of polymer matrix constituting the fiber.
  • synthetic fibers mainly used for structural reinforcement is a synthetic fiber composed of a polyolefin-based polymer matrix, and has a specific gravity lower than that of steel fibers mainly used for short-term reinforcing fibers.
  • the cement matrix is not easily attached to the cement matrix.
  • Korean Patent Registration No. 10-0439865 which is a conventional technology, was disclosed with the invention of "reinforced synthetic fiber for concrete and shotcrete", which crimped and embossed the shape of the fiber to improve adhesion between concrete and fiber. ) And the like.
  • it is intended to change the longitudinal shape of the fiber by physical pressure, which is applied to the fiber having a lower hardness after stretching in the production process of the fiber produced by melt spinning. It is the processing of bending by applying force.
  • the edge portion that is bent by pressure may become a weak part when drawn out.
  • the Republic of Korea Patent Registration No. 10-0343339 is a invention for "twist type reinforcing fiber and its manufacturing method" does not generate the fiber ball phenomenon of the initial mixing, and does not produce a pull phenomenon when destroyed after curing and has excellent elasticity and toughness
  • the twisted reinforcing fiber was prepared.
  • the twist degree is low as 40 times / m and lower than expected in terms of elasticity and toughness increase.
  • Korean Patent Registration No. 10-1251425 is an invention for "branched synthetic fiber for concrete and shotcrete reinforcement", which deforms the shape of reinforcing fiber mixed in concrete and uses nano material as a reinforcing material for the performance of the fiber itself. It is used to improve the tensile performance of the polymer matrix itself.
  • the nanopowder is excessively added, the reagglomeration phenomenon and crystallinity increase, so it should be added at an appropriate ratio.
  • this problem has not been sufficiently solved.
  • the present invention can improve the adhesion performance with the cement matrix compared to the conventional structural synthetic fibers by performing the first physical surface treatment and the second twist (twist) processing, and organic and inorganic nanomaterials as a reinforcing material of the fiber. It was confirmed that the use of the polymer matrix itself, which is the main material of the structural synthetic fiber, can be used to improve the performance. Through this, it was confirmed that the applicability as a structural reinforcement of the structural synthetic fiber can be increased than the synthetic fiber reinforcement made of the existing prior art to complete the invention.
  • Patent Document 3 Republic of Korea Patent No. 10-0343339, Name of the invention: "Twist type reinforcing fiber and its manufacturing method"
  • Patent Document 4 Republic of Korea Patent No. 10-1251425, Name of the invention: "Cracked synthetic fiber for reinforced concrete and shotcrete"
  • the object of the present invention is to improve the material performance by applying organic and inorganic nanomaterials as reinforcement to existing structural synthetic fibers, and also physically on the longitudinal surface of the smooth circular fibers produced through the conventional melt spinning technique.
  • the present invention provides a cement-based composite structural synthetic fibers and a method for manufacturing the same.
  • the present invention provides a cement-based composite structural synthetic fibers processed in a twist (twist) form the surface-treated short fibers to improve adhesion to the longitudinal surface.
  • the surface treatment is characterized in that the surface treatment having a different pattern in front and behind the short fibers.
  • the surface treatment is characterized in that the surface treatment to form the unevenness of less than 1mm thickness.
  • the surface treatment is characterized in that the surface treatment to form one of the stripes, lattice pattern, wave pattern, atypical dot pattern.
  • the short fibers are characterized in that the short fibers containing 99.0 to 99.9% by volume of the polyolefin-based polymer matrix.
  • the twist form is characterized in that at least one twist form per 5 to 50mm.
  • 1 is a surface pattern appearance applicable to the structural synthetic fiber according to the present invention.
  • 1 is a stripe pattern
  • 2 is a lattice pattern
  • 3 is a wavy pattern
  • 4 is an irregular dotted pattern using a diamond coating process.
  • the present invention provides a cement-based composite structural synthetic fibers processed in a twist (twist) form of the surface-treated short fibers to improve adhesion to the longitudinal surface.
  • the surface treatment may be a surface treatment having a different pattern in front of and behind the short fibers.
  • the surface treatment may be a surface treatment to form irregularities of less than 1mm thick.
  • the surface treatment may be a surface treatment to form a pattern of one of stripes, lattice pattern, wave pattern, atypical dot pattern.
  • the short fibers may be short fibers containing 99.0 to 99.9% by volume of the polyolefin-based polymer matrix.
  • the short fiber may be a length of 5 ⁇ 50mm, tensile strength of 500MPa or more, tensile modulus of elasticity of 5GPa or more.
  • the twist (twist) form may be at least one twisted form per 5 to 50mm.
  • the reason for this twist is to increase the specific surface area of the fibers in the cement matrix, which in turn promotes adhesion between the fiber and the cement matrix. Beyond the range of at least one twist per 5 to 50 mm, too much or too little twist causes the fiber to shear, which causes the fiber to lie at right angles to the twist axis, reducing the strength of the fiber. The phenomenon occurs.
  • the present invention provides a concrete comprising the synthetic fiber for the cement-based composite structure.
  • the present invention comprises the steps of (a) adding a nanomaterial in 0.1 to 1.0% by volume to the polyolefin-based polymer matrix to prepare short fibers; (b) heating the short fibers to which the nanomaterial is added to a temperature below the melting point and passing them between two rollers to provide a roughness to the surface by surface treatment while maintaining the orientation of the fibers; And (c) it provides a method for producing a cement-based composite structural synthetic fibers comprising the step of forming a twist by using a motor rotating the surface-treated short fibers in opposite directions.
