WO2016047554A1 - Method for manufacturing polarizer - Google Patents

Method for manufacturing polarizer Download PDF

Info

Publication number
WO2016047554A1
WO2016047554A1 PCT/JP2015/076509 JP2015076509W WO2016047554A1 WO 2016047554 A1 WO2016047554 A1 WO 2016047554A1 JP 2015076509 W JP2015076509 W JP 2015076509W WO 2016047554 A1 WO2016047554 A1 WO 2016047554A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
crosslinking
dyeing
film
boric acid
Prior art date
Application number
PCT/JP2015/076509
Other languages
French (fr)
Japanese (ja)
Inventor
天煕 趙
容鉉 權
民奎 朴
佑煥 薛
公彦 矢可部
佑介 北河
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020177008238A priority Critical patent/KR102450760B1/en
Priority to JP2016550152A priority patent/JP6694821B2/en
Priority to CN201580050228.4A priority patent/CN107076906B/en
Publication of WO2016047554A1 publication Critical patent/WO2016047554A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a method for manufacturing a polarizer.
  • a polarizing plate generally includes a polarizer in which an iodine compound or a dichroic polarizing material is adsorbed and oriented on a polyvinyl alcohol (PVA) film, and a polarizer protective film is provided on one surface of the polarizer.
  • PVA polyvinyl alcohol
  • the other surface of the polarizer has a multilayer structure in which a polarizer protective film, an adhesive layer bonded to a liquid crystal cell, and a release film are sequentially stacked.
  • the polarizer constituting the polarizing plate is required to have high transmittance and degree of polarization in order to be applied to an image display device and provide an image having excellent color reproducibility.
  • various image display devices such as liquid crystal display devices may be used for a long time at high temperatures.
  • the demand for improvement in durability along with improvement in polarization performance and optical performance has increased, and as a result, the conditions for the performance of the polarizing plate have become very strict.
  • image display devices having characteristics suitable for various environments and applications are currently being sought, and optical durability including hue change under high temperature and high humidity conditions, and high contrast through high orientation and high transmission. It has been demanded.
  • Korean Patent No. 1296786 discloses a method of manufacturing a polarizer, but when the transmittance is high, the problem that the degree of polarization decreases cannot be improved.
  • An object of the present invention is to provide a method capable of producing a polarizer having improved optical characteristics and durability.
  • the swelling step, the dyeing step, and the crosslinking step are performed in this order, At least a part of the stretching step is performed in the dyeing step and / or before the dyeing step; At the end of the dyeing step, the distance between crystals in the polarizer-forming film in the stretching direction is 20 to 40 nm, and the dyeing solution contains a boric acid compound.
  • the cross-linking step includes at least a first cross-linking step and a second cross-linking step.
  • a polarizing plate comprising the polarizer of 8 and a protective film laminated on at least one surface of the polarizer.
  • An image display apparatus comprising the ten polarizing plates.
  • the method of the present invention can produce a polarizer having improved optical properties and improved polarization degree while having high transmittance.
  • the method of the present invention can produce a polarizer with significantly improved durability. Also, the method of the present invention can minimize the hue change even when exposed to high temperature conditions for a long time.
  • the present invention includes a step of swelling, dyeing, crosslinking and stretching a film for forming a polarizer, wherein the swelling step, the dyeing step, and the crosslinking step are performed in this order, and at least a part of the stretching step includes Performed at the end of the dyeing step and / or before the dyeing step, and at the end of the dyeing step, the distance between the crystals in the polarizer forming film in the stretching direction is 20 to 20 Production of a polarizer that is 40 nm, and the dyeing solution contains a boric acid compound, which has excellent polarization degree, significantly improved durability, and can minimize hue change even when exposed to high temperature conditions for a long time. Regarding the method.
  • a method for producing a polarizer includes a swelling step, a dyeing step, a crosslinking step, a stretching step, a water washing step, and a drying step, and is classified mainly by a stretching method.
  • a dry stretching method, a wet stretching method, or a hybrid stretching method in which the two kinds of stretching methods are mixed can be used.
  • the method for producing a polarizer of the present invention will be described by taking a wet stretching method as an example.
  • the present invention is not limited to this, and the other steps except the drying step in the above steps are different types of solutions. It is performed in a state where the film for forming a polarizer is immersed in a thermostatic water bath filled with one or more solutions selected from the inside.
  • the number of repetitions of each manufacturing step of the polarizer of the present invention, process conditions, and the like are not particularly limited as long as they do not depart from the object of the present invention.
  • a polarizer means a normal iodine-based polarizer in which iodine is adsorbed and oriented on a polarizer-forming film.
  • the type of the polarizer-forming film is not particularly limited as long as it is a film that can be dyed with a dichroic material such as iodine.
  • a polyvinyl alcohol film a partially saponified polyvinyl alcohol film; polyethylene terephthalate Hydrophilic polymer films such as films, ethylene-vinyl acetate copolymer films, ethylene-vinyl alcohol copolymer films, cellulose films, partially saponified films thereof; or dehydrated polyvinyl alcohol systems
  • Examples thereof include a polyene oriented film such as a film and a polyvinyl alcohol film subjected to dehydrochlorination treatment.
  • a polyvinyl alcohol film is preferable because it not only has an excellent effect of enhancing the uniformity of the degree of polarization in the plane but also has an excellent dyeing affinity for iodine.
  • ⁇ Swelling step> impurities such as dust and anti-blocking agents deposited on the surface of the polarizer-forming film are immersed in a swelling tank filled with a swelling aqueous solution before dyeing the unstretched polarizer-forming film.
  • This is a step for improving the physical properties of the polarizer by removing the swell and improving the stretching efficiency by swelling the polarizer-forming film and also suppressing the unevenness of dyeing.
  • aqueous solution for swelling usually water (pure water, deionized water) may be used alone, or a small amount of glycerin may be added to improve the processability of the polymer film.
  • the content is not particularly limited, and may be, for example, 5% by weight or less of the total weight of the aqueous solution for swelling.
  • the temperature of the swelling tank is not particularly limited, and may be, for example, 20 to 45 ° C, preferably 20 to 40 ° C.
  • the temperature of a swelling tank is in said range, it is excellent in subsequent extending
  • the execution time of the swelling step is not particularly limited, and may be, for example, 180 seconds or less, and preferably 90 seconds or less.
  • swelling bath immersion time is within the above range, it can suppress saturation due to excessive swelling, prevent breakage due to softening of the polarizer forming film, and uniform adsorption of iodine in the dyeing step The degree of polarization can be improved.
  • the swelling step and the stretching step may be performed simultaneously.
  • the stretching ratio may be about 1.1 to 1.7 times, preferably 1.2 to 1.6 times.
  • the draw ratio is less than 1.1 times, wrinkles may occur, and when it exceeds 1.7 times, the initial optical properties may be deteriorated.
  • an expander roll, a spiral roll, a crown roll, a cross guider, a bend bar or the like may be provided in the bath and / or at the entrance / exit of the bath.
  • the dyeing step is a step of immersing the polarizer forming film in a dyeing tank filled with a dichroic substance, for example, a dyeing solution containing iodine, and adsorbing iodine to the polarizer forming film.
  • a dichroic substance for example, a dyeing solution containing iodine, and adsorbing iodine to the polarizer forming film.
  • the distance between the crystals in the polarizer-forming film (polymer) in the stretching direction is 20 to 40 nm, preferably 20 to 35 nm, more preferably 20 to 32 nm
  • the dyeing solution contains a boric acid compound
  • the residence time of the boric acid compound is improved before the cross-linking reaction
  • the formation rate of the complex of iodine which is a dichroic substance in the polarizer forming film is increased.
  • the boric acid crosslinking efficiency is increased, the stability of the formed complex is improved, the amount of complex decomposition is reduced even under high temperature conditions, and the durability of the polarizer can be remarkably improved.
  • the stretching direction is preferably the MD direction.
  • the MD direction is the longitudinal direction (longitudinal direction) of the polarizer-forming film, and is also the transport direction of the polarizer-forming film in the production method of the present invention.
  • the distance between the crystals in the polarizer-forming film in the stretching direction can be achieved through adjustment of the type of polarizer-forming film and the stretching ratio, preferably the dyeing step A method of adjusting the cumulative stretch ratio at the end to a range of 2.0 to 3.0 times can be used.
  • the type of the boric acid compound is not particularly limited, and examples of the boric acid compound include boric acid, sodium borate, potassium borate, and lithium borate. These may be used alone or in admixture of two or more.
  • the boric acid compound contained in the staining solution may be contained in the staining solution at 0.3 to 5% by weight with respect to 100% by weight of the staining solution.
  • the content of the PVA-I 3 complex and the PVA-I 5 complex can be further increased, and the risk of cleavage is reduced.
  • the boric acid compound in the dyeing solution may be included so as to have a lower concentration than the boric acid compound added to the crosslinking solution in the subsequent crosslinking step.
  • the staining solution may further contain water, a water-soluble organic solvent, or a mixed solvent thereof and iodine.
  • the iodine concentration may be 0.4 to 400 mmol / L, preferably 0.8 to 275 mmol / L, more preferably 1 to 200 mmol / L with respect to the staining solution.
  • the staining solution may further contain iodide as a solubilizing agent for improving the staining efficiency.
  • the type of iodide is not particularly limited.
  • titanium iodide, and potassium iodide is preferred in that it has high solubility in water. These may be used alone or in admixture of two or more.
  • the content of the iodide is not particularly limited, and may be, for example, 0.01 to 10% by weight, preferably 0.1 to 5% by weight, out of 100% by weight of the staining solution.
  • the temperature of the dyeing tank is not particularly limited, and may be, for example, 5 to 42 ° C., preferably 10 to 35 ° C.
  • the time for immersing the polarizer forming film in the dyeing tank is not particularly limited, and may be, for example, 1 to 20 minutes, preferably 2 to 10 minutes.
  • the stretching step may be performed simultaneously with the dyeing step, and the stretching ratio in this case is preferably 1.2 to 1.76 times.
  • the cumulative draw ratio at the end of the dyeing step including the swelling and dyeing steps may be 2.0 to 3.0 times.
  • the distance between the crystals according to the present invention can be realized within the above range, and the problem that the film is wrinkled to cause poor appearance or the initial optical characteristics are fragile can be solved.
  • the cumulative stretch ratio means the product of the stretch ratio in each step.
  • the cross-linking step is a step of fixing the adsorbed iodine molecules by immersing the dyed polarizer forming film in the cross-linking solution so that the dyeability by physically adsorbed iodine molecules does not deteriorate due to the external environment. is there.
  • the crosslinking liquid used in the crosslinking step of the present invention contains a boric acid compound. Through this, it is possible to improve the cross-linking efficiency, suppress the generation of wrinkles of the film during the process, and form the orientation of the dichroic material to improve the optical characteristics.
  • iodine which is a dichroic dye
  • iodine molecules may be detached by a moist heat environment, so that a sufficient crosslinking reaction is required.
  • the cross-linking step is important because the cross-linking step generally has to be stretched with the largest stretch ratio. .
  • the crosslinking step according to the present invention may be performed in a single step or a plurality of steps, for example, may include at least a first crosslinking step and a second crosslinking step.
  • a boric acid compound may be included in the crosslinking liquid used in one or more of the crosslinking steps.
  • the concentration of the boric acid compound in the crosslinking liquid is not particularly limited, but may be, for example, 1 to 10% by weight, preferably 2 to 6% by weight, based on the total weight of the crosslinking liquid.
  • concentration of the boric acid compound in the crosslinking liquid is less than 1% by weight, the crosslinking effect may decrease and the orientation of polyvinyl alcohol and iodine may decrease. Cutting can occur.
  • the same boric acid compound as that used in the staining step can be used.
  • the crosslinking liquid of the present invention may contain water used as a solvent and an organic solvent that can be mutually dissolved together with water, in order to prevent the uniformity of the degree of polarization in the plane of the polarizer and the desorption of dyed iodine.
  • a small amount of iodide may also be included.
  • the iodide used may be the same as that used in the dyeing step, and the concentration of the iodide is not particularly limited, and is, for example, 0.05 to 15% by weight of the total weight of the crosslinking solution. Preferably 0.5 to 11% by weight.
  • concentration of the iodide is not particularly limited, and is, for example, 0.05 to 15% by weight of the total weight of the crosslinking solution. Preferably 0.5 to 11% by weight.
  • the temperature of the crosslinking tank is not particularly limited, but may be, for example, 20 to 70 ° C.
