WO2016047642A1 - Gas diffusion layer to be used in battery, membrane electrode assembly to be used in battery and using gas diffusion layer to be used in battery, member to be used in battery, battery, and method for producing same - Google Patents

Gas diffusion layer to be used in battery, membrane electrode assembly to be used in battery and using gas diffusion layer to be used in battery, member to be used in battery, battery, and method for producing same Download PDF

Info

Publication number
WO2016047642A1
WO2016047642A1 PCT/JP2015/076803 JP2015076803W WO2016047642A1 WO 2016047642 A1 WO2016047642 A1 WO 2016047642A1 JP 2015076803 W JP2015076803 W JP 2015076803W WO 2016047642 A1 WO2016047642 A1 WO 2016047642A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive porous
layer
battery
porous layer
conductive
Prior art date
Application number
PCT/JP2015/076803
Other languages
French (fr)
Japanese (ja)
Inventor
仁司 大谷
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015015209A external-priority patent/JP5794404B1/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2016047642A1 publication Critical patent/WO2016047642A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a gas diffusion layer for a battery, a membrane-electrode assembly for a battery using the gas diffusion layer for a battery, a battery member, a battery, and a method for producing them.
  • Electrochemical cells that use gas for gas reactions such as fuel cells and metal-air cells are equipped with a gas diffusion layer in order to improve their battery performance.
  • a membrane-electrode assembly (MEA) constituting a polymer electrolyte fuel cell usually has a structure in which a gas diffusion layer, a catalyst layer, an electrolyte membrane, a catalyst layer, and a gas diffusion layer are sequentially laminated. .
  • a conductive porous substrate such as carbon paper or carbon cloth is generally used.
  • the conductive porous substrate is As a support, a conductive porous layer containing a conductive carbon material (carbon black or the like), a polymer (fluorine resin) or the like may be formed on the conductive porous substrate.
  • conductive porous layers are usually coated with a conductive porous layer-forming composition on a conductive porous substrate such as carbon paper or carbon cloth, and then dried to form a conductive porous layer. Therefore, there is a possibility that the paste composition may permeate from the surface of the conductive porous substrate and block the voids of the conductive porous substrate (for example, Patent Document 1).
  • the conductive porous layer is used as a gas diffusion layer and incorporated into a battery without using a conductive porous substrate. Specifically, in order to improve workability before incorporating into a battery. When the conductive porous layer is integrated with the separator, the pores of the conductive porous layer may be crushed.
  • the main object of the present invention is to provide a battery gas diffusion layer that suppresses collapse of voids in the conductive porous layer and has high adhesion to the conductive porous substrate and the separator.
  • the present inventor has included a modified polyolefin resin in at least one conductive porous layer constituting the gas diffusion layer for a battery, so that the voids of the conductive porous layer are included. It was found that a gas diffusion layer for a battery having high adhesion to a conductive porous substrate or a separator can be provided.
  • the present invention has been completed based on such findings. That is, the present invention includes the following configurations.
  • Item 1 A gas diffusion layer for a battery, comprising a first conductive porous layer containing a conductive carbon material and a modified polyolefin resin.
  • Item 2. Item 2.
  • the battery gas diffusion layer according to Item 1 wherein a second conductive porous layer containing a conductive carbon material and a polymer is laminated so as to be in contact with the first conductive porous layer.
  • Item 3. Item 3.
  • Item 4. Item 4.
  • Item 6. Item 5.
  • the gas diffusion layer for a battery according to any one of Items 1 to 4 is provided on the one or both sides of a catalyst layer-electrolyte membrane laminate in which a catalyst layer, an electrolyte membrane, and a catalyst layer are sequentially laminated.
  • a membrane-electrode assembly for a battery wherein the layers are laminated so that the outermost layer is the outermost layer.
  • Item 7 The gas diffusion layer for a battery according to Item 5, wherein the conductive porous substrate is the outermost layer on one or both sides of a catalyst layer-electrolyte membrane laminate in which a catalyst layer, an electrolyte membrane, and a catalyst layer are sequentially laminated.
  • the membrane-electrode assembly for a battery is laminated as described above.
  • Item 8. A battery in which a separator is further laminated so as to be in contact with the first conductive porous layer or the conductive porous substrate which is the outermost layer of the membrane-electrode assembly for a battery according to Item 6 or 7.
  • Item 9. Item 9. The battery according to Item 8, wherein the separator has a porous region.
  • Item 10. Item 9. The battery according to Item 8, wherein the separator has no gas flow path and includes a porous body.
  • Item 11. Item 5.
  • a battery member, wherein a separator is laminated so as to be in contact with the first conductive porous layer of the battery gas diffusion layer according to any one of Items 1 to 4.
  • Item 12. Item 12.
  • Item 13 The battery member according to Item 11, wherein the separator has no gas flow path and includes a porous body.
  • Item 14 A method for producing a gas diffusion layer for a battery, comprising: (I) a step of forming a first conductive porous layer on a substrate using a conductive carbon material and a first conductive porous layer-forming composition containing a modified polyolefin resin; and (II) The manufacturing method of the gas diffusion layer for batteries provided with the process of peeling a base material from a 1st electroconductive porous layer.
  • Item 15 A method for producing a gas diffusion layer for a battery, comprising: (I) a step of forming a first conductive porous layer on a substrate using a conductive carbon material and a first conductive porous layer-forming composition containing a modified polyolefin resin; and (II) The manufacturing method of the gas diffusion layer for batteries provided with the process of peeling a base material from a 1st electroconductive porous layer.
  • a second conductive porous layer is formed on the first conductive porous layer using a second conductive porous layer forming composition containing a conductive carbon material and a polymer.
  • Item 15 The method for producing a battery gas diffusion layer according to Item 14, comprising a step.
  • Item 16 Furthermore, between the step (I) and the step (II), (III) A second conductive porous layer is formed on the first conductive porous layer using a second conductive porous layer forming composition containing a conductive carbon material and a polymer.
  • the gas diffusion layer for a battery includes the first conductive porous layer containing the modified polyolefin resin, the conductive porous layer is prevented from collapsing the voids of the conductive porous layer. Adhesiveness with a base material or a separator can be improved.
  • Battery membrane-electrode assembly of the present invention (catalyst layer-battery membrane in which the second conductive porous layer and the first conductive porous layer are laminated in this order on both surfaces of the electrolyte membrane laminate- It is drawing explaining an electrode assembly.
  • One aspect of the battery membrane-electrode assembly of the present invention (the second conductive porous layer, the first conductive porous layer, and the conductive porous substrate are arranged in this order on both sides of the catalyst layer-electrolyte membrane laminate) 1 is a drawing for explaining a laminated battery membrane-electrode assembly).
  • One aspect of battery of the present invention battery in which a second conductive porous layer, a first conductive porous layer, a conductive porous substrate, and a separator are laminated in this order on both sides of a catalyst layer-electrolyte membrane laminate. Is a drawing for explaining.
  • the battery gas diffusion layer of the present invention is a battery gas diffusion layer including a first conductive porous layer 11 containing a conductive carbon material and a modified polyolefin resin.
  • the battery gas diffusion layer 1 of the present invention is a layer different from a catalyst layer described later.
  • the first conductive porous layer 11 contains a conductive carbon material and a modified polyolefin resin.
  • the battery gas diffusion layer 1 includes the first conductive porous layer 11 (particularly, a layer in contact with the conductive porous substrate or the separator). It is possible to integrate them while preventing the gaps from being crushed.
  • the first conductive porous layer 11 can be formed on a base material using, for example, a first conductive porous layer forming composition containing a conductive carbon material and a modified polyolefin resin.
  • the thickness of the first conductive porous layer 11 is usually about 1 ⁇ m to 300 ⁇ m, and preferably about 5 ⁇ m to 250 ⁇ m, for example.
  • the thickness of the 1st electroconductive porous layer 11 is less than 1 micrometer, when using together the electroconductive porous base material which has the function which supports the electroconductive porous layer mentioned later, an electroconductive porous base material The catalyst layer and the electrolyte membrane may be damaged due to the influence of the uneven shape due to the surface roughness. Moreover, when thickness exceeds 300 micrometers, while gas diffusibility falls, resistance becomes large and can cause a battery performance fall. From the viewpoint of space saving, the thickness of the first conductive porous layer 11 is preferably 250 ⁇ m or less.
  • Conductive carbon material examples include conductive carbon particles and conductive carbon fibers.
  • the conductive carbon particles are not particularly limited as long as they are conductive carbon materials, and known or commercially available materials can be used. Examples thereof include carbon black such as channel black, furnace black, ketjen black, acetylene black and lamp black; graphite; activated carbon and the like. These can be used alone or in combination of two or more. By containing these conductive carbon particles, the conductivity of the battery gas diffusion layer can be improved.
  • the average particle size (arithmetic average particle size) of carbon black is usually about 5 nm to 200 nm, particularly preferably about 5 nm to 100 nm.
  • the thickness is preferably about 10 nm to 600 nm, particularly about 50 nm to 500 nm.
  • the average particle size is preferably about 500 nm to 100 ⁇ m, particularly about 1 ⁇ m to 80 ⁇ m.
  • the average particle diameter of the conductive carbon particles is specified by 20 arithmetic average particle diameters based on an electron microscope observation image.
  • the average particle diameter (arithmetic average particle diameter) of the conductive carbon particles increases the relatively fine pore volume in the first conductive porous layer 11, and the gas permeation performance, smoothness, water discharge and retention, etc. In the case of imparting water management characteristics, it is usually about 5 nm to 200 nm, and particularly preferably about 5 nm to 100 nm. In addition, when the first conductive porous layer 11 is provided with a function of gas diffusion characteristics, the average is preferably about 5 ⁇ m to 100 ⁇ m, more preferably about 6 ⁇ m to 80 ⁇ m.
  • Conductive carbon fiber By blending the conductive carbon fiber, not only the occurrence of cracks on the coating surface of the first conductive porous layer forming composition can be suppressed, but also a highly strong sheet-like first conductive porous layer 11 is produced. It is also possible to do.
  • the conductive carbon fiber used in the first conductive porous layer 11 include vapor grown carbon fiber (VGCF (registered trademark)), carbon nanotube, carbon nanocup, and carbon nanowall.
  • Other conductive carbon fibers having a relatively large average fiber diameter include PAN (polyacrylonitrile) -based carbon fibers (carbon fibers using PAN as a raw material), pitch-based carbon fibers (carbon fibers using pitch as a raw material), etc. Can also be used.
  • the average fiber diameter of the conductive carbon fiber increases the relatively fine pore volume in the first conductive porous layer 11 and gives water management characteristics such as gas permeation performance, smoothness, water discharge and retention.
  • about 50 nm to 800 nm, particularly about 100 nm to 250 nm is preferable.
  • the average fiber length is preferably about 4 ⁇ m to 500 ⁇ m, particularly about 4 ⁇ m to 300 ⁇ m, more preferably about 4 ⁇ m to 50 ⁇ m, particularly about 10 ⁇ m to 20 ⁇ m.
  • the average aspect ratio is preferably about 5 to 600, particularly about 10 to 500.
  • the fiber diameter, fiber length, and aspect ratio of the conductive carbon fiber are measured by an image measured with a scanning electron microscope (SEM) or the like.
  • the average fiber diameter of the conductive carbon fiber is about 5 ⁇ m to 20 ⁇ m, particularly 6 ⁇ m. It is preferably about 15 ⁇ m.
  • the average fiber length is preferably about 5 ⁇ m to 1 mm, particularly about 10 ⁇ m to 600 ⁇ m.
  • the average aspect ratio is preferably about 2 to 50, and more preferably about 2 to 40.
  • the fiber diameter, fiber length, and aspect ratio of the conductive carbon fiber are measured by an image measured with a scanning electron microscope (SEM) or the like.
  • Modified polyolefin resin In the present invention, it is easy to integrate with a conductive porous substrate or a separator even under weak conditions (low temperature and low pressure conditions), and is excellent in heat resistance, chemical resistance, water repellency and the like.
  • the first conductive porous layer 11 contains a modified polyolefin resin. Moreover, when the modified polyolefin resin is contained in the first conductive porous layer 11, the first conductive porous layer 11 is easily peeled from the base material in the step (II) described later.
  • the 1st electroconductive porous layer 11 when it peels from a base material after forming the 1st electroconductive porous layer 11 on a base material, the 1st electroconductive porous layer 11 remains on a base material, a film
  • the polyolefin resin constituting the modified polyolefin resin is a resin containing an olefin component of 50 mol% or more, particularly 80 mol% or more of the whole resin.
  • the olefin component include ethylene, propylene, isobutylene, 1-butene, 1
  • examples thereof include olefins having 2 to 6 carbon atoms such as pentene and 1-hexene, and mixtures thereof may be used.
  • olefins having 2 to 4 carbon atoms such as ethylene, propylene, isobutylene and 1-butene are preferable, and ethylene and propylene are more preferable.
  • the polyolefin resin constituting the modified polyolefin resin is not a fluororesin from the viewpoint of further suppressing the collapse of the voids of the conductive porous layer and further improving the adhesion with the conductive porous substrate or the separator. It is preferable. Similarly, the modified polyolefin resin preferably does not contain fluorine.
  • the polyolefin resin constituting the modified polyolefin resin may be a homopolymer composed of the above-described components, or a copolymer composed of two or more of the above-described components.
  • the polyolefin resin constituting the modified polyolefin resin when the polyolefin resin constituting the modified polyolefin resin is a copolymer, it may be a random copolymer or a block copolymer, and may be either crystalline or amorphous. Furthermore, the polyolefin resin constituting the modified polyolefin resin may be composed of a single polyolefin resin or may be composed of two or more kinds of polyolefin resins.
  • an acid-modified polyolefin resin As the type of modification of the modified polyolefin resin, dispersibility is improved by acid modification, a uniform first conductive porous layer 11 is obtained, and good performance as the conductive porous layer is obtained.
  • an acid-modified polyolefin resin a carboxylic acid-modified polyolefin resin is preferable.
  • the compound (acid) used for modification include unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, itaconic acid, fumaric acid and crotonic acid, and salts, acid anhydrides and esters (unsaturated).
  • a dicarboxylic acid a derivative such as a half ester) or an amide (in the case of an unsaturated dicarboxylic acid, particularly a half amide) may be used.
  • acrylic acid or its ester, methacrylic acid or its ester, (maleic anhydride) and the like are preferable, and acrylic acid or its ester and maleic anhydride are more preferable.
  • the unsaturated carboxylic acid should just be copolymerized in polyolefin resin, and the form is not limited.
  • the acid-modified polyolefin resin to be used may be a polyolefin resin modified with a single compound (acid) among these compounds (acids) or a polyolefin resin modified with two or more compounds (acids). These acid-modified polyolefin resins are not particularly limited, and known or commercially available materials can be used. Moreover, these acid-modified polyolefin resins may be used alone or in combination of two or more.
  • “(meth) acrylic acid” means “acrylic acid” or “methacrylic acid”.
  • (maleic anhydride)” means “maleic acid” or “maleic anhydride”.
  • modified polyolefin resin in addition to the acid-modified polyolefin resin described above, a chlorinated polyolefin resin, a modified polyolefin resin having an alcoholic hydroxyl group, and the like can also be used.
  • the modified polyolefin resin having an alcoholic hydroxyl group is not particularly limited, and examples thereof include a modified polyolefin resin having at least one alcoholic hydroxyl group in the polyolefin main chain.
  • the number of hydroxyl groups bonded to the polyolefin main chain is not particularly limited.
  • a preferable range of the hydroxyl value that is an index of polarity in the polymer is, for example, about 20 to 60 (mgKOH / g), more preferably about 30 to 50 (mgKOH / g).
  • the hydroxyl value is measured according to the method defined in JIS K1557-1.
  • the modified polyolefin resin having an alcoholic hydroxyl group preferably has a hydroxyl group at the end of the polyolefin main chain.
  • the modified polyolefin resin should not contain fluororesin-modified polyolefin from the viewpoint of further suppressing the collapse of the voids of the conductive porous layer and further improving the adhesion to the conductive porous substrate or separator. Is preferred.
  • the ratio of the compound (acid, etc.) used for modification in the modified polyolefin resin makes it easier to integrate the first conductive porous layer with the conductive porous substrate or separator, as well as heat resistance, From the viewpoint of further improving chemical properties and water repellency, the amount is preferably about 0.1 to 40% by mass, more preferably about 0.1 to 30% by mass.
  • the ratio of the compound (acid etc.) used for modification in the modified polyolefin resin is measured by 1 H-NMR analysis.
  • the weight average molecular weight of the modified polyolefin resin makes it easier to integrate the first conductive porous layer with the conductive porous substrate or separator, and further improves heat resistance, chemical resistance, water repellency, etc.
  • about 6000 to 200000 is preferable, and about 8000 to 150,000 is more preferable.
  • the weight average molecular weight of the modified polyolefin resin is a value measured by gel permeation chromatography (GPC) measured under conditions using polystyrene as a standard sample.
  • GPC gel permeation chromatography
  • the melting point of the modified polyolefin resin makes it easier to integrate the first conductive porous layer with the conductive porous substrate or separator, and further improves heat resistance, chemical resistance, water repellency, etc.
  • each is preferably about 60 to 160 ° C., more preferably about 70 to 140 ° C.
  • the melting point of the modified polyolefin resin refers to an endothermic peak temperature in differential scanning calorimetry.
  • the method for modifying the polyolefin resin is not particularly limited as long as the compound (acid or the like) used for modification is copolymerized with the polyolefin resin.
  • Examples of such copolymerization include random copolymerization, block copolymerization, and graft copolymerization (graft modification), and graft copolymerization is preferable.
  • the first conductive porous layer 11 can contain a polymer other than the modified polyolefin resin.
  • ion conductive polymer resin polyvinyl alcohol resin, polyvinyl acetate resin, styrene-acrylic copolymer resin, styrene-vinyl acetate copolymer resin, ethylene-vinyl acetate copolymer resin, polyester-acrylic.
  • copolymer resins include copolymer resins, urethane resins, styrene resins, acrylic resins, phenol resins, silicone resins, epoxy resins, melamine resins, and polyolefin resins.
  • fluorine materials such as polyvinylidene fluoride (PVDF) and vinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), silicone rubber, and the like are also included. These high molecular polymers may be used alone or in combination of two or more.
  • adhesive resin such as epoxy resin, acrylic resin, urethane resin, silicone resin, etc. can be used to further improve the adhesion to the conductive porous substrate or separator and the adhesion to adjacent members. Is possible.
  • the ion conductive polymer resin examples include a fluorine-based ion conductive polymer, specifically, a perfluorocarbon sulfonic acid (PFS) polymer.
  • PFS perfluorocarbon sulfonic acid
  • Specific examples of such ion conductive polymer resins include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and the like.
  • the concentration of the ion conductive polymer resin contained in the ion conductive polymer resin-containing solution when purchasing a commercially available product is usually about 5% by mass to 60% by mass, preferably about 20% by mass to 40% by mass. .
  • the flexibility of the first conductive porous layer 11 can be further improved.
  • a suspension in which polymer polymer particles are dispersed may be used, or a polymer polymer dissolved in a dispersion medium may be used.
  • a suspension in which polymer polymer particles are dispersed it is preferable to prepare by dispersing the polymer in a dispersion medium or use a commercially available product.
  • the dispersion medium for example, known or commercially available alcohols, ketones, aromatic hydrocarbons, esters, and other organic solvents can be used in addition to water, for example, having about 1 to 5 carbon atoms.
  • Monohydric or polyhydric alcohols ketones having a total carbon number of about 3 to 6, aromatic hydrocarbons having a carbon number of about 6 to 10, esters having a total carbon number of about 3 to 6, N-methyl Examples include pyrrolidone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide and the like.
  • Examples include formamide and dimethylacetamide.
  • the first conductive porous layer 11 in order to impart water repellency to the first conductive porous layer 11, it is possible to use a water repellant resin such as a fluororesin as long as the amount does not impair the effects of the present invention.
  • a water repellant resin such as a fluororesin
  • the modified polyolefin resin having excellent water repellency since the modified polyolefin resin having excellent water repellency is used, the first conductive porous layer 11 is not necessarily required to contain the water repellency resin. However, it is effective for improving the water repellency. is there.
  • fluororesin examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyvinylidene fluoride (PVDF), and vinylidene fluoride-hexafluoropropylene copolymer ( PVDF-HFP), perfluoroalkoxy resin (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, PFA), ethylene-tetrafluoroethylene copolymer (ETFE), and the like.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PVDF polyvinylidene fluoride
  • PVDF-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • High molecular polymers other than these modified polyolefin resins may be used alone or in combination of two or more.
  • a water repellent resin from the viewpoint of water repellency, acid resistance, alkali resistance, heat resistance, etc. (particularly water repellency).
  • the blending ratio of each of the above components is preferably 5 to 200 parts by mass, for example, 40 parts by mass to 100 parts by mass of the conductive carbon particles. About 100 parts by mass is more preferable.
  • the content is other than the modified polyolefin resin with respect to 100 parts by mass of the conductive carbon particles.
  • the polymer is preferably about 5 to 200 parts by weight (particularly about 40 to 100 parts by weight).
  • the battery gas diffusion layer of the present invention has good dispersibility and the uniform first conductive porous layer 11. In addition to obtaining good performance as the conductive porous layer, it is possible to improve the adhesion to the conductive porous substrate or the separator.
  • the battery gas diffusion layer of the present invention is excellent in adhesion to the conductive porous substrate or the separator. Therefore, even under weak conditions (low temperature and low pressure conditions), the conductive porous substrate or It can be fully integrated with the separator. For this reason, it can suppress that the space
  • the battery gas diffusion layer of the present invention includes the first conductive porous layer 11 containing the modified polyolefin resin, the first conductive porous layer 11 is easily peeled from the base material. For this reason, when it peels from a base material after forming the 1st electroconductive porous layer 11 on a base material, the 1st electroconductive porous layer 11 remains on a base material, a film
  • Second conductive porous layer 12 In the gas diffusion layer for a battery of the present invention, as shown in FIG. 2, in addition to the first conductive porous layer 11 described above, a second conductive porous containing a conductive carbon material and a polymer is included.
  • the layer 12 may be provided. That is, in the battery gas diffusion layer 1 of the present invention, the second conductive porous layer 12 may be provided on the first conductive porous layer 11.
  • the battery gas diffusion layer 1 of the present invention has various functions while improving the adhesion between the battery gas diffusion layer 1 of the present invention and the conductive porous substrate or separator.
  • the second conductive porous layer 12 is formed on the first conductive porous layer 11 by using, for example, a second conductive porous layer forming composition containing a conductive carbon material and a polymer. can do.
  • the thickness of the second conductive porous layer 12 is usually about 1 ⁇ m to 300 ⁇ m, and particularly preferably about 5 ⁇ m to 250 ⁇ m. When the thickness of the second conductive porous layer 12 is less than 1 ⁇ m, the conductive porous substrate is used in combination with a conductive porous substrate having a function of supporting the conductive porous layer, which will be described later.
  • the catalyst layer and the electrolyte membrane may be damaged due to the influence of the uneven shape due to the surface roughness. Moreover, when thickness exceeds 300 micrometers, while gas diffusibility falls, resistance becomes large and can cause a battery performance fall. From the viewpoint of space saving, the thickness of the second conductive porous layer 12 is preferably 250 ⁇ m or less.
  • Conductive carbon material is not particularly limited, and examples thereof include conductive carbon particles and conductive carbon fibers.
  • the conductive carbon particles and the conductive carbon fibers the same materials as those exemplified in the first conductive porous layer 11 can be used.
  • the same material as the polymer other than the modified polyolefin resin used for the first conductive porous layer 11 can be used. That is, as the polymer, ion conductive polymer resin (Nafion, etc.), polyvinyl alcohol resin, polyvinyl acetate resin, styrene-acrylic copolymer resin, styrene-vinyl acetate copolymer resin, ethylene-vinyl acetate. Examples include copolymer resins, polyester-acrylic copolymer resins, urethane resins, styrene resins, acrylic resins, phenol resins, silicone resins, epoxy resins, melamine resins, and polyolefin resins.
  • ion conductive polymer resin Nafion, etc.
  • polyvinyl alcohol resin polyvinyl acetate resin
  • styrene-acrylic copolymer resin polyvinyl acetate copolymer resin
  • fluorine materials such as polyvinylidene fluoride (PVDF) and vinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), silicone rubber, and the like are also included. These high molecular polymers may be used alone or in combination of two or more.
  • an adhesive resin such as an epoxy resin, an acrylic resin, a urethane resin, a silicone resin, or a polyolefin resin can be used to improve the adhesion to the catalyst layer.
  • the ion conductive polymer resin examples include a fluorine-based ion conductive polymer, specifically, a perfluorocarbon sulfonic acid (PFS) polymer.
  • PFS perfluorocarbon sulfonic acid
  • ion conductive polymer resins include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and the like.
  • the concentration of the ion conductive polymer resin contained in the ion conductive polymer resin-containing solution when purchasing a commercially available product is usually about 5% by mass to 60% by mass, preferably about 20% by mass to 40% by mass. .
  • the flexibility of the second conductive porous layer 12 can be further improved.
  • a suspension in which polymer polymer particles are dispersed may be used, or a polymer polymer dissolved in a dispersion medium may be used.
  • a suspension in which polymer polymer particles are dispersed it is preferable to prepare by dispersing the polymer in a dispersion medium or use a commercially available product.
  • the dispersion medium for example, known or commercially available alcohols, ketones, aromatic hydrocarbons, esters, and other organic solvents can be used in addition to water, for example, having about 1 to 5 carbon atoms.
  • Monohydric or polyhydric alcohols ketones having a total carbon number of about 3 to 6, aromatic hydrocarbons having a carbon number of about 6 to 10, esters having a total carbon number of about 3 to 6, N-methyl Examples include pyrrolidone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide and the like.
  • Examples include formamide and dimethylacetamide.
  • a water repellant resin such as a fluororesin as long as the amount does not impair the effects of the present invention. This is particularly effective when a material having poor water repellency is used as the polymer.
  • fluororesin examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyvinylidene fluoride (PVDF), and vinylidene fluoride-hexafluoropropylene copolymer ( PVDF-HFP), perfluoroalkoxy resin (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, PFA), ethylene-tetrafluoroethylene copolymer (ETFE), and the like.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PVDF polyvinylidene fluoride
  • PVDF-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • These polymer polymers may be used alone or in combination of two or more.
  • a water repellent resin from the viewpoint of water repellency, acid resistance, alkali resistance, heat resistance, etc. (particularly water repellency).
  • the blending ratio of each of the above components is preferably 5 parts by mass to 200 parts by mass, for example, 40 parts by mass with respect to 100 parts by mass of the conductive carbon particles. About 100 parts by mass is more preferable.
  • the first conductive porous layer 11 described above may have only one layer in the battery gas diffusion layer 1 of the present invention. You may have two or more layers. Further, when the battery gas diffusion layer 1 of the present invention includes the second conductive porous layer 12 described above, the battery gas diffusion layer 1 of the present invention may have only one layer, You may have two or more layers. In the battery gas diffusion layer 1 of the present invention, when the outermost layer in contact with the conductive porous substrate or the separator is the first conductive porous layer 11, It is possible to more strongly integrate the battery gas diffusion layer 1 of the present invention with the conductive porous substrate or separator while further suppressing the collapse of the voids.
  • the battery gas diffusion layer 1 of the present invention when the outermost layer on the side opposite to the side in contact with the conductive porous substrate or the separator is the first conductive porous layer 11, the gas diffusion for battery of the present invention.
  • the adhesion between the layer 1 and the catalyst layer can be made better.
  • the battery gas diffusion layer 1 of the present invention is composed of the first conductive porous layer 11 alone or a plurality of conductive porous layers, and both outermost layers are the first conductive porous layers.
  • the aspect which is 11 is preferable.
  • the configuration of the gas diffusion layer 1 of the present invention is that the first conductive porous layer 11 is the first and the second conductive porous layer 12 is the second.
  • Layer; first and second gas diffusion layer; first, first, and first gas diffusion layer; first, second, and first gas diffusion layer; sequentially first, second, and second Examples include a second gas diffusion layer
  • the battery gas diffusion layer 1 of the present invention is provided with various functions such as adhesion to a catalyst layer described later, water repellency, high diffusibility, and water retention. From the viewpoint, the first gas diffusion layer, the first and second gas diffusion layers, the first, second and first gas diffusion layers in this order are preferable.
  • Conductive porous substrate 13 The first conductive porous layer 11 and the second conductive porous layer 12 described above are used integrally with other layers having a function of supporting the conductive porous layer, as shown in FIGS. This facilitates handling and improves workability.
  • a conductive porous substrate 13 can be used (FIGS. 3 to 4). Specifically, in the battery gas diffusion layer 1 of the present invention described above, the outermost first conductive porous layer 11 and the conductive porous base material 13 are integrated, and the entire battery gas diffusion layer is formed. It can be used as layer 1. By adopting such a configuration, the first conductive porous layer 11 and the conductive porous substrate 13 are integrated while suppressing the collapse of the voids of the battery gas diffusion layer 1 of the present invention. be able to.
  • the surface of the battery gas diffusion layer 1 opposite to the side in contact with the conductive porous substrate 13 is prevented from being deformed by the influence of the roughness of the surface of the conductive porous substrate 13. You can also. Thus, since it can suppress that the gas diffusion layer 1 for batteries deform
  • the conductive porous substrate 13 is not particularly limited as long as it has conductivity and is porous, and a known or commercially available material can be used. Examples thereof include carbon paper, carbon cloth, carbon felt and the like.
  • the thickness of the conductive porous substrate 13 is usually about 50 ⁇ m to 1000 ⁇ m, preferably about 100 ⁇ m to 400 ⁇ m.
  • the conductive porous substrate 13 may be a porous metal body made of a metal mesh, a metal foam or the like in order to diffuse the oxidant gas to the catalyst layer described later.
  • the conductivity is further improved.
  • the metal used for the porous metal body nickel, palladium, silver, stainless steel, or the like can be used.
  • the metal mesh and the metal foam surface may be plated.
  • the material of the plating is not particularly limited, and examples thereof include metals such as platinum, ruthenium, rhodium, tungsten, tantalum, and gold or alloys thereof; carbon; composites of corrosion-resistant resins such as epoxy resins and acrylic resins and carbon, and the like. .
  • gold is preferable from the viewpoint of high water repellency.
  • the conductive porous substrate 13 is preferably a substrate that has been subjected to a water repellent treatment in advance. Thereby, the water repellency of the conductive porous substrate 13 can be further improved.
  • Examples of the water repellent treatment include a method of immersing the conductive porous substrate 13 in an aqueous dispersion in which a fluororesin or the like is dispersed.
  • Examples of the fluororesin include the above-described resins.
  • the content of the fluororesin in the aqueous dispersion is, for example, preferably about 1 to 30 parts by mass, preferably about 2 to 20 parts by mass with respect to 100 parts by mass of water.
  • the collapse rate of the voids is preferably 33.3% or less, and more preferably 25.0% or less. The smaller the void collapse rate, the better. However, the lower limit is usually about 0.3%.
  • the thickness of the entire conductive porous layer is preferably 1 ⁇ m to 300 ⁇ m, more preferably 50 ⁇ m to 250 ⁇ m when integrated with the conductive porous substrate 13. That is, when only the first conductive porous layer 11 is formed, the thickness of the first conductive porous layer 11 is preferably within the above range, and the first conductive porous layer 11 and the second conductive layer 11 When both the porous layer 12 and the porous layer 12 are formed, the total thickness is preferably within the above range.
  • Battery member 2 The first conductive porous layer 11 and the second conductive porous layer 12 described above are easy to handle and workability by being integrated with another layer having a function of supporting the conductive porous layer. improves.
  • a separator 21 can be used (FIGS. 5 to 6).
  • the outermost first conductive porous layer 11 and the separator 21 can be integrated, and the whole can be used as the battery member 2. .
  • the battery gas diffusion layer 1 of the present invention and the separator 21 can be integrated while suppressing the collapse of the voids of the battery gas diffusion layer of the present invention.
  • the problem that the battery gas diffusion layer 1 is deformed by the influence of the flow path of the separator 21 and the surface opposite to the side in contact with the separator 21 is deformed can also be suppressed.
  • the separator 21 may be formed on the conductive porous substrate 13.
  • separator 21 any known or commercially available separator can be used.
  • the material of the separator 21 is not particularly limited and can be appropriately selected depending on the purpose.
  • metals such as stainless steel, copper, titanium, aluminum, rhodium, tantalum, and tungsten, or an alloy containing at least one of them; graphite; a carbon compound in which carbon is kneaded into a resin, and the like.
  • the metal or an alloy containing at least one of these is preferable, and titanium and stainless steel are more preferable.
  • the surface of the separator 21 may be plated in order to improve corrosion resistance and conductivity.
  • the plating material include metals such as platinum, ruthenium, rhodium, tungsten, tantalum, and gold or alloys thereof; carbon; a composite of corrosion resistant resin such as epoxy resin and acrylic resin and carbon, and the like.
  • gold is preferable from the viewpoint of high corrosion resistance, and in terms of cost, carbon or a composite of carbon and the above metal or an alloy thereof is preferable.
  • the separator 21 may be a separator with a flow path in which a gas flow path (rib) is formed, or may be a separator without a flow path in which a gas flow path is not formed in itself. . Moreover, the separator which made the porous body which plays the role of a gas flow path adjoined may be sufficient. Moreover, the separator which has a porous body area
  • the gas flow path flows hydrogen, air, etc., which are fuel of the fuel cell, and discharges water generated by the reaction of the fuel cell to the outside of the cell
  • variety, depth, shape, etc. of a flow path are not restrict
  • the width is 0.05 mm to 2 mm (preferably 0.05 mm to 1.5 mm)
  • the depth is 0.05 mm to 2 mm (preferably 0.1 mm to 1 mm).
  • the surface of the gas flow path may have irregularities or may be flat.
  • the surface of the flow path preferably has irregularities.
  • a water repellent layer is formed on part or all of the separator 21.
  • the water repellent layer include at least one of sulfur and its compounds.
  • nickel, palladium, silver, stainless steel, etc. can be used as the material of the porous body in the separator in which the porous body serving as a gas flow path is adjacent.
  • the material of the plating is not particularly limited, and examples thereof include metals such as platinum, ruthenium, rhodium, tungsten, tantalum, and gold or alloys thereof; carbon; composites of corrosion-resistant resins such as epoxy resins and acrylic resins and carbon, and the like. .
  • gold is preferable from the viewpoint of high corrosion resistance, and in terms of cost, carbon or a composite of carbon and the above metal or an alloy thereof is preferable.
  • the separator having a porous region is not particularly limited as long as the separator has a structure in which the porous region can serve as the gas flow path.
  • the separator 21 has a phosphorus-containing layer formed on at least one surface of the metal plate constituting the separator, preferably on both surfaces of the metal plate, more preferably on the entire surface of the metal plate.
  • the phosphorus-containing layer can protect the surface of the metal plate from corrosion by the superacid (superacid) of the solid polymer electrolyte.
  • the substance constituting the phosphorus-containing layer varies depending on the type of metal plate, the type of phosphorus compound used in forming the phosphorus-containing layer, and the like.
  • phosphorus compound used for forming the phosphorus-containing layer known inorganic phosphorus compounds can be widely used, and examples thereof include condensed phosphoric acid such as phosphoric acid and polyphosphoric acid, and salts thereof.
  • the salt include alkali metal salts such as sodium salt and potassium salt, metal salts, and ammonium salts.
  • the phosphorus-containing layer may further contain a resin, a metal compound, or the like.
  • resin known resins can be widely used, and examples thereof include acrylic resin, phenol resin, and urethane resin.
  • these resins can be used singly or in combination of two or more.
  • metal compound known compounds can be widely used as long as they can be bonded to the resin when the phosphorus-containing layer is formed.
  • metal compounds include transition elements such as zirconium, titanium, molybdenum, tungsten, vanadium, manganese, cobalt, and cerium, salts of inner transition elements, oxo acids or salts thereof, complex fluoride acids or salts thereof, and the like. Can be mentioned.
  • zirconium compound Considering cost and bond strength (crosslinking strength) with the above resin, a zirconium compound is preferable.
  • zirconium compound include zirconium fluoride (zirconium hydrofluoric acid), zirconium fluoride ammonium, zirconium acetate, zirconium carbonate ammonium, zirconium nitrate and the like.
  • the thickness of the phosphorus-containing layer is usually about 100 nm to 500 nm.
  • the content of the resin and the metal compound in the phosphorus-containing layer is appropriately selected in consideration of corrosion resistance and the like.
  • the separator 21 When the separator 21 is used as another layer having a function of supporting the battery gas diffusion layer 1 of the present invention, the separator is more likely to collapse the voids of the conductive porous layer than a separator having a large flow path. From the viewpoint of suppressing and improving adhesion, a separator having a narrow channel width and a separator having no porous channel and a porous region are preferable.
  • the collapse rate of the voids is preferably 33.3% or less, and more preferably 25.0% or less. The smaller the void collapse rate, the better. However, the lower limit is usually about 0.3%.
  • the thickness of the entire conductive porous layer is preferably 10 ⁇ m to 300 ⁇ m, more preferably 20 ⁇ m to 250 ⁇ m, when integrated with the separator 21. That is, when only the first conductive porous layer 11 is formed, the thickness of the first conductive porous layer 11 is preferably within the above range, and the first conductive porous layer 11 and the second conductive layer 11 When both the porous layer 12 and the porous layer 12 are formed, the total thickness is preferably within the above range.
  • the battery gas diffusion layer 1 comprising, for example, (I) forming a first conductive porous layer 11 on a substrate using a conductive carbon material and a first conductive porous layer forming composition containing a modified polyolefin resin; and (II) It can be manufactured by a method comprising a step of peeling the substrate from the first conductive porous layer 11.
  • step (I) the conductive carbon material and the modified polyolefin resin described above can be used.
  • the first conductive porous layer forming composition includes, in addition to the conductive carbon material and the modified polyolefin resin, a polymer other than the modified polyolefin resin as long as the effects of the present invention are not impaired.
  • a polymer, a dispersant, a dispersion medium, a foaming agent, a curing agent, and the like can be included.
  • the high molecular polymer used by this invention may be melt
  • resins other than the modified polyolefin resin those described above can be adopted.
  • the dispersant is not limited as long as it is a dispersant that can disperse the conductive carbon material and the modified polyolefin resin in a dispersion medium such as water, and a known or commercially available dispersant can be used.
  • a dispersant include nonionic dispersants such as polyoxyethylene distyrenated phenyl ether, polyoxyethylene alkyl ether, and polyethylene glycol alkyl ether; alkyltrimethylammonium salts, dialkyldimethylammonium chloride, and alkylpyridium chloride.
  • anionic dispersants such as polyoxyethylene fatty acid esters and acidic group-containing structurally modified polyacrylates. These dispersing agents can be used alone or in combination of two or more.
  • the dispersion medium is not particularly limited, and water or other known or commercially available alcohols, ketones, aromatic hydrocarbons, esters, and other organic solvents can be used.
  • Monohydric or polyhydric alcohols having about 1 to 5 carbon atoms, ketones having about 3 to 6 carbon atoms, aromatic hydrocarbons having about 6 to 10 carbon atoms, 3 to 6 carbon atoms Degree esters, N-methylpyrrolidone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide and the like.
  • the foaming agent foaming agent is not particularly limited, and a material capable of forming pores in the first conductive porous layer 11 can be used.
  • a heating foaming agent that decomposes and foams by heating can be suitably used.
  • the heating foaming agent a compound having a decomposition temperature of 80 ° C. or higher, particularly about 120 ° C. to 250 ° C. is preferable.
  • the amount of gas generated by the blowing agent is not particularly limited, and is usually about 50 ml / g to 500 ml / g, preferably about 200 ml / g to 300 ml / g.
  • the average particle size is not particularly limited, and is usually about 1 ⁇ m to 50 ⁇ m, preferably about 2 ⁇ m to 5 ⁇ m.
  • known organic foaming agents and inorganic foaming agents having the above decomposition temperature can be widely used.
  • organic foaming agent examples include N, N′-dinitrosopentamethylenetetramine (DPT), azodicarbonamide (ADCA), 4,4′-oxybisbenzenesulfonylhydrazide (OBSH), and hydrazodicarbonamide (HDCA). Etc. Among these, it is preferable to use azodicarbonamide (ADCA) having a low temperature foaming property, 4,4'-oxybisbenzenesulfonyl hydrazide (OBSH) or the like.
  • a urea aid can be used in combination as a foaming aid in order to lower the foaming temperature of the foaming agent.
  • Examples of inorganic foaming agents include sodium bicarbonate.
  • the composition for forming a hardener first conductive porous layer contains a hardener, the mechanical strength, heat resistance, and durability of the first conductive porous layer can be further increased.
  • the curing agent is not particularly limited as long as it is a curing agent capable of curing the modified polyolefin resin.
  • curing agent a polyfunctional isocyanate compound, a carbodiimide compound, an epoxy compound, an oxazoline compound etc. are mentioned, for example.
  • the polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups.
  • Specific examples of the polyfunctional isocyanate compound include, for example, diisocyanates such as isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and derivatives thereof (biuret, isocyanurate). , Adducts), polyisocyanates obtained by modifying these diisocyanates and derivatives thereof with polyester polyols, polyether polyols, acrylic polyols, polycarbonate polyols, and mixtures thereof.
  • IPDI isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • Adducts polyisocyanates obtained by
  • the carbodiimide compound is not particularly limited as long as it is a compound having at least one carbodiimide group (—N ⁇ C ⁇ N—).
  • a polycarbodiimide compound having at least two carbodiimide groups is preferable.
  • particularly preferred carbodiimide compounds include those represented by the general formula (1):
  • n is an integer of 2 or more.
  • the polycarbodiimide compound represented by these is mentioned.
  • n is an integer of 2 or more, preferably an integer of 2 to 30, and more preferably an integer of 3 to 20.
  • the epoxy compound is not particularly limited as long as it is a compound having two or more epoxy groups.
  • the epoxy compound include bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and tripropylene glycol diglycidyl ether.
  • the oxazoline compound is not particularly limited as long as it is a compound having an oxazoline skeleton.
  • Specific examples of the oxazoline compound include Epocros series manufactured by Nippon Shokubai Co., Ltd.
  • the curing agent may be composed of two or more kinds of compounds.
  • the above-described components can be adopted as the blending ratio of each component.
  • the content thereof is based on 100 parts by mass of the conductive carbon particles. Dispersant 0 to 100 parts by weight (particularly about 5 to 50 parts by weight), dispersion medium 0 to 1100 parts by weight (particularly about 100 to 1000 parts by weight), foaming agent 0 to part by weight About 200 parts by mass (particularly about 20 to 100 parts by mass) is preferable.
  • the content thereof is 0.1 parts by mass to 50 parts by mass with respect to 100 parts by mass of the modified polyolefin resin.
  • 0.1 to 30 parts by mass is more preferable.
  • the content of the curing agent is preferably 1 equivalent to 30 equivalents as a reactive group in the curing agent with respect to 1 equivalent of the carboxy group in the modified polyolefin resin. 1 to 20 equivalents are more preferred.
  • the first conductive porous layer forming composition can be obtained, for example, by mixing and dispersing the conductive carbon particles, the modified polyolefin resin, and other components.
  • a dispersion method for example, known ultrasonic dispersion, homogenizer, media dispersion, stirrer dispersion, or the like can be used.
  • a base material will not be specifically limited if it is a base material which can form the 1st electroconductive porous layer 11 using the composition for 1st electroconductive porous layer formation, It uses a well-known or commercially available base material widely. Can do.
  • a substrate include polyimide, polyethylene terephthalate, aramid, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether etherketone, polyetherimide, polyarylate, polyethylene naphthalate, polypropylene. And the like.
  • ETFE ethylene tetrafluoroethylene copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • PTFE polytetrafluoroethylene
  • ETFE ethylene tetrafluoroethylene copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • PTFE polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • a release layer is laminated on the substrate.
  • the release layer include those composed of known waxes.
  • the thickness of the base material is preferably about 6 ⁇ m to 100 ⁇ m, particularly preferably about 10 ⁇ m to 60 ⁇ m, from the viewpoints of handleability and economy.
  • the first conductive porous layer 11 on the substrate using the first conductive porous layer forming composition for example, a coating method, a spray method, a dipping method, or the like can be adopted. From the viewpoint of obtaining a more uniform first conductive porous layer 11 and better performance as the conductive porous layer, the coating method is preferred in the present invention.
  • the first conductive porous layer is formed by coating and drying the composition for forming the first conductive porous layer on the substrate, and further through a foaming step when a foaming agent is contained. 11 is preferably formed.
  • the first conductive porous layer forming composition As a method for applying the first conductive porous layer forming composition, it is applied using a blade such as a known or commercially available doctor blade, a device such as a wire bar or a squeegee, an applicator, die coating, screen printing, comma coating, or the like. It is preferable.
  • a blade such as a known or commercially available doctor blade, a device such as a wire bar or a squeegee, an applicator, die coating, screen printing, comma coating, or the like. It is preferable.
  • the coating amount of the first conductive porous layer forming composition is, for example, such as gas permeation performance, smoothness, water discharging property and retention property to the first conductive porous layer 11.
  • the first conductive porous layer 11 after drying is preferably applied so that the thickness thereof is about 1 ⁇ m to 150 ⁇ m, preferably about 5 ⁇ m to 100 ⁇ m.
  • the thickness of the first conductive porous layer 11 after drying is about 1 ⁇ m to 300 ⁇ m, preferably about 20 ⁇ m to 250 ⁇ m. It is good to apply to.
  • the thickness of the first conductive porous layer 11 it is preferable to adjust the thickness of the first conductive porous layer 11 to be 250 ⁇ m or less. In addition, it absorbs more pressure from other members (conductive porous substrate, separator, etc.), and when the processing accuracy of the separator is poor and there are variations in shape, thickness, etc., the entire cell can be absorbed From the viewpoint of improving the accuracy, it is preferable to increase the thickness of the conductive porous layer (about 20 ⁇ m to 300 ⁇ m).
  • the drying temperature is appropriately changed depending on conditions such as the volatilization temperature of the solvent (dispersion medium or the like) used.
  • drying treatment may be performed at a higher temperature (for example, about 150 ° C. to 500 ° C.) as necessary.
  • the surface of the first conductive porous layer 11 may be subjected to a surface treatment in order to improve adhesion with other members, impart water repellency, or the like.
  • a surface treatment include mechanical treatment that physically forms surface irregularities with a metal brush, sandblast, etc., mat treatment, corona discharge treatment, plasma discharge treatment, ultraviolet treatment, flame treatment, and the like.
  • the base material is peeled from the first conductive porous layer 11.
  • the peeling method is not particularly limited, and a method used in a conventional method may be adopted.
  • the order of the steps is not particularly limited as long as the steps (I) are performed after the first step, after the first step (I).
  • the battery gas diffusion layer 1 of the present invention is a second conductive porous layer.
  • the porous layer 12 is provided (for example, when the second conductive porous layer 12 is formed on the first conductive porous layer 11), the process (I) described in (3-1) above is performed. ) And (II), (III) A second conductive porous layer 12 is formed on the first conductive porous layer 11 by using a second conductive porous layer forming composition containing a conductive carbon material and a polymer. It can manufacture by the manufacturing method also provided with the process to form.
  • the conductive carbon material and the high molecular polymer can employ the above-described ones.
  • the second conductive porous layer forming composition includes, in addition to the conductive carbon material and the polymer, the dispersant, the dispersion medium, A foaming agent or the like can be included.
  • the dispersant, the dispersion medium, and the foaming agent those similar to the first conductive porous layer forming composition can be employed.
  • the above-described components can be adopted as the blending ratio of each component.
  • the content thereof is based on 100 parts by mass of the conductive carbon particles. Dispersant 0 to 100 parts by weight (particularly about 5 to 50 parts by weight), dispersion medium 0 to 1100 parts by weight (particularly about 10 to 1000 parts by weight), foaming agent 0 to part by weight About 200 parts by mass (particularly about 20 to 100 parts by mass) is preferable.
  • the second conductive porous layer forming composition can be obtained, for example, by mixing and dispersing the conductive carbon particles, the polymer, and other components.
  • the dispersion method is not particularly limited, and for example, known ultrasonic dispersion, homogenizer, media dispersion, stirrer dispersion, and the like can be used.
  • Examples of the method for forming the second conductive porous layer 12 on the first conductive porous layer 11 using the second conductive porous layer forming composition include a coating method, a spray method, and an immersion method. In the present invention, a coating method is preferable. Specifically, the composition for forming the second conductive porous layer on the first conductive porous layer 11 is coated and dried, and when a foaming agent is contained, a foaming step is further performed, Two conductive porous layers 12 are preferably formed.
  • the second conductive porous layer forming composition As a method for applying the second conductive porous layer forming composition, it is applied using a blade such as a known or commercially available doctor blade, a device such as a wire bar or a squeegee, an applicator, die coating, screen printing, comma coating, or the like. It is preferable.
  • a blade such as a known or commercially available doctor blade, a device such as a wire bar or a squeegee, an applicator, die coating, screen printing, comma coating, or the like. It is preferable.
  • the coating amount of the second conductive porous layer forming composition is, for example, such as gas permeation performance, smoothness, water discharging property and retaining property to the second conductive porous layer 12.
  • the second conductive porous layer 12 after drying is preferably applied so that the thickness thereof is about 1 ⁇ m to 150 ⁇ m, preferably about 5 ⁇ m to 100 ⁇ m.
  • the thickness of the second conductive porous layer 12 after drying is about 1 ⁇ m to 300 ⁇ m, preferably about 20 ⁇ m to 250 ⁇ m. It is good to apply to.
  • the thickness of the first conductive porous layer 11 it is preferable to adjust the thickness of the first conductive porous layer 11 to be 250 ⁇ m or less. In addition, it absorbs more pressure from other members (conductive porous substrate, separator, etc.), and when the processing accuracy of the separator is poor and there are variations in shape, thickness, etc., the entire cell can be absorbed From the viewpoint of improving the accuracy, it is preferable to increase the thickness of the conductive porous layer (about 20 ⁇ m to 300 ⁇ m).
  • the drying temperature is appropriately changed depending on conditions such as a volatilization temperature of a solvent to be used (dispersion medium or the like).
  • a drying treatment may be performed at a higher temperature (for example, about 150 ° C. to 500 ° C.) as necessary.
  • the surface of the second conductive porous layer 12 may be subjected to a surface treatment for improving adhesion with other members, imparting water repellency, and the like.
  • a surface treatment for improving adhesion with other members, imparting water repellency, and the like.
  • the surface treatment include mechanical treatment that physically forms surface irregularities with a metal brush, sandblast, etc., mat treatment, corona discharge treatment, plasma discharge treatment, ultraviolet treatment, flame treatment, and the like.
  • step (I), step (II) and step (III); and the order of step (I), step (III) and step (II) can be adopted. From the viewpoint of the handleability of the layer, step (I), step (III), The order of step (II) is preferred.
  • the first conductive porous layer 11 is formed on the first conductive porous layer 11 or the second conductive porous layer 12).
  • the above-described step (III) may be performed a plurality of times so that a desired configuration is obtained (from the second time on, the already formed first
  • the second conductive porous layer 12 is formed on the first conductive porous layer 11 or the second conductive porous layer 12).
  • the order of the steps is not particularly limited as long as the steps (I) are performed after the first step, after the first step (I).
  • the battery gas diffusion layer 1 of the present invention is a conductive porous substrate. 13 (for example, the case where the first conductive porous layer 11 and the conductive porous base material 13 are provided), the battery gas diffusion layer 1 of the present invention is the above (3-1).
  • the conductive porous substrate 13 can be manufactured by a manufacturing method including a step of laminating the conductive porous substrate 13 so as to be in contact with the first conductive porous layer 11.
  • the battery gas diffusion layer 1 of the present invention includes the conductive porous substrate 13 (for example, the first conductive porous layer 11, the second conductive porous layer 12, and the conductive porous group).
  • the battery gas diffusion layer 1 of the present invention includes the step (IV) in addition to the steps (I), (II) and (III) described in the above (3-2). It can manufacture with the manufacturing method provided.
  • the conductive porous substrate 13 may be the above-described one.
  • step (IV) the conductive porous substrate 13 is laminated so as to be in contact with the first conductive porous layer 11. At this time, the conductive porous substrate 13, the first conductive porous layer 11, It is preferable to laminate so as to be integrated.
  • the conductive porous substrate 13 and the first conductive porous layer 11 are arranged so as to be in contact with each other and then integrated by applying pressure. Further, during the pressurizing operation, it is preferable to heat press the heated pressure surface in order to further improve the adhesion under a lower pressure condition.
  • the hot press conditions are weak in order to further prevent the voids in the first conductive porous layer 11 from being crushed. Even under the conditions (low temperature and low pressure conditions), the conductive porous substrate 13 and the conductive porous substrate A11 can be sufficiently integrated. Moreover, it can also suppress that the surface on the opposite side to the side which contact
  • the hot pressing condition is a strong condition (high temperature and high pressure condition)
  • the gap of the first conductive porous layer 11 is crushed and the side of the battery gas diffusion layer 1 in contact with the conductive porous substrate 13
  • the surface on the opposite side may be deformed under the influence of the roughness of the surface of the conductive porous substrate 13.
  • the appearance of the catalyst layer side surface may be affected.
  • the conditions for hot pressing are as follows: heating temperature is 40 ° C. to 150 ° C. (especially 60 ° C. to 120 ° C.), applied pressure is 0.5 MPa to 10 MPa (especially 1 MPa to 5 MPa), and hot pressing time is 10 seconds. It is preferable to set it to ⁇ 300 seconds (particularly 30 seconds to 200 seconds).
  • the battery member 2 of the present invention including the first conductive porous layer 11 and the second conductive porous layer 12 (for example, the first conductive porous layer 11 and the second conductive porous layer 12). And the battery member 2 including the separator 21 are manufactured by the manufacturing method including the step (V) in addition to the steps (I), (II), and (III) described in the above (3-2). be able to.
  • the separator 21 can employ the above-described one.
  • the separator 21 is laminated so as to be in contact with the first conductive porous layer 11.
  • the separator 21 and the first conductive porous layer 11 may be laminated so as to be integrated. preferable.
  • the separator 21 and the first conductive porous layer 11 be arranged so as to be in contact with each other and then integrated by performing a heat press. Under the present circumstances, it is preferable to arrange
  • the hot press conditions are set in order to further prevent the voids in the first conductive porous layer 11 from being crushed. Even under weak conditions (low temperature and low pressure conditions), the separator 21 and the first conductive porous layer 11 can be sufficiently integrated.
  • the hot pressing condition is a strong condition (high temperature and high pressure condition)
  • the voids of the first conductive porous layer 11 may be crushed. Further, the first conductive porous layer 11 may be deformed and affect the appearance of the catalyst layer side surface.
  • the conditions for hot pressing are as follows: heating temperature is 40 ° C. to 150 ° C. (especially 60 ° C. to 120 ° C.), applied pressure is 0.5 MPa to 10 MPa (especially 1 MPa to 5 MPa), and hot pressing time is 10 seconds. It is preferable to set it to ⁇ 300 seconds (particularly 30 seconds to 200 seconds).
  • the order of the step (I), the step (II) and the step (V); and the step (I) any of the order of the step (V) and the step (II) can be adopted, but from the viewpoint of adhesion, it is preferable to carry out in the order of the step (I), the step (II) and the step (V).
  • step (I), step (II), step (V) and step (III) in order; step (I), step (V), step (II) and step (III) ); And step (I), step (III), step (II) and step (V) can be employed, but from the viewpoint of handling and adhesion, step (I) and step (III) It is preferable to carry out in the order of step (II) and step (V).
  • the separator 21 may be laminated on the conductive porous substrate 13.
  • the electroconductive porous base material 13 and the separator 21 process (I), process (II), process (IV), and process ( V) order; step (I), step (IV), step (II) and step (V) order; and step (I), step (IV), step (V) and step (II) order
  • step (I), Step (II), Step (III), Step (IV) and Step (V) in order; Step (I), Step (II), Step (IV), Step (III) and Step (V) in order; Step (I), Step (II), Step (IV), Step (V) and Step (III) in this order; Step (I), Step (IV), Step (II), Step (III) and Step (V)
  • Battery membrane-electrode assembly 3 and battery 4 Using the gas diffusion layer 1 for a battery or the battery member 2 of the present invention as a gas diffusion layer for a fuel cell or a gas diffusion layer for a metal-air battery, as shown in FIGS. 3 or battery 4 (solid polymer fuel cell, metal-air battery, etc.) can be produced. Specifically, one side or both sides of a catalyst layer-electrolyte membrane laminate 31 composed of a laminate of the catalyst layer 312 and the electrolyte membrane 311 or a laminate in which the catalyst layer 312, the electrolyte membrane 311 and the catalyst layer 312 are formed in this order.
  • the battery gas diffusion layer 1 or the battery member 2 of the present invention is laminated so that the first conductive porous layer 11 or the second conductive porous layer 12 and the catalyst layer are in contact with each other.
  • a representative example of such a membrane-electrode assembly 3 for a battery according to the present invention is as shown in FIGS. 7 to 8.
  • the configuration is not limited to this.
  • the first conductive porous layer 11 was laminated on both surfaces of the battery membrane-electrode assembly 3 in which the first conductive porous layer 11 was laminated in this order and the “catalyst layer-electrolyte membrane laminate 31”.
  • Battery membrane-electrode assembly 3 "," catalyst layer-battery membrane in which the second conductive porous layer 12 and the first conductive porous layer 11 are laminated in this order on both surfaces of the electrolyte membrane laminate 31- Electrode assembly 3 ”,“ Catalyst layer-electrolyte membrane laminate 31 on one side, first conductive porous layer 11 and conductive porous layer ” Battery membrane-electrode assembly 3 in which materials 13 are laminated in this order ”and“ catalyst layer-electrolyte membrane laminate 31 ”on one side of second conductive porous layer 12, first conductive porous layer 11 and conductive layer 13.
  • Battery porous membrane 13 in which the porous porous substrate 13 is laminated in this order and“ catalytic layer-electrolyte membrane laminated body 31 on both sides of the first conductive porous layer 11 and the conductive porous substrate. 13 are laminated in this order on the battery membrane-electrode assembly 3 ”and the“ catalyst layer-electrolyte membrane laminate 31 ”on both sides of the second conductive porous layer 12, the first conductive porous layer 11, and the conductive layer.
  • Any battery membrane-electrode assembly 3 ”in which the porous porous substrate 13 is laminated in this order can be employed.
  • the battery 4 of the present invention may be produced by laminating the obtained battery membrane-electrode assembly 3 with a separator 21 as necessary. At this time, the separator described above can be used as the separator 21.
  • a typical example of such a battery 4 of the present invention is as shown in FIG. 9, but the configuration thereof is not limited to this.
  • “the first layer on the one side of the catalyst layer-electrolyte membrane laminate” A battery in which a conductive porous layer and a separator are laminated in this order ”,“ a second conductive porous layer, a first conductive porous layer, and a separator are laminated in this order on one side of a catalyst layer-electrolyte membrane laminate.
  • Battery “ battery in which the first conductive porous layer, the conductive porous substrate and the separator are laminated in this order on one side of the catalyst layer-electrolyte membrane laminate ”,“ catalyst layer-electrolyte membrane laminate A battery in which a second conductive porous layer, a first conductive porous layer, a conductive porous substrate and a separator are laminated in this order on one side ”,“ a first conductive on both sides of a catalyst layer-electrolyte membrane laminate ” A separator is placed on one side of the battery membrane-electrode assembly on which a porous porous layer is laminated.
  • Layered battery “ Catalyst layer-electrolyte membrane laminate on both sides of second conductive porous layer and first conductive porous layer in this order laminated on one side of membrane-electrode assembly for battery separator
  • a second conductive porous layer, a first conductive porous layer, and a separator are formed on both sides of the film laminate.
  • a battery in which a first conductive porous layer, a conductive porous substrate and a separator are laminated in this order on both surfaces of a catalyst layer-electrolyte membrane laminate, and a catalyst Any battery in which the second conductive porous layer, the first conductive porous layer, the conductive porous substrate, and the separator are stacked in this order on both surfaces of the layer-electrolyte membrane laminate can be employed.
  • the membrane-electrode assembly 3 or The battery 4 can be produced.
  • the battery gas diffusion layer 1 or the battery member 2 is preferably integrated with the catalyst layer-electrolyte membrane laminate 31.
  • the battery gas diffusion layer 1 or the battery member 2 is not less than 5 minutes from the catalyst layer-electrolyte membrane laminate 31. It is preferable to adhere to such an extent that it does not peel off.
  • Electrolyte membrane 311 may be a hydrogen ion conductive or hydroxide ion conductive electrolyte membrane, and a known or commercially available electrolyte membrane such as a hydrogen ion conductive electrolyte membrane or a hydroxide ion conductive electrolyte membrane may be used. .
  • hydrogen ion conductive electrolyte membrane examples include, for example, “Nafion” (registered trademark) membrane manufactured by DuPont, “Flemion” (registered trademark) membrane manufactured by Asahi Glass Co., Ltd., and “Aciplex” manufactured by Asahi Kasei Corporation. ”(Registered trademark) membrane,“ Gore Select ”(registered trademark) membrane manufactured by Gore, and the like.
  • hydroxide ion conductive electrolyte membrane include a hydrocarbon electrolyte membrane such as Aciplex (registered trademark) A-201, 211, 221 and the like manufactured by Asahi Kasei Co., Ltd., and Tokuyama Corp.
  • Neoceptor (registered trademark) AM-1, AHA, and the like.
  • Tosflex registered trademark
  • fumapem manufactured by FuMA-Tech ( (Registered trademark) FAA and the like.
  • the thickness of the electrolyte membrane 311 is usually about 20 ⁇ m to 250 ⁇ m, and particularly preferably about 20 ⁇ m to 150 ⁇ m.
  • the membrane-electrode assembly 3 for a battery according to the present invention is used for a metal-air battery, it is not limited to a solid electrolyte membrane, and a gel-like or liquid electrolyte can also be used.
  • the material used for the electrolytic solution in this case is not particularly limited, and known or commercially available materials conventionally used for metal-air batteries can be used.
  • the electrolytic solution is selected corresponding to the metal of the negative electrode, but water, saline, an alkaline solution, a metal salt solution of the metal of the negative electrode, and the like are appropriately used.
  • Catalyst layer 312 The catalyst layer 312 only needs to contain a catalyst.
  • a catalyst layer in which catalyst particles are supported on carbon particles may be used.
  • the catalyst layer 312 may contain a polymer in addition to the catalyst.
  • the catalyst examples include platinum and platinum compounds.
  • the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron, cobalt, and the like.
  • the catalyst contained in the catalyst layer is platinum.
  • the carbon particles only need to have conductivity, and known or commercially available carbon particles can be widely used.
  • carbon black, graphite, activated carbon, or the like can be used alone or in combination.
  • Examples of carbon black include channel black, furnace black, ketjen black, acetylene black, and lamp black.
  • the arithmetic average particle diameter of the carbon particles is usually about 5 nm to 200 nm, preferably about 20 nm to 80 nm.
  • the average particle diameter of the carbon particles is specified by 20 arithmetic average particle diameters based on an electron microscope observation image.
  • polymer known materials can be used. Specifically, ion conductive polymer electrolyte, polyvinyl alcohol resin, polyvinyl acetate resin, styrene-acrylic copolymer resin, styrene-vinyl acetate copolymer resin, ethylene-vinyl acetate copolymer resin, polyester-acrylic Examples thereof include copolymer resins, urethane resins, styrene resins, acrylic resins, phenol resins, silicone resins, epoxy resins, melamine resins, polyolefin resins, and fluorine resins.
  • fluorine-based materials such as polyvinylidene fluoride (PVDF) and vinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), silicone rubber, and the like are also included. These high molecular polymers may be used alone or in combination of two or more.
  • Examples of the ion conductive polymer electrolyte include perfluorosulfonic acid-based fluorine ion exchange resins, and more specifically, perfluorocarbon sulfonic acid polymer (PFS polymer). By introducing a fluorine atom having high electronegativity, it is chemically very stable, the dissociation degree of the sulfonic acid group is high, and high ion conductivity can be realized.
  • Specific examples of such an ion conductive polymer electrolyte include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and “Aciplex” manufactured by Asahi Kasei Corporation.
  • the concentration of the ion conductive polymer electrolyte contained in the ion conductive polymer electrolyte-containing solution is usually about 5% to 60% by mass, preferably about 20% to 40% by mass.
  • the thickness of the catalyst layer 312 is, for example, usually about 1 ⁇ m to 100 ⁇ m, preferably about 2 ⁇ m to 50 ⁇ m.
  • the catalyst layer 312 may be added with a non-polymer fluorine material such as fluorinated pitch, fluorinated carbon, and fluorinated graphite in addition to a fluororesin as a water repellent.
  • a non-polymer fluorine material such as fluorinated pitch, fluorinated carbon, and fluorinated graphite in addition to a fluororesin as a water repellent.
  • the catalyst used for the positive electrode includes manganese dioxide, gold, activated carbon, iridium oxide, perovskite complex oxide, metal-containing pigment, etc. in addition to the catalyst used in the anode catalyst or cathode catalyst.
  • the catalyst layer 312 can be formed by dispersing and applying these catalyst powders using the above water repellent as a binder. Alternatively, the catalyst layer 312 can be formed by vapor deposition of a material that can be vapor deposited. Alternatively, the catalyst layer 312 can be formed by reducing the metal salt solution on the electrode to precipitate the metal in a fine shape.
  • the metal of the negative electrode is selected depending on what type of air battery is configured. Metals, alloys or metal compounds such as lithium (Li), sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), zinc (Zn), aluminum (Al), and iron (Fe) are negative electrodes. It can be used as an active material. In order to increase the contact area between the negative electrode and the electrolytic solution, the negative electrode preferably has fine pores.
  • the catalyst layer-electrolyte membrane laminate 31 is composed of, for example, a catalyst layer 312 and an electrolyte using a transfer film for forming a catalyst layer having a catalyst layer 312 formed on one side of a substrate. It can be manufactured by disposing a transfer film for forming a catalyst layer so as to face the film 311, applying pressure under heating conditions to transfer the catalyst layer 312 to the electrolyte film 311, and then peeling the transfer film. . If this operation is repeated twice, the catalyst layer-electrolyte membrane laminate 31 in which the catalyst layer 312 is laminated on both surfaces of the electrolyte membrane 311 can be manufactured.
  • One of the catalyst layers 312 formed at this time is an anode catalyst layer, and the other is a cathode catalyst layer.
  • the anode catalyst layer and the cathode catalyst layer may be the same or different.
  • the gas diffusion layer 1 or battery member 2 of the present invention is laminated on one side of the catalyst layer-electrolyte membrane laminate 31, it may be laminated on the anode catalyst layer or on the cathode catalyst layer. Also good.
  • the pressure level at that time is preferably about 0.5 MPa to 10 MPa, particularly preferably about 1 MPa to 8 MPa, in order to avoid poor transfer. Further, it is preferable to heat the pressure surface during this pressure operation in order to avoid transfer failure.
  • the heating temperature is preferably changed as appropriate depending on the type of electrolyte membrane to be used.
  • the base film is not particularly limited, and the same base as the above base can be used.
  • polymer films such as polyimide, polyethylene terephthalate (PET), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene naphthalate (PEN), polyethylene, polypropylene, polyolefin, etc. Can be mentioned.
  • ETFE ethylene-tetrafluoroethylene copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • PTFE polytetrafluoroethylene
  • the thickness of the base film is usually about 6 ⁇ m to 150 ⁇ m, particularly about 12 ⁇ m to 75 ⁇ m, from the viewpoints of workability and economical efficiency for forming the catalyst layer 312 on the base film.
  • the base film may be a base film on which a release layer is laminated.
  • the release layer include a layer composed of a known wax, a known SiOx, a plastic film coated with a fluororesin, and the like.
  • stacking a film with high mold release property on a base film for example, what has structures, such as a laminated body of a PET base material and a heat resistant fluororesin base material, may be used.
  • the catalyst layer forming composition is applied to the electrolyte membrane 311. It may be formed. Known conditions can be used for this.
  • Conductive carbon particles average particle size 30 nm
  • Modified polyolefin resin Aurorene 350S (manufactured by Nippon Paper Industries Co., Ltd .; modified polyolefin resin content of 10% by mass as solute)
  • Polymer Solef 21216/1001 (manufactured by Solvay Solexis Corp .; PVDF; dissolved in methyl ethyl ketone so that the polymer content is 10% by mass).
  • Example 1 A composition for forming a first conductive porous layer is obtained by dispersing 100 parts by mass of conductive carbon particles, 500 parts by mass of a modified polyolefin resin (50 parts by mass of melt), and 1000 parts by mass of methylcyclohexane (MCH) by media dispersion.
  • This composition for forming a first conductive porous layer was applied on a polyethylene terephthalate (PET) film on which a release layer was formed using an applicator so as to have a thickness of about 50 ⁇ m. Then, it was made to dry for about 15 minutes in the drying furnace set to 95 degreeC, and the 1st electroconductive porous layer (1) was produced on PET film. Then, the 1st electroconductive porous layer (1) was peeled from the PET film in which the release layer was formed, and the 1st electroconductive porous layer (1) (The gas diffusion layer for batteries of Example 1) was obtained. .
  • PET polyethylene terephthalate
  • the obtained first conductive porous layer (1) was formed in a metal mesh (SUS304 ⁇ 0.05 ⁇ 180 m / s; ⁇ was wire diameter (mm), m / s was in 1 inch ⁇ 1 inch.
  • the first conductive porous layer (1) and the metal mesh are subjected to hot pressing under the conditions of a pressing temperature of 60 ° C., a pressing pressure of 2 MPa, and a pressing time of 180 seconds.
  • Produced a gas diffusion layer for battery battery gas diffusion layer of Example 1 including a metal mesh.
  • the first conductive porous layer (1) is 5 minutes after the metal mesh. Did not come off.
  • Example 2 In the same manner as in Example 1, a first conductive porous layer (1) was produced.
  • the second conductive porous layer is formed by dispersing 100 parts by mass of conductive carbon particles, 500 parts by mass of the polymer (melting mass 50 parts by mass), and 1000 parts by mass of methyl ethyl ketone (MEK) by media dispersion.
  • a composition for preparation was prepared.
  • the composition for forming the second conductive porous layer was applied on the first conductive porous layer (1) so as to have a thickness of about 50 ⁇ m using an applicator. Then, it is dried for about 15 minutes in a drying oven set at 95 ° C. to produce the second conductive porous layer (1) on the first conductive porous layer (1), and the first conductive porous layer A laminate of the layer (1) and the second conductive porous layer (1) (battery gas diffusion layer of Example 2) was obtained.
  • the obtained first conductive porous layer (1) included in the battery gas diffusion layer of Example 2 was placed in contact with a metal mesh (SUS304 ⁇ 0.05 ⁇ 180 m / s), and the press temperature By performing hot pressing under the conditions of 60 ° C., pressing pressure of 2 MPa, and pressing time of 180 seconds, the laminate of the first conductive porous layer (1) and the second conductive porous layer (1) and the metal mesh are obtained.
  • An integrated battery gas diffusion layer (battery gas diffusion layer of Example 2 including a metal mesh) was produced. In this gas diffusion layer for a battery, when the first conductive porous layer (1) is positioned below the metal mesh, the first conductive porous layer (1) is 5 minutes after the metal mesh. Did not come off.
  • Comparative Example 1 A composition for forming a second conductive porous layer is obtained by dispersing 100 parts by mass of conductive carbon particles, 500 parts by mass of a polymer (melting mass of 50 parts by mass), and 1000 parts by mass of methyl ethyl ketone (MEK) by media dispersion. was formulated.
  • This composition for forming a second conductive porous layer was applied on a polyethylene terephthalate (PET) film on which a release layer was formed using an applicator so as to have a thickness of about 50 ⁇ m. Then, it was made to dry for about 15 minutes in the drying furnace set to 95 degreeC, and the 2nd electroconductive porous layer (1) was produced on PET film. Thereafter, the second conductive porous layer (1) was peeled off from the PET film on which the release layer was formed to obtain the second conductive porous layer (1) (the battery gas diffusion layer of Comparative Example 1). .
  • the obtained 2nd electroconductive porous layer (1) is arrange
  • a battery gas diffusion layer battery gas diffusion layer of Comparative Example 1 including a metal mesh
  • the second conductive porous layer (1) did not peel off from the metal mesh even after 5 minutes.
  • Comparative Example 2 In the same manner as in Comparative Example 1, a second conductive porous layer (1) was obtained.
  • the obtained 2nd electroconductive porous layer (1) is arrange
  • a battery gas diffusion layer battery gas diffusion layer of Comparative Example 2 including a metal mesh
  • the second conductive porous layer (1) is hardly adhered to the metal mesh, and immediately after the second conductive porous layer (1) is positioned below the metal mesh. Peeled off.
  • Example 3 In the same manner as in Example 1, a first conductive porous layer (1) was produced.
  • Example 3 provided with a battery member (first conductive porous layer (1) and metal separator) in which the first conductive porous layer (1) and the metal separator are integrated by hot pressing under conditions Battery member). In this battery member, when the first conductive porous layer (1) is positioned below the metal separator, the first conductive porous layer (1) peels off from the metal separator even after 5 minutes. It did not fall.
  • Example 4 In the same manner as in Example 1, a laminate of the first conductive porous layer (1) and the second conductive porous layer (1) was produced.
  • the 1st electroconductive porous layer (1) which the obtained laminated body has is arrange
  • press temperature 60 degreeC press pressure
  • press temperature 60 degreeC press pressure
  • press temperature 60 degreeC press pressure
  • press temperature 60 degreeC press pressure
  • a gas member a battery member of Example 4 provided with a first conductive porous layer (1), a second conductive porous layer (1), and a metal separator
  • the conductive porous layers (the first conductive porous layer (1) and the second conductive porous layer (1)) are electrically conductive when placed below the metal separator.
  • the porous layers (the first conductive porous layer (1) and the second conductive porous layer (1)) did not peel off after 5 minutes from the metal separator.
  • Comparative Example 3 In the same manner as in Comparative Example 1, a second conductive porous layer (1) was obtained.
  • the obtained 2nd electroconductive porous layer (1) is arrange
  • the battery member (second conductive porous layer (1) and metal separator) in which the second conductive porous layer (1) and the metal separator are laminated is used. Battery member) was prepared. When the second conductive porous layer (1) was placed below the metal separator, the second conductive porous layer (1) did not peel off after 5 minutes from the metal separator.
  • Comparative Example 4 In the same manner as in Comparative Example 1, a second conductive porous layer (1) was obtained.
  • the obtained 2nd electroconductive porous layer (1) is arrange
  • a battery member (second conductive porous layer (1) and metal separator) in which the second conductive porous layer (1) and the metal separator are laminated is used. Battery member) was prepared.
  • the second conductive porous layer (1) is hardly adhered to the metal separator, and immediately after the second conductive porous layer (1) is positioned below the metal separator. Peeled off.
  • the surface of the conductive porous layer is a metal mesh or metal. It was evaluated whether it was deformed under the influence of the separator. Specifically, in the battery gas diffusion layer or battery member provided with the metal mesh or metal separator obtained in Examples 1 to 4 and Comparative Examples 1 to 4, the metal mesh or metal separator of the conductive porous layer was in contact. The surface that was not observed was observed with a scanning electron microscope (SEM), A: There is almost no change in the appearance compared to the surface of the conductive porous layer before being integrated with the metal mesh or the metal separator. C: The conductive porous before being integrated with the metal mesh or the metal separator The change in appearance was judged to be large compared to the surface of the layer. The results are shown in Table 1.
  • Example 1 to 4 it was possible to suppress crushing of the voids of the conductive porous layer, and to be suitably integrated with the metal mesh or the metal separator.
  • the crushing ratio before and after the integration can be within the range of 0.3 to 33.3%, and the voids are crushed as compared with 48.2% in Comparative Example 1. It is suggested that it is difficult. Further, the surface of the conductive porous layer was not affected by the metal mesh or the metal separator, and cracks were not generated after the substrate was peeled off.
  • Comparative Examples 1 and 3 the voids in the conductive porous layer are crushed because it is hot pressed under strong conditions in order to reliably integrate the conductive porous layer and the metal mesh or metal separator.
  • the surface of the conductive porous layer is affected by the metal mesh or metal separator, and the metal mesh mark or metal separator mark is generated up to the surface of the conductive porous layer in contact with the catalyst layer, resulting in the appearance surface.
  • the conductive porous layer is sufficiently integrated with the metal mesh or the metal separator because it is hot-pressed under weak conditions to suppress the collapse of the voids of the conductive porous layer. I could't.