  • the step (b) may be a step of forming the front and back surface of the short fibers having different patterns using two rollers having different patterns.
  • the filament, the yarn of the stretched fiber passes between two rollers heated to a temperature of 70 to 150 ° C below the melting point of the polymer matrix, thereby providing a roughness to the surface while maintaining the orientation of the fiber without physical damage. do.
  • the pattern of the fiber is generated through a pattern engraved on the two rollers can be installed up and down rollers having different patterns to make the front and back of the fiber different pull behavior.
  • 1 is a view of the surface pattern of the structural synthetic fiber for cement-based composite reinforcement according to the present invention. 1 is a stripe pattern, 2 is a lattice pattern, 3 is a wavy pattern, and 4 is an irregular dotted pattern using a diamond coating process.
  • FIG. 2 is a diagram showing a process for the twist (twist) processing of the structural synthetic fiber for cement-based composite reinforcement according to the present invention.
  • the twisting process is performed after the stretching process to impart mechanical properties such as tensile strength and elastic modulus to the structural synthetic fiber for cement-based composite reinforcement, and this process is shown in FIG. 3.
  • the structural synthetic fibers are manufactured by a melt spinning technique, and when the radiated fibers enter the inlet 10 of the processing apparatus, the motors 20 which are in opposite directions to each other cross the rolls 30. By twisting the belt 40 connected to the) is twisted at least once per 5 to 50mm length as shown in (Fig. 4).
  • Structural synthetic fibers are short fibers having a predetermined shape pattern is formed to extend to a predetermined length through this process, and the twist is made.
  • Structural synthetic fibers can further improve performance by adding organic and inorganic nanomaterials.
  • KS was selected from 100% of commercial structural synthetic fibers of PP 100%, which are used as synthetic fibers for concrete reinforcement, and fibers without adding 0.15% by volume of nanoclay, an inorganic nanomaterial, to the polyolefin-based polymer matrix.
  • Tensile strength of the fiber was measured according to K 0412 'Filament yarn strength and elongation test method'.
  • FIG. 5 is a graph showing the results of testing tensile strength of short fiber yarns in which nanoclay is added to a polyolefin polymer matrix.
  • the polyolefin polymer matrix which is the main material of the structural synthetic fiber
  • the tensile strength was increased than that of the conventional commercial synthetic fiber and the polyolefin polymer matrix fiber without the nanoclay added.
  • Polyolefin-based polymer matrix fibers without added nanoclay show better tensile strength than commercial structural synthetic fibers because they are drawn at an appropriate draw ratio.
  • tensile strength of 600MPa or more and 900MPa or less showed a 53.5 ⁇ 97.8% improvement in performance compared to conventional commercial structural synthetic fibers.
  • test specimens were prepared by the combination of the reference mortars specified in 'METHOD OF TEST FOR BOND OF FIBERS' of JCI SF8 and subjected to the adhesion test.
  • the specific adhesion test method is as follows.
  • Figure 6 is a result of comparing the adhesion strength performance by different surface treatment for the twist-treated cement-based composite fiber for reinforcing composites.
  • As a result of evaluation of the adhesion performance according to the surface pattern of the twisted structural synthetic fiber when it is based on the adhesive strength of the conventional structural synthetic fiber as 100%, it varies depending on the twist processing and the type of surface treatment, but it is 50 ⁇ 100% better than the standard. It could be confirmed that it represents. The biggest improvement was in the case of lattice pattern surface treatment and twisting.
  • the synthetic fiber for reinforcement of the present invention is used with concrete and shotcrete having brittle properties to increase the brittleness of concrete and shotcrete.
  • the synthetic fiber for reinforcement when the concrete and the shotcrete is reinforced with the synthetic fiber for reinforcement, the tensile strength and the bending performance of the concrete and the shotcrete may be increased.
  • Synthetic fiber for concrete and shotcrete reinforcement is effective to increase tensile strength and bending performance of concrete and shotcrete as the tensile elasticity, the tensile strength of the fiber itself, and the adhesion performance is improved according to the roughness of the surface attached to the cement matrix. All of these conditions were met and optimized to improve the required tensile strength and flexural performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명은 기존의 구조용 합성섬유에 유기 및 무기질의 나노재료를 보강재로 적용하여 재료적인 성능향상을 도모하고, 또한 기존의 용융방사기법을 통해 생산된 매끈한 원형의 섬유의 종방향 표면에 물리적인 표면처리를 통해 시멘트 매트릭스와의 부착성능을 향상시켜 인발저항성이 향상된 시멘트계 복합체 구조용 합성섬유 및 그 제조방법에 관한 것이다. 상기와 같은 본 발명에 따르면, 1차적인 물리적 표면처리와 2차적인 꼬임(twist) 가공을 함으로써 종래의 구조용 합성섬유에 비해 시멘트 매트릭스와의 부착성능을 향상시키며, 유기 및 무기질의 나노재료를 섬유의 보강재로 사용함으로써 구조용 합성섬유의 주요 재료인 폴리머 매트릭스 자체의 성능을 향상시켰다. 이를 통해 구조용 합성섬유의 구조 보강재로서 성능을 종래 선행기술들로 만들어진 합성섬유 보강재보다 80~140% 향상시키는 효과가 있다.