  • the time for immersing the polarizer forming film in the crosslinking tank is not particularly limited, and may be, for example, 1 second to 15 minutes, preferably 5 seconds to 10 minutes.
  • the stretching step may be performed simultaneously with the crosslinking step, in which case the stretching ratio of the first crosslinking step may be 1.4 to 3.0 times, preferably 1.5 to 2.5 times. It is good. Further, the draw ratio of the second crosslinking step may be 1.01 to 2.0 times, and preferably 1.2 to 1.8 times. In addition, the cumulative stretching ratio of the first crosslinking step and the second crosslinking step may be 1.5 to 5.0 times, preferably 1.7 to 4.5 times. Within the above range, the effect of increasing the crosslinking efficiency can be maintained, and there is no problem that the film is broken or the production efficiency is lowered due to excessive stretching.
  • the method for producing a polarizer of the present invention may further include a complementary color step after the crosslinking step.
  • the film having undergone the crosslinking step is immersed in a complementary color solution containing a boric acid compound, preferably a complementary color solution containing a boric acid compound and iodide, and the iodine complex is physically adsorbed.
  • a complementary color solution containing a boric acid compound preferably a complementary color solution containing a boric acid compound and iodide
  • the iodine complex is physically adsorbed.
  • the complementary color aqueous solution contains water, which is a solvent, and a boric acid compound such as boric acid or sodium borate, and may further contain an organic solvent and iodide that are mutually soluble with water.
  • a boric acid compound such as boric acid or sodium borate
  • the same boric acid compound as that used in the dyeing step can be used.
  • the boric acid compound plays a role in forming orientation of iodine by crosslinking polyvinyl alcohol to impart orientation and suppressing wrinkle generation in the process to improve handleability.
  • the concentration of the boric acid compound in the complementary color aqueous solution is not particularly limited, but may be, for example, 1 to 10% by weight, preferably 2 to 6% by weight with respect to 100% by weight of the complementary color aqueous solution.
  • the hue control effect is very excellent within the above range, and the risk of cutting during the stretching process can be reduced.
  • the iodide is used to prevent the depolarization of the uniformity of the degree of polarization in the plane of the polarizer and the dyed iodine, and the same iodide as that used in the dyeing step can be used. .
  • the iodide content in the complementary color aqueous solution is not particularly limited. For example, it may be 0.05 to 15% by weight, preferably 0.5 to 11% by weight, based on 100% by weight of the complementary color aqueous solution. Good. Within the above range, it is possible to prevent the problem that iodine ions are desorbed and the transmittance is reduced, or that iodine ions penetrate into the film and the transmittance is reduced.
  • the temperature of the complementary color tank is not particularly limited, but may preferably be 20 to 70 ° C., and the immersion time of the polyvinyl alcohol film in the complementary color tank may be 1 second to 15 minutes, preferably 5 seconds to 10 It should be minutes.
  • the stretching step may be performed simultaneously with the complementary color step, and at this time, the stretching ratio of the complementary color step may be 1.01 to 1.5 times, preferably 1.02 to 1.08 times. . Within the above range, the hue adjusting effect can be shown without breaking the film, and the production efficiency is high.
  • the present invention is preferably stretched so that the total cumulative stretching ratio is 4.0 to 7.0 times.
  • the method for producing a polarizer of the present invention may further include a water washing step after the crosslinking step (or complementary color step) is completed.
  • the water washing step is a step of immersing the film for forming a polarizer having undergone crosslinking (or complementary color) in a water washing tank filled with a water washing solution, and removing unnecessary residues attached to the film for forming a polarizer in the previous step. It is.
  • the aqueous solution for washing may be water (deionized water), and an iodide may be further added thereto.
  • an iodide the same ones used in the dyeing step can be used, and among these, sodium iodide or potassium iodide is preferably used.
  • the content of iodide is not particularly limited, and may be, for example, 0.1 to 10 parts by weight, preferably 3 to 8 parts by weight, based on the total weight of the aqueous washing solution.
  • the temperature of the washing tank is not particularly limited, and may be, for example, 10 to 60 ° C, preferably 15 to 40 ° C.
  • the water washing step can be omitted, and may be performed each time a previous step such as a dyeing step, a crosslinking step, or a complementary color step is completed. Moreover, it may be repeated one or more times, and the number of repetitions is not particularly limited.
  • the drying step is a step of drying the washed polarizer-forming film and further improving the orientation of iodine molecules dyed by neck-in by drying to obtain a polarizer having excellent optical properties.
  • drying methods methods such as natural drying, air drying, heat drying, microwave drying, hot air drying and the like can be used. Recently, a new microwave treatment that activates and dries only the water in the film has been newly introduced. In general, hot air treatment and far-infrared treatment are mainly used.
  • the temperature at the time of hot air drying is not particularly limited, it is preferably performed at a relatively low temperature in order to prevent deterioration of the polarizer, and may be, for example, 20 to 90 ° C., preferably 80 ° C. or less, more preferably Is preferably 60 ° C. or lower.
  • the execution time of the hot air drying is not particularly limited, and may be performed, for example, for 1 to 10 minutes.
  • the present invention provides a polarizer produced by the above method and a polarizing plate in which a protective film is laminated on at least one surface of the polarizer produced by the above method.
  • the polarizer manufactured by the above method may have a boric acid crosslinking efficiency of 4.5 to 9.0, and the durability is remarkably improved within the above range, and also when exposed to high temperature conditions for a long time. Hue change can be minimized.
  • the type of the protective film is not particularly limited as long as it is a film excellent in transparency, mechanical strength, thermal stability, moisture shielding property, isotropy, etc.
  • Specific examples include polyethylene terephthalate, polyethylene Polyester resins such as isophthalate and polybutylene terephthalate; cellulose resins such as diacetylcellulose and triacetylcellulose; polycarbonate resins; polyacrylic resins such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; polystyrene and acrylonitrile Styrenic resins such as styrene copolymers; Polyolefin resins such as polyethylene, polypropylene, cyclo- or polyolefin having a norbornene structure, and ethylene-propylene copolymers; Polyamides such as nylon and aromatic polyamides Fatty resin; imide resin; polyethersulfone resin; sulfone resin; polyetherketone resin; sulf
  • thermosetting resins such as (meth) acrylic-type, urethane type, an epoxy type, a silicon type, or ultraviolet curable resin.
  • a cellulose-based film having a surface soaped (saponified) by alkali or the like is particularly preferable in consideration of polarization characteristics or durability.
  • the protective film may have a function of the following optical layer.
  • the structure of the polarizing plate is not particularly limited, and various optical layers satisfying necessary optical characteristics may be laminated on the polarizer.
  • a structure in which a protective film for protecting the polarizer is laminated on at least one surface of the polarizer; a hard coat layer, an antireflection layer, an anti-adhesion layer, a diffusion prevention layer on at least one surface of the polarizer or the protective film A structure in which a surface treatment layer such as an antiglare layer is laminated; a structure in which an alignment liquid crystal layer or other functional film for compensating a viewing angle is laminated on at least one surface of a polarizer or a protective film. There may be.
  • wave plates such as ⁇ plates
  • optical films such as polarization conversion devices, reflectors, semi-transmissive plates, half-wave plates, or quarter-wave plates used to form various image display devices
  • a polarizing plate having a structure in which a protective film is laminated on one surface of a polarizer a reflective polarizing plate or a semi-transmissive polarizing plate in which a reflector or a semi-transmissive reflector is laminated on the laminated protective film;
  • An elliptical or circular polarizing plate on which a phase difference plate is laminated; a wide viewing angle polarizing plate on which a viewing angle compensation layer or a viewing angle compensation film is laminated; or a polarizing plate on which a brightness enhancement film is laminated is preferable.
  • Such a polarizing plate is applicable not only to a normal liquid crystal display device but also to various image display devices such as an electroluminescence display device, a plasma display device, and a field emission display device.
  • Example 1 A transparent unstretched polyvinyl alcohol (PVA) film (PE60, KURARAY) having a saponification degree of 99.9% or more was swelled by being immersed in water (deionized water) at 25 ° C. for 1 minute and 20 seconds, Dyeing was performed by immersing in an aqueous dyeing solution at 30 ° C. containing 1.25 mmol / L of iodine, 1.25% by weight of potassium iodide and 0.3% by weight of boric acid for 2 minutes and 30 seconds.
  • PVA polyvinyl alcohol
  • the film was stretched at a stretching ratio of 1.56 times and 1.64 times in the swelling and dyeing steps, respectively, and stretched so that the cumulative stretching ratio after passing through the dyeing tank was 2.56 times.
  • the film was immersed in an aqueous solution for crosslinking at 56 ° C. containing 13.9% by weight of potassium iodide and 3% by weight of boric acid for 26 seconds (first crosslinking step) while being crosslinked for a stretching ratio of 1.7 times. And stretched. Thereafter, the film was immersed in an aqueous solution for crosslinking at 56 ° C.
  • the total cumulative draw ratio of the swelling, dyeing and crosslinking, and complementary color steps was set to 6 times.
  • a polyvinyl alcohol (PVA) film was dried in an oven at 70 ° C. for 4 minutes to produce a polarizer.
  • a polarizing plate was manufactured by laminating a triacetyl cellulose (TAC) film on both sides of the manufactured polarizer.
  • TAC triacetyl cellulose
  • the polarizing plate was formed in the same manner as in Example 1 except for the boric acid concentration in the dyeing tank, the stretching ratio of the swelling step, the stretching ratio of the dyeing step, and the cumulative stretching ratio after passing through the dyeing tank described in Table 1 below. Manufactured.
  • the polarizers of the above examples and comparative examples are all manufactured to have a high transmittance (43.5%), and their physical properties are compared below.
  • Crosslinking efficiency 1.1 Crosslinking degree After the central part of the polarizer produced in Examples and Comparative Examples was cut to a size of 10 cm ⁇ 10 cm, the crosslinking degree was measured using a Nicolet 5700 (FT-IR) apparatus manufactured by Thermo Fisher Scientific. Was measured.
  • VeeMAX III As an FT-IR chip, VeeMAX III (ATR) manufactured by Pike technologies was used, and the number of scans was 16 times and the resolution was 4 cm ⁇ 1 . Further, in the measured IR Data, the area (a) of the 2850 to 3000 cm ⁇ 1 region is adjusted to the standard Peak area (a) by matching the standard of 3.2, and then the area of 1200 to 1360 cm ⁇ 1 is the standard Peak area. Divide by (a).
  • Crosslinking degree (area of 1200 to 1360 cm ⁇ 1 ) / (reference peak area (a)) After performing the above-mentioned method for measuring the degree of crosslinking three times, an average value is obtained.
  • Crosslinking efficiency degree of crosslinking / Boron content (%)
  • Test Example 2 The physical properties of the polarizers produced in the above Examples and Comparative Examples were measured by the following methods, and the results are shown in Table 2 below.
  • Optical characteristics (1) Polarization degree, A700, A480 The manufactured polarizer was cut into a size of 4 cm ⁇ 4 cm, and the transmittance was measured using an ultraviolet-visible light spectrometer (V-7100, manufactured by JASCO). At this time, the degree of polarization is defined by Equation 1 below.
  • Polarization degree (P) [(T 1 ⁇ T 2 ) / (T 1 + T 2 )] 1/2 ⁇ 100
  • the unit of polarization degree (P) is%.
  • T 1 is a parallel transmittance obtained when a pair of polarizers are arranged in a state where the absorption axes are parallel
  • T 2 is a case where a pair of polarizers is arranged in a state where the absorption axes are orthogonal to each other. It is the orthogonal transmittance obtained).
  • A700 and A480 are absorbances defined by Equations 2 and 3.
  • A700 ⁇ Log 10 ⁇ (TMD , 700 ⁇ TTD, 700 ) / 10000 ⁇
  • TMD, 700 is a transmittance at a wavelength of 700 nm obtained when the manufactured polarizing plate is disposed in a state where the absorption axis of the polarizing plate is orthogonal to the linearly polarized light of the measuring light
  • T TD, 700 is a transmittance at a wavelength of 700 nm obtained when the manufactured polarizing plate is arranged in a state where the absorption axis of the polarizing plate is parallel to the linearly polarized light of the measuring light, and these units are%.
  • A480 ⁇ Log 10 ⁇ (TMD , 480 ⁇ TTD, 480 ) / 10000 ⁇ (In the formula, TMD, 480 is a transmittance at a wavelength of 480 nm obtained when the manufactured polarizing plate is disposed in a state where the absorption axis of the polarizing plate is orthogonal to the linearly polarized light of the measuring light, and T TD , 480 is the transmittance at a wavelength of 480 nm obtained when the manufactured polarizing plate is arranged in a state where the absorption axis of the polarizing plate is parallel to the linearly polarized light of the measuring light, and these units are all in%. is there).
  • PVA-I 5 complex PVA and I 5 - the complex
  • PVA-I 3 complex PVA and I 3 - complexes
  • the polarizers produced by the methods of Examples 1 to 10 exhibited excellent optical characteristics, showed relatively high absorbance even after the heat resistance test, and did not cause a red discoloration phenomenon.
  • the polarizers produced by the methods of Comparative Examples 1 to 5 were somewhat inferior in optical properties and had a lower absorbance after the heat resistance test, and generally a reddish phenomenon occurred.