Abstract

By providing a first conductive porous layer containing a conductive carbon material and a modified polyolefin resin, it is possible to provide a gas diffusion layer to be used in a battery and which suppresses crushing of the pores in the conductive porous layer and exhibits strong adhesion between a separator and a conductive porous substrate.

Description

電池用ガス拡散層、該電池用ガス拡散層を用いた電池用膜-電極接合体、電池用部材、電池及びこれらの製造方法Battery gas diffusion layer, battery membrane-electrode assembly using battery gas diffusion layer, battery member, battery, and production method thereof
 本発明は、電池用ガス拡散層、該電池用ガス拡散層を用いた電池用膜-電極接合体、電池用部材、電池及びこれらの製造方法に関する。 The present invention relates to a gas diffusion layer for a battery, a membrane-electrode assembly for a battery using the gas diffusion layer for a battery, a battery member, a battery, and a method for producing them.
 燃料電池、金属空気電池等の電極反応に気体(ガス)を使用する電気化学電池は、その電池性能の向上のため、ガス拡散層を備えている。 Electrochemical cells that use gas for gas reactions such as fuel cells and metal-air cells are equipped with a gas diffusion layer in order to improve their battery performance.
 例えば、固体高分子形燃料電池を構成する膜-電極接合体(MEA)は、通常、ガス拡散層、触媒層、電解質膜、触媒層及びガス拡散層が順次積層された構造を有している。 For example, a membrane-electrode assembly (MEA) constituting a polymer electrolyte fuel cell usually has a structure in which a gas diffusion layer, a catalyst layer, an electrolyte membrane, a catalyst layer, and a gas diffusion layer are sequentially laminated. .
 このガス拡散層には、一般的にカーボンペーパー、カーボンクロス等の導電性多孔質基材が使用される。さらに、この導電性多孔質基材の導電性、ガス拡散性、ガス透過性、平滑性、水の排出性や保持性等の水管理特性等を向上させる目的から、導電性多孔質基材を支持体として、導電性炭素材料(カーボンブラック等)、高分子重合体(フッ素樹脂)等を含む導電性多孔質層を、導電性多孔質基材上に形成する場合がある。 For this gas diffusion layer, a conductive porous substrate such as carbon paper or carbon cloth is generally used. Further, for the purpose of improving the water management characteristics such as conductivity, gas diffusivity, gas permeability, smoothness, water discharge and retention of the conductive porous substrate, the conductive porous substrate is As a support, a conductive porous layer containing a conductive carbon material (carbon black or the like), a polymer (fluorine resin) or the like may be formed on the conductive porous substrate.
 従来の導電性多孔質層は、通常、カーボンペーパー、カーボンクロス等の導電性多孔質基材の上に、導電性多孔質層形成用組成物を塗布し、その後乾燥させて導電性多孔質層を形成するため、導電性多孔質基材表面からペースト組成物が染み込み、導電性多孔質基材の空隙を閉塞してしまうおそれがあった(例えば、特許文献1等)。 Conventional conductive porous layers are usually coated with a conductive porous layer-forming composition on a conductive porous substrate such as carbon paper or carbon cloth, and then dried to form a conductive porous layer. Therefore, there is a possibility that the paste composition may permeate from the surface of the conductive porous substrate and block the voids of the conductive porous substrate (for example, Patent Document 1).
 一方、予め基材フィルム等を用いて形成した導電性多孔質層を、導電性多孔質基材に積層する方法も知られている。 On the other hand, a method of laminating a conductive porous layer formed in advance using a substrate film or the like on a conductive porous substrate is also known.
特開2001-351637号公報JP 2001-351537 A
 しかし、導電性多孔質層の高分子重合体としてフッ素樹脂を多量に用いると、導電性多孔質基材との密着性を確保するためには、高温、高圧条件で積層する必要があるため、導電性多孔質層の空隙が潰れてしまうおそれがあった。導電性多孔質層の空隙が潰れると電池性能に悪影響を及ぼす。 However, when a large amount of fluororesin is used as the high molecular polymer of the conductive porous layer, it is necessary to laminate under high temperature and high pressure conditions in order to ensure adhesion with the conductive porous substrate. There was a possibility that the voids of the conductive porous layer would be crushed. When the voids in the conductive porous layer are crushed, the battery performance is adversely affected.
 このことは、導電性多孔質層をガス拡散層として、導電性多孔質基材を用いずに電池に組み込む場合も同じであり、具体的には、電池に組み込む前に作業性向上のために導電性多孔質層をセパレータと一体化する場合に導電性多孔質層の細孔が潰れてしまうおそれがあった。 This also applies to the case where the conductive porous layer is used as a gas diffusion layer and incorporated into a battery without using a conductive porous substrate. Specifically, in order to improve workability before incorporating into a battery. When the conductive porous layer is integrated with the separator, the pores of the conductive porous layer may be crushed.
 そこで、本発明は、導電性多孔質層の空隙が潰れることを抑制し、導電性多孔質基材やセパレータとの密着性が高い電池用ガス拡散層を提供することを主な目的とする。 Therefore, the main object of the present invention is to provide a battery gas diffusion layer that suppresses collapse of voids in the conductive porous layer and has high adhesion to the conductive porous substrate and the separator.
 本発明者は、上記課題に鑑み、鋭意検討した結果、電池用ガス拡散層を構成する少なくとも1つの導電性多孔質層中に、変性ポリオレフィン樹脂を含ませることで、導電性多孔質層の空隙が潰れることを抑制し、導電性多孔質基材やセパレータとの密着性が高い電池用ガス拡散層を提供できることを見出した。本発明は、このような知見に基づき完成されたものである。すなわち、本発明は、以下の構成を包含する。
項1.導電性炭素材料、及び変性ポリオレフィン樹脂を含む第1導電性多孔質層を備える電池用ガス拡散層。
項2.前記第1導電性多孔質層と接するように、導電性炭素材料及び高分子重合体を含む第2導電性多孔質層が積層されている、項1に記載の電池用ガス拡散層。
項3.前記第2導電性多孔質層に含まれる前記高分子重合体は、フッ素樹脂である、項2に記載の電池用ガス拡散層。
項4.前記第1導電性多孔質層は、さらに、硬化剤を含有する、項1~3のいずれかに記載の電池用ガス拡散層。
項5.前記第1導電性多孔質層と接するように導電性多孔質基材が積層されている、項1~4のいずれかに記載の電池用ガス拡散層。
項6.触媒層、電解質膜及び触媒層が順次積層された触媒層-電解質膜積層体の片面又は両面に、項1~4のいずれかに記載の電池用ガス拡散層が、前記第1導電性多孔質層が最外層となるように積層されている、電池用膜-電極接合体。
項7.触媒層、電解質膜及び触媒層が順次積層された触媒層-電解質膜積層体の片面又は両面に、項5に記載の電池用ガス拡散層が、前記導電性多孔質基材が最外層となるように積層されている、電池用膜-電極接合体。
項8.項6又は7に記載の電池用膜-電極接合体の最外層である前記第1導電性多孔質層又は前記導電性多孔質基材と接するように、さらにセパレータが積層されている、電池。
項9.前記セパレータは、多孔体領域を有する、項8に記載の電池。
項10.前記セパレータは、ガス流路が形成されておらず、且つ、多孔体を備える、項8に記載の電池。
項11.項1~4のいずれかに記載の電池用ガス拡散層の前記第1導電性多孔質層と接するように、セパレータが積層されている、電池用部材。
項12.前記セパレータは、多孔体領域を有する、項11に記載の電池用部材。
項13.前記セパレータは、ガス流路が形成されておらず、且つ、多孔体を備える、項11に記載の電池用部材。
項14.電池用ガス拡散層の製造方法であって、
(I)基材上に、導電性炭素材料、及び変性ポリオレフィン樹脂を含む第1導電性多孔質層形成用組成物を用いて第1導電性多孔質層を形成する工程、及び
(II)前記第1導電性多孔質層から基材を剥離する工程
を備える、電池用ガス拡散層の製造方法。
項15.さらに、前記工程(II)の後に、
(III)前記第1導電性多孔質層の上に、導電性炭素材料及び高分子重合体を含む第2導電性多孔質層形成用組成物を用いて第2導電性多孔質層を形成する工程
を備える、項14に記載の電池用ガス拡散層の製造方法。
項16.さらに、前記工程(I)と工程(II)との間に、
(III)前記第1導電性多孔質層の上に、導電性炭素材料及び高分子重合体を含む第2導電性多孔質層形成用組成物を用いて第2導電性多孔質層を形成する工程
を備える、項14に記載の電池用ガス拡散層の製造方法。
項17.さらに、
(IV)導電性多孔質基材を前記第1導電性多孔質層に接するように積層する工程
を備える、項14又は15に記載の電池用ガス拡散層の製造方法。
項18.さらに、前記工程(II)の後に、
(IV)導電性多孔質基材を前記第1導電性多孔質層に接するように積層する工程
を備える、項16に記載の電池用ガス拡散層の製造方法。
項19.(1)項14~16のいずれかに記載の製造方法により、少なくとも、第1導電性多孔質層を備える電池用ガス拡散層を準備する工程、及び
(2)セパレータを前記第1導電性多孔質層に接するように積層する工程
を備える、電池用部材の製造方法。
As a result of intensive studies in view of the above problems, the present inventor has included a modified polyolefin resin in at least one conductive porous layer constituting the gas diffusion layer for a battery, so that the voids of the conductive porous layer are included. It was found that a gas diffusion layer for a battery having high adhesion to a conductive porous substrate or a separator can be provided. The present invention has been completed based on such findings. That is, the present invention includes the following configurations.
Item 1. A gas diffusion layer for a battery, comprising a first conductive porous layer containing a conductive carbon material and a modified polyolefin resin.
Item 2. Item 2. The battery gas diffusion layer according to Item 1, wherein a second conductive porous layer containing a conductive carbon material and a polymer is laminated so as to be in contact with the first conductive porous layer.
Item 3. Item 3. The battery gas diffusion layer according to Item 2, wherein the polymer contained in the second conductive porous layer is a fluororesin.
Item 4. Item 4. The battery gas diffusion layer according to any one of Items 1 to 3, wherein the first conductive porous layer further contains a curing agent.
Item 5. Item 5. The battery gas diffusion layer according to any one of Items 1 to 4, wherein a conductive porous substrate is laminated so as to be in contact with the first conductive porous layer.
Item 6. Item 5. The gas diffusion layer for a battery according to any one of Items 1 to 4 is provided on the one or both sides of a catalyst layer-electrolyte membrane laminate in which a catalyst layer, an electrolyte membrane, and a catalyst layer are sequentially laminated. A membrane-electrode assembly for a battery, wherein the layers are laminated so that the outermost layer is the outermost layer.
Item 7. The gas diffusion layer for a battery according to Item 5, wherein the conductive porous substrate is the outermost layer on one or both sides of a catalyst layer-electrolyte membrane laminate in which a catalyst layer, an electrolyte membrane, and a catalyst layer are sequentially laminated. The membrane-electrode assembly for a battery is laminated as described above.
Item 8. Item 8. A battery in which a separator is further laminated so as to be in contact with the first conductive porous layer or the conductive porous substrate which is the outermost layer of the membrane-electrode assembly for a battery according to Item 6 or 7.
Item 9. Item 9. The battery according to Item 8, wherein the separator has a porous region.
Item 10. Item 9. The battery according to Item 8, wherein the separator has no gas flow path and includes a porous body.
Item 11. Item 5. A battery member, wherein a separator is laminated so as to be in contact with the first conductive porous layer of the battery gas diffusion layer according to any one of Items 1 to 4.
Item 12. Item 12. The battery member according to Item 11, wherein the separator has a porous region.
Item 13. Item 12. The battery member according to Item 11, wherein the separator has no gas flow path and includes a porous body.
Item 14. A method for producing a gas diffusion layer for a battery, comprising:
(I) a step of forming a first conductive porous layer on a substrate using a conductive carbon material and a first conductive porous layer-forming composition containing a modified polyolefin resin; and (II) The manufacturing method of the gas diffusion layer for batteries provided with the process of peeling a base material from a 1st electroconductive porous layer.
Item 15. Furthermore, after the step (II),
(III) A second conductive porous layer is formed on the first conductive porous layer using a second conductive porous layer forming composition containing a conductive carbon material and a polymer. Item 15. The method for producing a battery gas diffusion layer according to Item 14, comprising a step.
Item 16. Furthermore, between the step (I) and the step (II),
(III) A second conductive porous layer is formed on the first conductive porous layer using a second conductive porous layer forming composition containing a conductive carbon material and a polymer. Item 15. The method for producing a battery gas diffusion layer according to Item 14, comprising a step.
Item 17. further,
(IV) The method for producing a gas diffusion layer for a battery according to item 14 or 15, comprising a step of laminating a conductive porous substrate so as to be in contact with the first conductive porous layer.
Item 18. Furthermore, after the step (II),
(IV) The method for producing a gas diffusion layer for a battery according to item 16, comprising a step of laminating a conductive porous substrate so as to be in contact with the first conductive porous layer.
Item 19. (1) A step of preparing a gas diffusion layer for a battery including at least a first conductive porous layer by the manufacturing method according to any one of Items 14 to 16, and (2) a separator comprising the first conductive porous layer The manufacturing method of the member for batteries provided with the process laminated | stacked so that a quality layer may be contact | connected.
 本発明によれば、電池用ガス拡散層は、変性ポリオレフィン樹脂を含む第1導電性多孔質層を備えているため、導電性多孔質層の空隙が潰れることを抑制しつつ、導電性多孔質基材又はセパレータとの密着性を改善することができる。 According to the present invention, since the gas diffusion layer for a battery includes the first conductive porous layer containing the modified polyolefin resin, the conductive porous layer is prevented from collapsing the voids of the conductive porous layer. Adhesiveness with a base material or a separator can be improved.
第1導電性多孔質層を有する本発明の電池用ガス拡散層の構成を説明する図面である。It is drawing explaining the structure of the gas diffusion layer for batteries of this invention which has a 1st electroconductive porous layer. 第1導電性多孔質層及び第2導電性多孔質層を有する本発明の電池用ガス拡散層の構成を説明する図面である。It is drawing explaining the structure of the gas diffusion layer for batteries of this invention which has a 1st conductive porous layer and a 2nd conductive porous layer. 第1導電性多孔質層及び導電性多孔質基材を有する本発明の電池用ガス拡散層の構成を説明する図面である。It is drawing explaining the structure of the gas diffusion layer for batteries of this invention which has a 1st conductive porous layer and a conductive porous base material. 第2導電性多孔質層、第1導電性多孔質層及び導電性多孔質基材をこの順に有する本発明の電池用ガス拡散層の構成を説明する図面である。It is drawing explaining the structure of the gas diffusion layer for batteries of this invention which has a 2nd conductive porous layer, a 1st conductive porous layer, and a conductive porous base material in this order. 第1導電性多孔質層及びセパレータを有する本発明の電池用部材の構成を説明する図面である。It is drawing explaining the structure of the battery member of this invention which has a 1st electroconductive porous layer and a separator. 第2導電性多孔質層、第1導電性多孔質層及びセパレータをこの順に有する本発明の電池用部材の構成を説明する図面である。It is drawing explaining the structure of the battery member of this invention which has a 2nd conductive porous layer, a 1st conductive porous layer, and a separator in this order. 本発明の電池用膜-電極接合体の一態様(触媒層-電解質膜積層体の両面に、第2導電性多孔質層及び第1導電性多孔質層がこの順に積層された電池用膜-電極接合体)を説明する図面である。Battery membrane-electrode assembly of the present invention (catalyst layer-battery membrane in which the second conductive porous layer and the first conductive porous layer are laminated in this order on both surfaces of the electrolyte membrane laminate- It is drawing explaining an electrode assembly. 本発明の電池用膜-電極接合体の一態様(触媒層-電解質膜積層体の両面に、第2導電性多孔質層、第1導電性多孔質層及び導電性多孔質基材がこの順に積層された電池用膜-電極接合体)を説明する図面である。One aspect of the battery membrane-electrode assembly of the present invention (the second conductive porous layer, the first conductive porous layer, and the conductive porous substrate are arranged in this order on both sides of the catalyst layer-electrolyte membrane laminate) 1 is a drawing for explaining a laminated battery membrane-electrode assembly). 本発明の電池の一態様(触媒層-電解質膜積層体の両面に、第2導電性多孔質層、第1導電性多孔質層、導電性多孔質基材及びセパレータがこの順に積層された電池)を説明する図面である。One aspect of battery of the present invention (battery in which a second conductive porous layer, a first conductive porous layer, a conductive porous substrate, and a separator are laminated in this order on both sides of a catalyst layer-electrolyte membrane laminate. Is a drawing for explaining.
 以下、本発明の具体的態様について、説明する。なお、本明細書において、第1導電性多孔質層と導電性多孔質基材又はセパレータとが「一体化する」又は「密着する」とは、第1導電性多孔質層を下方になるようにした場合に第1導電性多孔質層が、導電性多孔質基材又はセパレータから5分以上剥れ落ちない程度に接着していることを意味する。この程度に接着していると、第1導電性多孔質層の取扱いが容易となり作業性が向上し、電池作動中に導電性多孔質基材又はセパレータから剥離することを防止することができる。 Hereinafter, specific embodiments of the present invention will be described. In the present specification, “integrating” or “adhering” the first conductive porous layer and the conductive porous substrate or separator means that the first conductive porous layer is positioned below. In this case, it means that the first conductive porous layer is adhered to the conductive porous substrate or the separator so as not to peel off for 5 minutes or more. When adhered to this degree, the first conductive porous layer can be easily handled and workability can be improved, and peeling from the conductive porous substrate or separator during battery operation can be prevented.
 1.電池用ガス拡散層1
 本発明の電池用ガス拡散層は、図1にも示されるように、導電性炭素材料、及び変性ポリオレフィン樹脂を含む第1導電性多孔質層11を備える電池用ガス拡散層である。この本発明の電池用ガス拡散層1は、後述の触媒層とは異なる層である。
1. Battery gas diffusion layer 1
As shown in FIG. 1, the battery gas diffusion layer of the present invention is a battery gas diffusion layer including a first conductive porous layer 11 containing a conductive carbon material and a modified polyolefin resin. The battery gas diffusion layer 1 of the present invention is a layer different from a catalyst layer described later.
 (1-1)第1導電性多孔質層11
 本発明において、第1導電性多孔質層11は、導電性炭素材料、及び変性ポリオレフィン樹脂を含有する。本発明では、電池用ガス拡散層1が第1導電性多孔質層11を備える(特に、導電性多孔質基材又はセパレータと接する層とする)ことで、本発明の電池用ガス拡散層の空隙を潰れることを抑制しつつ、一体化することが可能である。この第1導電性多孔質層11は、例えば、導電性炭素材料、及び変性ポリオレフィン樹脂を含む第1導電性多孔質層形成用組成物を用いて、基材上に形成することができる。また、第1導電性多孔質層11の厚みは例えば、通常1μm~300μm程度、特に5μm~250μm程度が好ましい。第1導電性多孔質層11の厚みが1μm未満の場合には、後述する、導電性多孔質層を支持する機能を有する導電性多孔質基材を併用する場合に、導電性多孔質基材の表面の粗さによる凹凸形状の影響により触媒層や電解質膜が破損するおそれがある。また、厚みが300μmを超える場合には、ガス拡散性が低下するとともに抵抗が大きくなり電池性能低下の原因となり得る。また、省スペース化の観点からは、第1導電性多孔質層11の厚みは250μm以下が好ましい。
(1-1) First conductive porous layer 11
In the present invention, the first conductive porous layer 11 contains a conductive carbon material and a modified polyolefin resin. In the present invention, the battery gas diffusion layer 1 includes the first conductive porous layer 11 (particularly, a layer in contact with the conductive porous substrate or the separator). It is possible to integrate them while preventing the gaps from being crushed. The first conductive porous layer 11 can be formed on a base material using, for example, a first conductive porous layer forming composition containing a conductive carbon material and a modified polyolefin resin. The thickness of the first conductive porous layer 11 is usually about 1 μm to 300 μm, and preferably about 5 μm to 250 μm, for example. When the thickness of the 1st electroconductive porous layer 11 is less than 1 micrometer, when using together the electroconductive porous base material which has the function which supports the electroconductive porous layer mentioned later, an electroconductive porous base material The catalyst layer and the electrolyte membrane may be damaged due to the influence of the uneven shape due to the surface roughness. Moreover, when thickness exceeds 300 micrometers, while gas diffusibility falls, resistance becomes large and can cause a battery performance fall. From the viewpoint of space saving, the thickness of the first conductive porous layer 11 is preferably 250 μm or less.
 導電性炭素材料
 導電性炭素材料としては、例えば、導電性炭素粒子、導電性炭素繊維等が挙げられる。
Conductive carbon material Examples of the conductive carbon material include conductive carbon particles and conductive carbon fibers.
 [導電性炭素粒子]
 導電性炭素粒子は、導電性を有する炭素材であれば特に限定されず、公知又は市販の材料を使用できる。例えば、チャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック、ランプブラック等のカーボンブラック;黒鉛;活性炭等が挙げられる。これらは、1種単独又は2種以上で用いることができる。これらの導電性炭素粒子を含有することにより、電池用ガス拡散層の導電性を向上させることができる。
[Conductive carbon particles]
The conductive carbon particles are not particularly limited as long as they are conductive carbon materials, and known or commercially available materials can be used. Examples thereof include carbon black such as channel black, furnace black, ketjen black, acetylene black and lamp black; graphite; activated carbon and the like. These can be used alone or in combination of two or more. By containing these conductive carbon particles, the conductivity of the battery gas diffusion layer can be improved.
 導電性炭素粒子としてカーボンブラックを使用する場合には、カーボンブラックの平均粒子径(算術平均粒子径)は、通常5nm~200nm程度、特に5nm~100nm程度が好ましい。またカーボンブラックの凝集体を使用する場合は、10nm~600nm程度、特に50nm~500nm程度が好ましい。また、黒鉛、活性炭等を使用する場合は、平均粒子径は500nm~100μm程度、特に1μm~80μm程度が好ましい。この導電性炭素粒子の平均粒子径は、電子顕微鏡観察像に基づく20個の算術平均粒子径により特定する。 When carbon black is used as the conductive carbon particles, the average particle size (arithmetic average particle size) of carbon black is usually about 5 nm to 200 nm, particularly preferably about 5 nm to 100 nm. When carbon black aggregates are used, the thickness is preferably about 10 nm to 600 nm, particularly about 50 nm to 500 nm. When graphite, activated carbon, or the like is used, the average particle size is preferably about 500 nm to 100 μm, particularly about 1 μm to 80 μm. The average particle diameter of the conductive carbon particles is specified by 20 arithmetic average particle diameters based on an electron microscope observation image.
 導電性炭素粒子の平均粒子径(算術平均粒子径)は、第1導電性多孔質層11に比較的細かい細孔容積を増加させ、ガス透過性能、平滑性、水の排出性や保持性等の水管理特性を付与する場合は、通常5nm~200nm程度、特に5nm~100nm程度が好ましい。また、第1導電性多孔質層11にガス拡散特性の機能を付与する場合は、平均が5μm~100μm程度、特に6μm~80μm程度が好ましい。 The average particle diameter (arithmetic average particle diameter) of the conductive carbon particles increases the relatively fine pore volume in the first conductive porous layer 11, and the gas permeation performance, smoothness, water discharge and retention, etc. In the case of imparting water management characteristics, it is usually about 5 nm to 200 nm, and particularly preferably about 5 nm to 100 nm. In addition, when the first conductive porous layer 11 is provided with a function of gas diffusion characteristics, the average is preferably about 5 μm to 100 μm, more preferably about 6 μm to 80 μm.
 [導電性炭素繊維]
 導電性炭素繊維を配合することにより、第1導電性多孔質層形成用組成物の塗布表面のクラックの発生を抑制できるだけでなく、強度の高いシート状の第1導電性多孔質層11を作製することも可能となる。第1導電性多孔質層11で使用される導電性炭素繊維としては、例えば、気相成長法炭素繊維(VGCF(登録商標))、カーボンナノチューブ、カーボンナノカップ、カーボンナノウォール等が挙げられる。その他、比較的大きな平均繊維径を有する導電性炭素繊維として、PAN(ポリアクリロニトリル)系炭素繊維(PANを原料として用いた炭素繊維)、ピッチ系炭素繊維(ピッチを原料として用いた炭素繊維)等も使用できる。
[Conductive carbon fiber]
By blending the conductive carbon fiber, not only the occurrence of cracks on the coating surface of the first conductive porous layer forming composition can be suppressed, but also a highly strong sheet-like first conductive porous layer 11 is produced. It is also possible to do. Examples of the conductive carbon fiber used in the first conductive porous layer 11 include vapor grown carbon fiber (VGCF (registered trademark)), carbon nanotube, carbon nanocup, and carbon nanowall. Other conductive carbon fibers having a relatively large average fiber diameter include PAN (polyacrylonitrile) -based carbon fibers (carbon fibers using PAN as a raw material), pitch-based carbon fibers (carbon fibers using pitch as a raw material), etc. Can also be used.
 導電性炭素繊維の平均繊維径は、第1導電性多孔質層11に比較的細かい細孔容積を増加させ、ガス透過性能、平滑性、水の排出性や保持性等の水管理特性を付与する場合は、50nm~800nm程度、特に100nm~250nm程度が好ましい。また、その場合の繊維長は例えば、平均が4μm~500μm程度、特に4μm~300μm程度、さらに4μm~50μm程度、特に10μm~20μm程度が好ましい。また、アスペクト比は、平均がおよそ5~600程度、特に10~500程度が好ましい。なお、導電性炭素繊維の繊維径、繊維長及びアスペクト比は、走査型電子顕微鏡(SEM)等により測定した画像等により測定する。 The average fiber diameter of the conductive carbon fiber increases the relatively fine pore volume in the first conductive porous layer 11 and gives water management characteristics such as gas permeation performance, smoothness, water discharge and retention. In this case, about 50 nm to 800 nm, particularly about 100 nm to 250 nm is preferable. In this case, for example, the average fiber length is preferably about 4 μm to 500 μm, particularly about 4 μm to 300 μm, more preferably about 4 μm to 50 μm, particularly about 10 μm to 20 μm. The average aspect ratio is preferably about 5 to 600, particularly about 10 to 500. The fiber diameter, fiber length, and aspect ratio of the conductive carbon fiber are measured by an image measured with a scanning electron microscope (SEM) or the like.
 また、第1導電性多孔質層11に比較的大きい細孔径を形成させることで、ガス拡散特性の機能を付与する場合は、導電性炭素繊維の平均繊維径は、5μm~20μm程度、特に6μm~15μm程度が好ましい。この場合の繊維長は例えば、平均が5μm~1mm、特に10μm~600μm程度が好ましい。また、アスペクト比は、平均が2~50程度、特に2~40程度が好ましい。この場合も、導電性炭素繊維の繊維径、繊維長及びアスペクト比は、走査型電子顕微鏡(SEM)等により測定した画像等により測定する。 In addition, when the first conductive porous layer 11 is provided with a function of gas diffusion characteristics by forming a relatively large pore diameter, the average fiber diameter of the conductive carbon fiber is about 5 μm to 20 μm, particularly 6 μm. It is preferably about 15 μm. In this case, for example, the average fiber length is preferably about 5 μm to 1 mm, particularly about 10 μm to 600 μm. The average aspect ratio is preferably about 2 to 50, and more preferably about 2 to 40. Also in this case, the fiber diameter, fiber length, and aspect ratio of the conductive carbon fiber are measured by an image measured with a scanning electron microscope (SEM) or the like.
 変性ポリオレフィン樹脂
 本発明においては、弱い条件(低温低圧条件)においても、導電性多孔質基材又はセパレータと一体化することが容易になるとともに、耐熱性、耐薬品性、撥水性等に優れるために、第1導電性多孔質層11中には、変性ポリオレフィン樹脂が含有されている。また、第1導電性多孔質層11中に変性ポリオレフィン樹脂が含有されていることにより、後述の工程(II)において、基材から第1導電性多孔質層11を剥離しやすい。このため、基材上に第1導電性多孔質層11を形成後に基材から剥離する際に、基材上に第1導電性多孔質層11が残ったり、膜が割れたり、クラックが発生したりすることを抑制することができる。さらに、基材から第1導電性多孔質層11を剥離した後においても、自立性を保つことができる。
Modified polyolefin resin In the present invention, it is easy to integrate with a conductive porous substrate or a separator even under weak conditions (low temperature and low pressure conditions), and is excellent in heat resistance, chemical resistance, water repellency and the like. In addition, the first conductive porous layer 11 contains a modified polyolefin resin. Moreover, when the modified polyolefin resin is contained in the first conductive porous layer 11, the first conductive porous layer 11 is easily peeled from the base material in the step (II) described later. For this reason, when it peels from a base material after forming the 1st electroconductive porous layer 11 on a base material, the 1st electroconductive porous layer 11 remains on a base material, a film | membrane cracks, or a crack generate | occur | produces Can be suppressed. Furthermore, the self-supporting property can be maintained even after the first conductive porous layer 11 is peeled from the substrate.
 変性ポリオレフィン樹脂を構成するポリオレフィン樹脂は、オレフィン成分を樹脂全体の50モル%以上、特に80モル%以上含有する樹脂であり、オレフィン成分としては、例えば、エチレン、プロピレン、イソブチレン、1-ブテン、1-ペンテン、1-ヘキセン等の炭素数2~6のオレフィン類等が挙げられ、これらの混合物を用いてもよい。この中で、エチレン、プロピレン、イソブチレン、1-ブテン等の炭素数2~4のオレフィンが好ましく、エチレン及びプロピレンがより好ましい。なお、変性ポリオレフィン樹脂を構成するポリオレフィン樹脂は、導電性多孔質層の空隙が潰れることをより抑制し、導電性多孔質基材やセパレータとの密着性をより向上させる観点から、フッ素樹脂ではないことが好ましい。また、同様に、変性ポリオレフィン樹脂はフッ素を含まないことが好ましい。変性ポリオレフィン樹脂を構成するポリオレフィン樹脂は、上記した成分からなる単独重合体であってもよいし、上記した成分の2種以上からなる共重合体であってもよい。変性ポリオレフィン樹脂を構成するポリオレフィン樹脂が共重合体である場合、ランダム共重合体及びブロック共重合体のいずれでもよく、結晶性及び非晶性のいずれでもよい。さらに、変性ポリオレフィン樹脂を構成するポリオレフィン樹脂は、単独のポリオレフィン樹脂からなっていてもよいし、2種以上のポリオレフィン樹脂からなっていてもよい。 The polyolefin resin constituting the modified polyolefin resin is a resin containing an olefin component of 50 mol% or more, particularly 80 mol% or more of the whole resin. Examples of the olefin component include ethylene, propylene, isobutylene, 1-butene, 1 Examples thereof include olefins having 2 to 6 carbon atoms such as pentene and 1-hexene, and mixtures thereof may be used. Among these, olefins having 2 to 4 carbon atoms such as ethylene, propylene, isobutylene and 1-butene are preferable, and ethylene and propylene are more preferable. The polyolefin resin constituting the modified polyolefin resin is not a fluororesin from the viewpoint of further suppressing the collapse of the voids of the conductive porous layer and further improving the adhesion with the conductive porous substrate or the separator. It is preferable. Similarly, the modified polyolefin resin preferably does not contain fluorine. The polyolefin resin constituting the modified polyolefin resin may be a homopolymer composed of the above-described components, or a copolymer composed of two or more of the above-described components. When the polyolefin resin constituting the modified polyolefin resin is a copolymer, it may be a random copolymer or a block copolymer, and may be either crystalline or amorphous. Furthermore, the polyolefin resin constituting the modified polyolefin resin may be composed of a single polyolefin resin or may be composed of two or more kinds of polyolefin resins.
 変性ポリオレフィン樹脂の変性の種類としては、酸変性することにより分散性が良好となり、均一な第1導電性多孔質層11が得られ、導電性多孔質層として良好な性能が得られるため、本発明では、酸変性ポリオレフィン樹脂を使用することが好ましい。このような酸変性ポリオレフィン樹脂としては、カルボン酸変性ポリオレフィン樹脂が好ましい。変性に用いられる化合物(酸)としては、例えば、(メタ)アクリル酸、マレイン酸、イタコン酸、フマル酸、クロトン酸等の不飽和カルボン酸が挙げられ、塩、酸無水物、エステル(不飽和ジカルボン酸の場合は特にハーフエステル)、アミド(不飽和ジカルボン酸の場合は特にハーフアミド)等の誘導体になっていてもよい。なかでもアクリル酸又はそのエステル、メタクリル酸又はそのエステル、(無水)マレイン酸等が好ましく、アクリル酸又はそのエステル、無水マレイン酸等がより好ましい。また、不飽和カルボン酸は、ポリオレフィン樹脂中に共重合されていればよく、その形態は限定されるものではない。使用する酸変性ポリオレフィン樹脂は、これらの化合物(酸)のうち単独の化合物(酸)で変性されたポリオレフィン樹脂でもよいし、2種以上の化合物(酸)で変性されたポリオレフィン樹脂でもよい。これらの酸変性ポリオレフィン樹脂としては、特に制限はなく、公知又は市販の材料を使用できる。また、これらの酸変性ポリオレフィン樹脂は、単独で用いてもよいし、2種類以上を組み合わせてもよい。なお、本発明において、「(メタ)アクリル酸」とは、「アクリル酸」又は「メタクリル酸」を意味する。また、「(無水)マレイン酸」とは、「マレイン酸」又は「無水マレイン酸」を意味する。 As the type of modification of the modified polyolefin resin, dispersibility is improved by acid modification, a uniform first conductive porous layer 11 is obtained, and good performance as the conductive porous layer is obtained. In the invention, it is preferable to use an acid-modified polyolefin resin. As such an acid-modified polyolefin resin, a carboxylic acid-modified polyolefin resin is preferable. Examples of the compound (acid) used for modification include unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, itaconic acid, fumaric acid and crotonic acid, and salts, acid anhydrides and esters (unsaturated). In the case of a dicarboxylic acid, a derivative such as a half ester) or an amide (in the case of an unsaturated dicarboxylic acid, particularly a half amide) may be used. Of these, acrylic acid or its ester, methacrylic acid or its ester, (maleic anhydride) and the like are preferable, and acrylic acid or its ester and maleic anhydride are more preferable. Moreover, the unsaturated carboxylic acid should just be copolymerized in polyolefin resin, and the form is not limited. The acid-modified polyolefin resin to be used may be a polyolefin resin modified with a single compound (acid) among these compounds (acids) or a polyolefin resin modified with two or more compounds (acids). These acid-modified polyolefin resins are not particularly limited, and known or commercially available materials can be used. Moreover, these acid-modified polyolefin resins may be used alone or in combination of two or more. In the present invention, “(meth) acrylic acid” means “acrylic acid” or “methacrylic acid”. Further, “(maleic anhydride)” means “maleic acid” or “maleic anhydride”.
 変性ポリオレフィン樹脂としては、上記した酸変性ポリオレフィン樹脂以外にも、塩素化ポリオレフィン樹脂、アルコール性水酸基を有する変性ポリオレフィン樹脂等を使用することもできる。アルコール性水酸基を有する変性ポリオレフィン樹脂としては、特に制限されず、例えば、ポリオレフィン主鎖に少なくとも1つのアルコール性水酸基を有する変性ポリオレフィン樹脂等が挙げられる。ポリオレフィン主鎖に結合した水酸基の数としては、特に制限されない。例えば、高分子中の極性の指標である水酸基価の好ましい範囲としては、例えば20~60(mgKOH/g)程度、より好ましくは30~50(mgKOH/g)程度が挙げられる。当該水酸基価は、JIS K1557-1に規定された方法に準拠して測定する。アルコール性水酸基を有する変性ポリオレフィン樹脂は、ポリオレフィン主鎖の末端に水酸基を有することが好ましい。なお、変性ポリオレフィン樹脂としては、導電性多孔質層の空隙が潰れることをより抑制し、導電性多孔質基材やセパレータとの密着性をより向上させる観点から、フッ素樹脂変性ポリオレフィンは含まないことが好ましい。 As the modified polyolefin resin, in addition to the acid-modified polyolefin resin described above, a chlorinated polyolefin resin, a modified polyolefin resin having an alcoholic hydroxyl group, and the like can also be used. The modified polyolefin resin having an alcoholic hydroxyl group is not particularly limited, and examples thereof include a modified polyolefin resin having at least one alcoholic hydroxyl group in the polyolefin main chain. The number of hydroxyl groups bonded to the polyolefin main chain is not particularly limited. For example, a preferable range of the hydroxyl value that is an index of polarity in the polymer is, for example, about 20 to 60 (mgKOH / g), more preferably about 30 to 50 (mgKOH / g). The hydroxyl value is measured according to the method defined in JIS K1557-1. The modified polyolefin resin having an alcoholic hydroxyl group preferably has a hydroxyl group at the end of the polyolefin main chain. The modified polyolefin resin should not contain fluororesin-modified polyolefin from the viewpoint of further suppressing the collapse of the voids of the conductive porous layer and further improving the adhesion to the conductive porous substrate or separator. Is preferred.
 変性ポリオレフィン樹脂中の変性に使用する化合物(酸等)の割合は、第1導電性多孔質層を導電性多孔質基材又はセパレータと一体化することがより容易になるとともに、耐熱性、耐薬品性、撥水性等をより向上させる観点から、0.1~40質量%程度が好ましく、0.1~30質量%程度がより好ましい。なお、変性ポリオレフィン樹脂中の変性に使用する化合物(酸等)の割合は、H-NMR分析によって測定する。 The ratio of the compound (acid, etc.) used for modification in the modified polyolefin resin makes it easier to integrate the first conductive porous layer with the conductive porous substrate or separator, as well as heat resistance, From the viewpoint of further improving chemical properties and water repellency, the amount is preferably about 0.1 to 40% by mass, more preferably about 0.1 to 30% by mass. The ratio of the compound (acid etc.) used for modification in the modified polyolefin resin is measured by 1 H-NMR analysis.