Description

시멘트계 복합체 구조용 합성섬유 및 이의 제조방법
본 발명은 구조용 합성섬유의 재료적 성능을 향상시키는 동시에 시멘트 복합체와의 부착성능을 향상시키기 위한 섬유 및 해당 섬유를 이용하는 시멘트계 복합재료와 그 제조방법에 관한 것이다.
일반적으로 모르타르, 콘크리트 및 숏크리트와 같은 시멘트재(이하 "콘크리트" 라고 약칭한다)에 발생하는 초기 미세균열은 구조성능에 큰 영향을 미치지 않지만, 투수성을 증가시켜 이의 내구성능을 저하시키며, 내구 성능 저하는 구조물의 파괴를 촉진시키는 원인이 된다. 따라서 콘크리트는 균열 발생이 억제되어야 적절한 내구 성능을 확보한다.
이러한, 성능 확보를 위해 보강 섬유들이 첨가된 콘크리트가 개발되고 있다. 콘크리트를 비롯한 시멘트 복합체에 단섬유를 보강재로 사용하는 목적은 건조수축으로 인한 균열을 제어하기 위한 것뿐만이 아니라 시멘트 복합체의 단점인 낮은 인장강도, 휨강도 등을 개선하여 취성적인 파괴를 억제함에 있다.
일반적으로 합성섬유는 고분자재료를 원료로 제조된 섬유를 말하고 섬유를 구성하는 폴리머 매트릭스의 종류에 따라 폴리에스테르계, 폴리아미드계, 폴리염화비닐계, 폴리우레탄계 및 폴리프로필렌계 등으로 구분할 수 있다.
이러한 합성섬유 중 구조보강용으로 주로 사용되는 것은 폴리올레핀계 폴리머 매트릭스로 이루어진 합성섬유로 구조보강용 단섬유로 주로 사용되는 강섬유에 비해 비중이 낮아 운반 및 작업이 용이하고 부식이 발생하지 않는다는 장점을 가지나 반면에 낮은 인장강도 및 탄성계수 뿐 아니라 소수성 표면으로 인해 시멘트 매트릭스와의 부착이 용이하지 못해 구조보강용으로 그 사용에 제한이 있는 단점이 있었다.
종래의 기술인 대한민국 특허등록번호 제10-0439865은 "콘크리트 및 숏크리트용 보강 합성섬유"라는 명칭의 발명으로 개시되었는데 콘크리트와 섬유간의 부착력을 향상시키기 위해 섬유의 형상을 크림프(crimped), 요철형(embossed) 등으로 제작하였다. 이러한 기술에 따른 섬유의 형상변화를 통한 기계적 부착성능의 향상의 경우 물리적인 압력으로 섬유의 종방향 형상의 변화를 도모하는 것으로 이는 용융방사로 제조되는 섬유의 생산공정상 연신 후 경도가 낮아진 섬유에 힘을 가하여 꺾는 형태의 가공이다. 하지만 섬유의 길이방향으로 인장력이 작용할 때 압력에 의해 꺾어진 변단면 부분이 인발시 취약부가 될 수 있다는 문제점이 있다.
한편 대한민국 특허등록번호 제10-0857475는 "분산성 및 부착성능이 향상된 섬유 보강제 제조 방법 및 이를 포함하는 시멘트 조성물"에 대한 발명으로 섬유의 표면을 친수성 물질로 코팅하여 부착성능을 개선하고자 하였다. 하지만 이러한 종래에 기술에 따른 화학적 친수성 처리를 통한 부착성능의 향상을 위해서는 섬유생산 완료 후 별도의 코팅공정 및 코팅재료의 추가비용이 발생함으로 비효율적이라는 문제점이 있다.
또한 대한민국 특허등록번호 제10-0343339는 "트위스트형 보강섬유 및 그의 제조방법"에 대한 발명으로 혼합초기의 섬유볼 현상을 발생시키지 않고 양생 후 파괴시 뽑힘현상이 발생하지 않으며 우수한 탄성 및 인성을 갖는 트위스트형 보강섬유를 제조하고자 하였다. 하지만 트위스트 정도가 40회/m 정도로 낮고 탄성 및 인성 상승면에서 기대보다 낮은 효과를 보이는 문제점이 있다.
이와는 별도로 합성섬유가 구조용으로 사용되는데 제한이 있는 이유는 시멘트 매트릭스와의 부착성능이 낮은 것 이외에 섬유 자체의 인장성능이 매우 낮아 시멘트 매트릭스의 인장강도 및 휨성능 개선 정도가 만족할만한 수준이 아니기 때문이다. 이 문제에 대해 대한민국 특허등록번호 제10-1251425는 "콘크리트 및 숏크리트 보강용 갈래형 합성섬유"에 대한 발명으로 콘크리트 내 혼합되는 보강섬유의 형상을 변형시키고 섬유 자체의 성능에 대해 나노재료를 보강재로 사용하여 폴리머 매트릭스 자체의 인장성능을 향상시키고 있다. 하지만 나노분말이 과다하게 투입되었을 때 재응집현상과 결정화도가 증가하기 때문에 적절한 비율로 투입하여야 하는데 이 문제를 충분히 해결하지 못한 문제점이 있어서 기대보다 낮은 효과를 보였다.