Abstract

The present invention relates to a method for manufacturing a polarizer, and more specifically, the present invention includes steps for swelling, dyeing, crosslinking, and drawing a film for forming the polarizer. The swelling step, dyeing step, and cross-linking step are carried out in this order. At least part of the drawing step is carried out in the dyeing step and/or before the dyeing step. When the dyeing step is completed, distance between crystals in the film for forming the polarizer in the drawing direction is 20 - 40 nm. The dyeing solution includes a boric acid compound.

Description

偏光子の製造方法Manufacturing method of polarizer
 本発明は偏光子の製造方法に関する。 The present invention relates to a method for manufacturing a polarizer.
 液晶表示装置(LCD)、電界発光(EL)表示装置、プラズマ表示装置(PDP)、電界放出表示装置(FED)、有機発光ダイオード(OLED)等のような各種の画像表示装置に用いられている偏光板は、一般的にポリビニルアルコール系(polyvinyl alcohol, PVA)フィルムにヨウ素系化合物又は二色性偏光物質が吸着配向された偏光子を含み、偏光子の一方の面には偏光子保護フィルムが順に積層されており、偏光子の他方の面には、偏光子保護フィルム、液晶セルと接合される粘着剤層と離型フィルムが順に積層された多層構造を有する。 Used in various image display devices such as liquid crystal display (LCD), electroluminescence (EL) display, plasma display (PDP), field emission display (FED), organic light emitting diode (OLED), etc. A polarizing plate generally includes a polarizer in which an iodine compound or a dichroic polarizing material is adsorbed and oriented on a polyvinyl alcohol (PVA) film, and a polarizer protective film is provided on one surface of the polarizer. The other surface of the polarizer has a multilayer structure in which a polarizer protective film, an adhesive layer bonded to a liquid crystal cell, and a release film are sequentially stacked.
 偏光板を構成する偏光子は、画像表示装置に適用されて色の再現性に優れた画像を提供するために高い透過率及び偏光度を兼ね備えることが求められる。また、平板表示装置の各分野への応用が広がり、大型化傾向が一層顕著になるにつれて、液晶表示装置等の各種の画像表示装置を高温状態で長時間使用することとなる場合が生じるようになり、偏光性能及び光学性能の向上と共に耐久性の向上に対する要求も増え、その結果、偏光板の性能に対する条件が非常に厳しくなった。それだけではなく、様々な環境と用途に適した特性を有する画像表示装置が現在求められており、高温及び高湿条件下で色相変化を含む光学耐久性、高配向・高透過を通じた高コントラストが求められている。 The polarizer constituting the polarizing plate is required to have high transmittance and degree of polarization in order to be applied to an image display device and provide an image having excellent color reproducibility. In addition, as the application of flat panel display devices to various fields spreads and the trend toward larger size becomes more prominent, various image display devices such as liquid crystal display devices may be used for a long time at high temperatures. As a result, the demand for improvement in durability along with improvement in polarization performance and optical performance has increased, and as a result, the conditions for the performance of the polarizing plate have become very strict. In addition, image display devices having characteristics suitable for various environments and applications are currently being sought, and optical durability including hue change under high temperature and high humidity conditions, and high contrast through high orientation and high transmission. It has been demanded.
 韓国登録特許第1296786号には、偏光子の製造方法が開示されているが、透過率が高い場合、偏光度が低下する問題点を改善することができなかった。 Korean Patent No. 1296786 discloses a method of manufacturing a polarizer, but when the transmittance is high, the problem that the degree of polarization decreases cannot be improved.
韓国特許第1296786号Korean Patent No. 1296786
 本発明は、光学特性及び耐久性が向上した偏光子を製造できる方法を提供することを目的とする。 An object of the present invention is to provide a method capable of producing a polarizer having improved optical characteristics and durability.
 1.偏光子形成用フィルムの膨潤、染色、架橋及び延伸ステップを含み、
 前記膨潤ステップ、前記染色ステップ、及び、前記架橋ステップはこの順に行われ、
 前記延伸ステップの少なくとも一部は、前記染色ステップにおいて、及び/又は前記染色ステップよりも前に行われ、
 前記染色ステップの終了時において、延伸方向における前記偏光子形成用フィルム内の結晶と結晶との間の距離は20ないし40nmであり、染色液はホウ酸化合物を含む、偏光子の製造方法。
1. Including swelling, dyeing, crosslinking and stretching steps of the polarizer-forming film,
The swelling step, the dyeing step, and the crosslinking step are performed in this order,
At least a part of the stretching step is performed in the dyeing step and / or before the dyeing step;
At the end of the dyeing step, the distance between crystals in the polarizer-forming film in the stretching direction is 20 to 40 nm, and the dyeing solution contains a boric acid compound.
 2.上記1において、前記延伸方向はMD方向である、偏光子の製造方法。 2. 2. The method for producing a polarizer according to 1 above, wherein the stretching direction is an MD direction.
 3.上記1において、前記ホウ酸化合物は染色液に前記染色液の総重量のうち0.3ないし5重量%で含まれる、偏光子の製造方法。 3. 2. The method for producing a polarizer according to 1 above, wherein the boric acid compound is contained in a staining solution in an amount of 0.3 to 5% by weight of the total weight of the staining solution.
 4.上記1において、前記染色ステップの終了時までの累積延伸比が2.0ないし3.0倍である、偏光子の製造方法。 4. 2. The method for producing a polarizer according to 1 above, wherein the cumulative stretch ratio until the end of the dyeing step is 2.0 to 3.0 times.
 5.上記1において、前記架橋ステップは少なくとも第1及び第2架橋ステップを含む、偏光子の製造方法。 5. In 1 above, the cross-linking step includes at least a first cross-linking step and a second cross-linking step.
 6.上記1において、前記染色ステップの染色液内のホウ酸化合物の濃度は架橋ステップの架橋液内のホウ酸化合物の濃度よりも低い、偏光子の製造方法。 6. 2. The method for producing a polarizer according to 1 above, wherein the concentration of the boric acid compound in the staining liquid in the staining step is lower than the concentration of the boric acid compound in the crosslinking liquid in the crosslinking step.
 7.上記1において、補色ステップをさらに含む、偏光子の製造方法。 7. 2. The method for producing a polarizer according to 1 above, further comprising a complementary color step.
 8.上記1ないし7のいずれか一項の方法で製造された偏光子。 8. A polarizer produced by the method according to any one of 1 to 7 above.
 9.上記8において、ホウ酸架橋効率が4.5ないし9.0である、偏光子。 9. 8. The polarizer according to 8, wherein the boric acid crosslinking efficiency is 4.5 to 9.0.
 10.上記8の偏光子及び前記偏光子の少なくとも一面に積層された保護フィルムを備える偏光板。 10. A polarizing plate comprising the polarizer of 8 and a protective film laminated on at least one surface of the polarizer.
 11.上記10の偏光板を含む画像表示装置。 11. An image display apparatus comprising the ten polarizing plates.
 本発明の方法は、透過率が高いながらも偏光度が改善され、光学特性に優れた偏光子を製造できる。
 本発明の方法は、耐久性が著しく改善された偏光子を製造できる。
 また、本発明の方法は、高温条件に長時間晒された場合にも色相変化を最小化することができる。
The method of the present invention can produce a polarizer having improved optical properties and improved polarization degree while having high transmittance.
The method of the present invention can produce a polarizer with significantly improved durability.
Also, the method of the present invention can minimize the hue change even when exposed to high temperature conditions for a long time.
 本発明は、偏光子形成用フィルムの膨潤、染色、架橋及び延伸ステップを含み、前記膨潤ステップ、前記染色ステップ、及び、前記架橋ステップはこの順に行われ、前記延伸ステップの少なくとも一部は、前記染色ステップの終了時において、及び/又は前記染色ステップよりも前に行われ、前記染色ステップの終了時において、延伸方向における前記偏光子形成用フィルム内の結晶と結晶との間の距離は20ないし40nmであり、染色液はホウ酸化合物を含むことにより、偏光度に優れ、耐久性が著しく改善され、高温条件に長時間晒された場合でも色相変化を最小化することができる偏光子の製造方法に関する。 The present invention includes a step of swelling, dyeing, crosslinking and stretching a film for forming a polarizer, wherein the swelling step, the dyeing step, and the crosslinking step are performed in this order, and at least a part of the stretching step includes Performed at the end of the dyeing step and / or before the dyeing step, and at the end of the dyeing step, the distance between the crystals in the polarizer forming film in the stretching direction is 20 to 20 Production of a polarizer that is 40 nm, and the dyeing solution contains a boric acid compound, which has excellent polarization degree, significantly improved durability, and can minimize hue change even when exposed to high temperature conditions for a long time. Regarding the method.
 以下、本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail.
 通常、偏光子の製造方法は、膨潤ステップ、染色ステップ、架橋ステップ、延伸ステップ、水洗ステップ、及び乾燥ステップを含み、主に延伸方法により分類される。例えば、乾式延伸方法、湿式延伸方法、又は前記二種類の延伸方法を混合したハイブリッド延伸方法等が挙げられる。以下では湿式延伸方法を一例として本発明の偏光子の製造方法を説明するが、これに制限されるものではなく、前記ステップのうち乾燥ステップを除いた他のステップはそれぞれ様々な種類の溶液の中から選択された1種以上の溶液で満たされた恒温水槽(bath)内に偏光子形成用フィルムを浸漬した状態で行われる。 Usually, a method for producing a polarizer includes a swelling step, a dyeing step, a crosslinking step, a stretching step, a water washing step, and a drying step, and is classified mainly by a stretching method. For example, a dry stretching method, a wet stretching method, or a hybrid stretching method in which the two kinds of stretching methods are mixed can be used. Hereinafter, the method for producing a polarizer of the present invention will be described by taking a wet stretching method as an example. However, the present invention is not limited to this, and the other steps except the drying step in the above steps are different types of solutions. It is performed in a state where the film for forming a polarizer is immersed in a thermostatic water bath filled with one or more solutions selected from the inside.
 また、本発明の偏光子の各製造ステップの反復回数、工程条件等は本発明の目的から逸脱しない限り特に限定されない。 In addition, the number of repetitions of each manufacturing step of the polarizer of the present invention, process conditions, and the like are not particularly limited as long as they do not depart from the object of the present invention.
 以下では本発明の偏光子の製造方法の一具現例をより詳しく説明する。 Hereinafter, an embodiment of the method for producing a polarizer of the present invention will be described in more detail.
 本発明において、偏光子は偏光子形成用フィルムにヨウ素が吸着配向された、通常のヨウ素系偏光子を意味する。 In the present invention, a polarizer means a normal iodine-based polarizer in which iodine is adsorbed and oriented on a polarizer-forming film.
 偏光子形成用フィルムは二色性物質、例えばヨウ素により染色可能なフィルムであれば、その種類は特に制限されず、具体的にはポリビニルアルコールフィルム、部分的に鹸化されたポリビニルアルコールフィルム;ポリエチレンテレフタレートフィルム、エチレン-酢酸ビニル共重合体フィルム、エチレン-ビニルアルコール共重合体フィルム、セルロースフィルム、これらの部分的に鹸化されたフィルム等のような親水性高分子フィルム;又は脱水処理されたポリビニルアルコール系フィルム、脱塩酸処理されたポリビニルアルコール系フィルム等のようなポリエン配向フィルム等が挙げられる。これらのうち、面内において偏光度の均一性を強化する効果に優れるだけでなく、ヨウ素に対する染色親和性に優れるという点から、ポリビニルアルコール系フィルムが好ましい。 The type of the polarizer-forming film is not particularly limited as long as it is a film that can be dyed with a dichroic material such as iodine. Specifically, a polyvinyl alcohol film, a partially saponified polyvinyl alcohol film; polyethylene terephthalate Hydrophilic polymer films such as films, ethylene-vinyl acetate copolymer films, ethylene-vinyl alcohol copolymer films, cellulose films, partially saponified films thereof; or dehydrated polyvinyl alcohol systems Examples thereof include a polyene oriented film such as a film and a polyvinyl alcohol film subjected to dehydrochlorination treatment. Among these, a polyvinyl alcohol film is preferable because it not only has an excellent effect of enhancing the uniformity of the degree of polarization in the plane but also has an excellent dyeing affinity for iodine.
 <膨潤ステップ>
 膨潤ステップは、未延伸の偏光子形成用フィルムを染色する前に膨潤用水溶液で満たされた膨潤槽に浸漬し、偏光子形成用フィルムの表面上に堆積した埃やブロッキング防止剤のような不純物を除去し、偏光子形成用フィルムを膨潤させて延伸効率を向上させ、染色不均一性も抑制して偏光子の物性を向上させるためのステップである。
<Swelling step>
In the swelling step, impurities such as dust and anti-blocking agents deposited on the surface of the polarizer-forming film are immersed in a swelling tank filled with a swelling aqueous solution before dyeing the unstretched polarizer-forming film. This is a step for improving the physical properties of the polarizer by removing the swell and improving the stretching efficiency by swelling the polarizer-forming film and also suppressing the unevenness of dyeing.
 膨潤用水溶液としては、通常、水(純水、脱イオン水)を単独で用いてもよく、高分子フィルムの加工性を向上させるために少量のグリセリンを添加してもよい。 As the aqueous solution for swelling, usually water (pure water, deionized water) may be used alone, or a small amount of glycerin may be added to improve the processability of the polymer film.
 グリセリンを含む場合、その含量は特に限定されず、例えば膨潤用水溶液の総重量のうち5重量%以下であってもよい。 When glycerin is included, the content is not particularly limited, and may be, for example, 5% by weight or less of the total weight of the aqueous solution for swelling.
 膨潤槽の温度は特に限定されず、例えば20ないし45℃であってもよく、好ましくは20ないし40℃であることがよい。膨潤槽の温度が上記の範囲内である場合、その後の延伸及び染色効率に優れ、過度な膨潤によるフィルムの膨脹を防止することができる。 The temperature of the swelling tank is not particularly limited, and may be, for example, 20 to 45 ° C, preferably 20 to 40 ° C. When the temperature of a swelling tank is in said range, it is excellent in subsequent extending | stretching and dyeing | staining efficiency, and can prevent the expansion of the film by excessive swelling.
 膨潤ステップの実行時間(膨潤槽浸漬時間)は特に限定されず、例えば180秒以下であってもよく、好ましくは90秒以下であることがよい。膨潤槽浸漬時間が上記の範囲内である場合、膨潤が過度なことにより飽和状態になるのを抑制でき、偏光子形成用フィルムの軟化による破断を防止し、染色ステップでヨウ素の吸着が均一になり偏光度を向上させることができる。 The execution time of the swelling step (swelling bath immersion time) is not particularly limited, and may be, for example, 180 seconds or less, and preferably 90 seconds or less. When the swelling bath immersion time is within the above range, it can suppress saturation due to excessive swelling, prevent breakage due to softening of the polarizer forming film, and uniform adsorption of iodine in the dyeing step The degree of polarization can be improved.