 変性ポリオレフィン樹脂の重量平均分子量は、第1導電性多孔質層を導電性多孔質基材又はセパレータと一体化することがより容易になるとともに、耐熱性、耐薬品性、撥水性等をより向上させる観点から、6000~200000程度が好ましく、8000~150000程度がより好ましい。なお、変性ポリオレフィン樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。また、変性ポリオレフィン樹脂の融点は、第1導電性多孔質層を導電性多孔質基材又はセパレータと一体化することがより容易になるとともに、耐熱性、耐薬品性、撥水性等をより向上させる観点から、それぞれ、60℃~160℃程度が好ましく、70℃~140℃程度がより好ましい。なお、本発明において、変性ポリオレフィン樹脂の融点とは、示差走査熱量測定における吸熱ピーク温度をいう。 The weight average molecular weight of the modified polyolefin resin makes it easier to integrate the first conductive porous layer with the conductive porous substrate or separator, and further improves heat resistance, chemical resistance, water repellency, etc. In view of the above, about 6000 to 200000 is preferable, and about 8000 to 150,000 is more preferable. The weight average molecular weight of the modified polyolefin resin is a value measured by gel permeation chromatography (GPC) measured under conditions using polystyrene as a standard sample. In addition, the melting point of the modified polyolefin resin makes it easier to integrate the first conductive porous layer with the conductive porous substrate or separator, and further improves heat resistance, chemical resistance, water repellency, etc. In view of the above, each is preferably about 60 to 160 ° C., more preferably about 70 to 140 ° C. In the present invention, the melting point of the modified polyolefin resin refers to an endothermic peak temperature in differential scanning calorimetry.
 ポリオレフィン樹脂を変性する方法は、特に限定されず、変性に使用する化合物(酸等)がポリオレフィン樹脂と共重合されていればよい。このような共重合としては、ランダム共重合、ブロック共重合、グラフト共重合(グラフト変性)等が挙げられ、グラフト共重合が好ましい。 The method for modifying the polyolefin resin is not particularly limited as long as the compound (acid or the like) used for modification is copolymerized with the polyolefin resin. Examples of such copolymerization include random copolymerization, block copolymerization, and graft copolymerization (graft modification), and graft copolymerization is preferable.
 変性ポリオレフィン樹脂以外の高分子重合体
 本発明において、第1導電性多孔質層11には、変性ポリオレフィン樹脂以外の高分子重合体を含ませることも可能である。
In the present invention, the first conductive porous layer 11 can contain a polymer other than the modified polyolefin resin.
 このような高分子重合体としては、公知又は市販の材料を使用できる。具体的には、イオン伝導性高分子樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、スチレン-アクリル共重合体樹脂、スチレン-酢酸ビニル共重合体樹脂、エチレン-酢酸ビニル共重合体樹脂、ポリエステル-アクリル共重合体樹脂、ウレタン樹脂、スチレン樹脂、アクリル樹脂、フェノール樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ポリオレフィン樹脂等が挙げられる。また、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)等のフッ素材料、シリコーンゴム等も挙げられる。これらの高分子重合体は、単独で用いてもよいし、2種類以上を組み合わせてもよい。これらのうち、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、シリコーン樹脂等の接着樹脂を使用し、導電性多孔質基材又はセパレータとの密着性や、隣接する部材との接着性をさらに向上させることも可能である。 As such a polymer, known or commercially available materials can be used. Specifically, ion conductive polymer resin, polyvinyl alcohol resin, polyvinyl acetate resin, styrene-acrylic copolymer resin, styrene-vinyl acetate copolymer resin, ethylene-vinyl acetate copolymer resin, polyester-acrylic. Examples include copolymer resins, urethane resins, styrene resins, acrylic resins, phenol resins, silicone resins, epoxy resins, melamine resins, and polyolefin resins. In addition, fluorine materials such as polyvinylidene fluoride (PVDF) and vinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), silicone rubber, and the like are also included. These high molecular polymers may be used alone or in combination of two or more. Of these, adhesive resin such as epoxy resin, acrylic resin, urethane resin, silicone resin, etc. can be used to further improve the adhesion to the conductive porous substrate or separator and the adhesion to adjacent members. Is possible.
 イオン伝導性高分子樹脂としては、例えば、フッ素系イオン伝導性高分子、具体的には、パーフルオロカーボンスルホン酸(PFS)ポリマー等が挙げられる。このようなイオン伝導性高分子樹脂の具体例としては、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、等が挙げられる。市販品を購入する際のイオン伝導性高分子樹脂含有溶液に含まれるイオン伝導性高分子樹脂の濃度は、通常5質量%~60質量%程度、好ましくは20質量%~40質量%程度である。 Examples of the ion conductive polymer resin include a fluorine-based ion conductive polymer, specifically, a perfluorocarbon sulfonic acid (PFS) polymer. Specific examples of such ion conductive polymer resins include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and the like. The concentration of the ion conductive polymer resin contained in the ion conductive polymer resin-containing solution when purchasing a commercially available product is usually about 5% by mass to 60% by mass, preferably about 20% by mass to 40% by mass. .
 また、高分子重合体としてフッ素ゴム等のエラストマーを使用すれば、第1導電性多孔質層11の柔軟性をより向上させることができる。また、上記高分子重合体は、高分子重合体粒子を分散させた懸濁液を使用してもよいし、分散媒に溶解させた高分子重合体を用いてもよい。高分子重合体粒子を分散させた懸濁液を使用する場合には、分散媒に高分子重合体を分散させて調製するか、市販品を使用することが好ましい。分散媒としては、例えば、水の他、公知又は市販のアルコール類、ケトン類、芳香族炭化水素類、エステル類、他の有機溶媒を使用することができ、例えば、炭素数1~5程度の1価又は多価のアルコール類、総炭素数が3~6程度のケトン類、炭素数が6~10程度の芳香族炭化水素類、総炭素数が3~6程度のエステル類、N-メチルピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。具体的には、水、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、1-ブタノール、1-ペンタノール;エチレングリコール;メチルエチルケトン、メチルイソブチルケトン;トルエン;酢酸エチル;N-メチルピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。 Further, if an elastomer such as fluoro rubber is used as the polymer, the flexibility of the first conductive porous layer 11 can be further improved. In addition, as the polymer, a suspension in which polymer polymer particles are dispersed may be used, or a polymer polymer dissolved in a dispersion medium may be used. When using a suspension in which polymer polymer particles are dispersed, it is preferable to prepare by dispersing the polymer in a dispersion medium or use a commercially available product. As the dispersion medium, for example, known or commercially available alcohols, ketones, aromatic hydrocarbons, esters, and other organic solvents can be used in addition to water, for example, having about 1 to 5 carbon atoms. Monohydric or polyhydric alcohols, ketones having a total carbon number of about 3 to 6, aromatic hydrocarbons having a carbon number of about 6 to 10, esters having a total carbon number of about 3 to 6, N-methyl Examples include pyrrolidone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide and the like. Specifically, water, methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butanol, 1-pentanol; ethylene glycol; methyl ethyl ketone, methyl isobutyl ketone; toluene; ethyl acetate; N-methylpyrrolidone, dimethyl sulfoxide, dimethyl Examples include formamide and dimethylacetamide.
 また、第1導電性多孔質層11へ撥水性を付与するため、本発明の効果を損なわない範囲の量であれば、フッ素樹脂等の撥水性樹脂を使用することも可能である。本発明では、撥水性に優れる変性ポリオレフィン樹脂を使用するため、第1導電性多孔質層11には、必ずしも撥水性樹脂を含ませる必要はないが、撥水性をより向上させる場合には有効である。このようなフッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)、パーフルオロアルコキシ樹脂(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)等が挙げられる。 In addition, in order to impart water repellency to the first conductive porous layer 11, it is possible to use a water repellant resin such as a fluororesin as long as the amount does not impair the effects of the present invention. In the present invention, since the modified polyolefin resin having excellent water repellency is used, the first conductive porous layer 11 is not necessarily required to contain the water repellency resin. However, it is effective for improving the water repellency. is there. Examples of such a fluororesin include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyvinylidene fluoride (PVDF), and vinylidene fluoride-hexafluoropropylene copolymer ( PVDF-HFP), perfluoroalkoxy resin (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, PFA), ethylene-tetrafluoroethylene copolymer (ETFE), and the like.
 これらの変性ポリオレフィン樹脂以外の高分子重合体は、1種単独で用いてもよいし、2種以上を組合せて用いてもよい。なかでも、撥水性、耐酸性、耐アルカリ性、耐熱性等(特に撥水性)の観点から、撥水性樹脂を使用することが好ましい。 High molecular polymers other than these modified polyolefin resins may be used alone or in combination of two or more. Among these, it is preferable to use a water repellent resin from the viewpoint of water repellency, acid resistance, alkali resistance, heat resistance, etc. (particularly water repellency).
 含有量
 第1導電性多孔質層11において、上記各成分の配合割合は、例えば、導電性炭素粒子100質量部に対して、変性ポリオレフィン樹脂5質量部~200質量部が好ましく、40質量部~100質量部程度がより好ましい。また、第1導電性多孔質層11中に、変性ポリオレフィン樹脂以外の高分子重合体を含ませる場合には、その含有量については、導電性炭素粒子100質量部に対して、変性ポリオレフィン樹脂以外の高分子重合体5質量部~200質量部程度(特に40質量部~100質量部程度)が好ましい。
Content In the first conductive porous layer 11, the blending ratio of each of the above components is preferably 5 to 200 parts by mass, for example, 40 parts by mass to 100 parts by mass of the conductive carbon particles. About 100 parts by mass is more preferable. When the first conductive porous layer 11 contains a polymer other than the modified polyolefin resin, the content is other than the modified polyolefin resin with respect to 100 parts by mass of the conductive carbon particles. The polymer is preferably about 5 to 200 parts by weight (particularly about 40 to 100 parts by weight).
 本発明の電池用ガス拡散層は、上記のとおり、第1導電性多孔質層11中に変性ポリオレフィン樹脂が含まれているため、分散性が良好となり、均一な第1導電性多孔質層11が得られ、導電性多孔質層として良好な性能が得られるうえに、導電性多孔質基材又はセパレータとの密着性を改善することができる。 Since the modified polyolefin resin is contained in the first conductive porous layer 11 as described above, the battery gas diffusion layer of the present invention has good dispersibility and the uniform first conductive porous layer 11. In addition to obtaining good performance as the conductive porous layer, it is possible to improve the adhesion to the conductive porous substrate or the separator.
 本発明の電池用ガス拡散層は、上記のように、導電性多孔質基材又はセパレータとの密着性に優れるため、弱い条件(低温低圧条件)であっても、導電性多孔質基材又はセパレータと十分に一体化することが可能である。このため、電池用ガス拡散層1の空隙が潰れることを抑制することができる。また、電池用ガス拡散層1の導電性多孔質基材又はセパレータと接する側と反対側の面が導電性多孔質基材表面の粗さ又はセパレータの流路等の影響を受けて変形することを抑制することもできる。このように、電池用ガス拡散層1が変形することを抑制できることから、触媒層との密着性が良好となり、電池性能を良好とすることも可能である。 As described above, the battery gas diffusion layer of the present invention is excellent in adhesion to the conductive porous substrate or the separator. Therefore, even under weak conditions (low temperature and low pressure conditions), the conductive porous substrate or It can be fully integrated with the separator. For this reason, it can suppress that the space | gap of the gas diffusion layer 1 for batteries is crushed. Further, the surface of the battery gas diffusion layer 1 opposite to the side in contact with the conductive porous substrate or the separator is deformed by the influence of the roughness of the surface of the conductive porous substrate or the flow path of the separator. Can also be suppressed. Thus, since it can suppress that the gas diffusion layer 1 for batteries deform | transforms, adhesiveness with a catalyst layer becomes favorable and it is also possible to make battery performance favorable.
 さらに、本発明の電池用ガス拡散層は、変性ポリオレフィン樹脂を含む第1導電性多孔質層11を備えているため、基材から第1導電性多孔質層11を剥離しやすい。このため、基材上に第1導電性多孔質層11を形成後に基材から剥離する際に、基材上に第1導電性多孔質層11が残ったり、膜が割れたり、クラックが発生したりすることを抑制することができる。 Furthermore, since the battery gas diffusion layer of the present invention includes the first conductive porous layer 11 containing the modified polyolefin resin, the first conductive porous layer 11 is easily peeled from the base material. For this reason, when it peels from a base material after forming the 1st electroconductive porous layer 11 on a base material, the 1st electroconductive porous layer 11 remains on a base material, a film | membrane cracks, or a crack generate | occur | produces Can be suppressed.
 (1-2)第2導電性多孔質層12
 本発明の電池用ガス拡散層には、図2に示されるように、上記の第1導電性多孔質層11以外にも、導電性炭素材料及び高分子重合体を含む第2導電性多孔質層12を備えていてもよい。つまり、本発明の電池用ガス拡散層1においては、第1導電性多孔質層11の上に、第2導電性多孔質層12を備えていてもよい。このような構成を採用することにより、本発明の電池用ガス拡散層1と導電性多孔質基材又はセパレータとの密着性を向上させつつ、本発明の電池用ガス拡散層1に様々な機能(撥水性、後述の触媒層との密着性、高拡散性、保水性等)を付与することも可能である。この第2導電性多孔質層12は、例えば、導電性炭素材料及び高分子重合体を含む第2導電性多孔質層形成用組成物を用いて、第1導電性多孔質層11上に形成することができる。また、第2導電性多孔質層12の厚みは、通常1μm~300μm程度、特に5μm~250μm程度が好ましい。第2導電性多孔質層12の厚みが1μm未満の場合には、後述する、導電性多孔質層を支持する機能を有する導電性多孔質基材を併用する場合に、導電性多孔質基材の表面の粗さによる凹凸形状の影響により触媒層や電解質膜が破損するおそれがある。また、厚みが300μmを超える場合には、ガス拡散性が低下するとともに抵抗が大きくなり電池性能低下の原因となり得る。また、省スペース化の観点からは、第2導電性多孔質層12の厚みは250μm以下が好ましい。
(1-2) Second conductive porous layer 12
In the gas diffusion layer for a battery of the present invention, as shown in FIG. 2, in addition to the first conductive porous layer 11 described above, a second conductive porous containing a conductive carbon material and a polymer is included. The layer 12 may be provided. That is, in the battery gas diffusion layer 1 of the present invention, the second conductive porous layer 12 may be provided on the first conductive porous layer 11. By adopting such a configuration, the battery gas diffusion layer 1 of the present invention has various functions while improving the adhesion between the battery gas diffusion layer 1 of the present invention and the conductive porous substrate or separator. (Water repellency, adhesion with a catalyst layer described later, high diffusibility, water retention, etc.) can also be imparted. The second conductive porous layer 12 is formed on the first conductive porous layer 11 by using, for example, a second conductive porous layer forming composition containing a conductive carbon material and a polymer. can do. The thickness of the second conductive porous layer 12 is usually about 1 μm to 300 μm, and particularly preferably about 5 μm to 250 μm. When the thickness of the second conductive porous layer 12 is less than 1 μm, the conductive porous substrate is used in combination with a conductive porous substrate having a function of supporting the conductive porous layer, which will be described later. The catalyst layer and the electrolyte membrane may be damaged due to the influence of the uneven shape due to the surface roughness. Moreover, when thickness exceeds 300 micrometers, while gas diffusibility falls, resistance becomes large and can cause a battery performance fall. From the viewpoint of space saving, the thickness of the second conductive porous layer 12 is preferably 250 μm or less.
 導電性炭素材料
 導電性炭素材料としては、特に制限されるわけではないが、導電性炭素粒子、導電性炭素繊維等が挙げられる。導電性炭素粒子及び導電性炭素繊維としては、上記の第1導電性多孔質層11で例示したものと同じ材料が使用できる。
Conductive carbon material The conductive carbon material is not particularly limited, and examples thereof include conductive carbon particles and conductive carbon fibers. As the conductive carbon particles and the conductive carbon fibers, the same materials as those exemplified in the first conductive porous layer 11 can be used.
 高分子重合体
 高分子重合体としては、上記した第1導電性多孔質層11に用いられる変性ポリオレフィン樹脂以外の高分子重合体と同様の材料を使用できる。つまり、高分子重合体としては、イオン伝導性高分子樹脂(Nafion等)、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、スチレン-アクリル共重合体樹脂、スチレン-酢酸ビニル共重合体樹脂、エチレン-酢酸ビニル共重合体樹脂、ポリエステル-アクリル共重合体樹脂、ウレタン樹脂、スチレン樹脂、アクリル樹脂、フェノール樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ポリオレフィン樹脂等が挙げられる。また、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)等のフッ素材料、シリコーンゴム等も挙げられる。これらの高分子重合体は、単独で用いてもよいし、2種類以上を組み合わせてもよい。これらのうち、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、シリコーン樹脂、ポリオレフィン樹脂等の接着樹脂を使用し、触媒層との密着性を向上させることも可能である。
As the polymer, the same material as the polymer other than the modified polyolefin resin used for the first conductive porous layer 11 can be used. That is, as the polymer, ion conductive polymer resin (Nafion, etc.), polyvinyl alcohol resin, polyvinyl acetate resin, styrene-acrylic copolymer resin, styrene-vinyl acetate copolymer resin, ethylene-vinyl acetate. Examples include copolymer resins, polyester-acrylic copolymer resins, urethane resins, styrene resins, acrylic resins, phenol resins, silicone resins, epoxy resins, melamine resins, and polyolefin resins. In addition, fluorine materials such as polyvinylidene fluoride (PVDF) and vinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), silicone rubber, and the like are also included. These high molecular polymers may be used alone or in combination of two or more. Of these, an adhesive resin such as an epoxy resin, an acrylic resin, a urethane resin, a silicone resin, or a polyolefin resin can be used to improve the adhesion to the catalyst layer.
 イオン伝導性高分子樹脂としては、例えば、フッ素系イオン伝導性高分子、具体的には、パーフルオロカーボンスルホン酸(PFS)ポリマー等が挙げられる。電気陰性度の高いフッ素原子を有することにより化学的に非常に安定し、スルホン酸基の解離度が高く、高いイオン伝導性が実現できる。このようなイオン伝導性高分子樹脂の具体例としては、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、等が挙げられる。市販品を購入する際のイオン伝導性高分子樹脂含有溶液に含まれるイオン伝導性高分子樹脂の濃度は、通常5質量%~60質量%程度、好ましくは20質量%~40質量%程度である。 Examples of the ion conductive polymer resin include a fluorine-based ion conductive polymer, specifically, a perfluorocarbon sulfonic acid (PFS) polymer. By having a fluorine atom with high electronegativity, it is chemically very stable, the dissociation degree of a sulfonic acid group is high, and high ionic conductivity can be realized. Specific examples of such ion conductive polymer resins include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and the like. The concentration of the ion conductive polymer resin contained in the ion conductive polymer resin-containing solution when purchasing a commercially available product is usually about 5% by mass to 60% by mass, preferably about 20% by mass to 40% by mass. .
 また、高分子重合体としてフッ素ゴム等のエラストマーを使用すれば、第2導電性多孔質層12の柔軟性をより向上させることができる。また、上記高分子重合体は、高分子重合体粒子を分散させた懸濁液を使用してもよいし、分散媒に溶解させた高分子重合体を用いてもよい。高分子重合体粒子を分散させた懸濁液を使用する場合には、分散媒に高分子重合体を分散させて調製するか、市販品を使用することが好ましい。分散媒としては、例えば、水の他、公知又は市販のアルコール類、ケトン類、芳香族炭化水素類、エステル類、他の有機溶媒を使用することができ、例えば、炭素数1~5程度の1価又は多価のアルコール類、総炭素数が3~6程度のケトン類、炭素数が6~10程度の芳香族炭化水素類、総炭素数が3~6程度のエステル類、N-メチルピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。具体的には、水、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、1-ブタノール、1-ペンタノール;エチレングリコール;メチルエチルケトン、メチルイソブチルケトン;トルエン;酢酸エチル;N-メチルピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。 Further, if an elastomer such as fluoro rubber is used as the polymer, the flexibility of the second conductive porous layer 12 can be further improved. In addition, as the polymer, a suspension in which polymer polymer particles are dispersed may be used, or a polymer polymer dissolved in a dispersion medium may be used. When using a suspension in which polymer polymer particles are dispersed, it is preferable to prepare by dispersing the polymer in a dispersion medium or use a commercially available product. As the dispersion medium, for example, known or commercially available alcohols, ketones, aromatic hydrocarbons, esters, and other organic solvents can be used in addition to water, for example, having about 1 to 5 carbon atoms. Monohydric or polyhydric alcohols, ketones having a total carbon number of about 3 to 6, aromatic hydrocarbons having a carbon number of about 6 to 10, esters having a total carbon number of about 3 to 6, N-methyl Examples include pyrrolidone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide and the like. Specifically, water, methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butanol, 1-pentanol; ethylene glycol; methyl ethyl ketone, methyl isobutyl ketone; toluene; ethyl acetate; N-methylpyrrolidone, dimethyl sulfoxide, dimethyl Examples include formamide and dimethylacetamide.
 また、第2導電性多孔質層12へ撥水性を付与するため、本発明の効果を損なわない範囲の量であれば、フッ素樹脂等の撥水性樹脂を使用することも可能である。特に、高分子重合体として、撥水性に劣る材料を使用する場合には有効である。このようなフッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)、パーフルオロアルコキシ樹脂(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)等が挙げられる。 Further, in order to impart water repellency to the second conductive porous layer 12, it is also possible to use a water repellant resin such as a fluororesin as long as the amount does not impair the effects of the present invention. This is particularly effective when a material having poor water repellency is used as the polymer. Examples of such a fluororesin include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyvinylidene fluoride (PVDF), and vinylidene fluoride-hexafluoropropylene copolymer ( PVDF-HFP), perfluoroalkoxy resin (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, PFA), ethylene-tetrafluoroethylene copolymer (ETFE), and the like.
 これらの高分子重合体は、1種単独で用いてもよいし、2種以上を組合せて用いてもよい。なかでも、撥水性、耐酸性、耐アルカリ性、耐熱性等(特に撥水性)の観点から、撥水性樹脂を使用することが好ましい。 These polymer polymers may be used alone or in combination of two or more. Among these, it is preferable to use a water repellent resin from the viewpoint of water repellency, acid resistance, alkali resistance, heat resistance, etc. (particularly water repellency).
 含有量
 第2導電性多孔質層12において、上記各成分の配合割合は、例えば、導電性炭素粒子100質量部に対して、高分子重合体5質量部~200質量部が好ましく、40質量部~100質量部程度がより好ましい。
Content In the second conductive porous layer 12, the blending ratio of each of the above components is preferably 5 parts by mass to 200 parts by mass, for example, 40 parts by mass with respect to 100 parts by mass of the conductive carbon particles. About 100 parts by mass is more preferable.
 (1-3)本発明の電池用ガス拡散層1の構成
 上記説明した第1導電性多孔質層11は、本発明の電池用ガス拡散層1中に1層のみ有していてもよいし、2層以上を有していてもよい。また、本発明の電池用ガス拡散層1が上記説明した第2導電性多孔質層12を備える場合は、本発明の電池用ガス拡散層1中に1層のみ有していてもよいし、2層以上を有していてもよい。なお、本発明の電池用ガス拡散層1において、導電性多孔質基材又はセパレータと接する側の最外層が第1導電性多孔質層11である場合、本発明の電池用ガス拡散層1の空隙が潰れることをより抑制しつつ、本発明の電池用ガス拡散層1を導電性多孔質基材又はセパレータとより強く一体化することが可能である。また、本発明の電池用ガス拡散層1において、導電性多孔質基材又はセパレータと接する側と反対側の最外層が第1導電性多孔質層11である場合、本発明の電池用ガス拡散層1と触媒層の密着性をより良好とすることができる。これらの観点から、本発明の電池用ガス拡散層1は、第1導電性多孔質層11単独からなるか、複数の導電性多孔質層からなり、両最外層が第1導電性多孔質層11である態様が好ましい。
(1-3) Configuration of Battery Gas Diffusion Layer 1 of the Present Invention The first conductive porous layer 11 described above may have only one layer in the battery gas diffusion layer 1 of the present invention. You may have two or more layers. Further, when the battery gas diffusion layer 1 of the present invention includes the second conductive porous layer 12 described above, the battery gas diffusion layer 1 of the present invention may have only one layer, You may have two or more layers. In the battery gas diffusion layer 1 of the present invention, when the outermost layer in contact with the conductive porous substrate or the separator is the first conductive porous layer 11, It is possible to more strongly integrate the battery gas diffusion layer 1 of the present invention with the conductive porous substrate or separator while further suppressing the collapse of the voids. Further, in the battery gas diffusion layer 1 of the present invention, when the outermost layer on the side opposite to the side in contact with the conductive porous substrate or the separator is the first conductive porous layer 11, the gas diffusion for battery of the present invention. The adhesion between the layer 1 and the catalyst layer can be made better. From these viewpoints, the battery gas diffusion layer 1 of the present invention is composed of the first conductive porous layer 11 alone or a plurality of conductive porous layers, and both outermost layers are the first conductive porous layers. The aspect which is 11 is preferable.
 このような観点から、本発明のガス拡散層1の構成としては、第1導電性多孔質層11を第1、第2導電性多孔質層12を第2とすると、第1からなるガス拡散層;第1及び第2からなるガス拡散層;順に第1、第1及び第1からなるガス拡散層;順に第1、第2及び第1からなるガス拡散層;順に第1、第2及び第2からなるガス拡散層等が挙げられ、本発明の電池用ガス拡散層1に、後述の触媒層との密着性や、撥水性、高拡散性、保水性等の様々な機能を付与する観点からは、第1からなるガス拡散層、第1及び第2からなるガス拡散層、順に第1、第2及び第1からなるガス拡散層等が好ましい。 From this point of view, the configuration of the gas diffusion layer 1 of the present invention is that the first conductive porous layer 11 is the first and the second conductive porous layer 12 is the second. Layer; first and second gas diffusion layer; first, first, and first gas diffusion layer; first, second, and first gas diffusion layer; sequentially first, second, and second Examples include a second gas diffusion layer, and the battery gas diffusion layer 1 of the present invention is provided with various functions such as adhesion to a catalyst layer described later, water repellency, high diffusibility, and water retention. From the viewpoint, the first gas diffusion layer, the first and second gas diffusion layers, the first, second and first gas diffusion layers in this order are preferable.
 (1-4)導電性多孔質基材13
 上記した第1導電性多孔質層11及び第2導電性多孔質層12は、図3~6にも示されるように、導電性多孔質層を支持する機能を有する他層と一体化して使用することにより取扱いが容易となり、作業性が向上する。
(1-4) Conductive porous substrate 13
The first conductive porous layer 11 and the second conductive porous layer 12 described above are used integrally with other layers having a function of supporting the conductive porous layer, as shown in FIGS. This facilitates handling and improves workability.
 このような導電性多孔質層を支持する機能を有する他層として、例えば、導電性多孔質基材13を使用することができる(図3~4)。具体的には、上記した本発明の電池用ガス拡散層1において、最外層である第1導電性多孔質層11と導電性多孔質基材13とを一体化させ、全体を電池用ガス拡散層1として使用することができる。このような構成を採用することにより、本発明の電池用ガス拡散層1の空隙が潰れることを抑制しつつ、第1導電性多孔質層11と導電性多孔質基材13とを一体化することができる。この際、電池用ガス拡散層1の導電性多孔質基材13と接する側と反対側の面が導電性多孔質基材13表面の粗さ等の影響を受けて変形することを抑制することもできる。このように、電池用ガス拡散層1が変形することを抑制できることから、触媒層との密着性が良好となり、電池性能を良好とすることも可能である。 As another layer having a function of supporting such a conductive porous layer, for example, a conductive porous substrate 13 can be used (FIGS. 3 to 4). Specifically, in the battery gas diffusion layer 1 of the present invention described above, the outermost first conductive porous layer 11 and the conductive porous base material 13 are integrated, and the entire battery gas diffusion layer is formed. It can be used as layer 1. By adopting such a configuration, the first conductive porous layer 11 and the conductive porous substrate 13 are integrated while suppressing the collapse of the voids of the battery gas diffusion layer 1 of the present invention. be able to. At this time, the surface of the battery gas diffusion layer 1 opposite to the side in contact with the conductive porous substrate 13 is prevented from being deformed by the influence of the roughness of the surface of the conductive porous substrate 13. You can also. Thus, since it can suppress that the gas diffusion layer 1 for batteries deform | transforms, adhesiveness with a catalyst layer becomes favorable and it is also possible to make battery performance favorable.
 導電性多孔質基材13としては、導電性を有し、多孔質なものである限り特に限定されず、公知又は市販の材料を使用することができる。例えば、カーボンペーパー、カーボンクロス、カーボンフェルト等が挙げられる。 The conductive porous substrate 13 is not particularly limited as long as it has conductivity and is porous, and a known or commercially available material can be used. Examples thereof include carbon paper, carbon cloth, carbon felt and the like.
 導電性多孔質基材13の厚みは、通常50μm~1000μm程度、好ましくは100μm~400μm程度とすることが好ましい。 The thickness of the conductive porous substrate 13 is usually about 50 μm to 1000 μm, preferably about 100 μm to 400 μm.
 導電性多孔質基材13は、酸化剤ガスを後述する触媒層へ良好に拡散させるために、金属メッシュ、金属発泡体等からなる多孔質金属体であってもよい。多孔質金属体を用いることにより、導電性が一段と向上する。多孔質金属体に用いる金属としては、ニッケル、パラジウム等、或いは銀、ステンレスチール等を用いることができる。また、耐食性及び導電性を向上するために、上記金属メッシュ及び金属発泡体表面にめっき処理を行ってもよい。めっきの材質は、特に制限されず、白金、ルテニウム、ロジウム、タングステン、タンタル、金等の金属又はこれらの合金;カーボン;エポキシ樹脂、アクリル樹脂等の耐食性樹脂とカーボンとの複合体等が挙げられる。これらの中でも、高撥水性の観点から、金が好ましい。 The conductive porous substrate 13 may be a porous metal body made of a metal mesh, a metal foam or the like in order to diffuse the oxidant gas to the catalyst layer described later. By using the porous metal body, the conductivity is further improved. As the metal used for the porous metal body, nickel, palladium, silver, stainless steel, or the like can be used. Moreover, in order to improve corrosion resistance and electrical conductivity, the metal mesh and the metal foam surface may be plated. The material of the plating is not particularly limited, and examples thereof include metals such as platinum, ruthenium, rhodium, tungsten, tantalum, and gold or alloys thereof; carbon; composites of corrosion-resistant resins such as epoxy resins and acrylic resins and carbon, and the like. . Among these, gold is preferable from the viewpoint of high water repellency.
 導電性多孔質基材13は、予め撥水処理が施された基材であることが好ましい。これにより、さらに一段と、導電性多孔質基材13の撥水性を向上させることができる。 The conductive porous substrate 13 is preferably a substrate that has been subjected to a water repellent treatment in advance. Thereby, the water repellency of the conductive porous substrate 13 can be further improved.
 撥水処理としては、例えば、上記の導電性多孔質基材13をフッ素樹脂等が分散した水分散体中に浸漬する方法等が挙げられる。フッ素樹脂としては、上記した樹脂等が挙げられる。なお、この際には、水中にフッ素樹脂を分散させるために、後述する分散剤を用い、フッ素樹脂及び水系分散剤を含む水系懸濁液として使用することが好ましい。 Examples of the water repellent treatment include a method of immersing the conductive porous substrate 13 in an aqueous dispersion in which a fluororesin or the like is dispersed. Examples of the fluororesin include the above-described resins. In this case, in order to disperse the fluororesin in water, it is preferable to use a dispersant described later and use it as an aqueous suspension containing the fluororesin and the aqueous dispersant.
 水分散体中のフッ素樹脂の含有量は、例えば、水100質量部に対して、1質量部~30質量部程度、好ましくは2質量部~20質量部程度とすることが好ましい。 The content of the fluororesin in the aqueous dispersion is, for example, preferably about 1 to 30 parts by mass, preferably about 2 to 20 parts by mass with respect to 100 parts by mass of water.
 本発明の電池用ガス拡散層1においては、導電性多孔質層を支持する機能を有する他層として導電性多孔質基材13を使用した場合にも、本発明の電池用ガス拡散層1の空隙が潰れることを抑制することができる。空隙の潰れ率は例えば33.3%以下が好ましく、さらに好ましくは25.0%以下とすることができる。空隙の潰れ率は、小さければ小さいほどよいが、下限値は通常0.3%程度である。空隙の潰れ率は、本発明の電池用ガス拡散層1から導電性多孔質基材13を剥離して電池用ガス拡散層1の膜厚を測定し、導電性多孔質基材13と一体化前の電池用ガス拡散層1の膜厚と比較し、
潰れ率(%)=100-(一体化後膜厚)/(一体化前膜厚)×100
として算出する。
In the battery gas diffusion layer 1 of the present invention, even when the conductive porous substrate 13 is used as another layer having a function of supporting the conductive porous layer, It can suppress that a space | gap is crushed. For example, the collapse rate of the voids is preferably 33.3% or less, and more preferably 25.0% or less. The smaller the void collapse rate, the better. However, the lower limit is usually about 0.3%. The crushing ratio of the voids is determined by integrating the conductive porous substrate 13 by peeling the conductive porous substrate 13 from the battery gas diffusion layer 1 of the present invention and measuring the thickness of the battery gas diffusion layer 1. Compared with the film thickness of the previous battery gas diffusion layer 1,
Crushing rate (%) = 100− (film thickness after integration) / (film thickness before integration) × 100
Calculate as
 本発明においては、導電性多孔質層全体の厚みは、導電性多孔質基材13と一体化する場合には1μm~300μmが好ましく、50μm~250μmがより好ましい。つまり、第1導電性多孔質層11のみを形成する場合は、第1導電性多孔質層11の厚みを上記範囲内とすることが好ましく、第1導電性多孔質層11と第2導電性多孔質層12との双方を形成する場合は、総厚みを上記範囲内とすることが好ましい。 In the present invention, the thickness of the entire conductive porous layer is preferably 1 μm to 300 μm, more preferably 50 μm to 250 μm when integrated with the conductive porous substrate 13. That is, when only the first conductive porous layer 11 is formed, the thickness of the first conductive porous layer 11 is preferably within the above range, and the first conductive porous layer 11 and the second conductive layer 11 When both the porous layer 12 and the porous layer 12 are formed, the total thickness is preferably within the above range.
 2.電池用部材2
 上記した第1導電性多孔質層11及び第2導電性多孔質層12は、導電性多孔質層を支持する機能を有する他層と一体化して使用することにより取扱いが容易となり、作業性が向上する。
2. Battery member 2
The first conductive porous layer 11 and the second conductive porous layer 12 described above are easy to handle and workability by being integrated with another layer having a function of supporting the conductive porous layer. improves.
 このような導電性多孔質層を支持する機能を有する他層として、例えば、セパレータ21を使用することができる(図5~6)。具体的には、上記した本発明の電池用ガス拡散層1において、最外層の第1導電性多孔質層11とセパレータ21とを一体化させ、全体を電池用部材2として使用することができる。このような構成を採用することにより、本発明の電池用ガス拡散層の空隙が潰れることを抑制しつつ、本発明の電池用ガス拡散層1とセパレータ21とを一体化することができる。この際、電池用ガス拡散層1が、セパレータ21の流路等の影響を受けて変形し、セパレータ21と接する側と反対側の面が変形するという問題を、抑制することもできる。このように、電池用ガス拡散層1が変形することを抑制できることから、触媒層との密着性が良好となり、電池性能を良好とすることも可能である。ただし、本発明の電池用ガス拡散層1において、第1導電性多孔質層11と導電性多孔質基材13とを一体化している場合(導電性多孔質基材13が最外層である場合)には、導電性多孔質基材13の上にセパレータ21を形成してもよい。 As another layer having a function of supporting such a conductive porous layer, for example, a separator 21 can be used (FIGS. 5 to 6). Specifically, in the battery gas diffusion layer 1 of the present invention described above, the outermost first conductive porous layer 11 and the separator 21 can be integrated, and the whole can be used as the battery member 2. . By adopting such a configuration, the battery gas diffusion layer 1 of the present invention and the separator 21 can be integrated while suppressing the collapse of the voids of the battery gas diffusion layer of the present invention. At this time, the problem that the battery gas diffusion layer 1 is deformed by the influence of the flow path of the separator 21 and the surface opposite to the side in contact with the separator 21 is deformed can also be suppressed. Thus, since it can suppress that the gas diffusion layer 1 for batteries deform | transforms, adhesiveness with a catalyst layer becomes favorable and it is also possible to make battery performance favorable. However, in the battery gas diffusion layer 1 of the present invention, when the first conductive porous layer 11 and the conductive porous substrate 13 are integrated (when the conductive porous substrate 13 is the outermost layer). ), The separator 21 may be formed on the conductive porous substrate 13.
 セパレータ21としては、公知又は市販のセパレータをいずれも使用することができる。 As the separator 21, any known or commercially available separator can be used.