본 발명은 1차적인 물리적 표면처리와 2차적인 꼬임(twist) 가공을 함으로써 종래의 구조용 합성섬유에 비해 시멘트 매트릭스와의 부착성능을 향상시킬 수 있으며, 유기 및 무기질의 나노재료를 섬유의 보강재로 사용함으로써 구조용 합성섬유의 주요 재료인 폴리머 매트릭스 자체의 성능을 향상시킬 수 있음을 확인하였다. 이를 통해 구조용 합성섬유의 구조 보강재로서 적용성을 기존 선행기술들로 만들어진 합성섬유 보강재보다 증가시킬 수 있음을 확인하여 발명을 완성하였다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 1: 대한민국 등록특허번호 제10-0439865호, 발명의 명칭: “콘크리트 및 숏크리트용 보강 합성섬유”
(특허문헌 2) 2: 대한민국 등록특허번호 제10-0857475호, 발명의 명칭: “분산성 및 부착성능이 향상된 섬유 보강제 제조 방법 및 이를 포함하는 시멘트 조성물”
(특허문헌 3) 3: 대한민국 등록특허번호 제10-0343339호, 발명의 명칭: “트위스트형 보강섬유 및 그의 제조방법”
(특허문헌 4) 4: 대한민국 등록특허번호 제10-1251425호, 발명의 명칭: “콘크리트 및 숏크리트 보강용 갈래형 합성섬유”
본 발명의 목적은, 기존의 구조용 합성섬유에 유기 및 무기질의 나노재료를 보강재로 적용하여 재료적인 성능향상을 도모하고, 또한 기존의 용융방사기법을 통해 생산된 매끈한 원형 섬유의 종방향 표면에 물리적인 표면처리를 통해 시멘트 매트릭스와의 부착성능을 향상시키고 종방향으로 적어도 1번 이상 꼬임(twist)가공을 함으로써, 인발저항성이 향상된 시멘트계 복합체 구조용 합성섬유 및 그 제조방법을 제공함에 있다.
상기 목적을 달성하기 위하여, 본 발명은 종방향 표면에 부착향상을 위해 표면처리된 단섬유를 꼬임(twist) 형태로 가공한 시멘트계 복합체 구조용 합성섬유를 제공한다.
여기서, 상기 표면처리는 단섬유의 앞과 뒤에 다른 무늬를 갖는 표면처리인 것을 특징으로 한다.
여기서, 상기 표면처리는 1㎜ 미만 두께의 요철을 형성하는 표면처리인 것을 특징으로 한다.
여기서, 상기 표면처리는 줄무늬, 격자무늬, 물결무늬, 비정형 점무늬 중 하나의 무늬를 형성하는 표면처리인 것을 특징으로 한다.
여기서, 상기 단섬유는 폴리올레핀계 폴리머 매트릭스를 99.0 내지 99.9 부피%로 포함하는 단섬유인 것을 특징으로 한다.
여기서, 상기 단섬유는 유기 및 무기질의 나노재료를 0.1 내지 1.0 부피%로 포함하는 단섬유인 것을 특징으로 한다.
여기서, 상기 단섬유는 길이는 5~50㎜, 인장강도는 500MPa 이상, 인장 탄성계수는 5GPa 이상의 단섬유인 것을 특징으로 한다.
여기서, 상기 꼬임(twist) 형태는, 5 내지 50㎜ 당 적어도 1번 이상의 꼬임 형태인 것을 특징으로 한다.
여기서, 상기 꼬임(twist) 형태는, 종방향 축선에 대해 30~90°의 각도로 가공하여 시멘트 복합체내에서의 인발저항을 향상시키는 꼬임 형태인 것을 특징으로 한다.
또한, 제1항 내지 제9항의 시멘트계 복합체 구조용 합성섬유를 포함하는 콘크리트를 제공한다.
또한, 제1항 내지 제9항의 시멘트계 복합체 구조용 합성섬유를 포함하는 숏크리트를 제공한다.
또한, (a) 폴리올레핀계 폴리머 매트릭스에 0.1 내지 1.0 부피%로 나노재료를 첨가하여 단섬유를 제조하는 단계; (b) 나노재료가 첨가된 단섬유를 용융점이하의 온도로 가열시키고 두 개의 롤러 사이로 통과시켜 섬유의 방향성을 유지하면서 표면처리하여 표면에 거칠기를 부여하여 제조하는 단계; 및 (c) 표면처리된 단섬유를 서로 반대방향으로 회전하는 전동기를 이용해 꼬임을 형성시키는 단계를 포함하는 시멘트계 복합체 구조용 합성섬유의 제조 방법을 제공한다.
여기서, 상기 (b) 단계는, 서로 다른 무늬를 가진 두 개의 롤러를 이용해 서로 다른 무늬를 가지는 단섬유 앞뒤 표면을 형성하는 것을 특징으로 한다.
상기와 같은 본 발명에 따르면, 1차적인 물리적 표면처리와 2차적인 꼬임(twist) 가공을 함으로써 종래의 구조용 합성섬유에 비해 시멘트 매트릭스와의 부착성능을 향상시키며, 유기 및 무기질의 나노재료를 섬유의 보강재로 사용함으로써 구조용 합성섬유의 주요 재료인 폴리머 매트릭스 자체의 성능을 향상시켰다. 이를 통해 구조용 합성섬유의 구조 보강재로서 성능을 종래 선행기술들로 만들어진 합성섬유 보강재보다 80~140% 향상시키는 효과가 있다.