 膨潤ステップと延伸ステップが同時に行われてもよく、この場合の延伸比は約1.1ないし1.7倍であってもよく、好ましくは1.2ないし1.6倍であることがよい。上記延伸比が1.1倍未満である場合にはしわが生じることがあり、1.7倍を超える場合には初期光学特性が低下し得る。
膨潤ステップには、エキスパンダーロール、スパイラルロール、クラウンロール、クロスガイダー、ベンドバー等を浴中及び/または浴の出入口に設けても良い。
The swelling step and the stretching step may be performed simultaneously. In this case, the stretching ratio may be about 1.1 to 1.7 times, preferably 1.2 to 1.6 times. When the draw ratio is less than 1.1 times, wrinkles may occur, and when it exceeds 1.7 times, the initial optical properties may be deteriorated.
In the swelling step, an expander roll, a spiral roll, a crown roll, a cross guider, a bend bar or the like may be provided in the bath and / or at the entrance / exit of the bath.
<染色ステップ>
 染色ステップは、偏光子形成用フィルムを二色性物質、例えばヨウ素を含む染色液で満たされた染色槽に浸漬させて偏光子形成用フィルムにヨウ素を吸着させるステップである。
<Dyeing step>
The dyeing step is a step of immersing the polarizer forming film in a dyeing tank filled with a dichroic substance, for example, a dyeing solution containing iodine, and adsorbing iodine to the polarizer forming film.
 通常、偏光子の製造工程のうちの染色ステップで、ヨウ素及びヨウ化物を含む染色溶液に浸漬させるが、このとき、透過率が高くなるように製造する場合、偏光度が低下することを解決できないという問題点があった。 Usually, it is immersed in a dyeing solution containing iodine and iodide in the dyeing step of the manufacturing process of the polarizer. At this time, when manufacturing so as to increase the transmittance, it cannot be solved that the degree of polarization decreases. There was a problem.
 しかしながら、本発明は染色ステップの終了時において、延伸方向における偏光子形成用フィルム(高分子)内の結晶と結晶との間の距離を20ないし40nmとし、好ましくは20ないし35nmとし、さらに好ましくは20ないし32nmとし、染色液がホウ酸化合物を含むようにして、架橋反応を行う前にホウ酸化合物の滞留時間を向上させ、偏光子形成用フィルムにおける二色性物質であるヨウ素の錯体の形成率を高めにすることにより、初期偏光度を良好にする。 However, in the present invention, at the end of the dyeing step, the distance between the crystals in the polarizer-forming film (polymer) in the stretching direction is 20 to 40 nm, preferably 20 to 35 nm, more preferably 20 to 32 nm, the dyeing solution contains a boric acid compound, the residence time of the boric acid compound is improved before the cross-linking reaction, and the formation rate of the complex of iodine which is a dichroic substance in the polarizer forming film is increased. By increasing the value, the initial polarization degree is improved.
 また、本発明の製造方法によると、ホウ酸架橋効率が高まり、形成された錯体の安定化度が向上し、高温条件でも錯体分解量が少なくなり偏光子の耐久性を著しく改善することができる。 In addition, according to the production method of the present invention, the boric acid crosslinking efficiency is increased, the stability of the formed complex is improved, the amount of complex decomposition is reduced even under high temperature conditions, and the durability of the polarizer can be remarkably improved. .
 また、前記延伸方向はMD方向であることが好ましい。MD方向とは、偏光子形成用フィルムの長手方向(縦方向)であり、本発明の製造方法における偏光子形成用フィルムの搬送方向でもある。 The stretching direction is preferably the MD direction. The MD direction is the longitudinal direction (longitudinal direction) of the polarizer-forming film, and is also the transport direction of the polarizer-forming film in the production method of the present invention.
 染色ステップの終了時において、延伸方向への偏光子形成用フィルム内の結晶と結晶との間の距離は偏光子形成用フィルムの種類や延伸比の調節を通じて達成することができ、好ましくは染色ステップ終了時における累積延伸比を2.0ないし3.0倍の範囲内に調節する方法を用いることができる。 At the end of the dyeing step, the distance between the crystals in the polarizer-forming film in the stretching direction can be achieved through adjustment of the type of polarizer-forming film and the stretching ratio, preferably the dyeing step A method of adjusting the cumulative stretch ratio at the end to a range of 2.0 to 3.0 times can be used.
 前記ホウ酸化合物の種類は特に限定されず、例えば前記ホウ酸化合物はホウ酸、ホウ酸ナトリウム、ホウ酸カリウム及びホウ酸リチウム等が挙げられる。これらはそれぞれ単独で又は2種以上を混合して用いてもよい。 The type of the boric acid compound is not particularly limited, and examples of the boric acid compound include boric acid, sodium borate, potassium borate, and lithium borate. These may be used alone or in admixture of two or more.
 染色液に含まれるホウ酸化合物は、染色液100重量%に対して0.3ないし5重量%で染色液に含まれてもよい。上記の範囲内でPVA-I錯体及びPVA-I錯体の含量をより一層増加させることができ、切断の危険性が低くなる。 The boric acid compound contained in the staining solution may be contained in the staining solution at 0.3 to 5% by weight with respect to 100% by weight of the staining solution. Within the above range, the content of the PVA-I 3 complex and the PVA-I 5 complex can be further increased, and the risk of cleavage is reduced.
 また、染色液内のホウ酸化合物はその後に行われる架橋ステップの架橋液に添加されるホウ酸化合物よりもさらに低い濃度を有するように含まれてもよい。 Also, the boric acid compound in the dyeing solution may be included so as to have a lower concentration than the boric acid compound added to the crosslinking solution in the subsequent crosslinking step.
 染色液は、水、水溶性有機溶媒又はこれらの混合溶媒とヨウ素をさらに含んでもよい。ヨウ素の濃度は染色液に対して0.4ないし400mmol/Lであってもよく、好ましくは0.8ないし275mmol/L、より好ましくは1ないし200mmol/Lであることがよい。 The staining solution may further contain water, a water-soluble organic solvent, or a mixed solvent thereof and iodine. The iodine concentration may be 0.4 to 400 mmol / L, preferably 0.8 to 275 mmol / L, more preferably 1 to 200 mmol / L with respect to the staining solution.
 染色液は、染色効率の改善のために溶解補助剤としてヨウ化物をさらに含んでもよい。 The staining solution may further contain iodide as a solubilizing agent for improving the staining efficiency.
 ヨウ化物の種類は特に限定されず、例えばヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化スズ、ヨウ化チタン等が挙げられ、水に対する溶解度が高いという点でヨウ化カリウムが好ましい。これらはそれぞれ単独で又は2種以上を混合して用いてもよい。 The type of iodide is not particularly limited. For example, potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide. And titanium iodide, and potassium iodide is preferred in that it has high solubility in water. These may be used alone or in admixture of two or more.
 前記ヨウ化物の含量は特に限定されず、例えば染色液100重量%のうち0.01ないし10重量%であってもよく、好ましくは0.1ないし5重量%であることがよい。 The content of the iodide is not particularly limited, and may be, for example, 0.01 to 10% by weight, preferably 0.1 to 5% by weight, out of 100% by weight of the staining solution.
 染色槽の温度は特に限定されず、例えば5ないし42℃であってもよく、好ましくは10ないし35℃であることがよい。 The temperature of the dyeing tank is not particularly limited, and may be, for example, 5 to 42 ° C., preferably 10 to 35 ° C.
 染色槽に偏光子形成用フィルムを浸漬する時間は特に限定されず、例えば1ないし20分であってもよく、好ましくは2ないし10分であってもよい。 The time for immersing the polarizer forming film in the dyeing tank is not particularly limited, and may be, for example, 1 to 20 minutes, preferably 2 to 10 minutes.
 染色ステップと同時に延伸ステップが行われてもよく、この場合の延伸比は1.2ないし1.76倍であることがよい。 The stretching step may be performed simultaneously with the dyeing step, and the stretching ratio in this case is preferably 1.2 to 1.76 times.
 また、膨潤及び染色ステップを含む染色ステップ終了時における累積延伸比は、前述したように2.0ないし3.0倍であってもよい。上記の範囲で本発明による結晶間の距離を実現することができ、フィルムのしわが生じて外観不良が発生し、あるいは初期光学特性が脆弱であるといった問題を解決することができる。 Further, as described above, the cumulative draw ratio at the end of the dyeing step including the swelling and dyeing steps may be 2.0 to 3.0 times. The distance between the crystals according to the present invention can be realized within the above range, and the problem that the film is wrinkled to cause poor appearance or the initial optical characteristics are fragile can be solved.
 本明細書において累積延伸比とは各ステップにおける延伸比の積の値を意味する。 In this specification, the cumulative stretch ratio means the product of the stretch ratio in each step.
<架橋ステップ>
 架橋ステップは、物理的に吸着されているヨウ素分子による染色性が外部環境により低下しないように、染色された偏光子形成用フィルムを架橋液に浸漬させて吸着されたヨウ素分子を固定させるステップである。
<Crosslinking step>
The cross-linking step is a step of fixing the adsorbed iodine molecules by immersing the dyed polarizer forming film in the cross-linking solution so that the dyeability by physically adsorbed iodine molecules does not deteriorate due to the external environment. is there.
 本発明の架橋ステップで用いられる架橋液はホウ酸化合物を含む。これを通じて、架橋効率を向上させて工程中のフィルムのしわの発生を抑制し、二色性物質の配向を形成して光学特性を向上させることができる。 The crosslinking liquid used in the crosslinking step of the present invention contains a boric acid compound. Through this, it is possible to improve the cross-linking efficiency, suppress the generation of wrinkles of the film during the process, and form the orientation of the dichroic material to improve the optical characteristics.
 二色性染料であるヨウ素は架橋反応が不安定な場合、湿熱環境によってヨウ素分子が脱離することがあるため、十分な架橋反応が求められる。また、ポリビニルアルコール分子間に位置するほぼ全てのヨウ素分子を配向させて光学特性を向上させるために、一般的に架橋ステップで最も大きな延伸比で延伸されなければならないため、架橋ステップが重要である。 Since iodine, which is a dichroic dye, has an unstable crosslinking reaction, iodine molecules may be detached by a moist heat environment, so that a sufficient crosslinking reaction is required. In addition, in order to improve the optical properties by orienting almost all iodine molecules located between the polyvinyl alcohol molecules, the cross-linking step is important because the cross-linking step generally has to be stretched with the largest stretch ratio. .
 本発明による架橋ステップは、単一又は複数のステップで行われてもよく、例えば、少なくとも第1架橋ステップ及び第2架橋ステップを含んで行われてもよい。前記架橋ステップのうち1つ以上のステップで用いられる架橋液にホウ酸化合物が含まれてもよい。これにより、偏光子の光学特性と耐久性を同時に向上させることができる。 The crosslinking step according to the present invention may be performed in a single step or a plurality of steps, for example, may include at least a first crosslinking step and a second crosslinking step. A boric acid compound may be included in the crosslinking liquid used in one or more of the crosslinking steps. Thereby, the optical characteristic and durability of a polarizer can be improved simultaneously.
 前記架橋液内のホウ酸化合物の濃度は特に限定されないが、例えば架橋液の総重量のうち1ないし10重量%であってもよく、好ましくは2ないし6重量%であることがよい。架橋液内のホウ酸化合物の濃度が1重量%未満である場合、架橋効果が減少してポリビニルアルコール及びヨウ素の配向性が低下することがあり、10重量%を超える場合、過度な架橋結合により切断が生じ得る。 The concentration of the boric acid compound in the crosslinking liquid is not particularly limited, but may be, for example, 1 to 10% by weight, preferably 2 to 6% by weight, based on the total weight of the crosslinking liquid. When the concentration of the boric acid compound in the crosslinking liquid is less than 1% by weight, the crosslinking effect may decrease and the orientation of polyvinyl alcohol and iodine may decrease. Cutting can occur.
 ホウ酸化合物は、染色ステップで用いたものと同一のものを用いることができる。 The same boric acid compound as that used in the staining step can be used.
 本発明の架橋液は、溶媒として用いられる水、及び水と共に相互溶解可能な有機溶媒を含んでもよく、偏光子の面内における偏光度の均一性及び染着したヨウ素の脱着を防止するために少量のヨウ化物をさらに含んでもよい。 The crosslinking liquid of the present invention may contain water used as a solvent and an organic solvent that can be mutually dissolved together with water, in order to prevent the uniformity of the degree of polarization in the plane of the polarizer and the desorption of dyed iodine. A small amount of iodide may also be included.
 前記ヨウ化物は染色ステップで用いられたものと同一のものを用いることができ、前記ヨウ化物の濃度は特に限定されず、例えば架橋液の総重量のうち0.05ないし15重量%であってもよく、好ましくは0.5ないし11重量%であることがよい。架橋槽のヨウ化物の濃度が上記の範囲を満たす場合、染色ステップで吸着されたヨウ素イオンがフィルムから脱離したり架橋液に含まれたヨウ素イオンがフィルムに浸透したりすることを防止し、透過率の変化を抑制することができる。 The iodide used may be the same as that used in the dyeing step, and the concentration of the iodide is not particularly limited, and is, for example, 0.05 to 15% by weight of the total weight of the crosslinking solution. Preferably 0.5 to 11% by weight. When the iodide concentration in the crosslinking tank satisfies the above range, it prevents the iodine ions adsorbed in the dyeing step from desorbing from the film or penetrating the film from iodine ions contained in the crosslinking solution. The rate change can be suppressed.
 架橋槽の温度は特に限定されないが、例えば20ないし70℃であってもよい。 The temperature of the crosslinking tank is not particularly limited, but may be, for example, 20 to 70 ° C.
 架橋槽に偏光子形成用フィルムを浸漬する時間は特に限定されず、例えば1秒ないし15分であってもよく、好ましくは5秒ないし10分であることがよい。 The time for immersing the polarizer forming film in the crosslinking tank is not particularly limited, and may be, for example, 1 second to 15 minutes, preferably 5 seconds to 10 minutes.
 架橋ステップと同時に延伸ステップが行われてもよく、この場合、第1架橋ステップの延伸比は1.4ないし3.0倍であってもよく、好ましくは1.5ないし2.5倍であることがよい。また、第2架橋ステップの延伸比は1.01ないし2.0倍であってもよく、好ましくは1.2ないし1.8倍であることがよい。また、前記第1架橋ステップ及び第2架橋ステップの累積延伸比は1.5ないし5.0倍であってもよく、好ましくは1.7ないし4.5倍であることがよい。上記の範囲内で架橋効率の上昇効果を維持することができ、過度な延伸によりフィルムの破断が生じたり、生産効率性が低下したりする問題は生じない。 The stretching step may be performed simultaneously with the crosslinking step, in which case the stretching ratio of the first crosslinking step may be 1.4 to 3.0 times, preferably 1.5 to 2.5 times. It is good. Further, the draw ratio of the second crosslinking step may be 1.01 to 2.0 times, and preferably 1.2 to 1.8 times. In addition, the cumulative stretching ratio of the first crosslinking step and the second crosslinking step may be 1.5 to 5.0 times, preferably 1.7 to 4.5 times. Within the above range, the effect of increasing the crosslinking efficiency can be maintained, and there is no problem that the film is broken or the production efficiency is lowered due to excessive stretching.