 セパレータ21の材質は、特に制限されず、目的に応じて適宜選択できる。例えば、ステンレススチール、銅、チタン、アルミニウム、ロジウム、タンタル、タングステン等の金属又はこれらの少なくとも1種を含む合金;グラファイト;樹脂にカーボンを練りこんだカーボンコンパウンド等が挙げられる。これらの中でも、強度、電池(燃料電池、金属空気電池等)の薄型化及び導電性等の観点から、上記金属又はこれらの少なくとも1種を含む合金が好ましく、チタン及びステンレススチールがより好ましい。 The material of the separator 21 is not particularly limited and can be appropriately selected depending on the purpose. For example, metals such as stainless steel, copper, titanium, aluminum, rhodium, tantalum, and tungsten, or an alloy containing at least one of them; graphite; a carbon compound in which carbon is kneaded into a resin, and the like. Among these, from the viewpoints of strength, thinning of a battery (fuel cell, metal-air battery, etc.) and conductivity, the metal or an alloy containing at least one of these is preferable, and titanium and stainless steel are more preferable.
 また、耐食性及び導電性を向上させるために、上記セパレータ21表面にめっき処理を行ってもよい。めっきの材質は、例えば、白金、ルテニウム、ロジウム、タングステン、タンタル、金等の金属又はこれらの合金;カーボン;エポキシ樹脂、アクリル樹脂等の耐食性樹脂とカーボンとの複合体等が挙げられる。これらの中でも、高耐食性の観点から、金が好ましく、コスト面においてはカーボン、又はカーボンと上記金属又はこれらの合金との複合体が好ましい。 Also, the surface of the separator 21 may be plated in order to improve corrosion resistance and conductivity. Examples of the plating material include metals such as platinum, ruthenium, rhodium, tungsten, tantalum, and gold or alloys thereof; carbon; a composite of corrosion resistant resin such as epoxy resin and acrylic resin and carbon, and the like. Among these, gold is preferable from the viewpoint of high corrosion resistance, and in terms of cost, carbon or a composite of carbon and the above metal or an alloy thereof is preferable.
 セパレータ21としては、それ自体にガス流路(リブ)が形成されている流路有セパレータであってもよく、それ自体にはガス流路が形成されていない流路無セパレータであってもよい。また、ガス流路の役割をする多孔体を隣接させたセパレータであってもよい。また、それ自体に多孔体領域を有するセパレータであってもよい。セパレータ21自体にはガス流路が形成されていない流路無セパレータの場合、ガス流路の役割をする多孔体との組み合わせや、それ自体に多孔体領域を有するセパレータであることが好ましい。また、セパレータ21自体にはガス流路が形成されておらず、それ自体に多孔体領域を有し、さらに多孔体と組合せてもよい。 The separator 21 may be a separator with a flow path in which a gas flow path (rib) is formed, or may be a separator without a flow path in which a gas flow path is not formed in itself. . Moreover, the separator which made the porous body which plays the role of a gas flow path adjoined may be sufficient. Moreover, the separator which has a porous body area | region in itself may be sufficient. In the case of a separator without a flow channel in which the gas channel is not formed in the separator 21 itself, a combination with a porous body serving as a gas flow channel or a separator having a porous region in itself is preferable. Further, the gas flow path is not formed in the separator 21 itself, and the separator 21 itself has a porous region and may be combined with the porous material.
 ガス流路(リブ)が形成されている流路有セパレータにおいて、ガス流路は燃料電池の燃料である水素、空気等を流し、燃料電池の反応によって発生する水を電池外部へと排出するためのものであれば、流路の幅、深さ、形状等は特に制限されず、目的に応じて適宜選択される。通常は、幅0.05mm~2mm(好ましくは0.05mm~1.5mm)であり、深さ0.05mm~2mm(好ましくは0.1mm~1mm)である。 In a separator with a flow path in which a gas flow path (rib) is formed, the gas flow path flows hydrogen, air, etc., which are fuel of the fuel cell, and discharges water generated by the reaction of the fuel cell to the outside of the cell If it is a thing, the width | variety, depth, shape, etc. of a flow path are not restrict | limited in particular, According to the objective, it selects suitably. Usually, the width is 0.05 mm to 2 mm (preferably 0.05 mm to 1.5 mm), and the depth is 0.05 mm to 2 mm (preferably 0.1 mm to 1 mm).
 ガス流路(リブ)が形成されている流路有セパレータにおいて、前記ガス流路表面は、凹凸を有していてもよいし、平坦であってもよいが、撥水性向上の観点から、ガス流路表面は凹凸を有していることが好ましい。 In the separator having a flow path in which a gas flow path (rib) is formed, the surface of the gas flow path may have irregularities or may be flat. The surface of the flow path preferably has irregularities.
 排水性の観点から、セパレータ21の一部又は全部に撥水層が形成されていることが好ましい。前記撥水層としては、硫黄及びその化合物の少なくとも1種からなっているのが挙げられる。 From the viewpoint of drainage, it is preferable that a water repellent layer is formed on part or all of the separator 21. Examples of the water repellent layer include at least one of sulfur and its compounds.
 ガス流路の役割をする多孔体を隣接させたセパレータにおいて、多孔体の材質としては、例えば、ニッケル、パラジウム、銀、ステンレスチール等を用いることができる。また、耐食性及び導電性を向上するために、上記多孔体表面にめっき処理を行ってもよい。めっきの材質は、特に制限されず、白金、ルテニウム、ロジウム、タングステン、タンタル、金等の金属又はこれらの合金;カーボン;エポキシ樹脂、アクリル樹脂等の耐食性樹脂とカーボンとの複合体等が挙げられる。これらの中でも、高耐食性の観点から、金が好ましく、コスト面においてはカーボン、又はカーボンと上記金属又はこれらの合金との複合体が好ましい。 For example, nickel, palladium, silver, stainless steel, etc. can be used as the material of the porous body in the separator in which the porous body serving as a gas flow path is adjacent. Moreover, in order to improve corrosion resistance and electroconductivity, you may perform a plating process to the said porous body surface. The material of the plating is not particularly limited, and examples thereof include metals such as platinum, ruthenium, rhodium, tungsten, tantalum, and gold or alloys thereof; carbon; composites of corrosion-resistant resins such as epoxy resins and acrylic resins and carbon, and the like. . Among these, gold is preferable from the viewpoint of high corrosion resistance, and in terms of cost, carbon or a composite of carbon and the above metal or an alloy thereof is preferable.
 多孔体領域を有するセパレータとしては、当該多孔体領域が上記ガス流路となり得る構造を有するセパレータであれば特に制限はない。 The separator having a porous region is not particularly limited as long as the separator has a structure in which the porous region can serve as the gas flow path.
 また、セパレータ21は、セパレータを構成する金属板の少なくとも片面に、好ましくは金属板の両面に、より好ましくは金属板の全表面にリン含有層が形成されている。リン含有層は、固体高分子電解質のスーパアシッド(超酸)による腐食から、金属板の表面を保護することができる。 The separator 21 has a phosphorus-containing layer formed on at least one surface of the metal plate constituting the separator, preferably on both surfaces of the metal plate, more preferably on the entire surface of the metal plate. The phosphorus-containing layer can protect the surface of the metal plate from corrosion by the superacid (superacid) of the solid polymer electrolyte.
 リン含有層を構成する物質は、金属板の種類、リン含有層形成の際に使用されるリン化合物の種類等により異なる。 The substance constituting the phosphorus-containing layer varies depending on the type of metal plate, the type of phosphorus compound used in forming the phosphorus-containing layer, and the like.
 リン含有層を形成の際に使用されるリン化合物としては、公知の無機リン化合物を広く使用でき、例えばリン酸、ポリリン酸等の縮合リン酸及びこれらの塩等が挙げられる。ここで塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、金属塩、アンモニウム塩が挙げられる。 As the phosphorus compound used for forming the phosphorus-containing layer, known inorganic phosphorus compounds can be widely used, and examples thereof include condensed phosphoric acid such as phosphoric acid and polyphosphoric acid, and salts thereof. Examples of the salt include alkali metal salts such as sodium salt and potassium salt, metal salts, and ammonium salts.
 本発明では、リン含有層は、更に樹脂、金属化合物等を含有していてもよい。 In the present invention, the phosphorus-containing layer may further contain a resin, a metal compound, or the like.
 樹脂としては、公知のものを広く使用でき、例えばアクリル樹脂、フェノール樹脂、ウレタン樹脂等が挙げられる。 As the resin, known resins can be widely used, and examples thereof include acrylic resin, phenol resin, and urethane resin.
 本発明では、これら樹脂を1種単独又は2種以上混合して使用できる。 In the present invention, these resins can be used singly or in combination of two or more.
 金属化合物としては、リン含有層形成時に樹脂と結合可能なものであれば公知のものを広く使用できる。このような金属化合物としては、例えばジルコニウム、チタン、モリブデン、タングステン、バナジウム、マンガン、コバルト、セリウム等の遷移元素又は内遷移元素の塩、オキソ酸又はその塩、錯フッ化物酸又はその塩等が挙げられる。 As the metal compound, known compounds can be widely used as long as they can be bonded to the resin when the phosphorus-containing layer is formed. Examples of such metal compounds include transition elements such as zirconium, titanium, molybdenum, tungsten, vanadium, manganese, cobalt, and cerium, salts of inner transition elements, oxo acids or salts thereof, complex fluoride acids or salts thereof, and the like. Can be mentioned.
 これら金属化合物は、1種単独で又は2種以上混合して使用される。 These metal compounds are used singly or in combination of two or more.
 コスト及び上記樹脂との結合強度(架橋強度)を考慮すると、ジルコニウム化合物が好適である。ジルコニウム化合物としては、例えば、フッ化ジルコニウム(ジルコニウムフッ化水素酸)、フッ化ジルコニウムアンモニウム、酢酸ジルコニウム、炭酸ジルコニウムアンモニウム、硝酸ジルコニウム等が挙げられる。 Considering cost and bond strength (crosslinking strength) with the above resin, a zirconium compound is preferable. Examples of the zirconium compound include zirconium fluoride (zirconium hydrofluoric acid), zirconium fluoride ammonium, zirconium acetate, zirconium carbonate ammonium, zirconium nitrate and the like.
 リン含有層が更に樹脂、金属化合物等を含有している場合、該リン含有層の厚さは、通常100nm~500nm程度である。 When the phosphorus-containing layer further contains a resin, a metal compound, etc., the thickness of the phosphorus-containing layer is usually about 100 nm to 500 nm.
 リン含有層中における樹脂及び金属化合物の含有量は、耐腐食性等を考慮して、適宜選択される。 The content of the resin and the metal compound in the phosphorus-containing layer is appropriately selected in consideration of corrosion resistance and the like.
 本発明の電池用ガス拡散層1を支持する機能を有する他層としてセパレータ21を使用する場合、セパレータとしては、大きな流路が有るセパレータよりも、導電性多孔質層の空隙が潰れることをより抑制し、密着性をより高められる観点から、流路幅の細かいセパレータ、流路がなく多孔体領域があるセパレータが好ましい。 When the separator 21 is used as another layer having a function of supporting the battery gas diffusion layer 1 of the present invention, the separator is more likely to collapse the voids of the conductive porous layer than a separator having a large flow path. From the viewpoint of suppressing and improving adhesion, a separator having a narrow channel width and a separator having no porous channel and a porous region are preferable.
 本発明の電池用部材2においては、導電性多孔質層を支持する機能を有する他層としてセパレータ21を使用した場合にも、本発明の電池用部材2の空隙が潰れることを抑制することができる。空隙の潰れ率は例えば33.3%以下が好ましく、さらに好ましくは25.0%以下とすることができる。空隙の潰れ率は、小さければ小さいほどよいが、下限値は通常0.3%程度である。空隙の潰れ率は、本発明の電池用部材2からセパレータ21を剥離して電池用ガス拡散層1の膜厚を測定し、セパレータ21と一体化前の電池用ガス拡散層1の膜厚と比較し、
潰れ率(%)=100-(一体化後膜厚)/(一体化前膜厚)×100
として算出する。
In the battery member 2 of the present invention, even when the separator 21 is used as another layer having a function of supporting the conductive porous layer, it is possible to prevent the void of the battery member 2 of the present invention from being crushed. it can. For example, the collapse rate of the voids is preferably 33.3% or less, and more preferably 25.0% or less. The smaller the void collapse rate, the better. However, the lower limit is usually about 0.3%. The crushing rate of the gap is determined by measuring the film thickness of the battery gas diffusion layer 1 by peeling the separator 21 from the battery member 2 of the present invention. Compare and
Crushing rate (%) = 100− (film thickness after integration) / (film thickness before integration) × 100
Calculate as
 本発明においては、導電性多孔質層全体の厚みは、セパレータ21と一体化する場合には10μm~300μmが好ましく、20μm~250μmがより好ましい。つまり、第1導電性多孔質層11のみを形成する場合は、第1導電性多孔質層11の厚みを上記範囲内とすることが好ましく、第1導電性多孔質層11と第2導電性多孔質層12との双方を形成する場合は、総厚みを上記範囲内とすることが好ましい。 In the present invention, the thickness of the entire conductive porous layer is preferably 10 μm to 300 μm, more preferably 20 μm to 250 μm, when integrated with the separator 21. That is, when only the first conductive porous layer 11 is formed, the thickness of the first conductive porous layer 11 is preferably within the above range, and the first conductive porous layer 11 and the second conductive layer 11 When both the porous layer 12 and the porous layer 12 are formed, the total thickness is preferably within the above range.
 3.電池用ガス拡散層及び電池用部材の製造方法
 (3-1)少なくとも、第1導電性多孔質層11を備える電池用ガス拡散層1の製造方法
 本発明の、第1導電性多孔質層11を備える電池用ガス拡散層1は、例えば、
(I)基材上に、導電性炭素材料、及び変性ポリオレフィン樹脂を含む第1導電性多孔質層形成用組成物を用いて第1導電性多孔質層11を形成する工程、及び
(II)前記第1導電性多孔質層11から基材を剥離する工程
を備える方法により、製造することができる。
3. Method for Manufacturing Battery Gas Diffusion Layer and Battery Member (3-1) Method for Manufacturing Battery Gas Diffusion Layer 1 Provided with at least First Conductive Porous Layer 11 First Conductive Porous Layer 11 of the Present Invention The battery gas diffusion layer 1 comprising, for example,
(I) forming a first conductive porous layer 11 on a substrate using a conductive carbon material and a first conductive porous layer forming composition containing a modified polyolefin resin; and (II) It can be manufactured by a method comprising a step of peeling the substrate from the first conductive porous layer 11.
 工程(I)
 工程(I)において、導電性炭素材料、及び変性ポリオレフィン樹脂については、上記したものを採用できる。
Process (I)
In step (I), the conductive carbon material and the modified polyolefin resin described above can be used.
 本発明において、第1導電性多孔質層形成用組成物には、上記の導電性炭素材料、及び変性ポリオレフィン樹脂以外にも、本発明の効果を損なわない範囲で、変性ポリオレフィン樹脂以外の高分子重合体、分散剤、分散媒、発泡剤、硬化剤等を含ませることができる。なお、本発明で使用する高分子重合体は、溶媒中に溶解又は分散していることがあるが、ここで使用する分散媒は、このような溶媒とは別途使用されるものである。変性ポリオレフィン樹脂以外の樹脂については、上記したものを採用できる。 In the present invention, the first conductive porous layer forming composition includes, in addition to the conductive carbon material and the modified polyolefin resin, a polymer other than the modified polyolefin resin as long as the effects of the present invention are not impaired. A polymer, a dispersant, a dispersion medium, a foaming agent, a curing agent, and the like can be included. In addition, although the high molecular polymer used by this invention may be melt | dissolving or disperse | distributing in a solvent, the dispersion medium used here is used separately from such a solvent. As for resins other than the modified polyolefin resin, those described above can be adopted.
 分散剤
 分散剤は、導電性炭素材料及び変性ポリオレフィン樹脂を水等の分散媒中で分散させることができる分散剤である限り限定されず、公知又は市販の分散剤が使用できる。このような分散剤としては、例えば、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリエチレングリコールアルキルエーテル等のノニオン系分散剤;アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウムクロリド、アルキルピリジウムクロリド等のカチオン系分散剤;ポリオキシエチレン脂肪酸エステル、酸性基含有構造変性ポリアクリレート等のアニオン系分散剤等が挙げられる。これらの分散剤は、1種単独又は2種以上で用いることができる。
The dispersant is not limited as long as it is a dispersant that can disperse the conductive carbon material and the modified polyolefin resin in a dispersion medium such as water, and a known or commercially available dispersant can be used. Examples of such a dispersant include nonionic dispersants such as polyoxyethylene distyrenated phenyl ether, polyoxyethylene alkyl ether, and polyethylene glycol alkyl ether; alkyltrimethylammonium salts, dialkyldimethylammonium chloride, and alkylpyridium chloride. And anionic dispersants such as polyoxyethylene fatty acid esters and acidic group-containing structurally modified polyacrylates. These dispersing agents can be used alone or in combination of two or more.
 分散媒
 分散媒としては、特に限定されることはなく、水の他、公知又は市販のアルコール類、ケトン類、芳香族炭化水素類、エステル類、他の有機溶媒を使用することができ、例えば、炭素数1~5程度の1価又は多価のアルコール類、総炭素数が3~6程度のケトン類、炭素数が6~10程度の芳香族炭化水素類、総炭素数が3~6程度のエステル類、N-メチルピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。具体的には、水、メタノール、エタノール、1-プロパノール、イソプロパノール、1-ブタノール、1-ペンタノール;メチルエチルケトン、メチルイソブチルケトン;トルエン;酢酸ビニル;N-メチルピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
The dispersion medium is not particularly limited, and water or other known or commercially available alcohols, ketones, aromatic hydrocarbons, esters, and other organic solvents can be used. Monohydric or polyhydric alcohols having about 1 to 5 carbon atoms, ketones having about 3 to 6 carbon atoms, aromatic hydrocarbons having about 6 to 10 carbon atoms, 3 to 6 carbon atoms Degree esters, N-methylpyrrolidone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide and the like. Specifically, water, methanol, ethanol, 1-propanol, isopropanol, 1-butanol, 1-pentanol; methyl ethyl ketone, methyl isobutyl ketone; toluene; vinyl acetate; N-methylpyrrolidone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide Etc.
 発泡剤
 発泡剤としては、特に限定されることはなく、第1導電性多孔質層11に気孔を形成することができる材料を使用することができる。例えば、加熱により分解して発泡する加熱発泡剤を好適に使用できる。
The foaming agent foaming agent is not particularly limited, and a material capable of forming pores in the first conductive porous layer 11 can be used. For example, a heating foaming agent that decomposes and foams by heating can be suitably used.
 加熱発泡剤としては、80℃以上、特に120℃~250℃程度の分解温度を有する化合物が好ましい。発泡剤の発生ガス量は特に限定されることはなく、通常50ml/g~500ml/g程度、好ましくは200ml/g~300ml/g程度である。平均粒子径も特に限定されることはなく、通常1μm~50μm程度、好ましくは2μm~5μm程度である。加熱発泡剤としては、上記分解温度を有する公知の有機発泡剤、無機発泡剤等を広く使用できる。 As the heating foaming agent, a compound having a decomposition temperature of 80 ° C. or higher, particularly about 120 ° C. to 250 ° C. is preferable. The amount of gas generated by the blowing agent is not particularly limited, and is usually about 50 ml / g to 500 ml / g, preferably about 200 ml / g to 300 ml / g. The average particle size is not particularly limited, and is usually about 1 μm to 50 μm, preferably about 2 μm to 5 μm. As the heating foaming agent, known organic foaming agents and inorganic foaming agents having the above decomposition temperature can be widely used.
 有機発泡剤としては、例えば、N,N’-ジニトロソペンタメチレンテトラミン(DPT)、アゾジカルボンアミド(ADCA)、4,4’-オキシビスベンゼンスルホニルヒドラジド (OBSH)、ヒドラゾジカルボンアミド(HDCA)等が挙げられる。これらの中でも低温発泡性を有するアゾジカルボンアミド(ADCA)、4,4’-オキシビスベンゼンスルホニルヒドラジド(OBSH)等を使用することが好ましい。有機発泡剤を使用する場合は、発泡剤の発泡温度を低下させるために、発泡助剤として尿素助剤を併用できる。 Examples of the organic foaming agent include N, N′-dinitrosopentamethylenetetramine (DPT), azodicarbonamide (ADCA), 4,4′-oxybisbenzenesulfonylhydrazide (OBSH), and hydrazodicarbonamide (HDCA). Etc. Among these, it is preferable to use azodicarbonamide (ADCA) having a low temperature foaming property, 4,4'-oxybisbenzenesulfonyl hydrazide (OBSH) or the like. When an organic foaming agent is used, a urea aid can be used in combination as a foaming aid in order to lower the foaming temperature of the foaming agent.
 無機発泡剤としては、炭酸水素ナトリウム等が挙げられる。 無機 Examples of inorganic foaming agents include sodium bicarbonate.
 硬化剤
 第1導電性多孔質層形成用組成物が硬化剤を含有することにより、第1導電性多孔質層の機械的強度、耐熱性、耐久性をより高めることができる。
When the composition for forming a hardener first conductive porous layer contains a hardener, the mechanical strength, heat resistance, and durability of the first conductive porous layer can be further increased.
 硬化剤は、上記の変性ポリオレフィン樹脂を硬化させることができる硬化剤であれば、特に限定されない。硬化剤としては、例えば、多官能イソシアネート化合物、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物等が挙げられる。 The curing agent is not particularly limited as long as it is a curing agent capable of curing the modified polyolefin resin. As a hardening | curing agent, a polyfunctional isocyanate compound, a carbodiimide compound, an epoxy compound, an oxazoline compound etc. are mentioned, for example.
 多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート化合物の具体例としては、例えば、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)等のジイソシアネート及びその誘導体(ビウレット体、イソシアヌレート体、アダクト体)、これらのジイソシアネート及びその誘導体をポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、ポリカーボネートポリオールで変性したポリイソシアネート、これらの混合物等が挙げられる。 The polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups. Specific examples of the polyfunctional isocyanate compound include, for example, diisocyanates such as isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and derivatives thereof (biuret, isocyanurate). , Adducts), polyisocyanates obtained by modifying these diisocyanates and derivatives thereof with polyester polyols, polyether polyols, acrylic polyols, polycarbonate polyols, and mixtures thereof.
 カルボジイミド化合物は、カルボジイミド基(-N=C=N-)を少なくとも1つ有する化合物であれば、特に限定されない。カルボジイミド化合物としては、例えば、カルボジイミド基を少なくとも2つ以上有するポリカルボジイミド化合物が好ましい。特に好ましいカルボジイミド化合物の具体例としては、一般式(1): The carbodiimide compound is not particularly limited as long as it is a compound having at least one carbodiimide group (—N═C═N—). As the carbodiimide compound, for example, a polycarbodiimide compound having at least two carbodiimide groups is preferable. Specific examples of particularly preferred carbodiimide compounds include those represented by the general formula (1):
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[式中、nは2以上の整数である。]
で表される繰り返し単位を有するポリカルボジイミド化合物、一般式(2):
[Wherein n is an integer of 2 or more. ]
A polycarbodiimide compound having a repeating unit represented by the general formula (2):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式中、nは2以上の整数である。]
で表される繰り返し単位を有するポリカルボジイミド化合物、及び一般式(3):
[Wherein n is an integer of 2 or more. ]
A polycarbodiimide compound having a repeating unit represented by the general formula (3):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式中、nは2以上の整数である。]
で表されるポリカルボジイミド化合物が挙げられる。一般式(1)~(3)において、nは2以上の整数であるが、2~30の整数が好ましく、3~20の整数がより好ましい。
[Wherein n is an integer of 2 or more. ]
The polycarbodiimide compound represented by these is mentioned. In the general formulas (1) to (3), n is an integer of 2 or more, preferably an integer of 2 to 30, and more preferably an integer of 3 to 20.
 エポキシ化合物は、2つ以上のエポキシ基を有する化合物であれば、特に限定されない。エポキシ化合物としては、例えば、ビスフェノールAジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリセリンポリグリシジルエーテル、ジグリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテル、フェノールノボラック又はクレゾールノボラックをグリシジルエーテル化したエポキシ樹脂等が挙げられる。 The epoxy compound is not particularly limited as long as it is a compound having two or more epoxy groups. Examples of the epoxy compound include bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and tripropylene glycol diglycidyl ether. Polypropylene glycol diglycidyl ether, glycerin polyglycidyl ether, diglycerin polyglycidyl ether, polyglycerin polyglycidyl ether, epoxy resin obtained by glycidyl etherification of phenol novolac or cresol novolac, and the like.
 オキサゾリン化合物は、オキサゾリン骨格を有する化合物であれば、特に限定されない。オキサゾリン化合物としては、具体的には、(株)日本触媒製のエポクロスシリーズ等が挙げられる。 The oxazoline compound is not particularly limited as long as it is a compound having an oxazoline skeleton. Specific examples of the oxazoline compound include Epocros series manufactured by Nippon Shokubai Co., Ltd.
 第1導電性多孔質層の機械的強度を高める等の観点から、硬化剤は、2種類以上の化合物により構成されていてもよい。 From the viewpoint of increasing the mechanical strength of the first conductive porous layer, the curing agent may be composed of two or more kinds of compounds.
 含有量
 第1導電性多孔質層形成用組成物において、上記各成分の配合割合は、上記したものを採用できる。なお、第1導電性多孔質層形成用組成物中に、分散剤、分散媒、発泡剤等を含ませる場合には、これらの含有量については、導電性炭素粒子100質量部に対して、分散剤0質量部~100質量部程度(特に5質量部~50質量部程度)、分散媒0質量部~1100質量部程度(特に100質量部~1000質量部程度)、発泡剤0質量部~200質量部程度(特に20質量部~100質量部程度)が好ましい。また、第1導電性多孔質層形成用組成物中に、硬化剤を含ませる場合には、その含有量は、変性ポリオレフィン樹脂100質量部に対して、0.1質量部~50質量部が好ましく、0.1質量部~30質量部がより好ましい。また、第1導電性多孔質層形成用組成物中において、硬化剤の含有量は、変性ポリオレフィン樹脂中のカルボキシ基1当量に対して、硬化剤中の反応基として1当量~30当量が好ましく、1当量~20当量がより好ましい。これにより、本発明の電池用ガス拡散層の耐熱性、耐久性等をより高め得る。
Content In the composition for forming a first conductive porous layer, the above-described components can be adopted as the blending ratio of each component. In addition, in the case where a dispersant, a dispersion medium, a foaming agent, and the like are included in the first conductive porous layer forming composition, the content thereof is based on 100 parts by mass of the conductive carbon particles. Dispersant 0 to 100 parts by weight (particularly about 5 to 50 parts by weight), dispersion medium 0 to 1100 parts by weight (particularly about 100 to 1000 parts by weight), foaming agent 0 to part by weight About 200 parts by mass (particularly about 20 to 100 parts by mass) is preferable. Further, when the curing agent is included in the first conductive porous layer forming composition, the content thereof is 0.1 parts by mass to 50 parts by mass with respect to 100 parts by mass of the modified polyolefin resin. Preferably, 0.1 to 30 parts by mass is more preferable. In the first conductive porous layer forming composition, the content of the curing agent is preferably 1 equivalent to 30 equivalents as a reactive group in the curing agent with respect to 1 equivalent of the carboxy group in the modified polyolefin resin. 1 to 20 equivalents are more preferred. Thereby, the heat resistance of the gas diffusion layer for batteries of the present invention, durability, etc. can be raised more.
 なお、第1導電性多孔質層形成用組成物は、例えば、上記の導電性炭素粒子、変性ポリオレフィン樹脂、及び他の成分を混合、分散させて得ることができる。分散方法としては、例えば公知の超音波分散、ホモジナイザー、メディア分散、スターラー分散等を用いることができる。 The first conductive porous layer forming composition can be obtained, for example, by mixing and dispersing the conductive carbon particles, the modified polyolefin resin, and other components. As a dispersion method, for example, known ultrasonic dispersion, homogenizer, media dispersion, stirrer dispersion, or the like can be used.
 基材は、第1導電性多孔質層形成用組成物を用いて第1導電性多孔質層11を形成できる基材であれば特に限定されず、公知又は市販の基材を広く使用することができる。このような基材としては、例えば、ポリイミド、ポリエチレンテレフタレート、アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート、ポリプロピレン等の高分子フィルム等を挙げることができる。また、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等も用いることができる。これらの中でも、耐熱性に優れ、入手のしやすい高分子フィルムが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリテトラフルオロエチレン(PTFE)、ポリイミド等のフィルムが好ましい。 A base material will not be specifically limited if it is a base material which can form the 1st electroconductive porous layer 11 using the composition for 1st electroconductive porous layer formation, It uses a well-known or commercially available base material widely. Can do. Examples of such a substrate include polyimide, polyethylene terephthalate, aramid, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether etherketone, polyetherimide, polyarylate, polyethylene naphthalate, polypropylene. And the like. In addition, ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), etc. Can also be used. Among these, a polymer film excellent in heat resistance and easily available is preferable. For example, films of polyethylene terephthalate, polyethylene naphthalate, polytetrafluoroethylene (PTFE), polyimide, and the like are preferable.
 基材には離型層が積層されていることが好ましい。離型層としては、例えば、公知のワックスから構成されたものが挙げられる。また、離型層が積層された基材として、SiOx、フッ素樹脂等でコーティングされたフィルム等を使用してもよい。 It is preferable that a release layer is laminated on the substrate. Examples of the release layer include those composed of known waxes. Moreover, you may use the film etc. which were coated with SiOx, a fluororesin, etc. as a base material with which the release layer was laminated | stacked.
 基材の厚みは、取り扱い性及び経済性の観点から、通常6μm~100μm程度、特に10μm~60μm程度とするのが好ましい。 The thickness of the base material is preferably about 6 μm to 100 μm, particularly preferably about 10 μm to 60 μm, from the viewpoints of handleability and economy.
 第1導電性多孔質層形成用組成物を用いて、基材上に第1導電性多孔質層11を形成する方法としては、例えば、塗布法、スプレー法、浸漬法等を採用し得るが、より均一な第1導電性多孔質層11が得られるとともに、導電性多孔質層としてより良好な性能が得られる観点から、本発明では塗布法が好ましい。具体的には、基材上に第1導電性多孔質層形成用組成物を、塗布及び乾燥、並びに発泡剤を含有する場合には更に発泡工程を経ることにより、第1導電性多孔質層11を形成することが好ましい。 As a method for forming the first conductive porous layer 11 on the substrate using the first conductive porous layer forming composition, for example, a coating method, a spray method, a dipping method, or the like can be adopted. From the viewpoint of obtaining a more uniform first conductive porous layer 11 and better performance as the conductive porous layer, the coating method is preferred in the present invention. Specifically, the first conductive porous layer is formed by coating and drying the composition for forming the first conductive porous layer on the substrate, and further through a foaming step when a foaming agent is contained. 11 is preferably formed.
 第1導電性多孔質層形成用組成物の塗布方法としては、公知又は市販のドクターブレード等のブレード、ワイヤーバー、スキージ等の器具やアプリケーター、ダイコート、スクリーン印刷、コンマコート等を用いて塗布することが好ましい。 As a method for applying the first conductive porous layer forming composition, it is applied using a blade such as a known or commercially available doctor blade, a device such as a wire bar or a squeegee, an applicator, die coating, screen printing, comma coating, or the like. It is preferable.
 塗布法を採用する場合、第1導電性多孔質層形成用組成物の塗布量は、例えば、第1導電性多孔質層11にガス透過性能、平滑性、水の排出性や保持性等の水管理特性を付与したい場合は、乾燥後の第1導電性多孔質層11の厚みが1μm~150μm程度、好ましくは5μm~100μm程度となるように塗布するのがよい。また、第1導電性多孔質層11にガス拡散性能の効果を付与したい場合は、乾燥後の第1導電性多孔質層11の厚みが1μm~300μm程度、好ましくは20μm~250μm程度となるように塗布するのがよい。なお、省スペース化の観点からは、第1導電性多孔質層11の厚みが250μm以下となるように調整することが好ましい。また、他部材(導電性多孔質基材、セパレータ等)からの圧力をより吸収するとともに、セパレータの加工の精度が悪く形状や厚み等のバラつきがある場合にそのバラつきを吸収することでセル全体の精度を向上させる観点からは、導電性多孔質層の厚みを厚く(20μm~300μm程度)することが好ましい。 When the coating method is employed, the coating amount of the first conductive porous layer forming composition is, for example, such as gas permeation performance, smoothness, water discharging property and retention property to the first conductive porous layer 11. In order to impart water management characteristics, the first conductive porous layer 11 after drying is preferably applied so that the thickness thereof is about 1 μm to 150 μm, preferably about 5 μm to 100 μm. When it is desired to give gas diffusion performance effect to the first conductive porous layer 11, the thickness of the first conductive porous layer 11 after drying is about 1 μm to 300 μm, preferably about 20 μm to 250 μm. It is good to apply to. In addition, from the viewpoint of space saving, it is preferable to adjust the thickness of the first conductive porous layer 11 to be 250 μm or less. In addition, it absorbs more pressure from other members (conductive porous substrate, separator, etc.), and when the processing accuracy of the separator is poor and there are variations in shape, thickness, etc., the entire cell can be absorbed From the viewpoint of improving the accuracy, it is preferable to increase the thickness of the conductive porous layer (about 20 μm to 300 μm).
 また、塗布法を採用する場合、乾燥温度も、例えば、使用する溶剤(分散媒等)の揮発温度等の条件により適宜変更することが好ましい。 Further, when the coating method is adopted, it is preferable that the drying temperature is appropriately changed depending on conditions such as the volatilization temperature of the solvent (dispersion medium or the like) used.
 乾燥して第1導電性多孔質層11を得た後、必要に応じて更に高い温度(例えば、150℃~500℃程度)で乾燥処理を施してもよい。 After drying to obtain the first conductive porous layer 11, drying treatment may be performed at a higher temperature (for example, about 150 ° C. to 500 ° C.) as necessary.
 さらに、第1導電性多孔質層11は、他部材との密着性向上、撥水性付与等のため、その表面に、表面処理が施されていてもよい。表面処理としては、例えば、金属ブラシ、サンドブラスト等で物理的に表面凹凸をつける機械的処理、マット処理、コロナ放電処理、プラズマ放電処理、紫外線処理、火炎処理等が挙げられる。 Furthermore, the surface of the first conductive porous layer 11 may be subjected to a surface treatment in order to improve adhesion with other members, impart water repellency, or the like. Examples of the surface treatment include mechanical treatment that physically forms surface irregularities with a metal brush, sandblast, etc., mat treatment, corona discharge treatment, plasma discharge treatment, ultraviolet treatment, flame treatment, and the like.
 工程(II)
 上記工程(I)により、基材上に第1導電性多孔質層11を形成した後に、第1導電性多孔質層11から基材を剥離する。剥離方法は特に制限されず、常法にて用いられる方法を採用すればよい。
Process (II)
After forming the first conductive porous layer 11 on the base material by the step (I), the base material is peeled from the first conductive porous layer 11. The peeling method is not particularly limited, and a method used in a conventional method may be adopted.
 なお、第1導電性多孔質層11を複数層形成する場合は、所望の構成が得られるように、上記の工程(I)を複数回行えばよい(2回目以降は、既に形成された第1導電性多孔質層11の上に第1導電性多孔質層11を形成する)。この際、各工程の順序は、2回目以降の工程(I)を行う場合は1回目の工程(I)の後に行えば特に制限されない。 In addition, when forming multiple layers of the 1st electroconductive porous layer 11, what is necessary is just to perform said process (I) in multiple times so that a desired structure may be obtained. The first conductive porous layer 11 is formed on the one conductive porous layer 11). At this time, the order of the steps is not particularly limited as long as the steps (I) are performed after the first step, after the first step (I).
 (3-2)少なくとも、第1導電性多孔質層11及び第2導電性多孔質層12を備える電池用ガス拡散層1の製造方法
 本発明の電池用ガス拡散層1が第2導電性多孔質層12を備えている場合(例えば、第1導電性多孔質層11の上に第2導電性多孔質層12を形成する場合)は、上記(3-1)にて説明した工程(I)及び(II)の他、
(III)前記第1導電性多孔質層11の上に、導電性炭素材料及び高分子重合体を含む第2導電性多孔質層形成用組成物を用いて第2導電性多孔質層12を形成する工程
も備える製造方法により、製造することができる。
(3-2) Method for Producing Battery Gas Diffusion Layer 1 Comprising at least First Conductive Porous Layer 11 and Second Conductive Porous Layer 12 The battery gas diffusion layer 1 of the present invention is a second conductive porous layer. When the porous layer 12 is provided (for example, when the second conductive porous layer 12 is formed on the first conductive porous layer 11), the process (I) described in (3-1) above is performed. ) And (II),
(III) A second conductive porous layer 12 is formed on the first conductive porous layer 11 by using a second conductive porous layer forming composition containing a conductive carbon material and a polymer. It can manufacture by the manufacturing method also provided with the process to form.
 工程(III)
 工程(III)において、導電性炭素材料、及び高分子重合体については、上記したものを採用できる。
Process (III)
In the step (III), the conductive carbon material and the high molecular polymer can employ the above-described ones.
 本発明において、第2導電性多孔質層形成用組成物には、上記の導電性炭素材料、及び高分子重合体以外にも、本発明の効果を損なわない範囲で、分散剤、分散媒、発泡剤等を含ませることができる。分散剤、分散媒及び発泡剤としては、第1導電性多孔質層形成用組成物と同様のものを採用できる。 In the present invention, the second conductive porous layer forming composition includes, in addition to the conductive carbon material and the polymer, the dispersant, the dispersion medium, A foaming agent or the like can be included. As the dispersant, the dispersion medium, and the foaming agent, those similar to the first conductive porous layer forming composition can be employed.
 含有量