도 1은 본 발명에 따른 구조용 합성섬유에 적용 가능한 표면 패턴 모습들이다. 1은 줄무늬 패턴, 2는 격자무늬 패턴, 3은 물결무늬 패턴, 4는 다이아몬드 코팅처리를 이용한 비정형 점무늬 패턴이다.
도 2는 본 발명에 따라 구조용 합성섬유에 대해 꼬임(twist) 가공을 하는 공정의 모습이다.
도 3은 본 발명에 따른 구조용 합성섬유의 공정에 대한 단계도이다.
도 4는 본 발명에 따라 꼬임 가공된 구조용 합성섬유의 꼬인 모양을 확대하여 나타낸 모습이다.
도 5는 본 발명에 따른 나노재료의 첨가를 통한 구조용 합성섬유의 인장강도 변화를 시험한 결과이다.
도 6은 본 발명에 따라서, 꼬임가공을 한 구조용 합성섬유의 표면처리 차이에 따른 부착강도 변화를 나노재료의 혼입여부에 따라 나누어 표시한 결과이다.
<도면의 주요부분에 대한 부호의 설명>
10: 섬유 가공장치의 투입구
20: 서로 반대방향으로 도는 전동기
30: 크로스 롤
40: 연결된 벨트
이하, 본 발명을 상세히 설명한다.
일 관점에서 본 발명은, 종방향 표면에 부착향상을 위해 표면처리된 단섬유를 꼬임(twist) 형태로 가공한 시멘트계 복합체 구조용 합성섬유를 제공한다.
본 발명의 일실시예에 있어서, 상기 표면처리는 단섬유의 앞과 뒤에 다른 무늬를 갖는 표면처리일 수 있다.
본 발명의 일실시예에 있어서, 상기 표면처리는 1㎜ 미만 두께의 요철을 형성하는 표면처리일 수 있다.
본 발명의 일실시예에 있어서, 상기 표면처리는 줄무늬, 격자무늬, 물결무늬, 비정형 점무늬 중 하나의 무늬를 형성하는 표면처리일 수 있다.
본 발명의 일실시예에 있어서, 상기 단섬유는 폴리올레핀계 폴리머 매트릭스를 99.0 내지 99.9 부피%로 포함하는 단섬유일 수 있다.
본 발명의 일실시예에 있어서, 상기 단섬유는 유기 및 무기질의 나노재료를 0.1 내지 1.0 부피%로 포함하는 단섬유일 수 있다. 0.1부피% 이하로 포함시키면 나노재료로 인한 인장강도 및 탄성계수 상승이 나타나지 않으며, 1.0 부피% 이상으로 포함시키면 polymer matrix 내에 분산되어 있던 입자가 재응집하게 되어 결정화도(crystalinity)가 증가하여 오히려 인장강도 및 탄성계수가 저하된다.
본 발명의 일실시예에 있어서, 상기 단섬유는 길이는 5~50㎜, 인장강도는 500MPa 이상, 인장 탄성계수는 5GPa 이상의 단섬유일 수 있다.
본 발명의 일실시예에 있어서, 상기 꼬임(twist) 형태는, 5 내지 50㎜ 당 적어도 1번 이상의 꼬임 형태일 수 있다. 이와 같이 꼬임을 형성시키는 이유는 시멘트 매트릭스 내에서 섬유의 비표면적을 증가시켜서 결국 섬유와 시멘트 매트릭스 간 부착성을 증진시키고자 하는 것이다. 5 내지 50㎜ 당 적어도 1번 이상의 꼬임이 존재하는 범위를 벗어나, 너무 꼬임(twist)이 많거나 적으면 섬유의 전단이동 현상이 나타나 꼬임가공축에 대해 섬유가 직각으로 눕게 되어 섬유의 강도가 저하되는 현상이 일어난다.
본 발명의 일실시예에 있어서, 상기 꼬임(twist) 형태는, 종방향 축선에 대해 30~90°의 각도로 가공하여 시멘트 복합체내에서의 인발저항을 향상시키는 꼬임 형태일 수 있다.
또 다른 관점에서, 본 발명은 상기 시멘트계 복합체 구조용 합성섬유를 포함하는 콘크리트를 제공한다.
또 다른 관점에서, 본 발명은 상기 시멘트계 복합체 구조용 합성섬유를 포함하는 숏크리트를 제공한다.
또 다른 관점에서, 본 발명은 (a) 폴리올레핀계 폴리머 매트릭스에 0.1 내지 1.0 부피%로 나노재료를 첨가하여 단섬유를 제조하는 단계; (b) 나노재료가 첨가된 단섬유를 용융점이하의 온도로 가열시키고 두 개의 롤러 사이로 통과시켜 섬유의 방향성을 유지하면서 표면처리하여 표면에 거칠기를 부여하여 제조하는 단계; 및 (c) 표면처리된 단섬유를 서로 반대방향으로 회전하는 전동기를 이용해 꼬임을 형성시키는 단계를 포함하는 시멘트계 복합체 구조용 합성섬유의 제조 방법을 제공한다.