<補色ステップ>
 必要に応じて、本発明の偏光子の製造方法は、架橋ステップの後に補色ステップをさらに含んでもよい。
<Complementary color step>
If necessary, the method for producing a polarizer of the present invention may further include a complementary color step after the crosslinking step.
 補色ステップは、前記架橋ステップを経たフィルムを、ホウ酸化合物が含まれた補色液、好ましくはホウ酸化合物及びヨウ化物が含まれた補色液に浸漬し、ヨウ素錯体が物理的に吸着されている偏光子形成用フィルムのポリビニルアルコール分子間に位置するヨウ素錯体をホウ酸架橋近傍に配向させることにより、ヨウ素錯体を安定化して色相を調節する。また、架橋ステップで十分に吸着されていないヨウ素錯体が染色された偏光子形成用フィルムに対する色相を補正する。 In the complementary color step, the film having undergone the crosslinking step is immersed in a complementary color solution containing a boric acid compound, preferably a complementary color solution containing a boric acid compound and iodide, and the iodine complex is physically adsorbed. By orienting the iodine complex located between the polyvinyl alcohol molecules of the polarizer-forming film in the vicinity of the boric acid bridge, the iodine complex is stabilized and the hue is adjusted. Moreover, the hue with respect to the film for polarizer formation dye | stained the iodine complex which is not fully adsorb | sucked by the bridge | crosslinking step is correct | amended.
 前記補色水溶液は、溶媒である水とホウ酸、ホウ酸ナトリウム等のホウ酸化合物を含み、水と共に相互溶解可能な有機溶媒及びヨウ化物をさらに含んでもよい。ホウ酸化合物は染色ステップで用いたものと同一のものを用いることができる。 The complementary color aqueous solution contains water, which is a solvent, and a boric acid compound such as boric acid or sodium borate, and may further contain an organic solvent and iodide that are mutually soluble with water. The same boric acid compound as that used in the dyeing step can be used.
 ホウ酸化合物は、ポリビニルアルコールを架橋して配向性を付与し、工程中のしわの発生を抑制することで取扱性を向上させ、ヨウ素の配向を形成する役割をする。 The boric acid compound plays a role in forming orientation of iodine by crosslinking polyvinyl alcohol to impart orientation and suppressing wrinkle generation in the process to improve handleability.
 前記補色水溶液内のホウ酸化合物の濃度は特に限定されないが、例えば補色水溶液100重量%に対して、1ないし10重量%であってもよく、好ましくは2ないし6重量%であることがよい。上記の範囲内で色相調節効果が非常に優れており、延伸工程中の切断の危険性を低くすることができる。 The concentration of the boric acid compound in the complementary color aqueous solution is not particularly limited, but may be, for example, 1 to 10% by weight, preferably 2 to 6% by weight with respect to 100% by weight of the complementary color aqueous solution. The hue control effect is very excellent within the above range, and the risk of cutting during the stretching process can be reduced.
 ヨウ化物は、偏光子の面内における偏光度の均一性と染着したヨウ素の脱着を防止するために用いられ、前記ヨウ化物は染色ステップで用いられたものと同一のものを用いることができる。 The iodide is used to prevent the depolarization of the uniformity of the degree of polarization in the plane of the polarizer and the dyed iodine, and the same iodide as that used in the dyeing step can be used. .
 前記補色水溶液内のヨウ化物の含量は特に限定されないが、例えば補色水溶液100重量%に対して0.05ないし15重量%であってもよく、好ましくは0.5ないし11重量%であることがよい。上記の範囲内でヨウ素イオンが脱離して透過率が減少したり、ヨウ素イオンがフィルムに浸透して透過率が減少したりする問題を防止することができる。 The iodide content in the complementary color aqueous solution is not particularly limited. For example, it may be 0.05 to 15% by weight, preferably 0.5 to 11% by weight, based on 100% by weight of the complementary color aqueous solution. Good. Within the above range, it is possible to prevent the problem that iodine ions are desorbed and the transmittance is reduced, or that iodine ions penetrate into the film and the transmittance is reduced.
 補色槽の温度は特に制限されないが、好ましくは20ないし70℃であってもよく、補色槽におけるポリビニルアルコール系フィルムの浸漬時間は1秒ないし15分であってもよく、好ましくは5秒ないし10分であることがよい。 The temperature of the complementary color tank is not particularly limited, but may preferably be 20 to 70 ° C., and the immersion time of the polyvinyl alcohol film in the complementary color tank may be 1 second to 15 minutes, preferably 5 seconds to 10 It should be minutes.
 補色ステップと同時に延伸ステップが行われてもよく、このとき補色ステップの延伸比は1.01ないし1.5倍であってもよく、好ましくは1.02ないし1.08倍であってもよい。上記の範囲でフィルムが破断することなく色相調節効果を示すことができ、生産効率性が高い。 The stretching step may be performed simultaneously with the complementary color step, and at this time, the stretching ratio of the complementary color step may be 1.01 to 1.5 times, preferably 1.02 to 1.08 times. . Within the above range, the hue adjusting effect can be shown without breaking the film, and the production efficiency is high.
 本発明は、総累積延伸比が4.0ないし7.0倍となるように延伸されるのが好ましい。 The present invention is preferably stretched so that the total cumulative stretching ratio is 4.0 to 7.0 times.
<水洗ステップ>
 必要に応じて、本発明の偏光子の製造方法は、架橋ステップ(又は補色ステップ)が完了した後に水洗ステップをさらに含んでもよい。
<Washing step>
If necessary, the method for producing a polarizer of the present invention may further include a water washing step after the crosslinking step (or complementary color step) is completed.
 水洗ステップは、架橋(又は補色)が完了した偏光子形成用フィルムを水洗液で満たされた水洗槽に浸漬させ、前ステップで偏光子形成用フィルムに付着した不必要な残留物を除去するステップである。 The water washing step is a step of immersing the film for forming a polarizer having undergone crosslinking (or complementary color) in a water washing tank filled with a water washing solution, and removing unnecessary residues attached to the film for forming a polarizer in the previous step. It is.
 水洗用水溶液は、水(脱イオン水)であってもよく、これにヨウ化物がさらに添加されてもよい。ヨウ化物としては、染色ステップで用いられたものと同一のものを用いることができ、これらのうちヨウ化ナトリウム又はヨウ化カリウムを用いるのが好ましい。 The aqueous solution for washing may be water (deionized water), and an iodide may be further added thereto. As the iodide, the same ones used in the dyeing step can be used, and among these, sodium iodide or potassium iodide is preferably used.
 ヨウ化物の含量は特に限定されず、例えば水洗用水溶液の総重量のうち0.1ないし10重量部であってもよく、好ましくは3ないし8重量部であってもよい。 The content of iodide is not particularly limited, and may be, for example, 0.1 to 10 parts by weight, preferably 3 to 8 parts by weight, based on the total weight of the aqueous washing solution.
 水洗槽の温度は特に限定されず、例えば10ないし60℃であってもよく、好ましくは15ないし40℃であってもよい。 The temperature of the washing tank is not particularly limited, and may be, for example, 10 to 60 ° C, preferably 15 to 40 ° C.
 水洗ステップは省略可能であり、染色ステップ、架橋ステップ又は補色ステップのような前ステップが完了する度に行われてもよい。また、1回以上繰り返されてもよく、その反復回数は特に制限されない。 The water washing step can be omitted, and may be performed each time a previous step such as a dyeing step, a crosslinking step, or a complementary color step is completed. Moreover, it may be repeated one or more times, and the number of repetitions is not particularly limited.
<乾燥ステップ>
 乾燥ステップは、水洗された偏光子形成用フィルムを乾燥させ、乾燥によるネックインで染着したヨウ素分子の配向をより向上させて光学特性に優れた偏光子を得るステップである。
<Drying step>
The drying step is a step of drying the washed polarizer-forming film and further improving the orientation of iodine molecules dyed by neck-in by drying to obtain a polarizer having excellent optical properties.
 乾燥方法としては、自然乾燥、エア乾燥、加熱乾燥、マイクロ波乾燥、熱風乾燥等の方法を用いることができ、最近はフィルム内にある水のみを活性化させて乾燥させるマイクロ波処理が新たに用いられており、通常は熱風処理と遠赤外線処理が主に用いられている。 As drying methods, methods such as natural drying, air drying, heat drying, microwave drying, hot air drying and the like can be used. Recently, a new microwave treatment that activates and dries only the water in the film has been newly introduced. In general, hot air treatment and far-infrared treatment are mainly used.
 熱風乾燥時の温度は特に限定されないが、偏光子の劣化を防止するために比較的低い温度で行われることが好ましく、例えば20ないし90℃であってもよく、好ましくは80℃以下、さらに好ましくは60℃以下であることがよい。 Although the temperature at the time of hot air drying is not particularly limited, it is preferably performed at a relatively low temperature in order to prevent deterioration of the polarizer, and may be, for example, 20 to 90 ° C., preferably 80 ° C. or less, more preferably Is preferably 60 ° C. or lower.
 前記熱風乾燥の実行時間は特に限定されず、例えば1ないし10分間行われてもよい。 The execution time of the hot air drying is not particularly limited, and may be performed, for example, for 1 to 10 minutes.
<偏光子及び偏光板>
 本発明は上記方法で製造された偏光子及び上記方法で製造された偏光子の少なくとも一面に保護フィルムが積層された偏光板を提供する。
<Polarizer and polarizing plate>
The present invention provides a polarizer produced by the above method and a polarizing plate in which a protective film is laminated on at least one surface of the polarizer produced by the above method.
 上記方法で製造された偏光子のホウ酸架橋効率は4.5ないし9.0であってもよく、上記の範囲内で耐久性が著しく改善され、高温条件に長時間晒された場合にも色相変化を最小化することができる。 The polarizer manufactured by the above method may have a boric acid crosslinking efficiency of 4.5 to 9.0, and the durability is remarkably improved within the above range, and also when exposed to high temperature conditions for a long time. Hue change can be minimized.
 前記保護フィルムの種類は、透明性、機械的強度、熱安定性、水分遮蔽性、等方性等に優れたフィルムであれば特に限定されず、具体的な例を挙げると、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ジアセチルセルロース、トリアセチルセルロース等のセルロース系樹脂、ポリカーボネート系樹脂、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート等のポリアクリル系樹脂、ポリスチレン、アクリロニトリル-スチレン共重合体等のスチレン系樹脂;ポリエチレン、ポリプロピレン、シクロ系又はノルボルネン構造を有するポリオレフィン、エチレンプロピレン共重合体等のポリオレフィン系樹脂;ナイロン、芳香族ポリアミド等のポリアミド系樹脂;イミド系樹脂;ポリエーテルスルホン系樹脂;スルホン系樹脂;ポリエーテルケトン系樹脂;硫化ポリフェニレン系樹脂;ビニルアルコール系樹脂;塩化ビニリデン系樹脂;ビニルブチラール系樹脂;アリレート系樹脂;ポリオキシメチレン系樹脂;エポキシ系樹脂等のような熱可塑性樹脂で構成されたフィルムが挙げられ、前記熱可塑性樹脂のブレンド物で構成されたフィルムも用いてもよい。また、(メタ)アクリル系、ウレタン系、エポキシ系、シリコン系等の熱硬化性樹脂又は紫外線硬化型樹脂からなるフィルムを用いてもよい。中でも、特にアルカリ等により石鹸化(鹸化)された表面を有するセルロース系フィルムが、偏光特性又は耐久性を考慮すると好適である。また、保護フィルムは下記光学層の機能を兼ね備えるものであってもよい。 The type of the protective film is not particularly limited as long as it is a film excellent in transparency, mechanical strength, thermal stability, moisture shielding property, isotropy, etc. Specific examples include polyethylene terephthalate, polyethylene Polyester resins such as isophthalate and polybutylene terephthalate; cellulose resins such as diacetylcellulose and triacetylcellulose; polycarbonate resins; polyacrylic resins such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; polystyrene and acrylonitrile Styrenic resins such as styrene copolymers; Polyolefin resins such as polyethylene, polypropylene, cyclo- or polyolefin having a norbornene structure, and ethylene-propylene copolymers; Polyamides such as nylon and aromatic polyamides Fatty resin; imide resin; polyethersulfone resin; sulfone resin; polyetherketone resin; sulfide polyphenylene resin; vinyl alcohol resin; vinylidene chloride resin; vinyl butyral resin; Resin; a film composed of a thermoplastic resin such as an epoxy resin may be mentioned, and a film composed of a blend of the thermoplastic resin may also be used. Moreover, you may use the film which consists of thermosetting resins, such as (meth) acrylic-type, urethane type, an epoxy type, a silicon type, or ultraviolet curable resin. Among these, a cellulose-based film having a surface soaped (saponified) by alkali or the like is particularly preferable in consideration of polarization characteristics or durability. Further, the protective film may have a function of the following optical layer.
 前記偏光板の構造は特に制限されず、必要な光学特性を満たす種々の光学層が偏光子上に積層されたものであってもよい。例えば、偏光子の少なくとも一方の面に偏光子を保護する保護フィルムが積層された構造;偏光子の少なくとも一方の面又は保護フィルム上にハードコート層、反射防止層、粘着防止層、拡散防止層、防眩層等の表面処理層が積層された構造;偏光子の少なくとも一方の面もしくは保護フィルム上に視野角を補償する配向液晶層又は他の機能性膜が積層された構造を有するものであってもよい。また、各種の画像表示装置を形成するのに用いられる偏光変換装置のような光学膜、リフレクター、半透過板、1/2波長板又は1/4波長板等の波長板(λ板を含む)を含む位相差板、視野角補償膜、輝度向上膜のうちの1つ以上が光学層として積層された構造であってもよい。より詳しく、偏光子の一方の面に保護フィルムが積層された構造の偏光板として、積層された保護フィルム上にリフレクター又は半透過リフレクターが積層された反射型偏光板又は半透過型偏光板;位相差板が積層された楕円形又は円形偏光板;視野角補償層又は視野角補償膜が積層された広視野角偏光板;あるいは輝度向上膜が積層された偏光板等が好ましい。 The structure of the polarizing plate is not particularly limited, and various optical layers satisfying necessary optical characteristics may be laminated on the polarizer. For example, a structure in which a protective film for protecting the polarizer is laminated on at least one surface of the polarizer; a hard coat layer, an antireflection layer, an anti-adhesion layer, a diffusion prevention layer on at least one surface of the polarizer or the protective film A structure in which a surface treatment layer such as an antiglare layer is laminated; a structure in which an alignment liquid crystal layer or other functional film for compensating a viewing angle is laminated on at least one surface of a polarizer or a protective film. There may be. In addition, wave plates (including λ plates) such as optical films such as polarization conversion devices, reflectors, semi-transmissive plates, half-wave plates, or quarter-wave plates used to form various image display devices A structure in which one or more of a phase difference plate, a viewing angle compensation film, and a brightness enhancement film are stacked as an optical layer. More specifically, as a polarizing plate having a structure in which a protective film is laminated on one surface of a polarizer, a reflective polarizing plate or a semi-transmissive polarizing plate in which a reflector or a semi-transmissive reflector is laminated on the laminated protective film; An elliptical or circular polarizing plate on which a phase difference plate is laminated; a wide viewing angle polarizing plate on which a viewing angle compensation layer or a viewing angle compensation film is laminated; or a polarizing plate on which a brightness enhancement film is laminated is preferable.