 第2導電性多孔質層形成用組成物において、上記各成分の配合割合は、上記したものを採用できる。なお、第2導電性多孔質層形成用組成物中に、分散剤、分散媒、発泡剤等を含ませる場合には、これらの含有量については、導電性炭素粒子100質量部に対して、分散剤0質量部~100質量部程度(特に5質量部~50質量部程度)、分散媒0質量部~1100質量部程度(特に10質量部~1000質量部程度)、発泡剤0質量部~200質量部程度(特に20質量部~100質量部程度)が好ましい。
Content In the composition for forming the second conductive porous layer, the above-described components can be adopted as the blending ratio of each component. In addition, when the dispersant, the dispersion medium, the foaming agent, and the like are included in the second conductive porous layer forming composition, the content thereof is based on 100 parts by mass of the conductive carbon particles. Dispersant 0 to 100 parts by weight (particularly about 5 to 50 parts by weight), dispersion medium 0 to 1100 parts by weight (particularly about 10 to 1000 parts by weight), foaming agent 0 to part by weight About 200 parts by mass (particularly about 20 to 100 parts by mass) is preferable.
 なお、第2導電性多孔質層形成用組成物は、例えば、上記の導電性炭素粒子、高分子重合体、及び他の成分を混合、分散させて得ることができる。分散方法としては、特に制限されず、例えば公知の超音波分散、ホモジナイザー、メディア分散、スターラー分散等を用いることができる。 The second conductive porous layer forming composition can be obtained, for example, by mixing and dispersing the conductive carbon particles, the polymer, and other components. The dispersion method is not particularly limited, and for example, known ultrasonic dispersion, homogenizer, media dispersion, stirrer dispersion, and the like can be used.
 第2導電性多孔質層形成用組成物を用いて、第1導電性多孔質層11上に第2導電性多孔質層12を形成する方法としては、例えば、塗布法、スプレー法、浸漬法等を採用し得るが、本発明では塗布法が好ましい。具体的には、第1導電性多孔質層11上に第2導電性多孔質層形成用組成物を、塗布及び乾燥、並びに発泡剤を含有する場合には更に発泡工程を経ることにより、第2導電性多孔質層12を形成することが好ましい。 Examples of the method for forming the second conductive porous layer 12 on the first conductive porous layer 11 using the second conductive porous layer forming composition include a coating method, a spray method, and an immersion method. In the present invention, a coating method is preferable. Specifically, the composition for forming the second conductive porous layer on the first conductive porous layer 11 is coated and dried, and when a foaming agent is contained, a foaming step is further performed, Two conductive porous layers 12 are preferably formed.
 第2導電性多孔質層形成用組成物の塗布方法としては、公知又は市販のドクターブレード等のブレード、ワイヤーバー、スキージ等の器具やアプリケーター、ダイコート、スクリーン印刷、コンマコート等を用いて塗布することが好ましい。 As a method for applying the second conductive porous layer forming composition, it is applied using a blade such as a known or commercially available doctor blade, a device such as a wire bar or a squeegee, an applicator, die coating, screen printing, comma coating, or the like. It is preferable.
 塗布法を採用する場合、第2導電性多孔質層形成用組成物の塗布量は、例えば、第2導電性多孔質層12にガス透過性能、平滑性、水の排出性や保持性等の水管理特性を付与したい場合は、乾燥後の第2導電性多孔質層12の厚みが1μm~150μm程度、好ましくは5μm~100μm程度となるように塗布するのがよい。また、第2導電性多孔質層12にガス拡散性能の効果を付与したい場合は、乾燥後の第2導電性多孔質層12の厚みが1μm~300μm程度、好ましくは20μm~250μm程度となるように塗布するのがよい。なお、省スペース化の観点からは、第1導電性多孔質層11の厚みが250μm以下となるように調整することが好ましい。また、他部材(導電性多孔質基材、セパレータ等)からの圧力をより吸収するとともに、セパレータの加工の精度が悪く形状や厚み等のバラつきがある場合にそのバラつきを吸収することでセル全体の精度を向上させる観点からは、導電性多孔質層の厚みを厚く(20μm~300μm程度)することが好ましい。 When the coating method is adopted, the coating amount of the second conductive porous layer forming composition is, for example, such as gas permeation performance, smoothness, water discharging property and retaining property to the second conductive porous layer 12. In order to impart water management characteristics, the second conductive porous layer 12 after drying is preferably applied so that the thickness thereof is about 1 μm to 150 μm, preferably about 5 μm to 100 μm. When it is desired to give the gas diffusion performance effect to the second conductive porous layer 12, the thickness of the second conductive porous layer 12 after drying is about 1 μm to 300 μm, preferably about 20 μm to 250 μm. It is good to apply to. In addition, from the viewpoint of space saving, it is preferable to adjust the thickness of the first conductive porous layer 11 to be 250 μm or less. In addition, it absorbs more pressure from other members (conductive porous substrate, separator, etc.), and when the processing accuracy of the separator is poor and there are variations in shape, thickness, etc., the entire cell can be absorbed From the viewpoint of improving the accuracy, it is preferable to increase the thickness of the conductive porous layer (about 20 μm to 300 μm).
 また、塗布法を採用する場合、乾燥温度は、例えば、使用する溶剤(分散媒等)の揮発温度等の条件により適宜変更することが好ましい。 In addition, when the coating method is adopted, it is preferable that the drying temperature is appropriately changed depending on conditions such as a volatilization temperature of a solvent to be used (dispersion medium or the like).
 乾燥して第2導電性多孔質層12を得た後、必要に応じて更に高い温度(例えば、150℃~500℃程度)で乾燥処理を施してもよい。 After drying to obtain the second conductive porous layer 12, a drying treatment may be performed at a higher temperature (for example, about 150 ° C. to 500 ° C.) as necessary.
 さらに、第2導電性多孔質層12は、他部材との密着性向上、撥水性付与等のため、その表面に、表面処理が施されていてもよい。表面処理としては、例えば、金属ブラシ、サンドブラスト等で物理的に表面凹凸をつける機械的処理、マット処理、コロナ放電処理、プラズマ放電処理、紫外線処理、火炎処理等が挙げられる。 Furthermore, the surface of the second conductive porous layer 12 may be subjected to a surface treatment for improving adhesion with other members, imparting water repellency, and the like. Examples of the surface treatment include mechanical treatment that physically forms surface irregularities with a metal brush, sandblast, etc., mat treatment, corona discharge treatment, plasma discharge treatment, ultraviolet treatment, flame treatment, and the like.
 本態様においては、工程(I)、工程(II)及び工程(III)の順;並びに工程(I)、工程(III)及び工程(II)の順のいずれも採用できるが、導電性多孔質層のハンドリング性の観点から、工程(I)、工程(III)、
工程(II)の順が好ましい。
In this embodiment, any of the order of step (I), step (II) and step (III); and the order of step (I), step (III) and step (II) can be adopted. From the viewpoint of the handleability of the layer, step (I), step (III),
The order of step (II) is preferred.
 なお、第1導電性多孔質層11を複数層形成する場合は、所望の構成が得られるように、上記の工程(I)を複数回行えばよい(2回目以降は、既に形成された第1導電性多孔質層11又は第2導電性多孔質層12の上に第1導電性多孔質層11を形成する)。また、第2導電性多孔質層12を複数層形成する場合は、所望の構成が得られるように、上記の工程(III)を複数回行えばよい(2回目以降は、既に形成された第1導電性多孔質層11又は第2導電性多孔質層12の上に第2導電性多孔質層12を形成する)。この際、各工程の順序は、2回目以降の工程(I)を行う場合は1回目の工程(I)の後に行えば特に制限されない。 In addition, when forming multiple layers of the 1st electroconductive porous layer 11, what is necessary is just to perform said process (I) in multiple times so that a desired structure may be obtained. The first conductive porous layer 11 is formed on the first conductive porous layer 11 or the second conductive porous layer 12). Further, when a plurality of layers of the second conductive porous layer 12 are formed, the above-described step (III) may be performed a plurality of times so that a desired configuration is obtained (from the second time on, the already formed first The second conductive porous layer 12 is formed on the first conductive porous layer 11 or the second conductive porous layer 12). At this time, the order of the steps is not particularly limited as long as the steps (I) are performed after the first step, after the first step (I).
 (3-3)少なくとも、第1導電性多孔質層11及び導電性多孔質基材13を備える電池用ガス拡散層1の製造方法
 本発明の電池用ガス拡散層1が導電性多孔質基材13を備えている場合(例えば、第1導電性多孔質層11及び導電性多孔質基材13を備える場合)は、本発明の電池用ガス拡散層1は、上記(3-1)にて説明した工程(I)及び(II)の他、
(IV)導電性多孔質基材13を前記第1導電性多孔質層11に接するように積層する工程
も備える製造方法により、製造することができる。
(3-3) Method for Producing Battery Gas Diffusion Layer 1 Comprising at least First Conductive Porous Layer 11 and Conductive Porous Base Material 13 The battery gas diffusion layer 1 of the present invention is a conductive porous substrate. 13 (for example, the case where the first conductive porous layer 11 and the conductive porous base material 13 are provided), the battery gas diffusion layer 1 of the present invention is the above (3-1). In addition to the steps (I) and (II) described,
(IV) The conductive porous substrate 13 can be manufactured by a manufacturing method including a step of laminating the conductive porous substrate 13 so as to be in contact with the first conductive porous layer 11.
 また、本発明の電池用ガス拡散層1が導電性多孔質基材13を備えている場合(例えば、第1導電性多孔質層11、第2導電性多孔質層12及び導電性多孔質基材13を備える場合)は、本発明の電池用ガス拡散層1は、上記(3-2)にて説明した工程(I)、(II)及び(III)の他、上記工程(IV)を備える製造方法により、製造することができる。 Further, when the battery gas diffusion layer 1 of the present invention includes the conductive porous substrate 13 (for example, the first conductive porous layer 11, the second conductive porous layer 12, and the conductive porous group). In the case where the material 13 is provided), the battery gas diffusion layer 1 of the present invention includes the step (IV) in addition to the steps (I), (II) and (III) described in the above (3-2). It can manufacture with the manufacturing method provided.
 工程(IV)
 工程(IV)において、導電性多孔質基材13については、上記したものを採用できる。
Process (IV)
In the step (IV), the conductive porous substrate 13 may be the above-described one.
 工程(IV)では、導電性多孔質基材13を第1導電性多孔質層11と接するように積層するが、この際、導電性多孔質基材13と第1導電性多孔質層11とが一体化するように積層することが好ましい。 In step (IV), the conductive porous substrate 13 is laminated so as to be in contact with the first conductive porous layer 11. At this time, the conductive porous substrate 13, the first conductive porous layer 11, It is preferable to laminate so as to be integrated.
 具体的には、導電性多孔質基材13と第1導電性多孔質層11とが接するように配置した後に、加圧することにより、一体化することが好ましい。また、加圧操作の際には、より低圧の条件で、より密着性を高めるために加圧面を加熱して熱プレスすることが好ましい。 Specifically, it is preferable that the conductive porous substrate 13 and the first conductive porous layer 11 are arranged so as to be in contact with each other and then integrated by applying pressure. Further, during the pressurizing operation, it is preferable to heat press the heated pressure surface in order to further improve the adhesion under a lower pressure condition.
 本発明においては、第1導電性多孔質層11中に変性ポリオレフィン樹脂を含有しているため、第1導電性多孔質層11の空隙を潰れることをより抑制するため、熱プレスの条件を弱い条件(低温低圧条件)としても、導電性多孔質基材13と導電性多孔質基材A11とを十分に一体化することができる。また、電池用ガス拡散層1の導電性多孔質基材13と接する側と反対側の面が導電性多孔質基材13表面の粗さの影響を受けて変形することを抑制することもできる。一方、熱プレスの条件を強い条件(高温高圧条件)とすると、第1導電性多孔質層11の空隙が潰れてしまうとともに、電池用ガス拡散層1の導電性多孔質基材13と接する側と反対側の面が導電性多孔質基材13表面の粗さの影響を受けて変形してしまう虞がある。また、触媒層側表面の外観にも影響を及ぼす虞がある。このような観点から、熱プレスの条件は、加熱温度が40℃~150℃(特に60℃~120℃)、印加圧力が0.5MPa~10MPa(特に1MPa~5MPa)、熱プレス時間が10秒~300秒(特に30秒~200秒)とすることが好ましい。 In the present invention, since the first conductive porous layer 11 contains the modified polyolefin resin, the hot press conditions are weak in order to further prevent the voids in the first conductive porous layer 11 from being crushed. Even under the conditions (low temperature and low pressure conditions), the conductive porous substrate 13 and the conductive porous substrate A11 can be sufficiently integrated. Moreover, it can also suppress that the surface on the opposite side to the side which contact | connects the conductive porous base material 13 of the battery gas diffusion layer 1 receives the influence of the roughness of the surface of the conductive porous base material 13, and deform | transforms. . On the other hand, when the hot pressing condition is a strong condition (high temperature and high pressure condition), the gap of the first conductive porous layer 11 is crushed and the side of the battery gas diffusion layer 1 in contact with the conductive porous substrate 13 The surface on the opposite side may be deformed under the influence of the roughness of the surface of the conductive porous substrate 13. In addition, the appearance of the catalyst layer side surface may be affected. From this point of view, the conditions for hot pressing are as follows: heating temperature is 40 ° C. to 150 ° C. (especially 60 ° C. to 120 ° C.), applied pressure is 0.5 MPa to 10 MPa (especially 1 MPa to 5 MPa), and hot pressing time is 10 seconds. It is preferable to set it to ~ 300 seconds (particularly 30 seconds to 200 seconds).
 本態様において、第1導電性多孔質層11及び導電性多孔質基材13を備える電池用ガス拡散層1を製造する場合は、工程(I)、工程(II)及び工程(IV)の順;並びに工程(I)、工程(IV)及び工程(II)の順のいずれも採用できるが、密着性の(基材面側の平滑面を使用できるため密着性が向上する)観点から、工程(I)、工程(II)、工程(IV)の順に行うことが好ましい。また、本態様において、第1導電性多孔質層11、第2導電性多孔質層12及び導電性多孔質基材13を備える電池用ガス拡散層1を製造する場合は、工程(I)、工程(II)、工程(III)及び工程(IV)の順;工程(I)、工程(II)、工程(IV)及び工程(III)の順;工程(I)、工程(IV)、工程(II)及び工程(III)の順;並びに工程(I)、工程(III)、工程(II)及び工程(IV)の順のいずれも採用できるが、ハンドリング及び密着性の観点から、工程(I)、工程(III)、工程(II)、工程(IV)の順に行うことが好ましい。なお、工程(I)及び/又は工程(III)を複数回行う場合、各工程の順序は、2回目以降の工程(I)を行う場合は1回目の工程(I)の後に行えば特に制限されない。 In this aspect, when manufacturing the battery gas diffusion layer 1 including the first conductive porous layer 11 and the conductive porous substrate 13, the order of the step (I), the step (II), and the step (IV). And any of the steps (I), (IV) and (II) can be employed, but from the viewpoint of adhesion (the adhesion can be improved because a smooth surface on the substrate surface side can be used); It is preferable to carry out in the order of (I), step (II) and step (IV). Moreover, in this aspect, when manufacturing the gas diffusion layer 1 for batteries provided with the 1st conductive porous layer 11, the 2nd conductive porous layer 12, and the conductive porous base material 13, process (I), Step (II), Step (III) and Step (IV) in order; Step (I), Step (II), Step (IV) and Step (III) in order; Step (I), Step (IV), Step Any of the order of (II) and step (III); and the order of step (I), step (III), step (II) and step (IV) can be adopted, but from the viewpoint of handling and adhesion, It is preferable to carry out in the order of I), step (III), step (II) and step (IV). In addition, when performing a process (I) and / or a process (III) in multiple times, especially if the order of each process is performed after the 1st process (I) when performing the process (I) after the 2nd time, it will restrict | limit. Not.
 (3-4)少なくとも、第1導電性多孔質層11及びセパレータ21を備える電池用部材2の製造方法
 第1導電性多孔質層11を備える本発明の電池用部材2(例えば、第1導電性多孔質層11及びセパレータ21を備える電池用部材)は、上記(3-1)にて説明した工程(I)及び(II)の他、
(V)セパレータ21を前記第1導電性多孔質層11に接するように積層する工程
も備える製造方法により、製造することができる。
(3-4) Method for producing battery member 2 including at least first conductive porous layer 11 and separator 21 Battery member 2 of the present invention including first conductive porous layer 11 (for example, first conductive Battery member comprising the porous porous layer 11 and the separator 21), in addition to the steps (I) and (II) described in (3-1) above,
(V) The separator 21 can be manufactured by a manufacturing method including a step of laminating the separator 21 so as to be in contact with the first conductive porous layer 11.
 また、第1導電性多孔質層11と第2導電性多孔質層12を備えている本発明の電池用部材2(例えば、第1導電性多孔質層11、第2導電性多孔質層12及びセパレータ21を備える電池用部材2)は、上記(3-2)にて説明した工程(I)、(II)及び(III)の他、上記工程(V)を備える製造方法により、製造することができる。 Further, the battery member 2 of the present invention including the first conductive porous layer 11 and the second conductive porous layer 12 (for example, the first conductive porous layer 11 and the second conductive porous layer 12). And the battery member 2 including the separator 21 are manufactured by the manufacturing method including the step (V) in addition to the steps (I), (II), and (III) described in the above (3-2). be able to.
 工程(V)
 工程(V)において、セパレータ21については、上記したものを採用できる。
Process (V)
In the step (V), the separator 21 can employ the above-described one.
 工程(V)では、セパレータ21を第1導電性多孔質層11と接するように積層するが、この際、セパレータ21と第1導電性多孔質層11とが一体化するように積層することが好ましい。 In the step (V), the separator 21 is laminated so as to be in contact with the first conductive porous layer 11. At this time, the separator 21 and the first conductive porous layer 11 may be laminated so as to be integrated. preferable.
 具体的には、セパレータ21と第1導電性多孔質層11とが接するように配置した後に、熱プレスを行うことにより、一体化することが好ましい。この際、電池用ガス拡散層1を構成する層のうち、工程(I)において基材と接していた第1導電性多孔質層11と、セパレータ21とが接するように配置することが好ましい。 Specifically, it is preferable that the separator 21 and the first conductive porous layer 11 be arranged so as to be in contact with each other and then integrated by performing a heat press. Under the present circumstances, it is preferable to arrange | position so that the separator 21 may contact | connect the 1st electroconductive porous layer 11 which was in contact with the base material in process (I) among the layers which comprise the gas diffusion layer 1 for batteries.
 本発明においては、第1導電性多孔質層11中に変性ポリオレフィン樹脂を含有していることから、第1導電性多孔質層11の空隙が潰れることをより抑制するために熱プレスの条件を弱い条件(低温低圧条件)としても、セパレータ21と第1導電性多孔質層11とを十分に一体化することができる。一方、熱プレスの条件を強い条件(高温高圧条件)とすると、第1導電性多孔質層11の空隙が潰れてしまう虞がある。また、第1導電性多孔質層11が変形し、触媒層側表面の外観にも影響を及ぼす虞がある。このような観点から、熱プレスの条件は、加熱温度が40℃~150℃(特に60℃~120℃)、印加圧力が0.5MPa~10MPa(特に1MPa~5MPa)、熱プレス時間が10秒~300秒(特に30秒~200秒)とすることが好ましい。 In the present invention, since the first conductive porous layer 11 contains a modified polyolefin resin, the hot press conditions are set in order to further prevent the voids in the first conductive porous layer 11 from being crushed. Even under weak conditions (low temperature and low pressure conditions), the separator 21 and the first conductive porous layer 11 can be sufficiently integrated. On the other hand, if the hot pressing condition is a strong condition (high temperature and high pressure condition), the voids of the first conductive porous layer 11 may be crushed. Further, the first conductive porous layer 11 may be deformed and affect the appearance of the catalyst layer side surface. From this point of view, the conditions for hot pressing are as follows: heating temperature is 40 ° C. to 150 ° C. (especially 60 ° C. to 120 ° C.), applied pressure is 0.5 MPa to 10 MPa (especially 1 MPa to 5 MPa), and hot pressing time is 10 seconds. It is preferable to set it to ~ 300 seconds (particularly 30 seconds to 200 seconds).
 本態様において、第1導電性多孔質層11及びセパレータ21を備える電池用部材2を製造する場合は、工程(I)、工程(II)及び工程(V)の順;並びに工程(I)、工程(V)及び工程(II)の順のいずれも採用できるが、密着性の観点から、工程(I)、工程(II)、工程(V)の順に行うことが好ましい。また、本態様において、第1導電性多孔質層11、第2導電性多孔質層12及びセパレータ21を備える電池用部材2を製造する場合は、工程(I)、工程(II)、工程(III)及び工程(V)の順;工程(I)、工程(II)、工程(V)及び工程(III)の順;工程(I)、工程(V)、工程(II)及び工程(III)の順;並びに工程(I)、工程(III)、工程(II)及び工程(V)の順のいずれも採用できるが、ハンドリング及び密着性の観点から、工程(I)、工程(III)、工程(II)、工程(V)の順に行うことが好ましい。なお、工程(I)及び/又は工程(III)を複数回行う場合、各工程の順序は、2回目以降の工程(I)を行う場合は1回目の工程(I)の後に行えば特に制限されない。 In this aspect, when manufacturing the battery member 2 including the first conductive porous layer 11 and the separator 21, the order of the step (I), the step (II) and the step (V); and the step (I), Any of the order of the step (V) and the step (II) can be adopted, but from the viewpoint of adhesion, it is preferable to carry out in the order of the step (I), the step (II) and the step (V). Moreover, in this aspect, when manufacturing the battery member 2 provided with the 1st electroconductive porous layer 11, the 2nd electroconductive porous layer 12, and the separator 21, process (I), process (II), process ( III) and step (V); step (I), step (II), step (V) and step (III) in order; step (I), step (V), step (II) and step (III) ); And step (I), step (III), step (II) and step (V) can be employed, but from the viewpoint of handling and adhesion, step (I) and step (III) It is preferable to carry out in the order of step (II) and step (V). In addition, when performing a process (I) and / or a process (III) in multiple times, especially if the order of each process is performed after the 1st process (I) when performing the process (I) after the 2nd time, it will restrict | limit. Not.
 また、本発明の電池用ガス拡散層1が導電性多孔質基材13を備えている場合、導電性多孔質基材13の上にセパレータ21を積層してもよい。また、第1導電性多孔質層11、導電性多孔質基材13及びセパレータ21を備える電池用部材2を製造する場合は、工程(I)、工程(II)、工程(IV)及び工程(V)の順;工程(I)、工程(IV)、工程(II)及び工程(V)の順;並びに工程(I)、工程(IV)、工程(V)、及び工程(II)の順のいずれも採用できるが、密着性の観点から、工程(I)、工程(II)、工程(IV)、工程(V)の順に行うことが好ましい。また、本態様において、第1導電性多孔質層11、第2導電性多孔質層12、導電性多孔質基材13及びセパレータ21を備える電池用部材を製造する場合は、工程(I)、工程(II)、工程(III)、工程(IV)及び工程(V)の順;工程(I)、工程(II)、工程(IV)、工程(III)及び工程(V)の順;工程(I)、工程(II)、工程(IV)、工程(V)及び工程(III)の順;工程(I)、工程(IV)、工程(II)、工程(III)及び工程(V)の順;工程(I)、工程(IV)、工程(II)、工程(V)及び工程(III)の順;工程(I)、工程(IV)、工程(V)、工程(II)及び工程(III)の順;並びに工程(I)、工程(III)、工程(II)、工程(IV)及び工程(V)の順のいずれも採用できるが、ハンドリング及び密着性の観点から、工程(I)、工程(III)、工程(II)、工程(IV)、工程(V)の順に行うことが好ましい。なお、工程(I)及び/又は工程(III)を複数回行う場合、各工程の順序は、2回目以降の工程(I)を行う場合は1回目の工程(I)の後に行えば特に制限されない。 Further, when the battery gas diffusion layer 1 of the present invention includes the conductive porous substrate 13, the separator 21 may be laminated on the conductive porous substrate 13. Moreover, when manufacturing the battery member 2 provided with the 1st electroconductive porous layer 11, the electroconductive porous base material 13, and the separator 21, process (I), process (II), process (IV), and process ( V) order; step (I), step (IV), step (II) and step (V) order; and step (I), step (IV), step (V) and step (II) order However, from the viewpoint of adhesion, it is preferable to perform the steps (I), (II), (IV), and (V) in this order. In this embodiment, when producing a battery member comprising the first conductive porous layer 11, the second conductive porous layer 12, the conductive porous substrate 13, and the separator 21, the step (I), Step (II), Step (III), Step (IV) and Step (V) in order; Step (I), Step (II), Step (IV), Step (III) and Step (V) in order; Step (I), Step (II), Step (IV), Step (V) and Step (III) in this order; Step (I), Step (IV), Step (II), Step (III) and Step (V) In the order of step (I), step (IV), step (II), step (V) and step (III); step (I), step (IV), step (V), step (II) and Any of the order of step (III); and step (I), step (III), step (II), step (IV) and step (V) can be adopted, but from the viewpoint of handling and adhesion, (I), step (III), step It is preferable to carry out in the order of (II), step (IV) and step (V). In addition, when performing a process (I) and / or a process (III) in multiple times, especially if the order of each process is performed after the 1st process (I) when performing the process (I) after the 2nd time, it will restrict | limit. Not.
 4.電池用膜-電極接合体3及び電池4
 本発明の電池用ガス拡散層1又は電池用部材2を燃料電池用ガス拡散層又は金属空気電池用ガス拡散層として用いて、図7~9に示されるように、電池用膜-電極接合体3又は電池4(固体高分子形燃料電池、金属空気電池等)を作製することができる。具体的には、触媒層312及び電解質膜311の積層体、又は触媒層312、電解質膜311及び触媒層312がこの順に形成された積層体からなる触媒層-電解質膜積層体31の片面又は両面に、本発明の電池用ガス拡散層1又は電池用部材2を、第1導電性多孔質層11又は第2導電性多孔質層12と触媒層とが接するように積層させることが好ましい。このような本発明の電池用膜-電極接合体3の代表例は図7~8に示されるとおりであるが、その構成はこれに限定されることはなく、例えば、「触媒層-電解質膜積層体31の片面に、第1導電性多孔質層11が積層された電池用膜-電極接合体3」、「触媒層-電解質膜積層体31の片面に、第2導電性多孔質層12及び第1導電性多孔質層11がこの順に積層された電池用膜-電極接合体3」、「触媒層-電解質膜積層体31の両面に、第1導電性多孔質層11が積層された電池用膜-電極接合体3」、「触媒層-電解質膜積層体31の両面に、第2導電性多孔質層12及び第1導電性多孔質層11がこの順に積層された電池用膜-電極接合体3」、「触媒層-電解質膜積層体31の片面に、第1導電性多孔質層11及び導電性多孔質基材13がこの順に積層された電池用膜-電極接合体3」、「触媒層-電解質膜積層体31の片面に、第2導電性多孔質層12、第1導電性多孔質層11及び導電性多孔質基材13がこの順に積層された電池用膜-電極接合体3」、「触媒層-電解質膜積層体31の両面に、第1導電性多孔質層11及び導電性多孔質基材13がこの順に積層された電池用膜-電極接合体3」、及び「触媒層-電解質膜積層体31の両面に、第2導電性多孔質層12、第1導電性多孔質層11及び導電性多孔質基材13がこの順に積層された電池用膜-電極接合体3」をいずれも採用できる。電池を作製する場合は、得られた電池用膜-電極接合体3を必要に応じてセパレータ21と積層することにより、本発明の電池4を作製してもよい。この際、セパレータ21としては、上記説明したものを採用することができる。このような本発明の電池4の代表例は図9に示されるとおりであるが、その構成はこれに限定されることはなく、例えば、「触媒層-電解質膜積層体の片面に、第1導電性多孔質層及びセパレータがこの順に積層された電池」、「触媒層-電解質膜積層体の片面に、第2導電性多孔質層、第1導電性多孔質層及びセパレータがこの順に積層された電池」、「触媒層-電解質膜積層体の片面に、第1導電性多孔質層、導電性多孔質基材及びセパレータがこの順に積層された電池」、「触媒層-電解質膜積層体の片面に、第2導電性多孔質層、第1導電性多孔質層、導電性多孔質基材及びセパレータがこの順に積層された電池」、「触媒層-電解質膜積層体の両面に第1導電性多孔質層が積層された電池用膜-電極接合体の片面に、セパレータが積層された電池」、「触媒層-電解質膜積層体の両面に第2導電性多孔質層及び第1導電性多孔質層がこの順に積層された電池用膜-電極接合体の片面に、セパレータが積層された電池」、「触媒層-電解質膜積層体の両面に第1導電性多孔質層及び導電性多孔質基材がこの順に積層された電池用膜-電極接合体の片面に、セパレータが積層された電池」、「触媒層-電解質膜積層体の両面に第2導電性多孔質層、第1導電性多孔質層及び導電性多孔質基材がこの順に積層された電池用膜-電極接合体の片面に、セパレータが積層された電池」、「触媒層-電解質膜積層体の両面に、第1導電性多孔質層及びセパレータがこの順に積層された電池」、「触媒層-電解質膜積層体の両面に、第2導電性多孔質層、第1導電性多孔質層及びセパレータがこの順に積層された電池」、「触媒層-電解質膜積層体の両面に、第1導電性多孔質層、導電性多孔質基材及びセパレータがこの順に積層された電池」、及び「触媒層-電解質膜積層体の両面に、第2導電性多孔質層、第1導電性多孔質層、導電性多孔質基材及びセパレータがこの順に積層された電池」をいずれも採用できる。
4). Battery membrane-electrode assembly 3 and battery 4
Using the gas diffusion layer 1 for a battery or the battery member 2 of the present invention as a gas diffusion layer for a fuel cell or a gas diffusion layer for a metal-air battery, as shown in FIGS. 3 or battery 4 (solid polymer fuel cell, metal-air battery, etc.) can be produced. Specifically, one side or both sides of a catalyst layer-electrolyte membrane laminate 31 composed of a laminate of the catalyst layer 312 and the electrolyte membrane 311 or a laminate in which the catalyst layer 312, the electrolyte membrane 311 and the catalyst layer 312 are formed in this order. Furthermore, it is preferable that the battery gas diffusion layer 1 or the battery member 2 of the present invention is laminated so that the first conductive porous layer 11 or the second conductive porous layer 12 and the catalyst layer are in contact with each other. A representative example of such a membrane-electrode assembly 3 for a battery according to the present invention is as shown in FIGS. 7 to 8. However, the configuration is not limited to this. For example, “catalyst layer-electrolyte membrane” Battery membrane-electrode assembly 3 in which the first conductive porous layer 11 is laminated on one side of the laminate 31, “Catalyst layer-electrolyte membrane laminate 31, the second conductive porous layer 12 on one side of the laminate 31. In addition, the first conductive porous layer 11 was laminated on both surfaces of the battery membrane-electrode assembly 3 in which the first conductive porous layer 11 was laminated in this order and the “catalyst layer-electrolyte membrane laminate 31”. Battery membrane-electrode assembly 3 "," catalyst layer-battery membrane in which the second conductive porous layer 12 and the first conductive porous layer 11 are laminated in this order on both surfaces of the electrolyte membrane laminate 31- Electrode assembly 3 ”,“ Catalyst layer-electrolyte membrane laminate 31 on one side, first conductive porous layer 11 and conductive porous layer ” Battery membrane-electrode assembly 3 in which materials 13 are laminated in this order ”and“ catalyst layer-electrolyte membrane laminate 31 ”on one side of second conductive porous layer 12, first conductive porous layer 11 and conductive layer 13. Battery porous membrane 13 in which the porous porous substrate 13 is laminated in this order ”and“ catalytic layer-electrolyte membrane laminated body 31 on both sides of the first conductive porous layer 11 and the conductive porous substrate. 13 are laminated in this order on the battery membrane-electrode assembly 3 ”and the“ catalyst layer-electrolyte membrane laminate 31 ”on both sides of the second conductive porous layer 12, the first conductive porous layer 11, and the conductive layer. Any battery membrane-electrode assembly 3 ”in which the porous porous substrate 13 is laminated in this order can be employed. In the case of producing a battery, the battery 4 of the present invention may be produced by laminating the obtained battery membrane-electrode assembly 3 with a separator 21 as necessary. At this time, the separator described above can be used as the separator 21. A typical example of such a battery 4 of the present invention is as shown in FIG. 9, but the configuration thereof is not limited to this. For example, “the first layer on the one side of the catalyst layer-electrolyte membrane laminate” A battery in which a conductive porous layer and a separator are laminated in this order ”,“ a second conductive porous layer, a first conductive porous layer, and a separator are laminated in this order on one side of a catalyst layer-electrolyte membrane laminate. Battery ”,“ battery in which the first conductive porous layer, the conductive porous substrate and the separator are laminated in this order on one side of the catalyst layer-electrolyte membrane laminate ”,“ catalyst layer-electrolyte membrane laminate A battery in which a second conductive porous layer, a first conductive porous layer, a conductive porous substrate and a separator are laminated in this order on one side ”,“ a first conductive on both sides of a catalyst layer-electrolyte membrane laminate ” A separator is placed on one side of the battery membrane-electrode assembly on which a porous porous layer is laminated. Layered battery ”,“ Catalyst layer-electrolyte membrane laminate on both sides of second conductive porous layer and first conductive porous layer in this order laminated on one side of membrane-electrode assembly for battery separator A battery in which a first conductive porous layer and a conductive porous substrate are laminated in this order on both sides of the catalyst layer-electrolyte membrane laminate, and a separator on one side of the membrane-electrode assembly. A battery in which a second conductive porous layer, a first conductive porous layer, and a conductive porous substrate are laminated in this order on both sides of the electrolyte membrane laminate. "Battery with separator laminated on one side of electrode assembly", "Battery with first conductive porous layer and separator laminated on both sides of catalyst layer-electrolyte membrane laminate", "Catalyst layer-electrolyte" A second conductive porous layer, a first conductive porous layer, and a separator are formed on both sides of the film laminate. A battery in which a first conductive porous layer, a conductive porous substrate and a separator are laminated in this order on both surfaces of a catalyst layer-electrolyte membrane laminate, and a catalyst. Any battery in which the second conductive porous layer, the first conductive porous layer, the conductive porous substrate, and the separator are stacked in this order on both surfaces of the layer-electrolyte membrane laminate can be employed.
 本発明においては、一旦作製した本発明の電池用ガス拡散層1又は電池用部材2を後述の触媒層-電解質膜積層体31の片面又は両面に積層させれば、膜-電極接合体3又は電池4を作製することができる。この場合、電池用ガス拡散層1又は電池用部材2を触媒層-電解質膜積層体31に一体化させることが好ましい。この場合も、電池用ガス拡散層1又は電池用部材2を下方になるようにした場合に、電池用ガス拡散層1又は電池用部材2が、触媒層-電解質膜積層体31から5分以上剥れ落ちない程度に接着していることが好ましい。 In the present invention, once the produced gas diffusion layer 1 or battery member 2 of the present invention is laminated on one or both sides of a catalyst layer-electrolyte membrane laminate 31 described later, the membrane-electrode assembly 3 or The battery 4 can be produced. In this case, the battery gas diffusion layer 1 or the battery member 2 is preferably integrated with the catalyst layer-electrolyte membrane laminate 31. Also in this case, when the battery gas diffusion layer 1 or the battery member 2 is positioned downward, the battery gas diffusion layer 1 or the battery member 2 is not less than 5 minutes from the catalyst layer-electrolyte membrane laminate 31. It is preferable to adhere to such an extent that it does not peel off.
 (4-1)触媒層-電解質膜積層体31
 電解質膜311
 電解質膜311は、水素イオン伝導性又は水酸化物イオン伝導性の電解質膜であればよく、水素イオン伝導性電解質膜や水酸化物イオン伝導性電解質膜等の公知又は市販の電解質膜を使用できる。水素イオン伝導性電解質膜の具体例としては、例えば、デュポン社製の「Nafion」(登録商標)膜、旭硝子(株)製の「Flemion」(登録商標)膜、旭化成(株)製の「Aciplex」(登録商標)膜、ゴア(Gore)社製の「Gore Select」(登録商標)膜等が挙げられる。また、水酸化物イオン伝導性電解質膜の具体例としては、炭化水素系の電解質膜として、旭化成(株)製のアシプレックス(登録商標)A-201,211,221等、トクヤマ(株)製のネオセプタ(登録商標)AM-1、AHA等を挙げることができ、フッ素樹脂系の電解質膜として、東ソー(株)製のトスフレックス(登録商標)IE-SF34,FuMA-Tech社製のfumapem(登録商標)FAA等を挙げることができる。
(4-1) Catalyst layer-electrolyte membrane laminate 31
Electrolyte membrane 311
The electrolyte membrane 311 may be a hydrogen ion conductive or hydroxide ion conductive electrolyte membrane, and a known or commercially available electrolyte membrane such as a hydrogen ion conductive electrolyte membrane or a hydroxide ion conductive electrolyte membrane may be used. . Specific examples of the hydrogen ion conductive electrolyte membrane include, for example, “Nafion” (registered trademark) membrane manufactured by DuPont, “Flemion” (registered trademark) membrane manufactured by Asahi Glass Co., Ltd., and “Aciplex” manufactured by Asahi Kasei Corporation. ”(Registered trademark) membrane,“ Gore Select ”(registered trademark) membrane manufactured by Gore, and the like. Specific examples of the hydroxide ion conductive electrolyte membrane include a hydrocarbon electrolyte membrane such as Aciplex (registered trademark) A-201, 211, 221 and the like manufactured by Asahi Kasei Co., Ltd., and Tokuyama Corp. Neoceptor (registered trademark) AM-1, AHA, and the like. As a fluororesin-based electrolyte membrane, Tosflex (registered trademark) IE-SF34 manufactured by Tosoh Corporation, and fumapem manufactured by FuMA-Tech ( (Registered trademark) FAA and the like.
 電解質膜311の膜厚は、通常20μm~250μm程度、特に20μm~150μm程度が好ましい。 The thickness of the electrolyte membrane 311 is usually about 20 μm to 250 μm, and particularly preferably about 20 μm to 150 μm.