본 발명의 일실시예에 있어서, 상기 (b) 단계는, 서로 다른 무늬를 가진 두 개의 롤러를 이용해 서로 다른 무늬를 가지는 단섬유 앞뒤 표면을 형성하는 단계일 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1. 섬유 표면처리를 통한 무늬 형성
연신된 섬유의 원사인 필라멘트가 폴리머 매트릭스의 용융점이하의 온도 70 ~ 150℃로 가열된 두 개의 롤러사이를 지나면서 물리적인 손상 없이 섬유의 방향성을 유지하면서 표면에 거칠기를 부여하는 공정을 통해 표면 처리된다. 이때 섬유의 패턴은 두 개의 롤러에 새겨진 패턴을 통해 생성되는데 서로 다른 무늬를 가지는 롤러를 상하로 설치하여 섬유의 앞뒤가 다른 인발거동을 하도록 할 수 있다. (도 1)은 본 발명에 따른 시멘트계 복합체 보강용 구조용 합성섬유의 표면 패턴의 모습이다. 1은 줄무늬 패턴, 2는 격자무늬 패턴, 3은 물결무늬 패턴, 4는 다이아몬드 코팅처리를 이용한 비정형 점무늬 패턴이다.
실시예 2. 섬유의 꼬임(twist) 가공 공정
(도 2)는 본 발명에 따른 시멘트계 복합체 보강용 구조용 합성섬유의 꼬임(twist) 가공을 하기 위한 공정을 나타낸 그림이다. 꼬임공정은 시멘트계 복합체 보강용 구조용 합성섬유에 인장강도 및 탄성계수와 같은 기계적인 성질을 부여하기 위해 연신공정 이후 실시되며 이러한 과정은 (도 3)에 나타나 있다.
(도 2)에서 도시된 바와 같이, 상기 구조용 합성섬유는 용융방사기법으로 제조되어 방사된 섬유가 가공장치의 투입구(10)로 들어오게 되면 서로 반대방향으로 되는 모터(20)가 크로스롤(30)에 연결된 벨트(40)를 돌리면서 (도 4)와 같이 5 내지 50㎜ 길이당 적어도 1번 이상 꼬아지게 된다. 구조용 합성섬유는 이 과정을 통해 소정 모양의 패턴을 갖는 단섬유가 소정의 길이로 연장 형성되며, 꼬임이 이루어지게 된다.
실시예 3. 나노재료 첨가를 통한 성능 향상
구조용 합성섬유는 유기 및 무기질의 나노재료를 첨가하여 성능을 더욱 향상시킬 수 있다. 높은 인장탄성계수와 높은 인장강도를 가질수록 콘크리트의 인장강도와 휨성능의 향상에 유리하다.
일반적으로 콘크리트 보강용 합성섬유로 사용되고 있는 PP 100%의 상용 구조용 합성섬유와, 폴리올레핀계 폴리머 매트릭스에 무기 나노재료인 나노클레이를 0.15 부피% 첨가한 섬유 및 나노클레이를 첨가하지 않은 섬유를 선택하여 KS K 0412의 '필라멘트사의 강도 및 신도 시험 방법'에 따라 섬유의 인장강도를 측정하였다.
(도 5)는 폴리올레핀계 폴리머 매트릭스에 나노클레이를 첨가한 단섬유 원사에 대해서 인장강도를 시험한 결과를 나타낸 그래프이다. 구조용 합성섬유의 주재료인 폴리올레핀계 폴리머 매트릭스에 0.15 부피% 나노클레이를 첨가한 결과, 종래의 상용 구조용 합성섬유의 경우와 나노클레이를 첨가하지 않은 폴리올레핀계 폴리머 매트릭스 섬유의 경우보다 인장강도가 증가한 것을 확인할 수 있었다. 나노클레이를 첨가하지 않은 폴리올레핀계 폴리머 매트릭스 섬유의 경우는 적정 연신비로 연신한 섬유이기 때문에 상용 구조용 합성섬유보다 더 나은 인장강도를 보인다. 결국 인장강도가 600MPa 이상, 900MPa 이하로 종래의 상용 구조용 합성섬유에 비해 53.5~97.8% 향상된 성능을 나타내었다.
실시예 4. 부착강도 성능 비교
JCI SF8의'METHOD OF TEST FOR BOND OF FIBERS'에 규정된 기준 모르타르의 배합에 의해 시험 시편을 제작하여 부착시험을 실시하였다. 구체적 부착시험 방법은 아래와 같다.
부착시험 시 사용되는 각 시편에 대해, 0.5㎜ 두께의 시편 양쪽을 분할하는 플라스틱판에 1개 또는 4개의 구멍을 뚫고, 이 구멍으로 보강용 합성섬유를 끼운 후, 모르타르를 플라스틱 판의 양측에 형성하여 양생된 모르타르의 내부로 섬유가 부착되는 구조로 시편을 제작하였다.
시편 제작한 후 28일이 경과한 다음에 인발시험장치에 시험시편을 장치하고, 변위제어방식의 UTM을 사용하여 0.5㎜/분의 하중재하속도로 시험을 실시하였다. 그리고, 변위가 2.5㎜까지의 하중-변위 (load-slip)의 곡선을 데이터 취득 시스템(data acquisition system)에 의해 얻어 최대 인발 하중과 곡선의 면적에 의한 인발에너지(계면인성)를 구하였다.