 このような偏光板は通常の液晶表示装置だけでなく、電界発光表示装置、プラズマ表示装置、電界放出表示装置等の各種の画像表示装置に適用可能である。 Such a polarizing plate is applicable not only to a normal liquid crystal display device but also to various image display devices such as an electroluminescence display device, a plasma display device, and a field emission display device.
 以下、本発明の理解を助けるために好ましい実施例を提示するが、これらの実施例は単に本発明を例示するものに過ぎず、添付の特許請求の範囲を制限するものではなく、本発明の範疇及び技術思想の範囲内で実施例に対する様々な変更及び修正が可能であることは当業者にとって明らかであり、このような変形及び修正が添付の特許請求の範囲に属することも当然である。 In the following, preferred examples are presented to aid the understanding of the present invention, but these examples are merely illustrative of the invention and are not intended to limit the scope of the appended claims. It will be apparent to those skilled in the art that various changes and modifications can be made to the embodiments within the scope of the scope and the technical idea, and such changes and modifications are also within the scope of the appended claims.
実施例及び比較例
(1)実施例1
 鹸化度が99.9%以上である透明な未延伸ポリビニルアルコール(PVA)フィルム(PE60、KURARAY社)を、25℃の水(脱イオン水)で1分20秒間浸漬して膨潤させた後、ヨウ素1.25mmol/Lとヨウ化カリウム1.25重量%、ホウ酸0.3重量%が含有された30℃の染色用水溶液に2分30秒間浸漬して染色した。このとき、膨潤及び染色ステップでそれぞれ1.56倍、1.64倍の延伸比で延伸して、染色槽通過後の累積延伸比が2.56倍となるように延伸した。続いて、ヨウ化カリウム13.9重量%、ホウ酸3重量%が含有された56℃の架橋用水溶液に26秒間浸漬(第1架橋ステップ)して架橋させながら、1.7倍の延伸比で延伸した。その後、ヨウ化カリウム13.9重量%、ホウ酸3重量%が含有された56℃の架橋用水溶液に20秒間浸漬(第2架橋ステップ)して架橋させながら、1.34倍の延伸比で延伸した。続いて、ヨウ化カリウム5重量%、ホウ酸2重量%が含有された40℃の補色用水溶液に10秒間浸漬しながら、1.01倍延伸した。
Examples and Comparative Examples (1) Example 1
A transparent unstretched polyvinyl alcohol (PVA) film (PE60, KURARAY) having a saponification degree of 99.9% or more was swelled by being immersed in water (deionized water) at 25 ° C. for 1 minute and 20 seconds, Dyeing was performed by immersing in an aqueous dyeing solution at 30 ° C. containing 1.25 mmol / L of iodine, 1.25% by weight of potassium iodide and 0.3% by weight of boric acid for 2 minutes and 30 seconds. At this time, the film was stretched at a stretching ratio of 1.56 times and 1.64 times in the swelling and dyeing steps, respectively, and stretched so that the cumulative stretching ratio after passing through the dyeing tank was 2.56 times. Subsequently, the film was immersed in an aqueous solution for crosslinking at 56 ° C. containing 13.9% by weight of potassium iodide and 3% by weight of boric acid for 26 seconds (first crosslinking step) while being crosslinked for a stretching ratio of 1.7 times. And stretched. Thereafter, the film was immersed in an aqueous solution for crosslinking at 56 ° C. containing 13.9% by weight of potassium iodide and 3% by weight of boric acid for 20 seconds (second crosslinking step) and crosslinked at a stretch ratio of 1.34 times. Stretched. Subsequently, the film was stretched 1.01 times while immersed in a complementary color aqueous solution at 40 ° C. containing 5% by weight of potassium iodide and 2% by weight of boric acid for 10 seconds.
 このとき、膨潤、染色及び架橋、補色ステップの総累積延伸比が6倍となるようにした。架橋完了後、ポリビニルアルコール(PVA)フィルムを70℃のオーブンで4分間乾燥させて偏光子を製造した。 At this time, the total cumulative draw ratio of the swelling, dyeing and crosslinking, and complementary color steps was set to 6 times. After the completion of crosslinking, a polyvinyl alcohol (PVA) film was dried in an oven at 70 ° C. for 4 minutes to produce a polarizer.
 製造された偏光子の両面にトリアセチルセルロース(TAC)フィルムを積層して偏光板を製造した。 A polarizing plate was manufactured by laminating a triacetyl cellulose (TAC) film on both sides of the manufactured polarizer.
 (2)実施例2ないし7及び比較例1ないし3 (2) Examples 2 to 7 and Comparative Examples 1 to 3
 下記の表1に記載した染色槽のホウ酸濃度、膨潤ステップの延伸比、染色ステップの延伸比、および染色槽通過後の累積延伸比を除いては実施例1と同様の方法で偏光板を製造した。 The polarizing plate was formed in the same manner as in Example 1 except for the boric acid concentration in the dyeing tank, the stretching ratio of the swelling step, the stretching ratio of the dyeing step, and the cumulative stretching ratio after passing through the dyeing tank described in Table 1 below. Manufactured.
 参考までに、上記実施例及び比較例の偏光子はいずれも高透過率(43.5%)を有するように製造されたものであり、以下でその物性を比較したものである。 For reference, the polarizers of the above examples and comparative examples are all manufactured to have a high transmittance (43.5%), and their physical properties are compared below.
分析例 Analysis example
 上記実施例及び比較例で製造された偏光子の物性(架橋効率及びPVAフィルム内の結晶と結晶との間の距離)を下記の方法で測定し、その結果を下記の表1に示した。 The physical properties (crosslinking efficiency and distance between crystals in the PVA film) of the polarizers produced in the above Examples and Comparative Examples were measured by the following methods, and the results are shown in Table 1 below.
1.架橋効率
1.1 架橋度
 実施例及び比較例で製造された偏光子の中央部を10cm×10cmのサイズにカットした後、Thermo fisher scientific社のNicolet 5700(FT-IR)装置を用いて架橋度を測定した。
1. Crosslinking efficiency 1.1 Crosslinking degree After the central part of the polarizer produced in Examples and Comparative Examples was cut to a size of 10 cm × 10 cm, the crosslinking degree was measured using a Nicolet 5700 (FT-IR) apparatus manufactured by Thermo Fisher Scientific. Was measured.
 FT-IRチップとしては、Pike technologies社のVeeMAX III(ATR)を使用し、Scan回数は16回、Resolutionは4cm-1で行った。また、測定されたIR Dataのうち2850~3000cm-1領域の面積(a)を3.2の基準に合わせて基準Peak面積(a)とした後、1200~1360cm-1の面積を基準Peak面積(a)で除する。 As an FT-IR chip, VeeMAX III (ATR) manufactured by Pike technologies was used, and the number of scans was 16 times and the resolution was 4 cm −1 . Further, in the measured IR Data, the area (a) of the 2850 to 3000 cm −1 region is adjusted to the standard Peak area (a) by matching the standard of 3.2, and then the area of 1200 to 1360 cm −1 is the standard Peak area. Divide by (a).
 架橋度=(1200~1360cm-1の面積)/(基準Peak面積(a))
 上記の架橋度の測定方法を3回行った後、平均値を求める。
Crosslinking degree = (area of 1200 to 1360 cm −1 ) / (reference peak area (a))
After performing the above-mentioned method for measuring the degree of crosslinking three times, an average value is obtained.
 1.2 Boron 分析
 実施例及び比較例で製造された偏光子サンプルの試料0.15gをVialに入れ、さらに超純水を加えて試料重量を25gとし、Vialを90℃の恒温槽に入れて偏光子サンプルを完全に溶かした後、放冷する。
放冷された試料にマンニトール溶液20mLを加え、0.1N NaOHで滴定し、Boron含有率(%)を求める。
1.2 Boron analysis 0.15 g of the polarizer sample produced in the examples and comparative examples was put in a vial, ultrapure water was added to make the sample weight 25 g, and the vial was put in a thermostat at 90 ° C. The polarizer sample is completely dissolved and then allowed to cool.
Add 20 mL of mannitol solution to the cooled sample and titrate with 0.1 N NaOH to obtain the Boron content (%).
1.3 架橋効率
 得られた架橋度とBoron含有率を用いて、下式により架橋効率を算出する。
架橋効率:架橋度/Boron含有率(%)
1.3 Crosslinking efficiency Using the obtained degree of crosslinking and the Boron content, the crosslinking efficiency is calculated according to the following equation.
Crosslinking efficiency: degree of crosslinking / Boron content (%)
2.PVA内の結晶と結晶との間の距離(Long Period)
 浦項加速器研究所(PAL)のSynchrotron Beamを使用し、1.567オングストロームのX-ray波長で、サンプルからディレクターまでの距離を3.0mとして、Beam Path 1mmで染色槽累積延伸比によるPVA内の延伸方向における結晶と結晶との間の距離を散乱ベクトルqのピークに基づいて測定した。
PVA内の結晶と結晶との間の距離(Long Period,d)=2π/q
2. Distance between crystals in PVA (Long Period)
Using the Synchrotron Beam from Pohang Accelerator Laboratory (PAL), the X-ray wavelength of 1.567 angstroms, the distance from the sample to the director is 3.0 m, the beam path is 1 mm, and the inside of the PVA is 1 mm. The distance between the crystals in the stretching direction was measured based on the peak of the scattering vector q.
Distance between crystals in PVA (Long Period, d) = 2π / q
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試験例
 上記実施例及び比較例で製造された偏光子の物性を下記の方法で測定し、その結果を下記の表2に示した。
Test Example The physical properties of the polarizers produced in the above Examples and Comparative Examples were measured by the following methods, and the results are shown in Table 2 below.
1.光学特性
(1)偏光度、A700、A480
 製造された偏光子を4cm×4cmの大きさに切断した後、紫外可視光線分光計(V-7100、JASCO社製)を用いて透過率を測定した。このとき、偏光度は下記数式1で定義される。
1. Optical characteristics (1) Polarization degree, A700, A480
The manufactured polarizer was cut into a size of 4 cm × 4 cm, and the transmittance was measured using an ultraviolet-visible light spectrometer (V-7100, manufactured by JASCO). At this time, the degree of polarization is defined by Equation 1 below.
 参考までに、偏光度は0.001程度の差もコントラスト比に大きな影響を与えることに留意する必要がある。偏光度は99.990未満になるとコントラスト比が低下してリアルブラック(real black)の具現が難しくなる。 For reference, it should be noted that a difference of about 0.001 in the degree of polarization greatly affects the contrast ratio. When the degree of polarization is less than 99.990, the contrast ratio is lowered and it is difficult to realize real black.
 [数式1]
 偏光度(P)=[(T-T)/(T+T)]1/2×100
 なお、偏光度(P)の単位は%である。
 (式中、Tは一対の偏光子を吸収軸が平行な状態に配置した場合に得られる平行透過率であり、Tは一対の偏光子を吸収軸が直交する状態に配置した場合に得られる直交透過率である)。
[Formula 1]
Polarization degree (P) = [(T 1 −T 2 ) / (T 1 + T 2 )] 1/2 × 100
The unit of polarization degree (P) is%.
(In the formula, T 1 is a parallel transmittance obtained when a pair of polarizers are arranged in a state where the absorption axes are parallel, and T 2 is a case where a pair of polarizers is arranged in a state where the absorption axes are orthogonal to each other. It is the orthogonal transmittance obtained).
 A700、及び、A480は、数式2及び3により定義される吸光度である。
[数式2]
 A700=-Log10{(TMD,700×TTD,700)/10000}
 (式中、TMD,700は製造された偏光板を、当該偏光板の吸収軸が測定光の直線偏光と直交する状態に配置したときに得られる700nm波長における透過率であり、TTD,700は、製造された偏光板を、当該偏光板の吸収軸が測定光の直線偏光と平行な状態に配置したときに得られる700nm波長における透過率であり、これらの単位はいずれも%である)。
A700 and A480 are absorbances defined by Equations 2 and 3.
[Formula 2]
A700 = −Log 10 {(TMD , 700 × TTD, 700 ) / 10000}
(In the formula, TMD, 700 is a transmittance at a wavelength of 700 nm obtained when the manufactured polarizing plate is disposed in a state where the absorption axis of the polarizing plate is orthogonal to the linearly polarized light of the measuring light, and T TD, 700 is a transmittance at a wavelength of 700 nm obtained when the manufactured polarizing plate is arranged in a state where the absorption axis of the polarizing plate is parallel to the linearly polarized light of the measuring light, and these units are%. ).
 [数式3]
 A480=-Log10{(TMD,480×TTD,480)/10000}
 (式中、TMD,480は、製造された偏光板を、当該偏光板の吸収軸が測定光の直線偏光と直交する状態に配置したときに得られる480nm波長における透過率であり、TTD,480は、製造された偏光板を、当該偏光板の吸収軸が測定光の直線偏光と平行な状態に配置したときに得られる480nm波長における透過率であり、これらの単位はいずれも%である)。
[Formula 3]
A480 = −Log 10 {(TMD , 480 × TTD, 480 ) / 10000}
(In the formula, TMD, 480 is a transmittance at a wavelength of 480 nm obtained when the manufactured polarizing plate is disposed in a state where the absorption axis of the polarizing plate is orthogonal to the linearly polarized light of the measuring light, and T TD , 480 is the transmittance at a wavelength of 480 nm obtained when the manufactured polarizing plate is arranged in a state where the absorption axis of the polarizing plate is parallel to the linearly polarized light of the measuring light, and these units are all in%. is there).
 A700とA480の吸光度の数値が高い場合、PVA-I錯体(PVA及びI の錯体)及びPVA-I錯体(PVA及びI の錯体)の含量が高く、偏光度が高いことを意味する。 When A700 and A480 value of absorbance is high, PVA-I 5 complex (PVA and I 5 - the complex) and PVA-I 3 complex (PVA and I 3 - complexes) high content of, degree of polarization is high Means.
 2.耐熱性の評価
 実施例及び比較例で製造された偏光板を105℃で30分間放置の前と放置の後の分光透過率τ(λ)を分光光度計(V7100、日本分光社)にて測定し、この結果から直交分光透過スペクトラムを求め、上記数式2で表されるA700を求めた。
2. Evaluation of heat resistance Spectral transmittance τ (λ) measured before and after leaving the polarizing plate produced in Examples and Comparative Examples at 105 ° C. for 30 minutes was measured with a spectrophotometer (V7100, JASCO Corporation). Then, the orthogonal spectral transmission spectrum was obtained from this result, and A700 represented by the above formula 2 was obtained.
 上記耐熱性評価の後に目視観察により偏光板の赤変発生の有無を確認した。表1において、Xは赤変が発生しなかったことを示し、Oは赤変が発生したことを示す。 After the heat resistance evaluation, the presence or absence of red discoloration of the polarizing plate was confirmed by visual observation. In Table 1, X indicates that redness did not occur, and O indicates that redness occurred.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表2を参照すると、実施例1ないし10の方法で製造された偏光子は優れた光学特性を示し、耐熱性テスト後も比較的高い吸光度を示し、赤変現象が生じなかった。しかし、比較例1ないし5の方法で製造された偏光子は光学特性が多少劣り、耐熱性テスト後の吸光度が低い方であり、総じて赤変現象が発生した。 Referring to Table 2 above, the polarizers produced by the methods of Examples 1 to 10 exhibited excellent optical characteristics, showed relatively high absorbance even after the heat resistance test, and did not cause a red discoloration phenomenon. However, the polarizers produced by the methods of Comparative Examples 1 to 5 were somewhat inferior in optical properties and had a lower absorbance after the heat resistance test, and generally a reddish phenomenon occurred.