 また、本発明の電池用膜-電極接合体3を金属空気電池用として使用する場合には、固体の電解質膜に限られず、ゲル状や液状の電解液を使用することも可能である。この場合の電解液に使用される材料は、特に制限されず、従来から金属空気電池に使用される公知又は市販の材料を使用することができる。例示すると、電解液は負極の金属に対応して選択されるが、水、食塩水、アルカリ性溶液、負極の金属の金属塩溶液等が適宜使用される。 Further, when the membrane-electrode assembly 3 for a battery according to the present invention is used for a metal-air battery, it is not limited to a solid electrolyte membrane, and a gel-like or liquid electrolyte can also be used. The material used for the electrolytic solution in this case is not particularly limited, and known or commercially available materials conventionally used for metal-air batteries can be used. For example, the electrolytic solution is selected corresponding to the metal of the negative electrode, but water, saline, an alkaline solution, a metal salt solution of the metal of the negative electrode, and the like are appropriately used.
 触媒層312
 触媒層312は、触媒を含有していればよく、例えば、炭素粒子に触媒粒子を担持させたものを用いてもよい。さらに触媒層312は、触媒の他に高分子重合体を含有してもよい。
Catalyst layer 312
The catalyst layer 312 only needs to contain a catalyst. For example, a catalyst layer in which catalyst particles are supported on carbon particles may be used. Further, the catalyst layer 312 may contain a polymer in addition to the catalyst.
 触媒としては、例えば、白金や白金化合物等が挙げられる。白金化合物としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄、コバルト等からなる群から選ばれる少なくとも1種の金属と、白金との合金等が挙げられる。なお、通常は、触媒層に含まれる触媒は白金である。 Examples of the catalyst include platinum and platinum compounds. Examples of the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron, cobalt, and the like. In general, the catalyst contained in the catalyst layer is platinum.
 炭素粒子は、導電性を有しているものであればよく、公知又は市販のものを広く使用できる。例えば、カーボンブラックや、黒鉛、活性炭等を1種又は2種以上で用いることができる。カーボンブラックの例としては、チャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック、ランプブラック等を挙げることができる。炭素粒子の算術平均粒子径は通常5nm~200nm程度、好ましくは20nm~80nm程度である。この炭素粒子の平均粒子径は、電子顕微鏡観察像に基づく20個の算術平均粒子径により特定する。 The carbon particles only need to have conductivity, and known or commercially available carbon particles can be widely used. For example, carbon black, graphite, activated carbon, or the like can be used alone or in combination. Examples of carbon black include channel black, furnace black, ketjen black, acetylene black, and lamp black. The arithmetic average particle diameter of the carbon particles is usually about 5 nm to 200 nm, preferably about 20 nm to 80 nm. The average particle diameter of the carbon particles is specified by 20 arithmetic average particle diameters based on an electron microscope observation image.
 高分子重合体としては、公知の材料を使用できる。具体的には、イオン伝導性高分子電解質、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、スチレン-アクリル共重合体樹脂、スチレン-酢酸ビニル共重合体樹脂、エチレン-酢酸ビニル共重合体樹脂、ポリエステル-アクリル共重合体樹脂、ウレタン樹脂、スチレン樹脂、アクリル樹脂、フェノール樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ポリオレフィン樹脂、フッ素樹脂等が挙げられる。また、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)等のフッ素系材料、シリコーンゴム等も挙げられる。これらの高分子重合体は、単独で用いても良いし、2種類以上を組み合わせてもよい。 As the polymer, known materials can be used. Specifically, ion conductive polymer electrolyte, polyvinyl alcohol resin, polyvinyl acetate resin, styrene-acrylic copolymer resin, styrene-vinyl acetate copolymer resin, ethylene-vinyl acetate copolymer resin, polyester-acrylic Examples thereof include copolymer resins, urethane resins, styrene resins, acrylic resins, phenol resins, silicone resins, epoxy resins, melamine resins, polyolefin resins, and fluorine resins. In addition, fluorine-based materials such as polyvinylidene fluoride (PVDF) and vinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), silicone rubber, and the like are also included. These high molecular polymers may be used alone or in combination of two or more.
 また、イオン伝導性高分子電解質としては、例えば、パーフルオロスルホン酸系のフッ素系イオン交換樹脂、より具体的には、パーフルオロカーボンスルホン酸ポリマー(PFSポリマー)等が挙げられる。電気陰性度の高いフッ素原子を導入することで、化学的に非常に安定し、スルホン酸基の解離度が高く、高いイオン伝導性が実現できる。このようなイオン伝導性高分子電解質の具体例としては、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等が挙げられる。イオン伝導性高分子電解質含有溶液中に含まれるイオン伝導性高分子電解質の濃度は、通常5質量%~60質量%程度、好ましくは20質量%~40質量%程度である。 Examples of the ion conductive polymer electrolyte include perfluorosulfonic acid-based fluorine ion exchange resins, and more specifically, perfluorocarbon sulfonic acid polymer (PFS polymer). By introducing a fluorine atom having high electronegativity, it is chemically very stable, the dissociation degree of the sulfonic acid group is high, and high ion conductivity can be realized. Specific examples of such an ion conductive polymer electrolyte include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., and “Aciplex” manufactured by Asahi Kasei Corporation. (Registered trademark), “Gore Select” (registered trademark) manufactured by Gore, and the like. The concentration of the ion conductive polymer electrolyte contained in the ion conductive polymer electrolyte-containing solution is usually about 5% to 60% by mass, preferably about 20% to 40% by mass.
 触媒層312の厚みは、例えば、通常1μm~100μm程度、好ましくは2μm~50μm程度とすることが好ましい。 The thickness of the catalyst layer 312 is, for example, usually about 1 μm to 100 μm, preferably about 2 μm to 50 μm.
 なお、触媒層312には、撥水剤として、フッ素樹脂等の他、非ポリマーのフッ素材料であるフッ化ピッチ、フッ化カーボン、フッ化黒鉛等を添加することもできる。 The catalyst layer 312 may be added with a non-polymer fluorine material such as fluorinated pitch, fluorinated carbon, and fluorinated graphite in addition to a fluororesin as a water repellent.
 金属空気電池の場合、正極に使用する触媒は、上記のアノード触媒又はカソード触媒で用いた触媒の他に、二酸化マンガン、金、活性炭、イリジウム酸化物、ペロブスカイト型複合酸化物、金属含有顔料等が使用できる。これらの触媒粉末を上記の撥水剤をバインダーとして分散して塗布することにより触媒層312を形成できる。あるいは蒸着が可能な材料は蒸着により触媒層312を形成することができる。または、金属塩溶液を電極上で還元して金属を微細な形状に析出させて触媒層312を形成することができる。 In the case of a metal-air battery, the catalyst used for the positive electrode includes manganese dioxide, gold, activated carbon, iridium oxide, perovskite complex oxide, metal-containing pigment, etc. in addition to the catalyst used in the anode catalyst or cathode catalyst. Can be used. The catalyst layer 312 can be formed by dispersing and applying these catalyst powders using the above water repellent as a binder. Alternatively, the catalyst layer 312 can be formed by vapor deposition of a material that can be vapor deposited. Alternatively, the catalyst layer 312 can be formed by reducing the metal salt solution on the electrode to precipitate the metal in a fine shape.
 また、負極の金属は、どのような空気電池を構成するかにより金属が選択される。リチウム(Li)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、アルミニウム(Al)、及び鉄(Fe)等の金属、合金あるいは金属化合物が負極活物質として使用することができる。負極と電解液との接触面積を多くするため、負極は微細な空孔を持っていることが好ましい。 Also, the metal of the negative electrode is selected depending on what type of air battery is configured. Metals, alloys or metal compounds such as lithium (Li), sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), zinc (Zn), aluminum (Al), and iron (Fe) are negative electrodes. It can be used as an active material. In order to increase the contact area between the negative electrode and the electrolytic solution, the negative electrode preferably has fine pores.
 触媒層-電解質膜積層体31の製造方法
 触媒層-電解質膜積層体31は、例えば、基材の片面に触媒層312が形成された触媒層形成用転写フィルムを用いて、触媒層312と電解質膜311とが対面するように触媒層形成用転写フィルムを配置し、加温条件下で加圧して触媒層312を電解質膜311に転写した後、転写フィルムを剥離することにより製造することができる。なお、この操作を2回繰り返せば、電解質膜311の両面に触媒層312が積層された触媒層-電解質膜積層体31を製造することができるが、作業性等を考慮すると、触媒層312を電解質膜311の両面に同時に積層するのがよい。この際形成される触媒層312は、片方がアノード触媒層、他方がカソード触媒層である。アノード触媒層とカソード触媒層とは同じものであってもよいし、異なるものであってもよい。また、触媒層-電解質膜積層体31の片面に本発明のガス拡散層1又は電池用部材2を積層する場合、アノード触媒層上に積層してもよいし、カソード触媒層上に積層してもよい。
Method for Producing Catalyst Layer-Electrolyte Membrane Laminate 31 The catalyst layer-electrolyte membrane laminate 31 is composed of, for example, a catalyst layer 312 and an electrolyte using a transfer film for forming a catalyst layer having a catalyst layer 312 formed on one side of a substrate. It can be manufactured by disposing a transfer film for forming a catalyst layer so as to face the film 311, applying pressure under heating conditions to transfer the catalyst layer 312 to the electrolyte film 311, and then peeling the transfer film. . If this operation is repeated twice, the catalyst layer-electrolyte membrane laminate 31 in which the catalyst layer 312 is laminated on both surfaces of the electrolyte membrane 311 can be manufactured. It is preferable to laminate the electrolyte membrane 311 on both surfaces simultaneously. One of the catalyst layers 312 formed at this time is an anode catalyst layer, and the other is a cathode catalyst layer. The anode catalyst layer and the cathode catalyst layer may be the same or different. When the gas diffusion layer 1 or battery member 2 of the present invention is laminated on one side of the catalyst layer-electrolyte membrane laminate 31, it may be laminated on the anode catalyst layer or on the cathode catalyst layer. Also good.
 転写する際には、触媒層形成用転写フィルムの基材フィルム側から、公知のプレス機等を用いて加圧することが好ましい。その際の加圧レベルは、転写不良を避けるために、通常0.5MPa~10MPa程度、特に1MPa~8MPa程度が好ましい。また、この加圧操作の際に、転写不良を避けるために、加圧面を加熱するのが好ましい。加熱温度は、使用する電解質膜の種類により適宜変更することが好ましい。 When transferring, it is preferable to apply pressure from the base film side of the transfer film for forming a catalyst layer using a known press machine or the like. The pressure level at that time is preferably about 0.5 MPa to 10 MPa, particularly preferably about 1 MPa to 8 MPa, in order to avoid poor transfer. Further, it is preferable to heat the pressure surface during this pressure operation in order to avoid transfer failure. The heating temperature is preferably changed as appropriate depending on the type of electrolyte membrane to be used.
 なお、基材フィルムとしては、特に制限されることはなく、上記の基材と同様の基材を使用できる。例えば、ポリイミド、ポリエチレンテレフタレート(PET)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート(PEN)、ポリエチレン、ポリプロピレン、ポリオレフィン等の高分子フィルムを挙げることができる。また、エチレン-テトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の耐熱性フッ素樹脂を用いることもできる。これらのなかでも、安価で入手が容易な高分子フィルムが好ましく、ポリエチレンテレフタレート等がより好ましい。 The base film is not particularly limited, and the same base as the above base can be used. For example, polymer films such as polyimide, polyethylene terephthalate (PET), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene naphthalate (PEN), polyethylene, polypropylene, polyolefin, etc. Can be mentioned. In addition, ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE) It is also possible to use a heat-resistant fluororesin such as Among these, a polymer film that is inexpensive and easily available is preferable, and polyethylene terephthalate or the like is more preferable.
 基材フィルムの厚さは、基材フィルム上に触媒層312を形成させる作業性、経済性等の観点から、通常6μm~150μm程度、特に12μm~75μm程度とするのが好ましい。 The thickness of the base film is usually about 6 μm to 150 μm, particularly about 12 μm to 75 μm, from the viewpoints of workability and economical efficiency for forming the catalyst layer 312 on the base film.
 また、基材フィルムは、離型層が積層された基材フィルムであってもよい。離型層としては、例えば、公知のワックスから構成された層、公知のSiOx、フッ素樹脂でコーティングされたプラスチックフィルム等が挙げられる。また、基材フィルム上に離型性の高いフィルムを積層して構成されたもの、例えば、PET基材と耐熱フッ素樹脂基材との積層体等の構造を有しているものでもよい。 The base film may be a base film on which a release layer is laminated. Examples of the release layer include a layer composed of a known wax, a known SiOx, a plastic film coated with a fluororesin, and the like. Moreover, what was comprised by laminating | stacking a film with high mold release property on a base film, for example, what has structures, such as a laminated body of a PET base material and a heat resistant fluororesin base material, may be used.
 また、前記触媒層312を前記電解質膜311上に形成する方法としては、上記の転写による触媒層312の形成方法の他にも、前記電解質膜311に前記触媒層形成用組成物を塗布して形成してもよい。この際の条件等は公知のものを採用できる。 Further, as a method of forming the catalyst layer 312 on the electrolyte membrane 311, in addition to the method of forming the catalyst layer 312 by the transfer described above, the catalyst layer forming composition is applied to the electrolyte membrane 311. It may be formed. Known conditions can be used for this.
 以下に実施例及び比較例を挙げて、本発明をより詳細に説明する。なお、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. The present invention is not limited to the following examples.
 <材料>
 第1導電性多孔質層形成用組成物及び第2導電性多孔質層形成用組成物の調製には、以下に示す材料を使用した。
導電性炭素粒子:平均粒子径30nm
変性ポリオレフィン樹脂:アウローレン350S(日本製紙(株)製;溶質としての変性ポリオレフィン樹脂含有量10質量%)
高分子重合体:Solef21216/1001(ソルベイソレクシス(株)製;PVDF;高分子重合体含有量10質量%になるようにメチルエチルケトンに溶解したもの)。
<Material>
The following materials were used for the preparation of the first conductive porous layer forming composition and the second conductive porous layer forming composition.
Conductive carbon particles: average particle size 30 nm
Modified polyolefin resin: Aurorene 350S (manufactured by Nippon Paper Industries Co., Ltd .; modified polyolefin resin content of 10% by mass as solute)
Polymer: Solef 21216/1001 (manufactured by Solvay Solexis Corp .; PVDF; dissolved in methyl ethyl ketone so that the polymer content is 10% by mass).
 実施例1
 導電性炭素粒子100質量部、変性ポリオレフィン樹脂500質量部(溶質量50質量部)、及びメチルシクロヘキサン(MCH)1000質量部をメディア分散により分散させることにより第1導電性多孔質層形成用組成物を調合した。この第1導電性多孔質層形成用組成物を、離型層が形成されたポリエチレンテレフタレート(PET)フィルム上にアプリケーターを用いて約50μmの厚みとなるように塗布した。その後、95℃に設定した乾燥炉中で約15分乾燥させて、PETフィルム上に第1導電性多孔質層(1)を作製した。その後、第1導電性多孔質層(1)を離型層が形成されたPETフィルムから剥離し、第1導電性多孔質層(1)(実施例1の電池用ガス拡散層)を得た。
Example 1
A composition for forming a first conductive porous layer is obtained by dispersing 100 parts by mass of conductive carbon particles, 500 parts by mass of a modified polyolefin resin (50 parts by mass of melt), and 1000 parts by mass of methylcyclohexane (MCH) by media dispersion. Was formulated. This composition for forming a first conductive porous layer was applied on a polyethylene terephthalate (PET) film on which a release layer was formed using an applicator so as to have a thickness of about 50 μm. Then, it was made to dry for about 15 minutes in the drying furnace set to 95 degreeC, and the 1st electroconductive porous layer (1) was produced on PET film. Then, the 1st electroconductive porous layer (1) was peeled from the PET film in which the release layer was formed, and the 1st electroconductive porous layer (1) (The gas diffusion layer for batteries of Example 1) was obtained. .
 次に、得られた第1導電性多孔質層(1)を、金属メッシュ(SUS304 φ0.05×180m/s;φは線径(mm)、m/sは1インチ×1インチ中に存在する網目の数である)の表面に配置し、プレス温度60℃、プレス圧2MPa、プレス時間180秒の条件で熱プレスをすることにより、第1導電性多孔質層(1)と金属メッシュとが一体化した電池用ガス拡散層(金属メッシュを備える実施例1の電池用ガス拡散層)を作製した。この電池用ガス拡散層において、第1導電性多孔質層(1)を金属メッシュに対して下方になるようにした場合に第1導電性多孔質層(1)が、金属メッシュから5分後も剥れ落ちなかった。 Next, the obtained first conductive porous layer (1) was formed in a metal mesh (SUS304 φ0.05 × 180 m / s; φ was wire diameter (mm), m / s was in 1 inch × 1 inch. The first conductive porous layer (1) and the metal mesh are subjected to hot pressing under the conditions of a pressing temperature of 60 ° C., a pressing pressure of 2 MPa, and a pressing time of 180 seconds. Produced a gas diffusion layer for battery (battery gas diffusion layer of Example 1 including a metal mesh). In this gas diffusion layer for a battery, when the first conductive porous layer (1) is positioned below the metal mesh, the first conductive porous layer (1) is 5 minutes after the metal mesh. Did not come off.
 実施例2
 実施例1と同様にして、第1導電性多孔質層(1)を作製した。
Example 2
In the same manner as in Example 1, a first conductive porous layer (1) was produced.
 次に、導電性炭素粒子100質量部、高分子重合体500質量部(溶質量50質量部)、及びメチルエチルケトン(MEK)1000質量部をメディア分散により分散させることにより第2導電性多孔質層形成用組成物を調合した。この第2導電性多孔質層形成用組成物を、第1導電性多孔質層(1)上にアプリケーターを用いて約50μmの厚みとなるように塗布した。その後、95℃に設定した乾燥炉中で約15分乾燥させて、第1導電性多孔質層(1)上に第2導電性多孔質層(1)を作製し、第1導電性多孔質層(1)及び第2導電性多孔質層(1)の積層体(実施例2の電池用ガス拡散層)を得た。 Next, the second conductive porous layer is formed by dispersing 100 parts by mass of conductive carbon particles, 500 parts by mass of the polymer (melting mass 50 parts by mass), and 1000 parts by mass of methyl ethyl ketone (MEK) by media dispersion. A composition for preparation was prepared. The composition for forming the second conductive porous layer was applied on the first conductive porous layer (1) so as to have a thickness of about 50 μm using an applicator. Then, it is dried for about 15 minutes in a drying oven set at 95 ° C. to produce the second conductive porous layer (1) on the first conductive porous layer (1), and the first conductive porous layer A laminate of the layer (1) and the second conductive porous layer (1) (battery gas diffusion layer of Example 2) was obtained.
 次に、得られた実施例2の電池用ガス拡散層が有する第1導電性多孔質層(1)を、金属メッシュ(SUS304 φ0.05×180m/s)と接するように配置し、プレス温度60℃、プレス圧2MPa、プレス時間180秒の条件で熱プレスをすることにより、第1導電性多孔質層(1)及び第2導電性多孔質層(1)の積層体と金属メッシュとが一体化した電池用ガス拡散層(金属メッシュを備える実施例2の電池用ガス拡散層)を作製した。この電池用ガス拡散層において、第1導電性多孔質層(1)を金属メッシュに対して下方になるようにした場合に第1導電性多孔質層(1)が、金属メッシュから5分後も剥れ落ちなかった。 Next, the obtained first conductive porous layer (1) included in the battery gas diffusion layer of Example 2 was placed in contact with a metal mesh (SUS304 φ0.05 × 180 m / s), and the press temperature By performing hot pressing under the conditions of 60 ° C., pressing pressure of 2 MPa, and pressing time of 180 seconds, the laminate of the first conductive porous layer (1) and the second conductive porous layer (1) and the metal mesh are obtained. An integrated battery gas diffusion layer (battery gas diffusion layer of Example 2 including a metal mesh) was produced. In this gas diffusion layer for a battery, when the first conductive porous layer (1) is positioned below the metal mesh, the first conductive porous layer (1) is 5 minutes after the metal mesh. Did not come off.
 比較例1
 導電性炭素粒子100質量部、高分子重合体500質量部(溶質量50質量部)、及びメチルエチルケトン(MEK)1000質量部をメディア分散により分散させることにより第2導電性多孔質層形成用組成物を調合した。この第2導電性多孔質層形成用組成物を、離型層が形成されたポリエチレンテレフタレート(PET)フィルム上にアプリケーターを用いて約50μmの厚みとなるように塗布した。その後、95℃に設定した乾燥炉中で約15分乾燥させて、PETフィルム上に第2導電性多孔質層(1)を作製した。その後、第2導電性多孔質層(1)を離型層が形成されたPETフィルムから剥離し、第2導電性多孔質層(1)(比較例1の電池用ガス拡散層)を得た。
Comparative Example 1
A composition for forming a second conductive porous layer is obtained by dispersing 100 parts by mass of conductive carbon particles, 500 parts by mass of a polymer (melting mass of 50 parts by mass), and 1000 parts by mass of methyl ethyl ketone (MEK) by media dispersion. Was formulated. This composition for forming a second conductive porous layer was applied on a polyethylene terephthalate (PET) film on which a release layer was formed using an applicator so as to have a thickness of about 50 μm. Then, it was made to dry for about 15 minutes in the drying furnace set to 95 degreeC, and the 2nd electroconductive porous layer (1) was produced on PET film. Thereafter, the second conductive porous layer (1) was peeled off from the PET film on which the release layer was formed to obtain the second conductive porous layer (1) (the battery gas diffusion layer of Comparative Example 1). .
 次に、得られた第2導電性多孔質層(1)を、金属メッシュ(SUS304 φ0.05×180m/s)の表面に配置し、プレス温度200℃、プレス圧10MPa、プレス時間180秒の条件で熱プレスをすることにより、第2導電性多孔質層(1)と金属メッシュとが積層した電池用ガス拡散層(金属メッシュを備える比較例1の電池用ガス拡散層)を作製した。第2導電性多孔質層(1)を金属メッシュに対して下方になるようにした場合に第2導電性多孔質層(1)が、金属メッシュから5分後も剥れ落ちなかった。 Next, the obtained 2nd electroconductive porous layer (1) is arrange | positioned on the surface of a metal mesh (SUS304 (phi) 0.05 * 180 m / s), press temperature of 200 degreeC, press pressure of 10 MPa, and press time of 180 second. By performing hot pressing under conditions, a battery gas diffusion layer (battery gas diffusion layer of Comparative Example 1 including a metal mesh) in which the second conductive porous layer (1) and the metal mesh were laminated was produced. When the second conductive porous layer (1) was placed below the metal mesh, the second conductive porous layer (1) did not peel off from the metal mesh even after 5 minutes.
 比較例2
 比較例1と同様にして、第2導電性多孔質層(1)を得た。
Comparative Example 2
In the same manner as in Comparative Example 1, a second conductive porous layer (1) was obtained.
 次に、得られた第2導電性多孔質層(1)を、金属メッシュ(SUS304 φ0.05×180m/s)の表面に配置し、プレス温度60℃、プレス圧2MPa、プレス時間180秒の条件で熱プレスをすることにより、第2導電性多孔質層(1)と金属メッシュとが積層した電池用ガス拡散層(金属メッシュを備える比較例2の電池用ガス拡散層)を作製した。しかしながら、第2導電性多孔質層(1)は、金属メッシュとはほとんど接着しておらず、第2導電性多孔質層(1)を金属メッシュに対して下方になるようにした場合にすぐに剥れ落ちた。 Next, the obtained 2nd electroconductive porous layer (1) is arrange | positioned on the surface of a metal mesh (SUS304 (phi) 0.05 * 180 m / s), the press temperature of 60 degreeC, the press pressure of 2 MPa, and the press time of 180 second. By hot pressing under the conditions, a battery gas diffusion layer (battery gas diffusion layer of Comparative Example 2 including a metal mesh) in which the second conductive porous layer (1) and the metal mesh were laminated was produced. However, the second conductive porous layer (1) is hardly adhered to the metal mesh, and immediately after the second conductive porous layer (1) is positioned below the metal mesh. Peeled off.
 実施例3
 実施例1と同様にして、第1導電性多孔質層(1)を作製した。
Example 3
In the same manner as in Example 1, a first conductive porous layer (1) was produced.
 次に、得られた第1導電性多孔質層(1)を、市販の金属セパレータの流路が形成された側の表面に配置し、プレス温度60℃、プレス圧2MPa、プレス時間180秒の条件で熱プレスをすることにより、第1導電性多孔質層(1)と金属セパレータとが一体化した電池用部材(第1導電性多孔質層(1)と金属セパレータとを備える実施例3の電池用部材)を作製した。この電池用部材において、第1導電性多孔質層(1)を金属セパレータに対して下方になるようにした場合に第1導電性多孔質層(1)が、金属セパレータから5分後も剥れ落ちなかった。 Next, the obtained 1st electroconductive porous layer (1) is arrange | positioned on the surface of the side in which the flow path of the commercially available metal separator was formed, press temperature 60 degreeC, press pressure 2MPa, press time 180 seconds. Example 3 provided with a battery member (first conductive porous layer (1) and metal separator) in which the first conductive porous layer (1) and the metal separator are integrated by hot pressing under conditions Battery member). In this battery member, when the first conductive porous layer (1) is positioned below the metal separator, the first conductive porous layer (1) peels off from the metal separator even after 5 minutes. It did not fall.
 実施例4
 実施例1と同様にして、第1導電性多孔質層(1)及び第2導電性多孔質層(1)の積層体を作製した。
Example 4
In the same manner as in Example 1, a laminate of the first conductive porous layer (1) and the second conductive porous layer (1) was produced.
 次に、得られた積層体が有する第1導電性多孔質層(1)を、市販の金属セパレータの流路が形成された側の表面と接するように配置し、プレス温度60℃、プレス圧2MPa、プレス時間180秒の条件で熱プレスをすることにより、第1導電性多孔質層(1)及び第2導電性多孔質層(1)の積層体と金属セパレータとが一体化した電池用ガス部材(第1導電性多孔質層(1)と第2導電性多孔質層(1)と金属セパレータとを備える実施例4の電池用部材)を作製した。この電池用部材において、導電性多孔質層(第1導電性多孔質層(1)及び第2導電性多孔質層(1))を金属セパレータに対して下方になるようにした場合に導電性多孔質層(第1導電性多孔質層(1)及び第2導電性多孔質層(1))が、金属セパレータから5分後も剥れ落ちなかった。 Next, the 1st electroconductive porous layer (1) which the obtained laminated body has is arrange | positioned so that the flow path of the commercially available metal separator may be formed, press temperature 60 degreeC, press pressure For a battery in which the laminate of the first conductive porous layer (1) and the second conductive porous layer (1) and the metal separator are integrated by hot pressing under conditions of 2 MPa and a press time of 180 seconds. A gas member (a battery member of Example 4 provided with a first conductive porous layer (1), a second conductive porous layer (1), and a metal separator) was produced. In this battery member, the conductive porous layers (the first conductive porous layer (1) and the second conductive porous layer (1)) are electrically conductive when placed below the metal separator. The porous layers (the first conductive porous layer (1) and the second conductive porous layer (1)) did not peel off after 5 minutes from the metal separator.
 比較例3
 比較例1と同様にして、第2導電性多孔質層(1)を得た。
Comparative Example 3
In the same manner as in Comparative Example 1, a second conductive porous layer (1) was obtained.
 次に、得られた第2導電性多孔質層(1)を、市販の金属セパレータの流路が形成された側の表面に配置し、プレス温度200℃、プレス圧10MPa、プレス時間180秒の条件で熱プレスをすることにより、第2導電性多孔質層(1)と金属セパレータとが積層した電池用部材(第2導電性多孔質層(1)と金属セパレータとを備える比較例3の電池用部材)を作製した。第2導電性多孔質層(1)を金属セパレータに対して下方になるようにした場合に第2導電性多孔質層(1)が、金属セパレータから5分後も剥れ落ちなかった。 Next, the obtained 2nd electroconductive porous layer (1) is arrange | positioned on the surface of the side in which the flow path of the commercially available metal separator was formed, press temperature 200 degreeC, press pressure 10MPa, press time 180 seconds. By performing hot pressing under the conditions, the battery member (second conductive porous layer (1) and metal separator) in which the second conductive porous layer (1) and the metal separator are laminated is used. Battery member) was prepared. When the second conductive porous layer (1) was placed below the metal separator, the second conductive porous layer (1) did not peel off after 5 minutes from the metal separator.
 比較例4
 比較例1と同様にして、第2導電性多孔質層(1)を得た。
Comparative Example 4
In the same manner as in Comparative Example 1, a second conductive porous layer (1) was obtained.
 次に、得られた第2導電性多孔質層(1)を、市販の金属セパレータの流路が形成された側の表面に配置し、プレス温度60℃、プレス圧2MPa、プレス時間180秒の条件で熱プレスをすることにより、第2導電性多孔質層(1)と金属セパレータとが積層した電池用部材(第2導電性多孔質層(1)と金属セパレータとを備える比較例4の電池用部材)を作製した。しかしながら、第2導電性多孔質層(1)は、金属セパレータとはほとんど接着しておらず、第2導電性多孔質層(1)を金属セパレータに対して下方になるようにした場合にすぐに剥れ落ちた。 Next, the obtained 2nd electroconductive porous layer (1) is arrange | positioned on the surface of the side in which the flow path of the commercially available metal separator was formed, press temperature 60 degreeC, press pressure 2MPa, press time 180 seconds. By performing hot pressing under conditions, a battery member (second conductive porous layer (1) and metal separator) in which the second conductive porous layer (1) and the metal separator are laminated is used. Battery member) was prepared. However, the second conductive porous layer (1) is hardly adhered to the metal separator, and immediately after the second conductive porous layer (1) is positioned below the metal separator. Peeled off.
 密着性評価
 実施例1~4及び比較例1~4で得た金属メッシュ又は金属セパレータを備える電池用ガス拡散層又は電池用部材において、導電性多孔質層と金属メッシュ又は金属セパレータとの密着性を評価した。具体的には、
A:導電性多孔質層側を金属メッシュ又は金属セパレータに対して下方になるようにした場合に導電性多孔質層が金属メッシュ又は金属セパレータから5分後も剥れ落ちなかった
C:導電性多孔質層側を金属メッシュ又は金属セパレータに対して下方になるようにした場合に導電性多孔質層が金属メッシュ又は金属セパレータから剥れ落ちるまでの時間は5分未満であった
と判断した。結果を表1に示す。
Adhesion Evaluation In the gas diffusion layer or battery member for a battery comprising the metal mesh or metal separator obtained in Examples 1 to 4 and Comparative Examples 1 to 4, the adhesion between the conductive porous layer and the metal mesh or metal separator Evaluated. In particular,
A: The conductive porous layer did not peel off after 5 minutes from the metal mesh or metal separator when the conductive porous layer side was positioned below the metal mesh or metal separator. C: Conductivity When the porous layer side was positioned below the metal mesh or metal separator, it was judged that the time until the conductive porous layer peeled off from the metal mesh or metal separator was less than 5 minutes. The results are shown in Table 1.
 厚みの変化の評価
 実施例1~4及び比較例1~4で得た金属メッシュ又は金属セパレータを備える電池用ガス拡散層又は電池用部材において、導電性多孔質層の厚み方向の潰れが発生して、空隙の潰れが生じているか否かを評価した。具体的には、実施例1~4及び比較例1~4で得た金属メッシュ又は金属セパレータを備える電池用ガス拡散層又は電池用部材から金属メッシュ又は金属セパレータを剥離し、導電性多孔質層の断面を走査型電子顕微鏡(SEM)にて観察し、
A:金属メッシュ又は金属セパレータと接触した箇所の導電性多孔質層の厚みの変化がないか、ほとんどない
B:金属メッシュ又は金属セパレータと接触した箇所の導電性多孔質層の厚みの変化が1/3未満である
C:金属メッシュ又は金属セパレータと接触した箇所の導電性多孔質層の厚みの変化が1/3以上である
と判断した。結果を表1に示す。
Evaluation of change in thickness In the battery gas diffusion layer or battery member provided with the metal mesh or metal separator obtained in Examples 1 to 4 and Comparative Examples 1 to 4, the conductive porous layer was crushed in the thickness direction. Thus, it was evaluated whether or not voids were crushed. Specifically, the metal mesh or metal separator is peeled off from the battery gas diffusion layer or battery member provided with the metal mesh or metal separator obtained in Examples 1 to 4 and Comparative Examples 1 to 4, and the conductive porous layer Are observed with a scanning electron microscope (SEM),
A: Little or no change in the thickness of the conductive porous layer in contact with the metal mesh or metal separator B: 1 change in the thickness of the conductive porous layer in contact with the metal mesh or metal separator C: less than / 3: It was determined that the change in thickness of the conductive porous layer at the portion in contact with the metal mesh or metal separator was 1/3 or more. The results are shown in Table 1.
 また、実施例1~2及び比較例1で得た金属メッシュを備える電池用ガス拡散層から金属メッシュを剥離し、各電池用ガス拡散層の断面をSEM(日本電子(株)製JSM-6700F)で観察し、厚みを測定し、
潰れ率(%)=100-(一体化後膜厚)/(一体化前膜厚)×100
として潰れ率を算出した。結果を表2に示す。
In addition, the metal mesh was peeled from the battery gas diffusion layer provided with the metal mesh obtained in Examples 1 and 2 and Comparative Example 1, and the cross section of each battery gas diffusion layer was SEM (JSM-6700F manufactured by JEOL Ltd.). ), Measure the thickness,
Crushing rate (%) = 100− (film thickness after integration) / (film thickness before integration) × 100
The crushing rate was calculated as The results are shown in Table 2.
 触媒層側表面の外観変化
 実施例1~4及び比較例1~4で得た金属メッシュ又は金属セパレータを備える電池用ガス拡散層又は電池用部材において、導電性多孔質層表面が金属メッシュ又は金属セパレータの影響を受けて変形しているか否かを評価した。具体的には、実施例1~4及び比較例1~4で得た金属メッシュ又は金属セパレータを備える電池用ガス拡散層又は電池用部材において、導電性多孔質層の金属メッシュ又は金属セパレータと接していなかった表面を走査型電子顕微鏡(SEM)にて観察し、
A:金属メッシュ又は金属セパレータと一体化する前の導電性多孔質層の表面と比較して外観に変化がないか、ほとんどない
C:金属メッシュ又は金属セパレータと一体化する前の導電性多孔質層の表面と比較して外観の変化が大きい
と判断した。結果を表1に示す。
Change in appearance of catalyst layer side surface In the battery gas diffusion layer or battery member comprising the metal mesh or metal separator obtained in Examples 1 to 4 and Comparative Examples 1 to 4, the surface of the conductive porous layer is a metal mesh or metal. It was evaluated whether it was deformed under the influence of the separator. Specifically, in the battery gas diffusion layer or battery member provided with the metal mesh or metal separator obtained in Examples 1 to 4 and Comparative Examples 1 to 4, the metal mesh or metal separator of the conductive porous layer was in contact. The surface that was not observed was observed with a scanning electron microscope (SEM),
A: There is almost no change in the appearance compared to the surface of the conductive porous layer before being integrated with the metal mesh or the metal separator. C: The conductive porous before being integrated with the metal mesh or the metal separator The change in appearance was judged to be large compared to the surface of the layer. The results are shown in Table 1.
 基材剥離後外観変化
 実施例1~4及び比較例1~4で得た各導電性多孔質層が、基材から剥離しやすいか否かを評価した。具体的には、実施例1~4及び比較例1~4において、基材上に各導電性多孔質層を形成した後に、基材を剥離する際に、
A:導電性多孔質層に割れが発生しない
C:導電性多孔質層に割れが発生する
と判断した。結果を表1に示す。
Appearance change after substrate peeling The conductive porous layers obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were evaluated for ease of peeling from the substrate. Specifically, in Examples 1 to 4 and Comparative Examples 1 to 4, when each conductive porous layer was formed on the substrate and then the substrate was peeled off,
A: No cracking occurred in the conductive porous layer C: It was judged that cracking occurred in the conductive porous layer. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上の結果、実施例1~4では、導電性多孔質層の空隙を潰すことを抑制し、金属メッシュ又は金属セパレータと好適に一体化することができていた。特に、実施例1~2では、一体化前後の潰れ率を0.3~33.3%の範囲内とすることができており、比較例1の48.2%と比較して空隙が潰れにくいことが示唆されている。また、導電性多孔質層の表面が金属メッシュ又は金属セパレータの影響を受けたり、基材剥離後に割れが発生したりすることもなかった。 As a result of the above, in Examples 1 to 4, it was possible to suppress crushing of the voids of the conductive porous layer, and to be suitably integrated with the metal mesh or the metal separator. In particular, in Examples 1 and 2, the crushing ratio before and after the integration can be within the range of 0.3 to 33.3%, and the voids are crushed as compared with 48.2% in Comparative Example 1. It is suggested that it is difficult. Further, the surface of the conductive porous layer was not affected by the metal mesh or the metal separator, and cracks were not generated after the substrate was peeled off.
 それに対して、比較例1及び3では、導電性多孔質層と金属メッシュ又は金属セパレータとを確実に一体化させるために強い条件で熱プレスしたためか、導電性多孔質層の空隙が潰れており、また、導電性多孔質層の表面が金属メッシュ又は金属セパレータの影響を受けて、触媒層と接する側の導電性多孔質層表面まで金属メッシュ痕又は金属セパレータ痕が発生し、外観表面が発生していた。 On the other hand, in Comparative Examples 1 and 3, the voids in the conductive porous layer are crushed because it is hot pressed under strong conditions in order to reliably integrate the conductive porous layer and the metal mesh or metal separator. In addition, the surface of the conductive porous layer is affected by the metal mesh or metal separator, and the metal mesh mark or metal separator mark is generated up to the surface of the conductive porous layer in contact with the catalyst layer, resulting in the appearance surface. Was.
 また、比較例2及び4では、導電性多孔質層の空隙が潰れることを抑制するために弱い条件で熱プレスしたためか、導電性多孔質層と金属メッシュ又は金属セパレータとを十分に一体化させることはできなかった。 In Comparative Examples 2 and 4, the conductive porous layer is sufficiently integrated with the metal mesh or the metal separator because it is hot-pressed under weak conditions to suppress the collapse of the voids of the conductive porous layer. I couldn't.
 1   電池用ガス拡散層
 11  第1導電性多孔質層
 12  第2導電性多孔質層
 13  導電性多孔質基材
 2   電池用部材
 21  セパレータ
 3   電池用膜-電極接合体
 31  触媒層-電解質膜積層体
 311 電解質膜
 312 触媒層
 4   電池
DESCRIPTION OF SYMBOLS 1 Battery gas diffusion layer 11 1st electroconductive porous layer 12 2nd electroconductive porous layer 13 Conductive porous base material 2 Battery member 21 Separator 3 Battery membrane-electrode assembly 31 Catalyst layer-electrolyte layer lamination Body 311 Electrolyte membrane 312 Catalyst layer 4 Battery