(도 6)은 꼬임 가공한 시멘트계 복합체 보강용 구조용 합성섬유에 대해 표면처리를 다르게 하여 부착강도 성능을 비교한 결과이다. 꼬임가공한 구조용 합성섬유의 표면패턴에 따른 부착성능 평가결과, 종래 구조용 합성섬유의 부착강도를 100%로 기준삼았을 때 꼬임가공 여부와 표면처리 종류에 따라 다양하지만 기준보다 50~100% 향상된 성능을 나타내는 것을 확인할 수 있었다. 가장 성능이 향상된 것은 격자무늬로 표면처리를 하고 꼬임가공을 더한 경우였다.
또한 나노재료를 혼입한 시멘트계 복합체 보강용 구조용 합성섬유에 대해 꼬임가공하고 여기에 표면처리를 다르게 하여 부착강도 성능을 비교한 결과, 종래 구조용 합성섬유의 부착강도를 100%로 기준삼았을 때 80~140% 향상된 성능을 나타내는 것을 확인할 수 있었으며 나노재료를 혼입하지 않은 섬유와 같이 격자무늬로 표면처리하고 꼬임가공을 더한 경우 가장 성능이 향상되었다.
이러한 본 발명의 보강용 합성섬유는 취성적인 성질을 가지는 콘크리트 및 숏크리트와 함께 사용되어 콘크리트 및 숏크리트의 취성을 증가시키게 된다. 또한, 상기 보강용 합성섬유로 콘크리트 및 숏크리트를 보강하게 되면 콘크리트 및 숏크리트의 인장강도와 휨성능을 증가시킬 수 있다.
콘크리트 및 숏크리트 보강용 합성섬유는 인장 탄성이 강하고 섬유 자체의 인장력이 높으며 시멘트 매트릭스와 부착하는 면의 거칠기에 따른 부착성능이 향상될수록 콘크리트 및 숏크리트의 인장강도와 휨성능의 증가에 효과적인데, 본 발명은 이러한 조건들을 모두 충족하고 최적화시켜 요구되는 인장강도와 휨성능을 개선하였다.
이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.

Claims (14)

  1. 종방향 표면에 부착향상을 위해 표면처리된 단섬유를 꼬임(twist) 형태로 가공한 시멘트계 복합체 구조용 합성섬유.
  2. 제1항에 있어서,
    상기 표면처리는 단섬유의 앞과 뒤에 다른 무늬를 갖는 표면처리인 것을 특징으로 하는 시멘트계 복합체 구조용 합성섬유.
  3. 제1항에 있어서,
    상기 표면처리는 1㎜ 미만 두께의 요철을 형성하는 표면처리인 것을 특징으로 하는 시멘트계 복합체 구조용 합성섬유.
  4. 제1항에 있어서,
    상기 표면처리는 줄무늬, 격자무늬, 물결무늬, 비정형 점무늬 중 하나의 무늬를 형성하는 표면처리인 것을 특징으로 하는 시멘트계 복합체 구조용 합성섬유.
  5. 제1항에 있어서,
    상기 단섬유는 폴리올레핀계 폴리머 매트릭스를 99.0 내지 99.9 부피%로 포함하는 단섬유인 것을 특징으로 하는 시멘트계 복합체 구조용 합성섬유.
  6. 제5항에 있어서,
    상기 단섬유는 유기 및 무기질의 나노재료를 0.1 내지 1.0 부피%로 포함하는 단섬유인 것을 특징으로 하는 시멘트계 복합체 구조용 합성섬유.
  7. 제6항에 있어서,
    상기 나노재료는 나노클레이인 것을 특징으로 하는 시멘트계 복합체 구조용 합성섬유.
  8. 제1항에 있어서,
    상기 단섬유는 길이는 5~50㎜, 인장강도는 500MPa 이상, 인장 탄성계수는 5GPa 이상의 단섬유인 것을 특징으로 하는 시멘트계 복합체 구조용 합성섬유.
  9. 제1항에 있어서,
    상기 꼬임(twist) 형태는, 5 내지 50㎜ 당 적어도 1번 이상의 꼬임 형태인 것을 특징으로 하는 시멘트계 복합체 구조용 합성섬유.
  10. 제1항에 있어서,
    상기 꼬임(twist) 형태는, 종방향 축선에 대해 30~90°의 각도로 가공하여 시멘트 복합체내에서의 인발저항을 향상시키는 꼬임 형태인 것을 특징으로 하는 시멘트계 복합체 구조용 합성섬유.
  11. 제1항 내지 제10항의 시멘트계 복합체 구조용 합성섬유를 포함하는 콘크리트.
  12. 제1항 내지 제10항의 시멘트계 복합체 구조용 합성섬유를 포함하는 숏크리트.
  13. 다음 단계를 포함하는 시멘트계 복합체 구조용 합성섬유의 제조 방법;
    (a) 폴리올레핀계 폴리머 매트릭스에 0.1 내지 1.0 부피%로 나노재료를 첨가하여 단섬유를 제조하는 단계;
    (b) 나노재료가 첨가된 단섬유를 용융점이하의 온도로 가열시키고 두 개의 롤러 사이로 통과시켜 섬유의 방향성을 유지하면서 표면처리하여 표면에 거칠기를 부여하여 제조하는 단계; 및
    (c) 표면처리된 단섬유를 서로 반대방향으로 회전하는 전동기를 이용해 꼬임을 형성시키는 단계.
  14. 제13항에 있어서,
    상기 (b) 단계는, 서로 다른 무늬를 가진 두 개의 롤러를 이용해 서로 다른 무늬를 가지는 단섬유 앞뒤 표면을 형성하는 것을 특징으로 하는 시멘트계 복합체 구조용 합성섬유의 제조 방법.