Claims (11)

  1.  偏光子形成用フィルムの膨潤、染色、架橋及び延伸ステップを含み、
     前記膨潤ステップ、前記染色ステップ、及び、前記架橋ステップはこの順に行われ、
     前記延伸ステップの少なくとも一部は、前記染色ステップにおいて、及び/又は前記染色ステップよりも前に行われ、
     前記染色ステップの終了時において、延伸方向における前記偏光子形成用フィルム内の結晶と結晶との間の距離は20ないし40nmであり、
     染色液はホウ酸化合物を含む、偏光子の製造方法。
    Including swelling, dyeing, crosslinking and stretching steps of the polarizer-forming film,
    The swelling step, the dyeing step, and the crosslinking step are performed in this order,
    At least a part of the stretching step is performed in the dyeing step and / or before the dyeing step;
    At the end of the dyeing step, the distance between the crystals in the polarizer-forming film in the stretching direction is 20 to 40 nm,
    The method for producing a polarizer, wherein the staining liquid contains a boric acid compound.
  2.  前記延伸方向はMD方向である、請求項1に記載の偏光子の製造方法。 The method for producing a polarizer according to claim 1, wherein the stretching direction is an MD direction.
  3.  前記ホウ酸化合物は染色液に前記染色液の総重量のうち0.3ないし5重量%で含まれる、請求項1又は2に記載の偏光子の製造方法。 The method for producing a polarizer according to claim 1 or 2, wherein the boric acid compound is contained in a staining solution in an amount of 0.3 to 5% by weight of the total weight of the staining solution.
  4.  前記染色ステップの終了時までの累積延伸比が2.0ないし3.0倍である、請求項1~3のいずれか1項に記載の偏光子の製造方法。 The method for producing a polarizer according to any one of claims 1 to 3, wherein a cumulative stretch ratio until the end of the dyeing step is 2.0 to 3.0 times.
  5.  前記架橋ステップは少なくとも第1及び第2架橋ステップを含む、請求項1~4のいずれか1項に記載の偏光子の製造方法。 The method for producing a polarizer according to any one of claims 1 to 4, wherein the crosslinking step includes at least a first and a second crosslinking step.
  6.  前記染色ステップの染色液内のホウ酸化合物の濃度は前記架橋ステップの架橋液内のホウ酸化合物の濃度よりも低い、請求項1~5のいずれか1項に記載の偏光子の製造方法。 The method for producing a polarizer according to any one of claims 1 to 5, wherein the concentration of the boric acid compound in the staining liquid in the staining step is lower than the concentration of the boric acid compound in the crosslinking liquid in the crosslinking step.
  7.  補色ステップをさらに含む、請求項1~6のいずれか一項に記載の偏光子の製造方法。 The method for producing a polarizer according to any one of claims 1 to 6, further comprising a complementary color step.
  8.  請求項1ないし請求項7のいずれか一項の方法で製造された偏光子。 A polarizer manufactured by the method according to any one of claims 1 to 7.
  9.  ホウ酸架橋効率が4.5ないし9.0である、請求項8に記載の偏光子。 The polarizer according to claim 8, wherein the boric acid crosslinking efficiency is 4.5 to 9.0.
  10.  請求項8の偏光子及び前記偏光子の少なくとも一面に積層された保護フィルムを備える偏光板。 A polarizing plate comprising the polarizer of claim 8 and a protective film laminated on at least one surface of the polarizer.
  11.  請求項10の偏光板を含む画像表示装置。 An image display device comprising the polarizing plate of claim 10.
PCT/JP2015/076509 2014-09-23 2015-09-17 Method for manufacturing polarizer WO2016047554A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177008238A KR102450760B1 (en) 2014-09-23 2015-09-17 Method for manufacturing polarizer
JP2016550152A JP6694821B2 (en) 2014-09-23 2015-09-17 Method of manufacturing polarizer
CN201580050228.4A CN107076906B (en) 2014-09-23 2015-09-17 Method for manufacturing polarizing plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0127225 2014-09-23
KR1020140127225A KR20160035516A (en) 2014-09-23 2014-09-23 Preparing method for polarizer