Claims (19)

  1. 導電性炭素材料、及び変性ポリオレフィン樹脂を含む第1導電性多孔質層を備える電池用ガス拡散層。 A gas diffusion layer for a battery, comprising a first conductive porous layer containing a conductive carbon material and a modified polyolefin resin.
  2. 前記第1導電性多孔質層と接するように、導電性炭素材料及び高分子重合体を含む第2導電性多孔質層が積層されている、請求項1に記載の電池用ガス拡散層。 The gas diffusion layer for a battery according to claim 1, wherein a second conductive porous layer containing a conductive carbon material and a polymer is laminated so as to be in contact with the first conductive porous layer.
  3. 前記第2導電性多孔質層に含まれる前記高分子重合体は、フッ素樹脂である、請求項2に記載の電池用ガス拡散層。 The battery gas diffusion layer according to claim 2, wherein the high molecular polymer contained in the second conductive porous layer is a fluororesin.
  4. 前記第1導電性多孔質層は、さらに、硬化剤を含有する、請求項1~3のいずれかに記載の電池用ガス拡散層。 The battery gas diffusion layer according to any one of claims 1 to 3, wherein the first conductive porous layer further contains a curing agent.
  5. 前記第1導電性多孔質層と接するように導電性多孔質基材が積層されている、請求項1~4のいずれかに記載の電池用ガス拡散層。 The gas diffusion layer for a battery according to any one of claims 1 to 4, wherein a conductive porous substrate is laminated so as to be in contact with the first conductive porous layer.
  6. 触媒層、電解質膜及び触媒層が順次積層された触媒層-電解質膜積層体の片面又は両面に、請求項1~4のいずれかに記載の電池用ガス拡散層が、前記第1導電性多孔質層が最外層となるように積層されている、電池用膜-電極接合体。 The battery gas diffusion layer according to any one of claims 1 to 4 is provided on one or both sides of a catalyst layer-electrolyte membrane laminate in which a catalyst layer, an electrolyte membrane, and a catalyst layer are sequentially laminated. A membrane-electrode assembly for a battery, which is laminated so that the porous layer is the outermost layer.
  7. 触媒層、電解質膜及び触媒層が順次積層された触媒層-電解質膜積層体の片面又は両面に、請求項5に記載の電池用ガス拡散層が、前記導電性多孔質基材が最外層となるように積層されている、電池用膜-電極接合体。 The gas diffusion layer for a battery according to claim 5, wherein the conductive porous substrate is an outermost layer on one side or both sides of a catalyst layer-electrolyte membrane laminate in which a catalyst layer, an electrolyte membrane, and a catalyst layer are sequentially laminated. A membrane-electrode assembly for a battery laminated in such a manner.
  8. 請求項6又は7に記載の電池用膜-電極接合体の最外層である前記第1導電性多孔質層又は前記導電性多孔質基材と接するように、さらにセパレータが積層されている、電池。 A battery in which a separator is further laminated so as to be in contact with the first conductive porous layer or the conductive porous substrate which is the outermost layer of the battery membrane-electrode assembly according to claim 6 or 7. .
  9. 前記セパレータは、多孔体領域を有する、請求項8に記載の電池。 The battery according to claim 8, wherein the separator has a porous body region.
  10. 前記セパレータは、ガス流路が形成されておらず、且つ、多孔体を備える、請求項8に記載の電池。 The battery according to claim 8, wherein the separator has no gas flow path and includes a porous body.
  11. 請求項1~4のいずれかに記載の電池用ガス拡散層の前記第1導電性多孔質層と接するように、セパレータが積層されている、電池用部材。 A battery member in which a separator is laminated so as to be in contact with the first conductive porous layer of the battery gas diffusion layer according to any one of claims 1 to 4.
  12. 前記セパレータは、多孔体領域を有する、請求項11に記載の電池用部材。 The battery member according to claim 11, wherein the separator has a porous body region.
  13. 前記セパレータは、ガス流路が形成されておらず、且つ、多孔体を備える、請求項11に記載の電池用部材。 The battery member according to claim 11, wherein the separator has no gas flow path and includes a porous body.
  14. 電池用ガス拡散層の製造方法であって、
    (I)基材上に、導電性炭素材料、及び変性ポリオレフィン樹脂を含む第1導電性多孔質層形成用組成物を用いて第1導電性多孔質層を形成する工程、及び
    (II)前記第1導電性多孔質層から基材を剥離する工程
    を備える、電池用ガス拡散層の製造方法。
    A method for producing a gas diffusion layer for a battery, comprising:
    (I) a step of forming a first conductive porous layer on a substrate using a conductive carbon material and a first conductive porous layer-forming composition containing a modified polyolefin resin; and (II) The manufacturing method of the gas diffusion layer for batteries provided with the process of peeling a base material from a 1st electroconductive porous layer.
  15. さらに、前記工程(II)の後に、
    (III)前記第1導電性多孔質層の上に、導電性炭素材料及び高分子重合体を含む第2導電性多孔質層形成用組成物を用いて第2導電性多孔質層を形成する工程
    を備える、請求項14に記載の電池用ガス拡散層の製造方法。
    Furthermore, after the step (II),
    (III) A second conductive porous layer is formed on the first conductive porous layer using a second conductive porous layer forming composition containing a conductive carbon material and a polymer. The manufacturing method of the gas diffusion layer for batteries of Claim 14 provided with a process.
  16. さらに、前記工程(I)と工程(II)との間に、
    (III)前記第1導電性多孔質層の上に、導電性炭素材料及び高分子重合体を含む第2導電性多孔質層形成用組成物を用いて第2導電性多孔質層を形成する工程
    を備える、請求項14に記載の電池用ガス拡散層の製造方法。
    Furthermore, between the step (I) and the step (II),
    (III) A second conductive porous layer is formed on the first conductive porous layer using a second conductive porous layer forming composition containing a conductive carbon material and a polymer. The manufacturing method of the gas diffusion layer for batteries of Claim 14 provided with a process.
  17. さらに、
    (IV)導電性多孔質基材を前記第1導電性多孔質層に接するように積層する工程
    を備える、請求項14又は15に記載の電池用ガス拡散層の製造方法。
    further,
    (IV) The manufacturing method of the gas diffusion layer for batteries of Claim 14 or 15 provided with the process of laminating | stacking a conductive porous base material so that the said 1st conductive porous layer may be contact | connected.
  18. さらに、前記工程(II)の後に、
    (IV)導電性多孔質基材を前記第1導電性多孔質層に接するように積層する工程
    を備える、請求項16に記載の電池用ガス拡散層の製造方法。
    Furthermore, after the step (II),
    The manufacturing method of the gas diffusion layer for batteries of Claim 16 provided with the process of laminating | stacking (IV) a conductive porous base material so that the said 1st conductive porous layer may be contact | connected.
  19. (1)請求項14~16のいずれかに記載の製造方法により、少なくとも、第1導電性多孔質層を備える電池用ガス拡散層を準備する工程、及び
    (2)セパレータを前記第1導電性多孔質層に接するように積層する工程
    を備える、電池用部材の製造方法。
    (1) A step of preparing a gas diffusion layer for a battery comprising at least a first conductive porous layer by the manufacturing method according to any one of claims 14 to 16, and (2) a separator comprising the first conductive The manufacturing method of the member for batteries provided with the process laminated | stacked so that a porous layer may be contact | connected.
PCT/JP2015/076803 2014-09-25 2015-09-18 Gas diffusion layer to be used in battery, membrane electrode assembly to be used in battery and using gas diffusion layer to be used in battery, member to be used in battery, battery, and method for producing same WO2016047642A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014195395 2014-09-25
JP2014-195395 2014-09-25
JP2015-015209 2015-01-29
JP2015015209A JP5794404B1 (en) 2014-09-25 2015-01-29 Battery gas diffusion layer, battery membrane-electrode assembly using the battery gas diffusion layer, battery member, battery, and production method thereof
JP2015140003A JP2016146311A (en) 2014-09-25 2015-07-13 Gas diffusion layer for battery, film for battery-electrode assembly including the same, member for battery, battery, and manufacturing methods thereof
JP2015-140003 2015-07-13