PCT/KR2015/007447 2014-09-22 2015-07-17 시멘트계 복합체 구조용 합성섬유 및 이의 제조방법 WO2016047910A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0125791 2014-09-22
KR1020140125791A KR20160035136A (ko) 2014-09-22 2014-09-22 시멘트계 복합체 구조용 합성섬유 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2016047910A1 true WO2016047910A1 (ko) 2016-03-31

Family

ID=55581398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007447 WO2016047910A1 (ko) 2014-09-22 2015-07-17 시멘트계 복합체 구조용 합성섬유 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR20160035136A (ko)
WO (1) WO2016047910A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020146717A1 (en) * 2019-01-10 2020-07-16 The Regents Of The University Of Michigan Striated fiber-based concrete reinforcement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010104575A (ko) * 2000-05-15 2001-11-26 권능 트위스트형 보강섬유 및 그의 제조방법
KR100820914B1 (ko) * 2007-04-17 2008-04-11 주식회사 포스코건설 패트화이버가 혼합된 숏크리트 조성물의 제조방법
JP2009509899A (ja) * 2005-09-30 2009-03-12 アイトゲネーシッシュ・マテリアールプリューフングス−ウント・フォルシュングスアンシュタルト セメント結合建築材料に利用するための2成分プラスチック繊維
KR101251425B1 (ko) * 2011-03-18 2013-04-05 건국대학교 산학협력단 콘크리트 및 숏크리트 보강용 갈래형 합성섬유
KR101362977B1 (ko) * 2013-11-21 2014-02-14 주식회사 서림 친환경 폴리머 시멘트 모르타르 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010104575A (ko) * 2000-05-15 2001-11-26 권능 트위스트형 보강섬유 및 그의 제조방법
JP2009509899A (ja) * 2005-09-30 2009-03-12 アイトゲネーシッシュ・マテリアールプリューフングス−ウント・フォルシュングスアンシュタルト セメント結合建築材料に利用するための2成分プラスチック繊維
KR100820914B1 (ko) * 2007-04-17 2008-04-11 주식회사 포스코건설 패트화이버가 혼합된 숏크리트 조성물의 제조방법
KR101251425B1 (ko) * 2011-03-18 2013-04-05 건국대학교 산학협력단 콘크리트 및 숏크리트 보강용 갈래형 합성섬유
KR101362977B1 (ko) * 2013-11-21 2014-02-14 주식회사 서림 친환경 폴리머 시멘트 모르타르 조성물

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020146717A1 (en) * 2019-01-10 2020-07-16 The Regents Of The University Of Michigan Striated fiber-based concrete reinforcement

Also Published As

Publication number Publication date
KR20160035136A (ko) 2016-03-31

Similar Documents

Publication Publication Date Title
WO2010140845A2 (en) Fiber reinforced plastic bolt and method for producing the same
JPH0320423B2 (ko)
WO2018080251A1 (ko) 탄소 섬유 강화 플라스틱용 직조물 및 이로부터 형성된 성형품
Zamir et al. Hybrid fillers in carbon-fabric-reinforced cement-based composites
CN109423703A (zh) 在具有增强可模制性的复合材料的前驱体形成过程中对连续碳纤维的改性
Yan et al. Interface morphologies in polyolefin fiber reinforced concrete composites
de Carvalho et al. Polyaniline and magnetite on curaua fibers for molecular interface improvement with a cement matrix
WO2016047910A1 (ko) 시멘트계 복합체 구조용 합성섬유 및 이의 제조방법
KR101251425B1 (ko) 콘크리트 및 숏크리트 보강용 갈래형 합성섬유
Wan et al. Two-step surface treatment of 3D braided carbon/Kevlar hybrid fabric and influence on mechanical performance of its composites
KR101850704B1 (ko) 시멘트계 복합체 구조용 합성섬유 및 이의 제조방법
CN205398940U (zh) 试验用碳纤维上浆装置
WO2011046285A2 (ko) 초고분자량 폴리에틸렌 사의 염색 전처리 방법
JP2009046770A (ja) アクリロニトリル系炭素繊維前駆体繊維
KR101335659B1 (ko) 콘크리트 보강용 구조용 폴리머 섬유 제조 방법
KR102586391B1 (ko) 내염화 섬유 다발 및 탄소섬유 다발의 제조 방법
EP0313068B1 (en) Polyvinyl alcohol-based synthetic fibers having a slender cross-sectional configuration and their use for reinforcing shaped articles
WO2020159015A1 (ko) 고강력사 제조방법 및 이에 의해 제조된 고강력사
US20220212990A1 (en) Method for manufacturing fiber composite for reinforcing concrete, and concrete comprising fiber composite manufactured thereby
CN112725962A (zh) 展宽碳纤维丝束上浆、捻纱工艺、设备及应用
Jagadeesh et al. Tensile properties of polycarbonate-coated natural fabric Hildegardia populifolia
JP2020176035A (ja) セメント補強材
JPS63182133A (ja) 薄物の繊維強化樹脂シ−トの製造方法
JP6304046B2 (ja) 炭素繊維束およびその製造方法
JP2012192564A (ja) 複合材料積層板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843268

Country of ref document: EP

Kind code of ref document: A1