Publications (1)

Publication Number Publication Date
WO2016047554A1 true WO2016047554A1 (en) 2016-03-31

Family

ID=55581081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076509 WO2016047554A1 (en) 2014-09-23 2015-09-17 Method for manufacturing polarizer

Country Status (5)

Country Link
JP (1) JP6694821B2 (en)
KR (2) KR20160035516A (en)
CN (1) CN107076906B (en)
TW (1) TWI663435B (en)
WO (1) WO2016047554A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664788A (en) * 2016-07-29 2018-02-06 住友化学株式会社 Optical laminate
JP2018025765A (en) * 2016-07-29 2018-02-15 住友化学株式会社 Optical laminate
KR20180020896A (en) * 2016-08-18 2018-02-28 스미또모 가가꾸 가부시키가이샤 Process for producing polarizing film and apparatus for producing polarizing film
KR20190004228A (en) * 2017-07-03 2019-01-11 스미또모 가가꾸 가부시키가이샤 Method and apparatus of manufacturing polarizing film
JP2023081708A (en) * 2021-12-01 2023-06-13 日東電工株式会社 Method of manufacturing polarizer and method of manufacturing polarizing plate
JP2023081709A (en) * 2021-12-01 2023-06-13 日東電工株式会社 Method of manufacturing polarizer and method of manufacturing polarizing plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107987213B (en) * 2017-12-28 2020-07-21 深圳市华星光电技术有限公司 Polarizing film material and preparation method thereof, polarizing film and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649734A (en) * 1979-09-29 1981-05-06 Nitto Electric Ind Co Ltd Crosslinking of polyvinyl alcohol type polymer
JP2005266326A (en) * 2004-03-18 2005-09-29 Nitto Denko Corp Method for manufacturing polarizing film, polarizing film, optical film using the same and image display device
JP2006188655A (en) * 2004-11-02 2006-07-20 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol film and method for producing the same
JP2007140127A (en) * 2005-11-18 2007-06-07 Nitto Denko Corp Polarizer, method for manufacturing the same, optical film and image display device
JP2012203002A (en) * 2011-03-23 2012-10-22 Nitto Denko Corp Polarizer and manufacturing method thereof
JP2013105036A (en) * 2011-11-14 2013-05-30 Nitto Denko Corp Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6121091B2 (en) * 2011-08-09 2017-04-26 日東電工株式会社 Polarizer and manufacturing method thereof
JP6025312B2 (en) * 2011-08-23 2016-11-16 日東電工株式会社 Manufacturing method of polarizer
KR101296786B1 (en) 2012-08-21 2013-09-16 주식회사 파수닷컴 Apparatus and method for printing control using virtual printer, authentication server and method for authentication thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649734A (en) * 1979-09-29 1981-05-06 Nitto Electric Ind Co Ltd Crosslinking of polyvinyl alcohol type polymer
JP2005266326A (en) * 2004-03-18 2005-09-29 Nitto Denko Corp Method for manufacturing polarizing film, polarizing film, optical film using the same and image display device
JP2006188655A (en) * 2004-11-02 2006-07-20 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol film and method for producing the same
JP2007140127A (en) * 2005-11-18 2007-06-07 Nitto Denko Corp Polarizer, method for manufacturing the same, optical film and image display device
JP2012203002A (en) * 2011-03-23 2012-10-22 Nitto Denko Corp Polarizer and manufacturing method thereof
JP2013105036A (en) * 2011-11-14 2013-05-30 Nitto Denko Corp Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664788A (en) * 2016-07-29 2018-02-06 住友化学株式会社 Optical laminate
JP2018025764A (en) * 2016-07-29 2018-02-15 住友化学株式会社 Optical laminate
JP2018025765A (en) * 2016-07-29 2018-02-15 住友化学株式会社 Optical laminate
CN107664788B (en) * 2016-07-29 2022-03-04 住友化学株式会社 Optical laminate
KR20180020896A (en) * 2016-08-18 2018-02-28 스미또모 가가꾸 가부시키가이샤 Process for producing polarizing film and apparatus for producing polarizing film
JP2018032025A (en) * 2016-08-18 2018-03-01 住友化学株式会社 Method and device for manufacturing polarizing film
JP7175079B2 (en) 2016-08-18 2022-11-18 住友化学株式会社 Manufacturing method and manufacturing apparatus for polarizing film
KR102535102B1 (en) * 2016-08-18 2023-05-19 스미또모 가가꾸 가부시키가이샤 Process for producing polarizing film and apparatus for producing polarizing film
KR20190004228A (en) * 2017-07-03 2019-01-11 스미또모 가가꾸 가부시키가이샤 Method and apparatus of manufacturing polarizing film
KR102572466B1 (en) * 2017-07-03 2023-08-29 스미또모 가가꾸 가부시키가이샤 Method and apparatus of manufacturing polarizing film
JP2023081708A (en) * 2021-12-01 2023-06-13 日東電工株式会社 Method of manufacturing polarizer and method of manufacturing polarizing plate
JP2023081709A (en) * 2021-12-01 2023-06-13 日東電工株式会社 Method of manufacturing polarizer and method of manufacturing polarizing plate

Also Published As

Publication number Publication date
CN107076906B (en) 2020-10-13
TWI663435B (en) 2019-06-21
KR20160035516A (en) 2016-03-31
JPWO2016047554A1 (en) 2017-07-06
TW201617647A (en) 2016-05-16
KR102450760B1 (en) 2022-10-05
KR20170058948A (en) 2017-05-29
JP6694821B2 (en) 2020-05-20
CN107076906A (en) 2017-08-18

Similar Documents

Publication Publication Date Title
JP6694821B2 (en) Method of manufacturing polarizer
WO2016060087A1 (en) Polarizer and method for producing polarizer
JP2015075762A (en) Method of manufacturing polarizer
JPWO2016027864A1 (en) Manufacturing method of polarizer
JP6197146B1 (en) Manufacturing method of polarizer
KR20130030990A (en) Method for preparing polarizer
KR101768754B1 (en) Preparing method for polarizer, polarizer and polarizing plate manufactured by using the same
JP6712595B2 (en) Method of manufacturing polarizer
JP6723240B2 (en) Method of manufacturing polarizer
KR20130038514A (en) Method for preparing polarizer
KR20120124903A (en) Method for preparing polarizer
KR20160080335A (en) Process for Preparing Polarizer
KR20210069893A (en) Process for Preparing Polarizer
KR20160096385A (en) Process for Preparing Polarizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177008238

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15844209

Country of ref document: EP

Kind code of ref document: A1