Publications (1)

Publication Number Publication Date
WO2016047642A1 true WO2016047642A1 (en) 2016-03-31

Family

ID=55581167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076803 WO2016047642A1 (en) 2014-09-25 2015-09-18 Gas diffusion layer to be used in battery, membrane electrode assembly to be used in battery and using gas diffusion layer to be used in battery, member to be used in battery, battery, and method for producing same

Country Status (1)

Country Link
WO (1) WO2016047642A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085019A (en) * 1999-09-17 2001-03-30 Asahi Glass Co Ltd High polymer solid fuel cell and manufacture of electrode therefor
JP2002117865A (en) * 2000-04-28 2002-04-19 Dmc 2 Degussa Metals Catalysts Cerdec Ag Gas distribution structure for polymer electrolyte-fuel cell, film-electrode unit for this kind of battery, polymer electrolyte-fuel cell, and manufacturing method of gas distribution structure
JP2005310660A (en) * 2004-04-23 2005-11-04 Asahi Glass Co Ltd Electrolyte membrane electrode assembly and its manufacturing method
JP2013206573A (en) * 2012-03-27 2013-10-07 Nippon Zeon Co Ltd Aqueous conductive coating material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085019A (en) * 1999-09-17 2001-03-30 Asahi Glass Co Ltd High polymer solid fuel cell and manufacture of electrode therefor
JP2002117865A (en) * 2000-04-28 2002-04-19 Dmc 2 Degussa Metals Catalysts Cerdec Ag Gas distribution structure for polymer electrolyte-fuel cell, film-electrode unit for this kind of battery, polymer electrolyte-fuel cell, and manufacturing method of gas distribution structure
JP2005310660A (en) * 2004-04-23 2005-11-04 Asahi Glass Co Ltd Electrolyte membrane electrode assembly and its manufacturing method
JP2013206573A (en) * 2012-03-27 2013-10-07 Nippon Zeon Co Ltd Aqueous conductive coating material

Similar Documents

Publication Publication Date Title
JP4930644B1 (en) Gas diffusion layer for fuel cell and manufacturing method thereof
JP5196717B2 (en) Catalyst layer transfer sheet, method for producing catalyst layer-electrolyte membrane laminate, method for producing electrode-electrolyte membrane assembly, and method for producing fuel cell
JP5293859B1 (en) Conductive porous layer for battery and method for producing the same
US20100314038A1 (en) Process for producing membrane/electrode assembly for polymer electrolyte fuel cell
EP2677579A1 (en) Membrane-electrode assembly for fuel cell, manufacturing method thereof, and solid polymer fuel cell using membrane-electrode assembly
WO2013161971A1 (en) Laminate body and method for manufacturing same
JP2017050186A (en) Gas diffusion layer for battery, membrane electrode assembly for battery using the gas diffusion layer for battery, member for battery, battery, and method for producing the gas diffusion layer for battery
JP2016146311A (en) Gas diffusion layer for battery, film for battery-electrode assembly including the same, member for battery, battery, and manufacturing methods thereof
JP2007048701A (en) Transfer sheet, laminate of catalyst layer and electrolyte membrane, electrode electrolyte membrane assembly, and method of manufacturing them
JP6094386B2 (en) Conductive porous layer for battery and method for producing the same
JP4993024B1 (en) Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly
WO2016047642A1 (en) Gas diffusion layer to be used in battery, membrane electrode assembly to be used in battery and using gas diffusion layer to be used in battery, member to be used in battery, battery, and method for producing same
JP2017037716A (en) Membrane electrode assembly for battery and battery using the same
WO2021132137A1 (en) Manufacturing method and manufacturing device for film/catalyst assembly
JP5674703B2 (en) Conductive porous layer for battery and method for producing the same
JP6160177B2 (en) Conductive porous layer for battery and battery using the same
JP5200348B2 (en) Catalyst layer transfer film and catalyst layer-electrolyte membrane laminate
JP2017037715A (en) Gas diffusion layer for battery, membrane electrode assembly for battery using the same, and battery
JP4930643B1 (en) Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly
JP2016167442A (en) Gas diffusion layer for battery, membrane-electrode assembly using gas diffusion layer for battery, and battery, and method of manufacturing gas diffusion layer for battery
JP6160178B2 (en) Conductive porous layer for battery and battery using the same
JP2017050185A (en) Gas diffusion layer for battery, membrane electrode assembly for battery using the gas diffusion layer for battery, member for battery, battery, and method for producing the gas diffusion layer for battery
JP2012204339A (en) Gas diffusion layer for fuel cell and manufacturing method of the same
JP2017033898A (en) Gas diffusion layer for battery, membrane-electrode assembly, gas diffusion layer with sheet for battery, method of manufacturing gas diffusion layer for battery, and method of manufacturing membrane-electrode assembly
JP2016192376A (en) Mold release member for gas diffusion layer, gas diffusion layer with mold release member using the same and manufacturing methods of mold release member for gas diffusion layer, gas diffusion layer with mold release member and gas diffusion layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843150

Country of ref document: EP

Kind code of ref document: A1